The effects of solar Reimers η on the final destinies of Venus, the Earth, and Mars
NASA Astrophysics Data System (ADS)
Guo, Jianpo; Lin, Ling; Bai, Chunyan; Liu, Jinzhong
2016-04-01
Our Sun will lose sizable mass and expand enormously when it evolves to the red giant branch phase and the asymptotic giant branch phase. The loss of solar mass will push a planet outward. On the contrary, solar expansion will enhance tidal effects, and tidal force will drive a planet inward. Will our Sun finally engulf Venus, the Earth, and Mars? In the literature, one can find a large number of studies with different points of view. A key factor is that we do not know how much mass the Sun will lose at the late stages. The Reimers η can describe the efficiency of stellar mass-loss and greatly affect solar mass and solar radius at the late stages. In this work, we study how the final destinies of Venus, the Earth, and Mars can be depending on Reimers η chosen. In our calculation, the Reimers η varies from 0.00 to 0.75, with the minimum interval 0.0025. Our results show that Venus will be engulfed by the Sun and Mars will most probably survive finally. The fate of the Earth is uncertain. The Earth will finally be engulfed by the Sun while η <0.4600, and it will finally survive while η ≥ 0.4600. New observations indicate that the average Reimers η for solar-like stars is 0.477. This implies that Earth may survive finally.
HEDS-UP Mars Exploration Forum
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann (Editor); Duke, Micheal B. (Editor)
1998-01-01
In the early 1990s, Duke and Budden convened a series of workshops addressing mission rationale, exploration objectives, and key constraints and issues facing human crews on Mars. The focal point was "why" the U.S. should fly humans to Mars. In the mid-1990s, strategies for a Mars mission matured and evolved, driven formally by NASA Johnson Space Center's Office of Exploration. In 1997, NASA published a report capturing the current thinking: the NASA Mars Reference Mission. In the 1997-1998 school year, HEDS-UP sponsored six universities to conduct design studies on Mars exploration, using the Reference Mission as a basis for their work. The 1998 Mars Exploration Forum presents the results of these university studies, suggesting "how" we might explore Mars, in terms of specific technical components that would enable human missions to Mars. A primary objective of the HEDS-UP Mars Exploration Forum was to provide a forum for active interaction among NASA, industry, and the university community on the subject of human missions to Mars. NASA scientists and engineers were asked to present the state of exploration for Mars mission options currently under study. This status "snapshot" of current Mars strategies set the stage for the six HEDS-UP universities to present their final design study results. Finally, a panel of industry experts discussed readiness for human missions to Mars as it pertains to the aerospace industries and technologies. A robust poster session provided the backdrop for government-industry-university discussions and allowed for feedback to NASA on the Mars Reference Mission. The common thread woven through the two days was discussion of technologies, proven and emerging, that will be required to launch, land, and sustain human crews on the Red Planet. As this decade (and indeed this millenium) draws to a close, Mars will continue to loom in our sights as the next target for human space exploration. It is our hope that the efforts of the Mars Exploration Forum will serve as one small contribution toward the ultimate goal of humans exploring Mars.
NASA Technical Reports Server (NTRS)
Soule, Veronique
1989-01-01
This study was initiated to provide an approach to the development of a permanently manned Mars base. The objectives for a permanently manned Mars base are numerous. Primarily, human presence on Mars will allow utilization of new resources for the improvement of the quality of life on Earth, allowing for new discoveries in technologies, the solar system, and human physiology. Such a mission would also encourage interaction between different countries, increasing international cooperation and leading to a stronger unification of mankind. Surface studies of Mars, scientific experiments in the multiple fields, the research for new minerals, and natural resource production are more immediate goals of the Mars mission. Finally, in the future, colonization of Mars will ensure man's perpetual presence in the universe. Specific objectives of this study were: (1) to design a Mars habitat that minimizes the mass delivered to the Mars surface, provides long-stay capability for the base crew, and accommodates future expansion and modification; (2) to develop a scenario of the construction of a permanently manned Mars base; and (3) to incorporate new and envisioned technologies.
Special section introduction on MicroMars to MegaMars
Bridges, Nathan T.; Dundas, Colin M.; Edgar, Lauren
2016-01-01
The study of Earth's surface and atmosphere evolved from local investigations to the incorporation of remote sensing on a global scale. The study of Mars has followed the opposite progression, beginning with telescopic observations, followed by flyby and orbital missions, landers, and finally rover missions in the last ∼20 years. This varied fleet of spacecraft (seven of which are currently operating as of this writing) provides a rich variety of datasets at spatial scales ranging from microscopic images to synoptic orbital remote sensing.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.
NASA Technical Reports Server (NTRS)
Dieriam, Todd A.
1990-01-01
Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.
Lunar and Planetary Science XXXVI, Part 10
NASA Technical Reports Server (NTRS)
2005-01-01
The Problem of Incomplete Mixing of Interstellar Components in the Solar Nebula: Very High Precision Isotopic Measurements with Isoprobes P and T. Finally: Presolar Graphite Grains Identified in Orgueil. Basaltic Ring Structures as an Analog for Ring Features in Athabasca Valles, Mars. Experimental Studies of the Water Sorption Properties of Mars-Relevant Porous Minerals and Sulfates. Silicon Isotope Ratio Variations in CAI Evaporation Residues Measured by Laser Ablation Multicollector ICPMS. Crater Count Chronology and Timing of Ridged Plains Emplacement at Schiaparelli Basin, Mars. Martian Valley Networks and Associated Fluvial Features as Seen by the Mars Express High Resolution Stereo Camera (HRSC). Fast-Turnoff Transient Electromagnetic (TEM) Field Study at the Mars Analog Site of Rio Tinto, Spain. Time Domain Electromagnetics for Mapping Mineralized and Deep Groundwater in Mars Analog Environments. Mineralogical and Seismological Models of the Lunar Mantle. Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites. Thermal Infrared Spectral Deconvolution of Experimentally Shocked Basaltic Rocks Using Experimentally Shocked Plagioclase Endmembers.
NASA Technical Reports Server (NTRS)
Donahue, Benjamin
1994-01-01
Recently, one of the most comprehensive design studies of conceptual manned Mars vehicles, conducted since the Apollo era Mars mission studies of the 1960's, was completed. One of the tasks of the study involved the analysis of nuclear thermal propulsion spacecraft for Manned Mars exploration missions. This paper describes the specific effort aimed at vehicle configuration design. Over the course of the four year study, three configuration baselines were developed, each reflecting trade study cycle results of sequential phases of the study. Favorable attributes incorporated into the final concept, including a capability for on-orbit self-assembly and ease of launch vehicle packability, represent design solutions to configuration deficiencies plaguing nuclear propulsion Mars spacecraft design since the vehicle archetype originated in the 1950's. This paper contains a narrative summary of significant milestones in the effort, describes the evolution to the preferred configuration, and set forth the benefits derived from its utilization.
NASA Technical Reports Server (NTRS)
Drake, Bret G. (Editor)
1998-01-01
This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.
Small, Jennifer L.; O'Donoghue, Anthony J.; Boritsch, Eva C.; Tsodikov, Oleg V.; Knudsen, Giselle M.; Vandal, Omar; Craik, Charles S.; Ehrt, Sabine
2013-01-01
The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1′. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond. PMID:23504313
NASA Astrophysics Data System (ADS)
Najib, Dalal; Nagy, Andrew; Toth, Gabor; Ma, Yingjuan
We use our new four species multi-fluid model to study the interaction of the solar wind with Mars. The lower boundary of our model is at 100 km, below the main ionospheric peak, and the radial resolution is about 10 km in the ionosphere, thus the model does a very good job in reproducing the ionosphere and the associated processes. We carry out calculations for high and low solar activity conditions and establish the importance of mass loading by the extended exosphere of Mars. We also calculate the atmospheric escape of the ionospheric species, including pick up ions. Finally, we compare our model results with the Viking, MGS and Mars Express observations.
NASA Astrophysics Data System (ADS)
Kagenov, Anuar; Glazunov, Anatoliy; Kostyushin, Kirill; Eremin, Ivan; Shuvarikov, Vladimir
2017-10-01
This paper presents the results of numerical investigations of the interaction with the Mars surface of four supersonic jets of ExoMars landing platform propulsion system. The cases of impingement of supersonic jets on a curved surface are considered depending on the values of propulsion system thrust. According to the results of numerical studies are obtained the values of normal stresses on the surface of Mars at altitudes of 1.0, 0.5 and 0.3 meter to the surface of the landing. To define the occurring shear stresses Mohr-Coulomb theory was used. The maximum values of shear stresses were defined for the following types of soil of Mars: drift material, crusty to cloddy material, blocky material, sand and Mojave Mars simulant. The conducted evaluations showed, regardless of the propulsion system configuration, that when the final stage of the controlled landing of the ExoMars landing platform, the erosion of the Mars regolith would be insignificant. The estimates are consistent with the available data from previous Mars missions.
NASA Technical Reports Server (NTRS)
Glaze, Lori S.
2004-01-01
Proxemy Research had a grant from NASA to perform scientific research using Mars Global Surveyor (MGS) data to study lava flows on Mars. Here we summarize the scientific progress and accomplishments of this grant. Scientific publications and abstracts of presentations are indicated in the final section.
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1992-01-01
The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.
NASA Technical Reports Server (NTRS)
George, L. E.; Kos, L. D.
1998-01-01
This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2009-2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. "Porkchop" plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.
A Mars Riometer: Antenna Considerations
NASA Technical Reports Server (NTRS)
Fry, Craig D.
2001-01-01
This is the final report on NASA Grant NAG5-9706. This project explored riometer (relative ionospheric opacity meter) antenna designs that would be practical for a Mars surface or balloon mission. The riometer is an important radio science instrument for terrestrial aeronomy investigations. The riometer measures absorption of cosmic radio waves by the overhead ionosphere. Studies have shown the instrument should work well on Mars, which has an appreciable daytime ionosphere. There has been concern that the required radio receiver antenna (with possibly a 10 meter scale size) would be too large or too difficult to deploy on Mars. This study addresses those concerns and presents several antenna designs and deployment options. It is found that a Mars balloon would provide an excellent platform for the riometer antenna. The antenna can be incorporated into the envelope design, allowing self-deployment of the antenna as the balloon inflates.
Mars Science Laboratory Spacecraft During Cruise, Artist Concept
2011-10-03
This is an artist concept of NASA Mars Science Laboratory spacecraft during its cruise phase between launch and final approach to Mars. The spacecraft includes a disc-shaped cruise stage on the left attached to the aeroshell.
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The Mars exploration is a candidate pathway to expand human presence and useful activities in the solar system. There are several propulsion system options being considered to place the Mars payload on its inter-planetary transfer trajectory. One propulsion option is the use of Solar Electric Propulsion (SEP) to spiral out with the Mars payload from an initial Low Earth Orbit (LEO) to an elliptical High Earth Orbit (HEO). This report, presented in annotated facing page format, describes the work completed on the design of a crew taxi propulsion stage used in conjunction with the SEP. Transportation system/mission analysis topics covered in this report include sub-system analysis, trajectory profile description, mass performance and crew taxi stage sizing, stage configuration, stage cost, and Trans-Mars Injection (TMI) launch window. The high efficiency of SEP is used to provide the major part of the TMI propulsion maneuver. Orbital energy is continuously added over a period of approximately twelve months. The SEP and Mars payload follow a spiral trajectory from an initial LEO to a final elliptical HEO. A small chemical stage is then used to provide the final part of the TMI. The now unloaded SEP returns to LEO to repeat another spiral trajectory with payload to HEO. The spiral phase of the SEP's trajectory takes several months to reach HEO, thus significantly increasing the exposure time of the crew to zero-gravity. In order to minimize the long zero-gravity effects, a high thrust chemical stage delivers the crew to the SEP's HEO. The crew rendezvous with the Mars payload in HEO. After a checkout period the Mars payload with the crew is injected onto a Trans-Mars Trajectory by a small chemical stage.
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The Mars exploration is a candidate pathway to expand human presence and useful activities in the solar system. There are several propulsion system options being considered to place the Mars payload on its interplanetary transfer trajectory. One propulsion option is the use of Solar Electric Propulsion (SEP) to spiral out with the Mars payload from an initial Low Earth Orbit (LEO) to an elliptical High Earth Orbit (HEO). This report, presented in annotated facing page format, describes the work completed on the design of a crew taxi propulsion stage used in conjunction with the SEP. Transportation system/mission analysis topics covered in this report include sub-system analysis, trajectory profile description, mass performance and crew taxi stage sizing, stage configuration, stage cost, and Trans-Mars Injection (TMI) launch window. The high efficiency of SEP is used to provide the major part of the TMI propulsion maneuver. Orbital energy is continuously added over a period of approximately twelve months. The SEP and Mars payload follow a spiral trajectory from an initial LEO to a final elliptical HEO. A small chemical stage is then used to provide the final part of the TMI. The now unloaded SEP returns to LEO to repeat another spiral trajectory with payload to HEO. The spiral phase of the SEP's trajectory takes several months to reach HEO, thus significantly increasing the exposure time of the crew to zero-gravity. In order to minimize the long zero-gravity effects, a high thrust chemical stage delivers the crew to the SEP's HEO. The crew rendezvous with the Mars payload in HEO. After a checkout period the Mars payload with the crew is injected onto a Trans-Mars Trajectory by a small chemical stage.
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed are: (1) an artificial gravity assessment study; (2) Mars mission transport vehicle (MTV)/Mars excursion vehicle (MEV) mission scenarios; (3) aerobrake issues; (4) equipment life and self-check; (5) earth-to-orbit (ETO) heavy lift launch vehicle (HLLV) definition trades; and (6) risk analysis.
Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; McGrew, Lynn Craig
2013-01-01
The 2011 Mars Science Laboratory was the first Mars guided entry which safely delivered the rover to a landing within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. The guided entry performed as designed without any significant exceptions. The Curiosity rover was delivered about 2.2 km from the expected touchdown. This miss distance is attributed to little time to correct the downrange drift from the final bank reversal and a suspected tailwind during heading alignment. The successful guided entry for the Mars Science Laboratory lays the foundation for future Mars missions to improve upon.
Four Finalist Landing Site Candidates for Mars Science Laboratory
2008-11-19
Out of more than 30 sites considered as possible landing targets for NASA Mars Science Laboratory mission, by November 2008 four of the most intriguing places on Mars rose to the final round of the site-selection process.
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1991-01-01
The International Space University (ISU) conducted a study of an international program to support human exploration of Mars as its annual Design Project activity during its 1991 summer session in Toulouse, France. Although an ISU Design Project strives to produce an in-depth analysis during the intense 10-week summer session, the International Mars Mission (IMM) project was conducted in a manner designed to provide a learning experience for young professionals working in an unusual multidisciplinary and multinational environment. The breadth of the IMM study exceeds that of most Mars mission studies of the past, encompassing political organization for long-term commitment, multinational management structure, cost analysis, mission architecture, vehicle configuration, crew health, life support, Mars surface infrastructure, mission operations, technology evaluation, risk assessment, scientific planning, exploration, communication networks, and Martian resource utilization. The IMM Final Report has particular value for those seeking insight into the choices made by a multinational group working in an apolitical environment on the problems of international cooperation in space.
Ultrafast Laser System for Producing on-Demand Single-and Multi-Photon Quantum States
2015-09-20
14-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ultrafast laser system for producing on-demand single- and multi...Champaign, IL 61820 -7406 14-Mar-2015 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Ultrafast laser system for producing
Design of a fast crew transfer vehicle to Mars
NASA Technical Reports Server (NTRS)
1988-01-01
A final report is made on the trajectory and vehicle requirements for a fast crew transfer vehicle to Mars which will complete an Earth to Mars (and Mars to Earth) transfer in 150 days and will have a stay time at Mars of 40 days. This vehicle will maximize the crew's effectiveness on Mars by minimizing detrimental physiological effects such as bone demineralization and loss of muscle tone caused by long period exposure to zero gravity and radiation from cosmic rays and solar flares. The crew transfer vehicle discussed will complete the second half of a Split Mission to Mars. In the Split Mission, a slow, unmanned cargo vehicle, nicknamed the Barge, is sent to Mars ahead of the crew vehicle. Once the Barge is in orbit around Mars, the fast crew vehicle will be launched to rendezvous with the Barge in Mars orbit. The vehicle presented is designed to carry six astronauts for a mission duration of one year. The vehicle uses a chemical propulsion system and a nuclear power system. Four crew modules, similar to the proposed Space Station Common Modules, are used to house the crew and support equipment during the mission. The final design also includes a command module that is shielded to protect the crew during radiation events.
Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.
Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco
2004-04-01
The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.
Mars Sample Handling Functionality
NASA Astrophysics Data System (ADS)
Meyer, M. A.; Mattingly, R. L.
2018-04-01
The final leg of a Mars Sample Return campaign would be an entity that we have referred to as Mars Returned Sample Handling (MRSH.) This talk will address our current view of the functional requirements on MRSH, focused on the Sample Receiving Facility (SRF).
A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.; Cruz, Juan R.; Braun, Robert D.
2007-01-01
This paper presents a literature survey on supersonic retropropulsion technology as it applies to Mars entry, descent, and landing (EDL). The relevance of this technology to the feasibility of Mars EDL is shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. The use of retropropulsion to decelerate an entry vehicle from hypersonic or supersonic conditions to a subsonic velocity is the primary focus of this review. Discussed are systems-level studies, general flowfield characteristics, static aerodynamics, vehicle and flowfield stability considerations, and aerothermodynamics. The experimental and computational approaches used to develop retropropulsion technology are also reviewed. Finally, the applicability and limitations of the existing literature and current state-of-the-art computational tools to future missions are discussed in the context of human and robotic Mars exploration.
Biologically-inspired navigation and flight control for Mars flyer missions
NASA Technical Reports Server (NTRS)
Thakoor, S.; Chahl, J.; Hine, B.; Zornetzer, S.
2003-01-01
Bioinspired Engineering Exploration Systems (BEES), is enabling new bioinspired sensors for autonomous exploration of Mars. The steps towards autonomy in development of these BEES flyers are described. A future set of Mars mission that are uniquely enabled by surch flyers are finally described.
The Mariner 6 and 7 pictures of Mars
NASA Technical Reports Server (NTRS)
Collins, S. A., Jr.
1971-01-01
A comprehensive set of high quality reproductions of the final, computer-processed television pictures of Mars is presented. The genesis and unique characteristics of the pictures are explained, interesting features are pointed out, and some indication of their significance in the history of Mars investigations is provided.
2018-04-06
NASA's InSight to Mars undergoes final preparations at Vandenberg Air Force Base in Central California, ahead of its launch, expected as early as May 5, 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22254
Mars exploration program analysis group goal one: determine if life ever arose on Mars.
Hoehler, Tori M; Westall, Frances
2010-11-01
The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here.
NASA Astrophysics Data System (ADS)
Horgan, B.; Anderson, R. B.; Ruff, S. W.
2018-04-01
All three candidate Mars 2020 landing sites contain similar regional olivine/carbonate units, and a carbonate unit of possible lacustrine origin is also present at Jezero. Carbonates are critical for Mars Sample Return as records of climate and biosignatures.
de Oliveira Maraldi, Everton; Alvarado, Carlos S
2018-03-01
Among the many attempts to explain mediumship psychologically at the turn of the century were the efforts of Swiss psychologist Théodore Flournoy (1854-1920). In his well-known book Des Indes à la Planète Mars (1900), translated as From India to the Planet Mars (1900), Flournoy analysed the mediumistic productions of medium Hélène Smith (1861-1929), consisting of accounts of previous lives in France and in India, and material about planet Mars. Flournoy explained the phenomena as a function of cryptomnesia, suggestive influences, and subconscious creativity, analyses that influenced both psychology and psychical research. The purpose of this Classic Text is to reprint the conclusion of Flournoy's study, whose ideas were developed in the context of psychological attention to mediumship and secondary personalities.
Conceptual design of a Mars transportation system
NASA Astrophysics Data System (ADS)
1992-08-01
In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.
Conceptual design of a Mars transportation system
NASA Technical Reports Server (NTRS)
1992-01-01
In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.NASA Astrophysics Data System (ADS)
Edgar, Lauren A.
Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.
Instrumentation for Mars Environments
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1997-01-01
The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.
Mars Science Laboratory Rover Closeout
2011-11-10
The Mars Science Laboratory mission rover, Curiosity, is prepared for final integration into the complete NASA spacecraft in this photograph taken inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.
Photochemical Escape of Atomic Carbon from Mars
NASA Astrophysics Data System (ADS)
Fox, J. L.; Hac, A. B.
2009-12-01
Determining the escape rate of C over time is necessary to reconstructing the time-dependent history of volatiles on Mars. We report initial results from a one-dimensional spherical Monte Carlo calculation of photochemical escape fluxes and rates of atomic carbon from the Martian atmosphere. This model has recently been used to estimate the photochemical escape flux of O from Mars. We include as sources photodissociation of CO, dissociative recombination of CO+, photoelectron-impact dissociation of CO, photodissociative ionization and photoelectron impact dissociative ionization. Dissociative recombination of CO2+ has been suggested as a source of C (in the channel that produces C + O2) but later studies have found that the yield of this channel is negligible. We test the potential importance of this reaction by comparing the final results produced by including it and excluding it. Finally we compare the range of the escape rate to that of C in ions that have been modeled or measured by ASPERA instruments on MEX and Phobos.
Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases
2016-06-14
Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and
NASA Astrophysics Data System (ADS)
Pounder, Jean
2017-04-01
The goal of Project Based Learning (PBL) is to actively engage students through authentic, real word study to increase content knowledge, understanding, and skills for everyday success. The essential design of PBL is very similar in nature to the scientific method and therefore easy to adapt to the science classroom. In my classroom, students use these essential elements when engaging in the study of the processes that affect the surface of a planet such as weathering and erosion. Studying Mars is a hook to getting students to learn about the same processes that occur on Earth and to contrast the differences that occur on another planetary body. As part of the Mars Student Imaging Project (MSIP), students have the opportunity to engage and collaborate with NASA scientists at Arizona State University and get feedback on their work. They research and develop their own question or area of focus to study. They use images of Mars taken using the THEMIS camera onboard the Mars Odyssey Satellite, which has been orbiting Mars since 2001. Students submit a proposal to the scientists at ASU and, if accepted, they are given the opportunity to use the THEMIS camera in orbit to photograph a new region on Mars that will hopefully contribute to their research. Students give a final presentation to the faculty, staff, community, and other students by presenting their work in a poster session and explaining their work to the audience.
Mars Science Laboratory Cruise Stage
2011-11-10
The cruise stage of NASA Mars Science Laboratory spacecraft is being prepared for final stacking of the spacecraft in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.
Minimum impulse trajectories for Mars round trip missions
NASA Technical Reports Server (NTRS)
Horvat, Glen M.; Alexander, Stephen W.
1992-01-01
Data are presented for minimum-impulse earth-Mars round-trip trajectories for the 2010 to 2027 Mars launch opportunities. Round-trip mission times from 120 to 600 days, including a 30-day rendezvous at Mars, for direct trajectories and trajectories utilizing a Venus gravitational assist are considered. Optimal planetary launch and arrival dates and total impulse requirements are based on all maneuvers being performed propulsively with no finite burn or other losses. Direct trajectories have the lowest impulse requirements for shorter mission times and Venus gravitational assist trajectories have the lowest impulse requirements for longer mission times. It is shown that one can depart on trajectories to Mars, beginning with lower energy trajectories to the moon. The fuel savings varies, depending on the final energy level required and on the swingby procedure used. Procedures discussed include single lunar swingbys, double-powered or unpowered lunar swingbys, third lunar flybys a year later, and gravity assists by Venus and earth after the final lunar swingby.
The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)
NASA Astrophysics Data System (ADS)
Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.
2013-12-01
With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed needed to determine where and how fast the life-capable atmosphere disappeared. Or was it thought that other orbiting missions like MEx or MGS that sampled the ionosphere were inadequate to the task? In a way the delay in executing a Mars aeronomy mission has a positive side; i.e. instruments are better developed than in earlier proposals and we have the benefit of MEx and MGS better defining the science objectives for an aeronomy mission. The bumps and potholes that planners of missions to Mars encountered makes an interesting story
B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1)
2013-12-01
2012 FEB 2012 FEB 2012 FEB 2012 Final DIOT&E flight JUL 2012 JUL 2012 JUL 2012 JUL 2012 RAA MAR 2015 MAR 2015 MAR 2016 MAR 2015 Change Explanations...None Memo RAA is defined as eight assigned aircraft modified, sufficient aircrews and maintenance personnel trained, sufficient aircrew and...incremental upgrade. Acronyms and Abbreviations DIOT&E - Dedicated Initial Operational Test and Evaluation RAA - Required Assets Available B-2 EHF Inc 1
2004-01-06
KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.
Analysis of Phenix end-of-life natural convection test with the MARS-LMR code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, H. Y.; Ha, K. S.; Lee, K. L.
The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditionsmore » provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)« less
International Space Station: Transitional Platform for Moon and Mars
NASA Technical Reports Server (NTRS)
Greeniesen, Michael C.
2006-01-01
Humans on the path to Mars are employing the Space Station to better understand the Life Sciences issues during long duration space flight. In this phase the problems, for example, of bone loss, skeletal muscle atrophy and radiation will be prioritized for countermeasure development. This presentation will feature NASA's critical path to the Moon and Mars as the initial blueprint for addressing these Human Life Sciences challenges necessary to accomplish a successful Mars transit, surface exploration and return to Earth. A Moon base will be the test bed for resolving the engineering obstacles for later establishment of the Mars Crew Habitat. Current engineering concept scenarios for Moon and Mars bases plus Mars transit vehicles will receive the final focus.
Siegrist, M Sloan; Rubin, Eric J
2009-01-01
Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.
NASA Technical Reports Server (NTRS)
Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin
2015-01-01
We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.
"The Moon Village and Journey to Mars enable each other"
NASA Astrophysics Data System (ADS)
Beldavs, Vidvuds
2016-07-01
NASA has proposed the Journey to Mars, a multi-decade collaborative international effort to establish permanent manned operations on the Martian surface as well as in orbit, most likely on the Martian moons. NASA's proposed the Journey to Mars has come under politically motivated attack as illusory, as beyond NASA's capabilities and anticipated NASA budgets in the foreseeable future. [1]. Other concerns come from various communities of researchers concerned about securing sustaining funding for their largely robotic research missions. ESA's Director General Dietrich Woerner's proposed Moon Village faces challenges ESA member states concerned about sustaining funding for projects already underway or in planning. Both the Journey to Mars and Moon Village raise the question - who will or who can pay for it? The 2013 US Research Council study suggested potential benefits to a mission to Mars from activities on the Moon [2]. The NASA funded Flexible Lunar Architecture study came to similar conclusions using a different methodology [3]. A logistics analysis by an MIT team suggested the possibility of cost savings through use of lunar water for propellant to reach Mars [4]. The highly promising private-public financing approach has been examined for potential application to funding the costs of reaching Mars [5]. Insofar as the feasibility of utilization of lunar water has not been determined these conclusions are speculative. This study will examine the following alternative scenarios for establishing sustainable, manned operations on Mars and permanent manned operations on the Moon: A. NASA-led Journey to Mars without an ESA-led Moon Village B. ESA-led Moon Village without NASA-led Journey to Mars C. NASA-led Journey to Mars with an ESA-led Moon Village D. Shared Infrastructure scenario - NASA-led Journey to Mars with ESA-led Moon Village and with a potential JAXA-led space-based-solar power initiative E. Space Industrialization scenario - Shared Infrastructure scenario with the addition of resource recovery from asteroids at industrial operations in cislunar space. Preliminary conclusions indicate that by doing more that the cost and risk of individual operations lessens. The cost and risk of the Journey to Mars will be significantly less if a parallel effort is underway with Moon Village. Moon Village is aimed at lunar exploration with a view towards enabling lunar ISRU. Success with lunar ISRU creates sources of fuel, water, and other materials required for missions to Mars. This creates a supplier- customer relationship. This economic aspect is further enhanced with space-based solar power first piloted for lunar applications then applied to terrestrial needs starting with disaster relief. The benefits of shared infrastructure are further augmented through development of industrial operations in cislunar space for asteroid and or lunar materials processing expanding the range of materials that become available for processing into products that do not have to be lifted out of the Earth's gravity well creating the basis for a space economy. The idea of an International Lunar Decade serving as a framework for coordination of international collaboration across multiple missions and fields is explored. [1] http://arstechnica.com/science/2016/02/space-experts-warn-congress-that-nasas-journey-to-mars-is-illusory/ [2] http://www.nap.edu/catalog/18801/pathways-to-exploration-rationales-and-approaches-for-a-us-program [3] http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/NexGen_ELA_Report_FINAL.pdf [4] http://strategic.mit.edu/JSR_Final_Manuscript_Ishimatsu.pdf [5] Lunar COTS: An Economical and Sustainable Approach to Reaching Mars, http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/AIAA2015-4408ZunigaLunarCOTS.pdf
Terrestrial Planet Formation from an Annulus -- Revisited
NASA Astrophysics Data System (ADS)
Deienno, Rogerio; Walsh, Kevin J.; Kretke, Katherine A.; Levison, Harold F.
2018-04-01
Numerous recent theories of terrestrial planet formation suggest that, in order to reproduce the observed large Earth to Mars mass ratio, planets formed from an annulus of material within 1 au. The success of these models typically rely on a Mars sized embryo being scattered outside 1 au (to ~1.5 au) and starving, while those remaining inside 1 au continue growing, forming Earth and Venus. In some models the scattering is instigated by the migration of giant planets, while in others an embryo-instability naturally occurs due to the dissipation of the gaseous solar nebula. While these models can typically succeed in reproducing the overall mass ratio among the planets, the final angular momentum deficit (AMD) of the present terrestrial planets in our Solar System, and their radial mass concentration (RMC), namely the position where Mars end up in the simulations, are not always well reproduced. Assuming that the gas nebula may not be entirely dissipated when such an embryo-instability happens, here, we study the effects that the time of such an instability can have on the final AMD and RMC. In addition, we also included energy dissipation within embryo-embryo collisions by assuming a given coefficient of restitution for collisions. Our results show that: i) dissipation within embryo-embryo collisions do not play any important role in the final terrestrial planetary system; ii) the final AMD decreases only when the number of final planets formed increases; iii) the RMC tends to always be lower than the present value no matter the number of final planets; and iv) depending on the time that the embryo-instability happen, if too early, with too much gas still present, a second instability will generally happen after the dissipation of the gas nebula.
Mars-GRAM 2010: Improving the Precision of Mars-GRAM
NASA Technical Reports Server (NTRS)
Justh, H. L.; Justus, C. G.; Ramey, H. S.
2011-01-01
It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3, is less than realistic. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from TES. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from NASA Ames Mars General Circulation Model (MGCM) results driven by selected values of globally-uniform dust optical depth, or (2) TES mapping years 1 and 2, with Mars-GRAM data coming from MGCM results driven by observed TES dust optical depth. From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames MGCM. Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This choice of data has led to discrepancies that have become apparent during recent sensitivity studies for MapYear=0 and large optical depths. Unrealistic energy absorption by time-invariant atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes.
Integrating Powered Descent Vehicle with Back Shell of Mars Spacecraft
2011-11-10
The powered descent vehicle of NASA Mars Science Laboratory spacecraft is being prepared for final integration into the spacecraft back shell in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.
Mars Science Laboratory Heat Shield Integration for Flight
2011-11-10
During final stacking of NASA Mars Science Laboratory spacecraft, the heat shield is positioned for integration with the rest of the spacecraft in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.
Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.;
2008-01-01
To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.
Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.
2009-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3 is less than realistic. A comparison study between Mars atmospheric density estimates from Mars- GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars- GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. Unrealistic energy absorption by uniform atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, a density factor value was determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear=0 with MapYears 1 and 2 MGCM output at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented of the work underway to derive better multipliers by including possible variation with latitude and/or Ls. This is achieved by comparison of Mars-GRAM MapYear=0 output with TES limb data. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths. Answers may also be provided to the issues raised in a recent study by Desai(2008). Desai has shown that the actual landing sites of Mars Pathfinder, the Mars Exploration Rovers and the Phoenix Mars Lander have been further downrange than predicted by models prior to landing. Desai s reconstruction of their entries into the Martian atmosphere showed that the models consistently predicted higher densities than those found upon EDL. The solution of this problem would be important to the Mars Program since future exploration of Mars by landers and rovers will require more accurate landing capabilities, especially for the proposed Mars Sample Return mission.
Studies of Solar Wind Interaction and Ionospheric Processes at Venus and Mars
NASA Technical Reports Server (NTRS)
Bogan, Denis (Technical Monitor); Nagy, Andrew F.
2003-01-01
This is the final report summarizing the work done during the last three years under NASA Grant NAG5-8946. Our efforts centered on a systematic development of a new generation of three dimensional magneto-hydrodynamic (MHD) numerical code, which models the interaction processes of the solar wind or fast flowing magnetospheric plasma with 'non-magnetic' solar system bodies (e.g. Venus, Mars, Europa, Titan). We have also worked on a number of different, more specific and discrete studies, as various opportunities arose. In the next few pages we briefly summarize these efforts.
Cooperative research in terrestrial planetary geology and geophysics
NASA Technical Reports Server (NTRS)
1994-01-01
This final report for the period of July 1991 to August 1994 covered a variety of topics concerning the study of Earth and Mars. The Earth studies stressed the interpretation of the MAGSAT crustal magnetic anomalies in order to determine the geological structure, mineralogical composition, magnetic nature, and the historical background of submarine features, and also featured work in the area of terrestrial remote sensing. Mars research included the early evolution of the Martian atmosphere and hydrosphere and the investigations of the large Martian impact basins. Detailed summaries of the research is included, along with lists of the publications resulting from this research.
NASA's Flexible Path for the Human Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.
2016-01-01
The idea of human exploration of Mars has been a topic in science fiction for close to a century. For the past 50 years it has been a major thrust in NASAs space mission planning. Currently, NASA is pursuing a flexible development path with the final goal to have humans on Mars. To reach Mars, new hardware will have to be developed and many technology hurdles will have to be overcome. This presentation discusses Mars and its Moons; the flexible path currently being followed; the hardware under development to support exploration; and the technical and organizational challenges that must be overcome to realize the age old dream of humans traveling to Mars.
2001-01-04
The crated 2001 Mars Odyssey spacecraft rests safely inside the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at KSC’s Shuttle Landing Facility aboard an Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. In the SAEF, Odyssey will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment
A Raman Spectrometer for the ExoMars 2020 Rover
NASA Astrophysics Data System (ADS)
Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Canora, C. P.; Seoane, L.; Rodríguez, P.; Canchal, R.; Gallego, P.; Ramos, G.; López, G.; Prieto, J. A. R.; Santiago, A.; Santamaría, P.; Colombo, M.; Belenguer, T.; Forni, O.
2017-09-01
The Raman project is devoted to the development of a Raman spectrometer and the support science associated for the rover EXOMARS mission to be launched in 2020. ExoMars is a double mission with two different launch opportunities, first one launched in March 2016 allowed to put in orbit the TGO with the communication system for the next mission. And the second one in 2020, deploying a rover which includes for the first time in the robotic exploration of Mars, a drill capable to obtain samples from the subsurface up to 2 meters depth. These samples will be crushed into a fine powder and delivered to the analytical instruments suite inside the rover by means of a dosing station. The EQM has been already qualified under a very demanding thermo mechanical environment, and under EMC tests, finally achieving required scientific performances. The RLS Engineering and Qualification Model has been manufactured and is expected to be delivered by May 2017, after a full qualification testing campaign developed during 2016 Q4, and 2017 Q1. It will finally delivered to ESA, by July 2017. December 2017 at TAS-I premises will do RLS FM delivery to ESA, for its final integration on the ExoMars 2020 Rover.
Optimized ISRU Propellants for Propulsion and Power Needs for Future Mars Colonization
NASA Astrophysics Data System (ADS)
Rice, Eric E.; Gustafson, Robert J.; Gramer, Daniel J.; Chiaverini, Martin J.; Teeter, Ronald R.; White, Brant C.
2003-01-01
In recent studies (Rice, 2000, 2002) conducted by ORBITEC for the NASA Institute for Advanced Concepts (NIAC), we conceptualized systems and an evolving optimized architecture for producing and utilizing Mars-based in-situ space resources utilization (ISRU) propellant combinations for future Mars colonization. The propellants are to be used to support the propulsion and power systems for ground and flight vehicles. The key aspect of the study was to show the benefits of ISRU, develop an analysis methodology, as well as provide guidance to propellant system choices in the future based upon what is known today about Mars. The study time frame included an early unmanned and manned exploration period (through 2040) and two colonization scenarios that are postulated to occur from 2040 to 2090. As part of this feasibility study, ORBITEC developed two different Mars colonization scenarios: a low case that ends with a 100-person colony (an Antarctica analogy) and a high case that ends with a 10,000-person colony (a Mars terraforming scenario). A population growth model, mission traffic model, and infrastructure model were developed for each scenario to better understand the requirements of future Mars colonies. Additionally, propellant and propulsion systems design concepts were developed. Cost models were also developed to allow comparison of the different ISRU propellant approaches. This paper summarizes the overall results of the study. ISRU proved to be a key enabler for these colonization missions. Carbon monoxide and oxygen, proved to be the most cost-effective ISRU propellant combination. The entire final reports Phase I and II) and all the details can be found at the NIAC website www.niac.usra.edu.
Mars Science Laboratory's Descent Stage
NASA Technical Reports Server (NTRS)
2008-01-01
This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars. The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011. This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.Advantages of a Modular Mars Surface Habitat Approach
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin
2018-01-01
Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.
Evolution of organic molecules under Mars-like UV radiation conditions in space and laboratory
NASA Astrophysics Data System (ADS)
Rouquette, L.; Stalport, F.; Cottin, H.; Coll, P.; Szopa, C.; Saiagh, K.; Poch, O.; Khalaf, D.; Chaput, D.; Grira, K.; Dequaire, T.
2017-09-01
The detection and identification of organic molecules at Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now [1]. In order to get a better understanding of the evolution of organic matter at the surface of Mars, we exposed organic molecules under a Mars-like UV radiation environment. Similar organic samples were exposed to the Sun radiation, outside the International Space Station (ISS), and under a UV lamp (martian pressure and temperature conditions) in the laboratory. In both experiments, organic molecules tend to photodegrade under Mars-like UV radiation. Minerals, depending on their nature, can protect or accelerate the degradation of organic molecules. For some molecules, new products, possibly photoresistant, seem to be produced. Finally, experimenting in space allow us to get close to in situ conditions and to validate our laboratory experiment while the laboratory experiment is essential to study the evolution of a large amount and diversity of organic molecules.
Enabling technologies for Chinese Mars lander guidance system
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang
2017-04-01
Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.
Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Toups, Larry; Brown, Kendall; Hoffman, Stephen J.
2015-01-01
This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.
Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers.
Malherbe, Cedric; Hutchinson, Ian B; McHugh, Melissa; Ingley, Richard; Jehlička, Jan; Edwards, Howell G M
2017-04-01
Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers. Key Words: Gypsum-Raman spectrometers-Carotenoids-ExoMars-Mars exploration-Band position shift. Astrobiology 17, 351-362.
Takeuchi, K; Kachi, S; Iwata, E; Ishikawa, K; Terasaki, H
2012-01-01
To evaluate the changes in the best-corrected visual acuity (BCVA) after 1 year and after ≥ 5 years after macular translocation for age-related macular degeneration (AMD) or myopic choroidal neovascularisation (mCNV). The medical records of 61 consecutive patients who underwent macular translocation with 360° retinotomy for AMD (35 eyes) or mCNV (26 eyes) were reviewed. Overall, 40 patients, 17 mCNV and 23 AMD, were followed for at least 5 years. BCVA and area of the Goldmann visual field (VF) measured before, 12 months after surgery, and at the final visit. In the 23 AMD eyes followed for ≥ 5 years, the mean preoperative BCVA was 1.149 ± 0.105 logMAR units, which significantly improved to 0.69 ± 0.06 logMAR units at 1 year (P<0.001). This BCVA was maintained at 0.633 ± 0.083 logMAR units on their final examination. In the 17 eyes with mCNV followed for ≥ 5 years, the mean preoperative BCVA was 1.083 ± 0.119 logMAR units, which was significantly improved to 0.689 ± 0.121 logMAR units at 1 year (P = 0.001). This BCVA was maintained at 0.678 ± 0.142 logMAR units on their final examination. The area of the VF was significantly decreased at 12 months and did not change significantly thereafter. Our results show that macular translocation surgery significantly improves the BCVA and significantly decreases the VF area of eyes with mCNV or AMD after first 1 year. The BCVA and VF area do not change significantly from the values at 1 year for at least 5 years.
Where on Mars Should We Search for Life?
NASA Technical Reports Server (NTRS)
McKay, Christopher P.; Cuzzi, Jeffrey N. (Technical Monitor)
1996-01-01
There is persuasive evidence that liquid water has been a significant geological processes on Mars. In particular, evidence suggests that one of the major epochs of liquid water on Mars was during and after the late heavy bombardment. During this time life originated on Earth and may have originated on Mars as well. Liquid water per se, independent of models for the temperature or atmospheric pressure, motivate the question of life. Promising sites for searching for evidence of life on Mars include dry lake beds, the ancient cratered terrain, and the South Polar permafrost. Life on Earth in environments that are analogous to those that might have provided the final refuge for life on Mars provide clues to where and how to search for evidence of past life.
Mars Science Laboratory Heatshield Flight Data Analysis
NASA Technical Reports Server (NTRS)
Mahzari, Milad; White, Todd
2017-01-01
NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.
Mars Human Exploration Objectives
NASA Technical Reports Server (NTRS)
Briggs, Geoff
1998-01-01
This paper reviews the objectives and other considerations of Human exploration of Mars. The objectives of human exploration of Mars are: (1) to learn how Mars is similar to, and different from, Earth; (2) to explore possible life, past and present; (3) to discover what Mars is like now from the perspective of Geoscience and geologic history; and (4) how did Mars form and how did its formation differ from Earth. Considerations of human Martian exploration involve: (1) having a capable base laboratory; (2) having long range transportation; (3) having operational autonomy of the crew, and the requirement of the crew to possess a range of new cognitive processes along with easy communications with terrestrial colleagues; and finally (4) creating the human habitat along with human factors which involve more than just survivability.
Mars Pathfinder Status at Launch
NASA Technical Reports Server (NTRS)
Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.
1996-01-01
The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.
García Nieto, P J; Alonso Fernández, J R; Sánchez Lasheras, F; de Cos Juez, F J; Díaz Muñiz, C
2012-07-15
Cyanotoxins, a kind of poisonous substances produced by cyanobacteria, are responsible for health risks in drinking and recreational water uses. The aim of this study is to improve our previous and successful work about cyanotoxins prediction from some experimental cyanobacteria concentrations in the Trasona reservoir (Asturias, Northern Spain) using the multivariate adaptive regression splines (MARS) technique at a local scale. In fact, this new improvement consists of using not only biological variables, but also the physical-chemical ones. As a result, the coefficient of determination has improved from 0.84 to 0.94, that is to say, more accurate predictive calculations and a better approximation to the real problem were obtained. Finally the agreement of the MARS model with experimental data confirmed the good performance. Copyright © 2012 Elsevier B.V. All rights reserved.
Human Exploration of Mars Design Reference Architecture 5.0
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2009-01-01
This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.
Publication of topographic atlas and control network of Mars
NASA Technical Reports Server (NTRS)
Wu, Sherman S. C.; Billideau, Jennifer S.; Spare, Beth A.
1991-01-01
To aid planetary studies and the planning of future Mars missions, the Topographic Atlas and Control Network for Mars will be submitted by the end of fiscal year 1992 for publication as a NASA Special Publication. It will consist of reduced versions of 108 1:2 million-scale photomosaics that show contour lines from topographic maps at the same scale, as well as precisely located control points. The control points are from the planetwide network, which is not only instrumental in the compilation of maps at various scales, but is also widely used in other research such as studies of Mars' gravity and atmosphere. An example, a combination of MC 8-NW and -SW, of the photomosaics to be included in the atlas is presented. Contour lines in the figure are at 1-km intervals. The final adjusted ground coordinates and elevations of the 77 control points shown are given in table form. The last column in the table lists the topographic datum (zero elevation) that can be used to compute the solid radius of the control point from the center of mass of Mars. The atlas will also include information such as the adjusted C-matrices of each image, descriptions of the methods used, and their accuracy, and guidelines for users.
Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers
NASA Astrophysics Data System (ADS)
Malherbe, Cedric; Hutchinson, Ian B.; McHugh, Melissa; Ingley, Richard; Jehlička, Jan; Edwards, Howell G. M.
2017-04-01
Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers.
GEP, A Geophysical and Environemental integrated payload for ExoMars
NASA Astrophysics Data System (ADS)
Spohn, T.; Lognonne, P.; Dehant, V.; Giardini, D.; Friis-Christensen, E.; Calcutt, S.; GEP Team
The goal of the GEP proposed onboard the ExoMars mission is to provide the first complete set of geophysical and environmental data of Mars. A full mass of 20 kg is envisaged, enabling a payload of about 5 kg serviced by common integrated subsystems. GEP will first monitor the present Martian climate and meteorology by providing a unique monitoring on potential hazards for future human exploration missions (radiations, atmospheric electricity, dust) and on atmospheric parameters (wind, pressure, temperature, humidity). Such a long term monitoring has never been performed since the Viking landers. GEP will then provide, for the first time, a complete geophysical monitoring of Mars. It will search for remote and regional seismic activity, will measure the heat flux of the planets, will monitor the rotation of Mars and will study the magnetic field at the surface and finally will constrain the subsurface in the vicinity of the ExoMars landing site and the deep interior. By providing these new geophysical data and associated constraints on the interior and on the actual geologic activity of the surface, GEP will provide a major step in our understanding of the geological evolution of the planet and the habitability conditions during the first billion years, enabling a full understanding of the surface and mineralogical observations performed by the Pasteur payload onboard the ExoMars rover and by the payload onboard the MSL NASA 2009 mission.
Exomars Mission Verification Approach
NASA Astrophysics Data System (ADS)
Cassi, Carlo; Gilardi, Franco; Bethge, Boris
According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests between the different levels (system, modules, subsystems, etc) and giving an overview of the main test defined at Spacecraft level. The paper is mainly focused on the verification aspects of the EDL Demonstrator Module and the Rover Module, for which an intense testing activity without previous heritage in Europe is foreseen. In particular the Descent Module has to survive to the Mars atmospheric entry and landing, its surface platform has to stay operational for 8 sols on Martian surface, transmitting scientific data to the Orbiter. The Rover Module has to perform 180 sols mission in Mars surface environment. These operative conditions cannot be verified only by analysis; consequently a test campaign is defined including mechanical tests to simulate the entry loads, thermal test in Mars environment and the simulation of Rover operations on a 'Mars like' terrain. Finally, the paper present an overview of the documentation flow defined to ensure the correct translation of the mission requirements in verification activities (test, analysis, review of design) until the final verification close-out of the above requirements with the final verification reports.
NASA Technical Reports Server (NTRS)
Howard, Robert L., Jr.
2016-01-01
The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1999-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1999-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings, such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.
INRRI-EDM/2016: the first laser retroreflector on the surface of Mars
NASA Astrophysics Data System (ADS)
Dell'Agnello, S.; Delle Monache, G.; Porcelli, L.; Boni, A.; Contessa, S.; Ciocci, E.; Martini, M.; Tibuzzi, M.; Intaglietta, N.; Salvatori, L.; Tuscano, P.; Patrizi, G.; Mondaini, C.; Lops, C.; Vittori, R.; Maiello, M.; Flamini, E.; Marchetti, E.; Bianco, G.; Mugnuolo, R.; Cantone, C.
2017-01-01
During Summer 2015 the SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and cube/microsat Characterization Facilities Laboratory, http://www.lnf.infn.it/esperimenti/etrusco, Team of INFN-LNF, with support by ASI, carried out an intense activity of final design, manufacturing and testing in order to construct, space qualify and finally integrate INRRI-EDM/2016 on ESA's ExoMars EDM spacecraft (also dubbed "Schiaparelli"), which was successfully launched on March 14, 2016. INRRI (INstrument for landing-Roving laser Retroreflector Investigation) for the EDM (Entry descent and landing Demonstration Module) 2016 mission is a compact, lightweight, passive, maintenance-free array of eight cube corner laser retroreflectors fixed to an aluminum alloy frame through the use of silicon rubber suitable for space applications. INRRI was installed on the top panel of the EDM Central Bay on October 14, 2015. It will enable the EDM to be laser-located from Mars orbiters, through laser ranging and altimetry, lidar atmospheric observations from orbit, laser flashes emitted by orbiters, and lasercom. One or all of the above means of observation can be supported by INRRI when there is an active, laser-equipped orbiter, especially after EDM end-of-life and for a long time. INRRI goals will cover science (Mars geodesy/geophysics, future Mars test of General Relativity, GR), technology and exploration. Concerning the latter two, INRRI will support mars-georeferencing of the EDM landing site, support potential precision lidar-based landing next to the EDM, support test & diagnostics of lasercom for data exchange among Mars orbit, Mars surface and Earth, and it will be a precursor for additional Mars surface retroreflectors, for example on exploration rovers. This paper describes in detail our innovative payload, hopefully the very first to be deployed safely with the lander Schiaparelli on the Mars surface, and its space qualification for the ExoMars EDM 2016 mission. Despite the fate of the Schiaparelli landing, which is still under the investigation of ESA and the industry, this paper remains a valuable reference for next INRRI-like laser retroreflectors arrays.
TWSTFT Link Calibration Report
2015-09-01
1 Annex II. TWSTFT link calibration with a GPS calibrator Calibration reference: CI-888-2015 Version history: ZJ/V0/25Feb2015, V0a,b/HE/ZJ...7Mar; V0s/VZ9Mar; V0d,e,f+/DM10,17Mar; V1.0/1Apr; Final version 1Sept2015 TWSTFT link calibration report -- Calibration of the Lab(k)-PTB UTC...bipm.org * Coordinator Abstract This report includes the calibration results of the Lab(k)-PTB TWSTFT link and closure measurements of the BIPM
Mars Reconnaissance Orbiter Operational Aerobraking Phase Assessment
NASA Technical Reports Server (NTRS)
Prince, Jill L.; Striepe, Scott A.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) was inserted into orbit around Mars on March 10, 2005. After a brief delay, it began the process of aerobraking - using the atmospheric drag on the vehicle to reduce orbital period. The aerobraking phase lasted approximately 5 months (April 4 to August 30, 2006), during which teams from the Jet Propulsion Laboratory, Lockheed Martin Space Systems Corporation, and NASA Langley Research Center worked together to monitor and maneuver the spacecraft such that thermal margin on the solar arrays was maintained while schedule margin was upheld to provide a final local mean solar time (LMST) at ascending node of 3:00pm on the final aerobraking orbit. This paper will focus on the contribution of the flight mechanics team at NASA Langley Research Center (LaRC) during the aerobraking phase of the MRO mission.
Mars atmospheric escape and evolution; interaction with the solar wind
NASA Astrophysics Data System (ADS)
Chassefière, Eric; Leblanc, François
2004-09-01
This tutorial deals with the question of atmospheric escape on Mars. After a brief introduction describing the general context of Mars escape studies, we will present in Section 2 a simplified theory of thermal escape, of both Jeans and hydrodynamic types. The phenomenon of hydrodynamic escape, still hypothetical and not proved to have ever existed on terrestrial planets, will be treated with the help of two well known examples: (i) the isotopic fractionation of xenon in Mars and Earth atmospheres, (ii) the paradox of missing oxygen in Venus atmosphere. In Section 3, a simplified approach of non-thermal escape will be developed, treating in a specific way the different kinds of escape (photochemical escape, ion sputtering, ion escape and ionospheric outflow). As a matter of illustration, some calculations of the relative contributions of these mechanisms, and of their time evolutions, will be given, and the magnitude of the total amount of atmosphere lost by non-thermal escape will be estimated. Section 4 will present the state of knowledge concerning the constraints derived from Mars isotopic geochemistry in terms of past escape and evolution. Finally, a few conclusions, which are more interrogations, will be proposed.
NASA Astrophysics Data System (ADS)
Younse, Paulo
Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.
NASA Technical Reports Server (NTRS)
Tarter, Jill C.
1993-01-01
The final report for the period 15 Mar. 1986 to 31 Mar. 1993 for the Cooperative Agreement is presented. The purpose of this Cooperative Agreement was to collaborate with NASA civil servant and contractor personnel, and other Institute personnel in a project to use all available cataloged astronomical infrared data to construct a detailed three dimensional model of the infrared sky. Areas of research included: IRAS colors of normal stars and the infrared excesses in Be stars; galactic structure; how to use the observed IRAS source counts as a function of position to deduce the physical structure of the galaxy; IRAS properties of metal-poor stars; IRAS database studies; and solar space exploration including projects such as the Space Station Gas-Grain Simulator and the Mars Rover/Sample Return Mission.
NASA Astrophysics Data System (ADS)
Skinner, J. A.; Fortezzo, C. M.
2018-06-01
This abstract presents a brief summary of the surface and section characteristics of a type area for stratified deposits exposed in Hadriacus Cavi (78.0°E, –27.3°N), Mars based on 1:24,000 scale geologic mapping and stratigraphic analyses.
Navigation Challenges of the Mars Phoenix Lander Mission
NASA Technical Reports Server (NTRS)
Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark
2008-01-01
The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.
Connelly, James W; Galea, Vincent P; Laaksonen, Inari; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik
2018-04-19
The purpose of this study was to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and to use these factors to create a highly sensitive algorithm for indicating metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in Articular Surface Replacement (ASR) XL total hip arthroplasty patients. Our secondary aim was to compare our algorithm to existing national guidelines on when to take MARS-MRI in metal-on-metal total hip arthroplasty patients. The study consisted of 137 patients treated with unilateral ASR XL implants from a prospective, multicenter study. Patients underwent MARS-MRI regardless of clinical presentation at a mean of 6.2 (range, 3.3-10.4) years from surgery. Univariate and multivariate analyses were conducted to determine which variables were predictive of ALTR. Predictors were used to create an algorithm to indicate MARS-MRI. Finally, we compared our algorithm's ability to detect ALTR to existing guidelines. We found a visual analog scale pain score ≥2 (odds ratio [OR] = 2.53; P = .023), high blood cobalt (OR = 1.05; P = .023), and male gender (OR = 2.37; P = .034) to be significant predictors of ALTR presence in our cohort. The resultant algorithm achieved 86.4% sensitivity and 60.2% specificity in detecting ALTR within our cohort. Our algorithm had the highest area under the curve and was the only guideline that was significantly predictive of ALTR (P = .014). Our algorithm including patient-reported pain and sex-specific cutoffs for blood cobalt levels could predict ALTR and indicate MARS-MRI in our cohort of ASR XL metal-on-metal patients with high sensitivity. Level II, diagnostic study. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Poch, O.; Kaci, S.; Stalport, F.; Szopa, C.; Coll, P.
2014-11-01
The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars' exploration. Understanding the chemical evolution of organic molecules under current martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? This paper presents the results of laboratory investigations dedicated to monitor the evolution of organic molecules when submitted to simulated Mars surface ultraviolet radiation (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) conditions. Experiments are done with the MOMIE simulation setup (for Mars Organic Molecules Irradiation and Evolution) allowing both a qualitative and quantitative characterization of the evolution the tested molecules undergo (Poch, O. et al. [2013]. Planet. Space Sci. 85, 188-197). The chemical structures of the solid products and the kinetic parameters of the photoreaction (photolysis rate, half-life and quantum efficiency of photodecomposition) are determined for glycine, urea, adenine and chrysene. Mellitic trianhydride is also studied in order to complete a previous study done with mellitic acid (Stalport, F., Coll, P., Szopa, C., Raulin, F. [2009]. Astrobiology 9, 543-549), by studying the evolution of mellitic trianhydride. The results show that solid layers of the studied molecules have half-lives of 10-103 h at the surface of Mars, when exposed directly to martian UV radiation. However, organic layers having aromatic moieties and reactive chemical groups, as adenine and mellitic acid, lead to the formation of photoresistant solid residues, probably of macromolecular nature, which could exhibit a longer photostability. Such solid organic layers are found in micrometeorites or could have been formed endogenously on Mars. Finally, the quantum efficiencies of photodecomposition at wavelengths from 200 to 250 nm, determined for each of the studied molecules, range from 10-2 to 10-6 molecule photon-1 and apply for isolated molecules exposed at the surface of Mars. These kinetic parameters provide essential inputs for numerical modeling of the evolution of Mars' current reservoir of organic molecules. Organic molecules adsorbed on martian minerals may have different kinetic parameters and lead to different endproducts. The present study paves the way for the interpretation of more complex simulation experiments where organics will be mixed with martian mineral analogs.
ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit
NASA Astrophysics Data System (ADS)
Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; ExoMars 2016 Team
2017-10-01
After the arrival of the Trace Gas Orbiter (TGO) at Mars on 19 October 2016 a number of initial orbit change manoeuvres were executed and the spacecraft was put in an orbit with a 24 hour period and 74 degrees inclination. The spacecraft and its four instruments were thoroughly checked out after arrival and a few measurements and images were taken in November 2016 and in Feb-March 2017. The solar occultation observations have however not yet been possible due to lack of the proper geometry.On 15 March a long period of aerobraking to reach the final 400km semi-circular frozen orbit (370x430km, with a fixed pericentre latitude). This orbit is optimised for the payload observations and for the communication relay with the ExoMars Rover, due to arrive in 2021.The aerobraking is proceeding well and the final orbit is expected to be reached in April 2018. A large data set is being acquired for the upper atmosphere of Mars, from the limit of the sensitivity of the accelerometer, down to lowest altitude of the aerobraking at about 105km. Initial analysis has shown a highly variable atmosphere with a slightly lower density then predicted by existing models. Until the time of the abstract writing no dust storms have been observed.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the Proton launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission, consisting of a Rover and a Surface platform also launched by a Proton rocket, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system.
Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations
NASA Technical Reports Server (NTRS)
Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.
2013-01-01
On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.
NASA Astrophysics Data System (ADS)
Emamgolizadeh, S.; Bateni, S. M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H.
2015-10-01
The soil cation exchange capacity (CEC) is one of the main soil chemical properties, which is required in various fields such as environmental and agricultural engineering as well as soil science. In situ measurement of CEC is time consuming and costly. Hence, numerous studies have used traditional regression-based techniques to estimate CEC from more easily measurable soil parameters (e.g., soil texture, organic matter (OM), and pH). However, these models may not be able to adequately capture the complex and highly nonlinear relationship between CEC and its influential soil variables. In this study, Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) were employed to estimate CEC from more readily measurable soil physical and chemical variables (e.g., OM, clay, and pH) by developing functional relations. The GEP- and MARS-based functional relations were tested at two field sites in Iran. Results showed that GEP and MARS can provide reliable estimates of CEC. Also, it was found that the MARS model (with root-mean-square-error (RMSE) of 0.318 Cmol+ kg-1 and correlation coefficient (R2) of 0.864) generated slightly better results than the GEP model (with RMSE of 0.270 Cmol+ kg-1 and R2 of 0.807). The performance of GEP and MARS models was compared with two existing approaches, namely artificial neural network (ANN) and multiple linear regression (MLR). The comparison indicated that MARS and GEP outperformed the MLP model, but they did not perform as good as ANN. Finally, a sensitivity analysis was conducted to determine the most and the least influential variables affecting CEC. It was found that OM and pH have the most and least significant effect on CEC, respectively.
NASA Astrophysics Data System (ADS)
Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John
2009-02-01
In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.
Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J; Marco, Roberto; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John
2009-01-01
In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.
NASA Technical Reports Server (NTRS)
Darnell, W. L.; Wessel, V. W.
1974-01-01
The feasibility of a small Mars rover for use on a 1979 or 1981 Viking mission was studied and a preliminary design concept was developed. Three variations of the concept were developed to provide comparisons in mobility and science capability of the rover. Final masses of the three rover designs were approximately 35 kg, 40 kg, and 69 kg. The smallest rover is umbilically connected to the lander for power and communications purposes whereas the larger two rovers have secondary battery power and a 2-way very high frequency communication link to the lander. The capability for carrying Viking rovers (including development system) to the surface of Mars was considered first. It was found to be feasible to carry rovers of over 100 kg. Virtually all rover systems were then studied briefly to determine a feasible system concept and a practical interface with the comparable system of a 1979 or 1981 lander vehicle.
Study of Factors Determining the Gain Characteristics of DOIL Active Medium
2009-04-17
2009 2. REPORT TYPE Final Report 3. DATES COVERED (From – To) 01-Mar-08 - 17-Apr-09 5a. CONTRACT NUMBER ISTC Registration No: 3835 5b...MONITOR’S REPORT NUMBER(S) ISTC 06-7006 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13
Science highlights from MAVEN/IUVS after two years in Mars Orbit
NASA Astrophysics Data System (ADS)
Schneider, N. M.; Deighan, J.; Stiepen, A.; Jain, S.; Lefèvre, F.; Stevens, M. H.; Gröller, H.; Yelle, R. V.; Lo, D.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; Crismani, M. M. J.; Mayyasi, M.; McClintock, W. E.; Holsclaw, G.; Clarke, J. T.; Montmessin, F.; Jakosky, B. M.
2016-12-01
The broad capabilities of the Imaging UltraViolet Spectrograph on the MAVEN mission are enabling new science ranging from Mars' lower atmosphere up though the escaping corona. After two years in Mars orbit, the instrument has yielded insights on present-day processes at Mars including dayglow, nightglow, aurora, meteor showers, clouds, and solar-planetary interactions. In this presentation we will highlight several new discoveries in the mesosphere and below. First, spatial mapping of nitric oxide nightglow reveals regions of atmospheric downwelling necessitating substantial changes to global atmospheric circulation models. Second, a new high-spatial-resolution UV imaging mode allows detection of clouds from nadir to limb and their local time evolution, as well as unprecedented determinations of Mars' low-altitude ozone. Finally, IUVS has obtained hundreds of stellar occultation profiles probing atmospheric structure, composition, waves and tides.
Design, Development and Testing of Airplanes for Mars Exploration
NASA Technical Reports Server (NTRS)
Hall, David W.
2004-01-01
The opportunity for a piggyback mission to Mars aboard an Ariane 5 rocket in the early spring of 1999 set off feverish design activity at several NASA centers. This report describes the contract work done by faculty, students, and consultants at the California Polytechnic State University in San Luis Obispo California (Cal poly/SLO) to support the NASA/Ames design, construction and test efforts to develop a simple and robust Mars Flyer configuration capable of performing a practical science mission on Mars. The first sections will address the conceptual design of a workable Mars Flyer configuration which started in the spring and summer of 1999. The following sections will focus on construction and flight test of two full-scale vehicles. The final section will reflect on the overall effort and make recommendations for future work.
Multi-Modal Traveler Information System - Information Clearinghouse Final Network
DOT National Transportation Integrated Search
1997-07-23
This Working Paper will summarize the lessons learned from the initial implementation of the Information Clearinghouse and outline the proposed configuration and functional capabilities of the Final Network. In addition, all new users added since Mar...
Numerical analysis of orbital transfers to Mars using solar sails and attitude control
NASA Astrophysics Data System (ADS)
Pereira, M. C.; de Melo, C. F.; Meireles, L. G.
2017-10-01
Solar sails present a promising alternative method of propulsion for the coming phases of the space exploration. With the recent advances in materials engineering, the construction of lighter and more resistant materials capable of impelling spaceships with the use of solar radiation pressure has become increasingly viable technologically and economically. The studies, simulations and analysis of orbital transfers from Earth to Mars proposed in this work were implemented considering the use of a flat solar sail. Maneuvers considering the delivery of a sailcraft from a Low Earth Orbit to the border of the Earth’s sphere of influence and interplanetary trajectories to Mars were investigated. A set of simulations were implemented varying the attitude of the sail relative to the Sun. Results show that a sailcraft can carry out transfers with final velocity with respect to Mars smaller than the interplanetary Patched-conic approximation, although this requires a longer time of transfers, provided the attitude of the sailcraft relative to the Sun can be controlled in some points of the trajectories.
NASA Astrophysics Data System (ADS)
Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.
2017-10-01
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.
MarsSI: Martian surface data processing information system
NASA Astrophysics Data System (ADS)
Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.
2018-01-01
MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.
A continuous usability evaluation of an electronic medication administration record application.
Vicente Oliveros, Noelia; Gramage Caro, Teresa; Pérez Menéndez-Conde, Covadonga; Álvarez-Diaz, Ana María; Martín-Aragón Álvarez, Sagrario; Bermejo Vicedo, Teresa; Delgado Silveira, Eva
2017-12-01
The complexity of an electronic medication administration record (eMAR) has been underestimated by most designers in the past. Usability issues, such as poorly designed user application flow in eMAR, are therefore of vital importance, since they can have a negative impact on nursing activities and result in poor outcomes. The purpose of this study was to evaluate the usability of an eMAR application during its development. A usability evaluation was conducted during the development of the eMAR application. Two usability methods were used: a heuristic evaluation complemented by usability testing. Each eMAR application version provided by the vendor was evaluated by 2 hospital pharmacists, who applied the heuristic method. They reviewed the eMAR tasks, detected usability problems and their heuristic violations, and rated the severity of the usability problems. Usability testing was used to assess the final application version by observing how 3 nurses interacted with the application. Thirty-four versions were assessed before the eMAR application was considered usable. During the heuristic evaluation, the usability problems decreased from 46 unique usability problems in version 1 (V1) to 9 in version 34 (V34). In V1, usability problems were categorized into 154 heuristic violations, which decreased to 27 in V34. The average severity rating also decreased from major usability problem (2.96) to no problem (0.23). During usability testing, the 3 nurses did not encounter new usability problems. A thorough heuristic evaluation is a good method for obtaining a usable eMAR application. This evaluation points key areas for improvement and decreases usability problems and their severity. © 2017 John Wiley & Sons, Ltd.
Back to the future: the role of the ISS and future space stations in planetary exploration.
NASA Astrophysics Data System (ADS)
Muller, Christian; Moreau, Didier
2010-05-01
Space stations as stepping stones to planets appear already in the1954 Disney-von Braun anticipation TV show but the first study with a specific planetary scientific objective was the ANTEUS project of 1978. This station was an evolution of SPACELAB hardware and was designed to analyse Mars samples with better equipment than the laboratory of the VIKING landers. It would have played the role of the reception facility present in the current studies of Mars sample return, after analysis, the "safe" samples would have been returned to earth by the space shuttle. This study was followed by the flights of SPACELAB and MIR. Finally after 35 years of development, the International Space Station reaches its final configuration in 2010. Recent developments of the international agreement between the space agencies indicate a life extending to 2025, it is already part of the exploration programme as its crews prepare the long cruise flights and missions to the exploration targets. It is now time to envisage also the use of this stable 350 tons spacecraft for planetary and space sciences. Planetary telescopes are an obvious application; the present SOLAR payload on COLUMBUS is an opportunity to use the target pointing capabilities from the ISS. The current exposure facilities are also preparing future planetary protection procedures. Other applications have already been previously considered as experimental collision and impact studies in both space vacuum and microgravity. Future space stations at the Lagrange points could simultaneously combine unique observation platforms with an actual intermediate stepping stone to Mars.
Working Group Reports and Presentations: Mars Science and Exploration
NASA Technical Reports Server (NTRS)
Beaty, David
2006-01-01
In Mars, the spirit of exploring an exciting and rewarding new frontier is alive. Mars not only offers a unique destination for exploration, but it is also a critical destination for the advancement of human society and preservation of humanity. The exploration of Mars will provide significant social and technological benefits to enhance life on Earth as well. International cooperation will not only be essential to the success of a human presence on Mars, but development of such interactions will jumpstart collaboration on global issues. The eventual commercialization of space holds tremendous opportunities for economic growth. Finally, there is an undeniable basic human need to explore and define our place in the universe. The overarching theme that ties together all of these reasons for exploration is to inspire and unite the global community to pursue a common cause that is much larger than disagreements over ethnic differences or national borders. Continuous inspiration of the public, the scientific community, and the community of Earth are required in order to explore Mars.
Estimating Soil Cation Exchange Capacity from Soil Physical and Chemical Properties
NASA Astrophysics Data System (ADS)
Bateni, S. M.; Emamgholizadeh, S.; Shahsavani, D.
2014-12-01
The soil Cation Exchange Capacity (CEC) is an important soil characteristic that has many applications in soil science and environmental studies. For example, CEC influences soil fertility by controlling the exchange of ions in the soil. Measurement of CEC is costly and difficult. Consequently, several studies attempted to obtain CEC from readily measurable soil physical and chemical properties such as soil pH, organic matter, soil texture, bulk density, and particle size distribution. These studies have often used multiple regression or artificial neural network models. Regression-based models cannot capture the intricate relationship between CEC and soil physical and chemical attributes and provide inaccurate CEC estimates. Although neural network models perform better than regression methods, they act like a black-box and cannot generate an explicit expression for retrieval of CEC from soil properties. In a departure with regression and neural network models, this study uses Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) to estimate CEC from easily measurable soil variables such as clay, pH, and OM. CEC estimates from GEP and MARS are compared with measurements at two field sites in Iran. Results show that GEP and MARS can estimate CEC accurately. Also, the MARS model performs slightly better than GEP. Finally, a sensitivity test indicates that organic matter and pH have respectively the least and the most significant impact on CEC.
Styles of crater gradation in Southern Ismenius Lacus, Mars: Clues from Meteor Crater, Arizona
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schultz, P. H.
1992-01-01
Impact craters on the Earth and Mars provide a unique opportunity to quantify the gradational evolution of instantaneously created landforms in a variety of geologic settings. Unlike most landforms, the initial morphology associated with impact craters on both planets is uncomplicated by competition between construction and degradation during formation. Furthermore, pristine morphologies are both well-constrained and similar to a first order. The present study compares styles of graduation at Meteor Crater with those around selected craters (greater than 1-2 km in diameter) in southern Ismenius Lacus. Emphasis is placed on features visible in images near LANDSAT TM resolution (30-50 m/pixel) which is available for both areas. In contrast to Mars, vegetation on the Earth can modify gradation, but appears to influence overall rates and styles by 2X-3X rather than orders of magnitude. Further studies of additional craters in differing settings will refine the effects of this and other factors (e.g., substrate). Finally, by analogy with results from other terrestrial gradational surfaces this study should help provide constraints on climate over crater histories.
Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-01
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-28
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.
NASA Astrophysics Data System (ADS)
Charalambous, C. A.; Pike, W. T.
2013-12-01
We present the development of a soil evolution framework and multiscale modelling of the surface of Mars, Moon and Itokawa thus providing an atlas of extra-terrestrial Particle Size Distributions (PSD). These PSDs are profoundly based on a tailoring method which interconnects several datasets from different sites captured by the various missions. The final integrated product is then fully justified through a soil evolution analysis model mathematically constructed via fundamental physical principles (Charalambous, 2013). The construction of the PSD takes into account the macroscale fresh primary impacts and their products, the mesoscale distributions obtained by the in-situ data of surface missions (Golombek et al., 1997, 2012) and finally the microscopic scale distributions provided by Curiosity and Phoenix Lander (Pike, 2011). The distribution naturally extends at the magnitudinal scales at which current data does not exist due to the lack of scientific instruments capturing the populations at these data absent scales. The extension is based on the model distribution (Charalambous, 2013) which takes as parameters known values of material specific probabilities of fragmentation and grinding limits. Additionally, the establishment of a closed-form statistical distribution provides a quantitative description of the soil's structure. Consequently, reverse engineering of the model distribution allows the synthesis of soil that faithfully represents the particle population at the studied sites (Charalambous, 2011). Such representation essentially delivers a virtual soil environment to work with for numerous applications. A specific application demonstrated here will be the information that can directly be extracted for the successful drilling probability as a function of distance in an effort to aid the HP3 instrument of the 2016 Insight Mission to Mars. Pike, W. T., et al. "Quantification of the dry history of the Martian soil inferred from in situ microscopy." Geophysical Research Letters 38.24 (2011). C. A. Charalambous and W. T. Pike (2013). 'Evolution of Particle Size Distributions in Fragmentation Over Time' Abstract Submitted to the AGU 46th Fall Meeting. Charalambous, C., Pike, W. T., Goetz, W., Hecht, M. H., & Staufer, U. (2011, December). 'A Digital Martian Soil based on In-Situ Data.' In AGU Fall Meeting Abstracts (Vol. 1, p. 1669). Golombek, M., & Rapp, D. (1997). 'Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions.' Journal of Geophysical Research, 102(E2), 4117-4129. Golombek, M., Huertas, A., Kipp, D., & Calef, F. (2012). 'Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites.' Mars, 7, 1-22.
Guidance Concept for a Mars Ascent Vehicle First Stage
NASA Technical Reports Server (NTRS)
Queen, Eric M.
2000-01-01
This paper presents a guidance concept for use on the first stage of a Mars Ascent Vehicle (MAV). The guidance is based on a calculus of variations approach similar to that used for the final phase of the Apollo Earth return guidance. A three degree-of-freedom (3DOF) Monte Carlo simulation is used to evaluate performance and robustness of the algorithm.
NASA Astrophysics Data System (ADS)
Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.
2012-12-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
NASA Astrophysics Data System (ADS)
Sinha, Navita
Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface physicochemical conditions such as temperature, pressure, hydrogen concentration, and pH of Mars. Finally, chapter 7 provides conclusions, limitations of the experiments, and future perspective of the work. Overall, the quantitative measurements obtained in the various sections of this novel work provide insights to atmospheric biosignatures and survivability of methanogenic organisms on the surface and subsurface of Mars.
Scientific Rationale and Requirements for a Global Seismic Network on Mars
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Anderson, Don L.; Banerdt, W. Bruce; Butler, Rhett G.; Davis, Paul M.; Duennebier, Frederick K.; Nakamura, Yosio; Okal, Emile A.; Phillips, Roger J.
1991-01-01
Following a brief overview of the mission concepts for a Mars Global Network Mission as of the time of the workshop, we present the principal scientific objectives to be achieved by a Mars seismic network. We review the lessons for extraterrestrial seismology gained from experience to date on the Moon and on Mars. An important unknown on Mars is the expected rate of seismicity, but theoretical expectations and extrapolation from lunar experience both support the view that seismicity rates, wave propagation characteristics, and signal-to-noise ratios are favorable to the collection of a scientifically rich dataset during the multiyear operation of a global seismic experiment. We discuss how particular types of seismic waves will provide the most useful information to address each of the scientific objectives, and this discussion provides the basis for a strategy for station siting. Finally, we define the necessary technical requirements for the seismic stations.
Introduction to the session on `Human Space Exploration'
NASA Astrophysics Data System (ADS)
Messidoro, P.
When Schiaparelli tried to interpret the surface of Mars as it appeared from his telescope, in particular with reference to the famous "channels", he formulated the hypothesis that they would have been the product of some intelligent Mars population. Today we know that this interpretation was not correct, but we would like to consider his idea as a sort of vision for a future when the humankind will export our civilization on Mars. In fact the objective of the international plans of "Space Exploration" is exactly to land the humans on Mars to start its colonization. Although a new approach is proposed which includes International Space Station, Moon, Asteroids, etc. in a sort of "flexible path" to look for "new worlds in the Solar System where is possible for the humankind to live and operate", it is confirmed that the "final destination" is Mars.
2031, an edaphological Mars odyssey
NASA Astrophysics Data System (ADS)
Barrón, Vidal
2016-04-01
NASA is projecting to send humans to Mars in the 2030s. In the PICO session we will make a 4D experience, a journey in space and time. Wéll connect with a meeting in the future mission "Edaphos one" travelling to Mars in 2031. In that meeting, an international scientific team with one geophysicist, one mineralogist and two agronomist will review the state of the art of the geo-edaphological knowledge of the martian surface, based on the main Mars missions using orbiters (Mariner), landers (Viking) and rovers (Pathfinder, Spirit-Opportunity, Curiosity). A special attention will be devoted to the mineralogy of the iron oxides, as important aquamarkers. Finally, they discuss about the biological, physical and chemical limitations for plants growth on Mars. You can see the trailer of the presentation in this link: https://www.youtube.com/watch?v=yRS0tPNpvFU
Sorkin, Nir; Showail, Mahmood; Einan-Lifshitz, Adi; Boutin, Tanguy; Borovik, Armand; Kreimei, Mohammad; Rosenblatt, Amir; Chan, Clara C; Rootman, David S
2018-06-01
To analyze the outcomes of Descemet membrane endothelial keratoplasty (DMEK) in eyes with previous Descemet stripping automated endothelial keratoplasty (DSAEK). This retrospective interventional case series included 26 eyes (26 patients) that underwent DMEK to replace a previous DSAEK graft with at least 6 months of follow-up. The outcome measures were indications for surgery, best spectacle-corrected visual acuity (BSCVA), endothelial cell density, rebubbling rate, rejection, and failure. Patient age was 71.9 ± 12.6 years. The average follow-up time after DMEK was 15.1 ± 10.6 months. Indications for DMEK were DSAEK graft failure (69%) and a DSAEK suboptimal visual outcome (31%). BSCVA of the entire cohort (n = 26) improved from 1.33 ± 0.78 logMAR preoperatively to 1.04 ± 0.78 and 1.06 ± 0.89 logMAR at 6 months postoperatively and at the last follow-up, respectively (P = 0.019 and P = 0.033). BSCVA among eyes without visual comorbidities (n = 13) improved from 0.84 ± 0.50 logMAR preoperatively to 0.55 ± 0.47 and 0.51 ± 0.49 logMAR at 6 months postoperatively and at final follow-up, respectively (P = 0.023 for both). Of these eyes, 84.6% had improvement in BSCVA at 6 months postoperatively and at last follow-up. In the subgroup of 8 eyes with DMEK for suboptimal visual outcomes after DSAEK, BSCVA improved from 0.81 ± 0.44 to 0.52 ± 0.35 logMAR at final follow-up (P = 0.024). When excluding eyes with visual comorbidities, BSCVA of this subgroup (n = 5) improved from 0.54 ± 0.32 to 0.36 ± 0.25 logMAR at final follow-up (P = 0.038). BSCVA of this subgroup at 6 months postoperatively was not significantly different from preoperative BSCVA, when including visual comorbidities (n = 8, 0.75 ± 0.60 logMAR, P = 0.79) and when excluding visual comorbidities (n = 5, 0.40 ± 0.28 logMAR, P = 0.621). Endothelial cell density decreased from 2753 ± 307 cells/mm to 1659 ± 655 cells/mm 6 months after surgery (39.7% loss, P = 0.005). Three eyes (11.5%) required rebubbling, and 5 eyes (19.2%) had secondary graft failure at 2 to 20 months. DMEK is effective for replacing previous DSAEK not only for graft failure but also for suboptimal visual outcomes.
NASA Astrophysics Data System (ADS)
Lindgren, C. F.; Troy, M. T.; Valderrama, P.
2005-12-01
Bringing science to life in a middle school classroom, and getting students excited about writing an English research paper can be a challenge. We met the challenge by using the exploration of Mars with Arizona State University`s (ASU) Mars Student Imaging Project (MSIP). We replaced individuals writing their own research papers with teams writing scientific proposals for use of the 2001 Mars Odyssey Orbiter. The 126 students on our academic team divided themselves into 26 teams. Each team selected a Leader, Archivist, Publicist, and Bibliographer. I was the Principal Investigator for each team. For twelve weeks the teams formally met once a week to discuss their progress and plan strategies for the following week. We created a website to communicate our progress. During the twelve weeks, the major task was to narrow each general topic such as ``Volcanoes on Mars," to a specific topic that could be answered by an 18km by 60km visible light image such as ``Is it Possible to Find the Relative Age of Volcanic Depressions in a Lava Flow Using a Mars Odyssey Image?" In addition to traditional research methods, we also participated in four teleconferences with ASU scientists chaired by Paige Valderrama, Assistant Director of the Mars Education Program. As the project evolved, I guided the teams with content, while the English teacher provided strategies for writing a meaningful persuasive essay, using citations, and recording bibliographical entries. When the proposals were completed, each team created a PowerPoint presentation to introduce their proposal to everyone for peer review. The students were hard, but fair with their evaluations. In several cases, they did not cast one of their three votes for their own! They decided that ten proposals met the criteria established by ASU. Those teams selected one member to use the JMARS software to target locations on Mars. The imagers spent two intensive days learning the software and targeting the surface. When we received our Odyssey images, the teams, totaling 42 students, participated in a three week independent study to conduct their experiments, write, and finally submit their proposals to ASU. During that time, team leaders submitted what had been done each day to us for evaluation. All ten teams succeeded. Each participant in the final phase was rewarded by ASU with a laminated image of their target, and an A for their efforts from us!
The early differentiation of Mars inferred from Hf–W chronometry
Kruijer, Thomas S.; Kleine, Thorsten; Borg, Lars E.; ...
2017-07-20
Mars probably accreted within the first 10 million years of Solar System formation and likely underwent magma ocean crystallization and crust formation soon thereafter. In this study, to assess the nature and timescales of these large-scale mantle differentiation processes we applied the short-lived 182Hf– 182W and 146Sm– 142Nd chronometers to a comprehensive suite of martian meteorites, including several shergottites, augite basalt NWA 8159, orthopyroxenite ALH 84001 and polymict breccia NWA 7034. Compared to previous studies the 182W data are significantly more precise and have been obtained for a more diverse suite of martian meteorites, ranging from samples from highly depletedmore » to highly enriched mantle and crustal sources. Our results show that martian meteorites exhibit widespread 182W/ 184W variations that are broadly correlated with 142Nd/ 144Nd, implying that silicate differentiation (and not core formation) is the main cause of the observed 182W/ 184W differences. The combined 182W– 142Nd systematics are best explained by magma ocean crystallization on Mars within ~20–25 million years after Solar System formation, followed by crust formation ~15 million years later. Finally, these ages are indistinguishable from the I–Pu–Xe age for the formation of Mars' atmosphere, indicating that the major differentiation of Mars into mantle, crust, and atmosphere occurred between 20 and 40 million years after Solar System formation and, hence, earlier than previously inferred based on Sm–Nd chronometry alone.« less
The early differentiation of Mars inferred from Hf–W chronometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruijer, Thomas S.; Kleine, Thorsten; Borg, Lars E.
Mars probably accreted within the first 10 million years of Solar System formation and likely underwent magma ocean crystallization and crust formation soon thereafter. In this study, to assess the nature and timescales of these large-scale mantle differentiation processes we applied the short-lived 182Hf– 182W and 146Sm– 142Nd chronometers to a comprehensive suite of martian meteorites, including several shergottites, augite basalt NWA 8159, orthopyroxenite ALH 84001 and polymict breccia NWA 7034. Compared to previous studies the 182W data are significantly more precise and have been obtained for a more diverse suite of martian meteorites, ranging from samples from highly depletedmore » to highly enriched mantle and crustal sources. Our results show that martian meteorites exhibit widespread 182W/ 184W variations that are broadly correlated with 142Nd/ 144Nd, implying that silicate differentiation (and not core formation) is the main cause of the observed 182W/ 184W differences. The combined 182W– 142Nd systematics are best explained by magma ocean crystallization on Mars within ~20–25 million years after Solar System formation, followed by crust formation ~15 million years later. Finally, these ages are indistinguishable from the I–Pu–Xe age for the formation of Mars' atmosphere, indicating that the major differentiation of Mars into mantle, crust, and atmosphere occurred between 20 and 40 million years after Solar System formation and, hence, earlier than previously inferred based on Sm–Nd chronometry alone.« less
Multi-species analysis of ion distributions at Mars
NASA Astrophysics Data System (ADS)
Curry, S.; Liemohn, M. W.; Fang, X.; Ma, Y.; Johnson, B.; Bougher, S. W.; Dong, C.
2012-12-01
This study focuses on using the Mars Test Particle simulation to compare observations with virtual detections of O+, O2+, CO2+, and H+ in an orbital configuration in the Mars space environment. These planetary pick-up ions are formed when the solar wind directly interacts with the neutral atmosphere, causing the ions to be accelerated by the background convective electric field. The subsequent mass loading and ion escape are still the subject of great interest, specifically with respect to which species dominates ion loss from Mars. Modeling efforts and observations have found different results; some conclude that O+ is the most dominant escaping ion while others conclude that O2+ has the larger total loss rate. Furthermore, mass loss might actually favor CO2+ because of its tri-atomic structure. To address this unresolved issue, this study will present velocity space distributions for different species and discuss fluxes and escape rates using different modeling parameters. The simulation will also illustrate individual particle traces, which reveal the origin and trajectories of the different ion species. Finally, results from different solar conditions will be presented with respect to ion fluxes and energies as well as overall escape in order to robustly describe the physical processes controlling planetary ion distributions and atmospheric escape.
NASA Technical Reports Server (NTRS)
Roberts, Barney B.; Bland, Dan
1988-01-01
The Office of Exploration (OEXP) at NASA has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of manned exploration of the Solar System. The Mission analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process used to conduct exploration studies and discusses the mission developed in a case study approach. The four case studies developed in FY88 include: (1) a manned expedition to PHOBOS; (2) a manned expedition to MARS; (3) a lunar surface observatory; and a lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.
Large-Scale, Extratropical Weather Systems within Mars' Atmosphere
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.
2013-04-01
During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.
Large-Scale Extratropical Weather Systems in Mars' Atmosphere
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.
2013-01-01
During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.
Russian contribution to the ExoMars project
NASA Astrophysics Data System (ADS)
Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.
2014-04-01
The ExoMars ESA-led mission is dedicated to study of Mars and in particular its habitability. It consists of two launches, one planned in 2016 to deliver to Mars a telecommunication and science orbiter Trace Gas Orbiter (TGO) and a demonstrator of entry into the atmosphere and landing on the Mars surface, Entry, Descent and Landing Demonstrator Module (EDM). In 2018 a rover with drilling capability will be delivered to the surface of Mars. Since 2012 this mission, previously planned in cooperation with NASA is being developed in cooperation with Roscosmos. Both launches are planned with Proton-Breeze. In 2016 Russia contributes a significant part of the TGO science payload. In 2018 the landing will be provided by a joint effort capitalizing on the EDM technology. Russia contributes few science instruments for the rover, and leads the development of a long-living geophysical platform on the surface of Mars. Russian science instruments for TGO, the Atmospheric Chemistry Suite (ACS) and the Fine Resolution Epithermal Neutrons Detector (FREND) constituent a half of its scientific payload, European instrument being NOMAD for mapping and detection of trace species, and CASSIS camera for high-resolution mapping of target areas. The ACS package consists of three spectrometers covering spectral range from 0.7 to 17 μm with spectral resolving power reaching 50000. It is dedicated to studies of the composition of the Martian atmosphere and the Martian climate. FREND is a neutron detector with a collimation module, which significantly narrows the field of view of the instrument, allowing to create higher resolution maps of hydrogen-abundant regions on Mars. The spatial resolution of FREND will be ~40 km from the 400- km TGO orbit that is ~10 times better than HEND on Mars-Odyssey. Additionally, FREND includes a dosimeter module for monitoring radiation levels in orbit around Mars. In the 2018 mission, Russia takes the major responsibility of the descent module. The primary goal of the descent module consists of the delivery of the 300-kg rover on the surface. The full mass of the module should not exceed 2000 kg. An aerodynamic shield and a parachute system assure the entry phase. A descent scenario with integrated retro-propulsion engines and landing on feet is being developed. Subsystems of the descend module are supplied by both Roscosmos and ESA. On the rover, Russia contributes two science instruments. ADRON-RM is a passive neutron detector to assess water contents in the Mars surface along the rover track. ISEM is a pencil-beam infrared spectrometer mounted at the mast of the rover and is primarily dedicated for the assessment of mineralogical composition, operating in coordination with high-resolution channel of PANCAM. Both instruments will assist with planning rover traverse, rover targeting operations, and sample selection. A major effort of the Russian science is concentrated on the 2018 landing platform. This is the part of the descent module remaining immobile after the rover egress. The platform, or the longliving geophysical station shall have guaranteed lifetime of one Martian year, and will be able to accommodate up to 50 kg of science payload. The final list of science investigations, which is yet to be finalized, includes the meteorological station, instruments to analyse atmospheric composition, geophysical instruments. Other investigations will provide analyses of the surface/shallow subsurface material complimentary to these on the rover, and other experiments, if resources permit. Current status of the project and the developments will be presented
A robotic exploration mission to Mars and Phobos
NASA Technical Reports Server (NTRS)
Kerr, Justin H.; Defosse, Erin; Ho, Quang; Barriga, Ernisto; Davis, Grant; Mccourt, Steve; Smith, Matt
1993-01-01
This report discusses the design of a robotic exploration to Mars and Phobos. It begins with the mission's background and objectives, followed by a detailed explanation of various elements of Project Aeneas, including science, spacecraft, probes, and orbital trajectories. In addition, a description of Argos Space Endeavours, management procedures, and overall project costs are presented. Finally, a list of recommendations for future design activity is included.
Indications for MARS-MRI in Patients Treated With Metal-on-Metal Hip Resurfacing Arthroplasty.
Connelly, James W; Galea, Vincent P; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik
2018-06-01
Currently, there are no universally accepted guidelines on when to obtain metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in metal-on-metal (MoM) hip resurfacing arthroplasty (HRA) patients. Our primary aims were to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and create an algorithm for indicating MARS-MRI in patients with Articular Surface Replacement (ASR) HRA. The secondary aim was to compare our algorithm to existing guidelines on when to perform MARS-MRI in MoM HRA patients. The study cohort consisted of 182 patients with unilateral ASR HRA from a prospective, multicenter study. Subjects received MARS-MRI at a mean of 7.8 years from surgery, regardless of symptoms. We determined which variables were predictive of ALTR and generated cutoffs for each variable. Finally, we created an algorithm to predict ALTR and indicate MARS-MRI in ASR HRA patients using these cutoffs and compared it to existing guidelines. We found high blood cobalt (Co) (odds ratio = 1.070; P = .011) and high blood chromium (Cr) (odds ratio = 1.162; P = .002) to be significant predictors of ALTR presence. Our algorithm using a blood Co cutoff of 1.15 ppb and a Cr cutoff of 1.09 ppb achieved 96.6% sensitivity and 35.3% specificity in predicting ALTR, which outperformed the existing guidelines. Blood Co and Cr levels are predictive of ALTR in ASR HRA patients. Our algorithm considering blood Co and Cr levels predicts ALTR in ASR HRA patients with higher sensitivity than previously established guidelines. Copyright © 2018 Elsevier Inc. All rights reserved.
Shima, Razatul; Farizah, Hairi; Majid, Hazreen Abdul
2015-01-01
INTRODUCTION The aim of this study was to assess the reliability and validity of a modified Malaysian version of the Medication Adherence Reasons Scale (MAR-Scale). METHODS In this cross-sectional study, the 15-item MAR-Scale was administered to 665 patients with hypertension who attended one of the four government primary healthcare clinics in the Hulu Langat and Klang districts of Selangor, Malaysia, between early December 2012 and end-March 2013. The construct validity was examined in two phases. Phase I consisted of translation of the MAR-Scale from English to Malay, a content validity check by an expert panel, a face validity check via a small preliminary test among patients with hypertension, and exploratory factor analysis (EFA). Phase II involved internal consistency reliability calculations and confirmatory factor analysis (CFA). RESULTS EFA verified five existing factors that were previously identified (i.e. issues with medication management, multiple medications, belief in medication, medication availability, and the patient’s forgetfulness and convenience), while CFA extracted four factors (medication availability issues were not extracted). The final modified MAR-Scale model, which had 11 items and a four-factor structure, provided good evidence of convergent and discriminant validities. Cronbach’s alpha coefficient was > 0.7, indicating good internal consistency of the items in the construct. The results suggest that the modified MAR-Scale has good internal consistencies and construct validity. CONCLUSION The validated modified MAR-Scale (Malaysian version) was found to be suitable for use among patients with hypertension receiving treatment in primary healthcare settings. However, the comprehensive measurement of other factors that can also lead to non-adherence requires further exploration. PMID:25902719
Shima, Razatul; Farizah, Hairi; Majid, Hazreen Abdul
2015-08-01
The aim of this study was to assess the reliability and validity of a modified Malaysian version of the Medication Adherence Reasons Scale (MAR-Scale). In this cross-sectional study, the 15-item MAR-Scale was administered to 665 patients with hypertension who attended one of the four government primary healthcare clinics in the Hulu Langat and Klang districts of Selangor, Malaysia, between early December 2012 and end-March 2013. The construct validity was examined in two phases. Phase I consisted of translation of the MAR-Scale from English to Malay, a content validity check by an expert panel, a face validity check via a small preliminary test among patients with hypertension, and exploratory factor analysis (EFA). Phase II involved internal consistency reliability calculations and confirmatory factor analysis (CFA). EFA verified five existing factors that were previously identified (i.e. issues with medication management, multiple medications, belief in medication, medication availability, and the patient's forgetfulness and convenience), while CFA extracted four factors (medication availability issues were not extracted). The final modified MAR-Scale model, which had 11 items and a four-factor structure, provided good evidence of convergent and discriminant validities. Cronbach's alpha coefficient was > 0.7, indicating good internal consistency of the items in the construct. The results suggest that the modified MAR-Scale has good internal consistencies and construct validity. The validated modified MAR-Scale (Malaysian version) was found to be suitable for use among patients with hypertension receiving treatment in primary healthcare settings. However, the comprehensive measurement of other factors that can also lead to non-adherence requires further exploration.
Study of the Total Electron Content in Mars ionosphere from MARSIS data set
NASA Astrophysics Data System (ADS)
Bergeot, Nicolas; Witasse, Olivier; Kofman, Wlodek; Grima, Cyril; Mouginot, Jeremie; Peter, Kerstin; Pätzold, Martin; Dehant, Véronique
2016-04-01
Centimeter level accuracy on the signal delay will be required on X-band radio link for future Mars landers such as InSIGHT, aiming at better determining the interior structure of Mars. One of the main error sources in the estimated signal delay is directly linked to the Total Electron Content (TEC) values at Earth and Mars ionosphere level. While the Earth ionosphere is now well modeled and monitored at regional and global scales, this is not the case concerning the Mars' upper atmosphere. The present paper aims at establishing the basis to model the climatological behavior of the TEC on a global scale in the Mars' ionosphere. For that we analyzed ˜8.5 years of data (mid-2005 to 2014) of the vertical Total Electron Content (vTEC) expressed in TEC units (1 TECu = 1016e-.m-2) from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) radar. Our study takes advantage of the double data set of EUV solar index and Mars vTEC data to develop an empirical Model of Mars Ionosphere (MoMo). The finality of this model is to predict the vTEC at a given latitude, solar zenith angle and season taking only F10.7P solar index as input. To minimize the differences during the least-square adjustment between the modeled and observed vTEC, we considered (1) a 4th-order polynomial function to describe the vTEC diurnal behavior (2) a discretization with respect to Mars seasons (depending on Ls) and (3) two latitudinal sectors (North and South hemispheres). The mean of the differences between the model and the observations is 0.00±0.07 TECu with an error of the model around 0.1 TECu depending on the Solar Zenith Angle (SZA), season and hemisphere of interest (e.g. rms 0.12 TECu for SZA equal to 50°±5° in the Northern hemisphere during the spring season). Additionally, comparison with 250 Mars Express radio occultation data shows differences with MoMo predictions of 0.02±0.06 TECu for solar zenith angles below 50 degrees. Using the model we (1) highlighted different behaviors of Mars ionosphere depending on seasons, solar activity level, and latitudes; (2) estimated a maximum effect on X-Band signal delay (up plus down links) of ˜3 cm during the autumn season and high solar activity at the future InSIGHT lander location.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... (Mar. 16, 1998) (Final Results). Following the publication of the final results, Heveafil Sdn. Bhd.\\2\\ and Filmax Sdn. Bhd. (collectively, ``Heveafil'') filed a lawsuit with the United States Court of...\\ \\2\\ Heveafil Sdn. Bhd. is also known as Heveafil Sdn. \\3\\ See Heveafil et al. v. United States, Slip...
Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission
NASA Astrophysics Data System (ADS)
Suzuki, Toshiyuki; Aoki, Takuya; Ogasawara, Toshio; Fujita, Kazuhisa
2017-07-01
In this study, the concept of a nonablative lightweight thermal protection system (NALT) were proposed for a Mars exploration mission currently under investigation in Japan. The NALT consists of a carbon/carbon (C/C) composite skin, insulator tiles, and a honeycomb sandwich panel. Basic thermal characteristics of the NALT were obtained by conducting heating tests in high-enthalpy facilities. Thermal conductivity values of the insulator tiles as well as the emissivity values of the C/C skin were measured to develop a numerical analysis code for predicting NALT's thermal performance in flight environments. Finally, a breadboard model of a 600-mm diameter NALT aeroshell was developed and qualified through vibration and thermal vacuum tests.
Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2011-01-01
Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.
Geologic mapping of Argyre Planitia
NASA Technical Reports Server (NTRS)
Gorsline, Donn S.; Parker, Timothy J.
1995-01-01
This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.
NASA Astrophysics Data System (ADS)
Direito, Maria Susana; Staats, Martijn; Foing, Bernard H.; Ehrenfreund, Pascale; Roling, Wilfred
The Utah Mars Desert Research Station (MDRS) harbours geo-morphology and geo-processes analogues to the planet Mars. Soil samples were collected during the EuroGeoMars campaign (from 24 January to 1 March 2009) from different locations and depths [1]. Samples were distributed among scientific collaborator institutes for analysis of microbial diversity, amino acid content and degradation, content of PAH or larger organic molecules, and respective soil properties. Our sample analysis had the objective of characterizing the microbial communities in this Mars analogue: DNA isolation, PCR (Polymerase Chain Reaction) using primers for DNA amplification of Bacteria, Archaea and Eukarya ribosomal RNA (rRNA) gene fragments, DGGE (Denaturing Gradient Gel Electrophoresis) and clone library construction with the final aim of sequencing. Results indicate that life is present in all the three domains of life (Archaea, Bacteria and Eukarya), while the most diversity was found in the domain Bacteria. Microorgan-isms are heterogeneously present and their identities are currently investigated. The obtained information will be later related to the other scientific analysis in order to obtain a better understanding of this Mars analogue site, which in turn will provide important information for the search for life on Mars. [1] Foing, B.H. et al . (2009). Exogeolab lander/rover instruments and EuroGeoMars MDRS campaign. LPI, 40, 2567.
Exploration studies technical report, FY1988 status. Volume 1: Technical summary
NASA Technical Reports Server (NTRS)
1988-01-01
The Office of Exploration (OEXP) at NASA Headquarters has been tasked with defining and recommending alternatives for an early 1990's nationaL decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Lyndon B. Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process that has been developed in a case study approach. The four case studies developed in FY88 include: (1) Human Expedition to Phobos; (2) Human Expedition to Mars; (3) Lunar Observatory; and (4) Lunar Outpost to Early Mars Evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.
Structural technology challenges for evolutionary growth of Space Station Freedom
NASA Technical Reports Server (NTRS)
Doiron, Harold H.
1990-01-01
A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.
Small rover exploration capabilities
NASA Astrophysics Data System (ADS)
Salotti, Jean-Marc; Laithier, Corentin; Machut, Benoit; Marie, Aurélien; Bruneau, Audrey; Grömer, Gernot; Foing, Bernard H.
2015-05-01
For a human mission to the Moon or Mars, an important question is to determine the best strategy for the choice of surface vehicles. Recent studies suggest that the first missions to Mars will be strongly constrained and that only small unpressurized vehicles will be available. We analyze the exploration capabilities and limitations of small surface vehicles from the user perspective. Following the “human centered design” paradigm, the team focused on human systems interactions and conducted the following experiments:
The Mars Climate Orbiter arrives at KSC to begin final preparations for launch
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.
Completion of the Viking Labeled Release experiment on Mars
NASA Technical Reports Server (NTRS)
Levin, G. V.; Straat, P. A.
1979-01-01
The final Labeled Release (LR) cycle on each Viking lander tested a surface sample that had been stored for several months at approximately 10 C prior to the onset of the active sequence. At each lander site, activity was strongly diminished. This thermal sensitivity of the active agent on the surface of Mars is consistent with a biological explanation of the LR experiment. At the end of one of these cycles, the incubation mixture was heated to 50 C to release any radioactive gas trapped in the sample matrix. The results suggest that more than one carbon substrate is involved in the LR reaction on Mars. The thermal data from the stored samples, coupled with data from previous cycles, have formed the basis for evaluation of the thermal decomposition of the Mars active agent. The slope of the resulting Arrhenius plot has been used to test the fit of other flight data and to calculate the activation energy for thermal decomposition of the Mars agent. The results and their interpretation still leave unresolved the question of whether the Mars LR data were generated by biological or chemical activity.
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Gaier, James R.; Zoeckler, Joseph G.; Kolacz, John S.; Wegeng, Robert S.; Rassat, Scot D.; Clark, D. Larry
2013-01-01
A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.
Biosignature Preservation and Detection in Mars Analog Environments.
Hays, Lindsay E; Graham, Heather V; Des Marais, David J; Hausrath, Elisabeth M; Horgan, Briony; McCollom, Thomas M; Parenteau, M Niki; Potter-McIntyre, Sally L; Williams, Amy J; Lynch, Kennda L
2017-04-01
This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.
Completion of the Viking labeled release experiment on Mars.
Levin, G V; Straat, P A
1979-12-01
The final Labeled Release (LR) cycle on each Viking lander tested a surface sample that had been stored for several months at approximately 10 degrees C prior to the onset of the active sequence. At each lander site, activity was strongly diminished. This thermal sensitivity of the active agent on the surface of Mars is consistent with a biological explanation of the LR experiment. At the end of one of these cycles, the incubation mixture was heated to 50 degrees C to release any radioactive gas trapped in the sample matrix. The results suggest that more than one carbon substrate is involved in the LR reaction on Mars. The thermal data from the stored samples, coupled with data from previous cycles, have formed the basis for evaluation of the thermal decomposition of the Mars active agent. The slope of the resulting Arrhenius plot has been used to test the fit of other flight data and to calculate the activation energy for thermal decomposition of the Mars agent. The results and their interpretation still leave unresolved the question of whether the Mars LR data were generated by biological or chemical activity.
The Mars Climate Orbiter arrives at KSC to begin final preparations for launch
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.
Overview of the Mars Science Laboratory Parachute Decelerator Subsystem
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan
2007-01-01
In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.
NASA Technical Reports Server (NTRS)
1987-01-01
A conceptual design study of an aeroassisted orbital transfer vehicle is discussed. Nicknamed TAXI, it will ferry personnel and cargo: (1) between low Earth orbit and a spacecraft circling around the Sun in permanent orbit intersecting gravitational fields of Earth and Mars, and (2) between the cycling spacecraft and a Mars orbiting station, co-orbiting with Phobos. Crew safety and mission flexibility (in terms of ability to provide a wide range of delta-V) were given high priority. Three versions were considered, using the same overall configuration based on a low L/D aerobrake with the geometry of a raked off elliptical cone with ellipsoidal nose and a toroidal skirt. The propulsion system consists of three gimballed LOX/LH2 engines firing away from the aerobrake. The versions differ mainly in the size of the aeroshields and propellant tanks. TAXI A version resulted from an initial effort to design a single transfer vehicle able to meet all delta-V requirements during the 15-year period (2025 to 2040) of Mars mission operations. TAXI B is designed to function with the cycling spacecraft moving in a simplified, nominal trajectory. On Mars missions, TAXI B would be able to meet the requirements of all the missions with a relative approach velocity near Mars of less than 9.3 km/sec. Finally, TAXI C is a revision of TAXI A, a transfer vehicle designed for missions with a relative velocity near Mars larger than 9.3 km/sec. All versions carry a crew of 9 (11 with modifications) and a cargo of 10000 lbm. Trip duration varies from 1 day for transfer from LEO to the cycling ship to nearly 5 days for transfer from the ship to the Phobos orbit.
FREND experiment on ESA's TGO mission: science tasks, initial space data and expected results
NASA Astrophysics Data System (ADS)
Mitrofanov, Igor; Malakhov, Aleksey; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton; Semkova, Jordanka
2017-04-01
The main science tasks are presented in details of the Fine Resolution Epithermal Neutron Detector (FREND) onboard the ESA's Trace Gas Orbiter (TGO). They are (I) mapping of water distribution in the shallow subsurface of Mars with the special resolution about 40 km, (II) measuring of the seasonal depositions of atmospheric carbon dioxide on the southern and northern hemispheres of Mars, and (III) monitoring of galactic cosmic rays (GCRs) and solar particle events (SPEs) on the low Mars orbit. The initial science data of FREND are described measured during the interplanetary cruise and at the initial stage of the orbital flight. These data allow to estimate the local radiation environment of TGO, which is produced by GCRs, and also the neutron albedo of the Mars surface, which is also produced by the bombardment by GCRs. Using the first FREND space data for in-space calibration, the background components are estimated for the future low-orbit mapping of neutrons from Mars. Using the first experimental data, expected science results of FREND are discussed. It is shown that joint analysis of the orbital neutron data from FREND onboard the TGO, the orbital neutron data from HEND onboard the Mars Odyssey and the surface neutron data from DAN onboard the Curiosity rover should allow to characterize the ground water/ice distribution on the surface of Mars and also to build the seasonal maps of atmospheric CO2 depositions for different intervals of Ls. Special and temporal variations of the Martian radiation environment should be measured as well. Finally, the most ambitious goal of the TGO multi-instrument studies could be testing the cross-correspondence between the water-rich spots on the surface with the local enhancements of methane in the atmosphere
Design of Optimal Cyclers Using Solar Sails
2002-12-01
more perturbations are desired in the dynamics model (in this case, more nodes should be used). Equinoctial elements provide a set of singularity...the time to complete the whole EME double rendezvous. Setting the intermediate destination at the Mars orbit and the final destination with Earth...it is necessary to know the relative orbital shapes and orientations of the departure and destination planets. The orbital elements of Earth and Mars
Comment on Mars as the Parent Body of the CI Carbonaceous Chondrites by J. E. Brandenburg
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1996-01-01
Geological and chemical data refute a martian origin for the CI carbonaceous chondrites. Here, I will first consider Brandenburg's [1996] proposal that the CI's formed as water-deposited sediments on Mars, and that these sediments had limited chemical interactions with their martian environment. Finally, I will address oxygen isotope ratios, the strongest link between the CIs and the martian meteorites.
Historical perspective - Viking Mars Lander propulsion
NASA Technical Reports Server (NTRS)
Morrisey, Donald C.
1989-01-01
This paper discusses the Viking 1 and 2 missions to Mars in 1975-1976 and describes the design evolution of the Viking Terminal Descent Rocket Engines responsible for decelerating the Viking Mars Landers during the final portion of their descent from orbit. The Viking Terminal Descent Rocket Engines have twice the thrust of the largest monopropellant hydrazine engine developed previously but weigh considerably less. The engine has 18 nozzles, the capability of 10:1 throttling, is totally sealed until fired, employs no organic unsealed materials, is 100 percent germ free, utilized hydrazine STM-20 as the propellant, and starts at a temperature more than 45 F below the propellant's freezing point.
2003-04-23
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-A) is ready for final closure of the petals on the lander. The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
Localization, Localization, Localization
NASA Technical Reports Server (NTRS)
Parker, T.; Malin, M.; Golombek, M.; Duxbury, T.; Johnson, A.; Guinn, J.; McElrath, T.; Kirk, R.; Archinal, B.; Soderblom, L.
2004-01-01
Localization of the two Mars Exploration Rovers involved three independent approaches to place the landers with respect to the surface of Mars and to refine the location of those points on the surface with the Mars control net: 1) Track the spacecraft through entry, descent, and landing, then refine the final roll stop position by radio tracking and comparison to images taken during descent; 2) Locate features on the horizon imaged by the two rovers and compare them to the MOC and THEMIS VIS images, and the DIMES images on the two MER landers; and 3) 'Check' and refine locations by acquisition of MOC 1.5 meter and 50 cm/pixel images.
Glass fiber processing for the Moon/Mars program: Center director's discretionary fund final report
NASA Technical Reports Server (NTRS)
Tucker, D. S.; Ethridge, E.; Curreri, P.
1992-01-01
Glass fiber has been produced from two lunar soil simulants. These two materials simulate lunar mare soil and lunar highland soil compositions, respectively. Short fibers containing recrystallized areas were produced from the as-received simulants. Doping the highland simulant with 8 weight percent B2-O3 yielded a material which could be spun continuously. The effects of lunar gravity on glass fiber formation were studied utilizing NASA's KC-135 aircraft. Gravity was found to play a major role in final fiber diameter.
NASA Technical Reports Server (NTRS)
Justh, H. L.; Justus, C. G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL) [1]. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) Thermal Emission Spectrometer (TES) mapping years 1 and 2, with Mars-GRAM data coming from NASA Ames Mars General Circulation Model (MGCM) results driven by observed TES dust optical depth or (2) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated [2] against Radio Science data, and both nadir and limb data from TES [3]. There are several new features included in Mars-GRAM 2005. The first is the option to use input data sets from MGCM model runs that were designed to closely simulate conditions observed during the first two years of TES observations at Mars. The TES Year 1 option includes values from April 1999 through January 2001. The TES Year 2 option includes values from February 2001 through December 2002. The second new feature is the option to read and use any auxiliary profile of temperature and density versus altitude. In exercising the auxiliary profile Mars-GRAM option, values from the auxiliary profile replace data from the original MGCM databases. Some examples of auxiliary profiles include data from TES nadir or limb observations and Mars mesoscale model output at a particular location and time. The final new feature is the addition of two Mars-GRAM parameters that allow standard deviations of Mars-GRAM perturbations to be adjusted. The parameter rpscale can be used to scale density perturbations up or down while rwscale can be used to scale wind perturbations.
Abouammoh, Marwan A; Alsulaiman, Sulaiman M; Gupta, Vishali S; Mousa, Ahmed; Hirakata, Akito; Berrocal, Maria H; Chenworth, Megan; Chhablani, Jay; Oshima, Yusuke; AlZamil, Waseem M; Casella, Antonio Marcelo; Papa-Oliva, Gabriela; Banker, Alay S; Arevalo, J Fernando
2016-04-01
To compare the functional and anatomic outcomes of pars plana vitrectomy (PPV) with juxtapapillary laser photocoagulation (JLP) versus vitrectomy without JLP in optic disc pit maculopathy. This was a multicentre, retrospective study of 46 consecutive patients with optic disc pit maculopathy presenting at tertiary eye centres between 1992 and 2012. Indications for surgery included distorted or decreased vision. Surgical intervention included PPV, posterior vitreous detachment, with or without gas tamponade. Twenty-four patients received laser photocoagulation at the temporal edge of the optic disc pit (group A) and 22 patients had no laser (group B). Postoperative best-corrected visual acuity (BCVA) and optical coherence tomography findings were the main outcome measures. Mean follow-up was 44 months (range 12-98 months). BCVA in group A improved significantly from 0.7 logMAR (20/100) preoperatively to 0.5 logMAR (20/60) postoperatively (p=0.017). In group B, BCVA improved from 0.7 logMAR (20/100) preoperatively to 0.4 logMAR (20/40) postoperatively (p=0.014). The difference in final BCVA between groups was not statistically significant (p=0.693). The mean central macular thickness (CMT) in group A improved significantly from 750 μm preoperatively to 309 μm at last follow-up (p<0.0001). The mean CMT in group B improved from 616 μm preoperatively to 291 μm at last follow-up (p=0.028). The difference in final CMT between groups was not statistically significant (p=0.747). PPV with JLP for optic disc pit maculopathy had similar functional and anatomic outcomes compared with vitrectomy without JLP. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
A Comparative Study of Aerocapture Missions with a Mars Destination
NASA Technical Reports Server (NTRS)
Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.
2005-01-01
Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.
Aerothermodynamic Design of the Mars Science Laboratory Heatshield
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.
2009-01-01
Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.
Zeolites on Mars: Possible environmental indicators in soils and sediments
NASA Technical Reports Server (NTRS)
Ming, D. W.; Gooding, J. L.
1988-01-01
Weathering products should serve as indicators of weathering environments and may provide the best evidence of the nature of climate change on Mars. No direct mineralogical measurements of Martian regolith were performed by the Viking missions, but the biology and X-ray fluorescence experiments provided some information on the physiochemical properties of Martian regolith. Most post-Viking studies of candidate weathering products have emphasized phyllosilicates and Fe-oxides; zeolites are potentially important, but overlooked, candidate Martian minerals. Zeolites would be important on Mars for three different reasons. First, they are major sinks of atmospheric gases and, per unit mass, are stronger and more efficient sorbents than are phyllosilicates. Secondly, they can be virtually unique sorbents and shelters for organic compounds and possible catalysts for organic-based reactions. Finally, their exchangeable ions are good indicators of the chemical properties of solutions with which they have communicated. Accordingly, the search for information on past compositions of the Martian atmosphere and hydrosphere should find zeolites to be rich repositories.
A sensitive continuum analysis method for gamma ray spectra
NASA Technical Reports Server (NTRS)
Thakur, Alakh N.; Arnold, James R.
1993-01-01
In this work we examine ways to improve the sensitivity of the analysis procedure for gamma ray spectra with respect to small differences in the continuum (Compton) spectra. The method developed is applied to analyze gamma ray spectra obtained from planetary mapping by the Mars Observer spacecraft launched in September 1992. Calculated Mars simulation spectra and actual thick target bombardment spectra have been taken as test cases. The principle of the method rests on the extraction of continuum information from Fourier transforms of the spectra. We study how a better estimate of the spectrum from larger regions of the Mars surface will improve the analysis for smaller regions with poorer statistics. Estimation of signal within the continuum is done in the frequency domain which enables efficient and sensitive discrimination of subtle differences between two spectra. The process is compared to other methods for the extraction of information from the continuum. Finally we explore briefly the possible uses of this technique in other applications of continuum spectra.
NASA Technical Reports Server (NTRS)
Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.;
2017-01-01
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.
NASA Technical Reports Server (NTRS)
Pilsner, B. H.
1985-01-01
The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.
NASA Astrophysics Data System (ADS)
Bonaccorsi, R.; McKay, C. P.
2009-12-01
Landing sites of next missions to Mars i.e., the US 2011 Mars Science Laboratory (MSL11) and the ESA2016 Pasteur ExoMars, will include phyllosilicate outcrops as targets for investigating the geological and biological history of that planet. In this context, we present a study assessing the living biomass and habitability potential in mineralogical Mars analogs such as phyllosilicates and hematite-rich deposits encompassing a broad arid-hyper-arid climate range (annual rainfall <0.2 to ~700mm/y). Samples from the Atacama Desert (Chile), the Death Valley (CA), and the California Coast (USA) were analyzed for microbial lipopolysaccharide (LPS) as proxy for Gram-negatives biomass with the Limulus-Amebocite-Lysate (LAL) assay. Mineral phases were identified using X-Ray-Diffraction (XRD). These samples resulted to contain phyllosilicate phases similar to those identified, or inferred [1], on the surface of Mars by the OMEGA-Mars/Express [e.g., 2], the Mars Reconnaissance Orbiter (MRO) instruments (HiRISE and CRISM) [3]. Basic observations were: 1) there is no systematic pattern in biomass content of clays vs. non-clays (oxidized) materials from the study sites; 2) Atacama desiccation polygons (muscovite and kaolinite) and contiguous hematite-rich hyper-arid deposits contain the lowest biomass, i.e., ~104to-105 cells/g, respectively; 3) the hyper-arid clays contain three-order magnitude lower Gram-negative biomass than those (montmorillonite, illite, and chlorite) from the arid Death Valley site (~107cells/g); and 4) finally, the Gram-negative (~107cells/g) of clay minerals-rich materials from the arid site is about the same than that (~1.5 to ~3.0 x 107cells/g) of water-saturated massive deposits (kaolinite, illite, and vermiculite) from the wetter California coast. Results from this investigation will help testing for the habitability potential of phyllosilicate deposits sampled by the MSL11 Mission. REFERENCES:[1] Bibring et al., 2006, Science 312:400-404; [2] Wang et al., 2006 JGR E02S16 Vol.111; [3] Bishop et al., 2008. Science, 321,830-833.
Domnich, Alexander; Arata, Lucia; Amicizia, Daniela; Signori, Alessio; Patrick, Bernard; Stoyanov, Stoyan; Hides, Leanne; Gasparini, Roberto; Panatto, Donatella
2016-07-07
A growing body of literature affirms the usefulness of mobile technologies, including mobile applications (apps), in the primary prevention field. The quality of health apps, which today number in the thousands, is a crucial parameter, as it may affect health-related decision-making and outcomes among app end-users. The mobile application rating scale (MARS) has recently been developed to evaluate the quality of such apps, and has shown good psychometric properties. Since there is no standardised tool for assessing the apps available in Italian app stores, the present study developed and validated an Italian version of MARS in apps targeting primary prevention. The original 23-item version of the MARS assesses mobile app quality in four objective quality dimensions (engagement, functionality, aesthetics, information) and one subjective dimension. Validation of this tool involved several steps; the universalist approach to achieving equivalence was adopted. Following two backward translations, a reconciled Italian version of MARS was produced and compared with the original scale. On the basis of sample size estimation, 48 apps from three major app stores were downloaded; the first 5 were used for piloting, while the remaining 43 were used in the main study in order to assess the psychometric properties of the scale. The apps were assessed by two raters, each working independently. The psychometric properties of the final version of the scale was assessed including the inter-rater reliability, internal consistency, convergent, divergent and concurrent validities. The intralingual equivalence of the Italian version of the MARS was confirmed by the authors of the original scale. A total of 43 apps targeting primary prevention were tested. The MARS displayed acceptable psychometric properties. The MARS total score showed an excellent level of both inter-rater agreement (intra-class correlation coefficient of .96) and internal consistency (Cronbach's α of .90 and .91 for the two raters, respectively). Other types of validity, including convergent, divergent, discriminative, known-groups and scalability, were also established. The Italian version of MARS is a valid and reliable tool for assessing the health-related primary prevention apps available in Italian app stores.
Garcia Nieto, P J; Sánchez Lasheras, F; de Cos Juez, F J; Alonso Fernández, J R
2011-11-15
There is an increasing need to describe cyanobacteria blooms since some cyanobacteria produce toxins, termed cyanotoxins. These latter can be toxic and dangerous to humans as well as other animals and life in general. It must be remarked that the cyanobacteria are reproduced explosively under certain conditions. This results in algae blooms, which can become harmful to other species if the cyanobacteria involved produce cyanotoxins. In this research work, the evolution of cyanotoxins in Trasona reservoir (Principality of Asturias, Northern Spain) was studied with success using the data mining methodology based on multivariate adaptive regression splines (MARS) technique. The results of the present study are two-fold. On one hand, the importance of the different kind of cyanobacteria over the presence of cyanotoxins in the reservoir is presented through the MARS model and on the other hand a predictive model able to forecast the possible presence of cyanotoxins in a short term was obtained. The agreement of the MARS model with experimental data confirmed the good performance of the same one. Finally, conclusions of this innovative research are exposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Colonization Mars-like environment with extreme microalgae
NASA Astrophysics Data System (ADS)
Wang, Gaohong; Li, Xiaoyan; Liu, Yongding; Chen, Lanzhou
2012-07-01
We had investigated the colonization of soils in Mars-like environments in Chinese deserts by phototrophs. Some extreme cyanobacteria and algae strains were collected and mass-cultured in desert regions to investigated their ability to artificially form desert crusts. These crusts had the capacity to resist sand storm erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration and settlement, particularly in confined spaces such as greenhouses. In this paper we describe experiments on the formation of artificial desert crusts and we discuss the implications of these approaches for the local amelioration of desert conditions on Mars, which is essential to establish CELSS in habitat. These approaches might also be applicable to the interior of lunar habitats. Finally, more ambitiously, our findings may be a first step in addressing the issues of terraforming larger areas of the surface of Mars.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the third stage of the Boeing Delta II launch vehicle (left) waits for mating with the Mars Climate Orbiter (right). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers check on the fitting between the Mars Climate Orbiter (above) and the third stage of the Boeing Delta II launch vehicle (below). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
The Mars Climate Orbiter arrives at KSC to begin final preparations for launch
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter (right) is lifted to move it for mating to the third stage of the Boeing Delta II launch vehicle waiting at left. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter (top) is lowered toward the third stage of the Boeing Delta II launch vehicle below it, to which it will be attached. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions
NASA Technical Reports Server (NTRS)
Langhoff, Stephanie R. (Editor)
2008-01-01
The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.
Influence of Magnetic Topology on Mars' Ionospheric Structure
NASA Astrophysics Data System (ADS)
Adams, D.; Xu, S.; Mitchell, D. L.; Fillingim, M. O.; Lillis, R. J.; Andersson, L.; Fowler, C. M.; Benna, M.; Connerney, J. E. P.; Elrod, M. K.; Girazian, Z.; Vogt, M.
2017-12-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been in Mars' orbit since September 2014 (>1 Mars year), and has collected particle and field data within the ionosphere over wide ranges of altitudes, latitudes, and local times. This study uses MAVEN data to (1) analyze the influence of magnetic topology on the day-side ionosphere and (2) identify the sources of the night-side ionosphere. On the day side, magnetic strength and elevation angle are commonly used as proxies for magnetic topology. In this study, we use pitch-angle-resolved suprathermal electron measurements by the Solar Wind Electron Analyzer (SWEA) to directly deduce the magnetic topology instead of using a proxy. On the night side, the main sources of ionospheric plasma are bulk transport and plasma pressure gradient flow from the day side, as well as in situ production by electron impact ionization (EII). Plasma transport at Mars is complicated by the presence of intense crustal magnetic fields. Closed crustal magnetic fields form isolated plasma environments ("miniature magnetospheres") that inhibit external sources of cold ionospheric plasma as well as suprathermal (ionizing) electrons. Inside these closed magnetic loops, we study how the plasma evolves with bulk flow transport as the only source. By comparing closed and non-closed magnetic configurations, the effects of pressure gradient flow and EII can be distinguished. Finally, the densities of O2+, O+, and NO+, as measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS), are examined. Inside miniature magnetospheres on the night side, the abundances of these species are found to be primarily controlled by the different recombination rates, as there is little plasma created within these regions by EII or transported from the neighboring regions by plasma pressure gradient flow.
NASA Astrophysics Data System (ADS)
Svedhem, Hakan; Vago, Jorge L.; ExoMars Team
2016-10-01
The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system. The 2016 mission was launched by a Russian Proton rocket from Baikonur on 14 March 2016.
Martian methane plume models for defining Mars rover methane source search strategies
NASA Astrophysics Data System (ADS)
Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed
2018-07-01
The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.
Kirk, R.L.; Howington-Kraus, E.; Redding, B.; Galuszka, D.; Hare, T.M.; Archinal, B.A.; Soderblom, L.A.; Barrett, J.M.
2003-01-01
We analyzed narrow-angle Mars Orbiter Camera (MOC-NA) images to produce high-resolution digital elevation models (DEMs) in order to provide topographic and slope information needed to assess the safety of candidate landing sites for the Mars Exploration Rovers (MER) and to assess the accuracy of our results by a variety of tests. The mapping techniques developed also support geoscientific studies and can be used with all present and planned Mars-orbiting scanner cameras. Photogrammetric analysis of MOC stereopairs yields DEMs with 3-pixel (typically 10 m) horizontal resolution, vertical precision consistent with ???0.22 pixel matching errors (typically a few meters), and slope errors of 1-3??. These DEMs are controlled to the Mars Orbiter Laser Altimeter (MOLA) global data set and consistent with it at the limits of resolution. Photoclinometry yields DEMs with single-pixel (typically ???3 m) horizontal resolution and submeter vertical precision. Where the surface albedo is uniform, the dominant error is 10-20% relative uncertainty in the amplitude of topography and slopes after "calibrating" photoclinometry against a stereo DEM to account for the influence of atmospheric haze. We mapped portions of seven candidate MER sites and the Mars Pathfinder site. Safety of the final four sites (Elysium, Gusev, Isidis, and Meridiani) was assessed by mission engineers by simulating landings on our DEMs of "hazard units" mapped in the sites, with results weighted by the probability of landing on those units; summary slope statistics show that most hazard units are smooth, with only small areas of etched terrain in Gusev crater posing a slope hazard.
Electrical and computer architecture of an autonomous Mars sample return rover prototype
NASA Astrophysics Data System (ADS)
Leslie, Caleb Thomas
Space truly is the final frontier. As man looks to explore beyond the confines of our planet, we use the lessons learned from traveling to the Moon and orbiting in the International Space Station, and we set our sights upon Mars. For decades, Martian probes consisting of orbiters, landers, and even robotic rovers have been sent to study Mars. Their discoveries have yielded a wealth of new scientific knowledge regarding the Martian environment and the secrets it holds. Armed with this knowledge, NASA and others have begun preparations to send humans to Mars with the ultimate goal of colonization and permanent human habitation. The ultimate success of any long term manned mission to Mars will require in situ resource utilization techniques and technologies to both support their stay and make a return trip to Earth viable. A sample return mission to Mars will play a pivotal role in developing these necessary technologies to ensure such an endeavor to be a successful one. This thesis describes an electrical and computer architecture for autonomous robotic applications. The architecture is one that is modular, scalable, and adaptable. These traits are achieved by maximizing commonality and reusability within modules that can be added, removed, or reconfigured within the system. This architecture, called the Modular Architecture for Autonomous Robotic Systems (MAARS), was implemented on the University of Alabama's Collection and Extraction Rover for Extraterrestrial Samples (CERES). The CERES rover competed in the 2016 NASA Sample Return Robot Challenge where robots were tasked with autonomously finding, collecting, and returning samples to the landing site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makinen, R.W.; Farley, K.M.; Kugler, W.R.
1982-02-26
The primary objective of the Marine Biomass Programs is to provide an optimized, integrated process for producing methane from seaweeds cultivated in the open ocean and to do so at a price which is competitive with that of methane from other sources. The New York State Site and Species Study represents the first evaluation of a site outside of Southern California.
JPRS Report: Environmental Issues.
1991-12-27
Officials Decry ’Internationalization’ of Amazon [O ESTADO DE SAO PAULO 11 Oct] 30 CHILE Study Reveals Carcinogen Content of Santiago’s Air [EL...first meeting was held in Vina del Mar, Chile , and the final two in Madrid, Spain. Mr. Naude Steyn, chief director of the Department of Foreign...is more important than a starving northeastern boy?" the general asked the audience, who applauded him. [passage omitted] CHILE Study Reveals
Re-use of Science Operations Systems around Mars: from Mars Express to ExoMars
NASA Astrophysics Data System (ADS)
Cardesin-Moinelo, Alejandro; Mars Express Operations Centre; ExoMars Science Operations Centre
2017-10-01
Mars Express and ExoMars 2016 Trace Gas Orbiter are the only two ESA planetary missions currently in operations, and they happen to be around the same planet! These two missions have great potential for synergies between their science objectives, instruments and observation capabilities and they can all be combined to improve the scientific outcome and improve our knowledge about Mars. In this contribution we will give a short summary of both missions, with an insight in its similarities and differences regarding their scientific and operational challenges, and we will summarize the lessons learned from Mars Express and how the existing science operations systems, processes and tools have been reused, redesigned and adapted in order to satisfy the operational requirements of ExoMars, with limited development resources thanks to the inherited capabilities from previous missions. In particular we will focus on the preparations done by the science operations centers at ESAC and the work within the Science Ground Segments for the re-use of the SPICE and MAPPS software tools, with the necessary modifications and upgrades to perform the geometrical and operational simulations of both spacecrafts, taking into account the specific instrument modelling, observation requirements and all the payload and spacecraft operational rules and constraints for feasibility checks. All of these system upgrades are now being finalized for ExoMars and some of them have already been rehearsed in orbit, getting ready for the nominal science operations phase starting in the first months of 2018 after the aerobraking phase
Nine martian years of dust optical depth observations: A reference dataset
NASA Astrophysics Data System (ADS)
Montabone, Luca; Forget, Francois; Kleinboehl, Armin; Kass, David; Wilson, R. John; Millour, Ehouarn; Smith, Michael; Lewis, Stephen; Cantor, Bruce; Lemmon, Mark; Wolff, Michael
2016-07-01
We present a multi-annual reference dataset of the horizontal distribution of airborne dust from martian year 24 to 32 using observations of the martian atmosphere from April 1999 to June 2015 made by the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). Our methodology to build the dataset works by gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. The resulting (irregularly) gridded maps (one per sol) were validated with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. Finally, regular maps of CDOD are produced by spatially interpolating the irregularly gridded maps using a kriging method. These latter maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modelling applications. The two datasets (daily irregularly gridded maps and regularly kriged maps) for the nine available martian years are publicly available as NetCDF files and can be downloaded from the MCD website at the URL: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/index.html
A Mathematical Theory of System Information Flow
2016-06-27
AFRL-AFOSR-VA-TR-2016-0232 A Mathematical Theory of System Information Flow Michael Mislove ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND THE 6823...MM-YYYY) 17-06-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 27MAR2013 - 31MAR2016 4. TITLE AND SUBTITLE A Mathematical Theory of System...systems using techniques from information theory , domain theory and other areas of mathematics and computer science. Over time, the focus shifted
Ruth, Veikko; Kolditz, Daniel; Steiding, Christian; Kalender, Willi A
2017-06-01
The performance of metal artifact reduction (MAR) methods in x-ray computed tomography (CT) suffers from incorrect identification of metallic implants in the artifact-affected volumetric images. The aim of this study was to investigate potential improvements of state-of-the-art MAR methods by using prior information on geometry and material of the implant. The influence of a novel prior knowledge-based segmentation (PS) compared with threshold-based segmentation (TS) on 2 MAR methods (linear interpolation [LI] and normalized-MAR [NORMAR]) was investigated. The segmentation is the initial step of both MAR methods. Prior knowledge-based segmentation uses 3-dimensional registered computer-aided design (CAD) data as prior knowledge to estimate the correct position and orientation of the metallic objects. Threshold-based segmentation uses an adaptive threshold to identify metal. Subsequently, for LI and NORMAR, the selected voxels are projected into the raw data domain to mark metal areas. Attenuation values in these areas are replaced by different interpolation schemes followed by a second reconstruction. Finally, the previously selected metal voxels are replaced by the metal voxels determined by PS or TS in the initial reconstruction. First, we investigated in an elaborate phantom study if the knowledge of the exact implant shape extracted from the CAD data provided by the manufacturer of the implant can improve the MAR result. Second, the leg of a human cadaver was scanned using a clinical CT system before and after the implantation of an artificial knee joint. The results were compared regarding segmentation accuracy, CT number accuracy, and the restoration of distorted structures. The use of PS improved the efficacy of LI and NORMAR compared with TS. Artifacts caused by insufficient segmentation were reduced, and additional information was made available within the projection data. The estimation of the implant shape was more exact and not dependent on a threshold value. Consequently, the visibility of structures was improved when comparing the new approach to the standard method. This was further confirmed by improved CT value accuracy and reduced image noise. The PS approach based on prior implant information provides image quality which is superior to TS-based MAR, especially when the shape of the metallic implant is complex. The new approach can be useful for improving MAR methods and dose calculations within radiation therapy based on the MAR corrected CT images.
Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; McGrew, Lynn Craig
2012-01-01
The 2011 Mars Science Laboratory was the first successful Mars mission to attempt a guided entry which safely delivered the rover to a final position approximately 2 km from its target within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented. Just prior to the entry and landing of MSL in August 2012, the EDL team examined minute tuning of the reference trajectory for the selected landing site, analyzed whether adjustment of bank reversal deadbands were necessary, the heading alignment velocity trigger was in union with other parameters to balance the EDL risks, and the vertical L/D command limits. This paper details a preliminary postflight assessment of the telemetry and trajectory reconstruction that is being performed, and updates the information presented in the former paper Entry Guidance for the 2011 Mars Science Laboratory Mission (AIAA Atmospheric Flight Mechanics Conference; 8-11 Aug. 2011; Portland, OR; United States)
Architectural Design for a Mars Communications and Navigation Orbital Infrastructure
NASA Technical Reports Server (NTRS)
Ceasrone R. J.; Hastrup, R. C.; Bell, D. J.; Roncoli, R. B.; Nelson, K.
1999-01-01
The planet Mars has become the focus of an intensive series of missions that span decades of time, a wide array of international agencies and an evolution from robotics to humans. The number of missions to Mars at any one time, and over a period of time, is unprecedented in the annals of space exploration. To meet the operational needs of this exploratory fleet will require the implementation of new architectural concepts for communications and navigation. To this end, NASA's Jet Propulsion Laboratory has begun to define and develop a Mars communications and navigation orbital infrastructure. This architecture will make extensive use of assets at Mars, as well as use of traditional Earth-based assets, such as the Deep Space Network, DSN. Indeed, the total system can be thought of as an extension of DSN nodes and services to the Mars in-situ region. The concept has been likened to the beginnings of an interplanetary Internet that will bring the exploration of Mars right into our living rooms. The paper will begin with a high-level overview of the concept for the Mars communications and navigation infrastructure. Next, the mission requirements will be presented. These will include the relatively near-term needs of robotic landers, rovers, ascent vehicles, balloons, airplanes, and possibly orbiting, arriving and departing spacecraft. Requirements envisioned for the human exploration of Mars will also be described. The important Mars orbit design trades on telecommunications and navigation capabilities will be summarized, and the baseline infrastructure will be described. A roadmap of NASA's plan to evolve this infrastructure over time will be shown. Finally, launch considerations and delivery to Mars will be briefly treated.
A Computational Study of the Mechanics of Gravity-induced Torque on Cells
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Gkigkitis, Ioannis; Zouganelis, George D.
2013-10-01
In this paper, we study the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well. For particles with density ?p = 1300 kg/m3, diameters dp = 1, 10, 30 μm and residence times t = 0.0272, 0.2 s respectively, we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, when in orbit around Earth we find that the deposition probabilities exhibit 0.0001 % higher percentage difference in equatorial circular and elliptical orbits when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.
NASA Astrophysics Data System (ADS)
Esteban, B.; Ramos, M.; Sebastián, E.; Armiens, C.; Gómez-Elvira, J.; Cabos, W.; de Pablo, M. A.
2009-04-01
The present climatic characteristics of Mars favor the presence of extense permafrost areas in this lonely planet. Therefore environmental parameters that are included in Martian Rover missions are also used for monitoring thermal soil surface evolution in order to study the permafrost active layer thickness and the energy balance in the soil-atmosphere boundary limit layer. The REMS (Rover Environmental Monitoring Station) is an environmental station designed by the Centro de Astrobiología (CAB- Spain) with the collaboration of national and international partners (CRISA/EADS, UPC and FMI), which is part of the payload of the MSL (Mars Science Laboratory) NASA mission to Mars (http://mars.jpl.nasa.gov/msl/overview/). This mission is expected to be launched in the final months of 2009, and mainly consists of a Rover, with a complete set of scientific instruments; the Rover will carry the biggest, most advanced suite of instruments for scientific studies ever sent to the Martian surface. Five sensors compose the REMS instrument: ground (GT-REMS) and air temperatures, wind speed and direction, pressure, humidity and ultraviolet radiation (UV-REMS). A simplified setup of the REMS was deployed on Antarctica in the surroundings of the Spanish Antarctic Stations on Livingston and Deception Islands (Maritime Antarctica), where the permafrost distribution is well-known. The aim of the experiment was to check REMS's sensors response against hard environmental conditions and calibrates their measures with standard Antarctic devices. The experimental apparatuses included some standard meteorological and thermopiles sensors corresponding to the REMS. All the sensors are mounted in a 1.8 m mast and include a Pt100 air temperature sensor with shield solar protection on the mast top, a Kipp and Zonnen CNR1 net radiometer for measuring infrared (5-50 μm) and short wave solar (305-2800 nm) radiation at 1.5 m high, GT-REMS sensor and its amplification box at 0.7 m high and finally two soil temperature plates based on Pt100 sensors are in close contact with the surface in the angle of view of the GT-REMS thermopiles. In this work, we present a preliminary analysis of the data obtained in the Antarctic field campaign 2008-2009. For the analysis we developed a theoretical model which is briefly outlined here. We also present the results of simulations carried out with the model and their validation against the antarctic data. Complementary to the Antarctic experiments, we carried out an experience with all the instruments during the last summer in the CAB-Spain which are also used in the analysis. Finally, we compare the results of the last polar and CAB experiments in order to check the improvements introduced in GT-REMS.
Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal
2013-01-01
The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1985-01-01
Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.
Biosignature Preservation and Detection in Mars Analog Environments
Graham, Heather V.; Des Marais, David J.; Hausrath, Elisabeth M.; Horgan, Briony; McCollom, Thomas M.; Parenteau, M. Niki; Potter-McIntyre, Sally L.; Williams, Amy J.; Lynch, Kennda L.
2017-01-01
Abstract This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation—Biosignature detection—Mars analog environments—Conference report—Astrobiological exploration. Astrobiology 17, 363–400. PMID:28177270
Human Mars Mission: Weights and Mass Properties. Pt. 1
NASA Technical Reports Server (NTRS)
Brothers, Bobby
1999-01-01
This paper presents a final report on The Human Mars Mission Weights and Measures. The topics included in this report are: 1) Trans-Earth Injection Storage Human Mars Mission (HMM) Chemical Design Reference Mission (DRM) v4.0a Weight Breakout; 2) Ascent Stage HMM Chemical DRM v4.0a Weight Breakout; 3) Descent Stages HMM Chemical DRM v4.0a Weight Breakout; 4) Trans-Mars Injection Stages HMM Chemical DRM v4.0a Weight Breakout; 5) Trans-Earth Injection Stage HMM Solar Electric Propulsion (SEP) DRM v4.0a Weight Breakout; 6) Ascent Stage HMM SEP DRM v4.0a Weight Breakout; 7) Descent Stages HMM SEP DRM v4.0a Weight Breakout; 8) Trans-Mars Injection Stages HMM SEP DRM v4.0a Weight Breakout; 9) Crew Taxi Stage HMM SEP DRM v4.0 Weight Breakout; 10)Trans-Earth Injection Stage HMM Nuclear DRM v4.0a Weight Breakout; 11) Ascent Stage HMM Nuclear DRM v4.0a Weight Breakout; 12) Descent Stages HMM Nuclear DRM v4.0a Weight Breakout; 13) Trans-Mars Injection Stages HMM Nuclear DRM v4.0a Weight Breakout; and 14) HMM Mass Properties Coordinate System.
NASA Technical Reports Server (NTRS)
1990-01-01
The Manned Mars System Study (MMSS) was conducted for the Marshall Space Flight Center (MSFC) over the 35 month period between May 15, 1987 and April 30, 1990. During the course of the study, the NASA Office of Exploration (OEXP; Code Z) was created and MSFC was subsequently designated the Transportation Integration Agent (TIA) for support of the OEXP Mission Analysis and Systems Engineering (MASE) team. As a result of this action, modifications to the contract redirected the efforts to be consistent with NASA's overall objectives, including lunar transportation system design. A large number of written submittals were required in order to provide TIA support to MASE. A list summarizing the documents which have been prepared and delivered by Martin Marietta under this contract during the course of this work is presented. In nearly all cases, full sets of view-graphs were also provided to the MSFC COTR, and in several cases magnetic media were provided as well. To incorporate all of these materials (more than 2,000 pages) into the present report would obviously produce an extremely unwieldy and confusing document. Therefore, a summary of key findings are presented in this final report, supplemented by other material produced under this contract but not already available in the widespread literature.
Landing Area Narrowed for 2016 InSight Mission to Mars
2013-09-04
The process of selecting a site for NASA's next landing on Mars, planned for September 2016, has narrowed to four semifinalist sites located close together in the Elysium Planitia region of Mars. The mission known by the acronym InSight will study the Red Planet's interior, rather than surface features, to advance understanding of the processes that formed and shaped the rocky planets of the inner solar system, including Earth. The location of the cluster of semifinalist landing sites for InSight is indicated on this near-global topographic map of Mars, which also indicates landing sites of current and past NASA missions to the surface of Mars. The mission's full name is Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport. The location of Elysium Planitia close to the Martian equator meets an engineering requirement for the stationary InSight lander to receive adequate solar irradiation year-round on its photovoltaic array. The location also meets an engineering constraint for low elevation, optimizing the amount of atmosphere the spacecraft can use for deceleration during its descent to the surface. The number of candidate landing sites for InSight was trimmed from 22 down to four in August 2013. This down-selection facilitates focusing the efforts to further evaluate the four sites. Cameras on NASA's Mars Reconnaissance Orbiter will be used to gather more information about them before the final selection. The topographic map uses data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor spacecraft. The color coding on this map indicates elevation relative to a reference datum, since Mars has no "sea level." The lowest elevations are presented as dark blue; the highest as white. The difference between green and orange in the color coding is about 2.5 miles (4 kilometers) vertically. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA17357
The Last Possible Outposts for Life on Mars
NASA Astrophysics Data System (ADS)
Davila, Alfonso F.; Schulze-Makuch, Dirk
2016-02-01
The evolution of habitable conditions on Mars is often tied to the existence of aquatic habitats and largely constrained to the first billion years of the planet. Here, we propose an alternate, lasting evolutionary trajectory that assumes the colonization of land habitats before the end of the Hesperian period (ca. 3 billion years ago) at a pace similar to life on Earth. Based on the ecological adaptations to increasing dryness observed in dryland ecosystems on Earth, we reconstruct the most likely sequence of events leading to a late extinction of land communities on Mars. We propose a trend of ecological change with increasing dryness from widespread edaphic communities to localized lithic communities and finally to communities exclusively found in hygroscopic substrates, reflecting the need for organisms to maximize access to atmospheric sources of water. If our thought process is correct, it implies the possibility of life on Mars until relatively recent times, perhaps even the present.
Entry Guidance for the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; Craig, Lynn E.
2011-01-01
The 2011 Mars Science Laboratory will be the first Mars mission to attempt a guided entry to safely deliver the rover to a touchdown ellipse of 25 km x 20 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented.
The Last Possible Outposts for Life on Mars.
Davila, Alfonso F; Schulze-Makuch, Dirk
2016-02-01
The evolution of habitable conditions on Mars is often tied to the existence of aquatic habitats and largely constrained to the first billion years of the planet. Here, we propose an alternate, lasting evolutionary trajectory that assumes the colonization of land habitats before the end of the Hesperian period (ca. 3 billion years ago) at a pace similar to life on Earth. Based on the ecological adaptations to increasing dryness observed in dryland ecosystems on Earth, we reconstruct the most likely sequence of events leading to a late extinction of land communities on Mars. We propose a trend of ecological change with increasing dryness from widespread edaphic communities to localized lithic communities and finally to communities exclusively found in hygroscopic substrates, reflecting the need for organisms to maximize access to atmospheric sources of water. If our thought process is correct, it implies the possibility of life on Mars until relatively recent times, perhaps even the present.
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Merrill, Raymond G.; Qu, Min
2016-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.
Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars
NASA Technical Reports Server (NTRS)
Murray, B.; Malin, M. C.; Greeley, R.
1981-01-01
The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.
Relationship between plant traits and resistance to burial by marly sediment
NASA Astrophysics Data System (ADS)
Burylo, M.; Rey, F.; Dutoit, T.
2009-04-01
In marly lands of the French Southern Alps, harsh soil erosion results in sediment movements during intensive rainfall events. Plants can be submitted to sediment burial in their early stages of development and their protective function may be reduced. In a context of land restoration, it is important to know species resistance to environmental disturbances and to be able to predict it, in particular from plant traits (height, biomass, sugar and starch accumulation). However, few studies about woody species tolerance to burial by sediment have been carried out. Seedlings of five woody species were buried in marly sediment at three different depths in pot experiment during eight weeks: no burial (control), partial burial (50% stem height) and complete burial (100% stem height). Height through time, biomass and survival rates were measured to assess species resistance to burial. Results show that among the five species, only one (Acer campestre) survived complete burial. All plants survived partial burial, but there were significant differences in height and biomass between buried plants and control, and significant differences between species responses. Three different responses to disturbance were identified: negative (Hippophae rhamnoides, Ononis fruticosa), neutral (Robinia pseudo acacia, Pinus nigra) and positive (Acer campestre). Results finally suggest that species resistance to burial by marly sediment is related to sugar accumulation in plant stems.
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Trease, Brian
2011-01-01
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
The Exploration of Mars Launch and Assembly Simulation
NASA Technical Reports Server (NTRS)
Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce
2016-01-01
Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.
NASA's new Mars Exploration Program: the trajectory of knowledge.
Garvin, J B; Figueroa, O; Naderi, F M
2001-01-01
NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."
NASA's new Mars Exploration Program: the trajectory of knowledge
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Figueroa, O.; Naderi, F. M.
2001-01-01
NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils.".
NASA's New Mars Exploration Program: The Trajectory of Knowledge
NASA Astrophysics Data System (ADS)
Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.
2001-12-01
NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."
Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble
2015-01-01
A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.
ExoMars 2016 Status and Future Plans
NASA Astrophysics Data System (ADS)
Svedhem, Håkan; Vago, Jorge
2017-04-01
The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. It consists of the ExoMars 2016 mission, launched 14 March 2016, with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, to be launched in May 2020, carrying a lander and a rover. TGO and EDM arrived at Mars on 19 October 2016. After a nominal entry and first phase of the descent, the EDM failed at an altitude of about 4 km and fell freely to the surface, near the centre of the landing ellipse in Meridiani Planum. The communication link was maintain up until the failure and a large data set was acquired, allowing for a complete analysis of the first successful part of the mission, and an investigation of the on board anomaly leading to the failure. The TGO spacecraft was inserted into a highly elliptical 4 sol period, near equatorial, capture orbit. Two orbits in late November were dedicated to instrument calibration and initial science observations, where an excellent performance of all instruments could be confirmed. In January 2017 the orbital plane will be changed to its final inclination of 74 degrees and the period will be reduced to one Sol. Early March two orbits are scheduled for another set of instrument observations, after which a long period of aerobraking will commence. The final operational orbit, with a 2 hour period, is expected to be reached early 2018. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel and the mass of EDM was 600 kg. The EDM was carried to Mars by the TGO and was separated three days before arrival at Mars. This presentation will cover a brief description of the 2016 mission, results from the initial phase since arrival, present status, and future activities.
Italian law on medically assisted reproduction: do women's autonomy and health matter?
Riezzo, Irene; Neri, Margherita; Bello, Stefania; Pomara, Cristoforo; Turillazzi, Emanuela
2016-07-23
In Italy in 2004, a very restrictive law was passed on medically assisted reproduction (MAR) (Law 40/2004) that placed Italy at the most conservative end of the European spectrum. The law was widely criticized and many couples seeking MAR brought their cases before the Italian Civil Courts with regard to pre-implantation genetic diagnosis (PGD), donor insemination and the issue of consent. Ten years on, having suffered the blows of the Italian Constitutional Court, little remains of law 40/2004. In 2009, the Constitutional Court declared the maximum limit of the number of embryos to be produced and transferred for each cycle (i.e. three), as stated in the original version of the law, to be constitutionally illegitimate. In 2014, the same Court declared as unconstitutional the ban on donor insemination, thus opening the way to heterologous assisted reproduction. Heterologous MAR is therefore perfectly legitimate in Italy. Finally, in 2015 a further ruling by the Constitutional Court granted the right to access MAR to couples who are fertile but carriers of genetic diseases. However, there is still much room for criticism. Many couples and groups are still, in fact, excluded from MAR. Same-sex couples, single women and those of advanced reproductive age are, at the present time, discriminated against in that Italian law denies these subjects access to MAR. The history of Law 40/2004 has been a particularly troubled one. Numerous rulings have, over the years, dismantled much of a law constructed in violation of the rights and autonomy of women and couples. However, a number of troubling issues still exist from what is left of the law and the debate is still open at national and transnational level regarding some of the contradictions and gaps in the law highlighted in this article. Only by abolishing the final prohibitions and adopting more liberal views on these controversial yet crucial issues will Law 40/2004 become what it should have been from the start, i.e. a law which outlines the 'rules of use' of MAR and not, as it has been until now, a law of bans which sets limits to the freedom to reproduce.
Weathering profiles in soils and rocks on Earth and Mars
NASA Astrophysics Data System (ADS)
Hausrath, E.; Adcock, C. T.; Bamisile, T.; Baumeister, J. L.; Gainey, S.; Ralston, S. J.; Steiner, M.; Tu, V.
2017-12-01
Interactions of liquid water with rock, soil, or sediments can result in significant chemical and mineralogical changes with depth. These changes can include transformation from one phase to another as well as translocation, addition, and loss of material. The resulting chemical and mineralogical depth profiles can record characteristics of the interacting liquid water such as pH, temperature, duration, and abundance. We use a combined field, laboratory, and modeling approach to interpret the environmental conditions preserved in soils and rocks. We study depth profiles in terrestrial field environments; perform dissolution experiments of primary and secondary phases important in soil environments; and perform numerical modeling to quantitatively interpret weathering environments. In our field studies we have measured time-integrated basaltic mineral dissolution rates, and interpreted the impact of pH and temperature on weathering in basaltic and serpentine-containing rocks and soils. These results help us interpret fundamental processes occurring in soils on Earth and on Mars, and can also be used to inform numerical modeling and laboratory experiments. Our laboratory experiments provide fundamental kinetic data to interpret processes occurring in soils. We have measured dissolution rates of Mars-relevant phosphate minerals, clay minerals, and amorphous phases, as well as dissolution rates under specific Mars-relevant conditions such as in concentrated brines. Finally, reactive transport modeling allows a quantitative interpretation of the kinetic, thermodynamic, and transport processes occurring in soil environments. Such modeling allows the testing of conditions under longer time frames and under different conditions than might be possible under either terrestrial field or laboratory conditions. We have used modeling to examine the weathering of basalt, olivine, carbonate, phosphate, and clay minerals, and placed constraints on the duration, pH, and solution chemistry of past aqueous alteration occurring on Mars.
An Aerobraking Strategy for Determining Mars Upper Atmospheric Structure
NASA Astrophysics Data System (ADS)
Bougher, S. W.; Murphy, J. R.; Haberle, R. M.
1997-07-01
The Mars Global Surveyor (MGS) spacecraft will enter Mars orbit on Sept. 12, 1997, and thereafter undergo aerobraking for roughly 4-months. The final data-taking orbit to be achieved is sun-synchronous (2PM/2AM). An aerobraking strategy has been developed that not only will provide the walk-in capability needed to safely achieve the required Mars orbit, but also will provide a careful monitoring of the atmospheric structure. In particular, the linkage between the lower (0-100 km) and upper (100- 150 km) Mars atmospheres will be investigated. A suite of complementary measurements is planned that will probe the atmosphere over 0-150 km, including : (1) MGS Accelerometer density and inferred temperatures (100-150 km), (2) MGS Thermal Emission Spectrometer (TES) nadir (25-30 km) and limb (up to about 55 km) temperatures, (3) MGS Electron Reflectometer (ER) F1-peak heights (near 130 km), (4) ground-based microwave disk-averaged temperatures (0-70 km), and (5) Mars Pathfinder (MPF) surface meteorological data at 20 N latitude. These datasets acquired during the aerobraking phase will enable the current state of the atmosphere to be examined. Potential dust storm activity and its manifestations throughout the atmosphere can be monitored over Ls = 184 to 250. A corresponding library of coupled 3-D model simulations, based upon the NASA Ames Mars GCM and the NCAR Mars Thermospheric GCM (MTGCM), will be used to : (1) validate the current state of the Mars atmosphere, (2) investigate the various orbital, seasonal, LAT-LT-LON, and potential dust storm trends, and (3) predict the structure of the Mars atmosphere in the aerobraking corridor that is approaching in future MGS orbits. The in-situ accelerometer and ER data will eventually be used to construct a Mars empirical model covering 100-150 km. We will present a few selected GCM simulations to illustrate the expected atmospheric response to a dust storm event. In addition, we will discuss why these upper atmosphere datasets are important to future Mars missions.
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.
2012-12-01
The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.
The Mars Climate Orbiter awaits launch from Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
After launch tower retraction, the Boeing Delta II rocket carrying NASA's Mars Climate Orbiter undergoes final preparations for liftoff on Dec. 11, 1998, at Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
Accretion of the terrestrial planets. II
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.
1976-01-01
The theory of gravitational accretion of the terrestrial planets is examined. The concept of a 'closed feeding zone' is somewhat unrealistic, but provides a lower bound on the accretion time. A velocity relation for planetesimals which includes an initial velocity component is suggested. The orbital parameters of the planetesimals and the dimensions of the feeding zone are related to their relative velocities. The assumption of an initial velocity does not seriously change the accretion time. Mercury, Venus, and the earth have accretion times on the order of 100 million years. Mars requires well over one billion years to accrete by the same assumptions. The lunar cratering history makes a late formation of Mars unlikely. If Mars is as old as the earth, nongravitational forces or a violation of the feeding zone concept is required. One such possibility is the removal of matter from the zone of Mars by Jupiter's influence. The final sweeping up by Mars would result in the scattering of a considerable mass among the other terrestrial planets. The late postaccretional bombardments inferred for the moon and Mercury may have had this source.
NASA Technical Reports Server (NTRS)
Maddock, Robert W.; Bowes, Angela; Powell, Richard W.; Prince, Jill L. H.; Cianciolo, Alicia Dwyer
2012-01-01
When entering orbit about a planet or moon with an appreciable atmosphere, instead of using only the propulsion system to insert the spacecraft into its desired orbit, aerodynamic drag can be used after the initial orbit insertion to further decelerate the spacecraft. Several past NASA missions have used this aerobraking technique to reduce the fuel required to deliver a spacecraft into a desired orbit. Aerobraking was first demonstrated at Venus with Magellan in 1993 and then was used to achieve the science orbit of three Mars orbiters: Mars Global Surveyor in 1997, Mars Odyssey in 2001, and Mars Reconnaissance Orbiter in 2006. Although aerobraking itself reduces the propellant required to reach a final low period orbit, it does so at the expense of additional mission time to accommodate the aerobraking operations phase (typically 3-6 months), a large mission operations staff, and significant Deep Space Network (DSN) coverage. By automating ground based tasks and analyses associated with aerobraking and moving these onboard the spacecraft, a flight project could save millions of dollars in operations staffing and DSN costs (Ref. 1).
Aeroheating Thermal Analysis Methods for Aerobraking Mars Missions
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.
2002-01-01
Mars missions often employ aerobraking upon arrival at Mars as a low-mass method to gradually reduce the orbit period from a high-altitude, highly elliptical insertion orbit to the final science orbit. Two recent missions that made use of aerobraking were Mars Global Surveyor (MGS) and Mars Odyssey. Both spacecraft had solar arrays as the main aerobraking surface area. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis must be tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. To properly represent the temperatures prior to and during the drag pass, the model must include the orbital solar and planetary heat fluxes. The correlation of the thermal model to flight data allows a validation of the modeling process, as well as information on what processes dominate the thermal behavior. This paper describes the thermal modeling method that was developed for this purpose, as well as correlation for two flight missions, and a discussion of improvements to the methodology.
Mars Rotational and Orbital Dynamics
1997-10-14
The Rotation and Orbit Dynamics experiment is based on measuring the Doppler range to Pathfinder using the radio link. Mars rotation about it's pole causes a signature in the data with a daily minimum when the lander is closest to the Earth. Changes in the daily signature reveal information about the planetary interior, through its effect on Mars' precession and nutation. The signature also is sensitive to variations in Mars' rotation rate as the mass of the atmosphere increases and decreases as the polar caps are formed in winter and evaporate in spring. Long term signatures in the range to the lander are caused by asteroids perturbing Mars' orbit. Analysis of these perturbations allows the determination of the masses of asteroids. Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00975
NASA Astrophysics Data System (ADS)
Gomez, F.; Amils, R.; Gomez-Elvira, J.
2010-12-01
The first astrobiological mission specially designed to detect life on Mars, the Viking missions, thought life unlikely, considering the amount of UV radiation bathing the surface of the planet, the resulting oxidative conditions, and the lack of adequate atmospheric protection. The necessity of the Europa surface exploration comes from the idea of a water ocean existence in its interior. Life needs several requirements for its establishment but, the only sine qua nom elements is the water, taking into account our experience on Earth extreme ecosystems The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the universe, and as a consequence on Mars. The compilation of data produced by the ongoing missions (Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Exploration Rover Opportunity) offers a completely different view: signs of an early wet Mars and rather recent volcanic activity. The discovery of important accumulations of sulfates, and the existence of iron minerals like jarosite, goethite and hematite in rocks of sedimentary origin has allowed specific terrestrial models related with this type of mineralogy to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of microorganisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. The high concentrations of ferric iron and sulfates, products of the metabolism of pyrite, generate a collection of minerals, mainly gypsum, jarosite, goethite and hematites, all of which have been detected in different regions of Mars (Fernández-Remolar et al., 2004). But, where to look for life in other planetary bodies? Planet`s or Icy Moon`s surface are adverse for life. Some particular protective environments or elements should house the organic molecules and the first bacterial life forms (Gómez F. et al., 2007). Terrestrial analogues work could help us to afford its comprehension (Gómez F. et al., 2010). We are reporting here some preliminary studies about endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. These acidic salts deposits located in Río Tinto shelter life forms which are difficult to localize by eye. Molecular ecology techniques are needed for its localization and study. We also are reporting here some results about bacterial survivability in Mars simulation conditions (Gómez F. et al., 2010). Final objective of this work is the development of the Habitability Index. Bibliography Fernández-Remolar, D. et al., Planetary and Space Science 52 (2004) 239 - 248 Gómez, F. et al., Icarus 191 (2007) 352-359. Gómez, F. et al. Icarus (2010), doi:10.1016/j.icarus.2010.05.027 Acknowledgments This study was funded by the project ESP2006-06640 from Spanish Ministry of Education and Science and FEDER funds from European Community.
Study of sampling systems for comets and Mars
NASA Technical Reports Server (NTRS)
Amundsen, R. J.; Clark, B. C.
1987-01-01
Several aspects of the techniques that can be applied to acquisition and preservation of samples from Mars and a cometary nucleus were examined. Scientific approaches to sampling, grounded in proven engineering methods are the key to achieving the maximum science value from the sample return mission. If development of these approaches for collecting and preserving does not preceed mission definition, it is likely that only suboptimal techniques will be available because of the constraints of formal schedule timelines and the normal pressure to select only the most conservative and least sophisticated approaches when development has lagged the mission milestones. With a reasonable investment now, before the final mission definition, the sampling approach can become highly developed, ready for implementation, and mature enough to help set the requirements for the mission hardware and its performance.
The Meteorological Experiment on the Mars Surveyor '98 Polar Lander
NASA Technical Reports Server (NTRS)
Crisp, D.
1999-01-01
When it lands on Mars on December 3, 1999, the Mars Surveyor '98 Mars Polar Lander (MPL) will provide the first opportunity to make in-situ measurements of the near-surface weather climate, and volatile inventory in the Martian south polar region. To make the most of this opportunity, the MPL's Mars Volatiles and Climate Surveyor (MVACS) payload includes the most comprehensive complement of meteorological instruments ever sent to Mars. Like the Viking and the Mars Pathfinder Lander, the MVACS Meteorological (Met) package includes sensors for measuring atmospheric pressures, temperatures, and wind velocities. This payload also includes a 2-channel tunable diode laser spectrometer for in-situ measurements of the atmospheric water vapor abundance near the ground, and improved instruments for measuring the relative abundances of oxygen isotopes (in water vapor and CO2) and a surface temperature probe for measuring the surface and sub-surface temperatures. This presentation will provide a brief overview of the environmental conditions anticipated at the surface in the Martian regions. We will then provide an over-view of the MVACS Met instrument and describe the MET sensors in detail, including their principle of operation, range, resolution, accuracy, sampling strategy, heritage, accommodation on the Lander, and their control and data handling system. Finally, we will describe the operational sequences, resource requirements, and the anticipated data volumes for each of the Met instruments.
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Mouginis-Mark, P. J.; Head, J. W.
1981-01-01
A data collection and analysis scheme developed for the interpretation of rock morphology from lander images is reviewed with emphasis on rock population characterization techniques. Data analysis techniques are also discussed in the context of identifying key characteristics of a rock that place it in a single category with similar rocks. Actual rock characteristics observed from Viking and Venera lander imagery are summarized. Finally, some speculations regarding the block fields on Mars and Venus are presented.
ILEWG technology roadmap for Moon exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2008-04-01
We discuss the charter and activities of the International Lunar Exploration Working Group (ILEWG), and give an update from the related ILEWG task groups. We discuss the different rationale and technology roadmap for Moon exploration, as debated in previous ILEWG conferences. The Technology rationale includes: 1) The advancement of instrumentation: 2) Technologies in robotic and human exploration 3) Moon-Mars Exploration can inspire solutions to global Earth sustained development. We finally discuss a possible roadmap for development of technologies necessary for Moon and Mars exploration.
Analysis of a terminal landing on Mars
NASA Astrophysics Data System (ADS)
Tuckness, Dan G.
1995-01-01
This study consists of a preliminary performance and sensitivity assessment of trajectory and guidance capabilities of a Mars terminal landing phase. The phase begins with the end of the entry phase, which is at parachute deployment. Therefore, the trajectory investigated in this study starts at parachute deployment and continues through parachute jettison and finally propulsive deceleration and maneuvering to a specified landing site. Various landing navigation maneuver schemes and environmental conditions for the lander are investigated and their performance analyzed. Effects of atmospheric density and surface wind deviations on landing guidance are investigated using stochastic wind and density models. Simulation shows that the lander guidance is robust to wind and density dispersions. Density dispersions are found to be more critical for a precision landing than wind dispersions. Also, because of the aerodynamic characteristics of current aeroshell vehicle designs, very little terminal maneuvering is allowed for navigation.
Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover
NASA Technical Reports Server (NTRS)
Flick, John J.; Toniolo, Matthew D.
2005-01-01
The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.
Golkarian, Ali; Naghibi, Seyed Amir; Kalantar, Bahareh; Pradhan, Biswajeet
2018-02-17
Ever increasing demand for water resources for different purposes makes it essential to have better understanding and knowledge about water resources. As known, groundwater resources are one of the main water resources especially in countries with arid climatic condition. Thus, this study seeks to provide groundwater potential maps (GPMs) employing new algorithms. Accordingly, this study aims to validate the performance of C5.0, random forest (RF), and multivariate adaptive regression splines (MARS) algorithms for generating GPMs in the eastern part of Mashhad Plain, Iran. For this purpose, a dataset was produced consisting of spring locations as indicator and groundwater-conditioning factors (GCFs) as input. In this research, 13 GCFs were selected including altitude, slope aspect, slope angle, plan curvature, profile curvature, topographic wetness index (TWI), slope length, distance from rivers and faults, rivers and faults density, land use, and lithology. The mentioned dataset was divided into two classes of training and validation with 70 and 30% of the springs, respectively. Then, C5.0, RF, and MARS algorithms were employed using R statistical software, and the final values were transformed into GPMs. Finally, two evaluation criteria including Kappa and area under receiver operating characteristics curve (AUC-ROC) were calculated. According to the findings of this research, MARS had the best performance with AUC-ROC of 84.2%, followed by RF and C5.0 algorithms with AUC-ROC values of 79.7 and 77.3%, respectively. The results indicated that AUC-ROC values for the employed models are more than 70% which shows their acceptable performance. As a conclusion, the produced methodology could be used in other geographical areas. GPMs could be used by water resource managers and related organizations to accelerate and facilitate water resource exploitation.
The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars
NASA Astrophysics Data System (ADS)
Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team
2017-07-01
The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working to develop models for interpreting analog processes on Mars during the mission.
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian
2018-02-01
This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren
2011-01-01
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
A simulation of the OMEGA/Mars Express observations: Analysis of the atmospheric contribution
NASA Astrophysics Data System (ADS)
Melchiorri, R.; Drossart, P.; Fouchet, T.; Bézard, B.; Forget, F.; Gendrin, A.; Bibring, J. P.; Manaud, N.; OMEGA Team; Berthé, M.; Bibring, J.-P.; Langevin, Y.; Forni, O.; Gendrin, A.; Gondet, B.; Manaud, N.; Poulet, F.; Poulleau, G.; Soufflot, A.; Mangold, N.; Bonello, G.; Forget, F.; Bezard, B.; Combes, M.; Drossart, P.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Erard, S.; Bellucci, G.; Altieri, F.; Formisano, V.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Moroz, V.; Titov, D.; Zasova, L.; Pinet, P.; Schmitt, B.; Sotin, C.; Hauber, E.; Hoffmann, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbary, T.
2006-08-01
Spectral images of Mars obtained by the Mars Express/OMEGA experiment in the near infrared are the result of a complex combination of atmospheric, aerosol and ground features. Retrieving the atmospheric information from the data is important, not only to decorrelate mineralogical against atmospheric features, but also to retrieve the atmospheric variability. Once the illumination conditions have been taken into account, the main source of variation on the CO2 absorption is due to the altitude of the surface, which governs atmospheric pressure variation by more than an order of magnitude between the summit of Olympus Mons down to the bottom of Valles Marineris. In this article we present a simplified atmospheric spectral model without scattering, specially developed for the OMEGA observations, which is used to retrieve the local topography through the analysis of the 2.0μmCO2 band. OMEGA atmospheric observations increase the horizontal resolution compared to MOLA altimetry measurements, and therefore complement the mineralogical studies from the same instrument. Finally, residual variations of the pressure can be related to atmospheric structure variation.
NASA Astrophysics Data System (ADS)
Seiferlin, K.; Spohn, T.; Spice Team
The Netlander mission offers a unique opportunity to study the surface and the inte- rior of Mars at four different locations at the same time. In addition to real "network"- science, where the presence of four stations is a 'must' to address global science as- pects, local, landing site-related instruments can more than double our knowledge of the surface of Mars, compared to the three landing sites (Viking 1 and 2, Pathfinder) we are currently familiar with. The SPICE instrument will characterize the soil at the landing sites. Force sensors integrated into the seismometer legs (three per station) will determine the mechanical strength of the soil. Thermal sensors will measure the local soil temperature, the thermal inertia and the thermal diffusivity independently, thus allowing us to determine the thermal conductivity and the volumetric heat capac- ity of the soil. These properties will tell us about (1) soil cementation ("duricrust"), (2) volatile exchange with the atmosphere, (3) grain size, (4) near-surface stratigra- phy, and (5) will finally provide ground truth for remote sensing data such as that from Mars Global Surveyor's thermal emission spectrometer.
Angle of Attack Modulation for Mars Entry Terminal State Optimization
NASA Technical Reports Server (NTRS)
Lafleur, Jarret M.; Cerimele, Christopher J.
2009-01-01
From the perspective of atmospheric entry, descent, and landing (EDL), one of the most foreboding destinations in the solar system is Mars due in part to its exceedingly thin atmosphere. To benchmark best possible scenarios for evaluation of potential Mars EDL system designs, a study is conducted to optimize the entry-to-terminal-state portion of EDL for a variety of entry velocities and vehicle masses, focusing on the identification of potential benefits of enabling angle of attack modulation. The terminal state is envisioned as one appropriate for the initiation of terminal descent via parachute or other means. A particle swarm optimizer varies entry flight path angle, ten bank profile points, and ten angle of attack profile points to find maximum-final-altitude trajectories for a 10 30 m ellipsled at 180 different combinations of values for entry mass, entry velocity, terminal Mach number, and minimum allowable altitude. Parametric plots of maximum achievable altitude are shown, as are examples of optimized trajectories. It is shown that appreciable terminal state altitude gains (2.5-4.0 km) over pure bank angle control may be possible if angle of attack modulation is enabled for Mars entry vehicles. Gains of this magnitude could prove to be enabling for missions requiring high-altitude landing sites. Conclusions are also drawn regarding trends in the bank and angle of attack profiles that produce the optimal trajectories in this study, and directions for future work are identified.
Large-scale fluid-deposited mineralization in Margaritifer Terra, Mars
NASA Astrophysics Data System (ADS)
Thomas, Rebecca J.; Potter-McIntyre, Sally L.; Hynek, Brian M.
2017-07-01
Mineral deposits precipitated from subsurface-sourced fluids are a key astrobiological detection target on Mars, due to the long-term viability of the subsurface as a habitat for life and the ability of precipitated minerals to preserve biosignatures. We report morphological and stratigraphic evidence for ridges along fractures in impact crater floors in Margaritifer Terra. Parallels with terrestrial analog environments and the regional context indicate that two observed ridge types are best explained by groundwater-emplaced cementation in the shallow subsurface and higher-temperature hydrothermal deposition at the surface, respectively. Both mechanisms have considerable astrobiological significance. Finally, we propose that morphologically similar ridges previously documented at the Mars 2020 landing site in NE Syrtis Major may have formed by similar mechanisms.
Entry, Descent, and Landing Operations Analysis for the Mars Phoenix Lander
NASA Technical Reports Server (NTRS)
Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.
2008-01-01
The Mars Phoenix lander was launched August 4, 2007 and remained in cruise for ten months before landing in the northern plains of Mars in May 2008. The one-month Entry, Descent, and Landing (EDL) operations phase prior to entry consisted of daily analyses, meetings, and decisions necessary to determine if trajectory correction maneuvers and environmental parameter updates to the spacecraft were required. An overview of the Phoenix EDL trajectory simulation and analysis that was performed during the EDL approach and operations phase is described in detail. The evolution of the Monte Carlo statistics and footprint ellipse during the final approach phase is also provided. The EDL operations effort accurately delivered the Phoenix lander to the desired landing region on May 25, 2008.
Intravitreal erythropoietin injection in late-stage optic neuropathy: a safety study on human.
Acar, Ugur; Kucuk, Bekir; Sevinc, Mehmet Koray; Aykas, Seckin; Erdurmus, Mesut; Sobaci, Gungor
2018-06-01
To evaluate the whether intravitreal erythropoietin (EPO) administration has any beneficial or adverse effect in patients with late-stage optic neuropathy (ON) or not. The study examined 16 eyes of 16 patients who had late-stage ON and ≥1/20 best-corrected visual acuity (BCVA) in their affected eye. There were nonarteritic ischemic ON in 10 (62.5%) eyes, traumatic ON in 4 (25.0%) eyes and methanol-induced ON in 2 (12.5%) eyes. Using pars plana approach, 2000 IU/0.2 ml EPO was administered intravitreally with a 30-gauge needle. Injections were administered three times with 6-week intervals. We compared the differences in the BCVA, intraocular pressure (IOP), retinal nerve fiber layer (RNFL) thickness, pattern visual evoked potentials (p-VEP) and pattern electroretinography (p-ERG) parameters performed at initial examination and final visits. The mean age of the patients was 52.38 ± 12.00 years; 2 (12.50%) of them were female, and 14 (87.50%) of them were male. The mean BCVA levels of 16 patients with optic atrophy were 1.12 ± 0.25 logMAR at the initial examination and 1.08 ± 0.26 logMAR at the final visit (p = 0.102). There was no statistically significant difference between the initial and final RNFL thicknesses, IOP values, p-ERG or p-VEP responses. Intravitreal EPO injections have no beneficial or detrimental effect on the late stage of ON. Further studies are necessary to compare our results in patients with ON in earlier stages.
Clark, Jordan; Urióstegui, Stephanie; Bibby, Richard; ...
2016-10-25
The application of the cosmogenic radioisotope sulfur-35 ( 35S) as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR) sites: the Atlantis facility (South Africa) and Orange County Water District’s (OCWD’s) Kraemer Basin (Northern Orange County, CA, USA). Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, 35S was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with 35S-dead continental SO 4 was minimal, amore » surprising finding given its short ~3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples—saline solutions collected after the resin elution step from the recently developed batch method described below—can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO 4. Using the improved batch method, times series measurements of both source and well water from OCWD’s MAR site showed significant temporal variations. Finally, this result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the 35S chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jordan; Urióstegui, Stephanie; Bibby, Richard
The application of the cosmogenic radioisotope sulfur-35 ( 35S) as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR) sites: the Atlantis facility (South Africa) and Orange County Water District’s (OCWD’s) Kraemer Basin (Northern Orange County, CA, USA). Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, 35S was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with 35S-dead continental SO 4 was minimal, amore » surprising finding given its short ~3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples—saline solutions collected after the resin elution step from the recently developed batch method described below—can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO 4. Using the improved batch method, times series measurements of both source and well water from OCWD’s MAR site showed significant temporal variations. Finally, this result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the 35S chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times.« less
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)
2010-01-01
Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.
Visual Acuity Outcomes of the Boston Keratoprosthesis Type 1: Multicenter Study Results.
Rudnisky, Christopher J; Belin, Michael W; Guo, Rong; Ciolino, Joseph B
2016-02-01
To report logarithm of the minimal angle of resolution (logMAR) visual outcomes of the Boston keratoprosthesis type 1. Prospective cohort study. Preoperative, intraoperative, and postoperative parameters of 300 eyes of 300 patients who underwent implantation of a Boston keratoprosthesis type 1 device between January 2003 and July 2008 by 1 of 19 surgeons at 18 medical centers were collected. After an average of 17.1 ± 14.8 months, visual acuity improved significantly (P < .0001) to a mean final value of 0.89 ± 0.64 (20/150). There were also significantly fewer eyes with light perception (6.7%; n = 19; P < .0001), although 3.1% (n = 9) progressed to no light perception. There was no association between age (P = .08), sex (P = .959), operative side (P = .167), or failure (P = .494) and final visual acuity. The median time to achieve 20/200 visual acuity was 1 month (95% confidence interval 1.0-6.0) and it was retained for an average of 47.8 months. Multivariate analysis, controlling for preoperative visual acuity, demonstrated 2 factors associated with final visual outcome: chemical injury was associated with better final vision (P = .007), whereas age-related macular degeneration was associated with poorer vision (P < .0001). The Boston keratoprosthesis type 1 is an effective device for rehabilitation in advanced ocular surface disease, resulting in a significant improvement in visual acuity. Eyes achieved a mean value of 20/150 (0.89 ± 0.64 logMAR units) after 6 months and this was relatively stable thereafter. The best visual prognosis is observed in chemical injury eyes, whereas the worst prognosis is in aniridia, although the latter has limited visual potential. Copyright © 2016 Elsevier Inc. All rights reserved.
Geology and insolation-driven climatic history of Amazonian north polar materials on Mars
Tanaka, K.L.
2005-01-01
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.
Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.
Tanaka, Kenneth L
2005-10-13
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, Douglas W.; Sutter, B.; Golden, D. C.; Morris, Richard V.; Boynton, W. V.
2008-01-01
The Thermal Evolved-Gas Analyzer (TEGA) instrument onboard the 2007 Phoenix Lander will perform differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. Data from the instrument will be compared with Mars analog mineral standards, collected under TEGA Mars-like conditions to identify the volatile-bearing mineral phases [1] (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) found in the Martian soil. Concurrently, the instrument will be looking for indications of organics that might also be present in the soil. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. The spacecraft will certainly bring organic contaminants to Mars even though numerous steps were taken to minimize contamination during the spacecraft assembly and testing. It will be essential to distinguish possible Mars organics from terrestrial contamination when TEGA instrument begins analyzing icy soils. To address the above, an Organic Free Blank (OFB) was designed, built, tested, and mounted on the Phoenix spacecraft providing a baseline for distinguishing Mars organics from terrestrial organic contamination. Our objective in this report is to describe some of the considerations used in selecting the OFB material and then report on the processing and analysis of the final candidate material
Reassessment of Planetary Protection Requirements for Mars Sample Return Missions
NASA Astrophysics Data System (ADS)
Smith, David; Race, Margaret; Farmer, Jack
In 2008, NASA asked the US National Research Council (NRC) to review the findings of the report, Mars Sample Return: Issues and Recommendations (National Academy Press, 1997), and to update its recommendations in the light of both current understanding of Mars's biolog-ical potential and ongoing improvements in biological, chemical, and physical sample-analysis capabilities and technologies. The committee established to address this request was tasked to pay particular attention to five topics. First, the likelihood that living entities may be included in samples returned from Mars. Second, scientific investigations that should be conducted to reduce uncertainty in the assessment of Mars' biological potential. Third, the possibility of large-scale effects on Earth's environment if any returned entity is released into the environment. Fourth, the status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere. Fifth, criteria for intentional sample release, taking note of current and anticipated regulatory frameworks. The paper outlines the recommendations contained in the committee's final report, Planetary Protection Requirements for Mars Sample Return Missions (The National Academies Press, 2009), with particular emphasis placed on the scientific, technical and policy changes since 1997 and indications as to how these changes modify the recommendations contained in the 1997 report.
Refining Martian Ages and Understanding Geological Processes From Cratering Statistics
NASA Technical Reports Server (NTRS)
Hartmann, William K.
2005-01-01
Senior Scientist William K. Hartman presents his final report on Mars Data Analysis Program grant number NAG5-12217: The third year of the three-year program was recently completed in mid-2005. The program has been extremely productive in research and data analysis regarding Mars, especially using Mars Global Surveyor and Mars Odyssey imagery. In the 2005 alone, three papers have already been published, to which this work contributed.1) Hartmann, W. K. 200.5. Martian cratering 8. Isochron refinement and the history of Martian geologic activity Icarus 174, 294-320. This paper is a summary of my entire program of establishing Martian chronology through counts of Martian impact craters. 2) Arfstrom, John, and W. K. Hartmann 2005. Martian flow features, moraine-like rieges, and gullies: Terrestrial analogs and interrelationships. Icarus 174,32 1-335. This paper makes pioneering connections between Martian glacier-like features and terrestrial glacial features. 3) Hartmann, W.K., D. Winterhalter, and J. Geiss. 2005 Chronology and Physical Evolution of Planet Mars. In The Solar System and Beyond: Ten Years of ISSI (Bern: International Space Science Institute). This is a summary of work conducted at the International Space Science Institute with an international team, emphasizing our publication of a conference volume about Mars, edited by Hartmann and published in 2001.
Mars Sample Handling Protocol Workshop Series: Workshop 2
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Kovacs, Gregory T. A. (Editor); Race, Margaret S. (Editor); DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Numerous NASA reports and studies have identified Planetary Protection (PP) as an important part of any Mars sample return mission. The mission architecture, hardware, on-board experiments, and related activities must be designed in ways that prevent both forward- and back-contamination and also ensure maximal return of scientific information. A key element of any PP effort for sample return missions is the development of guidelines for containment and analysis of returned sample(s). As part of that effort, NASA and the Space Studies Board (SSB) of the National Research Council (NRC) have each assembled experts from a wide range of scientific fields to identify and discuss issues pertinent to sample return. In 1997, the SSB released its report on recommendations for handling and testing of returned Mars samples. In particular, the NRC recommended that: a) samples returned from Mars by spacecraft should be contained and treated as potentially hazardous until proven otherwise, and b) rigorous physical, chemical, and biological analyses [should] confirm that there is no indication of the presence of any exogenous biological entity. Also in 1997, a Mars Sample Quarantine Protocol workshop was convened at NASA Ames Research Center to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent 'uncontrolled release' of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. In 1999, a study by NASA's Mars Sample Handling and Requirements Panel (MSHARP) addressed three other specific areas in anticipation of returning samples from Mars: 1) sample collection and transport back to Earth; 2) certification of the samples as non-hazardous; and 3) sample receiving, curation, and distribution. To further refine the requirements for sample hazard testing and the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened an additional series of workshops beginning in March 2000. The overall objective of these workshops was to develop comprehensive protocols to assess whether the returned materials contain any biological hazards, and to safeguard the purity of the samples from possible terrestrial contamination. This document is the report of the second Workshop in the Series. The information herein will ultimately be integrated into a final document reporting the proceedings of the entire Workshop Series along with additional information and recommendations.
Estimating Collisionally-Induced Escape Rates of Light Neutrals from Early Mars
NASA Astrophysics Data System (ADS)
Gacesa, M.; Zahnle, K. J.
2016-12-01
Collisions of atmospheric gases with hot oxygen atoms constitute an important non-thermal mechanism of escape of light atomic and molecular species at Mars. In this study, we present revised theoretical estimates of non-thermal escape rates of neutral O, H, He, and H2 based on recent atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission and related theoretical models. As primary sources of hot oxygen, we consider dissociative recombination of O2+ and CO2+ molecular ions. We also consider hot oxygen atoms energized in primary and secondary collisions with energetic neutral atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases1,2. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism3. This approach allows us to construct distributions of vibrationally and rotationally excited states and predict the products' emission spectra. In addition, we estimate formation rates of excited, translationally hot hydroxyl molecules in the upper atmosphere of Mars. The escape rates are calculated from the kinetic energy distributions of the reaction products using an enhanced 1D model of the atmosphere for a range of orbital and solar parameters. Finally, by considering different scenarios, we estimate the influence of these escape mechanisms on the evolution of Mars's atmosphere throughout previous epochs and their impact on the atmospheric D/H ratio. M.G.'s research was supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Universities Space Research Association under contract with NASA. 1N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014) 2M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", arXiv:1607.03602 (2016) 3M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012).
ERIC Educational Resources Information Center
Kellner, Hella
1979-01-01
Reanalyzes previously reported data (EBU Review; v27, n6, Nov 1976 and v29, n2, Mar 1978) on television viewing among 85 families in the Federal Republic of Germany to answer questions concerning aspects of viewer behavior in families, adult self-image, and children's daily viewing patterns. (RAO)
2011-10-26
This unnamed crater in Terra Cimmeria is not as round in shape as other craters. Major landslides have occurred on the crater rim, resulting in the final shape as seen by NASA 2001 Mars Odyssey spacecraft.
NASA Technical Reports Server (NTRS)
Janowski, G. M.
1985-01-01
The microstructure, phase compositions, and phase fractions were studied in conventionally cast B-1900 + Hf and both conventionally cast and directionally solidified MAR-M247 as a function of tantalum concentration. The hot tensile and creep rupture properties of the solutionized and aged MAR-M247-type alloys were also determined as a function of tantalum level. The effects of tantalum on the microstructure and phase compositions of B-1900 + Hf and MAR-M247 (conventionally cast and directionally solidified) were found to be very similar. The addition of tantalum to the as cast and heat treated alloys was shown to cause the partial replacement of the Hf in the MC carbides by Ta, although the degree of replacement was decreased by the solutionizing and aging heat treatment. The gamma prime and minor phase fractions (primarily MC type carbides) both increased approximately linearly with tantalum concentration. The gamma prime phase compositions were relatively insensitive to tantalum variations with the exception of the tantalum and/or hafnium levels. Bulk tantalum additions increased the tantalum, chromium, and cobalt levels of the gamma phase in both alloy series. The increase in the concentrations of the latter two elements in the gamma phase was a result of the decrease in the gamma phase fraction with increasing bulk tantalum concentration and constant gamma/gamma prime partitioning ratio. Tantalum additions increased the yield stress and ultimate tensile strength of the directionally solidified MAR-M247 type alloys and had no significant effect on ductility.
Interplanetary Transit Simulations Using the International Space Station
NASA Technical Reports Server (NTRS)
Charles, John B.; Arya, M.; Kundrot, C. E.
2010-01-01
We evaluated the space life sciences utility of the International Space Station (ISS) to simulate the outbound transit portion of missions to Mars and Near Earth Asteroids (NEA) to investigate biomedical and psychological aspects of such transits, to develop and test space operation procedures compatible with communication delays and outages, and to demonstrate and validate technologies and countermeasures. Two major categories of space life sciences activities can capitalize on ISS capabilities. The first includes studies that require ISS (or a comparable facility), typically for access to prolonged weightlessness. The second includes studies that do not strictly require ISS but can exploit it to maximize their scientific return more efficiently and productively than in ground-based simulations. For these studies, ISS offers a high fidelity analog for fundamental factors on future missions, such as crew composition, mission control personnel, operational tasks and workload, real-world risk, and isolation, and can mimic the effects of distance and limited accessibility. In addition to conducting Mars- and NEA-transit simulations on 6-month ISS increments, extending the current ISS increment duration from 6 months to 9 or even 12 months will provide opportunities for enhanced and focused research relevant to long duration Mars and NEA missions. Increasing the crew duration may pose little additional risk to crewmembers beyond that currently accepted on 6-month increments, but additional medical monitoring capabilities will be required beyond those currently used for ISS operations. Finally, while presenting major logistical challenges, such a simulation followed by a post-landing simulation of Mars exploration could provide quantitative evidence of capabilities in an actual mission. Thus, the use of ISS to simulate aspects of Mars and NEA missions seems practical. If it were to be implemented without major disruption of on-going ISS activities, then planning should begin soon, in close consultation with all international partners.
NASA Technical Reports Server (NTRS)
Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.
2015-01-01
In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated with Mars ISRU systems further substantiated the preliminary results from the Mars DRA 5.0 study. This paper will provide an overview of Mars ISRU consumable production options, the analyses, results, and conclusions from the Mars DRA 5.0 (2007), Mars Collaborative (2013), and Mars ISRU Payload for the Supersonic Retro Propulsion (2014) mission studies, and the current state-of-the-art of Mars ISRU technologies and systems. The paper will also briefly discuss the mission architectural implications associated with Mars resource and ISRU processing options.
Layered, massive and thin sediments on Mars: Possible Late Noachian to Late Amazonian tephra?
Chapman, M.G.
2002-01-01
Data from instruments on the currently orbiting Mars Global Surveyor (MGS) suggest that as an alternative interpretation to lacustrine deposits, widespread sediments on Mars may be tephra deposits of variable age, formed in part by volcano-ice interactions. The materials are often associated with outcrops of mapped geological units that have each been previously interpreted as volcanic ash deposits with identified, but unconfirmed possible volcanic vents. Spectral investigation indicates that although some outcrops are basaltic, many show moderate to high concentrations of andesite, a composition at which large explosive eruptions may be possible. In addition, many outcrops are in areas suspected to be water/ice rich. On Earth, magma and groundwater can react to create violent explosive eruptions. Observations from MGS support a pyroclastic mechanism of deposition and show some morphologies consistent with volcano-ice interactions, including subaqueous eruptions. Perhaps MGS data are finally producing more definitive evidence of the widespread tephra that were predicted to be likely in the reduced atmospheric pressure of Mars.
Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder
NASA Technical Reports Server (NTRS)
Petersen, Elspeth M.
2016-01-01
The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.
1998-11-24
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the third stage of the Boeing Delta II launch vehicle (left) waits for mating with the Mars Climate Orbiter (right). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
1998-11-24
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter (right) is lifted to move it for mating to the third stage of the Boeing Delta II launch vehicle waiting at left. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. ; ;
1998-11-24
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter (top) is lowered toward the third stage of the Boeing Delta II launch vehicle below it, to which it will be attached. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
1998-11-24
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers check on the fitting between the Mars Climate Orbiter (above) and the third stage of the Boeing Delta II launch vehicle (below). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
NASA Technical Reports Server (NTRS)
Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.
1973-01-01
The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.
Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses
NASA Astrophysics Data System (ADS)
Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.
2010-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.
MSATT: Mars Surface and Atmosphere Through Time. Volume 100
NASA Technical Reports Server (NTRS)
1995-01-01
The papers published here are based on a workshop entitled "Mars: Past, Present, and Future: Results from the MSATT Program." MSATT (Mars Surface and Atmosphere Through Time) was the last of the Mars data analysis programs and functioned mainly through a series of focused workshops, the final one being held at the Lunar and Planetary Institute in Houston, Texas on November 15-17, 1993. The program began and ended with workshops that brought the entire MSATT community together. Here you will find papers that address the geology, mineralogy, and meteorology of Mars in an effort to assess how the surface and atmosphere of this fascinating planet have evolved over time. Could early Mars have been warmed by a brighter young sun instead of a massive greenhouse effect? Were glaciers and hydrological cycles part of Mars' relatively recent past, or was aeolian activity responsible for the putative glacial features? Do the SNCs come from a single source region, or is more than one site involved? And what really are the properties of Martian soils and what do they tell us about the weathering environment? Clearly, these are difficult questions, but progress toward answers can be found in this issue. Also contained in this issue are a mix of theoretical and observational papers that deal with the general circulation of the current atmosphere, the factors that drive it (dust properties), and the role it plays in controlling the current climate system.
NASA Astrophysics Data System (ADS)
Ramsey, M. S.; Harris, A. J. L.
2016-12-01
Satellite observations of active vents commonly group into several broad categories: thermal analysis, deformational studies, and gas/ash detection. These observations become increasingly detailed depending on the spatial, spectral and/or temporal resolution of the sensor. Higher temporal resolution thermal infrared (TIR) data are used to determine the time-averaged discharge rate (TADR) and the potential down-slope inundation of the newly-forming flow using thermorheologic-based modelling. Whereas, increased spectral resolution leads to improved measurement of the flow's composition, crystal content, and vesicularity. Combined, these data help to improve the accuracy of cooling-based viscosity models such as FLOWGO. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. The cooling of the glassy lava surface is directly imaged by the TIR instrument to determine temperature, which is then used to calculate the model's starting conditions. Understanding the cooling, formation and dynamics of basaltic surfaces therefore helps to resolve compositional, textural, and silicate structural changes. Models, coupled with accurate knowledge of the characteristics of older, inactive flows (such as those on Mars), can be reversed to predict the vent conditions at the time of the eruption. Being able to directly connect the final flow morphology to specific eruption conditions is a critical goal to understand the last stages of volcanism on Mars and becomes an important educational tool where combined with 3D visualization. The 2012-2013 eruption of Tolbachik volcano, Russia was the largest and most thermally intense flow-forming eruption in the past 50 years, producing longer lava flows than that of a typical eruption at Kilauea or Etna. These flows have been studied using various scales of TIR data at the time of eruption and following cooling. The input parameters for the FLOWGO model are then tuned to produce the best fit of eruptive conditions to final flow morphology. The refined model can then be used to determine the TADR from the vent and make improved estimates of cooling, viscosity, velocity and crystallinity with distance. Final results are visualized and their educational potential assessed.
Magnesium and Carbon Dioxide - A Rocket Propellant for Mars Missions
NASA Technical Reports Server (NTRS)
Shafirovich, E. IA.; Shiriaev, A. A.; Goldshleger, U. I.
1993-01-01
A rocket engine for Mars missions is proposed that could utilize CO2 accumulated from the Martian atmosphere as an oxidizer. For use as possible fuel, various metals, their hydrides, and mixtures with hydrogen compounds are considered. Thermodynamic calculations show that beryllium fuels ensure the most impulse but poor inflammability of Be and high toxicity of its compounds put obstacles to their applications. Analysis of the engine performance for other metals together with the parameters of ignition and combustion show that magnesium seems to be the most promising fuel. Ballistic estimates imply that a hopper with the chemical rocket engine on Mg + CO2 propellant could be readily developed. This vehicle would be able to carry out 2-3 ballistic flights on Mars before the final ascent to orbit.
Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations
NASA Technical Reports Server (NTRS)
Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.
2006-01-01
With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.
Results of the Mariner 6 and 7 Mars occultation experiments
NASA Technical Reports Server (NTRS)
Hogan, J. S.; Stewart, R. W.; Rasool, S. I.; Russell, L. H.
1972-01-01
Final profiles of temperature, pressure, and electron density on Mars were obtained for the Mariner 6 and 7 entry and exit cases, and results are presented for both the lower atmosphere and ionosphere. The results of an analysis of the systematic and formal errors introduced at each stage of the data-reduction process are also included. At all four occulation points, the lapse rate of temperature was subdadiabatic up to altitudes in excess of 20 km. A pronounced temperature inversion was present above the surface at the Mariner 6 exit point. All four profiles exhibit a sharp, superadiabatic drop in temperature at high altitudes, with temperatures falling below the frost point of CO2. These results give a strong indication of frozen CO2 in the middle atmosphere of Mars.
Mars Pathfinder flight system integration and test.
NASA Astrophysics Data System (ADS)
Muirhead, B. K.
This paper describes the system integration and test experiences, problems and lessons learned during the assembly, test and launch operations (ATLO) phase of the Mars Pathfinder flight system scheduled to land on the surface of Mars on July 4, 1997. The Mars Pathfinder spacecraft consists of three spacecraft systems: cruise stage, entry vehicle and lander. The cruise stage carries the entry and lander vehicles to Mars and is jettisoned prior to entry. The entry vehicle, including aeroshell, parachute and deceleration rockets, protects the lander during the direct entry and reduces its velocity from 7.6 to 0 km/s in stages during the 5 min entry sequence. The lander's touchdown is softened by airbags which are retracted once stopped on the surface. The lander then uprights itself, opens up fully and begins surface operations including deploying its camera and rover. This paper overviews the system design and the results of the system integration and test activities, including the entry, descent and landing subsystem elements. System test experiences including science instruments, the microrover, Sojourner, and software are discussed. The final qualification of the entry, descent and landing subsystems during this period is also discussed.
Five Years of Monitoring Mars' Daytime Surface Temperatures (Animation)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Animation This movie shows the daytime temperature of the surface of Mars as measured by the Thermal Emission Spectrometer instrument on NASA's Mars Global Surveyor orbiter. These temperatures clearly show the growth and retreat of the martian northern and southern polar ice caps. The caps grow in winter and are composed of carbon dioxide ice with temperatures as low as minus 125 degrees Celsius (minus 195 degrees Fahrenheit). In the summer the caps retreat to relatively small areas around the poles. The movie also demonstrates the large difference in temperatures between the northern hemisphere's summer (beginning when solar longitude, or Ls, is 90 degrees) and the southern hemisphere's summer (beginning when Ls is 270 degrees). This difference is because the orbit of Mars around the Sun is more elliptical than Earth's orbit. As on Earth, a hemisphere's summer is when that hemisphere is tilted toward the Sun, but on Mars, the planet's distance from the Sun varies much more than on Earth. Mars is closest to the Sun, and therefore warmest, during the southern summer season. In northern summer, when Mars' northern hemisphere is tilted toward the Sun, the planet is farther from the Sun. Seasons on Mars are determined by the position of Mars in its orbit around the Sun. The position is measured in degrees of solar longitude (Ls) around the orbit, beginning at 0 degrees Ls at the northern spring equinox, progressing to 90 degrees Ls at the start of northern summer, 180 degrees Ls at the fall equinox, 270 degrees Ls at the start of northern winter, and finally back to 360 degrees, or 0 degrees, Ls at the spring equinox. The Thermal Emission Spectrometer is operated by a team led at Arizona State University, Tempe. Mars Global Surveyor left Earth on Nov. 7, 1996, and began orbiting Mars on Sept. 12, 1997. JPL, a division of the California Institute of Technology, Pasadena, manages Mars Global Surveyor for NASA's Science Mission Directorate, Washington.2003-04-09
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians make final preparations to the Mars Exploration Rover 2 (MER-2) before closing the lander petals and attached airbags around the spacecraft prior to launch. The MER Mission consists of two identical rovers set to launch in Spring 2003. Landing at different regions of Mars, they are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past.
Water-molten uranium hazard analysis. Final report. LATA report No. 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, P.S.; Rigdon, L.D.; Donham, B.J.
1979-08-21
The hazard potential of cooling water leakage into the crucible of molten uranium in the MARS laser isotope separation experiment was investigated. A vapor-phase explosion is highly unlikely in any of the scenarios defined for MARS. For the operating basis accident, the gas pressure transient experienced by the vessel wall is 544 psia peak with a duration of 200 ..mu..s, and the peak hoop stress is about 20,000 psi in a 0.5-in. wall. Design and procedural recommendations are given for reducing the hazard. (DLC)
Removal of instrument signature from Mariner 9 television images of Mars
NASA Technical Reports Server (NTRS)
Green, W. B.; Jepsen, P. L.; Kreznar, J. E.; Ruiz, R. M.; Schwartz, A. A.; Seidman, J. B.
1975-01-01
The Mariner 9 spacecraft was inserted into orbit around Mars in November 1971. The two vidicon camera systems returned over 7300 digital images during orbital operations. The high volume of returned data and the scientific objectives of the Television Experiment made development of automated digital techniques for the removal of camera system-induced distortions from each returned image necessary. This paper describes the algorithms used to remove geometric and photometric distortions from the returned imagery. Enhancement processing of the final photographic products is also described.
A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Race, Margaret S.; DeVincenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.
2002-01-01
This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth: it is the final product of the Mars Sample Handling Protocol Workshop Series. convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed k r the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination.
ExoMars Raman Laser Spectrometer scientific required performances check with a Breadboard
NASA Astrophysics Data System (ADS)
Moral, A.; Díaz, E.; Ramos, G.; Rodríguez Prieto, J. A.; Pérez Canora, C.; Díaz, C.; Canchal, R.; Gallego, P.; Santamaría, P.; Colombo, M.
2013-09-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Program, ExoMars mission. For being able to verify the achievement of the scientific objectives of the instrument, a Breadboard campaign was developed, for achieving instrument TRL5. Within the Instrument TRL5 Plan, it was required to every unit to develop its own Unit Breadboard, to check their own TRL5 and then to deliver it to System Team to be integrated and tested for finally checks Instrument performances.
INSPIRE and MarCO - Technology Development for the First Deep Space CubeSats
NASA Astrophysics Data System (ADS)
Klesh, Andrew
2016-07-01
INSPIRE (Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment) and MarCO (Mars Cube One) will open the door for tiny spacecraft to explore the solar system. INSPIRE serves as a trailblazer, designed to demonstrate new technology needed for deep space. MarCO will open the door for NanoSpacecraft to serve in support roles for much larger primary missions - in this case, providing a real-time relay of for the InSight project and will likely be the first CubeSats to reach deep space. Together, these four spacecraft (two for each mission) enable fundamental science objectives to be met with tiny vehicles. Originally designed for a March, 2016 launch with the InSight mission to Mars, the MarCO spacecraft are now complete and in storage. When launched with the InSight lander from Vandenberg Air Force Base, the spacecraft will begin a 6.5 month cruise to Mars. Soon after InSight itself separates from the upper stage of the launch vehicle, the two MarCO CubeSats will deploy and independently fly to Mars to support telecommunications relay for InSight's entry, descent, and landing sequence. These spacecraft will have onboard capability for deep space trajectory correction maneuvers; high-speed direct-to-Earth & DSN-compatible communications; an advanced navigation transponder; a large deployable reflect-array high gain antenna; and a robust software suite. This talk will present an overview of the INSPIRE and MarCO projects, including a concept of operations, details of the spacecraft and subsystem design, and lessons learned from integration and test. Finally, the talk will outline how lessons from these spacecraft are already being utilized in the next generation of interplanetary CubeSats, as well as a brief vision of their applicability for solar system exploration. The research described here was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National Aeronautics and Space Administration (NASA).
First measurements of water and D/H on Mars with ExoMars / NOMAD
NASA Astrophysics Data System (ADS)
Villanueva, Geronimo Luis; Liuzzi, Giuliano; Mumma, Michael J.; Carine Vandaele, Ann; Thomas, Ian; Smith, Michael D.; Daerden, Frank; Ristic, Bojan; Patel, Manish; Bellucci, Giancarlo; Lopez-Moreno, Jose; NOMAD Team
2017-10-01
We present preliminary data collected by the high-resolution NOMAD (Nadir and Occultation for MArs Discovery) instrument onboard the ExoMars / Trace Gas Orbiter (TGO) targeting several lines of water (H2O), deuterated water (HDO) and carbon dioxide (CO2). TGO is the first spacecraft on Mars specifically tailored to search for trace constituents, with the NOMAD instrument providing high spectral resolution (λ/dλ~ 20,000) over the 2-5 um spectral region. Such capabilities allow us to probe with unprecedented accuracy and sensitivity a multitude of organic species (e.g., CH4, CH3OH, H2CO, C2H6) and to map isotopic signatures (e.g., D/H, 13C/12C) across the whole planet.In particular, isotopic ratios are among the most valuable indicators for the loss of volatiles from an atmosphere. Because the escape rates for each isotope are slightly different (larger for the lighter forms), over long times the atmosphere becomes enriched in the heavy isotopic forms. By probing the current isotopic ratios, one can then infer the amount of matter lost to space over the planet’s evolution. Deuterium fractionation also reveals information about the cycle of water on the planet and informs us of its stability on short- and long-term scales, including its release from active regions on Mars having a characteristic D/H signature.Upon its successful launch in March/2016, we acquired critical calibration data in Apr/2016 and in June/2016, while during the Mars-Orbit-Capture phase, we also acquired Mars nadir data in Nov/2016 and in Feb-Mar/2017. Full science operations are expected to start upon final orbit insertion in early 2018. In this paper, we report initial retrievals of water and D/H derived during the Mars-Orbit-Capture phase and discuss the prospects for mapping of isotopic signatures during the nominal science phase.
Microbial Certification of the MER spacecraft
NASA Technical Reports Server (NTRS)
Schubert, W. W.; Arakelian, T.; Barengoltz, J. B.; Chough, N. G.; Chung, S. Y.; Law, J.; Kirschner, L.; Koukol, R. C.; Newlin, L. E.; Morales, F.
2003-01-01
Spacecraft such as the Mars Exploration Rovers (MER) must meet acceptable microbial population levels prior to launch. Sensitive parts and materials prevent any single sterilization method from being used as a final step on the assembled spacecraft.
Efficient Reorientation Maneuvers for Spacecraft with Multiple Articulated Payloads
NASA Technical Reports Server (NTRS)
Mcclamroch, N. Harris
1993-01-01
A final report is provided which describes the research program during the period 3 Mar. 1992 to 3 Jun. 1993. A summary of the technical research questions that were studied and of the main results that were obtained is given. The specific outcomes of the research program, including both educational impacts as well as research publications, are listed. The research is concerned with efficient reorientation maneuvers for spacecraft with multiple articulated payloads.
NASA Astrophysics Data System (ADS)
Naghibi, Seyed Amir; Moradi Dashtpagerdi, Mostafa
2017-01-01
One important tool for water resources management in arid and semi-arid areas is groundwater potential mapping. In this study, four data-mining models including K-nearest neighbor (KNN), linear discriminant analysis (LDA), multivariate adaptive regression splines (MARS), and quadric discriminant analysis (QDA) were used for groundwater potential mapping to get better and more accurate groundwater potential maps (GPMs). For this purpose, 14 groundwater influence factors were considered, such as altitude, slope angle, slope aspect, plan curvature, profile curvature, slope length, topographic wetness index (TWI), stream power index, distance from rivers, river density, distance from faults, fault density, land use, and lithology. From 842 springs in the study area, in the Khalkhal region of Iran, 70 % (589 springs) were considered for training and 30 % (253 springs) were used as a validation dataset. Then, KNN, LDA, MARS, and QDA models were applied in the R statistical software and the results were mapped as GPMs. Finally, the receiver operating characteristics (ROC) curve was implemented to evaluate the performance of the models. According to the results, the area under the curve of ROCs were calculated as 81.4, 80.5, 79.6, and 79.2 % for MARS, QDA, KNN, and LDA, respectively. So, it can be concluded that the performances of KNN and LDA were acceptable and the performances of MARS and QDA were excellent. Also, the results depicted high contribution of altitude, TWI, slope angle, and fault density, while plan curvature and land use were seen to be the least important factors.
David, L
1996-05-01
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.
Journey to Mars Update on This Week @NASA – September 30, 2016
2016-09-30
NASA Administrator Charlie Bolden joined other leaders of the world’s space agencies to discuss the latest technological breakthroughs and developments in space exploration at the 67th International Astronautical Congress, Sept. 26-30th in Guadalajara, Mexico. At the event, NASA discussed new elements to its multi-phase Journey to Mars to extend the human footprint all the way to the Red Planet. NASA will continue operations aboard the International Space Station through 2024. Work currently underway aboard the station to encourage commercial development of low-Earth orbit, develop deep space systems, life support and human health is part of the Earth Reliant phase of the Journey to Mars. In the 2020s, during the Proving Ground phase when NASA steps out farther, the agency now plans to send an astronaut crew on a yearlong mission to a deep space destination near the moon. They will conduct activities to verify habitation and test our readiness for Mars. A round-trip robotic Mars sample return mission is being targeted for the 2020s, as part of the Earth Independent phase before finally sending humans on a mission to orbit Mars in the early 2030s. Also, Zurbuchen Named Head of NASA Science, Hubble Spots Possible Water Plumes on Europa, Rosetta’s Mission Ends, and Armstrong Celebrates 70 Years of Flight Research!
2011 Mars Science Laboratory Launch Period Design
NASA Technical Reports Server (NTRS)
Abilleira, Fernando
2011-01-01
The Mars Science Laboratory mission, set to launch in the fall of 2011, has the primary objective of landing the most advanced rover to date to the surface of Mars to assess whether Mars ever was, or still is today, able to sustain carbon-based life. Arriving at Mars in August 2012, the Mars Science Laboratory will also demonstrate the ability to deliver large payloads to the surface of Mars, land more accurately (than previous missions) in a 20-km by 25-km ellipse, and traverse up to 20 km. Following guided entry and parachute deployment, the spacecraft will descend on a parachute and a Powered Descent Vehicle to safely land the rover on the surface of Mars. The launch/arrival strategy is driven by several key requirements, which include: launch vehicle capability, atmosphere-relative entry speed, communications coverage during Entry, Descent and Landing, latitude accessibility, and dust storm season avoidance. Notable among these requirements is maintaining a telecommunications link from atmospheric entry to landing plus one minute, via a Direct-To-Earth X-band link and via orbital assets using an UHF link, to ensure that any failure during Entry, Descent and Landing can be reconstructed in case of a mission anomaly. Due to concerns related to the lifetime of the relay orbiters, two additional launch/arrival strategies have been developed to improve Entry, Descent, and Landing communications. This paper discusses the final launch/arrival strategy selected prior to the launch period down-selection that is scheduled to occur in August 2011. It is also important to note that this paper is an update to Ref. 1 in that it includes two new Type 1 launch periods and drops the Type 2 launch period that is no longer considered.
NASA Astrophysics Data System (ADS)
Ashley, J. W.; Tait, A. W.; Velbel, M. A.; Boston, P. J.; Carrier, B. L.; Cohen, B. A.; Schröder, C.; Bland, P.
2017-12-01
Exogenic rocks (meteorites) found on Mars 1) have unweathered counterparts on Earth; 2) weather differently than indigenous rocks; and 3) may be ideal habitats for putative microorganisms and subsequent biosignature preservation. These attributes show the potential of meteorites for addressing hypothesis-driven science. They raise the question of whether chondritic meteorites, of sufficient weathering intensity, might be considered as candidates for sample return in a potential future mission. Pursuant to this discussion are the following questions. A) Is there anything to be learned from the laboratory study of a martian chondrite that cannot be learned from indigenous materials; and if so, B) is the science value high enough to justify recovery? If both A and B answer affirmatively, then C) what are the engineering constraints for sample collection for Mars 2020 and potential follow-on missions; and finally D) what is the likelihood of finding a favorable sample? Observations relevant to these questions include: i) Since 2005, 24 candidate and confirmed meteorites have been identified on Mars at three rover landing sites, demonstrating their ubiquity and setting expectations for future finds. All have been heavily altered by a variety of physical and chemical processes. While the majority of these are irons (not suitable for recovery), several are weathered stony meteorites. ii) Exogenic reference materials provide the only chemical/isotope standards on Mars, permitting quantification of alteration rates if residence ages can be attained; and possibly enabling the removal of Late Amazonian weathering overprints from other returned samples. iii) Recent studies have established the habitability of chondritic meteorites with terrestrial microorganisms, recommending their consideration when exploring astrobiological questions. High reactivity, organic content, and permeability show stony meteorites to be more attractive for colonization and subsequent biosignature preservation than Earth rocks. iv) Compressive strengths of most ordinary chondrites are within the range of rocks being tested for the Mars 2020 drill bits, provided that sufficient size, stability, and flatness of a target can be achieved. Alternatively, the regolith collection bit could be employed for unconsolidated material.
Are you ready for Mars? - Main media events surrounding the arrival of ESA's Mars Express at Mars
NASA Astrophysics Data System (ADS)
2003-11-01
Launched on 2 June 2003 from Baikonur (Kazakhstan) on board a Russian Soyuz launcher operated by Starsem, the European probe -built for ESA by a European team of industrial companies led by Astrium - carries seven scientific instruments that will perform a series of remote-sensing experiments designed to shed new light on the Martian atmosphere, the planet’s structure and its geology. In particular, the British-made Beagle 2 lander, named after the ship on which Charles Darwin explored uncharted areas of the Earth in 1830, will contribute to the search for traces of life on Mars through exobiology experiments and geochemistry research. On Christmas Eve the Mars Express orbiter will be steered on a course taking it into an elliptical orbit, where it will safely circle the planet for a minimum of almost 2 Earth years. The Beagle 2 lander - which will have been released from the mother craft a few days earlier (on 19 December) - instead will stay on a collision course with the planet. It too should also be safe, being designed for atmospheric entry and geared for a final soft landing due to a sophisticated system of parachutes and airbags. On arrival, the Mars Express mission control team will report on the outcome of the spacecraft's delicate orbital insertion manoeuvre. It will take some time for Mars Express to manouvre into position to pick communications from Beagle 2. Hence, initially, other means will be used to check that Beagle 2 has landed: first signals from the Beagle 2 landing are expected to be available throughout Christmas Day, either through pick-up and relay of Beagle 2 radio signals by NASA’s Mars Odyssey, or by direct pick-up by the Jodrell Bank radio telescope in the UK. Mars Express will then pass over Beagle 2 in early January 2004, relaying data and images back to Earth. The first images from the cameras of Beagle 2 and Mars Express are expected to be available between the end of the year and the beginning of January 2004. The key dates relating to the arrival of Mars Express at its destination will be marked by several media events not to be missed. Pencil them into your diaries so as not to miss one of the most exciting events of the year. Tuesday 11 November Mars Express/Beagle 2 Media briefing Royal Society- 6-9 Carlton House Terrace, London 10:00 - 13:00 -Status report on the mission -Technical details on forthcoming Mars Express/Beagle 2 operations -News handling arrangements around Christmas Speakers: Prof. David Southwood, ESA Director of Science; Prof. Colin Pillinger, Beagle 2 Lander Lead Scientist; John Reddy, ESA Mars Express Principal Electrical Systems Engineer. Contact: Peter Barratt, PPARC Tel. + 44 (0) 1793 44 20 25 e-mail: Beagle2@pparc.ac.uk Wednesday 3 December ESA Media briefing ESA/ ESOC, Darmstadt, Germany 10:30 - 12:30 -Scientific outlook and expected results -Status report on the mission -Presentation of upcoming events Speakers: Rudolf Schmidt, ESA Mars Express Project Manager; Augustin Chicarro, ESA Mars Express Project Scientist. In addition, Mars Express scientists and Mission Control Managers will highlight their contribution to the Mars Express mission. In videoconference with ESA/Headquarters, Paris (F); ESA/ESTEC, Noordwijk (NL), ESA/ESRIN, Frascati (I). Contact: Jocelyne Landeau Constantin, ESA/ESOC Tel. + 49 6151 90 26 96 e-mail: Jocelyne.Landeau-Constantin@esa.int Friday 19 December Mars Express Orbiter/ Beagle 2 separation Mission Control Managers announce results of Beagle 2 separation from the mother craft. a.Event at ESA/ESOC, Darmstadt , Germany 08:30 - 14:00 Speakers: Prof. David Southwood, ESA Director of Science; Rudolf Schmidt, ESA Mars Express Project Manager Contact: Jocelyne Landeau Constantin, ESA/ESOC Tel. + 49 6151 90 26 96 e-mail: Jocelyne.Landeau-Constantin@esa.int b.Event in London -location and time t.b.c. Speaker: Prof. Colin Pillinger, Beagle 2 Lander Lead Scientist. Contact: Peter Barratt, PPARC Tel. + 44 (0) 1793 44 20 25 e-mail: Beagle2@pparc.ac.uk Thursday 25 December Christmas on Mars a.Media event at ESA/ ESOC, Darmstadt, Germany 03:00 - 07:00 Mars Express orbit insertion follow-up and Beagle 2 landing- Experience the accomplishment of one of the most exciting phases of the Mars Express mission in real time in the presence of Mission Control Managers and Scientists. 08:30 - 10:00 Christmas media brunch- Announcement of Mars orbit insertion results and Beagle 2 landing, with the participation of Prof. David Sourthwood, ESA Director of Science. Contact: Jocelyne Landeau Constantin, ESA/ESOC Tel. + 49 6151 90 26 96 e-mail: Jocelyne.Landeau-Constantin@esa.int b.Event in central London - location and time t.b.c. Contact: Peter Barratt, PPARC Tel. + 44 (0) 1793 44 20 25 e-mail: Beagle2@pparc.ac.uk Note to Editors: Timeline of expected main mission events 16 December All day Fine targeting of Mars Express to point at landing site - ranging 19 December 06:51 GMT/07:51 CET Decision to release Beagle 2 08:41 GMT/09:41 CET Eject command sent to Mars Express 10:15 GMT/11:15 CET First results of release available 20 December Re-targeting of Mars Express on an orbital insertion course 23 December Update on Mars Express Orbital Insertion Sequence 24 December Night Final decision to steer Mars Express into a Martian orbit 25 December 02:45 GMT/03:45 CET Beagle 2 landing on Mars 03:00 GMT/04:00 CET Mars Express Orbital Insertion 05:15 GMT/06:15 CET Mars Odyssey orbiter flight over Beagle 2 07:00 GMT/08:00 CET First evaluation of Mars Express orbital insertion 22:45 GMT/23:45 CET Possible direct capture of Beagle 2 signals at Jodrell Bank (UK)
NASA Astrophysics Data System (ADS)
2003-03-01
Mars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under
Semiannual final report, 1 October 1991 - 31 March 1992
NASA Technical Reports Server (NTRS)
1992-01-01
A summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period 1 Oct. 1991 through 31 Mar. 1992 is presented.
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume.
A desktop system of virtual morphometric globes for Mars and the Moon
NASA Astrophysics Data System (ADS)
Florinsky, I. V.; Filippov, S. V.
2017-03-01
Global morphometric models can be useful for earth and planetary studies. Virtual globes - programs implementing interactive three-dimensional (3D) models of planets - are increasingly used in geo- and planetary sciences. We describe the development of a desktop system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15'-gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. For two celestial bodies, we derived global digital models of several morphometric attributes, such as horizontal curvature, vertical curvature, minimal curvature, maximal curvature, and catchment area. To develop the system, we used Blender, the free open-source software for 3D modeling and visualization. First, a 3D sphere model was generated. Second, the global morphometric maps were imposed to the sphere surface as textures. Finally, the real-time 3D graphics Blender engine was used to implement rotation and zooming of the globes. The testing of the developed system demonstrated its good performance. Morphometric globes clearly represent peculiarities of planetary topography, according to the physical and mathematical sense of a particular morphometric variable.
A Network Mission: Completing the Scientific Foundation for the Exploration of Mars
NASA Technical Reports Server (NTRS)
W. B. Banerdt
2000-01-01
Despite recent setbacks and vacillations in the Mars Surveyor Program, in many respects the exploration of Mars has historically followed a relatively logical path. Early fly-bys provided brief glimpses of the planet and paved the way for the initial orbital reconnaissance of Mariner 9. The Viking orbiters completed the initial survey, while the Viking landers provided our first close-up look at the surface. Essentially, Mars Pathfinder served a similar role, giving a brief look at another place on the surface. And finally, Mars Global Surveyor (and the up-coming orbital mission in 2001) are taking the next step in providing in-depth, global observations of many of the fundamental characteristics of the planet, as well as selected high-resolution views of the surface. With this last step we are well on our way to acquiring the global scientific context that is necessary both for understanding Mars in general, its origin and evolution, and for use as a basis to plan and execute the next level of focused investigations. However, even with the successful completion of these missions this context will be incomplete. Whereas we now know a great deal about the surface of Mars in a global sense, we know very little about its interior, even at depths of only a meter or so. Also, as most of this information has been acquire by remote sensing, we still lack much of the bridging knowledge between the global view and the processes and character of the surface environments themselves. Thus, in many ways we lack sufficient fundamental understanding to intelligently cast the critical investigations into important questions of the origins and evolution of Mars in general, and in particular, life. The next step in building our understanding of Mars has been identified by several previous groups who were charged with creating a strategy for Mars exploration (e.g., COMPLEX, MarSWG, Planetary Roadmap Team). This is a so-called "network" mission, which places a large number of science platforms simultaneously on the surface.
Nitrogen and Martian Habitability: Insights from Five Years of Curiosity Measurements
NASA Astrophysics Data System (ADS)
Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C.; Ming, D. W.; Mahaffy, P. R.; Archer, D., Jr.; Franz, H. B.; Freissinet, C.; Jackson, W. A.; Conrad, P. G.; Glavin, D. P.; Trainer, M. G.; Malespin, C.; McAdam, A.; Eigenbrode, J. L.; Teinturier, S.; Manning, C.
2017-12-01
The detection of "fixed" N on Mars in the form of nitrate by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover [1] has major implications for martian habitability. "Follow the nitrogen" has been proposed as a strategy in the search for both extant and extinct life on Mars [e.g., 2]. Nitrogen is so crucial to life on Earth that life developed metabolic pathways to break the triple bond of N2 and "fix" atmospheric nitrogen to more biologically available molecules for use in proteins and informational polymers. Sequestration of nitrate in regolith has long been predicted to contribute to the removal of N from the martian atmosphere [e.g., 3], and our detections confirm that nitrogen fixation was occurring on ancient Mars. Detections of fixed nitrogen, particularly within the context of the habitable environment in Yellowknife Bay characterized by the MSL payload, are an important tool to assess whether life ever could have existed on ancient Mars. We present 5 years of analyses and interpretation of nitrate in solid martian drilled and scooped samples by SAM on MSL. Nitrate abundance reported by SAM in situ measurements ranges from non-detection to 681 ± 304 mg/kg [1,4] in the samples examined to date. The measured abundances are consistent with nitrogen fixation via impact generated thermal shock on ancient Mars and/or dry deposition from photochemistry of thermospheric NO. We review the integration of SAM data with terrestrial Mars analog work in order to better understand the timing of nitrogen fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts, such as perchlorate, may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars [4]. Finally, we present a comparison of isotopic composition (δ15N) of nitrate with δ15N of atmospheric nitrogen (δ15N ≈ 574‰, [5]), which can be used to constrain atmospheric loss of N2 and model the evolution of the atmosphere on Mars.
Chapman, M.G.; Gudmundsson, M.T.; Russell, A.J.; Hare, T.M.
2003-01-01
This article discusses image, topographic, and spectral data from the Mars Global Surveyor (MGS) mission that provide new information concerning the surface age, geomorphology, and topography of the Juventae Chasma/Maja Valles system. Our study utilizes data from two instruments on board MGS: images from the Mars Orbiter Camera (MOC) and topography from the Mars Orbiter Laser Altimeter (MOLA). Within Maja Valles we can now observe depositional bars with megaripples that unequivocally show catastrophic floods occurred in the channel. Viking impact crater densities indicated the chasma and channel floor areas were all one age (late Hesperian to Amazonian); however, MOC data indicate a marked difference in densities of small craters between Juventae Chasma, Maja Valles, and the channel debouchment area in Chryse Planitia basin. Although other processes may contribute to crater variability, young resurfacing events in the chasma and episodes of recent erosion at Maja Valles channel head may possibly account for the disparate crater densities along the chasma/channel system. Relatively young volcanic eruptions may have contributed to resurfacing; as in Juventae Chasma, a small possible volcanic cone of young dark material is observed. MOC data also indicate previously unknown interior layered deposit mounds in the chasma that indicate at least two periods of mound formation. Finally, MOLA topography shows that the entire floor of the chasma lies at the same elevation as the channel debouchment area in Chryse basin, resulting in a 3-km-high barrier to water flow out of the chasma. Blocked ponded water would rapidly freeze in the current (and likely past) climate of Mars. For catastrophic flow to occur in Maja Valles, some process is required to melt ice and induce floods out of the chasma. We suggest subice volcanic eruption and calculate estimates of water discharges and volumes that these eruptions might have produced.
Finite Element Modeling and Analysis of Mars Entry Aeroshell Baseline Concept
NASA Technical Reports Server (NTRS)
Ahmed, Samee W.; Lane, Brittney M.
2017-01-01
The structure that is developed and analyzed in this project must be able to survive all the various load conditions that it will encounter along its course to Mars with the minimal amount of weight and material. At this stage, the goal is to study the capability of the structure using a finite element model (FEM). This FEM is created using a python script, and is numerically solved in Nastran. The purpose of the model is to achieve an optimization of mass given specific constraints on launch and entry. The generation and analysis of the baseline Rigid Mid-Range Lift to Drag Ratio Aeroshell model is a continuation and an improvement on previous work done for the FEM. The model is generated using Python programming with the axisymmetric placement of nodes for beam and shell elements. The shells are assigned a honeycomb sandwich material with an aluminum honeycomb core and composite face sheets, and the beams are assigned the same material as the shell face sheets. There are two load cases assigned to the model: Earth launch and Mars entry. The Earth launch case consists of pressure, gravity, and vibration loads, and the Mars entry case consists of just pressure and gravity loads. The Earth launch case was determined to be the driving case, though the analyses are performed for both cases to ensure the constraints are satisfied. The types of analysis performed with the model are design optimization, statics, buckling, normal modes, and frequency response, the last of which is only for the Earth launch load case. The final results indicated that all of the requirements are satisfied except the thermal limits, which could not yet be tested, and the normal modes for the Mars entry. However, the frequency limits during Mars entry are expected to be much higher than the lower frequency limits set for the analysis. In addition, there are still improvements that can be made in order to reduce the weight while still meeting all requirements.
Jezero Crater, Mars, as a Compelling Site for Future In Situ Exploration
NASA Technical Reports Server (NTRS)
Goudge, T. A.; Ehlmann, B. L.; Fassett, C. I.; Head, J. W.; Mustard, J. F.; Mangold, N.; Gupta, S.; Milliken, R. E.; Brown, A. J.
2017-01-01
Jezero is a approximately 45 km diameter impact crater located in the Nili Fossae region of Mars. Jezero is an outstanding site to address key questions of ancient Mars climate, habitability, and volcanic history because: (a) It hosted an open-basin lake during the era of valley network formation [1,2], which ceased at approximately the Noachian-Hesperian boundary [3]. (b) It contains two delta deposits [1,4] with Fe/Mg-smectite and Mg-carbonate sediment [4-7] (the only exposure of lacus-trine shoreline carbonates seen so far on Mars). (c) The depositional environment and mineral assemblage of the delta are promising for the concentration and preservation of organic matter [5,8]. (d) The diverse geologic units in Jezero are in clear stratigraphic context [7]. The Jezero paleolake system has been thoroughly investigated at a variety of scales, including work on: the mineralogy of the delta deposits [4-6] and watershed [7], as well as the morphology and sedimentology of the basin [9] and delta deposits [1,4]. The geologic context of Jezero is also well-studied given the broad suite of alteration minerals exposed in the ancient stratigraphies of the Nili Fossae region [e.g., 6,10-13]. Here we present an overview of the units accessible for exploration in the Jezero basin, including questions and hypotheses that can be tested through analysis in situ and of returned samples. This is particularly timely given the upcoming Mars 2020 mission, for which Jezero is one of the final eight landing sites [14]. Primary science objectives for Mars 2020 are to: (1) characterize the geologic history of a site with "evidence of an astrobiologically-relevant ancient environment and geologic diversity"; (2) assess the habitability and "potential evidence of past life" in units with "high biosignature preservation potential"; and (3) cache scientifically compelling samples for potential return to Earth [15].
Mars Recent Climate Change Workshop
NASA Astrophysics Data System (ADS)
Haberle, Robert M.; Owen, Sandra J.
2012-11-01
Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can mobilize and redistribute volatile reservoirs both on and below the surface. And for Mars, these variations are large. In the past 20 My, for example, the obliquity is believed to have varied from a low of 15° to a high of 45° with a regular oscillation time scale of ~10^5 years. These variations are typically less than two degrees on the Earth. Mars, therefore, offers a natural laboratory for the study of orbitally induced climate change on a terrestrial planet. Finally, general circulation models (GCMs) for Mars have reached a level of sophistication that justifies their application to the study of spin axis/orbitally forced climate change. With recent advances in computer technology the models can run at reasonable spatial resolution for many Mars years with physics packages that include cloud microphysics, radiative transfer in scattering/absorbing atmospheres, surface heat budgets, boundary layer schemes, and a host of other processes. To be sure, the models will undergo continual improvement, but with carefully designed experiments they can now provide insights into mechanisms of climate change in the recent past. Thus, the geologic record is better preserved, the forcing function is large, and GCMs have become useful tools. While research efforts in each of these areas have progressed considerably over the past several decades, they have proceeded mostly on independent paths occasionally leading to conflicting ideas. To remedy this situation and accelerate progress in the area, the NASA/Ames Research Center's Mars General Circulation Modeling Group hosted a 3-day workshop on May 15-17, 2012 that brought together the geological and atmospheric science communities to collectively discuss the evidence for recent climate change on Mars, the nature of the change required, and how that change could be brought about. Over 50 researchers, students, and post-docs from the US, Canada, Europe, and Japan attended the meeting. The program and abstracts from the workshop are presented in this NASA/CP and are available to the public at http://spacescience.arc.nasa.gov/mars-climate-workshop-2012/
NASA Astrophysics Data System (ADS)
Carrillo-Sánchez, J. D.; Plane, J. M. C.; Withers, P.; Fallows, K.; Nesvorny, D.; Pokorný, P.
2016-12-01
Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Work is now in progress to detect the background metal layers produced by the influx of sporadic meteors. In this study we predict the likely appearance of these layers. The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFCs) and Halley-Type Comets (HTCs) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. The vertical injection profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the dominant contributor in the Martian's atmosphere is the JFCs over other sources. Finally, we explore the changes of the neutral and ionized Na, Mg and Fe layers over a diurnal cycle.
The Oscillating History in the Exploration of the Red Planet
NASA Astrophysics Data System (ADS)
Young, Suzanne M. M.
2009-10-01
The oldest, and very vague, map of Mars was drawn in 1659 by Christiaan Huygens, who like Galileo, was pointing his telescopes to nearly anything the sky presented him. In the 1700s, William Herschel, followed by Johann Hieronymus Schroeter, observed Mars extensively and attempted to map its features. In the mid-1800s, Warren De la Rue refined the features on maps of Mars enough to first display, unknowingly, the north and south polar glaciers of Mars. In 1877 Giovanni Virginio Schiaparelli observed a dense network of linear structures on the surface of Mars which he called ``canali'' (Italian: meaning ``channels'', but mistranslated as ``canals''). Schiaparelli also named the ``seas'' and ``continents'' of Mars. With canals and seas, massive speculation began about water and life on Mars, perhaps even a civilization responsible for the canals (and, one might hope, with gondolas and singing gondoliers). Percival Lowell was captivated by the implications of these purported canals and spent much of his life trying to prove the existence of intelligent life on the red planet in the early 1900s. On October 30, 1938, Orson Welles broadcast on radio an adaptation of H.G. Wells' novel ``War of the Worlds''. This caused some listeners to panic. The assumption that Martians were benevolent was severely dented. With NASA's early exploration of Mars - Mariner Missions in the 1960s, and the Viking Missions in the 1970s - Mars was returned to a desolated place, although it now seems possible that the Viking landers were literally inches away from discovering water ice on Mars, finally encountered in abundance over 30 years later by the Phoenix Mission. With the detection of water by the Odyssey Orbiter, geological evidence for ancient water found by the Rovers, the highest resolution images ever taken of Mars by the Mars Reconnaissance Orbiter, and the most recent discoveries by the Phoenix Lander, theories have almost come full circle in returning Mars to a place with water, and possibly microbial (presumably unintelligent) life. The Phoenix Mars Scout landed on 25 May 2008 at the northern polar latitude of 68^oN. Analyses included excavating the Mars regolith with a robotic arm and delivering samples to payload instruments including a scanning calorimeter-mass spectrometer (TEGA) and an electrochemical analyzer, (WCL). The work reported here addresses the implications of the Phoenix observations for the prospects of Mars biohability. TEGA confirmed the presence of water ice in the regolith, not bound as a chemical ligand. The salts by WCL offer evidence for the presence in the past of liquid water on Mars. Sources of bio-energy, key bioelements and ions, and environmental toxicity and pH will also be discussed with our current understanding of the red planet.
Mission analysis for the Martian Moons Explorer (MMX) mission
NASA Astrophysics Data System (ADS)
Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro
2018-05-01
Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.
The geologic development of Mars - A review
NASA Technical Reports Server (NTRS)
Mutch, T. A.; Saunders, R. S.
1976-01-01
The overall view of Mars has changed from earthlike in the prespacecraft era to moonlike following the flyby missions and finally to a planet with intermediate characteristics. There are many impact craters as on the moon, but tectonic and volcanic features resembling structures on earth are also present. However, there is a lack of evidence for the compressional deformation associated with terrestrial plate tectonics and continental drift. Current analyses indicate that Mars has a differentiated interior with a crust and mantle and perhaps a core. Whenever the nature of interior processes, whether overall mantle expansion, plumes, or full-scale convection, the effects at the surface have been predominantly vertical with formation of broad regions of uplift and depression. One of the results is hemispheric asymmetry with cratered terrain in the south and younger uncratered plains in the north.
NASA Astrophysics Data System (ADS)
Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.
2012-09-01
The optical depth sensor (ODS) is designed to retrieve the optical depth of the dust layer and to characterize the high altitude clouds on Mars. It was developped initially for the mission MARS 96, and also was included in the payload of several other missions. The sensor was finally built and used for a field experiment in Africa in order to validate the concept and test the performance. In this work we present main principle of the retrieval, the instrumental concept and the result of the tests performed during the 2004-2005 winter field experiment. It is now included in the package DREAM, which is part of the payload of the EDM on Mars 2016 and associated to two terrestrial campaigns, in tropical environment (Brasil) and in the arctic environment.
NASA Astrophysics Data System (ADS)
Goulpeau, G.; Berthelier, J.-J.; Covinhes, J.; Chassefière, E.; Jambon, A.; Agrinier, P.; Sarda, Ph.
2003-04-01
An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe), stable isotopes (C, H, O, N) and trace constituents of astrobiological interest, like CH4, H2CO, N2O, H2S, will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. Isotopic ratios have to be measured with an accuracy of about 1‰, or better, in order to provide a clear diagnostic of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns, finally to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. In order to reach these high sensitivity levels, two spectrometers of complitely different conceptions have been developed. The first one is constituted of conscutive electrostatic and magnetic sectors. It’s an application of E. G. Johnson and A. O. Nier’s previous work in that domain. Theirs parameters have been calculated in a way both angular and energetic optical aberrations from the two fields compensate each other to the second order. Simulated flights of ions in the resulting electromagnetic optic forshadow the effectiveness of the instrument. The second spectrometer is of the time of flight type. Its developpement, as a possible alternative to the magnetic system, shows the TOF spectrometer as an instrument allying great sensitivity and reduiced weight and dimensions.
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Cabane, M.; Webster, C. R.
2008-01-01
The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.
1997-10-14
The interior of Mars is simply modeled as a core and mantle with a thin crust, similar to Earth. Mars' size and total mass have been determined by previous missions. Given four parameters, the core size and mass, and mantle size and mass can be determined. The combination of Pathfinder Doppler data with earlier data from the Viking landers has determined a third parameter, the moment of inertia, through measurement of Mars' precession rate. A fourth measurement is needed to complete the interior model. This may be achieved through future Doppler tracking of Pathfinder, since the presence of a fluid core may be detectable through its effect on Mars' nutation. The determination of the moment of inertia is a significant constraint on possible models for Mars' interior. If the core is as dense as possible (i.e. completely iron) and the mantle is similar to Earth's (or similar to the SNC meteorites thought to originate on Mars) then the minimum core radius is about 1300 km. If the core is made of less-dense material (i.e. a mixture of iron and sulfur) then the core radius is probably no more than 2000 km. Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00974
Tidal Excitation of the Core Dynamo of Mars
NASA Astrophysics Data System (ADS)
Seyed-Mahmoud, B.; Arkani-Hamed, J.; Aldridge, K.
2007-05-01
The lack of magnetic anomalies inside the giant impact basins Hellas, Isidis, Utopia and Argyre, inside the northern low lands, over the Tharsis bulge, and over the Tharsis and Olympus mounts suggests that the core field of Mars ceased to exist by about 4 Gyr ago, almost when the giant basins were formed. On the other hand, the giant basins are located on a great circle, implying that the basins were likely produced by fragments of a large asteroid that broke apart as it entered the Roche limit of Mars. This scenario offers a causative relationship for the apparent coincidence of the formation of the giant basins and the cessation of the core dynamo. We suggest that the core dynamo was excited by tidally driven elliptical instability in the Martian core. The breaking of the asteroid and its final impact on Mars eliminated the excitation and thus killed the dynamo. We show that a retrograde asteroid captured in a Keplerian orbit around Mars at a distance of about 50,000-100,000 km could orbit Mars for several hundreds of millions of years before impacting the planet due to the tidal coupling of the asteroid and Mars. Because of relatively very short growth time of the elliptical instability, less than 50,000 years, the asteroid was capable of retaining the elliptical instability and energizing the core dynamo for a geologically long period prior to 4 Ga. Our laboratory observations of a parametric instability of a rotating incompressible fluid, contained in a flexible-walled spherical cavity, confirm the possibility that an early Martian dynamo could have been powered by tidal straining.
Alternative Strategies for Exploring Mars and the Moons of Mars
NASA Technical Reports Server (NTRS)
Drake, Bret G.; Baker, John D.; Hoffman, Stephen J.; Landau, Damon; Voels, Stephen A.
2012-01-01
The possible human exploration of Mars represents one of civilization s next major challenges and is an enterprise that would confirm the potential of humans to leave our home planet system and make our way outward into the cosmos. As exploration endeavors begin to set sights beyond low Earth orbit, potential exploration of the surface of Mars continues to serve as the horizon destination to help focus technology development and research efforts. Recent thoughts on exploration follow a flexible path approach beginning with missions that do not extend down into planetary gravity wells including surface exploration. Consistent with that flexible path strategy is the notion of exploring the moons of Mars, namely Phobos and Deimos, prior to exploring the surface. The premise behind this thought is that exploring Mars moons would be less costly and risky since these missions would avoid the difficulties associated with landing on the surface and subsequent ascent back to orbit. A complete assessment of this strategy has not been performed in the context of the flexible path approach and is needed to clearly understand all of the advantages and disadvantages. This paper examines the strategic implications of possible human exploration of the moons of Mars as a potential prelude to surface exploration. Various operational concepts for Phobos and Deimos exploration that include the infusion of different propulsion technologies are assessed in terms of mission duration, technologies required, overall risk and difficulty, and operational construct. Finally, the strategic implications of each concept are assessed to determine the overall key challenges and strategic links to other key flexible path destinations.
Alternative Strategies for Exploring Mars and the Moons of Mars
NASA Technical Reports Server (NTRS)
Drake, Bret G.; Baker, John D.; Hoffman, Stephen J.; Landau, Damon; Voels, Stephen A.
2012-01-01
The human exploration of Mars represents one of civilizations next major challenges and is an enterprise that would confirm the potential of humans to leave our home planet system and make our way outward into the cosmos. As exploration endeavors begin to set sights beyond low-Earth orbit, exploration of the surface of Mars continues to serve as the horizon destination to help focus technology development and research efforts. Recent thoughts on exploration follow a flexible path approach beginning with missions which do not extend down into planetary gravity wells including surface exploration. Consistent with that flexible path strategy is the notion of exploring the moons of Mars, namely Phobos and Deimos, prior to exploring the surface. The premise behind this thought is that exploring Mars moons would be less costly and risky since these missions would avoid the difficulties associated with landing on the surface and subsequent ascent back to orbit. A complete assessment of this strategy has not been performed in the context of the flexible path approach and is needed to clearly understand all of the advantages and disadvantages. This paper examines the strategic implications of human exploration of the moons of Mars as a potential prelude to surface exploration. Various operational concepts for Phobos and Deimos exploration that include the infusion of different propulsion technologies are assessed in terms of mission duration, technologies required, overall risk and difficulty, and operational construct. Finally, the strategic implications of each concept are assessed to determine the overall key challenges and strategic links to other key flexible path destinations.
Advance Inspection of NASA Next Mars Landing Site
2017-03-29
This map shows footprints of images taken from Mars orbit by the High Resolution Imaging Science Experiment (HiRISE) camera as part of advance analysis of the area where NASA's InSight mission will land in 2018. The final planned image of the set is targeted to fill in the yellow-outlined rectangle on March 30, 2017. HiRISE is one of six science instruments on NASA's Mars Reconnaissance Orbiter, which reached Mars in 2006 and surpassed 50,000 orbits on March 27, 2017. The map covers an area about 100 miles (160 kilometers) across. HiRISE has been used since 2006 to inspect dozens of candidate landing sites on Mars, including the sites where the Phoenix and Curiosity missions landed in 2008 and 2012. The site selected for InSight's Nov. 26, 2018, landing is on a flat plain in the Elysium Planitia region of Mars, between 4 and 5 degrees north of the equator. HiRISE images are detailed enough to reveal individual boulders big enough to be a landing hazard. The March 30 observation that completes the planned advance imaging of this landing area brings the number of HiRISE images of the area to 73. Some are pairs covering the same ground. Overlapping observations provide stereoscopic, 3-D information for evaluating characteristics such as slopes. On this map, coverage by stereo pairs is coded in pale blue, compared to the gray-green of single HiRISE image footprints. The ellipses on the map are about 81 miles (130 kilometers) west-to-east by about 17 miles (27 kilometers) north-to-south. InSight has about 99 percent odds of landing within the ellipse for which it is targeted. The three ellipses indicate landing expectations for three of the possible InSight launch dates: white outline for launch at the start of the launch period, on May 5, 2018; blue for launch on May 26, 2018; orange for launch on June 8, 2018. InSight -- an acronym for "Interior Exploration using Seismic Investigations, Geodesy and Heat Transport" -- will study the deep interior of Mars to improve understanding about how rocky planets like Earth formed and evolved. http://photojournal.jpl.nasa.gov/catalog/PIA21489
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2007-01-01
Vernal Crater is a Mars Science Laboratory (MSL) landing site candidate providing relatively easy access to extensively layered sediments as well as potential lake deposits. Sediments of Vernal Crater are 400-1200 m below those being investigated by Opportunity in Meridiani Planum, and as such would allow study of significantly older geologic units, if Vernal Crater were selected for MSL. The location of Vernal Crater in SW Arabia Terra provides exceptional scientific interest, as rampart craters and gamma-ray spectrometer (GRS) data from the region suggest a long history of ice/fluids in the subsurface. The potential value of this MSL candidate is further enhanced by reports of atmospheric methane over Arabia, as any insight into the source of that methane would significantly increase our understanding of Mars. Finally, should MSL survive beyond its prime mission, the gentle slope within Vernal Crater would provide a route out of the crater for study of the once ice/fluid-rich plains.
Nuclear thermal propulsion transportation systems for lunar/Mars exploration
NASA Technical Reports Server (NTRS)
Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.
1992-01-01
Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.
Enhancing Science and Automating Operations using Onboard Autonomy
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Chien, Steve; Tran, Daniel; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Mandl, Dan; Szwaczkowski, Joseph; Frye, Stuart; Shulman, Seth
2006-01-01
In this paper, we will describe the evolution of the software from prototype to full time operation onboard Earth Observing One (EO-1). We will quantify the increase in science, decrease in operations cost, and streamlining of operations procedures. Included will be a description of how this software was adapted post-launch to the EO-1 mission, which had very limited computing resources which constrained the autonomy flight software. We will discuss ongoing deployments of this software to the Mars Exploration Rovers and Mars Odyssey Missions as well as a discussion of lessons learned during this project. Finally, we will discuss how the onboard autonomy has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web to study volcanoes, floods, sea-ice topography, and wild fires. As demonstrated on EO-1, onboard autonomy is a revolutionary advance that will change the operations approach on future NASA missions...
New insights on the collisional escape of light neutrals from Mars
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Zahnle, Kevin
2017-04-01
Photodissociative recombination (PDR) of atmospheric molecules on Mars is a major mechanism of production of hot (suprathermal) atoms with sufficient kinetic energy to either directly escape to space or to eject other atmospheric species. This collisional ejection mechanism is important for evaluating the escape rates of all light neutrals that are too heavy to escape via Jeans escape. In particular, it plays a role in estimating the total volume of escaped water constituents (i.e., O and H) from Mars, as well as influences evolution of the atmospheric [D]/[H] ratio1. We present revised estimates of total collisional escape rates of neutral light elements including H, He, and H2, based on recent (years 2015-2016) atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. We also estimate the contribution to the collisional escape from Energetic Neutral Atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases2,3. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism1,3. The escape rates are evaluated using a 1D model of the atmosphere supplemented with MAVEN measurements of the neutrals. Finally, new estimates of contributions of these non-thermal mechanisms to the estimated PDR escape rates from young Mars4 are presented. [1] M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012). [2] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014). [3] M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", Icarus 284, 90 (2017). [4] J. Zhao, F. Tian, Y. Ni, and X. Huang, "DR-induced escape of O and C from early Mars", Icarus 284, 305 (2017).
Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.
Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu
2016-10-01
Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.
Qualification of Engineering Camera for Long-Duration Deep Space Missions
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Maki, Justin N.; Pourangi, Ali M.; Lee, Steven W.
2012-01-01
Qualification and verification of advanced electronic packaging and interconnect technologies, and various other types of hardware elements for the Mars Exploration Rover s Spirit and Opportunity (MER)/Mars Science Laboratory (MSL) flight projects, has been performed to enhance the mission assurance. The qualification of hardware (engineering camera) under extreme cold temperatures has been performed with reference to various Mars-related project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times the total number of expected diurnal temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware, including all relevant manufacturing, ground operations, and mission phases. Qualification has been performed by subjecting above flight-like hardware to the environmental temperature extremes, and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Engineering camera packaging designs, charge-coupled devices (CCDs), and temperature sensors were successfully qualified for MER and MSL per JPL design principles. Package failures were observed during qualification processes and the package redesigns were then made to enhance the reliability and subsequent mission assurance. These results show the technology certainly is promising for MSL, and especially for longterm extreme temperature missions to the extreme temperature conditions. The engineering camera has been completely qualified for the MSL project, with the proven ability to survive on Mars for 2010 sols, or 670 sols times three. Finally, the camera continued to be functional, even after 2010 thermal cycles.
OPERATION CASTLE. Radiological Safety. Volume 1
1985-09-01
OPERATION CASTLE Radiological Safety Final Report Volume I Headquarters Joint Task Force Seven Technical Branch, J-3 Division Washington, DC...Spring 1954 EXTRACTED VERSION DTIC -uECTE MAR031986 NOTICE: This is an extract of Operation CASTLE, Radiological Safety, Final Report, Volume I ...SYMBOL (If jpQiictbl») ■ i PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c AOORESS (G(y, SU(t tncl ZIRCod») 10 SOURCE OF FUNDING NUMBERS PROGRAM
Quantification of water content by laser induced breakdown spectroscopy on Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapin, W.; Meslin, P. -Y.; Maurice, S.
Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed in this paper. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify amore » normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Finally, moreover, the calibration curve obtained is relatively independent of the samples types.« less
Quantification of water content by laser induced breakdown spectroscopy on Mars
Rapin, W.; Meslin, P. -Y.; Maurice, S.; ...
2017-02-12
Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed in this paper. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify amore » normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Finally, moreover, the calibration curve obtained is relatively independent of the samples types.« less
1998-12-11
KENNEDY SPACE CENTER, FLA. -- After launch tower retraction, the Boeing Delta II rocket carrying NASA's Mars Climate Orbiter undergoes final preparations for liftoff on Dec. 11, 1998, at Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: The JPL Experience
NASA Technical Reports Server (NTRS)
Han, Dongsuk; Highsmith, Dolan; Jah, Moriba; Craig, Diane; Border, James; Kroger, Peter
2004-01-01
The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.
NASA Technical Reports Server (NTRS)
1998-01-01
Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.
Performance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit
NASA Technical Reports Server (NTRS)
Flynn, Michael; Tleimat, Maher; Nalette, Tim; Quinn, Gregory
2005-01-01
This paper describes the results of performance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed-a grant-to develop a next generation VPCAR system. This grant concluded with the shipment of the final deliverable to NASA on 8/31/03. This paper presents the results of mass, power, volume, and acoustic measurements for the delivered system. Product water purity analysis for a Mars transit mission and a simulated planetary base wastewater ersatz are also provided.
Automated Purgatoid Identification: Final Report
NASA Technical Reports Server (NTRS)
Wood, Steven
2011-01-01
Driving on Mars is hazardous: technical problems and unforeseen natural hazards can end a mission quickly at the worst, or result in long delays at best. This project is focused on helping to mitigate hazards posed to rovers by purgatoids: small (less than 1 m high, less than 10 m wide), ripple-like eolian bedforms commonly found scattered across the Meridiani Planum region of Mars. Due to the poorly consolidated nature of purgatoids and multiple past episodes of rovers getting stuck in them, identification and avoidance of these eolian bedforms is an important feature of rover path planning (NASA, 2011).
A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Rummel, John D.; Race, Margaret S.; DeVinenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.
2002-01-01
This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth; it is the final product of the Mars Sample Handling Protocol Workshop Series, convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed for the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination The reference numbers for the proceedings from the five individual Workshops.
Mass Property Measurements of the Mars Science Laboratory Rover
NASA Technical Reports Server (NTRS)
Fields, Keith
2012-01-01
The NASA/JPL Mars Science Laboratory (MSL) spacecraft mass properties were measured on a spin balance table prior to launch. This paper discusses the requirements and issues encountered with the setup, qualification, and testing using the spin balance table, and the idiosyncrasies encountered with the test system. The final mass measurements were made in the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center on the fully assembled and fueled spacecraft. This set of environmental tests required that the control system for the spin balance machine be at a remote location, which posed additional challenges to the operation of the machine
As Far as Opportunity's Eye Can See
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click on the image for As Far as Opportunity's Eye Can See (QTVR) This expansive view of the martian real estate surrounding the Mars Exploration Rover Opportunity is the first 360 degree, high-resolution color image taken by the rover's panoramic camera. The airbag marks, or footprints, seen in the soil trace the route by which Opportunity rolled to its final resting spot inside a small crater at Meridiani Planum, Mars. The exposed rock outcropping is a future target for further examination. This image mosaic consists of 225 individual frames.The Role of Cooling in Pahohoe Emplacement on Planetary Surfaces.
NASA Technical Reports Server (NTRS)
Glaze, L. S.; Baloga, S. M.
2015-01-01
Abundant evidence is emerging that many lavas on Mars were emplaced as slow-moving pahoehoe flows. Models for such scenarios contrast sharply with those for steep-sloped applications where gravity is the dominant force. The mode of flow emplacement on low slopes is characterized by toe formation and inflation. In the latter phase of pahoehoe flow emplacement, stagnation, inflation, and toe formation are most closely tied to the final topography, dimensions, and morphologic features. This mode of emplacement is particularly relevant to the low slopes of planetary surfaces such as the plains of Mars, Io and the Moon.
Sliding mode control for Mars entry based on extended state observer
NASA Astrophysics Data System (ADS)
Lu, Kunfeng; Xia, Yuanqing; Shen, Ganghui; Yu, Chunmei; Zhou, Liuyu; Zhang, Lijun
2017-11-01
This paper addresses high-precision Mars entry guidance and control approach via sliding mode control (SMC) and Extended State Observer (ESO). First, differential flatness (DF) approach is applied to the dynamic equations of the entry vehicle to represent the state variables more conveniently. Then, the presented SMC law can guarantee the property of finite-time convergence of tracking error, which requires no information on high uncertainties that are estimated by ESO, and the rigorous proof of tracking error convergence is given. Finally, Monte Carlo simulation results are presented to demonstrate the effectiveness of the suggested approach.
Mars Science Laboratory Differential Restraint: The Devil is in the Details
NASA Technical Reports Server (NTRS)
Jordan, Elizabeth
2012-01-01
The Differential Restraint, a mechanism used on the Mars Science Laboratory (MSL) rover to maintain symmetry of the mobility system during the launch, cruise, and entry descent and landing phases of the MSL mission, completed nearly three full design cycles before a finalized successful design was achieved. This paper address the lessons learned through these design cycles, including three major design elements that can easily be overlooked during the design process, including, tolerance stack contribution to load path, the possibility of Martian dirt as a failure mode, and the effects of material properties at temperature extremes.
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.
2015-01-01
The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion/Service module on the top of the vehicle. Multiple modular habitat options for Mars surface and in-space missions are also considered with various functionality and volume splits between modules to find the best balance of reducing the single largest mass which must be delivered to a destination and reducing the number of separate elements which must be launched. Analysis results presented for each of these concepts in this paper include mass/volume/power sizing using parametric sizing tools, identification of unique operational constraints, and limited comments on the additional impacts of reusability/dormancy on system design. Finally, recommendations will be made for promising solutions which will be carried forward for consideration in the Evolvable Mars Campaign work.
Museum Exhibitions: Optimizing Development Using Evaluation
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.
2002-12-01
The Space Science Institute (SSI) of Boulder, Colorado, has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop a third exhibit called InterActive Earth. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The development of these exhibitions included a comprehensive evaluation plan. I will report on the important role evaluation plays in exhibit design and development using MarsQuest and InterActive Earth as models. The centerpiece of SSI's Mars Education Program is the 5,000-square-foot traveling exhibition, MarsQuest: Exploring the Red Planet, which was developed with support from the National Science Foundation (NSF), NASA, and several corporate donors. The MarsQuest exhibit is nearing the end of a highly successful, fully-booked three-year tour. The Institute plans to send an enhanced and updated MarsQuest on a second three-year tour and is also developing Destination: Mars, a mini-version of MarsQuest designed for smaller venues. They are designed to inspire and empower participants to extend the excitement and science content of the exhibitions into classrooms and museum-based education programs in an ongoing fashion. The centerpiece of the InterActive Earth project is a traveling exhibit that will cover about 4,000 square feet. The major goal of the proposed exhibit is to introduce students and the public to the complexity of the interconnections in the Earth system, and thereby, to inspire them to better understand planet Earth. Evaluation must be an integral part of the exhibition development process. For MarsQuest, a 3-phase evaluation (front end, formative and summative) was conducted by Randi Korn and Associates in close association with the development team. Sampling procedures for all three evaluation phases ensured the participation of all audiences, including family groups, students, and adults. Each phase of evaluation focused on the goals and objectives of the MarsQuest project. For example, the front end evaluation focused on uncovering visitors' misconceptions about the planets Mars and Earth and determining how the MarsQuest exhibit could address these. The formative evaluation focused on testing how well a selection of prototyped exhibition components followed through with creating quality intergenerational experiences and learning. The summative evaluation examined the quality of science learning and critical thinking that took place as a result of visiting the final MarsQuest exhibition. Results from RK&A's evaluation of MarsQuest and their front end evaluation of InterActive Earth will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavin, J.A.; Schwingenschuh, K.; Riedler, W.
1991-07-01
Observations taken by Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 are used to model the shape, position, and variability of the Martian bow shock for the purpose of better understanding the interaction of this planet with the solar wind. Emphasis is placed upon comparisons with the results of similar analyses at Venus, the only planet known to have no significant intrinsic magnetic field. Excellent agreement is found between Mars bow shock models derived from the earlier Mariner-Mars data set (24 crossings in 1964-1974) and the far more extensive observations recently returned by Phobos 2 (94 crossingsmore » in 1989). The best fit model to the aggregate data set locates the subsolar bow shock at a planetocentric distance of 1.56 {plus minus} 0.04 R{sub M}. Mapped into the terminator plane, the average distance to the Martian bow shock is 2.66 {plus minus} 0.05 R{sub M}. Compared with Venus, the bow wave at Mars is significantly more distant in the terminator plane, 2.7 R{sub M} versus 2.4 R{sub V}, and over twice as variable in location with a standard deviation of 0.49 R{sub M} versus 0.21 R{sub V} at Venus. The Mars 2, 3, and 5 and Phobos 2 data also contain a small number of very distant dayside shock crossings with inferred subsolar obstacle radii derived from gasdynamic modeling of 2,000 to 4,000 km. Such distant bow shock occurrences do not appear to take place at Venus and may be associated with the expansion of a small Martian magnetosphere under the influence of unusually low wind pressure. Finally, the altitude of the Venus bow shock has a strong solar cycle dependence believed to be due to the effect of solar EUV on the neutral atmosphere and mass loading. Comparison of the Phobos 2 shock observations near solar maximum (R{sub z} = 141) with the Mariner-Mars measurements taken much farther from solar maximum (R{sub z} = 59) indicates that the Martian bow shock location is independent of solar cycle phase and, hence, solar EUV flux.« less
NASA Astrophysics Data System (ADS)
Niedermaier, G.; Wählisch, M.; van Gasselt, S.; Scholten, F.; Wewel, F.; Roatsch, T.; Matz, K.-D.; Jaumann, R.
We present a new topographic image map of Mars using 8 bit data obtained from the Mars Orbiter Camera (MOC) of the Mars Global Surveyor (MGS) [1]. The new map covers the Mars surface from 270 E (90 W) to 315 E (45 W) and from 0 North to 30 South with a resolution of 231.529 m/pixel (256 pixel/degree). For map creation, digital image processing methods have been applied. Furthermore, we managed to de- velop a general processing method for creating image mosaics based on MOC data. From a total amount of 66,081 images, 4,835 images (4,339 Context and 496 Geodesy images [3]) were finally used for the creation of the mosaic. After radiometric and brightness corrections, the images were Mars referenced [5], geometrically [6] cor- rected and sinusoidal map projected [4] using a global Martian Digital Terrain Model (DTM), developed by the DLR and based on MGS Mars Orbiter Laser Altimeter (MOLA) topographic datasets [2]. Three layers of MOC mosaics were created, which were stacked afterwards. The upper layer contains the context images with a resolution < 250 m/pixel. The middle layer contains the images of the Geodesy Campaign with a resolution < 250 m/pixel. The bottom layer consists of the Geodesy Campaign im- ages with a resolution > 250 m/pixel and < 435 m/pixel. The contour lines have been extracted from the global Martian DTM, developed at DLR. The contour data were imported as vector data into Macromedia Freehand as separate layer and corrected interactively. The map format of 1,15 m × 1,39 m represents the western part of the MDIM2 j quadrangle. The map is used for geological and morphological interpreta- tions in order to review and improve our current Viking-based knowledge about the Martian surface. References: [1] www.msss.com [2] wufs.wustl.edu [3] Caplinger, M. and M. Malin, The Mars Orbiter Camera Geodesy Campaign, JGR, in press. [4] Scholten, F., Vol XXXI, Part B2, Wien, 1996, p.351-356 [5] naif.jpl.nasa.gov [6] Kirk, R.L. et al., Geometric Calibration of the Mars Orbiter Cameras and Coalignment with Mars Orbiter Laser Altimeter, (abstract #1863), LPSC XXXII, 2001
Mars-GRAM: Increasing the Precision of Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.
2010-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, density factor values were determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with TES observations for MapYears 1 and 2 at comparable dust loading. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths.
2010-03-01
This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.
2016-10-01
Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.
Mitchell, D M; Montabone, L; Thomson, S; Read, P L
2015-01-01
Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.
Mitchell, D M; Montabone, L; Thomson, S; Read, P L
2015-01-01
Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth. PMID:26300564
Pichi, Francesco; Specchia, Claudia; Vitale, Lucia; Lembo, Andrea; Morara, Mariachiara; Veronese, Chiara; Ciardella, Antonio P; Nucci, Paolo
2014-03-01
To test a combination of dexamethasone intravitreal implant with macular grid laser for macular edema in patients with branch retinal vein occlusion (BRVO). Prospective interventional, randomized, multicenter study. Patients with macular edema secondary to BRVO underwent an Ozurdex intravitreal implant at baseline. After 1 month, patients were randomly assigned to 2 study groups. Patients in Group 1 were followed up monthly and retreated with Ozurdex implant whenever there was a recurrence of macular edema or a decrease in best-corrected visual acuity (BCVA). In Group 2 patients macular grid laser was performed between weeks 6 and 8. After that, patients were followed up and retreated as for Group 1. In Group 1 at 4 months, mean BCVA was 0.49 ± 0.35 logMAR and central retinal thickness (CRT) was 391 ± 172 μm; both improved significantly at 6 months, to 0.32 ± 0.29 logMAR and 322 ± 160 μm, respectively. In Group 2, CRT was reduced significantly to 291 ± 76 μm at 4 months, and BCVA improved to 0.25 ± 0.20 logMAR. At the final visit, BCVA was 0.18 ± 0.14 logMAR and mean CRT was 271 ± 44 μm. The number of Ozurdex implants at 4 months was 12 of 25 (48%) in Group 1 patients vs 3 of 25 (12%) in Group 2 patients (P = .012). At 6 months 3 of 25 patients (12%) in Group 1 vs 0 of 25 (0%) in Group 2 (P = .23) were retreated. The combination of Ozurdex implant and macular grid laser is synergistic in increasing BCVA and lengthening the time between injections. Copyright © 2014 Elsevier Inc. All rights reserved.
Integrated vision-based GNC for autonomous rendezvous and capture around Mars
NASA Astrophysics Data System (ADS)
Strippoli, L.; Novelli, G.; Gil Fernandez, J.; Colmenarejo, P.; Le Peuvedic, C.; Lanza, P.; Ankersen, F.
2015-06-01
Integrated GNC (iGNC) is an activity aimed at designing, developing and validating the GNC for autonomously performing the rendezvous and capture phase of the Mars sample return mission as defined during the Mars sample return Orbiter (MSRO) ESA study. The validation cycle includes testing in an end-to-end simulator, in a real-time avionics-representative test bench and, finally, in a dynamic HW in the loop test bench for assessing the feasibility, performances and figure of merits of the baseline approach defined during the MSRO study, for both nominal and contingency scenarios. The on-board software (OBSW) is tailored to work with the sensors, actuators and orbits baseline proposed in MSRO. The whole rendezvous is based on optical navigation, aided by RF-Doppler during the search and first orbit determination of the orbiting sample. The simulated rendezvous phase includes also the non-linear orbit synchronization, based on a dedicated non-linear guidance algorithm robust to Mars ascent vehicle (MAV) injection accuracy or MAV failures resulting in elliptic target orbits. The search phase is very demanding for the image processing (IP) due to the very high visual magnitude of the target wrt. the stellar background, and the attitude GNC requires very high pointing stability accuracies to fulfil IP constraints. A trade-off of innovative, autonomous navigation filters indicates the unscented Kalman filter (UKF) as the approach that provides the best results in terms of robustness, response to non-linearities and performances compatibly with computational load. At short range, an optimized IP based on a convex hull algorithm has been developed in order to guarantee LoS and range measurements from hundreds of metres to capture.
Effect of the crushing process on Raman analyses: consequences for the Mars 2018 mission
NASA Astrophysics Data System (ADS)
Foucher, Frédéric; Westall, Frances; Bost, Nicolas; Rull, Fernando; Lopez-Reyes, Guillermo; Rüßmann, Philipp
2012-07-01
The payload of the 2018 Mars mission will comprise a Raman spectrometer as part of its instrument suite. Analyses with this instrument will be made on crushed samples. The crushing process will cause loss of important structural context and could change the physical properties of the studied materials resulting in misinterpretation of the data. We therefore investigated the influence of granulometry on the Raman spectrum of various minerals and rocks using laboratory equipment and the RLS Raman instrument being developed for the Pasteur payload of the ExoMars mission. The aim was to determine what influence the crushing process could have on the correct identification of rocks and minerals and the detection of possible traces of life. Whatever the sample type, our study shows that the crushing process leads to a strong increase in the background level and to a decrease in the signal/noise ratio. Moreover, for certain minerals, the Raman spectra can be significantly modified: the peaks are shifted and broadened and new peaks can appear. Since mineral identification using Raman spectroscopy is made by comparison with database spectra, this kind of change could lead to misinterpretation of the spectra and thus must be taken into account during the in situ investigation. However, the results obtained with the ExoMars instrument showed that, probably due to its irradiance and resolution characteristics, these effects are relatively limited and most of the time not observed with the RLS instrument. Finally, the loss of texture associated with the crushing process is shown to complicate identification of rocks with subsequent consequences for the eventual detection and interpretation of past traces of life. But, on the other hand, it is shown that the mixing of the components in the powder could facilitate the detection of minor phases.
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D.; Haranas, Maria K.; Kirk, Samantha
2014-11-01
In this chapter, we study Sedimentation -- the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well for particles with density ρ p = 1,300 kg/m3, diameters d p = 1, 3, 5 μm, and residence times t = 0.0272, 0.2 s, respectively. For particles of diameter 1 μm we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, on the surface of the Earth we find that the deposition probabilities exhibit 0.5 and 0.4 % higher percentage difference at the poles when compared to that of the equator, for the corresponding residence times. Moreover in orbit equatorial orbits result to higher deposition probabilities when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.
Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D; Haranas, Maria K; Kirk, Samantha
2015-01-01
In this chapter, we study the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well for particles with density ρ p = 1,300 kg/m³, diameters d p = 1, 3, 5 μm, and residence times t = 0.0272, 0.2 , respectively. For particles of diameter 1 μm we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, on the surface of the Earth we find that the deposition probabilities exhibit 0.5 and 0.4 % higher percentage difference at the poles when compared to that of the equator, for the corresponding residence times. Moreover in orbit equatorial orbits result to higher deposition probabilities when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.
Strategies for the sustained human exploration of Mars
NASA Astrophysics Data System (ADS)
Landau, Damon Frederick
A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for rendezvous during flybys in semi-cycler and cycler missions is presented with a control law for final approach. A forty-year plan to establish a permanent base on Mars is detailed and methods to expand the base are discussed. Once a large base is established, one-, two-, or three-vehicle systems may sustain the colonization of Mars.
NASA Astrophysics Data System (ADS)
Kothmann, Hella
2011-08-01
The rediscovery of a missing autograph of Johannes Kepler - a dedication letter presenting his "New Astronomy" to the elector of Saxony - was possible through a series of fortunate coincidences. Kepler's most important work "Astronomia Nova", in which he proclaimed the first two planetary laws, has been published at the end of 1609. According to the Latin dedication to emperor Rudolf II., Kepler compares the long period of calculations and observations as a crusade against the planet Mars. Finally he succeeds in defeating him, now he supports his opponent to find a new home. The letter is an extraordinary document of Kepler's ingenious and humorous language, it also proofs the relationship to Dresden and the Saxon court.
NASA Technical Reports Server (NTRS)
Wells, R. A.
1979-01-01
A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.
Modeling of Liquefaction of Cryogenic Propellant in a Tank
NASA Technical Reports Server (NTRS)
Hedayat, A.; Bolshinskiy, L. G.; Majumdar, A. K.
2017-01-01
Over the past decades NASA has been focusing to develop technology that would to allow for production of cryogenic propellants on the surface of Mars. The in-situ propellant production reduces the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Utilizing Martian resources, the produced gaseous propellants (i.e., oxygen and methane) are liquefied and stored prior to use on the Mars ascent vehicle. In this paper, a model for the liquefaction process of gaseous propellants in a cryogenically refrigerated tank is presented. The tank is considered to be cylindrical with elliptical top and bottom domes. A multi-node transient model is developed based on the mass and energy conservation equations and wall-gas and liquid-gas interface mass and heat transfer correlations. Description of the model and predicted results will be presented in the final paper.
Terrain Safety Assessment in Support of the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Kipp, Devin
2012-01-01
In August 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. The process to select the MSL landing site took over five years and began with over 50 initial candidate sites from which four finalist sites were chosen. The four finalist sites were examined in detail to assess overall science merit, EDL safety, and rover traversability on the surface. Ultimately, the engineering assessments demonstrated a high level of safety and robustness at all four finalist sites and differences in the assessment across those sites were small enough that neither EDL safety nor rover traversability considerations could significantly discriminate among the final four sites. Thus the MSL landing site at Gale Crater was selected from among the four finalists primarily on the basis of science considerations.
NASA Astrophysics Data System (ADS)
Li, Shuang; Peng, Yuming
2012-01-01
In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.
New Directions in Space: A Report on the Lunar and Mars Initiatives
NASA Technical Reports Server (NTRS)
Seitz, Frederick; Hawkins, Willis; Jastrow, Robert; Nierenberg, William A.
1990-01-01
This report focuses on one aspect of the current space program: The establishment of a manned base on the Moon and the manned exploration of Mars. These missions were announced by the President last year as a major U.S. space policy objective to be implemented under the leadership of the Vice President, acting as Chairman of the National Space Council. On March 8, 1990, the White House released Presidential guidelines for the execution of the lunar and Mars programs. The guidelines stressed the need for new approaches and the development of innovative technologies with a potential for major cost, schedule and performance improvements. They also called for a competitive environment, with several years allotted to the definition of at least two significantly different human space exploration "reference architectures." Selection of the final technical concepts for the mission is scheduled to occur only after the relative merits of the competing reference architectures have been evaluated.
Evaporation of ice in planetary atmospheres - Ice-covered rivers on Mars
NASA Technical Reports Server (NTRS)
Wallace, D.; Sagan, C.
1979-01-01
The existence of ice covered rivers on Mars is considered. It is noted that the evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. It is determined that even with a mean Martian insolation rate above the ice of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as ice-choked rivers. Finally, the exobiological implications of ice covered channels or lakes on Mars are discussed.
Space-brain: The negative effects of space exposure on the central nervous system.
Jandial, Rahul; Hoshide, Reid; Waters, J Dawn; Limoli, Charles L
2018-01-01
Journey to Mars will be a large milestone for all humankind. Throughout history, we have learned lessons about the health dangers associated with exploratory voyages to expand our frontiers. Travelling through deep space, the final frontier, is planned for the 2030s by NASA. The lessons learned from the adverse health effects of space exposure have been encountered from previous, less-lengthy missions. Prolonged multiyear deep space travel to Mars could be encumbered by significant adverse health effects, which could critically affect the safety of the mission and its voyagers. In this review, we discuss the health effects of the central nervous system by space exposure. The negative effects from space radiation and microgravity have been detailed. Future aims and recommendations for the safety of the voyagers have been discussed. With proper planning and anticipation, the mission to Mars can be done safely and securely.
Primary Effects of Intravitreal Bevacizumab in Patients with Diabetic Macular Edema
Tareen, Iftikhar-ul-Haq; Rahman, Azizur; Mahar, P.S; Memon, Muhammad Saleh
2013-01-01
Objective: To evaluate the efficacy of primary intra vitreal bevacizumab (IVB) injection on macular edema in diabetic patients with improvement in best corrected visual acuity (BCVA) and central macular thickness (CMT) on optical coherence tomography (OCT). Methods: This prospective interventional case series study was conducted at Retina Clinic, Al-Ibrahim Eye Hospital, and Isra Postgraduate Institute of Ophthalmology Karachi. Between December 2010 to June 2012. BCVA measurement with Early Treatment in Diabetic Retinopathy Study (ETDRS) charts and ophthalmic examination, including Slit-lamp bio microscopy, indirect ophthalmoscopy, Fundus fluorescein angiography (FFA) and OCT were done at the base line examination. At monthly interval all patients were treated with 3 injections of 0.05 ml intra vitreal injection containing 1.25 mg bevacizumab. Patients were followed up for 6 months and BCVA and OCT were taken at the final visit at 6 month. Results: The mean BCVA at base line was 0.42±0.14 Log Mar units. This improved to 0.34±0.13, 0.25±0.12, 0.17±0.12 and 0.16±0.14 Log Mar units at 1 month after 1st, 2nd 3rd injections and at final visit at 6 months respectively, a difference that was statistically significant (P>0.0001) from base line. The mean 1mm CMT measurement was 452.9 ± 143.1 µm at base line, improving to 279.8 ± 65.2 µm (P<0.0001) on final visit. No serious complications were observed. Conclusions: Primary IVB at a dose of 1.25 mg on monthly interval seems to provide stability and improvement in BCVA and CMT in patient with DME. PMID:24353679
Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.
2010-01-01
The poster provides an overview of techniques to improve the Mars Global Reference Atmospheric Model (Mars-GRAM) sensitivity. It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for TES MapYear = 0 and large optical depth values such as tau = 3 is less than realistic. A preliminary fix has been made to Mars-GRAM by adding a density factor value that was determined for tau = 0.3, 1 and 3.
NASA Astrophysics Data System (ADS)
Pourghasemi, Hamid Reza; Rossi, Mauro
2017-10-01
Landslides are identified as one of the most important natural hazards in many areas throughout the world. The essential purpose of this study is to compare general linear model (GLM), general additive model (GAM), multivariate adaptive regression spline (MARS), and modified analytical hierarchy process (M-AHP) models and assessment of their performances for landslide susceptibility modeling in the west of Mazandaran Province, Iran. First, landslides were identified by interpreting aerial photographs, and extensive field works. In total, 153 landslides were identified in the study area. Among these, 105 landslides were randomly selected as training data (i.e. used in the models training) and the remaining 48 (30 %) cases were used for the validation (i.e. used in the models validation). Afterward, based on a deep literature review on 220 scientific papers (period between 2005 and 2012), eleven conditioning factors including lithology, land use, distance from rivers, distance from roads, distance from faults, slope angle, slope aspect, altitude, topographic wetness index (TWI), plan curvature, and profile curvature were selected. The Certainty Factor (CF) model was used for managing uncertainty in rule-based systems and evaluation of the correlation between the dependent (landslides) and independent variables. Finally, the landslide susceptibility zonation was produced using GLM, GAM, MARS, and M-AHP models. For evaluation of the models, the area under the curve (AUC) method was used and both success and prediction rate curves were calculated. The evaluation of models for GLM, GAM, and MARS showed 90.50, 88.90, and 82.10 % for training data and 77.52, 70.49, and 78.17 % for validation data, respectively. Furthermore, The AUC value of the produced landslide susceptibility map using M-AHP showed a training value of 77.82 % and validation value of 82.77 % accuracy. Based on the overall assessments, the proposed approaches showed reasonable results for landslide susceptibility mapping in the study area. Moreover, results obtained showed that the M-AHP model performed slightly better than the MARS, GLM, and GAM models in prediction. These algorithms can be very useful for landslide susceptibility and hazard mapping and land use planning in regional scale.
The Science Goals of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.; Grunsfeld, John
2004-01-01
The recently released policy directive, "A Renewed Spirit of Discovery: The President's Vision for U. S. Space Exploration," seeks to advance the U. S. scientific, security and economic interest through a program of space exploration which will robotically explore the solar system and extend human presence to the Moon, Mars and beyond. NASA's implementation of this vision will be guided by compelling questions of scientific and societal importance, including the origin of our Solar System and the search for life beyond Earth. The Exploration Roadmap identifies four key targets: the Moon, Mars, the outer Solar System, and extra-solar planets. First, a lunar investigation will set up exploration test beds, search for resources, and study the geological record of the early Solar System. Human missions to the Moon will serve as precursors for human missions to Mars and other destinations, but will also be driven by their support for furthering science. The second key target is the search for past and present water and life on Mars. Following on from discoveries by Spirit and Opportunity, by the end of the decade there will have been an additional rover, a lander and two orbiters studying Mars. These will set the stage for a sample return mission in 2013, increasingly complex robotic investigations, and an eventual human landing. The third key target is the study of underground oceans, biological chemistry, and their potential for life in the outer Solar System. Beginning with the arrival of Cassini at Saturn in July 2004 and a landing on Titan in 2006, the next decade will see an extended investigation of the Jupiter icy moons by a mission making use of Project Prometheus, a program to develop space nuclear power and nuclear-electric propulsion. Finally, the search for Earth-like planets and life includes a series of telescopic missions designed to find and characterize extra-solar planets and search them for evidence of life. These missions include HST and Spitzer, operating now; Kepler, SIM, JWST, and TPF, currently under development; and the vision missions, Life Finder and Planet Imager, which will possibly be constructed in space by astronauts.
Computer system evolution requirements for autonomous checkout of exploration vehicles
NASA Technical Reports Server (NTRS)
Davis, Tom; Sklar, Mike
1991-01-01
This study, now in its third year, has had the overall objective and challenge of determining the needed hooks and scars in the initial Space Station Freedom (SSF) system to assure that on-orbit assembly and refurbishment of lunar and Mars spacecraft can be accomplished with the maximum use of automation. In this study automation is all encompassing and includes physical tasks such as parts mating, tool operation, and human visual inspection, as well as non-physical tasks such as monitoring and diagnosis, planning and scheduling, and autonomous visual inspection. Potential tasks for automation include both extravehicular activity (EVA) and intravehicular activity (IVA) events. A number of specific techniques and tools have been developed to determine the ideal tasks to be automated, and the resulting timelines, changes in labor requirements and resources required. The Mars/Phobos exploratory mission developed in FY89, and the Lunar Assembly/Refurbishment mission developed in FY90 and depicted in the 90 Day Study as Option 5, have been analyzed in detailed in recent years. The complete methodology and results are presented in FY89 and FY90 final reports.
An Overview of Mars Vicinity Transportation Concepts for a Human Mars Mission
NASA Technical Reports Server (NTRS)
Dexter, Carol E.; Kos, Larry
1998-01-01
To send a piloted mission to Mars, transportation systems must be developed for the Earth to Orbit, trans Mars injection (TMI), capture into Mars orbit, Mars descent, surface stay, Mars ascent, trans Earth injection (TEI), and Earth return phases. This paper presents a brief overview of the transportation systems for the Human Mars Mission (HMM) only in the vicinity of Mars. This includes: capture into Mars orbit, Mars descent, surface stay, and Mars ascent. Development of feasible mission scenarios now is important for identification of critical technology areas that must be developed to support future human missions. Although there is no funded human Mars mission today, architecture studies are focusing on missions traveling to Mars between 2011 and the early 2020's.
Antosh, Ivan J; Svoboda, Steven J; Peck, Karen Y; Garcia, E'Stephan J; Cameron, Kenneth L
2018-06-01
Several studies have examined changes in patient-reported outcome measures (PROMs) after anterior cruciate ligament (ACL) injury, but no studies to date have prospectively evaluated changes from preinjury baseline through injury and follow-up among ACL-injured patients compared to the baseline and follow-up changes of uninjured patients. To examine changes in PROMs over time from preinjury baseline to at least 2 years after ACL reconstruction and to compare these changes with those of an uninjured control group having similar physical activity requirements. Cohort study; Level of evidence, 2. The authors conducted a prospective cohort study with a nested case-control analysis at a US service academy. All incoming first year students were recruited to participate in this study. Consenting participants completed a baseline questionnaire that included the KOOS (Knee injury and Osteoarthritis Outcome Score), WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index), and MARS (Marx Activity Rating Scale). Participants who sustained a subsequent ACL injury completed assessments at the time of surgery and at 6, 12, and 24 months after surgery. Healthy participants were recruited to repeat the baseline assessments within 1 year of graduation. Inter- and intragroup differences at these time points were evaluated with dependent and independent t tests, respectively. We also compared these results with established minimum clinically important difference (MCID) values. Of 1268 first year students entering the academy, 1005 with no previous injuries consented to participate in this study (82% male, mean ± SD age 19 ± 1 years). Of those enrolled, 30 suffered an ACL injury and met the inclusion criteria for this study. Ninety uninjured control students who met the inclusion criteria completed follow-up assessments. There were statistically significant differences across all KOOS and WOMAC subscales between ACL-injured group and uninjured group at the time of the final follow-up assessment. Four KOOS subscales (Pain, Symptoms, Sports and Recreation Function, and Knee-Related Quality of Life) and the WOMAC Stiffness subscale demonstrated >8-point differences between groups, which exceeded the established MCID for these instruments. There were no significant differences between the ACL-injured group and uninjured groups noted for the MARS ( P = .635). At the time of final follow-up, the ACL-injured group also reported significant deficits on the WOMAC Stiffness subscale ( P = .032), the MARS ( P = .030), and all KOOS subscales, with the exception of Functional Activities of Daily Living, as compared with their preinjury baseline scores. These deficits exceeded the established MCID values for 3 KOOS subscales and the MARS. Patients with ACL injuries reported significant deficits on PROMs at least 2 years after surgical reconstruction in relation to preinjury baseline scores and an uninjured control group. Many of these deficits exceeded established MCID values.
Oshima, Hisaaki; Iwase, Takeshi; Ishikawa, Kohei; Yamamoto, Kentaro; Terasaki, Hiroko
2017-01-01
To evaluate the long-term results of limited macular translocation (LMT) surgery with radial chorioscleral outfolding in patients with wet age-related macular degeneration (AMD) and subfoveal choroidal neovascularization (CNV). In addition, to identify the factors associated with the final best-corrected visual acuity (BCVA). The medical records of 20 eyes of 20 consecutive patients (65.2±9.8 years) who had undergone LMT for the treatment of wet AMD and were followed for at least 5 years, were reviewed. The surgical outcomes including the BCVA, degree of foveal displacement, and complications were recorded. The mean foveal displacement was 1332 ± 393 μm after the LMT. The CNV was removed in 16 eyes and photocoagulated in 4 eyes. The mean preoperative VA was 0.83 ± 0.33 logMAR units which significantly improved to 0.59 ± 0.37 logMAR units at 1 year after the surgery (P = 0.015). This BCVA was maintained at 0.59 ± 0.41 logMAR units on the final examination. The final BCVA was significantly correlated with that at 1 year after the surgery (r = 0.83, P<0.001). Multiple linear regression analysis showed that the final BCVA was significantly correlated with the BCVA at 1 year after the surgery (P<0.001), a recurrence of a CNV (P = 0.001), and the age (P = 0.022). LMT improves the BCVA significantly at 1 year, and the improved BCVA lasted for at least 5 years. These results indicate that the impaired function of the sensory retina at the fovea can recover on the new RPE after the displacement for at least 5 years. The ability to maintain good retinal function on the new RPE for a long period is important for future treatments of CNVs such as the transplantation of RPE cells and stem cells.
Mars: Past, Present, and Future. Results from the MSATT Program, part 1
NASA Technical Reports Server (NTRS)
Haberle, R. M. (Editor)
1993-01-01
This volume contains papers that were accepted for presentation at the workshop on Mars: Past, Present, and Future -- Results from the MSATT Program. Topics include, but are not limited to: Martian impact craters; thermal emission measurements of Hawaiian palagonitic soils with implications for Mars; thermal studies of the Martian surface; Martian atmospheric composition studies; temporal and spatial mapping of Mars' atmospheric dust opacity and surface albedo; studies of atmospheric dust from Viking IR thermal mapper data; the distribution of Martian ground ice at other epochs; numerical simulation of thermally induced near-surface flows over Martian terrain; the pH of Mars; the mineralogic evolution of the Martian surface through time; geologic controls of erosion and sedimentation on Mars; and dielectric properties of Mars' surface: proposed measurement on a Mars Lander.
Present Status and Near Term Activities for the ExoMars Trace Gas Orbiter.
NASA Astrophysics Data System (ADS)
Svedhem, H.; Vago, J. L.
2017-12-01
The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and arrived at Mars on 19 October 2016. The spacecraft is now performing aerobraking to reduce its orbital period from initial post-insertion orbital period of one Sol to the final science orbit with a 2 hours period. The orbital inclination will be 74 degrees. During the aerobraking a wealth of data has been acquired on the state of the atmosphere along the tracks between 140km and the lowest altitude at about 105 km. These data are now being analysed and compared with existing models. In average TGO measures a lower atmospheric density than predicted, but the numbers lay within the expected variability. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The launch mass of the TGO was 3700 kg, including fuel. In addition to its scientific measurements TGO will act as a relay orbiter for NASA's landers on Mars and as from 2021 for the ESA-Roscosmos Rover and Surface Station.
Summons, Roger E; Amend, Jan P; Bish, David; Buick, Roger; Cody, George D; Des Marais, David J; Dromart, Gilles; Eigenbrode, Jennifer L; Knoll, Andrew H; Sumner, Dawn Y
2011-03-01
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL. © Mary Ann Liebert, Inc.
Organic degradation under simulated Martian conditions.
Stoker, C R; Bullock, M A
1997-05-25
We report on laboratory experiments which simulate the breakdown of organic compounds under Martian surface conditions. Chambers containing Mars-analog soil mixed with the amino acid glycine were evacuated and filled to 100 mbar pressure with a Martian atmosphere gas mixture and then irradiated with a broad spectrum Xe lamp. Headspace gases were periodically withdrawn and analyzed via gas chromatography for the presence of organic gases expected to be decomposition products of the glycine. The quantum efficiency for the decomposition of glycine by light at wavelengths from 2000 to 2400 angstroms was measured to be 1.46 +/- 1.0 x 10(-6) molecules/photon. Scaled to Mars, this represents an organic destruction rate of 2.24 +/- 1.2 x 10(-4) g of C m-2 yr-1. We compare this degradation rate with the rate that organic compounds are brought to Mars as a result of meteoritic infall to show that organic compounds are destroyed on Mars at rates far exceeding the rate that they are deposited by meteorites. Thus the fact that no organic compounds were found on Mars by the Viking Lander Gas Chromatograph Mass Spectrometer experiment can be explained without invoking the presence of strong oxidants in the surface soils. The organic destruction rate may be considered as an upper bound for the globally averaged biomass production rate of extant organisms at the surface of Mars. This upper bound is comparable to the slow growing cryptoendolithic microbial communities found in dry Antarctica deserts. Finally, comparing these organic destruction rates to recently reported experiments on the stability of carbonate on the surface of Mars, we find that organic compounds may currently be more stable than calcite.
NASA Astrophysics Data System (ADS)
Leblanc, F.; Chaufray, J. Y.; Modolo, R.; Leclercq, L.; Curry, S.; Luhmann, J.; Lillis, R.; Hara, T.; McFadden, J.; Halekas, J.; Schneider, N.; Deighan, J.; Mahaffy, P. R.; Benna, M.; Johnson, R. E.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M. A.; Eparvier, F. G.; Jakosky, B.
2017-12-01
The first measurements of the emission brightness of the oxygen atomic exosphere by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission have clearly shown that it is composed of a thermal component produced by the extension of the upper atmosphere and of a nonthermal component. Modeling these measurements allows us to constrain the origins of the exospheric O and, as a consequence, to estimate Mars' present oxygen escape rate. We here propose an analysis of three periods of MAVEN observations based on a set of three coupled models: a hybrid magnetospheric model (LATmos HYbrid Simulation (LatHyS)), an Exospheric General Model (EGM), and the Global Martian Circulation model of the Laboratoire de Météorologie Dynamique (LMD-GCM), which provide a description of Mars' environment from the surface up to the solar wind. The simulated magnetosphere by LatHyS is in good agreement with MAVEN Plasma and Field Package instruments data. The LMD-GCM modeled upper atmospheric profiles for the main neutral and ion species are compared to Neutral Gas and Ion Mass Spectrometer/MAVEN data showing that the LMD-GCM can provide a satisfactory global view of Mars' upper atmosphere. Finally, we were able to reconstruct the expected emission brightness intensity from the oxygen exosphere using EGM. The good agreement with the averaged measured profiles by Imaging Ultraviolet Spectrograph during these three periods suggests that Mars' exospheric nonthermal component can be fully explained by the reactions of dissociative recombination of the O2+ ion in Mars' ionosphere, limiting significantly our ability to extract information from MAVEN observations of the O exosphere on other nonthermal processes, such as sputtering.
Organic degradation under simulated Martian conditions
NASA Astrophysics Data System (ADS)
Stoker, Carol R.; Bullock, Mark A.
1997-05-01
We report on laboratory experiments which simulate the breakdown of organic compounds under Martian surface conditions. Chambers containing Mars-analog soil mixed with the amino acid glycine were evacuated and filled to 100 mbar pressure with a Martian atmosphere gas mixture and then irradiated with a broad spectrum Xe lamp. Headspace gases were periodically withdrawn and analyzed via gas chromatography for the presence of organic gases expected to be decomposition products of the glycine. The quantum efficiency for the decomposition of glycine by light at wavelengths from 2000 to 2400 Å was measured to be 1.46+/-1.0×10-6molecules/photon. Scaled to Mars, this represents an organic destruction rate of 2.24+/-1.2×10-4g of Cm-2yr-1. We compare this degradation rate with the rate that organic compounds are brought to Mars as a result of meteoritic infall to show that organic compounds are destroyed on Mars at rates far exceeding the rate that they are deposited by meteorites. Thus the fact that no organic compounds were found on Mars by the Viking Lander Gas Chromatograph Mass Spectrometer experiment can be explained without invoking the presence of strong oxidants in the surface soils. The organic destruction rate may be considered as an upper bound for the globally averaged biomass production rate of extant organisms at the surface of Mars. This upper bound is comparable to the slow growing cryptoendolithic microbial communities found in dry Antarctica deserts. Finally, comparing these organic destruction rates to recently reported experiments on the stability of carbonate on the surface of Mars, we find that organic compounds may currently be more stable than calcite.
ISRU in the Context of Future European Human Mars Exploration
NASA Astrophysics Data System (ADS)
Baker, A. M.; Tomatis, C.
2002-01-01
ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of the latest requirements. In addition, the paper will explore the options for compressing, cooling and storing gaseous products, methods for extracting buffer gases (such as nitrogen), and chemistries for producing additional oxygen. The paper will be written from the viewpoint of what European industry might be able to offer to a future set of Martian ISRU requirements, but in the context of an international human Mars mission. For example, the development of a compact Sabatier reactor for ISS air revitalisation, and high temperature methane cracking reactors by Astrium GmbH are considered. Other, current research has highlighted low temperature catalytic decomposition of methane, under evaluation as means of producing carbon nanofibres; and the photocatalytic reduction of CO2 as relevant technologies. This paper will also consider some key issues in ISRU design which have not yet been widely addressed, including the suitability of an Ar/N2 buffer gas mixture for life support (and the difficulties of its separation from the Martian atmosphere), the transfer of hydrogen feedstock to Mars, the storage of products on the surface, and the thermal balance in an ISRU plant (e.g. the balance of energy required for liquefaction of oxygen, against the heat sink available from the liquid hydrogen feedstock). In addition, this paper will detail the selected reaction chemistries for each required subsystem, giving (where possible) mass, power and volume estimates. These will be drawn together, justified and presented as a system level design for an ISRU plant. Finally, a technology roadmap for ISRU development will be covered, suggesting near term (2002-2006), medium term (2006-2015) and long term (2015-2030) priorities which could enable a European ISRU capability to be qualified for initial human Mars exploration.
Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh
2013-01-01
MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms. PMID:24523773
Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh
2013-01-01
MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms.
Installation Restoration Program. Confirmation/Quantification Stage 1. Phase 2
1985-03-07
INSTALLATION RESTORATION PROGRAM i0 PHASE II - CONFIRMATION/QUANTIFICATION 0STAGE 1 KIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117 IIl PREPARED BY SCIENCE...APPLICATIONS INTERNATIONAL CORPORATION 505 MARQUETTE NW, SUITE 1200 ALBUQUERQUE, NEW MEXICO 871021 5MARCH 1985 FINAL REPORT FROM FEB 1983 TO MAR 1985...QUANTIFICATION STAGE 1 i FINAL REPORT FOR IKIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117U HEADQUARTERS MILITARY AIRLIFT COMMAND COMMAND SURGEON’S OFFICE (HQ MAC
High Temperature Low Cycle Fatigue Data for Three High Strength Nickel-Base Superalloys.
1980-06-01
Stent , Mar-Test Inc. Cincinnati, Ohio June 1980 TECHNICAL REPORT AFWAL-TR-80-4077 Final Report for Period May 1976 - September 1978 Approved for...generally high in concentrations of calcium, silicon , aluminum, and magnesium. These inclusions were up to 100p in length and ranged from spherical to...used for this study were produced from Federal Mogal Inc. powder Heat 454. The composition of the powder is contained in Table 3. The powder was 100
JPL-20180307-INSIGHf-0001-Mars InSight Arrives at Vandenberg Air Force Base
2018-03-07
NASA's InSight spacecraft arrived at Vandenberg Air Force Base, California, to begin final preparations for launch. InSight will be the first mission to look deep beneath the Martian surface, studying the planet's interior by listening for marsquakes and measuring its heat output. It will be the first planetary spacecraft to launch from this west coast launch facility. The launch period for InSight opens May 5, 2018 and continues through June 8, 2018.
1976-03-01
Service , CSE, Scott AFB, IL 62225. aws, usaf ltr dtd 8 jul 1976 >- a. CD SYSTEM DEVELOPMENT CORPORATION 1/ 2500 Colorado Avenue Santa Monica...Government Agen-TfAf* 17 MAR 1976 cies only. Other requests for this document ’-^ must be referred to Air Weather Service /CSi^,, Scott Air Force...Air Force Communica- tions Service must be clear’y defined. The appropriate Air Force Conmunications Service Agency should be responsible for the
1992-12-30
this report was 1ý.F,;,Amdauncdunc Rsearch Professor of Physics Approvei: b K. E. Woel Chairman Department of Physics Released by: P .Mar o, Dean of...R.J. Yamartino, 1987: Environmental Protection Agency complex terrain model development: final rep. EPA/600/3-88/006, U.S., 486 pp. Stull , R.B., 1988...Denmark Mr. Randall Nyman 1 ACTA Vandenberg AFB, CA 93437-5000 Prof. Gordon Schacher 1 Dean of Faculty and Graduate Studies Naval Postgraduate
NASA Astrophysics Data System (ADS)
Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.
2018-01-01
The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (∼200 °C). Smectites were analyzed by X-ray diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ∼3 and trioctahedral smectite saponite at final pH ∼4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model for global-scale smectite formation on Mars via acid-sulfate conditions created by the volcanic outgassing of SO2 in the Noachian and early Hesperian.
Sample Return in Preparation for Human Mission on the Surface of Mars
NASA Astrophysics Data System (ADS)
Yun, P.
2018-04-01
Returned samples of martian regolith will help the science community make an informed decision in choosing the final human landing site and develop a better human mission plan to meet science criteria and IRSU and civil engineering criteria.
The universe at moderate redshift
NASA Technical Reports Server (NTRS)
Ostriker, Jeremiah P.
1992-01-01
The Final Report on the universe at moderate redshift covering the period from 1 Mar. 1988 to 28 Feb. 1991 is presented. Areas of research included: galaxy formation and large-scale structure; intergalactic medium and background radiation fields; quasar statistics and evolution; and gravitational lenses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Côté, Nicolas; Bedwani, Stéphane; Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca
Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HUmore » of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D {sub 90} dose parameter (volume receiving 90% of the dose) indicated that D {sub 90} could be underestimated by up to 2.3% using the SECT method. Conclusions: The DECT MAR approach is a simple alternative to reduce metallic artifacts found in LDRB patient scans. Images can be processed quickly and do not require the determination of x-ray spectra. Substantial information on density and atomic number can also be obtained. Furthermore, calcifications within the prostate are detected by the tissue assignment algorithm. This enables more accurate, patient-specific MC dose calculations.« less
Reilly, Gayatri; Melamud, Alexander; Lipscomb, Peter; Toussaint, Brian
2015-09-01
To evaluate whether patients with macular pucker (epiretinal membrane [ERM]) and good preoperative visual acuity (20/50 or better) benefit from small-gauge pars plana vitrectomy with membrane peeling. Retrospective chart review of eyes undergoing small-gauge pars plana vitrectomy for ERM. Inclusion criterion was impaired visual acuity (20/50 or better) due to ERM. Exclusion criteria were preoperative visual acuity of 20/60 or worse, previous surgery (other than uncomplicated cataract surgery), and any documented evidence of macular or corneal disease that would limit visual potential. The main outcome measure was final visual acuity. Secondary outcomes included the role of internal limiting membrane peeling, and the effect of preoperative cystoid macular edema and internal limiting membrane peeling on visual acuity. One hundred and forty eyes met inclusion criteria of which 94% underwent 25-gauge vitrectomy (remainder had 23-gauge). There was a statistically significant improvement in final vision with the mean preoperative visual acuity of 0.305 logMAR (20/40) and 1-year visual acuity of 0.250 logMAR (20/35) (P = 0.0167). Cataract formation in phakic patients had a significant effect on the final visual outcome. Fifty-six of 63 patients (89%) in the phakic cohort developed a visually significant cataract by study end. The mean time to recommendation of cataract surgery was 8.4 months. Thirty-eight eyes (27%) had preoperative cystoid macular edema. Fifty-nine eyes (42%) underwent internal limiting membrane peeling. Neither one of these secondary outcome measures had a significant effect on the final visual outcome. Pars plana vitrectomy is both efficacious and safe an option for patients with ERMs and good preoperative vision. Eyes with an ERM and vision 20/50 or better had a statistically significant improvement in the final visual outcome after small-gauge pars plana vitrectomy surgery. As with large-gauge vitrectomy, cataract formation occurred in most phakic eyes within the first year after surgery.
Mars-GRAM 2010: Additions and Resulting Improvements
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Burns, K. Lee
2013-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM has been utilized during previous aerobraking operations in the atmosphere of Mars. Mars-GRAM has also been used in the prediction and validation of Mars Pathfinder hypersonic aerodynamics, the aerothermodynamic and entry dynamics studies for Mars Polar Lander, the landing site selection process for the Mars Science Laboratory (MSL), the Mars Aerocapture System Study (MASS) as well as the Aerocapture Technology Assessment Group (TAG). Most recently, Mars-GRAM 2010 was used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. The most recent release of Mars-GRAM 2010 contains several changes including an update to Fortran 90/95 and the addition of adjustment factors. Following the completion of a comparison analysis between Mars-GRAM, Thermal Emission Spectrometer (TES), as well as Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) aerobraking density data, adjustment factors were added to Mars-GRAM 2010 that alter the input data from National Aeronautics and Space Administration (NASA) Ames Mars General Circulation Model (MGCM) and the University of Michigan Mars Thermospheric General Circulation Model (MTGCM) for the mapping year 0 user-controlled dust case. The addition of adjustment factors resolved the issue of previous versions of Mars-GRAM being less than realistic when used for sensitivity studies for mapping year 0 and large optical depth values, such as tau equal to 3. Mars-GRAM was evaluated at locations and times of TES limb observations and adjustment factors were determined. For altitudes above 80 km and below 135 km, Mars-GRAM (MTGCM) densities were compared to aerobraking densities measured by Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) to determine the adjustment factors. The adjustment factors generated by this process had to satisfy the gas law as well as the hydrostatic relation and are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The greatest adjustments are made at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km altitude as well as better agreement with MGS, ODY and MRO data at approximately 90-130 km altitude. Improved Mars-GRAM atmospheric simulations for various locations, times and dust conditions on Mars will be presented at the workshop session. The latest results validating Mars-GRAM 2010 versus Mars Climate Sounder data will also be presented. Mars-GRAM 2010 updates have resulted in improved atmospheric simulations which will be very important when beginning systems design, performance analysis, and operations planning for future aerocapture, aerobraking or landed missions to Mars.
Electrochemical approaches for chemical and biological analysis on Mars
NASA Technical Reports Server (NTRS)
Kounaves, Samuel P.
2003-01-01
Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and with the correct methodology provide unamibiguous detection of such life forms.
Electrochemical approaches for chemical and biological analysis on Mars.
Kounaves, Samuel P
2003-02-17
Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and with the correct methodology provide unamibiguous detection of such life forms.
Relays from Mars demonstrate international interplanetary networking
NASA Astrophysics Data System (ADS)
2004-08-01
On 4 August at 14:24 CEST, as Mars Express flew over one of NASA’s Mars exploration rovers, Opportunity, it successfully received data previously collected and stored by the rover. The data, including 15 science images from the rover's nine cameras, were then downlinked to ESA’s European Space Operations Centre in Darmstadt (Germany) and immediately relayed to the Mars Exploration Rovers team based at the Jet Propulsion Laboratory in Pasadena, USA. NASA orbiters Mars Odyssey and Mars Global Surveyor have so far relayed most of the data produced by the rovers since they landed in January. Communication compatibility between Mars Express and the rovers had already been demonstrated in February, although at a low rate that did not convey much data. The 4 August session, at a transmit rate of 42.6 megabits in about six minutes, set a new mark for international networking around another planet. The success of this demonstration is the result of years of groundwork and was made possible because both Mars Express and the Mars rovers use the same communication protocol. This protocol, called Proximity-1, was developed by the international Consultative Committee for Space Data Systems, an international partnership for standardising techniques for handling space data. Mars Express was 1400 kilometres above the Martian surface during the 4 August session with Opportunity, with the goal of a reliable transfer of lots of data. Engineers for both agencies plan to repeat this display of international cooperation today, 10 August, with another set of Opportunity images. “We're delighted how well this has been working, and thankful to have Mars Express in orbit,” said Richard Horttor of NASA's Jet Propulsion Laboratory, Pasadena, California, project manager for NASA's role in Mars Express. JPL engineer Gary Noreen of the Mars Network Office said: “the capabilities that our international teamwork is advancing this month could be important in future exploration of Mars.” In addition, Mars Express is verifying two other operating modes with Opportunity and the twin rover, Spirit, from a greater distance. On 3 and 6 August, when Mars Express listened to Spirit, it was about 6000 kilometres above the surface. At this range it successfully tracked a beacon from Spirit, demonstrating a capability that can be used to locate another craft during critical events, such as the descent to a planet’s surface, or for orbital rendez-vous manoeuvres. “Establishing a reliable communication network around Mars or other planets is crucial for future exploration missions, as it will allow improved coverage and also an increase in the amount of data that can be brought back to Earth,” said Con McCarthy, from ESA’s Mars Express project, “the tracking mode will enable ESA and NASA to pinpoint a spacecraft’s position more accurately during critical mission phases.” The final session of the series, scheduled for 13 August with Opportunity, will demonstrate a mode for gaining navigational information from the ‘Doppler shift’ in the radio signal.
NASA Technical Reports Server (NTRS)
2000-01-01
This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.
Fifty Years of Mars Imaging: from Mariner 4 to HiRISE
2017-11-20
This image from NASA's Mars Reconnaissance Orbiter (MRO) shows Mars' surface in detail. Mars has captured the imagination of astronomers for thousands of years, but it wasn't until the last half a century that we were able to capture images of its surface in detail. This particular site on Mars was first imaged in 1965 by the Mariner 4 spacecraft during the first successful fly-by mission to Mars. From an altitude of around 10,000 kilometers, this image (the ninth frame taken) achieved a resolution of approximately 1.25 kilometers per pixel. Since then, this location has been observed by six other visible cameras producing images with varying resolutions and sizes. This includes HiRISE (highlighted in yellow), which is the highest-resolution and has the smallest "footprint." This compilation, spanning Mariner 4 to HiRISE, shows each image at full-resolution. Beginning with Viking 1 and ending with our HiRISE image, this animation documents the historic imaging of a particular site on another world. In 1976, the Viking 1 orbiter began imaging Mars in unprecedented detail, and by 1980 had successfully mosaicked the planet at approximately 230 meters per pixel. In 1999, the Mars Orbiter Camera onboard the Mars Global Surveyor (1996) also imaged this site with its Wide Angle lens, at around 236 meters per pixel. This was followed by the Thermal Emission Imaging System on Mars Odyssey (2001), which also provided a visible camera producing the image we see here at 17 meters per pixel. Later in 2012, the High-Resolution Stereo Camera on the Mars Express orbiter (2003) captured this image of the surface at 25 meters per pixel. In 2010, the Context Camera on the Mars Reconnaissance Orbiter (2005) imaged this site at about 5 meters per pixel. Finally, in 2017, HiRISE acquired the highest resolution image of this location to date at 50 centimeters per pixel. When seen at this unprecedented scale, we can discern a crater floor strewn with small rocky deposits, boulders several meters across, and wind-blown deposits in the floors of small craters and depressions. This compilation of Mars images spanning over 50 years gives us a visual appreciation of the evolution of orbital Mars imaging over a single site. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 52.2 centimeters (20.6 inches) per pixel (with 2 x 2 binning); objects on the order of 156 centimeters (61.4 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22115
Lunar placement of Mars quarantine facility
NASA Technical Reports Server (NTRS)
Davidson, James E.; Mitchell, W. F.
1988-01-01
Advanced mission scenarios are currently being contemplated that would call for the retrieval of surface samples from Mars, from a comet, and from other places in the solar system. An important consideration for all of these sample return missions is quarantine. Quarantine facilities on the Moon offer unique advantages over other locations. The Moon offers gravity, distance, and vacuum. It is sufficiently near the Earth to allow rapid resupply and easy communication. It is sufficiently distant to lessen the psychological impact of a quarantine facility on Earth's human inhabitants. Finally, the Moon is airless, and seems to be devoid of life. It is, therefore, more suited to contamination control efforts.
NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.
Mars Exploration Rover Potentiometer Problems, Failures and Lessons Learned
NASA Technical Reports Server (NTRS)
Balzer, Mark
2006-01-01
During qualification testing of three types of non-wire-wound precision potentiometers for the Mars Exploration Rover, a variety of problems and failures were encountered. This paper will describe some of the more interesting problems, detail their investigations and present their final solutions. The failures were found to be caused by design errors, manufacturing errors, improper handling, test errors, and carelessness. A trend of decreasing total resistance was noted, and a resistance histogram was used to identify an outlier. A gang fixture is described for simultaneously testing multiple pots, and real time X-ray imaging was used extensively to assist in the failure analyses. Lessons learned are provided.
Mars Exploration Rover potentiometer problems, failures and lessons learned
NASA Technical Reports Server (NTRS)
Balzer, Mark A.
2006-01-01
During qualification testing of three types of nonwire-wound precision potentiometers for the Mars Exploration Rover, a variety of problems and failures were encountered. This paper will describe some of the more interesting problems, detail their investigations and present their final solutions. The failures were found to be caused by design errors, manufacturing errors, improper handling, test errors, and carelessness. A trend of decreasing total resistance was noted, and a resistance histogram was used to identify an outlier. A gang fixture is described for simultaneously testing multiple pots, and real time X-ray imaging was used extensively to assist in the failure analyses. Lessons learned are provided.
Mars 2005 Sample Return Workshop
NASA Technical Reports Server (NTRS)
Gulick, V. C. (Editor)
1997-01-01
Convened at the request of Dr. Jurgen Rahe of the NASA Office of Space Science, the purpose of this workshop was to reexamine the science issues that will determine how an optimum sample return mission would be carried out in 2005 given the new context that has emerged for Mars exploration since the last such workshop was held (in 1987). The results and summary of discussion that took place at the meeting are contained in this volume. The community was invited to participate in the preparation of the final written report by browsing through the agenda and reading the text and viewgraphs provided by workshop participants and submitting comments for that section.
2003-03-29
KENNEDY SPACE CENTER, FLA. - A worker makes the final launch preparations on the rover equipment deck (RED) for the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
Mars Science Laboratory Entry Capsule Aerothermodynamics and Thermal Protection System
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Hollis, Brian R.; Dyakonov, Artem A.; Laub, Bernard; Wright, Michael J.; Rivellini, Tomasso P.; Slimko, Eric M.; Willcockson, William H.
2007-01-01
The Mars Science Laboratory (MSL) spacecraft is being designed to carry a large rover (greater than 800 kg) to the surface of Mars using a blunt-body entry capsule as the primary decelerator. The spacecraft is being designed for launch in 2009 and arrival at Mars in 2010. The combination of large mass and diameter with non-zero angle-of-attack for MSL will result in unprecedented convective heating environments caused by turbulence prior to peak heating. Navier-Stokes computations predict a large turbulent heating augmentation for which there are no supporting flight data1 and little ground data for validation. Consequently, an extensive experimental program has been established specifically for MSL to understand the level of turbulent augmentation expected in flight. The experimental data support the prediction of turbulent transition and have also uncovered phenomena that cannot be replicated with available computational methods. The result is that the flight aeroheating environments predictions must include larger uncertainties than are typically used for a Mars entry capsule. Finally, the thermal protection system (TPS) being used for MSL has not been flown at the heat flux, pressure, and shear stress combinations expected in flight, so a test program has been established to obtain conditions relevant to flight. This paper summarizes the aerothermodynamic definition analysis and TPS development, focusing on the challenges that are unique to MSL.
Plans and Considerations for the Exploration of Space
NASA Technical Reports Server (NTRS)
Derkowski, Brian J.
2001-01-01
The Mars Settlement Design Competition is a program for high school students and teachers to experience the process of mission and hardware design. It provides a top level view into how NASA plans to explore space. I will be involved with all three days of this competition. On Friday I plan to give two presentations, one to the employees of White Sands Test Facility and one to students and teachers. On Saturday, I will have a question and answer session with some of the teachers participating in the workshop. Sunday I will serve as one of the judges that will review the students projects created over the weekend. The main emphasis of my talk will focus on exploring the possibilities of the future of space exploration. I will discuss the Mars Reference Mission 3.0, as well as some of the current robotic missions being sent to Mars. Next, I will present a business model perfected by Hum Mandell, showing how the public, private, and commercial sectors all play a major role in sending humans to Mars. I will also discuss the work of the Integrated Design Team at JSC and how that working together approach is key for a successful design. Finally, I will present that the question of how humans can reach out beyond low earth orbit and place permanent settlements on Mars is really a function of the imagination of those who intend on going there.
Olympus Mons, Mars: Constraints on Lava Flow Silica Composition
NASA Astrophysics Data System (ADS)
Kirshner, M.; Jurdy, D. M.
2016-12-01
Olympus Mons, Mars, the largest known volcano in our solar system, contains numerous enigmatic lava flow features. Lava tubes have received attention as their final morphologies may offer habitable zones for both native life and human exploration. Such tubes were formed through mechanisms involving several volatile species with significant silica content. Olympus Mons, a shield volcano, might be expected to have flows with silica content similar to that of terrestrial basaltic flows. However, past investigations have estimated a slightly more andesitic composition. Data pertaining to lava tubes such as flow width and slope are collected from the Mars Reconnaissance Orbiter's Context Camera, Mars Odyssey's THEMIS instrument, and Mars Express' HRSC instrument. Compiling this data in GIS software allows for extensive mapping and analysis of Olympus Mons' seemingly inactive flow features. A rheological analysis performed on 62 mapped lava tubes utilizes geometric parameters inferred from mapping. Lava was modeled as a Bingham fluid on an inclined plane, allowing for the derivation of lava yield stress. Percent silica content was calculated for each of the 62 mapped flows using a relationship derived from observations of terrestrial lava yield strengths and corresponding silica composition. Results indicate that lava tube flows across Olympus Mons were on average basaltic in nature, occasionally reaching into the andesitic classification: percent silica content is 51% on average and ranges between roughly 40% and 57%.
100 years of concrete pavements in Iowa : final report, March 2009.
DOT National Transportation Integrated Search
2009-03-01
Portland cement concrete (PCC) pavements have given excellent service history for : Iowa. The first concrete pavement was placed in Le Mars in 1904 and was in service : until 1968. The Eddyville Cemetery Road placed in 1909 is still in service today....
GPS Spectrum Management (Briefing Charts)
2015-04-29
15) agenda item (AI) 1.1 draft conference preparatory meeting ( CPM ); proactively keeping possible mobile broadband allocations away from GPS in-band...UNCLASSIFIED/APPROVED FOR PUBLIC RELEASE ITU Watch Items SPACE AND MISSILE SYSTEMS CENTER • WRC-15 AI 1.1 -mobile broadband; finalization of CPM in Mar
76 FR 43826 - Mortgage Acts and Practices-Advertising
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... involving loan modification and foreclosure rescue services.'' \\7\\ The Omnibus Appropriations Act, as... respect to mortgage assistance relief services. See Mortgage Assistance Relief Services (MARS), Final Rule....e., likely to affect consumers' decisions to purchase or use the product or service at issue.\\9...
ERIC Educational Resources Information Center
Scientific American, 1978
1978-01-01
Describes scientific events: computed tomography (CT) scanner and its costs, existence of Upsilon particle in its lowest excited state, animal psychology to determine their capabilities of symbolic communication, findings of Viking mission about Mars and its two moons, and finally gives credit to first discoverer of penicillin. (GA)
Improving Mars-GRAM: Increasing the Accuracy of Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.
2010-01-01
Extensively utilized for numerous mission applications, the Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model. In a Monte-Carlo mode, Mars-GRAM's perturbation modeling capability is used to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM has been found to be inexact when used during the Mars Science Laboratory (MSL) site selection process for sensitivity studies for MapYear=0 and large optical depth values such as tau=3. Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM) from the surface to 80 km altitude. Mars-GRAM with the MapYear parameter set to 0 utilizes results from a MGCM run with a fixed value of tau=3 at all locations for the entire year. Imprecise atmospheric density and pressure at all altitudes is a consequence of this use of MGCM with tau=3. Density factor values have been determined for tau=0.3, 1 and 3 as a preliminary fix to this pressure-density problem. These factors adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. These density factors are fixed values for all latitudes and Ls and are included in Mars-GRAM Release 1.3. Work currently being done, to derive better multipliers by including variations with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data, will be highlighted in the presentation. The TES limb data utilized in this process has been validated by a comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS). This comparison study was undertaken for locations on Mars of varying latitudes, Ls, and LTST. The more precise density factors will be included in Mars-GRAM 2005 Release 1.4 and thus improve the results of future sensitivity studies done for large optical depths.
Temporal variability of the surface and atmosphere of Mars: Viking Orbiter color observations
NASA Technical Reports Server (NTRS)
Mcewen, A. S.
1992-01-01
We are near the final stages in the processing of a large Viking Orbiter global color dataset. Mosaics from 57 spacecraft revolutions (or 'revs' hereafter) were produced, most in both red and violet or red, green, and violet filters. Phase angles range from 13 deg to 85 deg. A total of approximately 2000 frames were processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking into single-rev mosaics at a scale of 1 km/pixel. All of the mosaics are geometrically tied to the 1/256 deg/pixel Mars Digital Image Mosaic (MDIM). Photometric normalization is in progress, to be followed by production of a 'best coverage' global mosaic at a scale of 1/64 deg/pixel (0.923 km/pixel). Global coverage is near 100 percent in red-filter mosaics and 98 percent and 60 percent in corresponding violet- and green-filter mosaics, respectively. Soon after completion, all final datasets (including single-rev mosaics) will be distributed to the planetary community on compact disks.
Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2015-01-01
Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919
NASA Astrophysics Data System (ADS)
Robbins, Stuart James
Impact craters are arguably the primary exogenic planetary process contributing to the surface evolution of solid bodies in the solar system. Craters appear across the entire surface of Mars, and they are vital to understanding its crustal properties as well as surface ages and modification events. They allow inferences into the ancient climate and hydrologic history, and they add a key data point for the understanding of impact physics. Previously available databases of Mars impact craters were created from now antiquated datasets, automated algorithms with biases and inaccuracies, were limited in scope, and/or complete only to multikilometer diameters. This work presents a new global database for Mars that contains 378,540 craters statistically complete for diameters D ≳ 1 km. This detailed database includes location and size, ejecta morphology and morphometry, interior morphology and degradation state, and whether the crater is a secondary impact. This database allowed exploration of global crater type distributions, depth, and morphologies in unprecedented detail that were used to re-examine basic crater scaling laws for the planet. The inclusion of hundreds of thousands of small, approximately kilometer-sized impacts facilitated a detailed study of the properties of nearby fields of secondary craters in relation to their primary crater. It also allowed the discovery of vast distant clusters of secondary craters over 5000 km from their primary crater, Lyot. Finally, significantly smaller craters were used to age-date volcanic calderas on the planet to re-construct the timeline of the last primary eruption events from 20 of the major Martian volcanoes.
Groemer, Gernot; Sattler, Birgit; Weisleitner, Klemens; Hunger, Lars; Kohstall, Christoph; Frisch, Albert; Józefowicz, Mateusz; Meszyński, Sebastian; Storrie-Lombardi, Michael; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja
2014-05-01
Abstract We have developed a portable dual-wavelength laser fluorescence spectrometer as part of a multi-instrument optical probe to characterize mineral, organic, and microbial species in extreme environments. Operating at 405 and 532 nm, the instrument was originally designed for use by human explorers to produce a laser-induced fluorescence emission (L.I.F.E.) spectral database of the mineral and organic molecules found in the microbial communities of Earth's cryosphere. Recently, our team had the opportunity to explore the strengths and limitations of the instrument when it was deployed on a remote-controlled Mars analog rover. In February 2013, the instrument was deployed on board the Magma White rover platform during the MARS2013 Mars analog field mission in the Kess Kess formation near Erfoud, Morocco. During these tests, we followed tele-science work flows pertinent to Mars surface missions in a simulated spaceflight environment. We report on the L.I.F.E. instrument setup, data processing, and performance during field trials. A pilot postmission laboratory analysis determined that rock samples acquired during the field mission exhibited a fluorescence signal from the Sun-exposed side characteristic of chlorophyll a following excitation at 405 nm. A weak fluorescence response to excitation at 532 nm may have originated from another microbial photosynthetic pigment, phycoerythrin, but final assignment awaits development of a comprehensive database of mineral and organic fluorescence spectra. No chlorophyll fluorescence signal was detected from the shaded underside of the samples.
NASA Astrophysics Data System (ADS)
Vorontsov, V.; Pichkhadze, K.; Polyakov, A.
2002-01-01
Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are much more reliable in comparison with MML of first and second options because their functional diagram is realized by operation of 3-4 (instead of 8-10 for MML of first and second concepts) executive devices. A distinctive moment for MML of last three concepts , namely for variants 3 and 5, is the final stage of landing stipulated by penetration of forebody into the soil. Such a profile of landing was taken into account during the development of one of the landing vehicles for the "MARS-96" SC. This will permit to implement simple technical decisions for putting the meteorological complex into operation and to carry out its further operations on the surface. After comparative analysis of 5 concepts for the more detailed development concepts with parachute system and with IBU and penetration unit have been chosen as most prospective. However, finally, on the next step the new modification of the lander (hybrid version of third and fifth option with inflatable braking device and penetrating unit) has been proposed and chosen for the next step of development. The several small stations should be transported to Mars in frameworks of Scout Mars mission, or Phobos Sample Return mission as piggyback payload.
The State Secrets Privilege and Other Limits on Litigation Involving Classified Information
2009-05-28
Privilege And Separation Of Powers , 75 FORDHAM L. REV. 1931, 1935 (Mar. 2007). 2 Editorial, Securing Lawsuits, WASH. POST, May 11, 2009, at A16...the Supreme Court invalidated a legislative enactment that required federal courts to reopen final decisions as a violation of the separation of powers principle...95 It might be argued that the retroactivity provision in H.R. 984 also reopens final judgments in violation of the separation of powers principle
Volunteers Help Decide Where to Point Mars Camera
2015-07-22
This series of images from NASA's Mars Reconnaissance Orbiter successively zooms into "spider" features -- or channels carved in the surface in radial patterns -- in the south polar region of Mars. In a new citizen-science project, volunteers will identify features like these using wide-scale images from the orbiter. Their input will then help mission planners decide where to point the orbiter's high-resolution camera for more detailed views of interesting terrain. Volunteers will start with images from the orbiter's Context Camera (CTX), which provides wide views of the Red Planet. The first two images in this series are from CTX; the top right image zooms into a portion of the image at left. The top right image highlights the geological spider features, which are carved into the terrain in the Martian spring when dry ice turns to gas. By identifying unusual features like these, volunteers will help the mission team choose targets for the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera, which can reveal more detail than any other camera ever put into orbit around Mars. The final image is this series (bottom right) shows a HiRISE close-up of one of the spider features. http://photojournal.jpl.nasa.gov/catalog/PIA19823
Aerodynamics for the Mars Phoenix Entry Capsule
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark
2008-01-01
Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.
The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.
European Venus Explorer: An in-situ mission to Venus using a balloon platform
NASA Astrophysics Data System (ADS)
Chassefière, E.; Korablev, O.; Imamura, T.; Baines, K. H.; Wilson, C. F.; Titov, D. V.; Aplin, K. L.; Balint, T.; Blamont, J. E.; Cochrane, C. G.; Ferencz, Cs.; Ferri, F.; Gerasimov, M.; Leitner, J. J.; Lopez-Moreno, J.; Marty, B.; Martynov, M.; Pogrebenko, S. V.; Rodin, A.; Whiteway, J. A.; Zasova, L. V.; the EVE Team
2009-07-01
Planetary balloons have a long history already. A small super-pressure balloon was flown in the atmosphere of Venus in the eighties by the Russian-French VEGA mission. For this mission, CNES developed and fully tested a 9 m diameter super-pressure balloon, but finally replaced it by a smaller one due to mass constraints (when it was decided to send Vega to Halley's Comet). Furthermore, several kinds of balloons have been proposed for planetary exploration [Blamont, J., in: Maran, S.P. (Ed.), The Astronomy and Astrophysics Encyclopedia. Cambridge University Press, p. 494, 1991]. A Mars balloon has been studied for the Mars-94 Russian-French mission, which was finally cancelled. Mars and Venus balloons have also been studied and ground tested at JPL, and a low atmosphere Venus balloon is presently under development at JAXA (the Japanese Space Agency). Balloons have been identified as a key element in an ongoing Flagship class mission study at NASA, with an assumed launch date between 2020 and 2025. Recently, it was proposed by a group of scientists, under European leadership, to use a balloon to characterize - by in-situ measurements - the evolution, composition and dynamics of the Venus atmosphere. This balloon is part of a mission called EVE (European Venus Explorer), which has been proposed in response to the ESA AO for the first slice of the Cosmic Vision program by a wide international consortium including Europe, Russia, Japan and USA. The EVE architecture consists of one balloon platform floating at an altitude of 50-60 km, one short lived probe provided by Russia, and an orbiter with a polar orbit to relay data from the balloon and probe, and to perform remote sensing science observations. The balloon type preferred for scientific goals is one, which would oscillate in altitude through the cloud deck. To achieve this flight profile, the balloon envelope would contain a phase change fluid. While this proposal was not selected for the first slice of Cosmic Vision missions, it was ranked first among the remaining concepts within the field of solar system science.
NASA Astrophysics Data System (ADS)
Bougher, Stephen; Huestis, David
The responses of the Martian dayside thermosphere to solar flux variations (on both solar rotation and solar cycle timescales) have been the subject of considerable debate and study for many years. Available datasets include: Mariner 6,7,9 (UVS dayglow), Viking Lander 1-2 (UAMS densities upon descent), several aerobraking campaigns (MGS, Odyssey, MRO densities), and Mars Express (SPICAM dayglow). Radio Science derived plasma scale heights near the ionospheric peak can be used to derive neutral temperatures in this region (only); such values are not applicable to exobase heights (e.g. Forbes et al. 2008; Bougher et al. 2009). Recently, densities and temperatures derived from precise orbit determination of the MGS spacecraft (1999-2005) have been used to establish the responses of Mars' exosphere to long-term solar flux variations (Forbes et al., 2008). From this multi-year dataset, dayside exospheric temperatures weighted toward moderate southern latitudes are found to change by about 120 K over the solar cycle. However, the applicability of these drag derived exospheric temperatures to near solar minimum conditions is suspect (e.g Bruinsma and Lemoine, 2002). Finally, re-evaluation of production mechanisms for UV dayglow emissions implies revised values for exospheric temperatures (e.g. Simon et al., 2009; Huestis et al. 2010). Several processes are known to influence Mars' exospheric temperatures and their variability (Bougher et al., 1999; 2000; 2009). Solar EUV heating and its variations with solar fluxes received at Mars, CO2 15-micron cooling, molecular thermal conduction, and hydrodynamic heating/cooling associated with global dynamics all contribute to regulate dayside thermo-spheric temperatures. Poorly measured dayside atomic oxygen abundances render CO2 cooling rates uncertain at the present time. However, global thermospheric circulation models can be exercised for conditions spanning the solar cycle and Mars seasons to address the relative roles of these processes in driving observed variations in dayside exospheric temperatures. Mars Thermospheric General Circulation Model (MTGCM) simulations and resulting exo-spheric temperatures will be presented and compared with assimilated temperatures collected from all these available measurements over the solar cycle. It is important to match measure-ments at dayside local times and latitudes for specific seasons with corresponding MTGCM simulated outputs. Calculated local heat budgets and their variations illustrate the changes required to reproduce solar cycle variations in exospheric temperatures. The ability to success-fully predict solar cycle responses of the Martian upper atmosphere is important for simulations of present-day Mars volatile escape rates.
Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life
NASA Astrophysics Data System (ADS)
Sholes, Steven F.; Smith, Megan L.; Claire, Mark W.; Zahnle, Kevin J.; Catling, David C.
2017-07-01
Mars today has no active volcanism and its atmosphere is oxidizing, dominated by the photochemistry of CO2 and H2O. Mars experienced widespread volcanism in the past and volcanic emissions should have included reducing gases, such as H2 and CO, as well as sulfur-bearing gases. Using a one-dimensional photochemical model, we consider whether plausible volcanic gas fluxes could have switched the redox-state of the past martian atmosphere to reducing conditions. In our model, the total quantity and proportions of volcanic gases depend on the water content, outgassing pressure, and oxygen fugacity of the source melt. We find that, with reasonable melt parameters, the past martian atmosphere (∼3.5 Gyr to present) could have easily reached reducing and anoxic conditions with modest levels of volcanism, >0.14 km3 yr-1, which are well within the range of estimates from thermal evolution models or photogeological studies. Counter-intuitively we also find that more reducing melts with lower oxygen fugacity require greater amounts of volcanism to switch a paleo-atmosphere from oxidizing to reducing. The reason is that sulfur is more stable in such melts and lower absolute fluxes of sulfur-bearing gases more than compensate for increases in the proportions of H2 and CO. These results imply that ancient Mars should have experienced periods with anoxic and reducing atmospheres even through the mid-Amazonian whenever volcanic outgassing was sustained at sufficient levels. Reducing anoxic conditions are potentially conducive to the synthesis of prebiotic organic compounds, such as amino acids, and are therefore relevant to the possibility of life on Mars. Also, anoxic reducing conditions should have influenced the type of minerals that were formed on the surface or deposited from the atmosphere. We suggest looking for elemental polysulfur (S8) as a signature of past reducing atmospheres. Finally, our models allow us to estimate the amount of volcanically sourced atmospheric sulfate deposited over Mars' history, approximately ∼106-109 Tmol, with a spread depending on assumed outgassing rate history and magmatic source conditions.
NASA Astrophysics Data System (ADS)
Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza
2014-10-01
The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the multivariate adaptive regression splines (MARS) technique, conclusions of this research work are exposed.
Zeroing In on Phoenix's Final Destination
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the latest estimate, marked by a green crosshair, of the location of NASA's Phoenix Mars Lander. Radio communications between Phoenix and spacecraft flying overhead have allowed engineers to narrow the lander's location to an area about 300 meters (984) long by 100 meters (328 feet) across, or about three football fields long and one football field wide. During landing, Phoenix traveled across the field of view shown here from the upper left to the lower right. The area outlined in blue represents the area where Phoenix was predicted to land before arriving on Mars. During Phoenix's descent through the Martian atmosphere to the surface of the Red Planet, continuous measurements of the distance the spacecraft traveled enabled engineers to narrow its location further to the circular area outlined in red. Using radio signals to home in on Phoenix's final location is sort of like trying to find a kitten by listening to the sound of its meows. As NASA's Odyssey spacecraft passes overhead, it receives radio transmissions from the lander. When Odyssey passes overhead again along a slightly different path, it receives new radio signals. With each successive pass, it is able to 'fix' the location of Phoenix a little more precisely. Meanwhile, NASA's Mars Reconnaissance Orbiter has taken actual images of the spacecraft on the surface, enabling scientists to match the lander's location to geologic features seen from orbit. The large crater to the right is 'Heimdall crater,' the slopes of which are visible in images of the parachute that lowered Phoenix to the surface, taken by the High Resolution Imaging Science Experiment instrument on the Mars Reconnaissance Orbiter. The map shown here is made up of topography data taken by NASA's Mars Global Surveyor. It shows exaggerated differences in the height of the terrain. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Planetary Protection Issues in the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.
2005-01-01
This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.
Planetary Protection Issues in the Human Exploration of Mars
NASA Astrophysics Data System (ADS)
Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.
2005-06-01
This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.
Mouna, Ali; Berrod, Jean-Paul; Conart, Jean-Baptiste
2017-01-01
The study aimed to evaluate outcomes of epiretinal membrane (ERM) peeling in patients with asteroid hyalosis (AH) and to compare them with those from controls without AH. This is a retrospective matched cohort study of 1,104 consecutive patients who underwent surgery for ERM between January 2004 and February 2014. Patients with AH were included in the study group and were matched for preoperative visual acuity, age, gender, date of surgery, and axial length with control patients without AH selected from the same cohort. The best-corrected visual acuity (BCVA) and central macular thickness (CMT) on optical coherence tomography were measured at baseline and postoperatively with a minimum follow-up period of 12 months. A total of 44 patients were included in the AH group and 44 in the control group. The mean initial BCVA was 0.53 ± 0.21 LogMAR for the AH group vs. 0.49 ± 0.20 LogMAR for the control group, and the mean initial CMT was 419 ± 74 vs. 423 ± 75 µm, respectively. During the follow-up, no significant difference was found regarding the final BCVA at 6 months (0.23 ± 0.14 vs. 0.24 ± 0.17) LogMAR (p = 0.87) and 12 months (0.16 ± 0.09 vs. 0.17 ± 0.12) LogMAR (p = 0.92), despite a tendency toward slower visual recovery for the AH group at 1 month, with a mean BCVA of 0.36 ± 0.12 vs. 0.28 ± 0.18 LogMAR (p = 0.08). No difference was found regarding the progression of CMT at 1.6 and 12 months with a mean CMT of 396 ± 47 vs. 378 ± 55 µm (p = 0.39), 356 ± 39 vs. 365 ± 41 µm (p = 0.48), and 349 ± 68 vs. 352 ± 53 µm (p = 0.87), respectively. Vitrectomy with ERM peeling in patients with AH was beneficial and showed similar functional and anatomical outcomes in both groups. AH does not seem to affect visual improvement or the complication rate after ERM peeling. Therefore, the indications for vitrectomy in case of ERM should not be prompted by the presence of AH. © 2017 S. Karger AG, Basel.
Work on Planetary Atmospheres and Planetary Atmosphere Probes
NASA Technical Reports Server (NTRS)
Lester, Peter
1999-01-01
A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced terms of motion not needed on Venus. When the Galileo Probe encountered Jupiter, analysis and interpretation of data commenced. The early contributions of the experiment were to define (1) the basic structure of the deep atmosphere, (2) the stability of the atmosphere, (3) the upper atmospheric profiles of density, pressure, and temperature. The next major task in the Galileo Probe project was to refine, verify and extend the analysis of the data. It was the verified, and corrected data, which indicated a dry abiabatic atmosphere within measurement accuracy. Temperature in the thermosphere was measured at 900 K. Participation in the Mars atmospheric research included: (1) work as a team member of the Mars Atmosphere Working Group, (2) contribution to the Mars Exobiology Instrument workshop, (3) asssistance in planning the Mars global network and (4) assitance in planning the Soviet-French Mars mission in 1994. This included a return to the Viking Lander parachute data to refine and improve the definition of winds between 1.5 and 4 kilometer altitude at the two entry sites. The variability of the structure of Mars atmosphere was addressed, which is known to vary with season, latitude, hemisphere and dust loading of the atmosphere. This led to work on the Pathfinder project. The probe had a deployable meteorology mast that had three temperature sensors, and a wind sensor at the tip of the mast. Work on the Titan atmospheric probe was also accomplished. This included developing an experiment proposal to the European Space Agency (ESA), which was not selected. However, as an advisor in the design and preparation of the selected experiment the researcher interacted with scientist on the Huygens Probe Atmosphere Structure Experiment. The researcher also participated in the planning for the Venus Chemical Probe. The science objectives of the probe were to resolve unanswered questions concerning the minor species chemistry of Venus' atmosphere that control cloud formation, greenhouse effectiveness, and the thermal structure. The researcher also reviewed problems with the Pioneer Venus Probe, that caused anomalies which occurred on the Probes at and below 12.5 km level of the Venus' atmosphere. He convened and participated in a workshop that concluded the most likely hardware cause was insulation failure in the electrical harness outside the Probes' pressure vessels. It was discovered that the shrink tubing material failed at 600K. This failure could explain the anomalies experienced by the probes. The descent data of the Pioneer probes, and the Soviet Vega Lander was analyzed to evaluate the presence of small scale gravity waves in and below the Venus cloud layer.
Three Years of Monitoring Mars' Atmospheric Dust (Animation)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Animation This movie shows the daily abundance of dust in the martian atmosphere over a period of three full martian years, from April 1999 through February 2005. The Thermal Emission Spectrometer instrument on NASA's Mars Global Surveyor orbiter has been tracking the weather on Mars for six years. The infrared spectrum observed by this instrument yields information about the spectral properties of the dust and the temperature of the atmosphere. These two properties can then be used to derive how much dust is in the atmosphere. Of particular interest are large regional and global dust storms that occur during summer in the southern hemisphere each Mars year. The 2001 storm was by far the largest, lasting over six months (June to October, 2001) and covering the entire planet. The storms in the other two Mars years shown here were much smaller and never covered the planet. The most recent storm season (June 2003 through January 2005) actually had two separate storms, one in June and a second in December. Unlike most large martian dust storms that start in the southern hemisphere, the December storm began in the north and swept toward the equator. Between storms the atmosphere becomes quite clear, with much smaller dust storms scattered throughout the year and over the planet. Seasons on Mars are determined by the position of Mars in its orbit around the Sun. The position is measured in degrees of solar longitude (Ls) around the orbit, beginning at 0 degrees Ls at the northern spring equinox, progressing to 90 degrees Ls at the start of northern summer, 180 degrees Ls at the fall equinox, 270 degrees Ls at the start of northern winter, and finally back to 360 degrees, or 0 degrees, Ls at the spring equinox. Dust abundance is measured as opacity (tau), with values of 0 tau representing a completely clear atmosphere, and values of 2 indicating that it is nearly impossible to see through to the surface. The Thermal Emission Spectrometer is operated by a team led at Arizona State University, Tempe. Mars Global Surveyor left Earth on Nov. 7, 1996, and began orbiting Mars on Sept. 12, 1997. JPL, a division of the California Institute of Technology, Pasadena, manages Mars Global Surveyor for NASA's Science Mission Directorate, Washington.CNES-NASA Studies of the Mars Sample Return Orbiter Aerocapture Phase
NASA Technical Reports Server (NTRS)
Fraysse, H.; Powell, R.; Rousseau, S.; Striepe, S.
2000-01-01
A Mars Sample Return (MSR) mission has been proposed as a joint CNES (Centre National d'Etudes Spatiales) and NASA effort in the ongoing Mars Exploration Program. The MSR mission is designed to return the first samples of Martian soil to Earth. The primary elements of the mission are a lander, rover, ascent vehicle, orbiter, and an Earth entry vehicle. The Orbiter has been allocated only 2700 kg on the launch phase to perform its part of the mission. This mass restriction has led to the decision to use an aerocapture maneuver at Mars for the orbiter. Aerocapture replaces the initial propulsive capture maneuver with a single atmospheric pass. This atmospheric pass will result in the proper apoapsis, but a periapsis raise maneuver is required at the first apoapsis. The use of aerocapture reduces the total mass requirement by approx. 45% for the same payload. This mission will be the first to use the aerocapture technique. Because the spacecraft is flying through the atmosphere, guidance algorithms must be developed that will autonomously provide the proper commands to reach the desired orbit while not violating any of the design parameters (e.g. maximum deceleration, maximum heating rate, etc.). The guidance algorithm must be robust enough to account for uncertainties in delivery states, atmospheric conditions, mass properties, control system performance, and aerodynamics. To study this very critical phase of the mission, a joint CNES-NASA technical working group has been formed. This group is composed of atmospheric trajectory specialists from CNES, NASA Langley Research Center and NASA Johnson Space Center. This working group is tasked with developing and testing guidance algorithms, as well as cross-validating CNES and NASA flight simulators for the Mars atmospheric entry phase of this mission. The final result will be a recommendation to CNES on the algorithm to use, and an evaluation of the flight risks associated with the algorithm. This paper will describe the aerocapture phase of the MSR mission, the main principles of the guidance algorithms that are under development, the atmospheric entry simulators developed for the evaluations, the process for the evaluations, and preliminary results from the evaluations.
Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling
NASA Technical Reports Server (NTRS)
Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.
2004-01-01
Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.
De Palma, Rodney; Sörensson, Peder; Verouhis, Dinos; Pernow, John; Saleh, Nawzad
2017-07-27
Clinical outcome following acute myocardial infarction is predicted by final infarct size evaluated in relation to left ventricular myocardium at risk (MaR). Contrast-enhanced steady-state free precession (CE-SSFP) cardiovascular magnetic resonance imaging (CMR) is not widely used for assessing MaR. Evidence of its utility compared to traditional assessment methods and as a surrogate for clinical outcome is needed. Retrospective analysis within a study evaluating post-conditioning during ST elevation myocardial infarction (STEMI) treated with coronary intervention (n = 78). CE-SSFP post-infarction was compared with angiographic jeopardy methods. Differences and variability between CMR and angiographic methods using Bland-Altman analyses were evaluated. Clinical outcomes were compared to MaR and extent of infarction. MaR showed correlation between CE-SSFP, and both BARI and APPROACH scores of 0.83 (p < 0.0001) and 0.84 (p < 0.0001) respectively. Bias between CE-SSFP and BARI was 1.1% (agreement limits -11.4 to +9.1). Bias between CE-SSFP and APPROACH was 1.2% (agreement limits -13 to +10.5). Inter-observer variability for the BARI score was 0.56 ± 2.9; 0.42 ± 2.1 for the APPROACH score; -1.4 ± 3.1% for CE-SSFP. Intra-observer variability was 0.15 ± 1.85 for the BARI score; for the APPROACH score 0.19 ± 1.6; and for CE-SSFP -0.58 ± 2.9%. Quantification of MaR with CE-SSFP imaging following STEMI shows high correlation and low bias compared with angiographic scoring and supports its use as a reliable and practical method to determine myocardial salvage in this patient population. Clinical trial registration information for the parent clinical trial: Karolinska Clinical Trial Registration (2008) Unique identifier: CT20080014. Registered 04 th January 2008.
Edwards, Howell G M; Hutchinson, Ian; Ingley, Richard
2012-10-01
The molecular specificity of Raman spectroscopy provides a powerful tool for the analytical interrogation of mineralogical and many biological specimens. The Raman Laser Spectrometer (RLS) is a compact Raman spectrometer under development for deployment on the Martian surface as part of the forthcoming ESA ExoMars mission. This will be the first Raman instrument deployed in space. The scientific interpretation of the data emerging from such an instrument not only addresses the geological and mineral composition of the specimens but also enables an assessment to be made of organic biomaterials that may be preserved in the planetary geological record. The latter evidence centres on the residual and distinctive chemistry relating to the biological adaptation of the geological matrix that has occurred as a result of extremophilic organisms colonizing suitable geological niches for their survival in environmentally stressed habitats on Mars. These biogeological modifications have been studied terrestrially for Mars analogue sites and consist of both a geological component and residual key organic biomarkers, the recognition of which would be a prime factor in life detection surveys of a planetary surface and subsurface. In this paper, the protocols required for the Raman spectral discrimination of key biogeological features that may be detectable on the Martian planetary surface or subsurface are developed using the UK breadboard (UKBB) instrument. This instrument has been constructed to be functionally equivalent to the RLS flight instrument design in order to evaluate the feasible science return of the instrument which will finally be delivered to Mars. Initial Raman measurements using the UKBB are presented and compared with the performance of a commercial laboratory Raman microscope. The initial measurements reported here demonstrate this flight-like prototype achieves straightforward detection of biological signatures contained in geological matrices with Raman band signal to noise ratios high enough to determine sample composition by inspection and without the need for deconvolution or further processing.
Mobile Audience Response Systems at a Continuing Medical Education Conference.
Beaumont, Alexandra; Gousseau, Michael; Sommerfeld, Connor; Leitao, Darren; Gooi, Adrian
2017-01-01
Mobile audience response systems (mARS) are electronic systems allowing speakers to ask questions and audience members to respond anonymously and immediately on a screen which enables learners to view their peers' responses as well as their own. mARS encourages increased interaction and active learning. This study aims to examine the perceptions of audience members and speakers towards the implementation of mARS at a national medical conference. mARS was implemented at the CSO Annual Meeting in Winnipeg 2015. Eleven presenters agreed to participate in the mARS trial. Both audience and presenters received instructions. Five-point Likert questions and short answer questions were emailed to all conference attendees and the data was evaluated. Twenty-seven participants responded, 23 audience members and 4 instructors. Overall, responders indicated improved attention, involvement, engagement and recognition of audience's understanding of topics with the use of mARS. mARS was perceived as easy to use, with clear instructions, and the majority of respondents expressed an interest in using mARS in more presentations and in future national medical conferences. Most respondents preferred lectures with mARS over lectures without mARS. Some negative feedback on mARS involved dissatisfaction with how some presenters implemented mARS into the workshops. Overall mARS was perceived positively with the majority of respondents wanting mARS implemented in more national medical conferences. Future studies should look at how mARS can be used as an educational tool to help improve patient outcomes.
NASA Astrophysics Data System (ADS)
Orgel, C.; Battler, M.; Foing, B. H.; Van't Woud, H.; Maiwald, V.; Cross, M.; Ono, A.
2013-09-01
On 6th August 2012, Curiosity landed in Gale crater, Mars. Initial measurements and pictures showed sedimentary rocks that had been deposited by fluvial activity, e.g., alluvial fan and stream deposits. Such deposits are common in desert environments on Earth. The goal of the ILEWG EuroMoonMars project (February 23rd-March 9th,2013)was to conduct field studies in order to identify and study environments that are analogous to those that Curiosity has studied and will study at Gale crater. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) had been conducted at the Mars Desert Research Station (MDRS) [3] near Hanksville, Utah, in the vicinity of the San Rafael swell. The aim of the ILEWG EuroMoonMars 2013 project was to identify terrestrial analog sites for Curiosity exploration. The stratigraphy of the area consists of Jurassic and Cretaceous strat a[5] of which the Summerville Formation, the Brushy Basin Member of the Morrison Formation, and the Dakota Sandstone were studied. Widespread inverted channels on Mars have been identified through orbiter imagery data [6], e.g., at Gale crater. Concretions also appear to be common on Mars and have been found by the Opportunity rover at Meridiani Planum [4] and the Curiosity rover at Yellowknife Bay (Fig. 1).
NASA Technical Reports Server (NTRS)
Marov, Mikhail YA.; Duke, Michael B.
1993-01-01
The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.
Mars extant-life campaign using an approach based on Earth-analog habitats
NASA Technical Reports Server (NTRS)
Palkovic, Lawrence A.; Wilson, Thomas J.
2005-01-01
The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.
A genetic inventory of spacecraft and associated surfaces.
La Duc, Myron T; Venkateswaran, Kasthuri; Conley, Catharine A
2014-01-01
Terrestrial organisms or other contaminants that are transported to Mars could interfere with efforts to study the potential for indigenous martian life. Similarly, contaminants that make the round-trip to Mars and back to Earth could compromise the ability to discriminate an authentic martian biosignature from a terrestrial organism. For this reason, it is important to develop a comprehensive inventory of microbes that are present on spacecraft to avoid interpreting their traces as authentic extraterrestrial biosignatures. Culture-based methods are currently used by NASA to assess spacecraft cleanliness but deliberately detect only a very small subset of total organisms present. The National Research Council has recommended that molecular (DNA)-based identification techniques should be developed as one aspect of managing the risk that terrestrial contamination could interfere with detection of life on (or returned from) Mars. The current understanding of the microbial diversity associated with spacecraft and clean room surfaces is expanding, but the capability to generate a comprehensive inventory of the microbial populations present on spacecraft outbound from Earth would address multiple considerations in planetary protection, relevant to both robotic and human missions. To this end, a 6-year genetic inventory study was undertaken by a NASA/JPL team. It was completed in 2012 and included delivery of a publicly available comprehensive final report. The genetic inventory study team evaluated the utility of three analytical technologies (conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-pyrosequencing) and combined them with a systematic methodology to collect, process, and archive nucleic acids as the first steps in assessing the phylogenetic breadth of microorganisms on spacecraft and associated surfaces.
EPA is establishing or revising initial area designations and a technical amendment to correct an inadvertent error in the initial designation for one area for the 2012 annual national ambient air quality standards for fine particle pollution.
Searching for signatures of life on Mars: an Fe-isotope perspective.
Anand, M; Russell, S S; Blackhurst, R L; Grady, M M
2006-10-29
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.
Searching for signatures of life on Mars: an Fe-isotope perspective
Anand, M; Russell, S.S; Blackhurst, R.L; Grady, M.M
2006-01-01
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars. PMID:17008212
Analysis-test correlation of airbag impact for Mars landing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salama, M.; Davis, G.; Kuo, C.P.
1994-12-31
The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags aremore » deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.« less
NASA Technical Reports Server (NTRS)
Johnson, Kenneth R.
1997-01-01
The Mars Pathfinder (MPF) Spacecraft was built and tested at the Jet Propulsion Laboratory during 1995/96. MPF is scheduled to launch in December 1996 and to land on Mars on July 4, 1997. The testing program for MPF required subjecting the mission hardware to both deep space and Mars surface conditions. A series of tests were devised and conducted from 1/95 to 7/96 to study the thermal response of the MPF spacecraft to the environmental conditions in which it will be exposed during the cruise phase (on the way to Mars) and the lander phase (landed on Mars) of the mission. Also, several tests were conducted to study the thermal characteristics of the Mars rover, Sojourner, under Mars surface environmental conditions. For these tests, several special test fixtures and methods were devised to simulate the required environmental conditions. Creating simulated Mars surface conditions was a challenging undertaking since Mars' surface is subjected to diurnal cycling between -20 C and -85 C, with windspeeds to 20 m/sec, occurring in an 8 torr CO2 atmosphere. This paper describes the MPF test program which was conducted at JPL to verify the MPF thermal design.
NASA Technical Reports Server (NTRS)
Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.
2001-01-01
During the Keck 'Mars 2000' summer project 10 undergraduates (rising juniors) used Mars Orbiter Laser Altimeter (MOLA) data to study a 19x14 degree region they identified as a potential Mars 2003 landing site. Here we introduce the project science and organization. Additional information is contained in the original extended abstract.
Comparing Run-Out Efficiency of Fluidized Ejecta on Mars with Terrestrial and Martian Mass Movements
NASA Technical Reports Server (NTRS)
Barnouin-Jha, O. S.; Baloga, S.
2003-01-01
We broadly characterize the rheology of fluidized ejecta on Mars as it flows during its final stages of emplacement by using the concept of run-out efficiency. Run-out efficiency for ejecta can be obtained through an energy balance between the kinetic energy of the excavated ejecta, and the total work lost during its deposition. Such an efficiency is directly comparable to run-out efficiency (i.e., L/H analyzes where L is the run-out distance and H is onset height) of terrestrial and extraterrestrial mass movements. Determination of the L/H ratio is commonly used in terrestrial geology to broadly determine the type and rheology of mass movements
NASA Technical Reports Server (NTRS)
Morris, R. V.; Catalano, J. G.; Klingelhoefer, G.; Schroeder, C.; Gellert, R.; Clark, B. C.; Ming, D. W.; Yen, A. S.; Arvidson, R. E.; Cohen, B. A.;
2017-01-01
The Mars Exploration Rover Spirit ended its mission in Gusev crater on sol 2210 after it had become stuck in a deposit of fined-grained and sulfate rich soil with dust covered solar panels unfavorably pointed toward the sun. Final analysis of remaining data from Spirit's Moessbauer spectrometer (Fe redox and mineralogy) for sols 1529 through 2071 is now complete. We focus here on chemical (APXS) and MB data for targets having high-SiO2 or high-SO3 and process link the targets through mixing and geochemical modelling to an acid-sulfate system centered at Home Plate, which is considered to be a hydrovolcanic complex.
NASA Technical Reports Server (NTRS)
Sutter, James K.; Leidecker, Henning W.; Panda, Binayak; Piascik, Robert S.; Muirhead, Brian K.; Peeler, Debra
2009-01-01
The NESC eras requested by the NASA Jet Propulsion Laboratory (JPL) to conduct an independent review of the Mars Reconnaissance Orbiter (MRO) Thermal/Vacuum (T/V) Anomaly Assessment. Because the anomaly resulted in the surface contamination of the MRO, selected members of the Materials Super Problem Resolution Team (SPRT) and the NASA technical community having technical expertise relative to contamination issues were chosen for the independent review. The consultation consisted of a review of the MRO Project's reported response to the assessment findings, a detailed review of JPL technical assessment final report, and detailed discussions with the JPL assessment team relative to their findings.
Mars: A reassessment of its interest to biology
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.
1992-01-01
Of all the planets in the solar system, Mars is certainly the one that has inspired the most speculation concerning extraterrestrial life. Observers had long ago noticed that Mars exhibits changes in its polar caps and alterations in its surface coloration that parallel seasonal changes on Earth. The fascination with Mars and the possibility of life on Mars continued into the spacecraft era and was directly expressed in the Viking Missions. These highly successful missions had the search for life on Mars as one of their principal goals. A review of Viking Missions experiments is presented. Results of these investigations are summarized. While the Viking Missions returned a negative answer to the question of life on Mars, they also showed that many years ago Mars was a very different place and enjoyed conditions that may have been conducive to the origin of life - life that may have long since become extinct. Evidence for the existence of water on Mars in the past is presented. Techniques used to study early life on Earth, which may also be used for similar studies on Mars, are described.
Emirates Mars Mission Planetary Protection Plan
NASA Astrophysics Data System (ADS)
Awadhi, Mohsen Al
2016-07-01
The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars. 2.The spacecraft is deployed from the launch vehicle and powers on. 3.Within the first month, the spacecraft executes a trajectory correction maneuver to remove the launch bias. The target of this maneuver may still have a small bias to further reduce the probability of inadvertently impacting Mars. 4.Four additional trajectory correction maneuvers are scheduled and planned in the interplanetary cruise in order to target the precise arrival conditions at Mars. The targeted arrival conditions are specified by an altitude above the surface of Mars and an inclination relative to Mars' equator. The closest approach to Mars during the Mars Orbit Insertion (MOI) is over 600 km and the periapsis altitude of the first orbit about Mars is nominally 500 km. The inclination of the first orbit about Mars is nominally around 18 degrees. 5.The Mars Orbit Insertion is performed as a pitch-over burn, approaching no closer than approximately 600 km, and targeting a capture orbit period of 35-40 hours. 6.The spacecraft Capture Orbit has a nominal periapse altitude of 500 km, a nominal apoapse altitude of approximately 45,000 km, and a nominal period of approximately 35 hours. The mission expects that this orbit will be somewhat different after executing the real MOI due to maneuver execution errors. The full range of expected Capture Orbit sizes is acceptable from a planetary protection perspective. 7.The spacecraft remains in the Capture Orbit for two months. 8.The spacecraft then executes three maneuvers in the Transition to Science phase, raising the orbital periapse, raising the orbit inclination, adjusting the apoapse, and placing the argument of periapse near a value of 177 deg. The three maneuvers are nominally one week apart. The first maneuver is large and will raise the periapse significantly, thereafter significantly reducing the probability of Amal impacting Mars in the future.
Astrobiology Objectives for Mars Sample Return
NASA Astrophysics Data System (ADS)
Meyer, M. A.
2002-05-01
Astrobiology is the study of life in the Universe, and a major objective is to understand the past, present, and future biologic potential of Mars. The current Mars Exploration Program encompasses a series of missions for reconnaissance and in-situ analyses to define in time and space the degree of habitability on Mars. Determining whether life ever existed on Mars is a more demanding question as evidenced by controversies concerning the biogenicity of features in the Mars meteorite ALH84001 and in the earliest rocks on Earth. In-situ studies may find samples of extreme interest but resolution of the life question most probably would require a sample returned to Earth. A selected sample from Mars has the many advantages: State-of-the-art instruments, precision sample handling and processing, scrutiny by different investigators employing different techniques, and adaptation of approach to any surprises It is with a returned sample from Mars that Astrobiology has the most to gain in determining whether life did, does, or could exist on Mars.
NASA Technical Reports Server (NTRS)
2008-01-01
Relatively warmer daytime temperatures on Mars have allowed the biobarrier -- a shiny, protective film -- to peel away a little more from the robotic arm of NASA's Phoenix Mars Lander. This image shows the spacecraft's robotic arm in its stowed configuration, with the biobarrier unpeeled on landing day, or Sol (Martian day) 0, and the lander's first full day on Mars, Sol 1. The 'elbow' of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm. The biobarrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars. Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have appeared during the final steps before launch and during the journey to Mars will not contact the robotic arm. After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy. These images were taken on May 25, 2008 and May 26, 2008 by the spacecraft's Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.The Ricor K508 cryocooler operational experience on Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael
The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluidmore » loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.« less
NASA Astrophysics Data System (ADS)
de Pablo, M. A.; Márquez, A.; Centeno, J. D.
The Atlantis basin is one of the martian highlands areas where there was proposed the existence of an ancient lake during the early geological history of Mars [1] [2] [3] [4]. The existence of some morphological features inside the basin and in the surrounding area, allow to check the existence of liquid water in the past of the planet. On the other hand, other morphological features indicate the existence of snow and liquid groundwater in recent times. The detailed study of the geomorphologic features allows to make an approach to the hydrological evolution of the Atlantis basin. The study of the geomorphology of this region has been carried out by means of the analysis of MOC high resolution images obtained by the Mars Global Surveyor mission and the THEMIS images, in the visible spectrum, sent by Mars Odyssey spacecrafts. The most clearly morphological feature indicative of the existence of water in the surface of Mars in the past are the numerous channels that end into Atlantis basin from the highest terrains. In addiction to these fluvial channels, the existence of mass flow deposits is also indicative of the existence of water in the area. Some of these slumps are in the internal slopes of impact craters, but others cover huge extensions around the chaotic terrains of the studied area. The lobated ejecta deposits observed in the Atlantis basin region are indicative of the existence of groundwater (solid or liquid) [5]. Serrated reliefs and tables in the borders of the basins are indicative of the existence of a water sheet. Beneath this water sheet some deposits was formed which was eroded, due to the gradual desiccation of the basin, forming the tables and serrated reliefs. The existence of different chaotic terrains in the area implies the existence of huge amounts of water under the surface according to the different models of chaotic terrain formation [6] [7]. The existence of groundwater could be decided by the existence of collapses in the near to the chaotic terrain that it occupies the Atlantis basin centre [4]. Finally, the two features that indicate the existence of water in the most recent past of the basin are the gullies and icy dust surfaces. Gullies appears in the internal slopes of some impact craters located at the South of the Atlantis basin. Although different origins are discussed for the water that eroded these gullies [8] [9] [10] their formation implies the flow of water in surface during a relatively short time period. The mantels of icy dust have been described in several places of Mars and they imply the existence of frozen water in the most superficial layer [11] [12]. The low craterization of the deposits of the gullies and the icy dust surfaces indicates the extreme youth of these features. All these geomorphologic features show the existence of water in the surface or in subsurface of Mars in the region of the basin Atlantis in different moments of its geologic history. The previos studies of the MOLA topographic data (Mars Global Surveyor) [3] [13] indicate that this basin is part of the great Eridania Lake [3] whose gradual drying originated the formation of small lakes, one of them, the Atlantis lake [4], was located inside the studied basin. The fluvial channels observed in the edges of the basin should contribute with some water to this lake. The hypothesis of existence of a lake is supported by the existence of tables and serrated reliefs formed during the descent of the water sheet. The formation of the chaotic terrain, collapse areas, lobated ejecta of some impact craters and the mass flow deposits, all indicate the existence of water in the subsurface after the disappearance of the Atlantis Lake. Finally, the gullies and the icy dust surfaces indicate that water still exists at different depths in the ground. [1] Parker, T.J., Currey, D.R. 2001. Geomorphology, 37. 303-328. [2] de Pablo, M.A., Druet, M. 2002. XXXIII LPSC, Abstract #1032. [3] Irwin, R.P., et al. 2002. Science, 297, 2209-2212. [4] de Pablo, M.A., et al. 2004. XXXV LPSC, Abstracts. #1223. [5] Carr, 1996. Oxford University Press, New York. 229 p. [6] Komatsu, G. et al. 2000. XXXI LPSC, abstract # 1434. [7] Oyawa, Y., et al 2003. VI Int. Mars Conf., Abstract #3095. [8] Malin, M.C., Edgett, K.S. 2000. Science, 288. 2330-2335. [9] Costard, F., et al. 2002. Science, 295. 110-113. [10] Gilmore, M.S., Phillips, E.L. 2002. J. Gepphys. Res., 30. 1107-1110. [11] Mustard, J.F., et al. 2001. Nature, 412. 411-414. [12] Milliken, R.E., et al. 2003. J. Geophys. Res., 108 (E6). 5057. doi:10.1029/2002JE002005. [13] de Pablo, M.A. 2003. VI Internacional Conference on Mars, Abstract #3037.
Small-scale volcanoes on Mars: distribution and types
NASA Astrophysics Data System (ADS)
Broz, Petr; Hauber, Ernst
2015-04-01
Volcanoes differ in sizes, as does the amount of magma which ascends to a planetary surface. On Earth, the size of volcanoes is anti-correlated with their frequency, i.e. small volcanoes are much more numerous than large ones. The most common terrestrial volcanoes are scoria cones (
Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.
2013-01-01
Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.
Four Finalist Landing Site Candidates for Mars Science Laboratory
NASA Technical Reports Server (NTRS)
2008-01-01
Out of more than 30 sites considered as possible landing targets for NASA's Mars Science Laboratory mission, by November 2008 four of the most intriguing places on Mars rose to the final round of the site-selection process. The four finalists are, alphabetically: Eberswalde, where an ancient river deposited a delta in a possible lake; Gale, with a mountain of stacked layers including clays and sulfates; Holden, a crater containing alluvial fans, flood deposits, possible lake beds and clay-rich deposits; and Mawrth, which shows exposed layers containing at least two types of clay. The locations of these four candidates are indicated here on a background map of color-coded topographical data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Red is higher elevation; blue is lower elevation. In latitude, the map extends from 70 degrees (north) to minus 70 degrees (south). The east-west axis is labeled at the top in degrees of east longitude, with the zero meridian at the center. The Mars Science Laboratory mission's capabilities for landing more precisely and at higher elevation than ever before, for driving farther, and for generating electricity without reliance on sunshine have enabled consideration of a wider range of possible landing sites than for any previous Mars mission. During the past two years, multiple observations of dozens of candidate sites by NASA's Mars Reconnaissance Orbiter have augmented data from earlier orbiters for evaluating sites' scientific attractions and engineering risks. More than 100 Mars scientists have participated in a series of open workshops presenting and assessing data that the orbiters have provided about the candidate sites. The four sites rated highest by researchers at a September 2008 workshop were the same ones chosen by mission leaders after a subsequent round of safety evaluations and analysis of terrain for rover driving. As a clay-bearing site where a river once flowed into a lake, Eberswalde Crater offers a chance to use knowledge that oil industry geologists have accumulated about locations of the most promising parts of a delta to look for any concentrations of carbon chemistry that is crucial to life. The mountain inside Gale Crater could provide a route for the rover to drive up a 5-kilometer (3-mile) sequence of layers, studying a transition from environments that produced clay deposits near the bottom to later environments that produced sulfate deposits partway up. Running water once carved gullies and deposited sediments as alluvial fans and catastrophic flood deposits in Holden Crater, a site that may also present the chance to evaluate layers deposited in a lake. Exploration of key features within this target area would require drives to the edge of a broad valley, and then down into the valley. Mawrth Valley is an apparent flood channel near the edge of vast Martian highlands. It holds different types of clays in clearly layered context, offering an opportunity for studying the changes in wet conditions that produced or altered the clays. The clay signatures are stronger than at the other sites, and this is the only one of the four for which the science target is within the landing area, not nearby. NASA's Jet Propulsion Laboratory, operated by the California Institute of Technology in Pasadena, manages the Mars Science Laboratory for the NASA Science Mission Directorate, Washington.NASA Astrophysics Data System (ADS)
B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric
2014-06-01
The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking volume mixing ratios are under investigation.
NASA Astrophysics Data System (ADS)
Gough, R. V.; Chevrier, V.; Tolbert, M. A.
2013-12-01
There is significant interest in the possible existence of liquid water on current Mars. This water would likely exist as a brine in order to be stable on Mars today. It has been proposed that soil salts could form aqueous solutions through either the melting of ice by low-eutectic salts, or by the deliquescence of hygroscopic salts present in the Martian soil. The focus thus far has largely been on perchlorate species, which can melt ice at temperatures as low as 206 K and can deliquesce at relative humidity values as low as 38% RH. A Mars-relevant salt that has been neglected thus far is calcium chloride (CaCl2). Calcium has been reported to be an abundant cation at the Phoenix landing site and Mars Science Laboratory instruments have recently identified calcium as well. Simulations suggest subsurface CaCl2 is an ideal candidate to produce brines with seasonality consistent with observed recurring slope lineae (RSL) (Chevrier et al., 2012). Finally, the only terrestrial site where RSL-like features have been observed (near Don Juan Pond in the Antarctic Dry Valleys) contains abundant CaCl2. These seasonal slope streaks are thought to form when CaCl2 in the soil deliquesces due to contact with atmospheric water vapor (Dickson et al., 2013). It is important to understand how this CaCl2 interacts with water vapor at low temperatures relevant to Mars and the Martian analog sites. Here we use a Raman microscope and environmental cell to monitor the low-temperature (223 - 273 K) deliquescence (solid to aqueous phase transition) and efflorescence (aqueous to solid phase transition) of three hydration states of CaCl2 (dihydrate, tetrahydrate, hexahydrate). We have found that the deliquescence relative humidity (DRH) increases with increasing hydration state, which is an expected result. Average DRH values over the temperature range studied are 20.0 × 2.6% RH for the dihydrate, 31.8 × 6.3% RH for the tetrahydrate and 60.7 × 1.6% RH for the hexahydrate. Once the aqueous solution has formed, efflorescence (recrystallization) of the salt is kinetically hindered and supersaturated solutions can exist at humidities far below the DRH. Regardless of temperature or initial hydration state of the solid salt, we do not observe efflorescence of the aqueous solutions to occur until single digit RH values are reached. We show here that calcium chloride is at least as deliquescent as many perchlorate salts, and that solutions of calcium chloride are even more difficult to recrystallize once a brine solution has formed. These experimental results will assist with interpretation of observations of deliquescence in the Antarctic Dry Valleys and will help us understand potential liquid water formation on Mars. In addition to formation of brines through melting, deliquescence of salts such as CaCl2 is a reasonable mechanism for formation of aqueous solutions on current Mars.
Contributions of Planetary Science to Studies of Early Biosphere Evolution
NASA Technical Reports Server (NTRS)
Farmer, Jack D.; Chang, Sherwood (Technical Monitor)
1995-01-01
The history of impact cratering on the Moon, and extrapolations of crater chronologies to the inner planets, suggests that the late accretionary history of the Earth overlapped with other crucial events in the its history, including the origin of terrestrial life. This evidence, acquired from studies of other planetary bodies in the inner solar system, has profoundly affected how we view the early history of the Earth and evolution of the biosphere. Pre-biotic chemical evolution and the origin of life would have been delayed by the probable existence of a global magma ocean until -4.2 Ga. The early crust was largely destroyed by recycling, thus accounting for the sparse Archean record on Earth. Once life had developed, large impacts may have extinguished it several times before it finally gained a foothold. Potentially sterilizing impacts could have occurred as late as 3.7 Ga. At the very least, large impacts would have forced the biosphere through major environmental "bottlenecks" thereby canalizing its subsequent evolution. One legacy of these early events may be the structure of the present RNA-tree which indicates that extreme thermophiles are primitive within the Archaea, and may be the last common ancestors of life. By 3.5 Ga, marine sedimentary sequences contain unequivocal microbial fossils that attest to the presence of a terrestrial biosphere. The diversity of microbial forms present in these earliest fossil assemblages implies a preceding interval of evolution during which major evolutionary advances (e.g. photosynthesis) could have taken place. Evidence cited above places the origin of life within the interval 3.5 and 4.2 Ga, a period of 700 Ma. Thus, it appears that terrestrial life not only evolved rapidly, but perhaps more than once. This expands the possibilities that life may have also developed elsewhere. Of the other planets in our solar system, Mars holds the greatest chance of having developed life. But, the present surface of Mars is hostile to life. Liquid water, regarded as essential for living systems, is unstable on the surface of Mars due to the low atmospheric pressure. The results of the Viking Lander biology experiments established that organic molecules are not present in the regolith of Mars, forcing the exobiological community to consider new ways of exploring for Martian life. Older, heavily cratered terranes on Mars show geomorphic evidence for abundant water between 3.0- 4.0 Ga. It is quite possible that life developed on Mars during this time, as it did on the Earth. The present focus for Mars Exobiology lies in the search for a fossil record. Archean-aged crust, while mostly missing on Earth, appears to be widespread in ancient cratered highlands of Mars, and aqueous mineral deposits within such sequences may hold crucial fossil evidence for an early Martian biosphere.
Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop
NASA Technical Reports Server (NTRS)
Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)
2000-01-01
Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.
Studying the Mars atmosphere using a SOIR Instrument
NASA Astrophysics Data System (ADS)
Drummond, R.; Vandaele, A.; Daerden, F.; Neefs, E.; Mahieux, A.; Wilquet, V.; Montmessin, F.; Bertaux, J.; McConnell, J. C.; Kaminski, J. W.
2009-05-01
SOIR (Solar Occultation InfraRed spectrometer) is currently part of the SPICAV/SOIR instrument on board the Venus Express orbiter (VEX). SOIR, an Echelle infrared spectrometer using an acousto-optic tunable filter (AOTF) for the order selection, is probing the atmosphere by solar occultation, operating between 2.2 and 4.3 μm, with a resolution of 0.15 cm-1. This spectral range is suitable for the detection of several key components of planetary atmospheres, including H2O and its isotopologue HDO, CH4 and other trace species. The SOIR instrument was designed to have a minimum of moving parts, to be light and compact in order to fit on top of the SPICAV instrument. The AOTF allows a narrow range of wavelengths to pass, according to the radio frequency applied to the TeO2 crystal; this selects the order. The advantage of the AOTF is that different orders can be observed quickly and easily during one occultation. To obtain a compact optical scheme, a Littrow configuration was implemented in which the usual collimating and imaging lenses are merged into a single off-axis parabolic mirror. The light is diffracted on the echelle grating, where orders overlap and addition occurs, and finally is recorded by the detector. The detector is 320x256 pixels and is cooled to 88K during an occultation measurement, to maximise the signal to noise ratio. SOIR on VEX has been in orbit around Venus since April 2006, allowing us to characterise the instrument and study its performance. These data have allowed the engineering team to devise several instrumental improvements. The next step in further improving the readiness for Martian atmospheric studies comes in close collaboration with the Mars Atmospheric Modelling group at BIRA-IASB. A General Circulation Model is used to simulate the Martian atmosphere. Currently work is underway with SPICAM data to verify the GCM inputs and outputs. Later the GCM output will be used as feedback for instrumental design of both an improved version of SOIR and the UVIS instrument for the ExoMars mission. We will show Mars data as could be observed by a SOIR instrument to demonstrate what SOIR would be capable of in Mars orbit.
The ISS as a platform for a fully simulated mars voyage
NASA Astrophysics Data System (ADS)
Narici, Livio; Reitz, Guenther
2016-07-01
The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the needed operational support for the ISS survival as well as the support for emergency situations. Beside helping in focusing the attention of the many space and space related programs to the quest for Mars, ISS4Mars will maintain a high level of attention of the funding institutions and provide an important focus for the general public. This talk will present the many scientific issues still open to be addressed (see for example the disciplinary reports of the THESEUS project#), some example of the challenging tests that could be performed, some of the operational challenges, as well as list some of the issues not likely/possible to be simulated. # http://www.theseus-eu.org
Low Cost Mars Sample Return Utilizing Dragon Lander Project
NASA Technical Reports Server (NTRS)
Stoker, Carol R.
2014-01-01
We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.
Proceedings of the 38th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2007-01-01
The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,
Solar Versus Fission Surface Power for Mars
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.;
2016-01-01
A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.
NASA Astrophysics Data System (ADS)
Berdis, Jodi; Murphy, Jim; Wilson, Robert John
2017-10-01
Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.
NASA Astrophysics Data System (ADS)
Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.
2017-11-01
Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.
ExoMars 2018: the four final candidate Landing Sites
NASA Astrophysics Data System (ADS)
Loizeau, Damien; Flahaut, Jessica; Vago, Jorge L.; Hauber, Ernst; Bridges, John C.
2015-04-01
The ExoMars 2018 mission will land a rover on Mars, its scientific objectives are to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The rover will be able to travel several kilometres, analyzing surface and subsurface samples, down to a 2 meter depth. The very powerful combination of mobility with the ability to access in-depth locations, where organic molecules can be well preserved, is unique to this mission [1]. An invitation has been sent to the community to propose scientifically compelling sites for the mission [2], which comply to the main engineering constraints for landing and operation safety. Scientifically interesting sites include locations with evidence for long duration or frequently recurring aqueous activity, low energy transport and deposition, fined-grained, recently exposed sediments, and/or hydrated minerals such as clays or evaporites. The outcrops of interest must be distributed over the landing ellipse to ensure that the rover can access some of them over a short distance [2]. The received proposals have been reviewed by the Landing Site Selection Working Group (LSSWG) and at first eight sites were found to be compliant with the science, engineering, and planetary protection requirements [3]. These sites were presented by their proposers and discussed at the first landing site workshop that took place in ESAC, Spain, 26-28 March 2014. Following that workshop, four sites were selected for further investigation, on the base of their higher potential for long lived water activity, the presence of fine grained sediments, and also importantly on the high concentration of potential targets of interest over the whole landing ellipse [3]. The analysis of these sites, both in term of scientific relevance and engineering safety, is still on-going. Latest findings were presented during a second workshop that took place in ALTEC, Torino, Italy, 11 December 2014. The Aram Dorsum site comprises Noachian layered sedimentary rocks with a prominent inverted channel system (>80 km long). Potential targets include the inverted channel, the channel margins, a channel transition unit, and pits present within the floodplain. The Hypanis Vallis site lies near two fluvial fan/deltaic systems at the termination of Hypanis and Sabrina Valles. Potential targets include mainly outcrops of expected fine-grained sediments on the smooth transition unit that surrounds the delta/fan, and units around the rim of Magong crater. The Mawrth Vallis site contains one of the largest exposures of phyllosilicates detected on the Martian surface, in Noachian terrain [8]. Potential targets include the mineralogically diverse clay-rich outcrops and ancient channels. The Oxia Planum site lies on Fe/Mg phyllosilicates-rich exposures associated to layered rocks that may be related to the Mawrth Vallis sequence. Potential targets include the clay-rich outcrops as well as channels and inverted channels and delta-fan deposits. New data are being actively acquired by the HiRISE, CRISM and HRSC teams to support the ExoMars 2018 landing site selection process. The ellipses are large and new data are important for characterizing the potential targets and evaluating the safety of the sites. The proposing teams, the ExoMars project team and the LSSWG will continue their analysis and comparison of the sites, aiming to complete the certification of at least one site by September 2016 -- in time for the start of the mission's Critical Design Review (CDR). The final selection of the landing site is expected within 2017. References: [1] http://exploration.esa.int/mars/48088-mission-overview/ [2] http://exploration.esa.int/mars/53462-call-for-exo mars-2018-landing-site-selection/ [3] ExoMars 2018 LSSWG recommendation: http://exploration.esa.int/mars/54707-recommendation-for-the-narrowing-of-exomars-2018-landing-sites/
Mars and Earth: origin and abundance of volatiles.
Anders, E; Owen, T
1977-11-04
Mars, like Earth, may have received its volatiles in the final stages of accretion, as a veneer of volatile-rich material similar to C3V carbonaceous chondrites. The high (40)Ar/(36)Ar ratio and low (36)Ar abundance on Mars, compared to data for other differentiated planets, suggest that Mars is depleted in volatiles relative to Earth-by a factor of 1.7 for K and 14 other moderately volatile elements and by a factor of 35 for (36)Ar and 15 other highly volatile elements. Using these two scaling factors, we have predicted martian abundances of 31 elements from terrestrial abundances. Comparison with the observed (36)Ar abundance suggests that outgassing on Mars has been about four times less complete than on Earth. Various predictions of the model can be checked against observation. The initial abundance of N, prior to escape, was about ten times the present value of 0.62 ppb, in good agreement with an independent estimate based on the observed enhancement in the martian (15)N/(14)N ratio (78,79). The initial water content corresponds to a 9-m layer, close to the value of >/=13 m inferred from the lack of an (18)O/(16)O fractionation (75). The predicted crustal Cl/S ratio of 0.23 agrees exactly with the value measured for martian dust (67); we estimate the thickness of this dust layer to be about 70 m. The predicted surface abundance of carbon, 290 g/cm(2), is 70 times greater than the atmospheric CO(2) value, but the CaCO(3) content inferred for martian dust (67) could account for at least one-quarter of the predicted value. The past atmospheric pressure, prior to formation of carbonates, could have been as high as 140 mbar, and possibly even 500 mbar. Finally, the predicted (129)Xe/(132)Xe ratio of 2.96 agrees fairly well with the observed value of 2.5(+2)(-1) (85). From the limited data available thus far, a curious dichotomy seems to be emerging among differentiated planets in the inner solar system. Two large planets (Earth and Venus) are fairly rich in volatiles, whereas three small planets (Mars, the moon, and the eucrite parent body-presumably the asteroid 4 Vesta) are poorer in volatiles by at least an order of magnitude. None of the obvious mechanisms seems capable of explaining this trend, and so we can only speculate that the same mechanism that stunted the growth of the smaller bodies prevented them from collecting their share of volatiles. But why then did the parent bodies of the chondrites and shergottites fare so much better? One of the driving forces behind the exploration of the solar system has always been the realization that these studies can provide essential clues to the intricate network of puzzles associated with the origin of life and its prevalence in the universe. In our own immediate neighborhood, Mars has always seemed to be the planet most likely to harbor extraterrestrial life, so the environment we have found in the vicinity of the two Viking landers is rather disappointing in this context. But the perspective we have gained through the present investigation suggests that this is not a necessary condition for planets at the distance of Mars from a solar-type central star. In other words, if it turns out that Mars is completely devoid of life, this does not mean that the zones around stars in which habitable planets can exist are much narrower than has been thought (114). Suppose Mars had been a larger planet-the size of Earth or Venus-and therefore had accumulated a thicker veneer and had also developed global tectonic activity on the scale exhibited by Earth. A much larger volatile reservoir would now be available, there would be repeated opportunities for tapping that reservoir, and the increased gravitational field would limit escape from the upper atmosphere. Such a planet could have produced and maintained a much thicker atmosphere, which should have permitted at least an intermittently clement climate to exist. How different would such a planet be from the present Mars? Could a stable, warm climate be maintained? It seems conceivable that an increase in the size of Mars might have compensated for its greater distance from the sun and that the life zone around our star would have been enlarged accordingly.
Mars Aerocapture Systems Study
NASA Technical Reports Server (NTRS)
Wright, Henry S.; Oh, David Y.; Westhelle, Carlos H.; Fisher, Jody L.; Dyke, R. Eric; Edquist, Karl T.; Brown, James L.; Justh, Hilary L.; Munk, Michelle M.
2006-01-01
Mars Aerocapture Systems Study (MASS) is a detailed study of the application of aerocapture to a large Mars robotic orbiter to assess and identify key technology gaps. This study addressed use of an Opposition class return segment for use in the Mars Sample Return architecture. Study addressed mission architecture issues as well as system design. Key trade studies focused on design of aerocapture aeroshell, spacecraft design and packaging, guidance, navigation and control with simulation, computational fluid dynamics, and thermal protection system sizing. Detailed master equipment lists are included as well as a cursory cost assessment.
A Study for Mars Manned Exploration
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Scimemi, Sam
2012-01-01
Over the last five decades there have been numerous studies devoted to developing, launching and conducting a manned mission to Mars by both Russian and U.S. organizations. These studies have proposed various crew sizes, mission length, propulsion systems, habitation modules, and scientific goals. As a first step towards establishing an international partnership approach to a Mars mission, the most recent Russian concepts are explored and then compared to NASA's latest Mars reference mission.
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Hwang, D J; Kim, Y J; Lee, J Y
2010-09-01
To study the effect and long-term sustainability of part-time occlusion therapy for anisometropic amblyopia after 8 years of age. A total of 41 anisometropic amblyopes aged > or =8 years were analysed. In six patients, best-corrected visual acuity (BCVA) of amblyopic eye improved more than two lines within 2 weeks of full-time spectacle wear. The remaining patients were assigned to perform part-time patching during out-of-school hours. Long-term results were assessed in patients who were observed over 1 year after the end of the treatment. Among 35 patients, four dropped out, refusing further treatment, and one changed to atropine penalisation. The part-time patching schedule was completed in 30 patients. 90% of patients (27/30) complied well. Mean BCVA in the amblyopic eye improved significantly (p<0.001), and 96.7% of patients (29/30) achieved the final BCVA of 0.1 logMAR or better. In long-term results, 87% preserved the BCVA of 0.1 logMAR or better. None of four dropouts achieved the BCVA of 0.1 logMAR or better in long-term results even on the continuous spectacle wear. The part-time occlusion treatment in school-aged amblyopes, which had been carried out after school hours, was successful and the effect was sustained in most cases.
Mars One; creating a human settlement on Mars
NASA Astrophysics Data System (ADS)
Wielders, A.; Lansdorp, B.; Flinkenflögel, S.; Versteeg, B.; Kraft, N.; Vaandrager, E.; Wagensveld, M.; Dogra, A.; Casagrande, B.; Aziz, N.
2013-09-01
Mars One will take humanity to Mars in 2023, to establish a permanent settlement from which human kind will prosper, learn, and grow. Before the first crew lands, Mars One will have established a habitable, sustainable outpost designed to receive new astronauts every two years. To accomplish this, Mars One has developed a precise, realistic plan based entirely upon proven technologies. It is both economically and logistically feasible, and already underway with the aggregation and appointment of hardware suppliers and experts in space exploration. In this paper Mars One discusses the benefits of the mission for planetary science in general and Mars studies in particular. Furthermore potential contributions from the planetary community to the Mars One project will be identified.
NASA Astrophysics Data System (ADS)
Romero, P.; Pablos, B.; Barderas, G.
2017-07-01
Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.
Intraseasonal and Interannual Variability of Mars Present Climate
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1996-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.
NASA Astrophysics Data System (ADS)
Wilson, Jack T.; Eke, Vincent R.; Massey, Richard J.; Elphic, Richard C.; Feldman, William C.; Maurice, Sylvestre; Teodoro, Luís F. A.
2018-01-01
We present a map of the near subsurface hydrogen distribution on Mars, based on epithermal neutron data from the Mars Odyssey Neutron Spectrometer. The map's spatial resolution is approximately improved two-fold via a new form of the pixon image reconstruction technique. We discover hydrogen-rich mineralogy far from the poles, including ∼10 wt.% water equivalent hydrogen (WEH) on the flanks of the Tharsis Montes and >40 wt.% WEH at the Medusae Fossae Formation (MFF). The high WEH abundance at the MFF implies the presence of bulk water ice. This supports the hypothesis of recent periods of high orbital obliquity during which water ice was stable on the surface. We find the young undivided channel system material in southern Elysium Planitia to be distinct from its surroundings and exceptionally dry; there is no evidence of hydration at the location in Elysium Planitia suggested to contain a buried water ice sea. Finally, we find that the sites of recurring slope lineae (RSL) do not correlate with subsurface hydration. This implies that RSL are not fed by large, near-subsurface aquifers, but are instead the result of either small ( < 120 km diameter) aquifers, deliquescence of perchlorate and chlorate salts or dry, granular flows.
Exobiological exploration of Mars.
Klein, H P; DeVincenzi, D L
1995-03-01
Of all the other planets in the solar system, Mars remains the most promising for further elucidating concepts about chemical evolution and the origin of life. Strategies were developed to pursue three exobiological objectives for Mars exploration: determining the abundance and distribution of the biogenic elements and organic compounds, detecting evidence of an ancient biota on Mars, and determining whether indigenous organisms exist anywhere on the planet. The three strategies are quite similar and, in fact, share the same sequence of phases. In the first phase, each requires global reconnaissance and remote sensing by orbiters to select sites of interest for detailed in situ analyses. In the second phase, lander missions are conducted to characterize the chemical and physical properties of the selected sites. The third phase involves conducting "critical" experiments at sites whose properties make them particularly attractive for exobiology. These critical experiments would include, for example, identification of organics, detection of fossils, and detection of extant life. The fourth phase is the detailed analysis of samples returned from these sites in Earth-based laboratories to confirm and extend previous discoveries. Finally, in the fifth phase, human exploration is needed to establish the geological settings for the earlier findings or to discover and explore sites that are not accessible to robotic spacecraft.
Ibrahim, I K; Lewis, S A; Harshman, D C
1993-12-01
Twenty-two graminaceous plant cultivars were evaluated in the greenhouse for host suitability for three South Carolina isolates of Meloidogyne arenaria race 2 (Ma-R2) designated as Florence, Govan, and Pelion, a Florida isolate of M. arenaria race 1 (Ma-R1), and a South Carolina M. incognita race 3. Host suitability was determined by calculating egg mass index (EMI) reproduction factor (RF) (final egg numbers/initial egg numbers), and number of eggs per gram fresh root. Corn hybrids Pioneer 3147 and Northrup King 508 and oat cv. Florida 502 were nonhosts to all nematode isolates, as no egg masses or eggs were found in roots grown in infested soils. Oat cv. Coker 716 and grain sorghum cvs. Cherokee, Northrup King 2660, and Pioneer 8333 were poor hosts (RF < 1). Good (RF = 1.1-5.0) or excellent (RF > 5.0) hosts for both Ma-R1 and three Ma-R2 isolates included the following: barley cvs. Boone, Keowee, and Redhill; corn hybrid Pioneer 3389; oat cvs. Brooks and Coker 820; rye cvs. Bonel, Florida 401, and Wrens Abruzzi; triticale cvs. Beagle 82 and Florida 201 ; and wheat cvs. Coker 983, Florida 302, and Williams. All cultivars except Coker 716 oat were good or excellent hosts of M. incognita.
NASA Astrophysics Data System (ADS)
Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.
2017-12-01
The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.
Sorkin, Nir; Einan-Lifshitz, Adi; Abelson, Sagi; Boutin, Tanguy; Showail, Mahmood; Borovik, Armand; Ashkenazy, Zach; Chan, Clara C; Rootman, David S
2017-11-01
To report the outcome of stepwise ablation using topography-guided photorefractive keratectomy to treat irregular astigmatism after either penetrating keratoplasty (PKP) or deep anterior lamellar keratoplasty (DALK). This is a retrospective, interventional analysis including patients with irregular astigmatism after either PKP or DALK, who underwent topography-guided photorefractive keratectomy. The entire cohort was analyzed, as well as the PKP and DALK groups separately. Analysis of factors associated with a better outcome was also performed. Thirty-four eyes of 34 patients (20 PKP patients and 14 DALK patients) aged 47.4 ± 15.9 years were included. Twenty-one patients underwent more than 1 ablation. Refractive stability and a minimal period of 5 months were required before repeat ablation. The average follow-up duration was 17.0 ± 6.0 months. Corrected distance visual acuity (CDVA) improved significantly from 0.22 ± 0.14 logarithm of the minimum angle of resolution (logMAR) to 0.14 ± 0.12 logMAR at final follow-up (P = 0.035). Uncorrected distance visual acuity (UDVA) improved significantly from 0.90 ± 0.54 logMAR to 0.57 ± 0.40 logMAR at final follow-up (P = 0.004). CDVA and UDVA improved by ≥1 Snellen lines in 54.2% and 70.8% of the eyes, respectively, and by ≥3 Snellen lines in 16.7% and 54.2% of the eyes, respectively. Statistically significant improvement was seen in optical aberrometry indices (total root mean square, higher-order aberration root mean square, defocus, coma, trefoil, and spherical aberration). The difference between PKP and DALK in either CDVA (P = 0.562) or UDVA (P = 0.384) improvement was nonsignificant. The stepwise topography-guided photorefractive keratectomy approach in cases of irregular astigmatism after PKP or DALK can help improve visual acuity outcomes. Patients should be appropriately counseled that more than 1 treatment will likely be needed.
NASA Astrophysics Data System (ADS)
Kuchynka, Petr; Folkner, William M.; Konopliv, Alex S.; Parker, Timothy J.; Park, Ryan S.; Le Maistre, Sebastien; Dehant, Veronique
2014-02-01
The Opportunity Mars Exploration Rover remained stationary between January and May 2012 in order to conserve solar energy for running its survival heaters during martian winter. While stationary, extra Doppler tracking was performed in order to allow an improved estimate of the martian precession rate. In this study, we determine Mars rotation by combining the new Opportunity tracking data with historic tracking data from the Viking and Pathfinder landers and tracking data from Mars orbiters (Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter). The estimated rotation parameters are stable in cross-validation tests and compare well with previously published values. In particular, the Mars precession rate is estimated to be -7606.1 ± 3.5 mas/yr. A representation of Mars rotation as a series expansion based on the determined rotation parameters is provided.
NASA Astrophysics Data System (ADS)
David, L. W.
Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.
Mars Express en route for the Red Planet
NASA Astrophysics Data System (ADS)
2003-06-01
The probe, weighing in at 1 120 kg, was built on ESA’s behalf by a European team led by Astrium. It set out on its journey to Mars aboard a Soyuz-Fregat launcher, under Starsem operational management. The launcher lifted off from Baïkonur in Kazakhstan on 2 June at 23.45 local time (17:45 GMT). An interim orbit around the Earth was reached following a first firing of the Fregat upper stage. One hour and thirty-two minutes after lift off the probe was injected into its interplanetary orbit. "Europe is on its way to Mars to stake its claim in the most detailed and complete exploration ever done of the Red Planet. We can be very proud of this and of the speed with which have achieved this goal", said David Southwood, ESA's Director of Science witnessing the launch from Baikonur. Contact with Mars Express has been established by ESOC, ESA’s satellite control centre, located in Darmstadt, Germany. The probe is pointing correctly towards the Sun and has deployed its solar panels. All on-board systems are operating faultlessly. Two days from now, the probe will perform a corrective manœuvre that will place it in a Mars-bound trajectory, while the Fregat stage, trailing behind, will vanish into space - there will be no risk of it crashing into and contaminating the Red Planet. Mars Express will then travel away from Earth at a speed exceeding 30 km/s (3 km/s in relation to the Earth), on a six-month and 400 million kilometre journey through the solar system. Once all payload operations have been checked out, the probe will be largely deactivated. During this period, the spacecraft will contact Earth only once a day. Mid-journey correction of its trajectory is scheduled for September. There in time for Christmas Following reactivation of its systems at the end of November, Mars Express will get ready to release Beagle 2. The 60 kg capsule containing the tiny lander does not incorporate its own propulsion and steering system and will be released into a collision trajectory with Mars, on 20 December. It will enter the Martian atmosphere on Christmas day, after five days’ ballistic flight. As it descends, the lander will be protected in the first instance by a heat-shield; two parachutes will then open to provide further deceleration. With its weight down to 30 kg at most, it will land in an equatorial region known as Isidis Planitia. Three airbags will soften the final impact. This crucial phase in the mission will last just ten minutes, from entry into the atmosphere to landing. Meanwhile, the Mars Express probe proper will have performed a series of manœuvres through to a capture orbit. At this point its main motor will fire, providing the deceleration needed to acquire a highly elliptical transition orbit. Attaining the final operational orbit will call for four more firings. This 7.5 hour quasi-polar orbit will take the probe to within 250 km of the planet. Getting to know Mars - inside and out Having landed on Mars, Beagle 2 - named after HMS Beagle, on which Charles Darwin voyaged round the world, developing his evolutionary theory - will deploy its solar panels and the payload adjustable workbench, a set of instruments (two cameras, a microscope and two spectrometers) mounted on the end of a robot arm. It will proceed to explore its new environment, gathering geological and mineralogical data that should, for the first time, allow rock samples to be dated with absolute accuracy. Using a grinder and corer, and the “mole”, a wire-guided mini-robot able to borrow its way under rocks and dig the ground to a depth of 2 m, samples will be collected and then examined in the GAP automated mini-laboratory, equipped with 12 furnaces and a mass spectrometer. The spectrometer will have the job of detecting possible signs of life and dating rock samples. The Mars Express orbiter will carry out a detailed investigation of the planet, pointing its instruments at Mars for between half-an-hour and an hour per orbit and then, for the remainder of the time, at Earth to relay the information collected in this way and the data transmitted by Beagle 2. The orbiter’s seven on-board instruments are expected to provide considerable information about the structure and evolution of Mars. A very high resolution stereo camera, the HRSC, will perform comprehensive mapping of the planet at 10 m resolution and will even be capable of photographing some areas to a precision of barely 2 m. The OMEGA spectrometer will draw up the first mineralogical map of the planet to 100 m precision. This mineralogical study will be taken further by the PFS spectrometer - which will also chart the composition of the Martian atmosphere, a prerequisite for investigation of atmospheric dynamics. The MARSIS radar instrument, with its 40 m antenna, will sound the surface to a depth of 2 km, exploring its structure and above all searching for pockets of water. Another instrument, ASPERA, will be tasked with investigating interaction between the upper atmosphere and the interplanetary medium. The focus here will be on determining how and at what rate the solar wind, in the absence of a magnetic field capable of deflecting it, scattered the bulk of the Martian atmosphere into space. Atmospheric investigation will also be performed by the SPICAM spectrometer and the MaRS experiment, with special emphasis on stellar occultation and radio signal propagation phenomena. The orbiter mission should last at least one Martian year (687 days), while Beagle 2 is expected to operate on the planet’s surface for 180 days. Only a start to exploration This first European mission to Mars incorporates some of the objectives of the Euro-Russian Mars 96 mission, which came to grief when the Proton launcher failed. And indeed a Russian partner is cooperating on each of the orbiter’s instruments. Mars Express forms part of an international Mars exploration programme, featuring also the US probes Mars Surveyor and Mars Odyssey, the two Mars Exploration Rovers and the Japanese probe Nozomi. Mars Express may perhaps, within this partnership, relay data from the NASA rovers while Mars Odyssey may, if required, relay data from Beagle 2. The mission’s scientific goals are of outstanding importance. Mars Express will, it is hoped, supply answers to the many questions raised by earlier missions - questions concerning the planet’s evolution, the history of its internal activity, the presence of water below its surface, the possibility that Mars may at one time have been covered by oceans and thus have offered an environment conducive to the emergence of some form of life, and even the possibility that life may still be present, somewhere in putative subterranean aquifers. In addition the lander doing direct analysis of the soil and the environment comprises a truly unique mission. Mars Express, drawing heavily on elements of the Rosetta spacecraft awaiting to be launched to a comet next year, paves the way for other ESA-led planetary missions, with Venus Express planned for 2005 and the BepiColombo mission to Mercury at the end of the decade. It is a precursor too for continuing Mars mission activity under Aurora, the programme of exploration of our solar system.
NASA Technical Reports Server (NTRS)
Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.
2015-01-01
Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.
Aerobrake concepts for NTP systems study
NASA Technical Reports Server (NTRS)
Cruz, Manuel I.
1992-01-01
Design concepts are described for landing large spacecraft masses on the Mars surface in support of manned missions with interplanetary transportation using Nuclear Thermal Propulsion (NTP). Included are the mission and systems analyses, trade studies and sensitivity analyses, design analyses, technology assessment, and derived requirements to support this concept. The mission phases include the Mars de-orbit, entry, terminal descent, and terminal touchdown. The study focuses primarily on Mars surface delivery from orbit after Mars orbit insertion using an NTP. The requirements associated with delivery of logistical supplies, habitats, and other equipment on minimum energy Earth to Mars transfers are also addressed in a preliminary fashion.
Mars exploration study workshop 2
NASA Astrophysics Data System (ADS)
Duke, Michael B.; Budden, Nancy Ann
1993-11-01
A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.
Mars exploration study workshop 2
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Budden, Nancy Ann
1993-01-01
A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.
A mars communication constellation for human exploration and network science
NASA Astrophysics Data System (ADS)
Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle
2010-01-01
This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two Zenith Sea Launch rockets in March 2021 and carrying four satellites each. After the entrance in Mars sphere of influence, the single spacecrafts separate and spiral-down with Hall effect thrusters until they reach the final operational orbits in April 2025, at 17,030 km of altitude and 37 deg of inclination. The preliminary design includes 105 kg and 577 W of mass and power margin for each satellite, that can be allocated for scientific payloads. The main challenges of the proposed design are represented by the optical technology development and the connected strict pointing constraints satisfaction, as well as by the Martian constellation operations management. This mission study has therefore shown the possibility of deploying an effective communication infrastructure in Mars orbit employing a small amount of the resources needed for the human exploration programme, additionally providing the chance of performing important scientific research either from orbit or with a network of small rovers carried on-board and deployed on the surface.
Numerical modeling of Stickney crater and its aftermath
NASA Astrophysics Data System (ADS)
Schwartz, Stephen R.; Michel, Patrick; Bruck Syal, Megan; Owen, J. Michael; Miller, Paul L.; Richardson, Derek C.; Zhang, Yun
2016-10-01
Phobos is characterized by a large crater called Stickney. Its collisional formation and its aftermath have important implications on the final structure, morphology, and surface properties of Phobos that still need further clarification. This is particularly important in the current environment, with space mission concepts to Phobos under active study by several space agencies. SPH hydrocode simulations of the impact that formed Stickney crater [1] have been performed. Using the Soft-Sphere Discrete Element Method (SSDEM) collisional routine of the N-body code pkdgrav [2], we take the outcome of SPH simulations as inputs and model the ensuing phase of the crater formation process and its ejecta evolution under the gravitational influence of Phobos and Mars. In our simulations, about 9 million particles comprise Phobos' shape [3], and the evolution of particles that are expected to form or leave the crater is followed using multiple plausible orbits for Phobos around Mars. We track the immediate fate of low-speed ejecta (~3-8 m/s), allowing us to test an hypothesis [4] that they may scour certain groove marks that have been observed on Phobos' surface and to quantify the amounts and locations of re-impacting ejecta. We also compute the orbital fate of ejecta whose speed is below the system escape speed (about 3 km/s). This allows us to estimate the thickness and distribution of the final ejecta blanket and to check whether crater chains may form. Finally, particles forming the crater walls are followed until achieving stability, allowing us to estimate the final crater depth and diameter. We will show examples of these simulations from a set of SPH initial conditions and over a range of parameters (e.g., material friction coefficients). Work ongoing to cover a larger range of plausible impact conditions, allowing us to explore different scenarios to explain Phobos' observed properties and to infer more, giving useful constraints to space mission studies. [1] Bruck Syal, M. et al. (this meeting); [2] Schwartz, S.R. et al. 2012, Granul. Matter 14, 363; [3] Willner, K. et al. 2010, E. Earth Planet. Sci. Lett. 294, 541; [4] Wilson, L. & Head, J.W. 2015, Planet. Space Sci. 105, 26.
Rickmann, Annekatrin; Opitz, Natalia; Szurman, Peter; Boden, Karl Thomas; Jung, Sascha; Wahl, Silke; Haus, Arno; Damm, Lara-Jil; Januschowski, Kai
2018-01-01
Descemet membrane endothelial keratoplasty (DMEK) has been improved over the last decade. The aim of this study was to compare the clinical outcome of the recently introduced liquid bubble method compared to the standard manual preparation. This retrospective study evaluated the outcome of 200 patients after DMEK surgery using two different graft preparation techniques. Ninety-six DMEK were prepared by manual dissection and 104 by the novel liquid bubble technique. The mean follow-up time was 13.7 months (SD ± 8, range 6-36 months). Best corrected mean visual acuity (BCVA) increased for all patients statistically significant from baseline 0.85 logMAR (SD ± 0.5) to 0.26 logMAR (SD ± 0.27) at the final follow-up (Wilcoxon, p = 0.001). Subgroup analyses of BCVA at the final follow-up between manual dissection and liquid bubble preparation showed no statistically significant difference (Mann-Whitney U Test, p = 0.64). The mean central corneal thickness was not statistically different (manual dissection: 539 µm, SD ± 68 µm and liquid bubble technique: 534 µm, SD ± 52 µm,) between the two groups (Mann-Whitney U Test, p = 0.64). At the final follow-up, mean endothelial cell count of donor grafts was statistically not significant different at the final follow-up with 1761 cells/mm 2 (-30.7%, SD ± 352) for manual dissection compared to liquid bubble technique with 1749 cells/mm 2 (-29.9%, SD ± 501) (Mann-Whitney U-Test, p = 0.73). The re-DMEK rate was comparable for manual dissection with 8 cases (8.3%) and 7 cases (6.7%) for liquid bubble dissection (p = 0.69, Chi-Square Test). Regarding the clinical outcome, we did not find a statistical significant difference between manual dissection and liquid bubble graft preparation. Both preparation techniques lead to an equivalent clinical outcome after DMEK surgery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 70 FR 11137, Mar. 8, 2005] § 190.309 Where to file petitions. Petitions for extension of time to... of Rules Source: Amdt. 190-8, 61 FR 50909, Sept. 27, 1996, unless otherwise noted. Effective Date... Administration of the Department of Transportation. [Amdt. 190-8, 61 FR 50909, Sept. 27, 1996, as amended at 70...
30 CFR 944.30 - State-Federal Cooperative Agreement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Division of Oil, Gas, and Mining (DOGM) will be responsible for administering this Agreement on behalf of..., Final Rules of the Board of Oil, Gas and Mining, UMC/SMC 700 et seq. [52 FR 7850, Mar. 13, 1987] ... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.30 State...
30 CFR 944.30 - State-Federal Cooperative Agreement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Division of Oil, Gas, and Mining (DOGM) will be responsible for administering this Agreement on behalf of..., Final Rules of the Board of Oil, Gas and Mining, UMC/SMC 700 et seq. [52 FR 7850, Mar. 13, 1987] ... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.30 State...
30 CFR 944.30 - State-Federal Cooperative Agreement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Division of Oil, Gas, and Mining (DOGM) will be responsible for administering this Agreement on behalf of..., Final Rules of the Board of Oil, Gas and Mining, UMC/SMC 700 et seq. [52 FR 7850, Mar. 13, 1987] ... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.30 State...
30 CFR 944.30 - State-Federal Cooperative Agreement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Division of Oil, Gas, and Mining (DOGM) will be responsible for administering this Agreement on behalf of..., Final Rules of the Board of Oil, Gas and Mining, UMC/SMC 700 et seq. [52 FR 7850, Mar. 13, 1987] ... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.30 State...
Biology and The Future of Mars
NASA Technical Reports Server (NTRS)
McKay, Christopher P.
2004-01-01
It is possible that at some time in the future we might recreate a habitable climate on Mars returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may he possible to restore Mars to a habitable climate. Long part of the intersection of science and fiction (eg. Clarke, 1995), serious studies of planetary ecosynthesis on Mars began after the results of the Viking mission indicated that all the compounds needed for life were present on the surface of Mars is some accessible form (Averner and MacElroy, 1976; McKay et al., 1991; Fogg, 1995). Recent work has focused on the use of climate models to compute the timescales to warm Mars (McKay et al., 1991 ; McKay and Marinova, 2001). Planetary ecosynthesis on Mars has implications for the objectives and conduct of robotic and human exploration. In particular the question of forward contamination must be considered in a new way if we wish to control the introduction of life to Mars in advance of planetary ecosynthesis.
Mars Express Scientific Overview After One Martian Year in Orbit
NASA Astrophysics Data System (ADS)
Chicarro, A. F.
2005-12-01
The ESA Mars Express mission was successfully launched on 02 June 2003 from Baikonur, Kazakh-stan, onboard a Russian Soyuz rocket with a Fregat upper stage. The mission comprises an orbiter space-craft, which has been placed in a polar martian orbit, and the small Beagle-2 lander, due to land in Isidis Planitia but whose fate remains unknown. In addition to global studies of the surface, subsurface and at-mosphere of Mars, with an unprecedented spatial and spectral resolution, the unifying theme of the mis-sion is the search for water in its various states everywhere on the planet. Following the Mars Express spacecraft commissioning in January 2004, most experiments onboard be-gan their own calibration and testing phase already acquiring scientific data. This phase lasted until June 2004 when all the instruments started their routine operations. The MARSIS radar antennas, however, were deployed in May-June 2005, following comprehensive simulations of boom deployment and mitiga-tion of potential risks, to benefit from nightime conditions required for subsurface sounding before the pericentre natural drift in latitude, when illumination conditions become favourable to the other instru-ments. Initial science results are summarised below. The High-Resolution Stereo Colour Imager (HRSC) has shown breathtaking views of the planet, in particular of karstic regions near the Valles Marineris canyon (pointing to liquid water as the erosional agent responsible for modifying tectonic and impact features in the area) and of several large volcanoes (Olympus Mons caldera and glaciation features surrounding Hecates Tholus). The IR Mineralogical Mapping Spectrometer (OMEGA) has provided unprecedented maps of water ice and CO2 ice occurrence in the South pole, showing where the two ices mix and where they do not. The Planetary Fourier Spec-trometer (PFS) has confirmed the presence of methane for the first time, which would indicate current volcanic activity and/or biological processes. The UV and IR Atmospheric Spectrometer (SPICAM) has provided the first complete vertical profile of CO2 density and temperature, and has simultaneously meas-ured the distribution of water vapour and ozone. The Energetic Neutral Atoms Analyser (ASPERA) has identified the solar wind interaction with the upper atmosphere and has measured the properties of the planetary wind in the Mars tail. The Radio Science Experiment (MaRS) has studied for the first time the surface roughness by pointing the spacecraft high-gain antenna to the Martian surface, which reflects the signal before sending it to Earth. Also, the martian interior has been probed by studying the gravity anomalies affecting the orbit due to mass variations of the crust. Finally, preliminary results of the subsur-face sounding radar (MARSIS) indicate strong echoes coming from the surface but lack of echoes under the young smooth Northern plains, which may indicate the presence of thick and homogeneous plains deposits. Water is the unifying theme of the mission to be studied by all instruments using different techniques. Mars Express is already hinting at a quantum leap in our understanding of the planet's geological evolu-tion, to be complemented by the ground truth being provided by the American MER rovers. The nominal lifetime of the orbiter spacecraft is of one Martian year (687 days), potentially to be ex-tended by another Martian year to complete global coverage and observe all seasons twice. Mars Express is the first European mission to another planet.
Secular Effect of Sun Oblateness on the Orbital Parameters of Mars and Jupiter
NASA Astrophysics Data System (ADS)
Vaishwar, Avaneesh; Kushvah, Badam Singh; Mishra, Devi Prasad
2018-01-01
In this paper we considered the Mars-Jupiter system to study the behaviour of Near Earth Asteroids (NEAs) as most of the NEAs originate in the main asteroid belt located between Mars and Jupiter. The materials obtained from NEAs are very useful for space industrialisation. The variations in orbital parameters, such as eccentricity, inclination, longitude of pericenter and longitude of ascending node of Mars and Jupiter were investigated for a time span of 200,000 years centered on J2000 (January 2000) using secular perturbation theory. We considered the Sun oblateness and studied the effect of Sun oblateness on orbital parameters of Mars and Jupiter. Moreover, we determined the orbital parameters for asteroids moving under the perturbation effect of Mars and Jupiter by using a secular solution of Mars-Jupiter system.
Office of Exploration: Exploration studies technical report. Volume 2: Studies approach and results
NASA Technical Reports Server (NTRS)
Roberts, Barney B.; Bland, Dan
1988-01-01
The NASA Office of Exploration has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report describes the process that has been developed in a case study approach. The four case studies that were developed in FY88 include: (1) human expedition to Phobos; (2) human expeditions to Mars; (3) lunar observatory; and (4) lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work. Volume 2 describes the case study process, the technical results of each of the case studies, and opportunities for additional study. Included in the discussion of each case study is a description of the mission key features and profile. Mission definition and manifesting are detailed, followed by a description of the mission architecture and infrastructure. Systems concepts for the required orbital nodes, transportation systems, and planetary surface systems are discussed. Prerequisite implementation plans resulting from the synthesized case studies are described and in-depth assessments are presented.
Mars Soil-Based Resource Processing and Planetary Protection
NASA Technical Reports Server (NTRS)
Sanders, G. B.; Mueller, R. P.
2015-01-01
The ability to extract and process resources at the site of exploration into products and services, commonly referred to as In Situ Resource Utilization (ISRU), can have significant benefits for robotic and human exploration missions. In particular, the ability to use in situ resources to make propellants, fuel cell reactants, and life support consumables has been shown in studies to significantly reduce mission mass, cost, and risk, while enhancing or enabling missions not possible without the incorporation of ISRU. In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study. For the first time in a large scale Mars architecture study, water from Mars soil was considered as a potential resource. At the time of the study, knowledge of water resources (their form, concentration, and distribution) was extremely limited. Also, due to lack of understanding of how to apply planetary protection rules and requirements to ISRU soil-based excavation and processing, an extremely conservative approach was incorporated where only the top several centimeters of ultraviolet (UV) radiated soil could be processed (assumed to be 3% water by mass). While results of the Mars DRA 5.0 study showed that combining atmosphere processing to make oxygen and methane with soil processing to extract water provided the lowest mission mass, atmosphere processing to convert carbon dioxide (CO2) into oxygen was baselined for the mission since it was the lowest power and risk option. With increased knowledge and further clarification of Mars planetary protection rules, and the recent release of the Mars Exploration Program Analysis Group (MEPAG) report on "Special Regions and the Human Exploration of Mars", it is time to reexamine potential water resources on Mars, options for soil processing to extract water, and the implications with respect to planetary protection and Special Regions on Mars.
NASA Astrophysics Data System (ADS)
Derz, U.; Joffre, E.; Perkinson, M.-C.; Huesing, J.; Beyer, F.; Sanchez Perez, J. M.
2018-04-01
This paper presents the identified most promising chemical and electric propulsion architecture options of the Mars Sample Return (MSR) orbiter identified during the recent ESA MSR Architecture Assessment Study.
NASA Astrophysics Data System (ADS)
Chassefière, E.; Paloma Team
2003-04-01
An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astrobiological interest, like CH_4, H_2CO, N_2O, H_2S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest (a small fraction of ppbv). Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. The PALOMA instrument consists of : a gas purification and separation line, using techniques of chemical and cryogenic trapping, and possibly membrane permeation, a mass spectrometer working in static mode, a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer, a small additional stand-alone sensor for radon and its short-lived daughters measurement. It is designed to work during one full Martian year, in order to perform accurate measurements of the atmospheric composition and its seasonal, and more generally temporal, variations. The gas is sampled directly from the ambient atmosphere, without need for an external sample distribution system. The main parameters of PALOMA are 6.5 kg, 20 W (peak value : 30 W), 4 kb/day (peak value : 15 kb/day).
Hessel, Franz P
2006-01-01
Background Acute-on-chronic liver failure (ACLF) is a life threatening acute decompensation of a pre-existing chronic liver disease. The artificial liver support system MARS is a new emerging therapeutic option possible to be implemented in routine care of these patients. The medical efficacy of MARS has been demonstrated in first clinical studies, but economic aspects have so far not been investigated. Objective of this study was to estimate the cost-effectiveness of MARS. Methods In a clinical cohort trial with a prospective follow-up of 3 years 33 ACLF-patients treated with MARS were compared to 46 controls. Survival, health-related quality of life as well as direct medical costs for in- and outpatient treatment from a health care system perspective were determined. Based on the differences in outcome and indirect costs the cost-effectiveness of MARS expressed as incremental costs per life year gained and incremental costs per QALY gained was estimated. Results The average initial intervention costs for MARS were 14600 EUR per patient treated. Direct medical costs over 3 years follow up were overall 40000 EUR per patient treated with MARS respectively 12700 EUR in controls. The 3 year survival rate after MARS was 52% compared to 17% in controls. Kaplan-Meier analysis of cumulated survival probability showed a highly significant difference in favour of MARS. Incremental costs per life-year gained were 31400 EUR; incremental costs per QALY gained were 47200 EUR. Conclusion The results after 3 years follow-up of the first economic evaluation study of MARS based on empirical patient data are presented. Although high initial treatment costs for MARS occur the significantly better survival seen in this study led to reasonable costs per live year gained. Further randomized controlled trials investigating the medical efficacy and the cost-effectiveness are recommended. PMID:17022815
ENA diagnostic of the solar wind interaction with Mars and Venus
NASA Astrophysics Data System (ADS)
Barabash, Stas
Charge - exchange of the solar wind ions flowing around non-magnetized Mars and Venus on their exospheres results in hydrogen energetic neutral atom (ENA) emissions. Accelerated planetary ions may also experience charge - exchange resulting in planetary ENAs, mainly oxygen. The ENAs carry information on the ion distribution functions integrated over the line-of-sight and are used for remote sensing of the original plasma populations. The ASPERA-3/4 instruments (Analyzer of Space Plasmas and Energetic Atoms) onboard Mars Express and Venus Express missions performed the first-ever measurements of ENAs from these bodies in the energy range 100 eV - 10 keV. ENAs are mostly emitted by the magnetospheath plasma flowing around the induced magnetosphere. Due to lower gravity the Martian exosphere extends further in the magnetosheath than at Venus that makes Mars a “brighter ENA source”. We thus focus mostly on Mars and only briefly discuss ENA observations at Venus. ENA emissions from an elementary emitting volume in the magnetosheath are highly anisotropic and occur along the tangential line to the stream-line in this point. That makes impossible to obtain a global ENA image of the object from a single vantage point contrary to, for example, “classical” ENA imaging of the terrestrial ring current. At Mars the statistically obtained emission pattern shows an increase in the ENA flux perpendicular to the sun direction resembling a thick layer or a wall. The emissions coming mostly from the sub-solar point show an increase in the direction opposite to the convective electric field indicating the induced magnetosphere boundary is not cylindrically symmetric and closer to planet in this direction. Measurements of ENAs turned out to be an effective way to reveal the global dynamics of an induced magnetosphere. Arrival of an interplanetary shock to Mars and the associated compression of the induced magnetosphere are clearly detected as an abrupt termination of the ENA signal because the ENA wall suddenly moved away from the spacecraft. When the spacecraft stays sufficiently long inside the ENA wall, oscillations of the ENA signal with a period of 30 sec - few min (~0.01 Hz) can be observed. The oscillations of the similar frequency are observed in the electron and ion fluxes in the magnetosheath as well as magnetic field. Their physics is not understood. Mars Express/ASPERA-3 detected a slight increase of the ENA emissions above the magnetic anomalies. It may be related to the increase of the neutral densities above these regions. Contrary to the predictions, Mars Express/ASPERA-3 did not detect any oxygen ENAs. That allowed to provide upper limits for the hydrogen exospheric densities which turned out to be much lower at the solar minimum than expected. Finally, we introduce a few “exotic” ideas of using ENAs for studies the near-Venus and near-Mars space. Using ENAs backscattered from the atmosphere one may obtain global precipitating maps. Using the neutral solar wind passing through the upper atmosphere at the terminate region, one may realize neutral solar wind occultation geometry and use the ENA signal variation for the upper atmosphere profiling.
Human Mars Landing Site and Impacts on Mars Surface Operations
NASA Technical Reports Server (NTRS)
Bussey, Ben; Hoffman, Stephen J.
2016-01-01
NASA has begun a process to identify and discuss candidate locations where humans could land, live and work on the Martian surface. These locations are referred to as Exploration Zones (EZs). Given current mission concepts, an EZ is a collection of Regions of Interest (ROIs) that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains a landing site and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. These candidate EZs will be used by NASA as part of a multi-year process of determining where and how humans could explore Mars. In the near term this process includes: (a) identifying locations that would maximize the potential science return from future human exploration missions, (b) identifying locations with the potential for resources required to support humans, (c) developing concepts and engineering systems needed by future human crews to conduct operations within an EZ, and (d) identifying key characteristics of the proposed candidate EZs that cannot be evaluated using existing data sets, thus helping to define precursor measurements needed in advance of human missions. Existing and future robotic spacecraft will be tasked to gather data from specific Mars surface sites within the representative EZs to support these NASA activities. The proposed paper will describe NASA's initial steps for identifying and evaluating candidate EZs and ROIs. This includes plans for the "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" to be held in October 2015 at which proposals for EZs and ROIs will be presented and discussed. It will also include a discussion of how these considerations are (or will be) taken into account as future robotic Mars missions are defined and developed. One or more representative EZs, drawn from similar previous studies involving Mars sites, will be used in the proposed paper to illustrate the process NASA envisions for gathering additional data from robotic precursor missions to assist in making a final selection of an EZ for human crews as well as the steps likely to occur during the buildup of a habitation site. Examples of the systems and operations likely to be used by human crews, assisted by robotic vehicles, to explore the scientific ROIs as well as developing the resource ROIs within the example EZs will be discussed.
Mineral abundances at the final four curiosity study sites and implications for their formation
NASA Astrophysics Data System (ADS)
Poulet, F.; Carter, J.; Bishop, J. L.; Loizeau, D.; Murchie, S. M.
2014-03-01
A component of the landing site selection process for the Mars Science Laboratory (MSL) involved the presence of phyllosilicates as the main astrobiological targets. Gale crater was selected as the MSL landing site from among 4 down selected study sites (Gale, Eberswalde and Holden craters, Mawrth Vallis) that addressed the primary scientific goal of assessing the past habitability of Mars. A key constraint on the formation process of these phyllosilicate-bearing deposits is in the precise mineralogical composition. We present a reassessment of the mineralogy of the sites combined with a determination of the modal mineralogy of the major phyllosilicate-bearing deposits of the four final study sites from the modeling of near-infrared spectra using a radiative transfer model. The largest abundance of phyllosilicates (30-70%) is found in Mawrth Vallis, the lowest one in Eberswalde (<25%). Except for Mawrth Vallis, the anhydrous phases (plagioclase, pyroxenes and martian dust) are the dominant phases, suggesting formation conditions with a lower alteration grade and/or a post-formation mixing with anhydrous phases. The composition of Holden layered deposits (mixture of saponite and micas with a total abundance in the range of 25-45%) suggests transport and deposition of altered basalts of the Noachian crust without major chemical transformation. For Eberswalde, the modal mineralogy is also consistent with detrital clays, but the presence of opaline silica indicates that an authigenic formation occurred during the deposition. The overall composition including approximately 20-30% smectite detected by MSL in the rocks of Yellow-knife Bay area interpreted to be material deposited on the floor of Gale crater by channels (http://www.nasa.gov/mission_pages/msl/news/msl20130312.html).
Selection of the Mars Science Laboratory landing site
Golombek, M.; Grant, J.; Kipp, D.; Vasavada, A.; Kirk, Randolph L.; Fergason, Robin L.; Bellutta, P.; Calef, F.; Larsen, K.; Katayama, Y.; Huertas, A.; Beyer, R.; Chen, A.; Parker, T.; Pollard, B.; Lee, S.; Hoover, R.; Sladek, H.; Grotzinger, J.; Welch, R.; Dobrea, E. Noe; Michalski, J.; Watkins, M.
2012-01-01
The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (<-1 km) for sufficient atmosphere to slow the spacecraft, (3) relief of <100-130 m at baselines of 1-1000 m for control authority and sufficient fuel during powered descent, (4) slopes of <30° at baselines of 2-5 m for rover stability at touchdown, (5) moderate rock abundance to avoid impacting the belly pan during touchdown, and (6) a radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.
Small-Scale Polygons and the History of Ground Ice on Mars
NASA Technical Reports Server (NTRS)
Mellon, Michael T.
2000-01-01
This research has laid a foundation for continued study of permafrost polygons on Mars using the models and understanding discussed here. Further study of polygonal patterns on Mars is proceeding (under new funding) which is expected to reveal more results about the origin of observed martian polygons and what information they contain regarding the recent history of tile martian climate and of water ice on Mars.
2007-04-01
Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Gene 2003;33:49–54. 2. van’t Verr LJ, Dai H, van de Vijver MJ, et al. Gene...Philadelphia, Pennsylvania 19111 REPORT DATE: April 2007 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and... TYPE Final 3. DATES COVERED (From - To) 1 Apr 2003 – 31 Mar 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Inhibitors of Ovarian
Technology for NASA's Planetary Science Vision 2050.
NASA Technical Reports Server (NTRS)
Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.
2017-01-01
NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.
Mars penetrator umbilical. [to study geophysical properties of Mars
NASA Technical Reports Server (NTRS)
Barns, C. E.
1979-01-01
The device proposed to gather subsurface data on the planet Mars is a ballistic probe which penetrates the soil after a free fall through the Martian atmosphere. Highlights of the design, development, and testing of several features of the Mars Surface Penetration Probe are outlined.
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.
2015-01-01
The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.
MarFS-Requirements-Design-Configuration-Admin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kettering, Brett Michael; Grider, Gary Alan
This document will be organized into sections that are defined by the requirements for a file system that presents a near-POSIX (Portable Operating System Interface) interface to the user, but whose data is stored in whatever form is most efficient for the type of data being stored. After defining the requirement the design for meeting the requirement will be explained. Finally there will be sections on configuring and administering this file system. More and more, data dominates the computing world. There is a “sea” of data out there in many different formats that needs to be managed and used. “Mar”more » means “sea” in Spanish. Thus, this product is dubbed MarFS, a file system for a sea of data.« less