Sample records for study multiple linear

  1. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    PubMed

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  3. Estimate the contribution of incubation parameters influence egg hatchability using multiple linear regression analysis

    PubMed Central

    Khalil, Mohamed H.; Shebl, Mostafa K.; Kosba, Mohamed A.; El-Sabrout, Karim; Zaki, Nesma

    2016-01-01

    Aim: This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens’ eggs. Materials and Methods: Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. Results: The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. Conclusion: A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens. PMID:27651666

  4. The Ability of American Football Helmets to Manage Linear Acceleration With Repeated High-Energy Impacts.

    PubMed

    Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine

    2016-03-01

    Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.

  5. What Is Wrong with ANOVA and Multiple Regression? Analyzing Sentence Reading Times with Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Richter, Tobias

    2006-01-01

    Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…

  6. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  7. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  8. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    NASA Astrophysics Data System (ADS)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  9. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    PubMed

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A Quantitative and Combinatorial Approach to Non-Linear Meanings of Multiplication

    ERIC Educational Resources Information Center

    Tillema, Erik; Gatza, Andrew

    2016-01-01

    We provide a conceptual analysis of how combinatorics problems have the potential to support students to establish non-linear meanings of multiplication (NLMM). The problems we analyze we have used in a series of studies with 6th, 8th, and 10th grade students. We situate the analysis in prior work on students' quantitative and multiplicative…

  11. FAST TRACK PAPER: Non-iterative multiple-attenuation methods: linear inverse solutions to non-linear inverse problems - II. BMG approximation

    NASA Astrophysics Data System (ADS)

    Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing

    2004-12-01

    The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.

  12. Stochastic Swift-Hohenberg Equation with Degenerate Linear Multiplicative Noise

    NASA Astrophysics Data System (ADS)

    Hernández, Marco; Ong, Kiah Wah

    2018-03-01

    We study the dynamic transition of the Swift-Hohenberg equation (SHE) when linear multiplicative noise acting on a finite set of modes of the dominant linear flow is introduced. Existence of a stochastic flow and a local stochastic invariant manifold for this stochastic form of SHE are both addressed in this work. We show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation, and obtain numerical evidence suggesting that this picture is a good approximation for the full system as well.

  13. Impact of Learning Styles on Air Force Technical Training: Multiple and Linear Imagery in the Presentation of a Comparative Visual Location Task to Visual and Haptic Subjects. Interim Report for Period January 1977-January 1978.

    ERIC Educational Resources Information Center

    Ausburn, Floyd B.

    A U.S. Air Force study was designed to develop instruction based on the supplantation theory, in which tasks are performed (supplanted) for individuals who are unable to perform them due to their cognitive style. The study examined the effects of linear and multiple imagery in presenting a task requiring visual comparison and location to…

  14. Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design.

    PubMed

    Agha, Salah R; Alnahhal, Mohammed J

    2012-11-01

    The current study investigates the possibility of obtaining the anthropometric dimensions, critical to school furniture design, without measuring all of them. The study first selects some anthropometric dimensions that are easy to measure. Two methods are then used to check if these easy-to-measure dimensions can predict the dimensions critical to the furniture design. These methods are multiple linear regression and neural networks. Each dimension that is deemed necessary to ergonomically design school furniture is expressed as a function of some other measured anthropometric dimensions. Results show that out of the five dimensions needed for chair design, four can be related to other dimensions that can be measured while children are standing. Therefore, the method suggested here would definitely save time and effort and avoid the difficulty of dealing with students while measuring these dimensions. In general, it was found that neural networks perform better than multiple linear regression in the current study. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

    PubMed

    Zhao, Yingfeng; Liu, Sanyang

    2016-01-01

    We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

  16. Multiple imputation of rainfall missing data in the Iberian Mediterranean context

    NASA Astrophysics Data System (ADS)

    Miró, Juan Javier; Caselles, Vicente; Estrela, María José

    2017-11-01

    Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.

  17. MRM assay for quantitation of complement components in human blood plasma - a feasibility study on multiple sclerosis.

    PubMed

    Rezeli, Melinda; Végvári, Akos; Ottervald, Jan; Olsson, Tomas; Laurell, Thomas; Marko-Varga, György

    2011-12-10

    As a proof-of-principle study, a multiple reaction monitoring (MRM) assay was developed for quantitation of proteotypic peptides, representing seven plasma proteins associated with inflammation (complement components and C-reactive protein). The assay development and the sample analysis were performed on a linear ion trap mass spectrometer. We were able to quantify 5 of the 7 target proteins in depleted plasma digests with reasonable reproducibility over a 2 orders of magnitude linear range (RSD≤25%). The assay panel was utilized for the analysis of a small multiple sclerosis sample cohort with 10 diseased and 8 control patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The Use of Linear Programming for Prediction.

    ERIC Educational Resources Information Center

    Schnittjer, Carl J.

    The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)

  19. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    PubMed

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.

  20. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    PubMed

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  1. An Investigation of the Fit of Linear Regression Models to Data from an SAT[R] Validity Study. Research Report 2011-3

    ERIC Educational Resources Information Center

    Kobrin, Jennifer L.; Sinharay, Sandip; Haberman, Shelby J.; Chajewski, Michael

    2011-01-01

    This study examined the adequacy of a multiple linear regression model for predicting first-year college grade point average (FYGPA) using SAT[R] scores and high school grade point average (HSGPA). A variety of techniques, both graphical and statistical, were used to examine if it is possible to improve on the linear regression model. The results…

  2. Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits.

    PubMed

    Bernhardt, Paul W; Wang, Huixia J; Zhang, Daowen

    2015-05-01

    Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.

  3. A non-linear regression analysis program for describing electrophysiological data with multiple functions using Microsoft Excel.

    PubMed

    Brown, Angus M

    2006-04-01

    The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.

  4. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study

    PubMed Central

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-01-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200–400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. PMID:25005037

  5. Comparing Multiple-Group Multinomial Log-Linear Models for Multidimensional Skill Distributions in the General Diagnostic Model. Research Report. ETS RR-08-35

    ERIC Educational Resources Information Center

    Xu, Xueli; von Davier, Matthias

    2008-01-01

    The general diagnostic model (GDM) utilizes located latent classes for modeling a multidimensional proficiency variable. In this paper, the GDM is extended by employing a log-linear model for multiple populations that assumes constraints on parameters across multiple groups. This constrained model is compared to log-linear models that assume…

  6. Estimation of perceptible water vapor of atmosphere using artificial neural network, support vector machine and multiple linear regression algorithm and their comparative study

    NASA Astrophysics Data System (ADS)

    Shastri, Niket; Pathak, Kamlesh

    2018-05-01

    The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.

  7. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  8. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  9. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  10. The Integration of Teacher's Pedagogical Content Knowledge Components in Teaching Linear Equation

    ERIC Educational Resources Information Center

    Yusof, Yusminah Mohd.; Effandi, Zakaria

    2015-01-01

    This qualitative research aimed to explore the integration of the components of pedagogical content knowledge (PCK) in teaching Linear Equation with one unknown. For the purpose of the study, a single local case study with multiple participants was used. The selection of the participants was made based on various criteria: having more than 5 years…

  11. MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)

    EPA Science Inventory

    We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...

  12. Modeling Learning in Doubly Multilevel Binary Longitudinal Data Using Generalized Linear Mixed Models: An Application to Measuring and Explaining Word Learning.

    PubMed

    Cho, Sun-Joo; Goodwin, Amanda P

    2016-04-01

    When word learning is supported by instruction in experimental studies for adolescents, word knowledge outcomes tend to be collected from complex data structure, such as multiple aspects of word knowledge, multilevel reader data, multilevel item data, longitudinal design, and multiple groups. This study illustrates how generalized linear mixed models can be used to measure and explain word learning for data having such complexity. Results from this application provide deeper understanding of word knowledge than could be attained from simpler models and show that word knowledge is multidimensional and depends on word characteristics and instructional contexts.

  13. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    PubMed

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  14. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

    PubMed

    Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

    2017-05-01

    This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Linear increases in carbon nanotube density through multiple transfer technique.

    PubMed

    Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish

    2011-05-11

    We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.

  16. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  17. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  18. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  19. Computational Modeling of Micro-Crack Induced Attenuation in CFRP Composites

    NASA Technical Reports Server (NTRS)

    Roberts, R. A.; Leckey, C. A. C.

    2012-01-01

    A computational study is performed to determine the contribution to ultrasound attenuation in carbon fiber reinforced polymer composite laminates of linear elastic scattering by matrix micro-cracking. Multiple scattering approximations are benchmarked against exact computational approaches. Results support linear scattering as the source of observed increased attenuation in the presence of micro-cracking.

  20. Assessing the Impact of Influential Observations on Multiple Regression Analysis on Human Resource Research.

    ERIC Educational Resources Information Center

    Bates, Reid A.; Holton, Elwood F., III; Burnett, Michael F.

    1999-01-01

    A case study of learning transfer demonstrates the possible effect of influential observation on linear regression analysis. A diagnostic method that tests for violation of assumptions, multicollinearity, and individual and multiple influential observations helps determine which observation to delete to eliminate bias. (SK)

  1. Prospective Mathematics Teachers' Sense Making of Polynomial Multiplication and Factorization Modeled with Algebra Tiles

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2013-01-01

    This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…

  2. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    ERIC Educational Resources Information Center

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  3. The Effects of Multiple Linked Representations on Students' Learning of Linear Relationships

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Asli

    2004-01-01

    The focus of this study was on comparing three groups of Algebra I 9th-year students: one group using linked representation software, the second group using similar software but with semi-linked representations, and the control group in order to examine the effects on students' understanding of linear relationships. Data collection methods…

  4. Creating Discussions with Classroom Voting in Linear Algebra

    ERIC Educational Resources Information Center

    Cline, Kelly; Zullo, Holly; Duncan, Jonathan; Stewart, Ann; Snipes, Marie

    2013-01-01

    We present a study of classroom voting in linear algebra, in which the instructors posed multiple-choice questions to the class and then allowed a few minutes for consideration and small-group discussion. After each student in the class voted on the correct answer using a classroom response system, a set of clickers, the instructor then guided a…

  5. Spatial summation revealed in the earliest visual evoked component C1 and the effect of attention on its linearity.

    PubMed

    Chen, Juan; Yu, Qing; Zhu, Ziyun; Peng, Yujia; Fang, Fang

    2016-01-01

    In natural scenes, multiple objects are usually presented simultaneously. How do specific areas of the brain respond to multiple objects based on their responses to each individual object? Previous functional magnetic resonance imaging (fMRI) studies have shown that the activity induced by a multiobject stimulus in the primary visual cortex (V1) can be predicted by the linear or nonlinear sum of the activities induced by its component objects. However, there has been little evidence from electroencephelogram (EEG) studies so far. Here we explored how V1 responded to multiple objects by comparing the EEG signals evoked by a three-grating stimulus with those evoked by its two components (the central grating and 2 flanking gratings). We focused on the earliest visual component C1 (onset latency of ∼50 ms) because it has been shown to reflect the feedforward responses of neurons in V1. We found that when the stimulus was unattended, the amplitude of the C1 evoked by the three-grating stimulus roughly equaled the sum of the amplitudes of the C1s evoked by its two components, regardless of the distances between these gratings. When the stimulus was attended, this linear spatial summation existed only when the three gratings were far apart from each other. When the three gratings were close to each other, the spatial summation became compressed. These results suggest that the earliest visual responses in V1 follow a linear summation rule when attention is not involved and that attention can affect the earliest interactions between multiple objects. Copyright © 2016 the American Physiological Society.

  6. Dynamic Measurement: The Crossroad of Area and Multiplication

    ERIC Educational Resources Information Center

    Panorkou, Nicole

    2017-01-01

    In this exploratory study, our goal was to engage students in dynamic experiences of area as a continuous quantity that can be measured by multiplicatively composing two linear measures (lengths), an approach we refer to as 'dynamic measurement,' or DYME. In this paper, we present the learning trajectory constructed from two cycles of teaching…

  7. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    PubMed

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  8. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  9. The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer's disease.

    PubMed

    Wu, Xia; Li, Juan; Ayutyanont, Napatkamon; Protas, Hillary; Jagust, William; Fleisher, Adam; Reiman, Eric; Yao, Li; Chen, Kewei

    2013-01-01

    Given a single index, the receiver operational characteristic (ROC) curve analysis is routinely utilized for characterizing performances in distinguishing two conditions/groups in terms of sensitivity and specificity. Given the availability of multiple data sources (referred to as multi-indices), such as multimodal neuroimaging data sets, cognitive tests, and clinical ratings and genomic data in Alzheimer’s disease (AD) studies, the single-index-based ROC underutilizes all available information. For a long time, a number of algorithmic/analytic approaches combining multiple indices have been widely used to simultaneously incorporate multiple sources. In this study, we propose an alternative for combining multiple indices using logical operations, such as “AND,” “OR,” and “at least n” (where n is an integer), to construct multivariate ROC (multiV-ROC) and characterize the sensitivity and specificity statistically associated with the use of multiple indices. With and without the “leave-one-out” cross-validation, we used two data sets from AD studies to showcase the potentially increased sensitivity/specificity of the multiV-ROC in comparison to the single-index ROC and linear discriminant analysis (an analytic way of combining multi-indices). We conclude that, for the data sets we investigated, the proposed multiV-ROC approach is capable of providing a natural and practical alternative with improved classification accuracy as compared to univariate ROC and linear discriminant analysis.

  10. The Receiver Operational Characteristic for Binary Classification with Multiple Indices and Its Application to the Neuroimaging Study of Alzheimer’s Disease

    PubMed Central

    Wu, Xia; Li, Juan; Ayutyanont, Napatkamon; Protas, Hillary; Jagust, William; Fleisher, Adam; Reiman, Eric; Yao, Li; Chen, Kewei

    2014-01-01

    Given a single index, the receiver operational characteristic (ROC) curve analysis is routinely utilized for characterizing performances in distinguishing two conditions/groups in terms of sensitivity and specificity. Given the availability of multiple data sources (referred to as multi-indices), such as multimodal neuroimaging data sets, cognitive tests, and clinical ratings and genomic data in Alzheimer’s disease (AD) studies, the single-index-based ROC underutilizes all available information. For a long time, a number of algorithmic/analytic approaches combining multiple indices have been widely used to simultaneously incorporate multiple sources. In this study, we propose an alternative for combining multiple indices using logical operations, such as “AND,” “OR,” and “at least n” (where n is an integer), to construct multivariate ROC (multiV-ROC) and characterize the sensitivity and specificity statistically associated with the use of multiple indices. With and without the “leave-one-out” cross-validation, we used two data sets from AD studies to showcase the potentially increased sensitivity/specificity of the multiV-ROC in comparison to the single-index ROC and linear discriminant analysis (an analytic way of combining multi-indices). We conclude that, for the data sets we investigated, the proposed multiV-ROC approach is capable of providing a natural and practical alternative with improved classification accuracy as compared to univariate ROC and linear discriminant analysis. PMID:23702553

  11. Non-linear relationship of cell hit and transformation probabilities in a low dose of inhaled radon progenies.

    PubMed

    Balásházy, Imre; Farkas, Arpád; Madas, Balázs Gergely; Hofmann, Werner

    2009-06-01

    Cellular hit probabilities of alpha particles emitted by inhaled radon progenies in sensitive bronchial epithelial cell nuclei were simulated at low exposure levels to obtain useful data for the rejection or support of the linear-non-threshold (LNT) hypothesis. In this study, local distributions of deposited inhaled radon progenies in airway bifurcation models were computed at exposure conditions characteristic of homes and uranium mines. Then, maximum local deposition enhancement factors at bronchial airway bifurcations, expressed as the ratio of local to average deposition densities, were determined to characterise the inhomogeneity of deposition and to elucidate their effect on resulting hit probabilities. The results obtained suggest that in the vicinity of the carinal regions of the central airways the probability of multiple hits can be quite high, even at low average doses. Assuming a uniform distribution of activity there are practically no multiple hits and the hit probability as a function of dose exhibits a linear shape in the low dose range. The results are quite the opposite in the case of hot spots revealed by realistic deposition calculations, where practically all cells receive multiple hits and the hit probability as a function of dose is non-linear in the average dose range of 10-100 mGy.

  12. Constraining DALECv2 using multiple data streams and ecological constraints: analysis and application

    DOE PAGES

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2017-07-10

    We use a variational method to assimilate multiple data streams into the terrestrial ecosystem carbon cycle model DALECv2 (Data Assimilation Linked Ecosystem Carbon). Ecological and dynamical constraints have recently been introduced to constrain unresolved components of this otherwise ill-posed problem. We recast these constraints as a multivariate Gaussian distribution to incorporate them into the variational framework and we demonstrate their advantage through a linear analysis. By using an adjoint method we study a linear approximation of the inverse problem: firstly we perform a sensitivity analysis of the different outputs under consideration, and secondly we use the concept of resolution matricesmore » to diagnose the nature of the ill-posedness and evaluate regularisation strategies. We then study the non-linear problem with an application to real data. Finally, we propose a modification to the model: introducing a spin-up period provides us with a built-in formulation of some ecological constraints which facilitates the variational approach.« less

  13. Constraining DALECv2 using multiple data streams and ecological constraints: analysis and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    We use a variational method to assimilate multiple data streams into the terrestrial ecosystem carbon cycle model DALECv2 (Data Assimilation Linked Ecosystem Carbon). Ecological and dynamical constraints have recently been introduced to constrain unresolved components of this otherwise ill-posed problem. We recast these constraints as a multivariate Gaussian distribution to incorporate them into the variational framework and we demonstrate their advantage through a linear analysis. By using an adjoint method we study a linear approximation of the inverse problem: firstly we perform a sensitivity analysis of the different outputs under consideration, and secondly we use the concept of resolution matricesmore » to diagnose the nature of the ill-posedness and evaluate regularisation strategies. We then study the non-linear problem with an application to real data. Finally, we propose a modification to the model: introducing a spin-up period provides us with a built-in formulation of some ecological constraints which facilitates the variational approach.« less

  14. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  15. Modeling the effects of AADT on predicting multiple-vehicle crashes at urban and suburban signalized intersections.

    PubMed

    Chen, Chen; Xie, Yuanchang

    2016-06-01

    Annual Average Daily Traffic (AADT) is often considered as a main covariate for predicting crash frequencies at urban and suburban intersections. A linear functional form is typically assumed for the Safety Performance Function (SPF) to describe the relationship between the natural logarithm of expected crash frequency and covariates derived from AADTs. Such a linearity assumption has been questioned by many researchers. This study applies Generalized Additive Models (GAMs) and Piecewise Linear Negative Binomial (PLNB) regression models to fit intersection crash data. Various covariates derived from minor-and major-approach AADTs are considered. Three different dependent variables are modeled, which are total multiple-vehicle crashes, rear-end crashes, and angle crashes. The modeling results suggest that a nonlinear functional form may be more appropriate. Also, the results show that it is important to take into consideration the joint safety effects of multiple covariates. Additionally, it is found that the ratio of minor to major-approach AADT has a varying impact on intersection safety and deserves further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Detecting multiple outliers in linear functional relationship model for circular variables using clustering technique

    NASA Astrophysics Data System (ADS)

    Mokhtar, Nurkhairany Amyra; Zubairi, Yong Zulina; Hussin, Abdul Ghapor

    2017-05-01

    Outlier detection has been used extensively in data analysis to detect anomalous observation in data and has important application in fraud detection and robust analysis. In this paper, we propose a method in detecting multiple outliers for circular variables in linear functional relationship model. Using the residual values of the Caires and Wyatt model, we applied the hierarchical clustering procedure. With the use of tree diagram, we illustrate the graphical approach of the detection of outlier. A simulation study is done to verify the accuracy of the proposed method. Also, an illustration to a real data set is given to show its practical applicability.

  17. Does transport time help explain the high trauma mortality rates in rural areas? New and traditional predictors assessed by new and traditional statistical methods

    PubMed Central

    Røislien, Jo; Lossius, Hans Morten; Kristiansen, Thomas

    2015-01-01

    Background Trauma is a leading global cause of death. Trauma mortality rates are higher in rural areas, constituting a challenge for quality and equality in trauma care. The aim of the study was to explore population density and transport time to hospital care as possible predictors of geographical differences in mortality rates, and to what extent choice of statistical method might affect the analytical results and accompanying clinical conclusions. Methods Using data from the Norwegian Cause of Death registry, deaths from external causes 1998–2007 were analysed. Norway consists of 434 municipalities, and municipality population density and travel time to hospital care were entered as predictors of municipality mortality rates in univariate and multiple regression models of increasing model complexity. We fitted linear regression models with continuous and categorised predictors, as well as piecewise linear and generalised additive models (GAMs). Models were compared using Akaike's information criterion (AIC). Results Population density was an independent predictor of trauma mortality rates, while the contribution of transport time to hospital care was highly dependent on choice of statistical model. A multiple GAM or piecewise linear model was superior, and similar, in terms of AIC. However, while transport time was statistically significant in multiple models with piecewise linear or categorised predictors, it was not in GAM or standard linear regression. Conclusions Population density is an independent predictor of trauma mortality rates. The added explanatory value of transport time to hospital care is marginal and model-dependent, highlighting the importance of exploring several statistical models when studying complex associations in observational data. PMID:25972600

  18. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  19. Fast linear feature detection using multiple directional non-maximum suppression.

    PubMed

    Sun, C; Vallotton, P

    2009-05-01

    The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.

  20. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  2. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    ERIC Educational Resources Information Center

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  3. Genomic prediction based on data from three layer lines using non-linear regression models.

    PubMed

    Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

    2014-11-06

    Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.

  4. Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.

    PubMed

    Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P

    2017-03-01

    The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

    PubMed

    Azadi, Sama; Karimi-Jashni, Ayoub

    2016-02-01

    Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

    EPA Science Inventory

    As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

  7. Multiple degree of freedom object recognition using optical relational graph decision nets

    NASA Technical Reports Server (NTRS)

    Casasent, David P.; Lee, Andrew J.

    1988-01-01

    Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.

  8. Optimal space communications techniques. [using digital and phase locked systems for signal processing

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1974-01-01

    Digital multiplication of two waveforms using delta modulation (DM) is discussed. It is shown that while conventional multiplication of two N bit words requires N2 complexity, multiplication using DM requires complexity which increases linearly with N. Bounds on the signal-to-quantization noise ratio (SNR) resulting from this multiplication are determined and compared with the SNR obtained using standard multiplication techniques. The phase locked loop (PLL) system, consisting of a phase detector, voltage controlled oscillator, and a linear loop filter, is discussed in terms of its design and system advantages. Areas requiring further research are identified.

  9. Cancer Patients Enrolled in a Smoking Cessation Clinical Trial: Characteristics and Correlates of Smoking Rate and Nicotine Dependence.

    PubMed

    Miele, Andrew; Thompson, Morgan; Jao, Nancy C; Kalhan, Ravi; Leone, Frank; Hogarth, Lee; Hitsman, Brian; Schnoll, Robert

    2018-01-01

    A substantial proportion of cancer patients continue to smoke after their diagnosis but few studies have evaluated correlates of nicotine dependence and smoking rate in this population, which could help guide smoking cessation interventions. This study evaluated correlates of smoking rate and nicotine dependence among 207 cancer patients. A cross-sectional analysis using multiple linear regression evaluated disease, demographic, affective, and tobacco-seeking correlates of smoking rate and nicotine dependence. Smoking rate was assessed using a timeline follow-back method. The Fagerström Test for Nicotine Dependence measured levels of nicotine dependence. A multiple linear regression predicting nicotine dependence showed an association with smoking to alleviate a sense of addiction from the Reasons for Smoking scale and tobacco-seeking behavior from the concurrent choice task ( p < .05), but not with affect measured by the HADS and PANAS ( p > .05). Multiple linear regression predicting prequit showed an association with smoking to alleviate addiction ( p < .05). ANOVA showed that Caucasian participants reported greater rates of smoking compared to other races. The results suggest that behavioral smoking cessation interventions that focus on helping patients to manage tobacco-seeking behavior, rather than mood management interventions, could help cancer patients quit smoking.

  10. Investigating Mathematics Students' Use of Multiple Representations when Solving Linear Equations with One Unknown

    ERIC Educational Resources Information Center

    Beyranevand, Matthew L.

    2010-01-01

    Although it is difficult to find any current literature that does not encourage use of multiple representations in mathematics classrooms, there has been very limited research that compared such practice to student achievement level on standardized tests. This study examined the associations between students' achievement levels and their (a)…

  11. An Empirical Comparison of DDF Detection Methods for Understanding the Causes of DIF in Multiple-Choice Items

    ERIC Educational Resources Information Center

    Suh, Youngsuk; Talley, Anna E.

    2015-01-01

    This study compared and illustrated four differential distractor functioning (DDF) detection methods for analyzing multiple-choice items. The log-linear approach, two item response theory-model-based approaches with likelihood ratio tests, and the odds ratio approach were compared to examine the congruence among the four DDF detection methods.…

  12. A Multiple Risk Factors Model of the Development of Aggression among Early Adolescents from Urban Disadvantaged Neighborhoods

    ERIC Educational Resources Information Center

    Kim, Sangwon; Orpinas, Pamela; Kamphaus, Randy; Kelder, Steven H.

    2011-01-01

    This study empirically derived a multiple risk factors model of the development of aggression among middle school students in urban, low-income neighborhoods, using Hierarchical Linear Modeling (HLM). Results indicated that aggression increased from sixth to eighth grade. Additionally, the influences of four risk domains (individual, family,…

  13. Preliminary Screening Procedures and Criteria for Replacements for Halons 1211 and 1301

    DTIC Science & Technology

    1991-07-01

    suppressants that meet current environmental and toxicological concerns. However, as the multiple and evolving performance constraints tighten, a new...massive trial-and-error study now may find suppressants that meet current environmental and toxicological concerns. However, as the multiple and...Extinguishment Concentration vs. Ratio of Linear Vapor Velocities, Elevated/hot ..................................................... 59 10. NIST PMMA Burner

  14. Utilizing the Zero-One Linear Programming Constraints to Draw Multiple Sets of Matched Samples from a Non-Treatment Population as Control Groups for the Quasi-Experimental Design

    ERIC Educational Resources Information Center

    Li, Yuan H.; Yang, Yu N.; Tompkins, Leroy J.; Modarresi, Shahpar

    2005-01-01

    The statistical technique, "Zero-One Linear Programming," that has successfully been used to create multiple tests with similar characteristics (e.g., item difficulties, test information and test specifications) in the area of educational measurement, was deemed to be a suitable method for creating multiple sets of matched samples to be…

  15. Multiplicity distributions of shower particles and target fragments in 84 Kr 36-emulsion interactions at 1 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Soma, A. K.; Pathak, Ramji; Singh, V.

    2014-03-01

    This article focuses on multiplicity distributions of shower particles and target fragments for interaction of 84 Kr 36 with NIKFI BR-2 nuclear emulsion target at kinetic energy of 1 GeV per nucleon. Experimental multiplicity distributions of shower particles, grey particles, black particles and heavily ionization particles are well described by multi-component Erlang distribution of multi-source thermal model. We have observed a linear correlation in multiplicities for the above mentioned particles or fragments. Further experimental studies have shown a saturation phenomenon in shower particle multiplicity with the increase of target fragment multiplicity.

  16. Multiple time scale analysis of pressure oscillations in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  17. Theory of chromatic noise masking applied to testing linearity of S-cone detection mechanisms.

    PubMed

    Giulianini, Franco; Eskew, Rhea T

    2007-09-01

    A method for testing the linearity of cone combination of chromatic detection mechanisms is applied to S-cone detection. This approach uses the concept of mechanism noise, the noise as seen by a postreceptoral neural mechanism, to represent the effects of superposing chromatic noise components in elevating thresholds and leads to a parameter-free prediction for a linear mechanism. The method also provides a test for the presence of multiple linear detectors and off-axis looking. No evidence for multiple linear mechanisms was found when using either S-cone increment or decrement tests. The results for both S-cone test polarities demonstrate that these mechanisms combine their cone inputs nonlinearly.

  18. Linear Combinations of Multiple Outcome Measures to Improve the Power of Efficacy Analysis ---Application to Clinical Trials on Early Stage Alzheimer Disease

    PubMed Central

    Xiong, Chengjie; Luo, Jingqin; Morris, John C; Bateman, Randall

    2018-01-01

    Modern clinical trials on Alzheimer disease (AD) focus on the early symptomatic stage or even the preclinical stage. Subtle disease progression at the early stages, however, poses a major challenge in designing such clinical trials. We propose a multivariate mixed model on repeated measures to model the disease progression over time on multiple efficacy outcomes, and derive the optimum weights to combine multiple outcome measures by minimizing the sample sizes to adequately power the clinical trials. A cross-validation simulation study is conducted to assess the accuracy for the estimated weights as well as the improvement in reducing the sample sizes for such trials. The proposed methodology is applied to the multiple cognitive tests from the ongoing observational study of the Dominantly Inherited Alzheimer Network (DIAN) to power future clinical trials in the DIAN with a cognitive endpoint. Our results show that the optimum weights to combine multiple outcome measures can be accurately estimated, and that compared to the individual outcomes, the combined efficacy outcome with these weights significantly reduces the sample size required to adequately power clinical trials. When applied to the clinical trial in the DIAN, the estimated linear combination of six cognitive tests can adequately power the clinical trial. PMID:29546251

  19. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    EPA Science Inventory

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  20. The Impact of Nutritional Interventions beyond the First 2 Years of Life on Linear Growth: A Systematic Review and Meta-Analysis.

    PubMed

    Roberts, Joseph L; Stein, Aryeh D

    2017-03-01

    A large body of evidence suggests that the first 1000 d from conception is a critical window in which interventions to address malnutrition will be most effective, but little is known about the impact on linear growth of nutritional interventions in children ≥2 y of age. The aim of this analysis was to evaluate the effectiveness of several nutrition-based interventions, specifically iron, zinc, calcium, iodine, vitamin A, multiple (≥2) micronutrients, protein, and food, at improving growth in children ≥2 y of age. A systematic search of MEDLINE and EMBASE retrieved 7794 articles. A total of 69 studies met prespecified inclusion criteria. Baseline height-for-age z score, age, nutrient dose, and study duration were examined as potential sources of heterogeneity. Zinc (mean effect size: 0.15; 95% CI: 0.06, 0.24), vitamin A (0.05; 95% CI: 0.01, 0.09), multiple micronutrients (0.26; 95% CI: 0.13, 0.39), and protein (0.68; 95% CI: 0.30, 1.05) had significant positive effects on linear growth, with baseline height-for-age z score as a significant inverse predictor of the effect size. Iron, calcium, iodine, and food-based interventions had no significant effect on growth. Age at baseline, study duration, and dose were not related to effect size for any nutrient examined. These findings suggest that zinc, vitamin A, multiple micronutrients, and protein interventions delivered after 24 mo of age can have a positive effect on linear growth, especially in populations that have experienced growth failure. © 2017 American Society for Nutrition.

  1. Ranking Forestry Investments With Parametric Linear Programming

    Treesearch

    Paul A. Murphy

    1976-01-01

    Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.

  2. Analysis of the Multiple-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Dampers

    NASA Astrophysics Data System (ADS)

    ZHU, C. S.; ROBB, D. A.; EWINS, D. J.

    2002-05-01

    The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.

  3. An Analysis of the Multiple Objective Capital Budgeting Problem via Fuzzy Linear Integer (0-1) Programming.

    DTIC Science & Technology

    1980-05-31

    34 International Journal of Man- Machine Studies , Vol. 9, No. 1, 1977, pp. 1-68. [16] Zimmermann, H. J., Theory and Applications of Fuzzy Sets, Institut...Boston, Inc., Hingham, MA, 1978. [18] Yager, R. R., "Multiple Objective Decision-Making Using Fuzzy Sets," International Journal of Man- Machine Studies ...Professor of Industria Engineering ... iv t TABLE OF CONTENTS page ABSTRACT .. .. . ...... . .... ...... ........ iii LIST OF TABLES

  4. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  5. Multiple solution of linear algebraic systems by an iterative method with recomputed preconditioner in the analysis of microstrip structures

    NASA Astrophysics Data System (ADS)

    Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.

    2016-06-01

    A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.

  6. [Application of SAS macro to evaluated multiplicative and additive interaction in logistic and Cox regression in clinical practices].

    PubMed

    Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q

    2016-05-01

    Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.

  7. Tuning diagonal components of static linear and first nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Ghosh, Manas

    2015-07-01

    We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.

  8. Multiple regression for physiological data analysis: the problem of multicollinearity.

    PubMed

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  9. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    ERIC Educational Resources Information Center

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  10. Sparse matrix multiplications for linear scaling electronic structure calculations in an atom-centered basis set using multiatom blocks.

    PubMed

    Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin

    2003-04-15

    A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003

  11. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    PubMed

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  12. Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.

    This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit inmore » glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.« less

  13. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies

    PubMed Central

    Liu, Xiaolei; Huang, Meng; Fan, Bin; Buckler, Edward S.; Zhang, Zhiwu

    2016-01-01

    False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. PMID:26828793

  15. Using the Multiplicative Schwarz Alternating Algorithm (MSAA) for Solving the Large Linear System of Equations Related to Global Gravity Field Recovery up to Degree and Order 120

    NASA Astrophysics Data System (ADS)

    Safari, A.; Sharifi, M. A.; Amjadiparvar, B.

    2010-05-01

    The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low-Low Satellite-to-Satellite Tracking

  16. Quantile Regression in the Study of Developmental Sciences

    PubMed Central

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of the outcome’s distribution. Using data from the High School and Beyond and U.S. Sustained Effects Study databases, quantile regression is demonstrated and contrasted with linear regression when considering models with: (a) one continuous predictor, (b) one dichotomous predictor, (c) a continuous and a dichotomous predictor, and (d) a longitudinal application. Results from each example exhibited the differential inferences which may be drawn using linear or quantile regression. PMID:24329596

  17. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  18. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    NASA Astrophysics Data System (ADS)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p < 0.05) between the estimated K from multiple linear regression and measured K indicates that the use of calcium carbonate equivalent as a predictor variable gives a better estimation of K in areas with calcareous soils.

  19. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  20. Statistical linearization for multi-input/multi-output nonlinearities

    NASA Technical Reports Server (NTRS)

    Lin, Ching-An; Cheng, Victor H. L.

    1991-01-01

    Formulas are derived for the computation of the random input-describing functions for MIMO nonlinearities; these straightforward and rigorous derivations are based on the optimal mean square linear approximation. The computations involve evaluations of multiple integrals. It is shown that, for certain classes of nonlinearities, multiple-integral evaluations are obviated and the computations are significantly simplified.

  1. Some Applied Research Concerns Using Multiple Linear Regression Analysis.

    ERIC Educational Resources Information Center

    Newman, Isadore; Fraas, John W.

    The intention of this paper is to provide an overall reference on how a researcher can apply multiple linear regression in order to utilize the advantages that it has to offer. The advantages and some concerns expressed about the technique are examined. A number of practical ways by which researchers can deal with such concerns as…

  2. A new linear least squares method for T1 estimation from SPGR signals with multiple TRs

    NASA Astrophysics Data System (ADS)

    Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo

    2009-02-01

    The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.

  3. Theory of mind and executive function: working-memory capacity and inhibitory control as predictors of false-belief task performance.

    PubMed

    Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn

    2006-06-01

    This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.

  4. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  5. Interpretation of commonly used statistical regression models.

    PubMed

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  6. A methodology based on reduced complexity algorithm for system applications using microprocessors

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.; Yao, K.

    1988-01-01

    The paper considers a methodology on the analysis and design of a minimum mean-square error criterion linear system incorporating a tapped delay line (TDL) where all the full-precision multiplications in the TDL are constrained to be powers of two. A linear equalizer based on the dispersive and additive noise channel is presented. This microprocessor implementation with optimized power of two TDL coefficients achieves a system performance comparable to the optimum linear equalization with full-precision multiplications for an input data rate of 300 baud.

  7. Analysis of Binary Adherence Data in the Setting of Polypharmacy: A Comparison of Different Approaches

    PubMed Central

    Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.

    2009-01-01

    Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358

  8. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    PubMed Central

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  9. Energy expenditure estimation during daily military routine with body-fixed sensors.

    PubMed

    Wyss, Thomas; Mäder, Urs

    2011-05-01

    The purpose of this study was to develop and validate an algorithm for estimating energy expenditure during the daily military routine on the basis of data collected using body-fixed sensors. First, 8 volunteers completed isolated physical activities according to an established protocol, and the resulting data were used to develop activity-class-specific multiple linear regressions for physical activity energy expenditure on the basis of hip acceleration, heart rate, and body mass as independent variables. Second, the validity of these linear regressions was tested during the daily military routine using indirect calorimetry (n = 12). Volunteers' mean estimated energy expenditure did not significantly differ from the energy expenditure measured with indirect calorimetry (p = 0.898, 95% confidence interval = -1.97 to 1.75 kJ/min). We conclude that the developed activity-class-specific multiple linear regressions applied to the acceleration and heart rate data allow estimation of energy expenditure in 1-minute intervals during daily military routine, with accuracy equal to indirect calorimetry.

  10. Genetic Programming Transforms in Linear Regression Situations

    NASA Astrophysics Data System (ADS)

    Castillo, Flor; Kordon, Arthur; Villa, Carlos

    The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.

  11. Association of dentine hypersensitivity with different risk factors - a cross sectional study.

    PubMed

    Vijaya, V; Sanjay, Venkataraam; Varghese, Rana K; Ravuri, Rajyalakshmi; Agarwal, Anil

    2013-12-01

    This study was done to assess the prevalence of Dentine hypersensitivity (DH) and its associated risk factors. This epidemiological study was done among patients coming to dental college regarding prevalence of DH. A self structured questionnaire along with clinical examination was done for assessment. Descriptive statistics were obtained and frequency distribution was calculated using Chi square test at p value <0.05. Stepwise multiple linear regression was also done to access frequency of DH with different factors. The study population was comprised of 655 participants with different age groups. Our study showed prevalence as 55% and it was more common among males. Similarly smokers and those who use hard tooth brush had more cases of DH. Step wise multiple linear regression showed that best predictor for DH was age followed by habit of smoking and type of tooth brush. Most aggravating factors were cold water (15.4%) and sweet foods (14.7%), whereas only 5% of the patients had it while brushing. A high level of dental hypersensitivity has been in this study and more common among males. A linear finding was shown with age, smoking and type of tooth brush. How to cite this article: Vijaya V, Sanjay V, Varghese RK, Ravuri R, Agarwal A. Association of Dentine Hypersensitivity with Different Risk Factors - A Cross Sectional Study. J Int Oral Health 2013;5(6):88-92 .

  12. Changes in Upper Extremity Range of Motion and Efficiency in Multiple Sclerosis Patients Due to Water Activity.

    ERIC Educational Resources Information Center

    Duthie, Pamela Rae

    To determine the effects of water exercise on the movements of multiple sclerosis patients, this study utilized tests to determine changes in the linear range of motion of the shoulder, elbow, and wrist after a 45-minute period of water activities and to determine if the movement became more effective. The test used was an overhead throw with a…

  13. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    NASA Astrophysics Data System (ADS)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  14. Analysis of Slope Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2005-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. Many slope limiters in standard use do not preserve linear solutions on irregular grids impacting both accuracy and convergence. We rewrite some well-known limiters to highlight their underlying symmetry, and use this form to examine the proper - ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent method of handling stretched meshes is developed which is both linearity preserving for arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple dimensions we analyze the monotonicity region of the gradient vector and show that the multidimensional limiting problem may be cast as the solution of a linear programming problem. For some special cases we present a new directional limiting formulation that preserves linear solutions in multiple dimensions on irregular grids. Computational results using model problems and complex three-dimensional examples are presented, demonstrating accuracy, monotonicity and robustness.

  15. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2015-06-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.

  16. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    PubMed

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  17. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID.

    PubMed

    Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.

  18. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID

    PubMed Central

    Elshenawy, Ahmed K.; El Singaby, M.I.

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071

  19. Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method.

    PubMed

    Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza

    2015-11-18

    Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available.

  20. Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method

    PubMed Central

    Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza

    2016-01-01

    Introduction: Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. Methods: This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. Results: From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). Conclusion: This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available. PMID:26925889

  1. ADME evaluation in drug discovery. 1. Applications of genetic algorithms to the prediction of blood-brain partitioning of a large set of drugs.

    PubMed

    Hou, Tingjun; Xu, Xiaojie

    2002-12-01

    In this study, the relationships between the brain-blood concentration ratio of 96 structurally diverse compounds with a large number of structurally derived descriptors were investigated. The linear models were based on molecular descriptors that can be calculated for any compound simply from a knowledge of its molecular structure. The linear correlation coefficients of the models were optimized by genetic algorithms (GAs), and the descriptors used in the linear models were automatically selected from 27 structurally derived descriptors. The GA optimizations resulted in a group of linear models with three or four molecular descriptors with good statistical significance. The change of descriptor use as the evolution proceeds demonstrates that the octane/water partition coefficient and the partial negative solvent-accessible surface area multiplied by the negative charge are crucial to brain-blood barrier permeability. Moreover, we found that the predictions using multiple QSPR models from GA optimization gave quite good results in spite of the diversity of structures, which was better than the predictions using the best single model. The predictions for the two external sets with 37 diverse compounds using multiple QSPR models indicate that the best linear models with four descriptors are sufficiently effective for predictive use. Considering the ease of computation of the descriptors, the linear models may be used as general utilities to screen the blood-brain barrier partitioning of drugs in a high-throughput fashion.

  2. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  3. Simulated bi-SQUID Arrays Performing Direction Finding

    DTIC Science & Technology

    2015-09-01

    First, we applied the multiple signal classification ( MUSIC ) algorithm on linearly polarized signals. We included multiple signals in the output...both of the same frequency and different fre- quencies. Next, we explored a modified MUSIC algorithm called dimensionality reduction MUSIC (DR- MUSIC ... MUSIC algorithm is able to determine the AoA from the simulated SQUID data for linearly polarized signals. The MUSIC algorithm could accurately find

  4. Adaptive receiver structures for asynchronous CDMA systems

    NASA Astrophysics Data System (ADS)

    Rapajic, Predrag B.; Vucetic, Branka S.

    1994-05-01

    Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise.

  5. Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model

    PubMed Central

    Seaman, Shaun R; White, Ian R; Carpenter, James R

    2015-01-01

    Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with using multiple imputation. Imputation of partially observed covariates is complicated if the substantive model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or interaction terms, and standard software implementations of multiple imputation may impute covariates from models that are incompatible with such substantive models. We show how imputation by fully conditional specification, a popular approach for performing multiple imputation, can be modified so that covariates are imputed from models which are compatible with the substantive model. We investigate through simulation the performance of this proposal, and compare it with existing approaches. Simulation results suggest our proposal gives consistent estimates for a range of common substantive models, including models which contain non-linear covariate effects or interactions, provided data are missing at random and the assumed imputation models are correctly specified and mutually compatible. Stata software implementing the approach is freely available. PMID:24525487

  6. A new adaptive multiple modelling approach for non-linear and non-stationary systems

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gong, Yu; Hong, Xia

    2016-07-01

    This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.

  7. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies.

    PubMed

    Koerner, Tess K; Zhang, Yang

    2017-02-27

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.

  8. Robust control of a parallel hybrid drivetrain with a CVT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, T.; Schroeder, D.

    1996-09-01

    In this paper the design of a robust control system for a parallel hybrid drivetrain is presented. The drivetrain is based on a continuously variable transmission (CVT) and is therefore a highly nonlinear multiple-input-multiple-output system (MIMO-System). Input-Output-Linearization offers the possibility of linearizing and of decoupling the system. Since for example the vehicle mass varies with the load and the efficiency of the gearbox depends strongly on the actual working point, an exact linearization of the plant will mostly fail. Therefore a robust control algorithm based on sliding mode is used to control the drivetrain.

  9. Predicting flight delay based on multiple linear regression

    NASA Astrophysics Data System (ADS)

    Ding, Yi

    2017-08-01

    Delay of flight has been regarded as one of the toughest difficulties in aviation control. How to establish an effective model to handle the delay prediction problem is a significant work. To solve the problem that the flight delay is difficult to predict, this study proposes a method to model the arriving flights and a multiple linear regression algorithm to predict delay, comparing with Naive-Bayes and C4.5 approach. Experiments based on a realistic dataset of domestic airports show that the accuracy of the proposed model approximates 80%, which is further improved than the Naive-Bayes and C4.5 approach approaches. The result testing shows that this method is convenient for calculation, and also can predict the flight delays effectively. It can provide decision basis for airport authorities.

  10. Thermosolutal convection during directional solidification. II - Flow transitions

    NASA Technical Reports Server (NTRS)

    Mcfadden, G. B.; Coriell, S. R.

    1987-01-01

    The influence of thermosolutal convection on solute segregation in crystals grown by vertical directional solidification of binary metallic alloys or semiconductors is studied. Finite differences are used in a two-dimensional time-dependent model which assumes a planar crystal-melt interface to obtain numerical results. It is assumed that the configuration is periodic in the horizontal direction. Consideration is given to the possibility of multiple flow states sharing the same period. The results are represented in bifurcation diagrams of the nonlinear states associated with the critical points of linear theory. Variations of the solutal Rayleigh number can lead to the occurrence of multiple steady states, time-periodic states, and quasi-periodic states. This case is compared to that of thermosolutal convection with linear vertical gradients and stress-free boundaries.

  11. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  12. The comparison between several robust ridge regression estimators in the presence of multicollinearity and multiple outliers

    NASA Astrophysics Data System (ADS)

    Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said

    2014-09-01

    In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.

  13. High-power free-electron maser with frequency multiplication operating in a shortwave part of the millimeter wave range

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Kaminsky, A. K.; Perelstein, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.

    2012-08-01

    The possibility of using frequency multiplication in order to obtain high-power short-wavelength radiation from a free-electron maser (FEM) with a Bragg resonator has been studied. Preliminary experiments with an LIU-3000 (JINR) linear induction accelerator demonstrate the operation of a frequency-multiplying FEM at megawatt power in the 6- and 4-mm wave bands on the second and third harmonic, respectively.

  14. Chimeras with multiple coherent regions

    NASA Astrophysics Data System (ADS)

    Ujjwal, Sangeeta Rani; Ramaswamy, Ramakrishna

    2013-09-01

    We study chimeric states in a coupled phase oscillator system with piecewise linear nonlocal coupling. By modifying the details of the coupling, it is possible to obtain multiple chimeric states with a specified number of coherent regions and with specified phase relationships. The case of a two-component chimera is illustrated and the generalization to arbitrary chimeric configurations is discussed. The phase relations between the two clusters of phase oscillators is described in some detail.

  15. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    PubMed

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.

  16. Comparing strategies to assess multiple behavior change in behavioral intervention studies.

    PubMed

    Drake, Bettina F; Quintiliani, Lisa M; Sapp, Amy L; Li, Yi; Harley, Amy E; Emmons, Karen M; Sorensen, Glorian

    2013-03-01

    Alternatives to individual behavior change methods have been proposed, however, little has been done to investigate how these methods compare. To explore four methods that quantify change in multiple risk behaviors targeting four common behaviors. We utilized data from two cluster-randomized, multiple behavior change trials conducted in two settings: small businesses and health centers. Methods used were: (1) summative; (2) z-score; (3) optimal linear combination; and (4) impact score. In the Small Business study, methods 2 and 3 revealed similar outcomes. However, physical activity did not contribute to method 3. In the Health Centers study, similar results were found with each of the methods. Multivitamin intake contributed significantly more to each of the summary measures than other behaviors. Selection of methods to assess multiple behavior change in intervention trials must consider study design, and the targeted population when determining the appropriate method/s to use.

  17. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    PubMed Central

    Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.

    2014-01-01

    We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157

  18. Features in visual search combine linearly

    PubMed Central

    Pramod, R. T.; Arun, S. P.

    2014-01-01

    Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features (intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and co-activation models (based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features—in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search. PMID:24715328

  19. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  20. Measurement of the permeability, perfusion, and histogram characteristics in relapsing-remitting multiple sclerosis using dynamic contrast-enhanced MRI with extended Tofts linear model.

    PubMed

    Yin, Ping; Xiong, Hua; Liu, Yi; Sah, Shambhu K; Zeng, Chun; Wang, Jingjie; Li, Yongmei; Hong, Nan

    2018-01-01

    To investigate the application value of using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with extended Tofts linear model for relapsing-remitting multiple sclerosis (RRMS) and its correlation with expanded disability status scale (EDSS) scores and disease duration. Thirty patients with multiple sclerosis (MS) underwent conventional magnetic resonance imaging (MRI) and DCE-MRI with a 3.0 Tesla MR scanner. An extended Tofts linear model was used to quantitatively measure MR imaging biomarkers. The histogram parameters and correlation among imaging biomarkers, EDSS scores, and disease duration were also analyzed. The MR imaging biomarkers volume transfer constant (K trans ), volume of the extravascular extracellular space per unit volume of tissue (Ve), fractional plasma volume (V p ), cerebral blood flow (CBF), and cerebral blood volume (CBV) of contrast-enhancing (CE) lesions were significantly higher (P < 0.05) than those of nonenhancing (NE) lesions and normal-appearing white matter (NAWM) regions. The skewness of Ve value in CE lesions was more close to normal distribution. There was no significant correlation among the biomarkers with the EDSS scores and disease duration (P > 0.05). Our study demonstrates that the DCE-MRI with the extended Tofts linear model can measure the permeability and perfusion characteristic in MS lesions and in NAWM regions. The K trans , Ve, Vp, CBF, and CBV of CE lesions were significantly higher than that of NE lesions. The skewness of Ve value in CE lesions was more close to normal distribution, indicating that the histogram can be helpful to distinguish the pathology of MS lesions.

  1. Anxiety Levels Are Independently Associated With Cognitive Performance in an Australian Multiple Sclerosis Patient Cohort.

    PubMed

    Ribbons, Karen; Lea, Rodney; Schofield, Peter W; Lechner-Scott, Jeannette

    2017-01-01

    Neurological and psychological symptoms in multiple sclerosis can affect cognitive function. The objective of this study was to explore the relationship between psychological measures and cognitive performance in a patient cohort. In 322 multiple sclerosis patients, psychological symptoms were measured using the Depression Anxiety and Stress Scale, and cognitive function was evaluated using Audio Recorded Cognitive Screen. Multifactor linear regression analysis, accounting for all clinical covariates, found that anxiety was the only psychological measure to remain a significant predictor of cognitive performance (p<0.001), particularly memory function (p<0.001). Further prospective studies are required to determine whether treatment of anxiety improves cognitive impairment.

  2. Minimizing energy dissipation of matrix multiplication kernel on Virtex-II

    NASA Astrophysics Data System (ADS)

    Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook

    2002-07-01

    In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.

  3. Linear and Nonlinear Thinking: A Multidimensional Model and Measure

    ERIC Educational Resources Information Center

    Groves, Kevin S.; Vance, Charles M.

    2015-01-01

    Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…

  4. Association of Dentine Hypersensitivity with Different Risk Factors – A Cross Sectional Study

    PubMed Central

    Vijaya, V; Sanjay, Venkataraam; Varghese, Rana K; Ravuri, Rajyalakshmi; Agarwal, Anil

    2013-01-01

    Background: This study was done to assess the prevalence of Dentine hypersensitivity (DH) and its associated risk factors. Materials & Methods: This epidemiological study was done among patients coming to dental college regarding prevalence of DH. A self structured questionnaire along with clinical examination was done for assessment. Descriptive statistics were obtained and frequency distribution was calculated using Chi square test at p value <0.05. Stepwise multiple linear regression was also done to access frequency of DH with different factors. Results: The study population was comprised of 655 participants with different age groups. Our study showed prevalence as 55% and it was more common among males. Similarly smokers and those who use hard tooth brush had more cases of DH. Step wise multiple linear regression showed that best predictor for DH was age followed by habit of smoking and type of tooth brush. Most aggravating factors were cold water (15.4%) and sweet foods (14.7%), whereas only 5% of the patients had it while brushing. Conclusion: A high level of dental hypersensitivity has been in this study and more common among males. A linear finding was shown with age, smoking and type of tooth brush. How to cite this article: Vijaya V, Sanjay V, Varghese RK, Ravuri R, Agarwal A. Association of Dentine Hypersensitivity with Different Risk Factors – A Cross Sectional Study. J Int Oral Health 2013;5(6):88-92 . PMID:24453451

  5. Multiple Intelligence Scores of Science Stream Students and Their Relation with Reading Competency in Malaysian University English Test (MUET)

    ERIC Educational Resources Information Center

    Razak, Norizan Abdul; Zaini, Nuramirah

    2014-01-01

    Many researches have shown that different approach needed in analysing linear and non-linear reading comprehension texts and different cognitive skills are required. This research attempts to discover the relationship between Science Stream students' reading competency on linear and non-linear texts in Malaysian University English Test (MUET) with…

  6. Dielectric response in Bloch’s hydrodynamic model of an electron-ion plasma

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.; Felderhof, B. U.

    The linear response of an electron-ion plasma to an applied oscillating electric field is studied within the framework of Bloch’s classical hydrodynamic model. The ions are assumed to be fixed in space and distributed according to a known probability distribution. The linearized equations of motion for electron density and flow velocity are studied with the aid of a multiple scattering analysis and cluster expansion. This allows systematic reduction of the many-ion problem to a composition of few-ion problems, and shows how the longitudinal dielectric response function can in principle be calculated.

  7. DYGABCD: A program for calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.

    1978-01-01

    A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.

  8. Transmit Designs for the MIMO Broadcast Channel With Statistical CSI

    NASA Astrophysics Data System (ADS)

    Wu, Yongpeng; Jin, Shi; Gao, Xiqi; McKay, Matthew R.; Xiao, Chengshan

    2014-09-01

    We investigate the multiple-input multiple-output broadcast channel with statistical channel state information available at the transmitter. The so-called linear assignment operation is employed, and necessary conditions are derived for the optimal transmit design under general fading conditions. Based on this, we introduce an iterative algorithm to maximize the linear assignment weighted sum-rate by applying a gradient descent method. To reduce complexity, we derive an upper bound of the linear assignment achievable rate of each receiver, from which a simplified closed-form expression for a near-optimal linear assignment matrix is derived. This reveals an interesting construction analogous to that of dirty-paper coding. In light of this, a low complexity transmission scheme is provided. Numerical examples illustrate the significant performance of the proposed low complexity scheme.

  9. Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.

    2014-05-21

    A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less

  10. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Yoon, E.S., E-mail: yoone@rpi.edu; Ku, S., E-mail: sku@pppl.gov

    2016-06-15

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable onmore » high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.« less

  11. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE PAGES

    Hager, Robert; Yoon, E. S.; Ku, S.; ...

    2016-04-04

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less

  12. A Constrained Linear Estimator for Multiple Regression

    ERIC Educational Resources Information Center

    Davis-Stober, Clintin P.; Dana, Jason; Budescu, David V.

    2010-01-01

    "Improper linear models" (see Dawes, Am. Psychol. 34:571-582, "1979"), such as equal weighting, have garnered interest as alternatives to standard regression models. We analyze the general circumstances under which these models perform well by recasting a class of "improper" linear models as "proper" statistical models with a single predictor. We…

  13. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  14. New nonlinear control algorithms for multiple robot arms

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Bejczy, A. K.; Yun, X.

    1988-01-01

    Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.

  15. Quantile Regression in the Study of Developmental Sciences

    ERIC Educational Resources Information Center

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of…

  16. Identifying Aspects of Parental Involvement that Affect the Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Roulette-McIntyre, Ovella; Bagaka's, Joshua G.; Drake, Daniel D.

    2005-01-01

    This study identified parental practices that relate positively to high school students' academic performance. Parents of 643 high school students participated in the study. Data analysis, using a multiple linear regression model, shows parent-school connection, student gender, and race are significant predictors of student academic performance.…

  17. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    NASA Astrophysics Data System (ADS)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  18. Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming.

    PubMed

    Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong

    2011-01-21

    Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Reinvestigating the surface and bulk electronic properties of Cd3As2

    NASA Astrophysics Data System (ADS)

    Roth, S.; Lee, H.; Sterzi, A.; Zacchigna, M.; Politano, A.; Sankar, R.; Chou, F. C.; Di Santo, G.; Petaccia, L.; Yazyev, O. V.; Crepaldi, A.

    2018-04-01

    Cd3As2 is widely considered among the few materials realizing the three-dimensional (3D) Dirac semimetal phase. Linearly dispersing states, responsible for the ultrahigh charge mobility, have been reported by several angle-resolved photoelectron spectroscopy (ARPES) investigations. However, in spite of the general agreement between these studies, some details are at odds. From scanning tunneling microscopy and optical experiments under magnetic field, a puzzling scenario emerges in which multiple states show linear dispersion at different energy scales. Here, we solve this apparent controversy by reinvestigating the electronic properties of the (112) surface of Cd3As2 by combining ARPES and theoretical calculations. We disentangle the presence of massive and massless metallic bulk and surface states, characterized by different symmetries. Our systematic experimental and theoretical study clarifies the complex band dispersion of Cd3As2 by extending the simplistic 3D Dirac semimetal model to account for multiple bulk and surface states crossing the Fermi level, and thus contributing to the unique material transport properties.

  20. Correlates and Predictors of Psychological Distress Among Older Asian Immigrants in California.

    PubMed

    Chang, Miya; Moon, Ailee

    2016-01-01

    Psychological distress occurs frequently in older minority immigrants because many have limited social resources and undergo a difficult process related to immigration and acculturation. Despite a rapid increase in the number of Asian immigrants, relatively little research has focused on subgroup mental health comparisons. This study examines the prevalence of psychological distress, and relationship with socio-demographic factors, and health care utilization among older Asian immigrants. Weighted data from Asian immigrants 65 and older from 5 countries (n = 1,028) who participated in the California Health Interview Survey (CHIS) were analyzed descriptively and in multiple linear regressions. The prevalence of psychological distress varied significantly across the 5 ethnic groups, from Filipinos (4.83%) to Chinese (1.64%). General health status, cognitive and physical impairment, and health care utilization are all associated (p < .05) with psychological distress in multiple linear regressions. These findings are similar to those from previous studies. The findings reinforce the need to develop more culturally effective mental health services and outreach programs.

  1. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies

    PubMed Central

    Koerner, Tess K.; Zhang, Yang

    2017-01-01

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers. PMID:28264422

  2. Analysis of in vitro fertilization data with multiple outcomes using discrete time-to-event analysis

    PubMed Central

    Maity, Arnab; Williams, Paige; Ryan, Louise; Missmer, Stacey; Coull, Brent; Hauser, Russ

    2014-01-01

    In vitro fertilization (IVF) is an increasingly common method of assisted reproductive technology. Because of the careful observation and followup required as part of the procedure, IVF studies provide an ideal opportunity to identify and assess clinical and demographic factors along with environmental exposures that may impact successful reproduction. A major challenge in analyzing data from IVF studies is handling the complexity and multiplicity of outcome, resulting from both multiple opportunities for pregnancy loss within a single IVF cycle in addition to multiple IVF cycles. To date, most evaluations of IVF studies do not make use of full data due to its complex structure. In this paper, we develop statistical methodology for analysis of IVF data with multiple cycles and possibly multiple failure types observed for each individual. We develop a general analysis framework based on a generalized linear modeling formulation that allows implementation of various types of models including shared frailty models, failure specific frailty models, and transitional models, using standard software. We apply our methodology to data from an IVF study conducted at the Brigham and Women’s Hospital, Massachusetts. We also summarize the performance of our proposed methods based on a simulation study. PMID:24317880

  3. Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.

    PubMed

    Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao

    2015-08-01

    Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.

  4. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

    PubMed

    Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu

    2015-01-01

    A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

  5. Linearized inversion of multiple scattering seismic energy

    NASA Astrophysics Data System (ADS)

    Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad

    2014-05-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains curvature information is modified at every iteration by a low-rank update based on gradient changes at every step. At each iteration, the data residual is imaged using GT to determine the model update. Application of the linearized inversion to synthetic data to image a vertical fault plane demonstrate the effectiveness of this methodology to properly delineate the vertical fault plane and give better amplitude information than the standard migrated image using the adjoint operator that takes into account internal multiples. Thus, least-square imaging of multiple scattering enhances the spatial resolution of the events illuminated by internal scattering energy. It also deconvolves the source signature and helps remove the fingerprint of the acquisition geometry. The final image is obtained by the superposition of the least-square solution based on single scattering assumption and the least-square solution based on double scattering assumption.

  6. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  7. A class of stochastic optimization problems with one quadratic & several linear objective functions and extended portfolio selection model

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Li, Jun

    2002-09-01

    In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.

  8. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less

  9. Polarizabilities of Impurity Doped Quantum Dots Under Pulsed Field: Role of Multiplicative White Noise

    NASA Astrophysics Data System (ADS)

    Saha, Surajit; Ghosh, Manas

    2016-02-01

    We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.

  10. Robust sensor fault detection and isolation of gas turbine engines subjected to time-varying parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar

    2016-08-01

    In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.

  11. Testing the dose-response specification in epidemiology: public health and policy consequences for lead.

    PubMed

    Rothenberg, Stephen J; Rothenberg, Jesse C

    2005-09-01

    Statistical evaluation of the dose-response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose-response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear-linear dose response) and natural-log-transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose-response relationship. We found that a log-linear lead-IQ relationship was a significantly better fit than was a linear-linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead-IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 microg/dL to 2.0 microg/dL) was 2.2 times (319 billion dollars) that calculated using a linear-linear dose-response function (149 billion dollars). The Centers for Disease Control and Prevention action limit of 10 microg/dL for children fails to protect against most damage and economic cost attributable to lead exposure.

  12. Linear summation of outputs in a balanced network model of motor cortex.

    PubMed

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.

  13. Quantitative model of diffuse speckle contrast analysis for flow measurement.

    PubMed

    Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-07-01

    Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be presented. We deduced the theoretical relationship between speckle contrast and exposure time and further simplified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian diffusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to be equal to the inverse of correlation time of the speckle.

  14. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Hu, Haiyan; Zhao, Yonghui

    2013-10-01

    In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.

  15. Selection of higher order regression models in the analysis of multi-factorial transcription data.

    PubMed

    Prazeres da Costa, Olivia; Hoffman, Arthur; Rey, Johannes W; Mansmann, Ulrich; Buch, Thorsten; Tresch, Achim

    2014-01-01

    Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control), and treatment/non-treatment with interferon-γ. We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction), alleviating (co-occurring effects are weaker than expected from the single effects), or aggravating (stronger than expected). We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data.

  16. Application of third molar development and eruption models in estimating dental age in Malay sub-adults.

    PubMed

    Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc

    2015-08-01

    The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  17. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  18. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2016-12-01

    In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5 n equilibrium points located in ℜ n , and 3 n of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Electrostatic turbulence in the earth's central plasma sheet produced by multiple-ring ion distributions

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Chen, J.; Anderson, R. R.

    1992-01-01

    Attention is given to a mechanism to generate a broad spectrum of electrostatic turbulence in the quiet time central plasma sheet (CPS) plasma. It is shown theoretically that multiple-ring ion distributions can generate short-wavelength (less than about 1), electrostatic turbulence with frequencies less than about kVj, where Vj is the velocity of the jth ring. On the basis of a set of parameters from measurements made in the CPS, it is found that electrostatic turbulence can be generated with wavenumbers in the range of 0.02 and 1.0, with real frequencies in the range of 0 and 10, and with linear growth rates greater than 0.01 over a broad range of angles relative to the magnetic field (5-90 deg). These theoretical results are compared with wave data from ISEE 1 using an ion distribution function exhibiting multiple-ring structures observed at the same time. The theoretical results in the linear regime are found to be consistent with the wave data.

  20. Digital processing of array seismic recordings

    USGS Publications Warehouse

    Ryall, Alan; Birtill, John

    1962-01-01

    This technical letter contains a brief review of the operations which are involved in digital processing of array seismic recordings by the methods of velocity filtering, summation, cross-multiplication and integration, and by combinations of these operations (the "UK Method" and multiple correlation). Examples are presented of analyses by the several techniques on array recordings which were obtained by the U.S. Geological Survey during chemical and nuclear explosions in the western United States. Seismograms are synthesized using actual noise and Pn-signal recordings, such that the signal-to-noise ratio, onset time and velocity of the signal are predetermined for the synthetic record. These records are then analyzed by summation, cross-multiplication, multiple correlation and the UK technique, and the results are compared. For all of the examples presented, analysis by the non-linear techniques of multiple correlation and cross-multiplication of the traces on an array recording are preferred to analyses by the linear operations involved in summation and the UK Method.

  1. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  2. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.

  3. Identification of treatment responders based on multiple longitudinal outcomes with applications to multiple sclerosis patients.

    PubMed

    Kondo, Yumi; Zhao, Yinshan; Petkau, John

    2017-05-30

    Identification of treatment responders is a challenge in comparative studies where treatment efficacy is measured by multiple longitudinally collected continuous and count outcomes. Existing procedures often identify responders on the basis of only a single outcome. We propose a novel multiple longitudinal outcome mixture model that assumes that, conditionally on a cluster label, each longitudinal outcome is from a generalized linear mixed effect model. We utilize a Monte Carlo expectation-maximization algorithm to obtain the maximum likelihood estimates of our high-dimensional model and classify patients according to their estimated posterior probability of being a responder. We demonstrate the flexibility of our novel procedure on two multiple sclerosis clinical trial datasets with distinct data structures. Our simulation study shows that incorporating multiple outcomes improves the responder identification performance; this can occur even if some of the outcomes are ineffective. Our general procedure facilitates the identification of responders who are comprehensively defined by multiple outcomes from various distributions. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. BIODEGRADATION PROBABILITY PROGRAM (BIODEG)

    EPA Science Inventory

    The Biodegradation Probability Program (BIODEG) calculates the probability that a chemical under aerobic conditions with mixed cultures of microorganisms will biodegrade rapidly or slowly. It uses fragment constants developed using multiple linear and non-linear regressions and d...

  5. Cumulative Repetition Effects across Multiple Readings of a Word: Evidence from Eye Movements

    ERIC Educational Resources Information Center

    Kamienkowski, Juan E.; Carbajal, M. Julia; Bianchi, Bruno; Sigman, Mariano; Shalom, Diego E.

    2018-01-01

    When a word is read more than once, reading time generally decreases in the successive occurrences. This Repetition Effect has been used to study word encoding and memory processes in a variety of experimental measures. We studied naturally occurring repetitions of words within normal texts (stories of around 3,000 words). Using linear mixed…

  6. New techniques for the analysis of manual control systems. [mathematical models of human operator behavior

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.

    1971-01-01

    Studies are summarized on the application of advanced analytical and computational methods to the development of mathematical models of human controllers in multiaxis manual control systems. Specific accomplishments include the following: (1) The development of analytical and computer methods for the measurement of random parameters in linear models of human operators. (2) Discrete models of human operator behavior in a multiple display situation were developed. (3) Sensitivity techniques were developed which make possible the identification of unknown sampling intervals in linear systems. (4) The adaptive behavior of human operators following particular classes of vehicle failures was studied and a model structure proposed.

  7. Ergonomics study on mobile phones for thumb physiology discomfort

    NASA Astrophysics Data System (ADS)

    Bendero, J. M. S.; Doon, M. E. R.; Quiogue, K. C. A.; Soneja, L. C.; Ong, N. R.; Sauli, Z.; Vairavan, R.

    2017-09-01

    The study was conducted on Filipino undergraduate college students and aimed to find out about the significant factors associated with mobile phone usage and its effect on thumb pain.A correlation-prediction analysisand Multiple Linear Regression was adopted and used as the main tool in determining the significant factors and coming up with predictive models on thumb related pain. With the use of the software Statistical Package for the Social Sciences or SPSS in conducting linear regression, 2 significant factors on thumb-related pain (percentage of time using portrait as screen orientation when text messaging, amount of time playing games using one hand in a day) were found.

  8. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    PubMed Central

    Liu, Wan-Yu; Chou, Chun-Hung

    2014-01-01

    This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems. PMID:24982990

  9. Fuzzy linear model for production optimization of mining systems with multiple entities

    NASA Astrophysics Data System (ADS)

    Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar

    2011-12-01

    Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.

  10. Peeling linear inversion of upper mantle velocity structure with receiver functions

    NASA Astrophysics Data System (ADS)

    Shen, Xuzhang; Zhou, Huilan

    2012-02-01

    A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.

  11. Identity effects dominate the impacts of multiple species extinctions on the functioning of complex food webs.

    PubMed

    Harvey, Eric; Séguin, Annie; Nozais, Christian; Archambault, Philippe; Gravel, Dominique

    2013-01-01

    Understanding the impacts of species extinctions on the functioning of food webs is a challenging task because of the complexity of ecological interactions. We report the impacts of experimental species extinctions on the functioning of two food webs of freshwater and marine systems. We used a linear model to partition the variance among the multiple components of the diversity effect (linear group richness, nonlinear group richness, and identity). The identity of each functional group was the best explaining variable of ecosystem functioning for both systems. We assessed the contribution of each functional group in multifunctional space and found that, although the effect of functional group varied across ecosystem functions, some functional groups shared common effects on functions. This study is the first experimental demonstration that functional identity dominates the effects of extinctions on ecosystem functioning, suggesting that generalizations are possible despite the inherent complexity of interactions.

  12. Computer modeling of multiple-channel input signals and intermodulation losses caused by nonlinear traveling wave tube amplifiers

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1982-01-01

    The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.

  13. Schistosomiasis Breeding Environment Situation Analysis in Dongting Lake Area

    NASA Astrophysics Data System (ADS)

    Li, Chuanrong; Jia, Yuanyuan; Ma, Lingling; Liu, Zhaoyan; Qian, Yonggang

    2013-01-01

    Monitoring environmental characteristics, such as vegetation, soil moisture et al., of Oncomelania hupensis (O. hupensis)’ spatial/temporal distribution is of vital importance to the schistosomiasis prevention and control. In this study, the relationship between environmental factors derived from remotely sensed data and the density of O. hupensis was analyzed by a multiple linear regression model. Secondly, spatial analysis of the regression residual was investigated by the semi-variogram method. Thirdly, spatial analysis of the regression residual and the multiple linear regression model were both employed to estimate the spatial variation of O. hupensis density. Finally, the approach was used to monitor and predict the spatial and temporal variations of oncomelania of Dongting Lake region, China. And the areas of potential O. hupensis habitats were predicted and the influence of Three Gorges Dam (TGB)project on the density of O. hupensis was analyzed.

  14. Development of a Multiple Linear Regression Model to Forecast Facility Electrical Consumption at an Air Force Base.

    DTIC Science & Technology

    1981-09-01

    corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John

  15. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    PubMed

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  16. Multi-target detection and positioning in crowds using multiple camera surveillance

    NASA Astrophysics Data System (ADS)

    Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng

    2018-04-01

    In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.

  17. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  18. Combined statistical analyses for long-term stability data with multiple storage conditions: a simulation study.

    PubMed

    Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R

    2014-01-01

    Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.

  19. An improved null model for assessing the net effects of multiple stressors on communities.

    PubMed

    Thompson, Patrick L; MacLennan, Megan M; Vinebrooke, Rolf D

    2018-01-01

    Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our compositional null model. © 2017 John Wiley & Sons Ltd.

  20. Optimized multiple linear mappings for single image super-resolution

    NASA Astrophysics Data System (ADS)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  1. Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Fan, Baozheng; Song, Xiaolin

    2018-03-01

    As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.

  2. Multiband selection with linear array detectors

    NASA Technical Reports Server (NTRS)

    Richard, H. L.; Barnes, W. L.

    1985-01-01

    Several techniques that can be used in an earth-imaging system to separate the linear image formed after the collecting optics into the desired spectral band are examined. The advantages and disadvantages of the Multispectral Linear Array (MLA) multiple optics, the MLA adjacent arrays, the imaging spectrometer, and the MLA beam splitter are discussed. The beam-splitter design approach utilizes, in addition to relatively broad spectral region separation, a movable Multiband Selection Device (MSD), placed between the exit ports of the beam splitter and a linear array detector, permitting many bands to be selected. The successful development and test of the MSD is described. The device demonstrated the capacity to provide a wide field of view, visible-to-near IR/short-wave IR and thermal IR capability, and a multiplicity of spectral bands and polarization measuring means, as well as a reasonable size and weight at minimal cost and risk compared to a spectrometer design approach.

  3. A Quantitative Study of the Relationship between the Distribution of Different Types of Collagen and the Mechanical Behavior of Rabbit Medial Collateral Ligaments

    PubMed Central

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues. PMID:25062068

  4. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    PubMed

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05) was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  5. Teaching Algebraic Equations to Middle School Students with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Baker, Joshua N.; Rivera, Christopher J.; Morgan, Joseph John; Reese, Noelle

    2015-01-01

    The purpose of this study was to replicate similar instructional techniques of Jimenez, Browder, and Courtade (2008) using a single-subject multiple-probe across participants design to investigate the effects of task analytic instruction coupled with semi-concrete representations to teach linear algebraic equations to middle school students with…

  6. Exploring Race Differences in Correlates of Seniors' Satisfaction with Undergraduate Education

    ERIC Educational Resources Information Center

    Einarson, Marne K.; Matier, Michael W.

    2005-01-01

    This study employed multiple linear regression and decision tree analysis to examine the correlates of overall satisfaction with undergraduate education for white, Asian American, Latino and African American seniors enrolled at 17 doctoral/research universities. Satisfaction with the overall quality of instruction and social involvement were the…

  7. Exploring Race Differences in Correlates of Seniors' Satisfaction with Undergraduate Education

    ERIC Educational Resources Information Center

    Einarson, Marne K.; Matier, Michael W.

    2004-01-01

    This study employed multiple linear regression and decision tree analysis to examine the correlates of overall satisfaction with undergraduate education for white, Asian American, Hispanic and African American seniors enrolled at 17 research-extensive universities. Satisfaction with the overall quality of instruction and social involvement were…

  8. Predictors of Quality Verbal Engagement in Third-Grade Literature Discussions

    ERIC Educational Resources Information Center

    Young, Chase

    2014-01-01

    This study investigates how reading ability and personality traits predict the quality of verbal discussions in peer-led literature circles. Third grade literature discussions were recorded, transcribed, and coded. The coded statements and questions were quantified into a quality of engagement score. Through multiple linear regression, the…

  9. The Effects of Multiple Linked Representations on Student Learning in Mathematics.

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Asli

    This study investigated the effects on student understanding of linear relationships using the linked representation software VideoPoint as compared to using semi-linked representation software. It investigated students' attitudes towards and preferences for mathematical representations--equations, tables, or graphs. An Algebra I class was divided…

  10. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    ERIC Educational Resources Information Center

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  11. A case of unilateral, systematized linear hair follicle nevi associated with epidermal nevus-like lesions.

    PubMed

    Ikeda, Shigaku; Kawada, Juri; Yaguchi, Hitoshi; Ogawa, Hideoki

    2003-01-01

    Multiple hair follicle nevi are an extremely rare condition. In 1998, a case of unilateral multiple hair follicle nevi, ipsilateral alopecia and ipsilateral leptomeningeal angiomatosis of the brain was first reported from Japan. Very recently, hair follicle nevus in a distribution following Blaschko's lines has also been reported. In this paper, we observed a congenital case of unilateral, systematized linear hair follicle nevi associated with congenital, ipsilateral, multiple plaque lesions resembling epidermal nevi but lacking leptomeningeal angiomatosis of the brain. These cases implicate the possibility of a novel neurocutaneous syndrome. Additional cases should be sought in order to determine whether this condition is pathophysiologically distinct. Copyright 2003 S. Karger AG, Basel

  12. Iterative-method performance evaluation for multiple vectors associated with a large-scale sparse matrix

    NASA Astrophysics Data System (ADS)

    Imamura, Seigo; Ono, Kenji; Yokokawa, Mitsuo

    2016-07-01

    Ensemble computing, which is an instance of capacity computing, is an effective computing scenario for exascale parallel supercomputers. In ensemble computing, there are multiple linear systems associated with a common coefficient matrix. We improve the performance of iterative solvers for multiple vectors by solving them at the same time, that is, by solving for the product of the matrices. We implemented several iterative methods and compared their performance. The maximum performance on Sparc VIIIfx was 7.6 times higher than that of a naïve implementation. Finally, to deal with the different convergence processes of linear systems, we introduced a control method to eliminate the calculation of already converged vectors.

  13. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  14. On using the Multiple Signal Classification algorithm to study microbaroms

    NASA Astrophysics Data System (ADS)

    Marcillo, O. E.; Blom, P. S.; Euler, G. G.

    2016-12-01

    Multiple Signal Classification (MUSIC) (Schmidt, 1986) is a well-known high-resolution algorithm used in array processing for parameter estimation. We report on the application of MUSIC to infrasonic array data in a study of the structure of microbaroms. Microbaroms can be globally observed and display energy centered around 0.2 Hz. Microbaroms are an infrasonic signal generated by the non-linear interaction of ocean surface waves that radiate into the ocean and atmosphere as well as the solid earth in the form of microseisms. Microbaroms sources are dynamic and, in many cases, distributed in space and moving in time. We assume that the microbarom energy detected by an infrasonic array is the result of multiple sources (with different back-azimuths) in the same bandwidth and apply the MUSIC algorithm accordingly to recover the back-azimuth and trace velocity of the individual components. Preliminary results show that the multiple component assumption in MUSIC allows one to resolve the fine structure in the microbarom band that can be related to multiple ocean surface phenomena.

  15. Minimal agent based model for financial markets II. Statistical properties of the linear and multiplicative dynamics

    NASA Astrophysics Data System (ADS)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.

  16. A survey of the state of the art and focused research in range systems, task 2

    NASA Technical Reports Server (NTRS)

    Yao, K.

    1986-01-01

    Many communication, control, and information processing subsystems are modeled by linear systems incorporating tapped delay lines (TDL). Such optimized subsystems result in full precision multiplications in the TDL. In order to reduce complexity and cost in a microprocessor implementation, these multiplications can be replaced by single-shift instructions which are equivalent to powers of two multiplications. Since, in general, the obvious operation of rounding the infinite precision TDL coefficients to the nearest powers of two usually yield quite poor system performance, the optimum powers of two coefficient solution was considered. Detailed explanations on the use of branch-and-bound algorithms for finding the optimum powers of two solutions are given. Specific demonstration of this methodology to the design of a linear data equalizer and its implementation in assembly language on a 8080 microprocessor with a 12 bit A/D converter are reported. This simple microprocessor implementation with optimized TDL coefficients achieves a system performance comparable to the optimum linear equalization with full precision multiplications for an input data rate of 300 baud. The philosophy demonstrated in this implementation is dully applicable to many other microprocessor controlled information processing systems.

  17. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    NASA Astrophysics Data System (ADS)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  18. Depressive disorder in pregnant Latin women: does intimate partner violence matter?

    PubMed

    Fonseca-Machado, Mariana de Oliveira; Alves, Lisiane Camargo; Monteiro, Juliana Cristina Dos Santos; Stefanello, Juliana; Nakano, Ana Márcia Spanó; Haas, Vanderlei José; Gomes-Sponholz, Flávia

    2015-05-01

    To identify the association of antenatal depressive symptoms with intimate partner violence during the current pregnancy in Brazilian women. Intimate partner violence is an important risk factor for antenatal depression. To the authors' knowledge, there has been no study to date that assessed the association between intimate partner violence during pregnancy and antenatal depressive symptoms among Brazilian women. Cross-sectional study. Three hundred and fifty-eight pregnant women were enrolled in the study. The Edinburgh Postnatal Depression Scale and an adapted version of the instrument used in the World Health Organization Multi-country Study on Women's Health and Domestic Violence were used to measure antenatal depressive symptoms and psychological, physical and sexual acts of intimate partner violence during the current pregnancy respectively. Multiple logistic regression and multiple linear regression were used for data analysis. The prevalence of antenatal depressive symptoms, as determined by the cut-off score of 12 in the Edinburgh Postnatal Depression Scale, was 28·2% (101). Of the participants, 63 (17·6%) reported some type of intimate partner violence during pregnancy. Among them, 60 (95·2%) reported suffering psychological violence, 23 (36·5%) physical violence and one (1·6%) sexual violence. Multiple logistic regression and multiple linear regression indicated that antenatal depressive symptoms are extremely associated with intimate partner violence during pregnancy. Among Brazilian women, exposure to intimate partner violence during pregnancy increases the chances of experiencing antenatal depressive symptoms. Clinical nurses and nurses midwifes should pay attention to the particularities of Brazilian women, especially with regard to the occurrence of intimate partner violence, whose impacts on the mental health of this population are extremely significant, both during the gestational period and postpartum. © 2015 John Wiley & Sons Ltd.

  19. Linear summation of outputs in a balanced network model of motor cortex

    PubMed Central

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452

  20. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  1. Isovolumic relaxation period as an index of left ventricular relaxation under different afterload conditions--comparison with the time constant of left ventricular pressure decay in the dog.

    PubMed

    Ochi, H; Ikuma, I; Toda, H; Shimada, T; Morioka, S; Moriyama, K

    1989-12-01

    In order to determine whether isovolumic relaxation period (IRP) reflects left ventricular relaxation under different afterload conditions, 17 anesthetized, open chest dogs were studied, and the left ventricular pressure decay time constant (T) was calculated. In 12 dogs, angiotensin II and nitroprusside were administered, with the heart rate constant at 90 beats/min. Multiple linear regression analysis showed that the aortic dicrotic notch pressure (AoDNP) and T were major determinants of IRP, while left ventricular end-diastolic pressure was a minor determinant. Multiple linear regression analysis, correlating T with IRP and AoDNP, did not further improve the correlation coefficient compared with that between T and IRP. We concluded that correction of the IRP by AoDNP is not necessary to predict T from additional multiple linear regression. The effects of ascending aortic constriction or angiotensin II on IRP were examined in five dogs, after pretreatment with propranolol. Aortic constriction caused a significant decrease in IRP and T, while angiotensin II produced a significant increase in IRP and T. IRP was affected by the change of afterload. However, the IRP and T values were always altered in the same direction. These results demonstrate that IRP is substituted for T and it reflects left ventricular relaxation even in different afterload conditions. We conclude that IRP is a simple parameter easily used to evaluate left ventricular relaxation in clinical situations.

  2. Foundation stiffness in the linear modeling of wind turbines

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Yu, Chih-Peng; Chen, Yan-Hao; Lai, Jiunnren; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2017-04-01

    Effects of foundation stiffness on the linear vibrations of wind turbine systems are of concerns for both planning and construction of wind turbine systems. Current study performed numerical modeling for such a problem using linear spectral finite elements. The effects of foundation stiffness were investigated for various combinations of shear wave velocity of soil, size of tower base plate, and pile length. Multiple piles are also included in the models such that the foundation stiffness can be analyzed more realistically. The results indicate that the shear wave velocity of soil and the size of tower base plate have notable effects on the dominant frequency of the turbine-tower system. The larger the lateral dimension, the stiffer the foundation. Large pile cap and multiple spaced piles result in higher stiffness than small pile cap and a mono-pile. The lateral stiffness of a mono-pile mainly depends on the shear wave velocity of soil with the exception for a very short pile that the end constraints may affect the lateral vibration of the superstructure. Effective pile length may be determined by comparing the simulation results of the frictional pile to those of the end-bearing pile.

  3. Multiple regression technique for Pth degree polynominals with and without linear cross products

    NASA Technical Reports Server (NTRS)

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  4. The Effect of Nasoalveolar Molding on Nasal Airway Anatomy: A 9-Year Follow-up of Patients With Unilateral Cleft Lip and Palate.

    PubMed

    Massie, Jonathan P; Bruckman, Karl; Rifkin, William J; Runyan, Christopher M; Shetye, Pradip R; Grayson, Barry; Flores, Roberto L

    2018-04-01

    To determine the effects of nasoalveolar molding (NAM) on nasal airway architecture. Retrospective case-control study of patients with unilateral cleft lip treated with NAM vs without NAM. Tertiary referral center specializing in cleft and craniofacial care. Patients, Participants, and Interventions: Thirty-six patients with complete unilateral cleft lip and alveolus: 19 with NAM therapy and 17 without NAM therapy. Cone beam computed tomography (CBCT) scans were compared in multiple coronal sections and were evaluated for linear and angular septal deviation, inferior turbinate hypertrophy, and linear and 2-dimensional airway area. There were no significant differences in linear or angular septal deviation, inferior turbinate area, linear stenosis, or airway area between NAM- and non-NAM-treated patients. NAM effectively molds the external nasal cartilage and structures but may have limited effects on internal nasal structures.

  5. Step responses of a torsional system with multiple clearances: Study of vibro-impact phenomenon using experimental and computational methods

    NASA Astrophysics Data System (ADS)

    Oruganti, Pradeep Sharma; Krak, Michael D.; Singh, Rajendra

    2018-01-01

    Recently Krak and Singh (2017) proposed a scientific experiment that examined vibro-impacts in a torsional system under a step down excitation and provided preliminary measurements and limited non-linear model studies. A major goal of this article is to extend the prior work with a focus on the examination of vibro-impact phenomena observed under step responses in a torsional system with one, two or three controlled clearances. First, new measurements are made at several locations with a higher sampling frequency. Measured angular accelerations are examined in both time and time-frequency domains. Minimal order non-linear models of the experiment are successfully constructed, using piecewise linear stiffness and Coulomb friction elements; eight cases of the generic system are examined though only three are experimentally studied. Measured and predicted responses for single and dual clearance configurations exhibit double sided impacts and time varying periods suggest softening trends under the step down torque. Non-linear models are experimentally validated by comparing results with new measurements and with those previously reported. Several metrics are utilized to quantify and compare the measured and predicted responses (including peak to peak accelerations). Eigensolutions and step responses of the corresponding linearized models are utilized to better understand the nature of the non-linear dynamic system. Finally, the effect of step amplitude on the non-linear responses is examined for several configurations, and hardening trends are observed in the torsional system with three clearances.

  6. On the linear programming bound for linear Lee codes.

    PubMed

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  7. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics.

    PubMed

    Ferreira da Costa, Joana; Silva, David; Caamaño, Olga; Brea, José M; Loza, Maria Isabel; Munteanu, Cristian R; Pazos, Alejandro; García-Mera, Xerardo; González-Díaz, Humbert

    2018-06-25

    Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of preclinical assays reported in public databases. This includes multiple conditions of assays, such as different experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or molecular system in experimental assays with multiple boundary conditions based on a previously known case of reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with accuracy of 70-91% in training and external validation series. We also compared the linear PTML model with alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept theoretical-experimental study. We reported for the first time the organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological parameters (IC 50 , EC 50 , K i , etc.) for compounds in assays involving different cell lines used, organisms of the protein target, or organism of assay for proteins in the dopamine pathway.

  8. Shock spectra applications to a class of multiple degree-of-freedom structures system

    NASA Technical Reports Server (NTRS)

    Hwang, Shoi Y.

    1988-01-01

    The demand on safety performance of launching structure and equipment system from impulsive excitations necessitates a study which predicts the maximum response of the system as well as the maximum stresses in the system. A method to extract higher modes and frequencies for a class of multiple degree-of-freedom (MDOF) Structure system is proposed. And, along with the shock spectra derived from a linear oscillator model, a procedure to obtain upper bound solutions for maximum displacement and maximum stresses in the MDOF system is presented.

  9. Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period

    PubMed Central

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    Abstract Objective: To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. Methods: This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95%, was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α <5%. Results: From 226 women included, 200 (88.5%) were 20-44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. Conclusions: This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. PMID:26100593

  10. Predicting Reactive Intermediate Quantum Yields from Dissolved Organic Matter Photolysis Using Optical Properties and Antioxidant Capacity.

    PubMed

    Mckay, Garrett; Huang, Wenxi; Romera-Castillo, Cristina; Crouch, Jenna E; Rosario-Ortiz, Fernando L; Jaffé, Rudolf

    2017-05-16

    The antioxidant capacity and formation of photochemically produced reactive intermediates (RI) was studied for water samples collected from the Florida Everglades with different spatial (marsh versus estuarine) and temporal (wet versus dry season) characteristics. Measured RI included triplet excited states of dissolved organic matter ( 3 DOM*), singlet oxygen ( 1 O 2 ), and the hydroxyl radical ( • OH). Single and multiple linear regression modeling were performed using a broad range of extrinsic (to predict RI formation rates, R RI ) and intrinsic (to predict RI quantum yields, Φ RI ) parameters. Multiple linear regression models consistently led to better predictions of R RI and Φ RI for our data set but poor prediction of Φ RI for a previously published data set,1 probably because the predictors are intercorrelated (Pearson's r > 0.5). Single linear regression models were built with data compiled from previously published studies (n ≈ 120) in which E2:E3, S, and Φ RI values were measured, which revealed a high degree of similarity between RI-optical property relationships across DOM samples of diverse sources. This study reveals that • OH formation is, in general, decoupled from 3 DOM* and 1 O 2 formation, providing supporting evidence that 3 DOM* is not a • OH precursor. Finally, Φ RI for 1 O 2 and 3 DOM* correlated negatively with antioxidant activity (a surrogate for electron donating capacity) for the collected samples, which is consistent with intramolecular oxidation of DOM moieties by 3 DOM*.

  11. A hybrid Dantzig-Wolfe, Benders decomposition and column generation procedure for multiple diet production planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Udomsungworagul, A.; Charnsethikul, P.

    2018-03-01

    This article introduces methodology to solve large scale two-phase linear programming with a case of multiple time period animal diet problems under both nutrients in raw materials and finished product demand uncertainties. Assumption of allowing to manufacture multiple product formulas in the same time period and assumption of allowing to hold raw materials and finished products inventory have been added. Dantzig-Wolfe decompositions, Benders decomposition and Column generations technique has been combined and applied to solve the problem. The proposed procedure was programmed using VBA and Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and effectiveness trade-offs.

  12. Variables Associated with Communicative Participation in People with Multiple Sclerosis: A Regression Analysis

    ERIC Educational Resources Information Center

    Baylor, Carolyn; Yorkston, Kathryn; Bamer, Alyssa; Britton, Deanna; Amtmann, Dagmar

    2010-01-01

    Purpose: To explore variables associated with self-reported communicative participation in a sample (n = 498) of community-dwelling adults with multiple sclerosis (MS). Method: A battery of questionnaires was administered online or on paper per participant preference. Data were analyzed using multiple linear backward stepwise regression. The…

  13. Correlations of neutron multiplicity and γ -ray multiplicity with fragment mass and total kinetic energy in spontaneous fission of Cf 252

    DOE PAGES

    Wang, Taofeng; Li, Guangwu; Zhu, Liping; ...

    2016-01-08

    The dependence of correlations of neutron multiplicity ν and γ-ray multiplicity M γ in spontaneous fission of 252Cf on fragment mass A* and total kinetic energy (TKE) have been investigated by employing the ratio of M γ/ν and the form of M γ(ν). We show for the first time that M γ and ν have a complex correlation for heavy fragment masses, while there is a positive dependence of Mγ for light fragment masses and for near-symmetric mass splits. The ratio M γ/ν exhibits strong shell effects for neutron magic number N=50 and near doubly magic number shell closure atmore » Z=50 and N=82. The γ-ray multiplicity Mγ has a maximum for TKE=165-170 MeV. Above 170 MeV M γ(TKE) is approximately linear, while it deviates significantly from a linear dependence at lower TKE. The correlation between the average neutron and γ-ray multiplicities can be partly reproduced by model calculations.« less

  14. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  15. A scalable parallel algorithm for multiple objective linear programs

    NASA Technical Reports Server (NTRS)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  16. Cooling in the single-photon strong-coupling regime of cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2012-05-01

    In this Rapid Communication we discuss how red-sideband cooling is modified in the single-photon strong-coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. Using Fermi's golden rule we calculate the transition rates induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit we find multiple-phonon cooling resonances for strong single-photon coupling that lead to nonthermal steady states including the possibility of phonon antibunching. Our study generalizes the standard linear cooling theory.

  17. Unambiguous discrimination between linearly dependent equidistant states with multiple copies

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Ren, Gang

    2018-07-01

    Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.

  18. The Challenge and Promise of Complexity Theory for Teacher Education Research

    ERIC Educational Resources Information Center

    Cochran-Smith, Marilyn; Ell, Fiona; Ludlow, Larry; Grudnoff, Lexie; Aitken, Graeme

    2014-01-01

    Background/Context: In many countries, there are multiple studies intended to improve initial teacher education. These have generally focused on pieces of teacher education rather than wholes, and have used an underlying linear logic. It may be, however, that what is needed are new research questions and theoretical frameworks that account for…

  19. The Prediction of Achievement and Time Spent in Instruction in a Self-Paced Individualized Course.

    ERIC Educational Resources Information Center

    Franklin, Thomas E.

    Multiple linear regressions were employed to determine the relative contributions of cognitive and affective variables accounting for variance in college students' achievement and amount of time taken to complete a self-paced, individualized course. Study habits and attitudes (SSHA) made greater relative contributions to explaining total course…

  20. Touch Processing and Social Behavior in ASD

    ERIC Educational Resources Information Center

    Miguel, Helga O.; Sampaio, Adriana; Martínez-Regueiro, Rocío; Gómez-Guerrero, Lorena; López-Dóriga, Cristina Gutiérrez; Gómez, Sonia; Carracedo, Ángel; Fernández-Prieto, Montse

    2017-01-01

    Abnormal patterns of touch processing have been linked to core symptoms in ASD. This study examined the relation between tactile processing patterns and social problems in 44 children and adolescents with ASD, aged 6-14 (M = 8.39 ± 2.35). Multiple linear regression indicated significant associations between touch processing and social problems. No…

  1. Electronic Resource Expenditure and the Decline in Reference Transaction Statistics in Academic Libraries

    ERIC Educational Resources Information Center

    Dubnjakovic, Ana

    2012-01-01

    The current study investigates factors influencing increase in reference transactions in a typical week in academic libraries across the United States of America. Employing multiple regression analysis and general linear modeling, variables of interest from the "Academic Library Survey (ALS) 2006" survey (sample size 3960 academic libraries) were…

  2. Patterns of Library Use by Undergraduate Students in a Chilean University

    ERIC Educational Resources Information Center

    Jara, Magdalena; Clasing, Paula; Gonzalez, Carlos; Montenegro, Maximiliano; Kelly, Nick; Alarcón, Rosa; Sandoval, Augusto; Saurina, Elvira

    2017-01-01

    This paper explores the patterns of use of print materials and digital resources in an undergraduate library in a Chilean university, by the students' discipline and year of study. A quantitative analysis was carried out, including descriptive analysis of contingency tables, chi-squared tests, t-tests, and multiple linear regressions. The results…

  3. Predictors of Career Adaptability Skill among Higher Education Students in Nigeria

    ERIC Educational Resources Information Center

    Ebenehi, Amos Shaibu; Rashid, Abdullah Mat; Bakar, Ab Rahim

    2016-01-01

    This paper examined predictors of career adaptability skill among higher education students in Nigeria. A sample of 603 higher education students randomly selected from six colleges of education in Nigeria participated in this study. A set of self-reported questionnaire was used for data collection, and multiple linear regression analysis was used…

  4. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  5. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses

    PubMed Central

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-01-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population. PMID:28722705

  6. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses.

    PubMed

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-10-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population.

  7. Mental ability and psychological work performance in Chinese workers.

    PubMed

    Zhong, Fei; Yano, Eiji; Lan, Yajia; Wang, Mianzhen; Wang, Zhiming; Wang, Xiaorong

    2006-10-01

    This study was to explore the relationship among mental ability, occupational stress, and psychological work performance in Chinese workers, and to identify relevant modifiers of mental ability and psychological work performance. Psychological Stress Intensity (PSI), psychological work performance, and mental ability (Mental Function Index, MFI) were determined among 485 Chinese workers (aged 33 to 62 yr, 65% of men) with varied work occupations. Occupational Stress Questionnaire (OSQ) and mental ability with 3 tests (including immediate memory, digit span, and cipher decoding) were used. The relationship between mental ability and psychological work performance was analyzed with multiple linear regression approach. PSI, MFI, or psychological work performance were significantly different among different work types and educational level groups (p<0.01). Multiple linear regression analysis showed that MFI was significantly related to gender, age, educational level, and work type. Higher MFI and lower PSI predicted a better psychological work performance, even after adjusted for gender, age, educational level, and work type. The study suggests that occupational stress and low mental ability are important predictors for poor psychological work performance, which is modified by both gender and educational level.

  8. Investigation of dose characteristics in three-dimensional MAGAT-type polymer gel dosimetry with MSE MR imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jason J. S.; Tsai, Chia-Jung; Lo, Man-Kuok; Huang, Yung-Hui; Chen, Chien-Chuan; Wu, Jay; Tyan, Yeu-Sheng; Wu, Tung-Hsin

    2008-05-01

    A new type of normoxic polymer gel dosimeter, named MAGAT responses well to absorbed dose even when manufacturing in the presence of normal levels of oxygen. The aim of this study was to evaluate dose response, diffusion effect and cumulated dose response under multiple fractional irradiations of the MAGAT gel dosimeter using Multiple Spin-Echo (MSE) Magnetic Resonance (MR) sequence. Dose response was performed by irradiating MAGAT-gel-filled testing vials with a 6 MV linear accelerator and a linear relationship was present with doses from 0 to 6 Gy, but gradually, a bi-exponential function result was obtained with given doses up to 20 Gy. No significant difference in dose response was present between single and cumulated doses (p > 0.05). For study of diffusion effect, edge sharpness of the R2 map imaging between two split doses was smaller than 1 cm of dose profile penumbra between 20% and 80%. In conclusion, the MAGAT polymer gel dosimeter with MSE MR imaging is a promising method for dose verification in clinical radiation therapy practice.

  9. Specific factors for prenatal lead exposure in the border area of China.

    PubMed

    Kawata, Kimiko; Li, Yan; Liu, Hao; Zhang, Xiao Qin; Ushijima, Hiroshi

    2006-07-01

    The objectives of this study are to examine the prevalence of increased blood lead concentrations in mothers and their umbilical cords, and to identify risk factors for prenatal lead exposure in Kunming city, Yunnan province, China. The study was conducted at two obstetrics departments, and 100 peripartum women were enrolled. The mean blood lead concentrations of the mothers and the umbilical cords were 67.3microg/l and 53.1microg/l, respectively. In multiple linear regression analysis, maternal occupational exposure, maternal consumption of homemade dehydrated vegetables and maternal habitation period in Kunming city were significantly associated with an increase of umbilical cord blood lead concentration. In addition, logistic regression analysis was used to assess the association of umbilical cord blood lead concentrations that possibly have adverse effects on brain development of newborns with each potential risk factor. Maternal frequent use of tableware with color patterns inside was significantly associated with higher cord blood lead concentration in addition to the three items in the multiple linear regression analysis. These points should be considered as specific recommendations for maternal and fetal lead exposure in this city.

  10. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  11. Precision magnetic suspension linear bearing

    NASA Technical Reports Server (NTRS)

    Trumper, David L.; Queen, Michael A.

    1992-01-01

    We have shown the design and analyzed the electromechanics of a linear motor suitable for independently controlling two suspension degrees of freedom. This motor, at least on paper, meets the requirements for driving an X-Y stage of 10 Kg mass with about 4 m/sq sec acceleration, with travel of several hundred millimeters in X and Y, and with reasonable power dissipation. A conceptual design for such a stage is presented. The theoretical feasibility of linear and planar bearings using single or multiple magnetic suspension linear motors is demonstrated.

  12. On squares of representations of compact Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less

  13. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; hide

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  14. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  15. Dilations and the Equation of a Line

    ERIC Educational Resources Information Center

    Yopp, David A.

    2016-01-01

    Students engage in proportional reasoning when they use covariance and multiple comparisons. Without rich connections to proportional reasoning, students may develop inadequate understandings of linear relationships and the equations that model them. Teachers can improve students' understanding of linear relationships by focusing on realistic…

  16. Multiple Phenotype Association Tests Using Summary Statistics in Genome-Wide Association Studies

    PubMed Central

    Liu, Zhonghua; Lin, Xihong

    2017-01-01

    Summary We study in this paper jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. PMID:28653391

  17. Multiple phenotype association tests using summary statistics in genome-wide association studies.

    PubMed

    Liu, Zhonghua; Lin, Xihong

    2018-03-01

    We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. © 2017, The International Biometric Society.

  18. LPmerge: an R package for merging genetic maps by linear programming.

    PubMed

    Endelman, Jeffrey B; Plomion, Christophe

    2014-06-01

    Consensus genetic maps constructed from multiple populations are an important resource for both basic and applied research, including genome-wide association analysis, genome sequence assembly and studies of evolution. The LPmerge software uses linear programming to efficiently minimize the mean absolute error between the consensus map and the linkage maps from each population. This minimization is performed subject to linear inequality constraints that ensure the ordering of the markers in the linkage maps is preserved. When marker order is inconsistent between linkage maps, a minimum set of ordinal constraints is deleted to resolve the conflicts. LPmerge is on CRAN at http://cran.r-project.org/web/packages/LPmerge. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    PubMed

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  20. Array of Hall Effect Sensors for Linear Positioning of a Magnet Independently of Its Strength Variation. A Case Study: Monitoring Milk Yield during Milking in Goats

    PubMed Central

    García-Diego, Fernando-Juan; Sánchez-Quinche, Angel; Merello, Paloma; Beltrán, Pedro; Peris, Cristófol

    2013-01-01

    In this study we propose an electronic system for linear positioning of a magnet independent of its modulus, which could vary because of aging, different fabrication process, etc. The system comprises a linear array of 24 Hall Effect sensors of proportional response. The data from all sensors are subject to a pretreatment (normalization) by row (position) making them independent on the temporary variation of its magnetic field strength. We analyze the particular case of the individual flow in milking of goats. The multiple regression analysis allowed us to calibrate the electronic system with a percentage of explanation R2 = 99.96%. In our case, the uncertainty in the linear position of the magnet is 0.51 mm that represents 0.019 L of goat milk. The test in farm compared the results obtained by direct reading of the volume with those obtained by the proposed electronic calibrated system, achieving a percentage of explanation of 99.05%. PMID:23793020

  1. Shift work schedule and night work load: Effects on body mass index - a four-year longitudinal study.

    PubMed

    Buchvold, Hogne Vikanes; Pallesen, Ståle; Waage, Siri; Bjorvatn, Bjørn

    2018-05-01

    Objectives The aim of this study was to investigate changes in body mass index (BMI) between different work schedules and different average number of yearly night shifts over a four-year follow-up period. Methods A prospective study of Norwegian nurses (N=2965) with different work schedules was conducted: day only, two-shift rotation (day and evening shifts), three-shift rotation (day, evening and night shifts), night only, those who changed towards night shifts, and those who changed away from schedules containing night shifts. Paired student's t-tests were used to evaluate within subgroup changes in BMI. Multiple linear regression analysis was used to evaluate between groups effects on BMI when adjusting for BMI at baseline, sex, age, marital status, children living at home, and years since graduation. The same regression model was used to evaluate the effect of average number of yearly night shifts on BMI change. Results We found that night workers [mean difference (MD) 1.30 (95% CI 0.70-1.90)], two shift workers [MD 0.48 (95% CI 0.20-0.75)], three shift workers [MD 0.46 (95% CI 0.30-0.62)], and those who changed work schedule away from [MD 0.57 (95% CI 0.17-0.84)] or towards night work [MD 0.63 (95% CI 0.20-1.05)] all had significant BMI gain (P<0.01) during the follow-up period. However, day workers had a non-significant BMI gain. Using adjusted multiple linear regressions, we found that night workers had significantly larger BMI gain compared to day workers [B=0.89 (95% CI 0.06-1.72), P<0.05]. We did not find any significant association between average number of yearly night shifts and BMI change using our multiple linear regression model. Conclusions After adjusting for possible confounders, we found that BMI increased significantly more among night workers compared to day workers.

  2. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.

    PubMed

    De Silva, Anurika Priyanjali; Moreno-Betancur, Margarita; De Livera, Alysha Madhu; Lee, Katherine Jane; Simpson, Julie Anne

    2017-07-25

    Missing data is a common problem in epidemiological studies, and is particularly prominent in longitudinal data, which involve multiple waves of data collection. Traditional multiple imputation (MI) methods (fully conditional specification (FCS) and multivariate normal imputation (MVNI)) treat repeated measurements of the same time-dependent variable as just another 'distinct' variable for imputation and therefore do not make the most of the longitudinal structure of the data. Only a few studies have explored extensions to the standard approaches to account for the temporal structure of longitudinal data. One suggestion is the two-fold fully conditional specification (two-fold FCS) algorithm, which restricts the imputation of a time-dependent variable to time blocks where the imputation model includes measurements taken at the specified and adjacent times. To date, no study has investigated the performance of two-fold FCS and standard MI methods for handling missing data in a time-varying covariate with a non-linear trajectory over time - a commonly encountered scenario in epidemiological studies. We simulated 1000 datasets of 5000 individuals based on the Longitudinal Study of Australian Children (LSAC). Three missing data mechanisms: missing completely at random (MCAR), and a weak and a strong missing at random (MAR) scenarios were used to impose missingness on body mass index (BMI) for age z-scores; a continuous time-varying exposure variable with a non-linear trajectory over time. We evaluated the performance of FCS, MVNI, and two-fold FCS for handling up to 50% of missing data when assessing the association between childhood obesity and sleep problems. The standard two-fold FCS produced slightly more biased and less precise estimates than FCS and MVNI. We observed slight improvements in bias and precision when using a time window width of two for the two-fold FCS algorithm compared to the standard width of one. We recommend the use of FCS or MVNI in a similar longitudinal setting, and when encountering convergence issues due to a large number of time points or variables with missing values, the two-fold FCS with exploration of a suitable time window.

  3. Predicting hearing thresholds and occupational hearing loss with multiple-frequency auditory steady-state responses.

    PubMed

    Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng

    2010-10-01

    An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p < .001). Mf-ASSR is a promising tool for objectively evaluating hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.

  4. Short-term, high-dose glucocorticoid treatment does not contribute to reduced bone mineral density in patients with multiple sclerosis.

    PubMed

    Olsson, A; Oturai, D B; Sørensen, P S; Oturai, P S; Oturai, A B

    2015-10-01

    Patients with multiple sclerosis (MS) are at increased risk of reduced bone mineral density (BMD). A contributing factor might be treatment with high-dose glucocorticoids (GCs). The objective of this paper is to assess bone mass in patients with MS and evaluate the importance of short-term, high-dose GC treatment and other risk factors that affect BMD in patients with MS. A total of 260 patients with MS received short-term high-dose GC treatment and had their BMD measured by dual x-ray absorptiometry. BMD was compared to a healthy age-matched reference population (Z-scores). Data regarding GCs, age, body mass index (BMI), serum 25(OH)D, disease duration and severity were collected retrospectively and analysed in a multiple linear regression analysis to evaluate the association between each risk factor and BMD. Osteopenia was present in 38% and osteoporosis in 7% of the study population. Mean Z-score was significantly below zero, indicating a decreased BMD in our MS patients. Multiple linear regression analysis showed no significant association between GCs and BMD. In contrast, age, BMI and disease severity were independently associated with both lumbar and femoral BMD. Reduced BMD was prevalent in patients with MS. GC treatment appears not to be the primary underlying cause of secondary osteoporosis in MS patients. © The Author(s), 2015.

  5. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans.

    PubMed

    Beltrame, T; Hughson, R L

    2017-05-01

    What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O 2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non-linearity. The local O 2 availability, evaluated by the ratio pV̇O2/[HHb], presented the most irregular behaviour. The overall [HHb] kinetics were faster than pV̇O2 and Q̇ kinetics. In conclusion, the oxygen delivery-utilization balance behaved as a non-linear phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is governed by a complex multiple-order interaction between the oxygen delivery and utilization systems. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  6. The impact of menopausal symptoms on work ability.

    PubMed

    Geukes, Marije; van Aalst, Mariëlle P; Nauta, Mary C E; Oosterhof, Henk

    2012-03-01

    Menopause is an important life event that may have a negative influence on quality of life. Work ability, a concept widely used in occupational health, can predict both future impairment and duration of sickness absence. The aim of this study was to examine the impact of menopausal symptoms on work ability. This was a cross-sectional study that used a sample of healthy working Dutch women aged 44 to 60 years. Work ability was measured using the Work Ability Index, and menopausal symptoms were measured using the Greene Climacteric Scale. Stepwise multiple linear regression models were used to examine the relationship between menopausal symptoms and work ability. A total of 208 women were included in this study. There was a significant negative correlation between total Greene Climacteric Scale score and Work Ability Index score. Total Greene Climacteric Scale score predicted 33.8% of the total variance in the Work Ability Index score. Only the psychological and somatic subscales of the Greene Climacteric Scale were significant predictors in multiple linear regression analysis. Together, they accounted for 36.5% of total variance in Work Ability Index score. Menopausal symptoms are negatively associated with work ability and may increase the risk of sickness absence.

  7. Analysis of Sequence Data Under Multivariate Trait-Dependent Sampling.

    PubMed

    Tao, Ran; Zeng, Donglin; Franceschini, Nora; North, Kari E; Boerwinkle, Eric; Lin, Dan-Yu

    2015-06-01

    High-throughput DNA sequencing allows for the genotyping of common and rare variants for genetic association studies. At the present time and for the foreseeable future, it is not economically feasible to sequence all individuals in a large cohort. A cost-effective strategy is to sequence those individuals with extreme values of a quantitative trait. We consider the design under which the sampling depends on multiple quantitative traits. Under such trait-dependent sampling, standard linear regression analysis can result in bias of parameter estimation, inflation of type I error, and loss of power. We construct a likelihood function that properly reflects the sampling mechanism and utilizes all available data. We implement a computationally efficient EM algorithm and establish the theoretical properties of the resulting maximum likelihood estimators. Our methods can be used to perform separate inference on each trait or simultaneous inference on multiple traits. We pay special attention to gene-level association tests for rare variants. We demonstrate the superiority of the proposed methods over standard linear regression through extensive simulation studies. We provide applications to the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study and the National Heart, Lung, and Blood Institute Exome Sequencing Project.

  8. Forecasting on the total volumes of Malaysia's imports and exports by multiple linear regression

    NASA Astrophysics Data System (ADS)

    Beh, W. L.; Yong, M. K. Au

    2017-04-01

    This study is to give an insight on the doubt of the important of macroeconomic variables that affecting the total volumes of Malaysia's imports and exports by using multiple linear regression (MLR) analysis. The time frame for this study will be determined by using quarterly data of the total volumes of Malaysia's imports and exports covering the period between 2000-2015. The macroeconomic variables will be limited to eleven variables which are the exchange rate of US Dollar with Malaysia Ringgit (USD-MYR), exchange rate of China Yuan with Malaysia Ringgit (RMB-MYR), exchange rate of European Euro with Malaysia Ringgit (EUR-MYR), exchange rate of Singapore Dollar with Malaysia Ringgit (SGD-MYR), crude oil prices, gold prices, producer price index (PPI), interest rate, consumer price index (CPI), industrial production index (IPI) and gross domestic product (GDP). This study has applied the Johansen Co-integration test to investigate the relationship among the total volumes to Malaysia's imports and exports. The result shows that crude oil prices, RMB-MYR, EUR-MYR and IPI play important roles in the total volumes of Malaysia's imports. Meanwhile crude oil price, USD-MYR and GDP play important roles in the total volumes of Malaysia's exports.

  9. Integrable generalizations of non-linear multiple three-wave interaction models

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-07-01

    Integrable generalizations of multiple three-wave interaction models in terms of r-matrix formulation are investigated. The Lax representations, complete sets of first integrals in involution are constructed, the quantization leading to Gaudin's models is discussed.

  10. Characteristics of compound multiplicity in 84Kr36 with various light and heavy targets at 1 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Chouhan, N. S.; Singh, M. K.; Singh, V.; Pathak, R.

    2013-12-01

    Interactions of 84Kr36 having kinetic energy around 1 GeV per nucleon with NIKFI BR-2 nuclear emulsion detector's target reveal some of the important features of compound multiplicity. Present article shows that width of compound multiplicity distributions and value of mean compound multiplicity have linear relationship with mass number of the projectile colliding system.

  11. The optimal hormonal replacement modality selection for multiple organ procurement from brain-dead organ donors

    PubMed Central

    Mi, Zhibao; Novitzky, Dimitri; Collins, Joseph F; Cooper, David KC

    2015-01-01

    The management of brain-dead organ donors is complex. The use of inotropic agents and replacement of depleted hormones (hormonal replacement therapy) is crucial for successful multiple organ procurement, yet the optimal hormonal replacement has not been identified, and the statistical adjustment to determine the best selection is not trivial. Traditional pair-wise comparisons between every pair of treatments, and multiple comparisons to all (MCA), are statistically conservative. Hsu’s multiple comparisons with the best (MCB) – adapted from the Dunnett’s multiple comparisons with control (MCC) – has been used for selecting the best treatment based on continuous variables. We selected the best hormonal replacement modality for successful multiple organ procurement using a two-step approach. First, we estimated the predicted margins by constructing generalized linear models (GLM) or generalized linear mixed models (GLMM), and then we applied the multiple comparison methods to identify the best hormonal replacement modality given that the testing of hormonal replacement modalities is independent. Based on 10-year data from the United Network for Organ Sharing (UNOS), among 16 hormonal replacement modalities, and using the 95% simultaneous confidence intervals, we found that the combination of thyroid hormone, a corticosteroid, antidiuretic hormone, and insulin was the best modality for multiple organ procurement for transplantation. PMID:25565890

  12. MultiDK: A Multiple Descriptor Multiple Kernel Approach for Molecular Discovery and Its Application to Organic Flow Battery Electrolytes.

    PubMed

    Kim, Sungjin; Jinich, Adrián; Aspuru-Guzik, Alán

    2017-04-24

    We propose a multiple descriptor multiple kernel (MultiDK) method for efficient molecular discovery using machine learning. We show that the MultiDK method improves both the speed and accuracy of molecular property prediction. We apply the method to the discovery of electrolyte molecules for aqueous redox flow batteries. Using multiple-type-as opposed to single-type-descriptors, we obtain more relevant features for machine learning. Following the principle of "wisdom of the crowds", the combination of multiple-type descriptors significantly boosts prediction performance. Moreover, by employing multiple kernels-more than one kernel function for a set of the input descriptors-MultiDK exploits nonlinear relations between molecular structure and properties better than a linear regression approach. The multiple kernels consist of a Tanimoto similarity kernel and a linear kernel for a set of binary descriptors and a set of nonbinary descriptors, respectively. Using MultiDK, we achieve an average performance of r 2 = 0.92 with a test set of molecules for solubility prediction. We also extend MultiDK to predict pH-dependent solubility and apply it to a set of quinone molecules with different ionizable functional groups to assess their performance as flow battery electrolytes.

  13. Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    PubMed Central

    Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman

    2011-01-01

    This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626

  14. Conceptualizing Matrix Multiplication: A Framework for Student Thinking, an Historical Analysis, and a Modeling Perspective

    ERIC Educational Resources Information Center

    Larson, Christine

    2010-01-01

    Little is known about the variety of ways students conceptualize matrix multiplication, yet this is a fundamental part of most introductory linear algebra courses. My dissertation follows a three-paper format, with the three papers exploring conceptualizations of matrix multiplication from a variety of viewpoints. In these papers, I explore (1)…

  15. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Slow walking model for children with multiple disabilities via an application of humanoid robot

    NASA Astrophysics Data System (ADS)

    Wang, ZeFeng; Peyrodie, Laurent; Cao, Hua; Agnani, Olivier; Watelain, Eric; Wang, HaoPing

    2016-02-01

    Walk training research with children having multiple disabilities is presented. Orthosis aid in walking for children with multiple disabilities such as Cerebral Palsy continues to be a clinical and technological challenge. In order to reduce pain and improve treatment strategies, an intermediate structure - humanoid robot NAO - is proposed as an assay platform to study walking training models, to be transferred to future special exoskeletons for children. A suitable and stable walking model is proposed for walk training. It would be simulated and tested on NAO. This comparative study of zero moment point (ZMP) supports polygons and energy consumption validates the model as more stable than the conventional NAO. Accordingly direction variation of the center of mass and the slopes of linear regression knee/ankle angles, the Slow Walk model faithfully emulates the gait pattern of children.

  17. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  18. Multiplicity fluctuation analysis of target residues in nucleus-emulsion collisions at a few hundred MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Zheng, Su-Hua; Xu, Li-Ling; Miao, Hui-Feng; Wang, Peng

    2014-07-01

    Multiplicity fluctuation of the target evaporated fragments emitted in 290 MeV/u 12C-AgBr, 400 MeV/u 12C-AgBr, 400 MeV/u 20Ne-AgBr and 500 MeV/u 56Fe-AgBr interactions is investigated using the scaled factorial moment method in two-dimensional normal phase space and cumulative variable space, respectively. It is found that in normal phase space the scaled factorial moment (ln) increases linearly with the increase of the divided number of phase space (lnM)for lower q-value and increases linearly with the increase of lnM, and then becomes saturated or decreased for a higher q-value. In cumulative variable space ln decreases linearly with increase of lnM. This indicates that no evidence of non-statistical multiplicity fluctuation is observed in our data sets. So, any fluctuation indicated in the results of normal variable space analysis is totally caused by the non-uniformity of the single-particle density distribution.

  19. Simple and multiple linear regression: sample size considerations.

    PubMed

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Rehim, A M; Stathopoulos, Andreas; Orginos, Kostas

    2014-08-01

    The technique that was used to build the EigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems andmore » then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of EigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental EigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.« less

  1. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari

    2009-11-15

    Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less

  2. Normality of raw data in general linear models: The most widespread myth in statistics

    USGS Publications Warehouse

    Kery, Marc; Hatfield, Jeff S.

    2003-01-01

    In years of statistical consulting for ecologists and wildlife biologists, by far the most common misconception we have come across has been the one about normality in general linear models. These comprise a very large part of the statistical models used in ecology and include t tests, simple and multiple linear regression, polynomial regression, and analysis of variance (ANOVA) and covariance (ANCOVA). There is a widely held belief that the normality assumption pertains to the raw data rather than to the model residuals. We suspect that this error may also occur in countless published studies, whenever the normality assumption is tested prior to analysis. This may lead to the use of nonparametric alternatives (if there are any), when parametric tests would indeed be appropriate, or to use of transformations of raw data, which may introduce hidden assumptions such as multiplicative effects on the natural scale in the case of log-transformed data. Our aim here is to dispel this myth. We very briefly describe relevant theory for two cases of general linear models to show that the residuals need to be normally distributed if tests requiring normality are to be used, such as t and F tests. We then give two examples demonstrating that the distribution of the response variable may be nonnormal, and yet the residuals are well behaved. We do not go into the issue of how to test normality; instead we display the distributions of response variables and residuals graphically.

  3. Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.

    PubMed

    Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen

    2017-11-01

    A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.

  4. On testing an unspecified function through a linear mixed effects model with multiple variance components

    PubMed Central

    Wang, Yuanjia; Chen, Huaihou

    2012-01-01

    Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801

  5. On testing an unspecified function through a linear mixed effects model with multiple variance components.

    PubMed

    Wang, Yuanjia; Chen, Huaihou

    2012-12-01

    We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.

  6. Simultaneous Determination of Multiple Classes of Hydrophilic and Lipophilic Components in Shuang-Huang-Lian Oral Liquid Formulations by UPLC-Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Liang, Jun; Sun, Hui-Min; Wang, Tian-Long

    2017-11-24

    The Shuang-Huang-Lian (SHL) oral liquid is a combined herbal prescription used in the treatment of acute upper respiratory tract infection, acute bronchitis and pneumonia. Multiple constituents are considered to be responsible for the therapeutic effects of SHL. However, the quantitation of the multi-components from multiple classes is still unsatisfactory because of the high complexity of constituents in SHL. In this study, an accurate, rapid, and specific UPLC-MS/MS method was established for simultaneous quantification of 18 compounds from multiple classes in SHL oral liquid formulations. Chromatographic separation was performed on a HSS T3 (1.8 μm, 2.1 mm × 100 mm) column, using a gradient mobile phase system of 0.1% formic acid in acetonitrile and 0.1% formic acid in water at a flow rate of 0.2 mL·min -1 ; the run time was 23 min. The MS was operated in negative electrospray ionization (ESI - ) for analysis of 18 compounds using multiple reaction monitoring (MRM) mode. UPLC-ESI - -MRM-MS/MS method showed good linear relationships ( R ² > 0.999), repeatability (RSD < 3%), precisions (RSD < 3%) and recovery (84.03-101.62%). The validated method was successfully used to determine multiple classes of hydrophilic and lipophilic components in the SHL oral liquids. Finally, principal component analysis (PCA) was used to classify and differentiate SHL oral liquid samples attributed to different manufacturers of China. The proposed UPLC-ESI - -MRM-MS/MS coupled with PCA has been elucidated to be a simple and reliable method for quality evaluation of SHL oral liquids.

  7. Relation of the lunar volcano complexes lying on the identical linear gravity anomaly

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.

    2015-12-01

    There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.

  8. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  9. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.

    2016-01-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.

  10. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    dos Santos, T. S.; Mendes, D.; Torres, R. R.

    2015-08-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.

  11. Study of molecular carbon-hydrogen bond dissociation during shock compression

    NASA Astrophysics Data System (ADS)

    Hammel, Ben; Hawreliak, James

    2017-06-01

    Advancements in theory and experiment show that chemical interactions in warm dense mixtures play a non-negligible role in the high-temperature and high-pressure properties of a molecular compound. For example, recent work on polystyrene has observed features suggestive of molecular dissociation - non-linear ``kinks'' are evident in the material's Hugoniot, consistent with CH bond breaking. The assumption used in linear mixing models, that species are chemically inert, breaks down in warm dense mixtures. At the Institute for Shock Physics, we are developing the necessary capabilities to perform high-repetition-rate experiments needed to map out chemical-reaction features along a material's Hugoniot. Initially, we plan to benchmark our work to the data taken by Barrios et al., by reproducing the observed kink in the polystyrene Hugoniot. We then extend this capability to explore polypropylene, CH2, where we expect to observe multiple kink features - representative of the disassociation of multiple CH bonds. Work supported by DOE/NNSA, DOE/SC-OFES and Murdock Charitable Trust.

  12. Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2016-09-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.

  13. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  14. Selection of a Geostatistical Method to Interpolate Soil Properties of the State Crop Testing Fields using Attributes of a Digital Terrain Model

    NASA Astrophysics Data System (ADS)

    Sahabiev, I. A.; Ryazanov, S. S.; Kolcova, T. G.; Grigoryan, B. R.

    2018-03-01

    The three most common techniques to interpolate soil properties at a field scale—ordinary kriging (OK), regression kriging with multiple linear regression drift model (RK + MLR), and regression kriging with principal component regression drift model (RK + PCR)—were examined. The results of the performed study were compiled into an algorithm of choosing the most appropriate soil mapping technique. Relief attributes were used as the auxiliary variables. When spatial dependence of a target variable was strong, the OK method showed more accurate interpolation results, and the inclusion of the auxiliary data resulted in an insignificant improvement in prediction accuracy. According to the algorithm, the RK + PCR method effectively eliminates multicollinearity of explanatory variables. However, if the number of predictors is less than ten, the probability of multicollinearity is reduced, and application of the PCR becomes irrational. In that case, the multiple linear regression should be used instead.

  15. Interactive graphical system for small-angle scattering analysis of polydisperse systems

    NASA Astrophysics Data System (ADS)

    Konarev, P. V.; Volkov, V. V.; Svergun, D. I.

    2016-09-01

    A program suite for one-dimensional small-angle scattering analysis of polydisperse systems and multiple data sets is presented. The main program, POLYSAS, has a menu-driven graphical user interface calling computational modules from ATSAS package to perform data treatment and analysis. The graphical menu interface allows one to process multiple (time, concentration or temperature-dependent) data sets and interactively change the parameters for the data modelling using sliders. The graphical representation of the data is done via the Winteracter-based program SASPLOT. The package is designed for the analysis of polydisperse systems and mixtures, and permits one to obtain size distributions and evaluate the volume fractions of the components using linear and non-linear fitting algorithms as well as model-independent singular value decomposition. The use of the POLYSAS package is illustrated by the recent examples of its application to study concentration-dependent oligomeric states of proteins and time kinetics of polymer micelles for anticancer drug delivery.

  16. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  17. Rank-based estimation in the {ell}1-regularized partly linear model for censored outcomes with application to integrated analyses of clinical predictors and gene expression data.

    PubMed

    Johnson, Brent A

    2009-10-01

    We consider estimation and variable selection in the partial linear model for censored data. The partial linear model for censored data is a direct extension of the accelerated failure time model, the latter of which is a very important alternative model to the proportional hazards model. We extend rank-based lasso-type estimators to a model that may contain nonlinear effects. Variable selection in such partial linear model has direct application to high-dimensional survival analyses that attempt to adjust for clinical predictors. In the microarray setting, previous methods can adjust for other clinical predictors by assuming that clinical and gene expression data enter the model linearly in the same fashion. Here, we select important variables after adjusting for prognostic clinical variables but the clinical effects are assumed nonlinear. Our estimator is based on stratification and can be extended naturally to account for multiple nonlinear effects. We illustrate the utility of our method through simulation studies and application to the Wisconsin prognostic breast cancer data set.

  18. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  19. Can Multiple "Spatial" Virtual Timelines Convey the Relatedness of Chronological Knowledge across Parallel Domains?

    ERIC Educational Resources Information Center

    Korallo, Liliya; Foreman, Nigel; Boyd-Davis, Stephen; Moar, Magnus; Coulson, Mark

    2012-01-01

    Single linear virtual timelines have been used effectively with undergraduates and primary school children to convey the chronological ordering of historical items, improving on PowerPoint and paper/textual displays. In the present study, a virtual environment (VE) consisting of three parallel related timelines (world history and the histories of…

  20. Gender Performance Differences in Biochemistry

    ERIC Educational Resources Information Center

    Rauschenberger, Matthew M.; Sweeder, Ryan D.

    2010-01-01

    This study examined the historical performance of students at Michigan State University in a two-part biochemistry series Biochem I (n = 5,900) and Biochem II (n = 5,214) for students enrolled from 1997 to 2009. Multiple linear regressions predicted 54.9-87.5% of the variance in student from Biochem I grade and 53.8-76.1% of the variance in…

  1. Curriculum-Based Measurement of Oral Reading: Quality of Progress Monitoring Outcomes

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Zopluoglu, Cengiz; Long, Jeffery D.; Monaghen, Barbara D.

    2012-01-01

    Curriculum-based measurement of oral reading (CBM-R) is frequently used to set student goals and monitor student progress. This study examined the quality of growth estimates derived from CBM-R progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for multiple levels of…

  2. Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils

    Treesearch

    Mark Kimsey; Brian Gardner; Alan Busacca

    2007-01-01

    Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...

  3. The Relationship between Teachers' and Principals' Perceptions of the Working Conditions in North Carolina Elementary Schools and Student Achievement

    ERIC Educational Resources Information Center

    Mizzelle, Sylvia Jean

    2012-01-01

    The purpose of this study was to examine the relationship between teachers' and principals' perceptions on the North Carolina Teacher Working Conditions Survey (TWC) and the influence this relationship had on student achievement. A quantitative research design using a Multiple Linear Regression investigated the relationship between teachers' and…

  4. A New Sample Size Formula for Regression.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Barcikowski, Robert S.

    The focus of this research was to determine the efficacy of a new method of selecting sample sizes for multiple linear regression. A Monte Carlo simulation was used to study both empirical predictive power rates and empirical statistical power rates of the new method and seven other methods: those of C. N. Park and A. L. Dudycha (1974); J. Cohen…

  5. Peer Influences on Academic Motivation: Exploring Multiple Methods of Assessing Youths' Most "Influential" Peer Relationships

    ERIC Educational Resources Information Center

    Molloy, Lauren E.; Gest, Scott D.; Rulison, Kelly L.

    2011-01-01

    The present study examines the relative role of three distinct types of peer relationships (reciprocated friendships, frequent interactions, and shared group membership) in within-year changes in academic self-concept and engagement before and after the transition to middle school (fifth and seventh grade). In a series of linear regression…

  6. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  7. FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors.

    PubMed

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2011-03-01

    We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  8. Female Literacy Rate is a Better Predictor of Birth Rate and Infant Mortality Rate in India.

    PubMed

    Saurabh, Suman; Sarkar, Sonali; Pandey, Dhruv K

    2013-01-01

    Educated women are known to take informed reproductive and healthcare decisions. These result in population stabilization and better infant care reflected by lower birth rates and infant mortality rates (IMRs), respectively. Our objective was to study the relationship of male and female literacy rates with crude birth rates (CBRs) and IMRs of the states and union territories (UTs) of India. The data were analyzed using linear regression. CBR and IMR were taken as the dependent variables; while the overall literacy rates, male, and female literacy rates were the independent variables. CBRs were inversely related to literacy rates (slope parameter = -0.402, P < 0.001). On multiple linear regression with male and female literacy rates, a significant inverse relationship emerged between female literacy rate and CBR (slope = -0.363, P < 0.001), while male literacy rate was not significantly related to CBR (P = 0.674). IMR of the states were also inversely related to their literacy rates (slope = -1.254, P < 0.001). Multiple linear regression revealed a significant inverse relationship between IMR and female literacy (slope = -0.816, P = 0.031), whereas male literacy rate was not significantly related (P = 0.630). Female literacy is relatively highly important for both population stabilization and better infant health.

  9. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  10. Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Jiang, Zhengyi; Zu, Guoqing; Du, Wei; Zhang, Xin; Jiang, Laizhu

    2016-05-01

    The flow behaviour of a ferritic stainless steel (FSS) was investigated by a Gleeble 3500 thermal-mechanical test simulator over the temperature range of 900-1100 °C and strain rate range of 1-50 s-1. Empirical and phenomenological constitutive models were established, and a comparative study was made on the predictability of them. The results indicate that the flow stress decreases with increasing the temperature and decreasing the strain rate. High strain rate may cause a drop in flow stress after a peak value due to the adiabatic heating. The Zener-Hollomon parameter depends linearly on the flow stress, and decreases with raising the temperature and reducing the strain rate. Significant deviations occur in the prediction of flow stress by the Johnson-Cook (JC) model, indicating that the JC model cannot accurately track the flow behaviour of the FSS during hot deformation. Both the multiple-linear and the Arrhenius-type models can track the flow behaviour very well under the whole hot working conditions, and have much higher accuracy in predicting the flow behaviour than that of the JC model. The multiple-linear model is recommended in the current work due to its simpler structure and less time needed for solving the equations relative to the Arrhenius-type model.

  11. Quality of search strategies reported in systematic reviews published in stereotactic radiosurgery.

    PubMed

    Faggion, Clovis M; Wu, Yun-Chun; Tu, Yu-Kang; Wasiak, Jason

    2016-06-01

    Systematic reviews require comprehensive literature search strategies to avoid publication bias. This study aimed to assess and evaluate the reporting quality of search strategies within systematic reviews published in the field of stereotactic radiosurgery (SRS). Three electronic databases (Ovid MEDLINE(®), Ovid EMBASE(®) and the Cochrane Library) were searched to identify systematic reviews addressing SRS interventions, with the last search performed in October 2014. Manual searches of the reference lists of included systematic reviews were conducted. The search strategies of the included systematic reviews were assessed using a standardized nine-question form based on the Cochrane Collaboration guidelines and Assessment of Multiple Systematic Reviews checklist. Multiple linear regression analyses were performed to identify the important predictors of search quality. A total of 85 systematic reviews were included. The median quality score of search strategies was 2 (interquartile range = 2). Whilst 89% of systematic reviews reported the use of search terms, only 14% of systematic reviews reported searching the grey literature. Multiple linear regression analyses identified publication year (continuous variable), meta-analysis performance and journal impact factor (continuous variable) as predictors of higher mean quality scores. This study identified the urgent need to improve the quality of search strategies within systematic reviews published in the field of SRS. This study is the first to address how authors performed searches to select clinical studies for inclusion in their systematic reviews. Comprehensive and well-implemented search strategies are pivotal to reduce the chance of publication bias and consequently generate more reliable systematic review findings.

  12. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  13. Forecasting daily patient volumes in the emergency department.

    PubMed

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.

  14. Discriminative analysis of non-linear brain connectivity for leukoaraiosis with resting-state fMRI

    NASA Astrophysics Data System (ADS)

    Lai, Youzhi; Xu, Lele; Yao, Li; Wu, Xia

    2015-03-01

    Leukoaraiosis (LA) describes diffuse white matter abnormalities on CT or MR brain scans, often seen in the normal elderly and in association with vascular risk factors such as hypertension, or in the context of cognitive impairment. The mechanism of cognitive dysfunction is still unclear. The recent clinical studies have revealed that the severity of LA was not corresponding to the cognitive level, and functional connectivity analysis is an appropriate method to detect the relation between LA and cognitive decline. However, existing functional connectivity analyses of LA have been mostly limited to linear associations. In this investigation, a novel measure utilizing the extended maximal information coefficient (eMIC) was applied to construct non-linear functional connectivity in 44 LA subjects (9 dementia, 25 mild cognitive impairment (MCI) and 10 cognitively normal (CN)). The strength of non-linear functional connections for the first 1% of discriminative power increased in MCI compared with CN and dementia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. In the multivariate pattern analysis with multiple classifiers, the non-linear functional connectivity mostly identified dementia, MCI and CN from LA with a relatively higher accuracy rate than the linear measure. Our findings revealed the non-linear functional connectivity provided useful discriminative power in classification of LA, and the spatial distributed changes between the non-linear and linear measure may indicate the underlying mechanism of cognitive dysfunction in LA.

  15. Comparison of Modeling Methods to Determine Liver-to-blood Inocula and Parasite Multiplication Rates During Controlled Human Malaria Infection

    PubMed Central

    Douglas, Alexander D.; Edwards, Nick J.; Duncan, Christopher J. A.; Thompson, Fiona M.; Sheehy, Susanne H.; O'Hara, Geraldine A.; Anagnostou, Nicholas; Walther, Michael; Webster, Daniel P.; Dunachie, Susanna J.; Porter, David W.; Andrews, Laura; Gilbert, Sarah C.; Draper, Simon J.; Hill, Adrian V. S.; Bejon, Philip

    2013-01-01

    Controlled human malaria infection is used to measure efficacy of candidate malaria vaccines before field studies are undertaken. Mathematical modeling using data from quantitative polymerase chain reaction (qPCR) parasitemia monitoring can discriminate between vaccine effects on the parasite's liver and blood stages. Uncertainty regarding the most appropriate modeling method hinders interpretation of such trials. We used qPCR data from 267 Plasmodium falciparum infections to compare linear, sine-wave, and normal-cumulative-density-function models. We find that the parameters estimated by these models are closely correlated, and their predictive accuracy for omitted data points was similar. We propose that future studies include the linear model. PMID:23570846

  16. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    PubMed

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Refill Adherence in Relation to Substitution and the Use of Multiple Medications: A Nationwide Population Based Study on New ACE-Inhibitor Users

    PubMed Central

    Jönsson, Anna K.; Lesén, Eva; Mårdby, Ann-Charlotte; Sundell, Karolina Andersson

    2016-01-01

    Objective Generic substitution has contributed to economic savings but switching products may affect patient adherence, particularly among those using multiple medications. The aim was to analyse if use of multiple medications influenced the association between switching products and refill adherence to angiotensin-converting-enzyme (ACE) inhibitors in Sweden. Study Design and Setting New users of ACE-inhibitors, starting between 1 July 2006 and 30 June 2007, were identified in the Swedish Prescribed Drug Register. Refill adherence was assessed using the continuous measure of medication acquisition (CMA) and analysed with linear regression and analysis of covariance. Results The study population included 42735 individuals whereof 51.2% were exposed to switching ACE-inhibitor and 39.6% used multiple medications. Refill adherence was higher among those exposed to switching products than those not, but did not vary depending on the use of multiple medications or among those not. Refill adherence varied with age, educational level, household income, country of birth, previous hospitalisation and previous cardiovascular diagnosis. Conclusion The results indicate a positive association between refill adherence and switching products, mainly due to generic substitution, among new users of ACE-inhibitors in Sweden. This association was independent of use of multiple medications. PMID:27192203

  18. Simultaneous multiple non-crossing quantile regression estimation using kernel constraints

    PubMed Central

    Liu, Yufeng; Wu, Yichao

    2011-01-01

    Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842

  19. Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Camilleri, Liberato; Cefai, Carmel

    2013-01-01

    Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…

  20. Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach.

    PubMed

    Ding, Chuan; Chen, Peng; Jiao, Junfeng

    2018-03-01

    Although a growing body of literature focuses on the relationship between the built environment and pedestrian crashes, limited evidence is provided about the relative importance of many built environment attributes by accounting for their mutual interaction effects and their non-linear effects on automobile-involved pedestrian crashes. This study adopts the approach of Multiple Additive Poisson Regression Trees (MAPRT) to fill such gaps using pedestrian collision data collected from Seattle, Washington. Traffic analysis zones are chosen as the analytical unit. The effects of various factors on pedestrian crash frequency investigated include characteristics the of road network, street elements, land use patterns, and traffic demand. Density and the degree of mixed land use have major effects on pedestrian crash frequency, accounting for approximately 66% of the effects in total. More importantly, some factors show clear non-linear relationships with pedestrian crash frequency, challenging the linearity assumption commonly used in existing studies which employ statistical models. With various accurately identified non-linear relationships between the built environment and pedestrian crashes, this study suggests local agencies to adopt geo-spatial differentiated policies to establish a safe walking environment. These findings, especially the effective ranges of the built environment, provide evidence to support for transport and land use planning, policy recommendations, and road safety programs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. MAGDM linear-programming models with distinct uncertain preference structures.

    PubMed

    Xu, Zeshui S; Chen, Jian

    2008-10-01

    Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

  2. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  3. Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions

    PubMed Central

    Fernandes, Bruno J. T.; Roque, Alexandre

    2018-01-01

    Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366

  4. [Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period].

    PubMed

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado Junior, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95% was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α<5%. From 226 women included, 200 (88.5%) were 20 to 44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  5. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    PubMed Central

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  6. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    PubMed

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  7. On Performance of Linear Multiuser Detectors for Wireless Multimedia Applications

    NASA Astrophysics Data System (ADS)

    Agarwal, Rekha; Reddy, B. V. R.; Bindu, E.; Nayak, Pinki

    In this paper, performance of different multi-rate schemes in DS-CDMA system is evaluated. The analysis of multirate linear multiuser detectors with multiprocessing gain is analyzed for synchronous Code Division Multiple Access (CDMA) systems. Variable data rate is achieved by varying the processing gain. Our conclusion is that bit error rate for multirate and single rate systems can be made same with a tradeoff with number of users in linear multiuser detectors.

  8. Sampled-Data Kalman Filtering and Multiple Model Adaptive Estimation for Infinite-Dimensional Continuous-Time Systems

    DTIC Science & Technology

    2007-03-01

    mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications

  9. Performance of compost filtration practice for green infrastructure stormwater applications.

    PubMed

    Faucette, Britt; Cardoso, Fatima; Mulbry, Walter; Millner, Pat

    2013-09-01

    Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-cost solutions to meet these goals and guidelines. The objective of this study was to determine the multiple-event removal efficiency and capacity of compost filter socks (FS) and filter socks with natural sorbents (NS) to remove soluble phosphorus, ammonium-nitrogen, nitrate-nitrogen, E. coli, Enterococcus, and oil from urban storm water runoff. Treatments were exposed to simulated storm water pollutant concentrations consistent with urban runoff originating from impervious surfaces, such as parking lots and roadways. Treatments were exposed to a maximum of 25 runoff events, or when removal efficiencies were < or = 25%, whichever occurred first. Experiments were conducted in triplicate. The filter socks with natural sorbents removed significantly greater soluble phosphorus than the filter socks alone, removing a total of 237 mg/linear m over eight runoff events, or an average of 34%. The filter socks with natural sorbents removed 54% of ammonium-nitrogen over 25 runoff events, or 533 mg/linear m, and only 11% of nitrate-nitrogen, or 228 mg/linear m. The filter socks and filter socks with natural sorbents both removed 99% of oil over 25 runoff events, or a total load of 38,486 mg/linear m. Over 25 runoff events the filter socks with natural sorbents removed E. coli and Enteroccocus at 85% and 65%, or a total load of 3.14 CFUs x 10(8)/ linear m and 1.5 CFUs x 10(9)/linear m, respectively; both were significantly greater than treatment by filter socks alone. Based on these experiments, this technique can be used to reduce soluble pollutants from storm water over multiple runoff events.

  10. Multiple indicators, multiple causes measurement error models

    DOE PAGES

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...

    2014-06-25

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  11. Multiple indicators, multiple causes measurement error models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  12. Testing the Dose–Response Specification in Epidemiology: Public Health and Policy Consequences for Lead

    PubMed Central

    Rothenberg, Stephen J.; Rothenberg, Jesse C.

    2005-01-01

    Statistical evaluation of the dose–response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose–response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear–linear dose response) and natural-log–transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose–response relationship. We found that a log-linear lead–IQ relationship was a significantly better fit than was a linear–linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead–IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 μg/dL to 2.0 μg/dL) was 2.2 times ($319 billion) that calculated using a linear–linear dose–response function ($149 billion). The Centers for Disease Control and Prevention action limit of 10 μg/dL for children fails to protect against most damage and economic cost attributable to lead exposure. PMID:16140626

  13. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    PubMed

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N  ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  14. Waveform Design for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  15. Gradients in Depressive Symptoms by Socioeconomic Position Among Men Who Have Sex With Men in the EXPLORE Study.

    PubMed

    Pakula, Basia; Marshall, Brandon D L; Shoveller, Jean A; Chesney, Margaret A; Coates, Thomas J; Koblin, Beryl; Mayer, Kenneth; Mimiaga, Matthew; Operario, Don

    2016-08-01

    This study examines gradients in depressive symptoms by socioeconomic position (SEP; i.e., income, education, employment) in a sample of men who have sex with men (MSM). Data were used from EXPLORE, a randomized, controlled behavioral HIV prevention trial for HIV-uninfected MSM in six U.S. cities (n = 4,277). Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression scale (short form). Multiple linear regressions were fitted with interaction terms to assess additive and multiplicative relationships between SEP and depressive symptoms. Depressive symptoms were more prevalent among MSM with lower income, lower educational attainment, and those in the unemployed/other employment category. Income, education, and employment made significant contributions in additive models after adjustment. The employment-income interaction was statistically significant, indicating a multiplicative effect. This study revealed gradients in depressive symptoms across SEP of MSM, pointing to income and employment status and, to a lesser extent, education as key factors for understanding heterogeneity of depressive symptoms.

  16. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  17. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment

    PubMed Central

    2013-01-01

    Background Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. Results In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Conclusion Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA. PMID:24564200

  18. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.

    PubMed

    Nagar, Anurag; Hahsler, Michael

    2013-01-01

    Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA.

  19. Construction of multiple linear regression models using blood biomarkers for selecting against abdominal fat traits in broilers.

    PubMed

    Dong, J Q; Zhang, X Y; Wang, S Z; Jiang, X F; Zhang, K; Ma, G W; Wu, M Q; Li, H; Zhang, H

    2018-01-01

    Plasma very low-density lipoprotein (VLDL) can be used to select for low body fat or abdominal fat (AF) in broilers, but its correlation with AF is limited. We investigated whether any other biochemical indicator can be used in combination with VLDL for a better selective effect. Nineteen plasma biochemical indicators were measured in male chickens from the Northeast Agricultural University broiler lines divergently selected for AF content (NEAUHLF) in the fed state at 46 and 48 d of age. The average concentration of every parameter for the 2 d was used for statistical analysis. Levels of these 19 plasma biochemical parameters were compared between the lean and fat lines. The phenotypic correlations between these plasma biochemical indicators and AF traits were analyzed. Then, multiple linear regression models were constructed to select the best model used for selecting against AF content. and the heritabilities of plasma indicators contained in the best models were estimated. The results showed that 11 plasma biochemical indicators (triglycerides, total bile acid, total protein, globulin, albumin/globulin, aspartate transaminase, alanine transaminase, gamma-glutamyl transpeptidase, uric acid, creatinine, and VLDL) differed significantly between the lean and fat lines (P < 0.01), and correlated significantly with AF traits (P < 0.05). The best multiple linear regression models based on albumin/globulin, VLDL, triglycerides, globulin, total bile acid, and uric acid, had higher R2 (0.73) than the model based only on VLDL (0.21). The plasma parameters included in the best models had moderate heritability estimates (0.21 ≤ h2 ≤ 0.43). These results indicate that these multiple linear regression models can be used to select for lean broiler chickens. © 2017 Poultry Science Association Inc.

  20. The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure

    NASA Astrophysics Data System (ADS)

    Decin, L.; Cox, N. L. J.; Royer, P.; Van Marle, A. J.; Vandenbussche, B.; Ladjal, D.; Kerschbaum, F.; Ottensamer, R.; Barlow, M. J.; Blommaert, J. A. D. L.; Gomez, H. L.; Groenewegen, M. A. T.; Lim, T.; Swinyard, B. M.; Waelkens, C.; Tielens, A. G. G. M.

    2012-12-01

    Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks. Aims: We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse. Methods.Herschel PACS images at 70, 100, and 160 μm and SPIRE images at 250, 350, and 500 μm were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations. Results: The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at ~6-7' from the central target and the presence of a linear bar at ~9'. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15''), probably related to the giant convection cells of the outer atmosphere. The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of ~2' suggests a drastic change in mean gas and dust density ~32 000 yr ago. Using hydrodynamical simulations, we try to explain the observed morphology of the bow shock around Betelgeuse. Conclusions: Different hypotheses, based on observational and theoretical constraints, are formulated to explain the origin of the multiple arcs and the linear bar and the fact that no large-scale instabilities are visible in the bow shock region. We infer that the two main ingredients for explaining these phenomena are a non-homogeneous mass-loss process and the influence of the Galactic magnetic field. The hydrodynamical simulations show that a warm interstellar medium, reflecting a warm neutral or partially ionized medium, or a higher temperature in the shocked wind also prevent the growth of strong instabilities. The linear bar is probably an interstellar structure illuminated by Betelgeuse itself. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (including movies) are available in electronic form at http://www.aanda.org

  1. Bayesian Correction for Misclassification in Multilevel Count Data Models.

    PubMed

    Nelson, Tyler; Song, Joon Jin; Chin, Yoo-Mi; Stamey, James D

    2018-01-01

    Covariate misclassification is well known to yield biased estimates in single level regression models. The impact on hierarchical count models has been less studied. A fully Bayesian approach to modeling both the misclassified covariate and the hierarchical response is proposed. Models with a single diagnostic test and with multiple diagnostic tests are considered. Simulation studies show the ability of the proposed model to appropriately account for the misclassification by reducing bias and improving performance of interval estimators. A real data example further demonstrated the consequences of ignoring the misclassification. Ignoring misclassification yielded a model that indicated there was a significant, positive impact on the number of children of females who observed spousal abuse between their parents. When the misclassification was accounted for, the relationship switched to negative, but not significant. Ignoring misclassification in standard linear and generalized linear models is well known to lead to biased results. We provide an approach to extend misclassification modeling to the important area of hierarchical generalized linear models.

  2. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  3. Nonclinical pharmacokinetic and pharmacodynamic characterisation of somapacitan: A reversible non-covalent albumin-binding growth hormone.

    PubMed

    Thygesen, Peter; Andersen, Henrik Sune; Behrens, Carsten; Fels, Johannes Josef; Nørskov-Lauritsen, Leif; Rischel, Christian; Johansen, Nils Langeland

    2017-08-01

    Somapacitan is an albumin-binding growth hormone derivative intended for once weekly administration, currently in clinical development for treatment of adult as well as juvenile GH deficiency. Nonclinical in vivo pharmacological characterisation of somapacitan was performed to support the clinical trials. Here we present the pharmacokinetic and pharmacodynamic effects of somapacitan in rats, minipigs, and cynomolgus monkeys. Pharmacokinetic studies investigating exposure, absorption, clearance, and bioavailability after single intravenous (i.v.) and subcutaneous (s.c.) administration were performed in all species. A dose-response study with five dose levels and a multiple dose pharmacodynamic study with four once weekly doses was performed in hypophysectomised rats to evaluate the effect of somapacitan on growth and IGF-I production. Pharmacokinetic profiles indicated first order absorption from the subcutaneous tissue after s.c. injections for somapacitan in all three species. Apparent terminal half-lives were 5-6h in rats, 10-12h in minipigs, and 17-20h in monkeys. Somapacitan induced a dose-dependent growth in hypophysectomised rats (p<0.001) and an increase in plasma IGF-I levels in rats (p<0.01), minipigs (p<0.01), and cynomolgus monkeys (p<0.05) after single dose administration. Multiple once weekly dosing of somapacitan in hypophysectomised rats induced a step-wise increase in body weight with an initial linear phase the first 3-4days in each dosing interval (p<0.001). The nonclinical pharmacokinetic and pharmacodynamic studies of somapacitan showed similar pharmacokinetic properties, with no absorption-limited elimination, increased clearance and increased and sustained levels of IGF-I in plasma for up to 10days after a single dose administration in all three species. Somapacitan induced a dose-dependent increase in body weight and IGF-I levels in hypophysectomised rats. Multiple dosing of somapacitan in hypophysectomised rats suggested a linear growth for the first 3-4days in each weekly dosing interval, whereas daily hGH dosing showed linear growth for approximately two weeks before reaching a plateau level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation

    PubMed Central

    Nam, Haewon

    2017-01-01

    We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794

  5. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less

  6. Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data

    PubMed Central

    McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen

    2016-01-01

    Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. PMID:26921716

  7. Cumulative risk effects for the development of behaviour difficulties in children and adolescents with special educational needs and disabilities.

    PubMed

    Oldfield, Jeremy; Humphrey, Neil; Hebron, Judith

    2015-01-01

    Research has identified multiple risk factors for the development of behaviour difficulties. What have been less explored are the cumulative effects of exposure to multiple risks on behavioural outcomes, with no study specifically investigating these effects within a population of young people with special educational needs and disabilities (SEND). Furthermore, it is unclear whether a threshold or linear risk model better fits the data for this population. The sample included 2660 children and 1628 adolescents with SEND. Risk factors associated with increases in behaviour difficulties over an 18-month period were summed to create a cumulative risk score, with this explanatory variable being added into a multi-level model. A quadratic term was then added to test the threshold model. There was evidence of a cumulative risk effect, suggesting that exposure to higher numbers of risk factors, regardless of their exact nature, resulted in increased behaviour difficulties. The relationship between risk and behaviour difficulties was non-linear, with exposure to increasing risk having a disproportionate and detrimental impact on behaviour difficulties in child and adolescent models. Interventions aimed at reducing behaviour difficulties need to consider the impact of multiple risk variables. Tailoring interventions towards those exposed to large numbers of risks would be advantageous. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Study of multiplicity correlations in nucleus-nucleus interactions at high energy

    NASA Astrophysics Data System (ADS)

    Mohery, M.; Sultan, E. M.; Baz, Shadiah S.

    2015-06-01

    In the present paper, some results on the correlations of the nucleus-nucleus interactions, at high energy, between different particle multiplicities are reported. The correlations between the multiplicities of the different charged particles emitted in the interactions of 22Ne and 28Si nuclei with emulsion at (4.1-4.5)A GeV/c have been studied. The correlations of the compound multiplicity nc, defined as the sum of both numbers of the shower particles ns and grey particles ng, have been investigated. The experimental data have been compared with the corresponding theoretical ones, calculated according to the modified cascade evaporation model (MCEM). An agreement has already been fairly obtained between the experimental values and the calculated ones. The dependence of the average compound multiplicity, on the numbers of shower, grey, black and heavy particles is obvious and the values of the slope have been found to be independent of the projectile nucleus. On the other hand, the variation of the average shower, grey, black and heavy particles is found to increase linearly with the compound particles. A strong correlation has been observed between the number of produced shower particles and the number of compound particles. Moreover, the value of the average compound multiplicity is found to increase with the increase of the projectile mass. Finally, an attempt has also been made to study the scaling of the compound multiplicity distribution showing that the compound multiplicity distribution is nearly consistent with the KNO scaling behavior.

  9. [Study of Cervical Exfoliated Cell's DNA Quantitative Analysis Based on Multi-Spectral Imaging Technology].

    PubMed

    Wu, Zheng; Zeng, Li-bo; Wu, Qiong-shui

    2016-02-01

    The conventional cervical cancer screening methods mainly include TBS (the bethesda system) classification method and cellular DNA quantitative analysis, however, by using multiple staining method in one cell slide, which is staining the cytoplasm with Papanicolaou reagent and the nucleus with Feulgen reagent, the study of achieving both two methods in the cervical cancer screening at the same time is still blank. Because the difficulty of this multiple staining method is that the absorbance of the non-DNA material may interfere with the absorbance of DNA, so that this paper has set up a multi-spectral imaging system, and established an absorbance unmixing model by using multiple linear regression method based on absorbance's linear superposition character, and successfully stripped out the absorbance of DNA to run the DNA quantitative analysis, and achieved the perfect combination of those two kinds of conventional screening method. Through a series of experiment we have proved that between the absorbance of DNA which is calculated by the absorbance unmixxing model and the absorbance of DNA which is measured there is no significant difference in statistics when the test level is 1%, also the result of actual application has shown that there is no intersection between the confidence interval of the DNA index of the tetraploid cells which are screened by using this paper's analysis method when the confidence level is 99% and the DNA index's judging interval of cancer cells, so that the accuracy and feasibility of the quantitative DNA analysis with multiple staining method expounded by this paper have been verified, therefore this analytical method has a broad application prospect and considerable market potential in early diagnosis of cervical cancer and other cancers.

  10. Diagnostic Accuracy of Full-Body Linear X-Ray Scanning in Multiple Trauma Patients in Comparison to Computed Tomography.

    PubMed

    Jöres, A P W; Heverhagen, J T; Bonél, H; Exadaktylos, A; Klink, T

    2016-02-01

    The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. The overall sensitivity of LS was 49.2 %, the specificity was 93.3 %, the positive predictive value was 91 %, and the negative predictive value was 57.5 %. The overall sensitivity for vertebral fractures was 16.7 %, and the specificity was 100 %. The sensitivity was 48.7 % and the specificity 98.2 % for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS. 40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT.  The overall sensitivity of LS for truncal skeleton injuries in multiple-trauma patients was < 50 %. The diagnostic reference standard MSCT is the preferred and reliable imaging modality. LS may be valuable for quick detection of extremity fractures. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Making Curriculum Decisions in K-8 Science: The Relationship between Teacher Dispositions and Curriculum Content

    ERIC Educational Resources Information Center

    Eidietis, L.; Jewkes, A. M.

    2011-01-01

    This study examined teachers' dispositions toward and choices to teach ocean science using a survey design. A sample of 89 in-service K-8 teachers in the United States reported their (1) feelings of preparedness to teach about ocean literacy and (2) attitudes toward ocean science on three measures. Results of multiple linear regression showed that…

  12. Mediating Effects of Social Support on Quality of Life for Parents of Adults with Autism

    ERIC Educational Resources Information Center

    Marsack, Christina N.; Samuel, Preethy S.

    2017-01-01

    The aim of this study was to examine the mediating effect of formal and informal social support on the relationship of caregiver burden and quality of life (QOL), using a sample of 320 parents (aged 50 or older) of adult children with autism spectrum disorder (ASD). Multiple linear regression and mediation analyses indicated that caregiver burden…

  13. The Influence of Socioeconomic, Parental, and District Factors on the 2013 MCAS Grade 4 Language Arts and Mathematics Scores

    ERIC Educational Resources Information Center

    Caldwell, Dale G.

    2017-01-01

    This correlational, explanatory study utilized multiple linear and hierarchical regression to examine the predictive power of socioeconomic, parental and district factors on the total percentage of students who scored Proficient or Advanced Proficient on the 2013 MCAS Grade 4 language arts and mathematics test. The population for this study…

  14. Estimating V0[subscript 2]max Using a Personalized Step Test

    ERIC Educational Resources Information Center

    Webb, Carrie; Vehrs, Pat R.; George, James D.; Hager, Ronald

    2014-01-01

    The purpose of this study was to develop a step test with a personalized step rate and step height to predict cardiorespiratory fitness in 80 college-aged males and females using the self-reported perceived functional ability scale and data collected during the step test. Multiple linear regression analysis yielded a model (R = 0.90, SEE = 3.43…

  15. Emotional Reactions to Stress among Adolescent Boys and Girls: An Examination of the Mediating Mechanisms Proposed by General Strain Theory

    ERIC Educational Resources Information Center

    Sigfusdottir, Inga-Dora; Silver, Eric

    2009-01-01

    This study examines the effects of negative life events on anger and depressed mood among a sample of 7,758 Icelandic adolescents, measured as part of the National Survey of Icelandic Adolescents (Thorlindsson, Sigfusdottir, Bernburg, & Halldorsson, 1998). Using multiple linear regression and multinomial logit regression, we find that (a)…

  16. Summer Study Program in Geophysical Fluid Dynamics, The Woods Hole Oceanographic Institution. Baroclinic Instability and Ocean Fronts.

    DTIC Science & Technology

    1983-11-01

    spectrum of the linear stability theory has multiple roots with zero real parts. Then the general forms of the amplitude equations may be found for given...76 Dynamical Generation of Eastern Boundary Currents George eronis. .......................... 77 ..Amplitude Equations Edward...Associated Countercurrent. Benoit Cushman-Roisin ....... .................... ... 103 Turbulently Generated Eastern Boundary Currents Roger L. Hughes

  17. Applying EXCEL Solver to a watershed management goal-programming problem

    Treesearch

    J. E. de Steiguer

    2000-01-01

    This article demonstrates the application of EXCEL® spreadsheet linear programming (LP) solver to a watershed management multiple use goal programming (GP) problem. The data used to demonstrate the application are from a published study for a watershed in northern Colorado. GP has been used by natural resource managers for many years. However, the GP solution by means...

  18. Response Rate and Teaching Effectiveness in Institutional Student Evaluation of Teaching: A Multiple Linear Regression Study

    ERIC Educational Resources Information Center

    Al-Maamari, Faisal

    2015-01-01

    It is important to consider the question of whether teacher-, course-, and student-related factors affect student ratings of instructors in Student Evaluation of Teaching (SET) in English Language Teaching (ELT). This paper reports on a statistical analysis of SET in two large EFL programmes at a university setting in the Sultanate of Oman. I…

  19. Implications of Interactions among Society, Education and Technology: A Comparison of Multiple Linear Regression and Multilevel Modeling in Mathematics Achievement Analyses

    ERIC Educational Resources Information Center

    Deering, Pamela Rose

    2014-01-01

    This research compares and contrasts two approaches to predictive analysis of three years' of school district data to investigate relationships between student and teacher characteristics and math achievement as measured by the state-mandated Maryland School Assessment mathematics exam. The sample for the study consisted of 3,514 students taught…

  20. Examining the Influence of Selected Factors on Perceived Co-Op Work-Term Quality from a Student Perspective

    ERIC Educational Resources Information Center

    Drewery, David; Nevison, Colleen; Pretti, T. Judene; Cormier, Lauren; Barclay, Sage; Pennaforte, Antoine

    2016-01-01

    This study discusses and tests a conceptual model of co-op work-term quality from a student perspective. Drawing from an earlier exploration of co-op students' perceptions of work-term quality, variables related to role characteristics, interpersonal dynamics, and organizational elements were used in a multiple linear regression analysis to…

  1. White light emitting diode as potential replacement of tungsten-halogen lamp for visible spectroscopy system: a case study in the measurement of mango qualities

    NASA Astrophysics Data System (ADS)

    Chiong, W. L.; Omar, A. F.

    2017-07-01

    Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.

  2. Simultaneous use of camera and probe diagnostics to unambiguously identify and study the dynamics of multiple underlying instabilities during the route to plasma turbulence.

    PubMed

    Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R

    2014-11-01

    We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

  3. Acoustic features of objects matched by an echolocating bottlenose dolphin.

    PubMed

    Delong, Caroline M; Au, Whitlow W L; Lemonds, David W; Harley, Heidi E; Roitblat, Herbert L

    2006-03-01

    The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.

  4. Financial burden is associated with worse health-related quality of life in adults with multiple endocrine neoplasia type 1.

    PubMed

    Peipert, Benjamin J; Goswami, Sneha; Helenowski, Irene; Yount, Susan E; Sturgeon, Cord

    2017-12-01

    Health-related quality of life and financial burden among patients with multiple endocrine neoplasia type 1 is poorly described. It is not known how financial burden influences health-related quality of life in this population. We hypothesized that the financial burden attributable to multiple endocrine neoplasia type 1 is associated with worse health-related quality of life. United States adults (≥18 years) with multiple endocrine neoplasia type 1 were recruited from the AMENSupport MEN online support group. Patient demographics, clinical characteristics, and financial burden were assessed via an online survey. The instrument Patient-Reported Outcomes Measurement Information System 29-item profile measure was used to assess health-related quality of life. Multivariable linear regression was used to identify significant variables in each Patient-Reported Outcomes Measurement Information System domain. Out of 1,378 members in AMENSupport, our survey link was accessed 449 times (33%). Of 153 US respondents who completed our survey, 84% reported financial burden attributable to multiple endocrine neoplasia type 1. The degree of financial burden had a linear relationship with worse health-related quality of life across all Patient-Reported Outcomes Measurement Information System domains (r = 0.36-0.55, P < .001); 63% reported experiencing ≥1 negative financial event(s). Borrowing money from friends/family (30%), unemployment (13%), and spending >$100/month out-of-pocket on prescription medications (46%) were associated consistently with impaired health-related quality of life (ß = 3.75-6.77, P < .05). Respondents were 3- and 34-times more likely to be unemployed and declare bankruptcy than the US population, respectively. This study characterizes the financial burden in patients with multiple endocrine neoplasia type 1. Individuals with multiple endocrine neoplasia type 1 report a high degree of financial burden, negative financial events, and unemployment. Each of these factors was associated with worse health-related quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Avoiding Communication in Dense Linear Algebra

    DTIC Science & Technology

    2013-08-16

    Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...and parallelizing Strassen’s matrix multiplication algorithm (Chapter 11). 6 Chapter 2 Preliminaries 2.1 Notation and Definitions In this section we...between computations and algo- rithms). The following definition is based on [56]: Definition 2.1. A classical algorithm in linear algebra is one that

  6. Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool

    ERIC Educational Resources Information Center

    Bligh, Brett; Coyle, Do

    2013-01-01

    This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…

  7. Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming

    ERIC Educational Resources Information Center

    Gurski, Katharine F.

    2009-01-01

    We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…

  8. Timber management planning with timber ram and goal programming

    Treesearch

    Richard C. Field

    1978-01-01

    By using goal programming to enhance the linear programming of Timber RAM, multiple decision criteria were incorporated in the timber management planning of a National Forest in the southeastern United States. Combining linear and goal programming capitalizes on the advantages of the two techniques and produces operationally feasible solutions. This enhancement may...

  9. An Introduction to Multilinear Formula Score Theory. Measurement Series 84-4.

    ERIC Educational Resources Information Center

    Levine, Michael V.

    Formula score theory (FST) associates each multiple choice test with a linear operator and expresses all of the real functions of item response theory as linear combinations of the operator's eigenfunctions. Hard measurement problems can then often be reformulated as easier, standard mathematical problems. For example, the problem of estimating…

  10. Possible limits of plasma linear colliders

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  11. Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Suzuki, Hiroshi

    2015-03-01

    It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.

  12. Using directed information for influence discovery in interconnected dynamical systems

    NASA Astrophysics Data System (ADS)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  13. Focal points and principal solutions of linear Hamiltonian systems revisited

    NASA Astrophysics Data System (ADS)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  14. On optimal control of linear systems in the presence of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1976-01-01

    This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.

  15. Fault detection for singular switched linear systems with multiple time-varying delay in finite frequency domain

    NASA Astrophysics Data System (ADS)

    Zhai, Ding; Lu, Anyang; Li, Jinghao; Zhang, Qingling

    2016-10-01

    This paper deals with the problem of the fault detection (FD) for continuous-time singular switched linear systems with multiple time-varying delay. In this paper, the actuator fault is considered. Besides, the systems faults and unknown disturbances are assumed in known frequency domains. Some finite frequency performance indices are initially introduced to design the switched FD filters which ensure that the filtering augmented systems under switching signal with average dwell time are exponentially admissible and guarantee the fault input sensitivity and disturbance robustness. By developing generalised Kalman-Yakubovic-Popov lemma and using Parseval's theorem and Fourier transform, finite frequency delay-dependent sufficient conditions for the existence of such a filter which can guarantee the finite-frequency H- and H∞ performance are derived and formulated in terms of linear matrix inequalities. Four examples are provided to illustrate the effectiveness of the proposed finite frequency method.

  16. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  17. Linear mixed-effects modeling approach to FMRI group analysis

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Britton, Jennifer C.; Pine, Daniel S.; Cox, Robert W.

    2013-01-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. PMID:23376789

  18. Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases.

    PubMed

    Chen, Weiyi; Niu, Xiaojun; An, Shaorong; Sheng, Hong; Tang, Zhenghua; Yang, Zhiquan; Gu, Xiaohong

    2017-12-01

    Phosphine (PH 3 ), as a gaseous phosphide, plays an important role in the phosphorus cycle in ecosystems. In this study, the emission and distribution of phosphine, carbon dioxide (CO 2 ) and methane (CH 4 ) in paddy fields were investigated to speculate the future potential impacts of enhanced greenhouse effect on phosphorus cycle involved in phosphine by the method of Pearson correlation analysis and multiple linear regression analysis. During the whole period of rice growth, there was a significant positive correlation between CO 2 emission flux and PH 3 emission flux (r=0.592, p=0.026, n=14). Similarly, a significant positive correlation of emission flux was also observed between CH 4 and PH 3 (r=0.563, p=0.036, n=14). The linear regression relationship was determined as [PH 3 ] flux =0.007[CO 2 ] flux +0.063[CH 4 ] flux -4.638. No significant differences were observed for all values of matrix-bound phosphine (MBP), soil carbon dioxide (SCO 2 ), and soil methane (SCH 4 ) in paddy soils. However, there was a significant positive correlation between MBP and SCO 2 at heading, flowering and ripening stage. The correlation coefficients were 0.909, 0.890 and 0.827, respectively. In vertical distribution, MBP had the analogical variation trend with SCO 2 and SCH 4 . Through Pearson correlation analysis and multiple stepwise linear regression analysis, pH, redox potential (Eh), total phosphorus (TP) and acid phosphatase (ACP) were identified as the principal factors affecting MBP levels, with correlative rankings of Eh>pH>TP>ACP. The multiple stepwise regression model ([MBP]=0.456∗[ACP]+0.235∗[TP]-1.458∗[Eh]-36.547∗[pH]+352.298) was obtained. The findings in this study hold great reference values to the global biogeochemical cycling of phosphorus in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Linear mixed-effects modeling approach to FMRI group analysis.

    PubMed

    Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W

    2013-06-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. Published by Elsevier Inc.

  20. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression

    ERIC Educational Resources Information Center

    Beckstead, Jason W.

    2012-01-01

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…

  1. Inference regarding multiple structural changes in linear models with endogenous regressors☆

    PubMed Central

    Hall, Alastair R.; Han, Sanggohn; Boldea, Otilia

    2012-01-01

    This paper considers the linear model with endogenous regressors and multiple changes in the parameters at unknown times. It is shown that minimization of a Generalized Method of Moments criterion yields inconsistent estimators of the break fractions, but minimization of the Two Stage Least Squares (2SLS) criterion yields consistent estimators of these parameters. We develop a methodology for estimation and inference of the parameters of the model based on 2SLS. The analysis covers the cases where the reduced form is either stable or unstable. The methodology is illustrated via an application to the New Keynesian Phillips Curve for the US. PMID:23805021

  2. Linearity-Preserving Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael; Murman, Scott

    2004-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. We note that on non-uniform grids the scalar formulation in standard use today sacrifices k-exactness, even for linear solutions, impacting both accuracy and convergence. We rewrite some well-known limiters in a n way to highlight their underlying symmetry, and use this to examine both traditional and novel limiter formulations. A consistent method of handling stretched meshes is developed, as is a new directional formulation in multiple dimensions for irregular grids. Results are presented demonstrating improved accuracy and convergence using a combination of model problems and complex three-dimensional examples.

  3. Estimating the intensity of a cyclic Poisson process in the presence of additive and multiplicative linear trend

    NASA Astrophysics Data System (ADS)

    Wayan Mangku, I.

    2017-10-01

    In this paper we survey some results on estimation of the intensity function of a cyclic Poisson process in the presence of additive and multiplicative linear trend. We do not assume any parametric form for the cyclic component of the intensity function, except that it is periodic. Moreover, we consider the case when there is only a single realization of the Poisson process is observed in a bounded interval. The considered estimators are weakly and strongly consistent when the size of the observation interval indefinitely expands. Asymptotic approximations to the bias and variance of those estimators are presented.

  4. Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure.

    PubMed

    Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C

    2015-01-01

    We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Parts-Per-Billion Mass Measurement Accuracy Achieved through the Combination of Multiple Linear Regression and Automatic Gain Control in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Williams, D. Keith; Muddiman, David C.

    2008-01-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to achieve unprecedented mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement. Even through the use of automatic gain control (AGC), the total ion population is not constant between spectra. Multiple linear regression calibration in conjunction with AGC is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. This ability allows for the extension of dynamic range of the instrument while allowing mean MMA values to remain less than 1 ppm. In addition, multiple linear regression calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level. PMID:17539605

  6. Longitudinal performance of plasma neurofilament light and tau in professional fighters: The Professional Fighters Brain Health Study.

    PubMed

    Bernick, Charles; Zetterberg, Henrik; Shan, Guogen; Banks, Sarah; Blennow, Kaj

    2018-04-02

    The objective of this study is to evaluate longitudinal change in plasma neurofilament light (NF-L) and tau levels in relationship to clinical and radiological measures in professional fighters. Participants (active and retired professional fighters and control group) underwent annual blood sampling, 3 Tesla MRI brain imaging, computerized cognitive testing, and assessment of exposure to head trauma. Plasma tau and NF-L concentrations were measured using Simoa assays. Multiple linear regression models were used to compare the difference across groups in regard to baseline measurements, while mixed linear models was used for the longitudinal data with multiple measurements for each participant. Plasma samples were available on 471 participants. Baseline NF-L measures differed across groups (F_3,393=6.99, p=0.0001), with the active boxers having the highest levels. Higher NF-L levels at baseline were correlated with lower baseline MRI regional volumes and lower cognitive scores. The number of sparring rounds completed by the active fighters was correlated with NF-L (95% CI 0.0116-0.4053, p=0.0381), but not tau, levels. Among 126 subjects having multiple yearly samples, there was a significant difference in average yearly percentage change in tau across groups (F_3,83=3.87, p=0.0121).). We conclude that plasma NF-L and tau behave differently in a group of active and retired fighters; NF-L better reflects acute exposure whereas the role of plasma tau levels in signifying chronic change in brain structure over time requires further study.

  7. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J

    2017-05-01

    Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.

  8. Linear time algorithms to construct populations fitting multiple constraint distributions at genomic scales.

    PubMed

    Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi

    2017-10-09

    Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.

  9. Practical Session: Simple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).

  10. Design, modeling and simulations of a Cabinet Safe System for a linear particle accelerator of intermediate-low energy by optimization of the beam optics

    NASA Astrophysics Data System (ADS)

    Maidana, Carlos Omar

    As part of an accelerator based Cargo Inspection System, studies were made to develop a Cabinet Safe System by Optimization of the Beam Optics of Microwave Linear Accelerators of the IAC-Varian series working on the S-band and standing wave pi/2 mode. Measurements, modeling and simulations of the main subsystems were done and a Multiple Solenoidal System was designed. This Cabinet Safe System based on a Multiple Solenoidal System minimizes the radiation field generated by the low efficiency of the microwave accelerators by optimizing the RF waveguide system and by also trapping secondaries generated in the accelerator head. These secondaries are generated mainly due to instabilities in the exit window region and particles backscattered from the target. The electron gun was also studied and software for its right mechanical design and for its optimization was developed as well. Besides the standard design method, an optimization of the injection process is accomplished by slightly modifying the gun configuration and by placing a solenoid on the waist position while avoiding threading the cathode with the magnetic flux generated. The Multiple Solenoidal System and the electron gun optimization are the backbone of a Cabinet Safe System that could be applied not only to the 25 MeV IAC-Varian microwave accelerators but, by extension, to machines of different manufacturers as well. Thus, they constitute the main topic of this dissertation.

  11. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

    PubMed

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-01

    To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  12. Evaluation of accuracy of complete-arch multiple-unit abutment-level dental implant impressions using different impression and splinting materials.

    PubMed

    Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah

    2013-01-01

    This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.

  13. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  14. Chemometric investigation of light-shade effects on essential oil yield and morphology of Moroccan Myrtus communis L.

    PubMed

    Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd

    2016-01-01

    To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.

  15. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  16. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.

  17. Association between Social Activities and Cognitive Function among the Elderly in China: A Cross-Sectional Study.

    PubMed

    Fu, Chang; Li, Zhen; Mao, Zongfu

    2018-01-30

    Participation in social activities is one of important factors for older adults' health. The present study aims to examine the cross-sectional association between social activities and cognitive function among Chinese elderly. A total of 8966 individuals aged 60 and older from the 2015 China Health and Retirement Longitudinal Study were obtained for this study. Telephone interviews of cognitive status, episodic memory, and visuospatial abilities were assessed by questionnaire. We used the sum of all three of the above measures to represent the respondent's cognitive status as a whole. Types and frequencies of participation in social groups were used to measure social activities. Multiple linear regression analysis was used to explore the relationship between social activities and cognitive function. After adjustment for demographics, smoking, drinking, depression, hypertension, diabetes, basic activities of daily living, instrumental activities of daily living, and self-rated health, multiple linear regression analysis revealed that interaction with friends, participating in hobby groups, and sports groups were associated with better cognitive function among both men and women ( p < 0.05); doing volunteer work was associated with better cognitive function among women but not among men ( p < 0.05). These findings suggest that there is a cross-sectional association between participation in social activities and cognitive function among Chinese elderly. Longitudinal studies are needed to examine the effects of social activities on cognitive function.

  18. Association between Social Activities and Cognitive Function among the Elderly in China: A Cross-Sectional Study

    PubMed Central

    Fu, Chang; Li, Zhen; Mao, Zongfu

    2018-01-01

    Participation in social activities is one of important factors for older adults’ health. The present study aims to examine the cross-sectional association between social activities and cognitive function among Chinese elderly. A total of 8966 individuals aged 60 and older from the 2015 China Health and Retirement Longitudinal Study were obtained for this study. Telephone interviews of cognitive status, episodic memory, and visuospatial abilities were assessed by questionnaire. We used the sum of all three of the above measures to represent the respondent’s cognitive status as a whole. Types and frequencies of participation in social groups were used to measure social activities. Multiple linear regression analysis was used to explore the relationship between social activities and cognitive function. After adjustment for demographics, smoking, drinking, depression, hypertension, diabetes, basic activities of daily living, instrumental activities of daily living, and self-rated health, multiple linear regression analysis revealed that interaction with friends, participating in hobby groups, and sports groups were associated with better cognitive function among both men and women (p < 0.05); doing volunteer work was associated with better cognitive function among women but not among men (p < 0.05). These findings suggest that there is a cross-sectional association between participation in social activities and cognitive function among Chinese elderly. Longitudinal studies are needed to examine the effects of social activities on cognitive function. PMID:29385773

  19. Internal and external environmental factors affecting the performance of hospital-based home nursing care.

    PubMed

    Noh, J-W; Kwon, Y-D; Yoon, S-J; Hwang, J-I

    2011-06-01

    Numerous studies on HNC services have been carried out by signifying their needs, efficiency and effectiveness. However, no study has ever been performed to determine the critical factors associated with HNC's positive results despite the deluge of positive studies on the service. This study included all of the 89 training hospitals that were practising HNC service in Korea as of November 2006. The input factors affecting the performance were classified as either internal or external environmental factors. This analysis was conducted to understand the impact that the corresponding factors had on performance. Data were analysed by using multiple linear regressions. The internal and external environment variables affected the performance of HNC based on univariate analysis. The meaningful variables were internal environmental factors. Specifically, managerial resource (the number of operating beds and the outpatient/inpatient ratio) were meaningful when the multiple linear regression analysis was performed. Indeed, the importance of organizational culture (the passion of HNC nurses) was significant. This study, considering the limited market size of Korea, illustrates that the critical factor for the development of hospital-led HNC lies with internal environmental factors rather than external ones. Among the internal environmental factors, the hospitals' managerial resource-related factors (specifically, the passion of nurses) were the most important contributing element. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.

  20. Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon C.; Zhu, Zhifan; Jeong, Myeongsook; Kim, Hyounkong; Oh, Eunmi; Hong, Sungkwon

    2017-01-01

    This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).

  1. Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon Chul; Zhu, Zhifan; Jeong, Myeong-Sook; Kim, Hyoun Kyoung; Oh, Eunmi; Hong, Sungkwon

    2017-01-01

    This study aims to develop a controllers' decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different typesmore » of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.« less

  3. Elimination of trait blocks from multiple trait mixed model equations with singular (Co)variance parameter matrices

    USDA-ARS?s Scientific Manuscript database

    Transformations to multiple trait mixed model equations (MME) which are intended to improve computational efficiency in best linear unbiased prediction (BLUP) and restricted maximum likelihood (REML) are described. It is shown that traits that are expected or estimated to have zero residual variance...

  4. Experiment in multiple-criteria energy policy analysis

    NASA Astrophysics Data System (ADS)

    Ho, J. K.

    1980-07-01

    An international panel of energy analysts participated in an experiment to use HOPE (holistic preference evaluation): an interactive parametric linear programming method for multiple criteria optimization. The criteria of cost, environmental effect, crude oil, and nuclear fuel were considered, according to BESOM: an energy model for the US in the year 2000.

  5. Development of a technique for estimating noise covariances using multiple observers

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1988-01-01

    Friedland's technique for estimating the unknown noise variances of a linear system using multiple observers has been extended by developing a general solution for the estimates of the variances, developing the statistics (mean and standard deviation) of these estimates, and demonstrating the solution on two examples.

  6. Log-Multiplicative Association Models as Item Response Models

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.; Yu, Hsiu-Ting

    2007-01-01

    Log-multiplicative association (LMA) models, which are special cases of log-linear models, have interpretations in terms of latent continuous variables. Two theoretical derivations of LMA models based on item response theory (IRT) arguments are presented. First, we show that Anderson and colleagues (Anderson & Vermunt, 2000; Anderson & Bockenholt,…

  7. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  8. Liquid electrolyte informatics using an exhaustive search with linear regression.

    PubMed

    Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato

    2018-06-14

    Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.

  9. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    PubMed

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Application of Multiregressive Linear Models, Dynamic Kriging Models and Neural Network Models to Predictive Maintenance of Hydroelectric Power Systems

    NASA Astrophysics Data System (ADS)

    Lucifredi, A.; Mazzieri, C.; Rossi, M.

    2000-05-01

    Since the operational conditions of a hydroelectric unit can vary within a wide range, the monitoring system must be able to distinguish between the variations of the monitored variable caused by variations of the operation conditions and those due to arising and progressing of failures and misoperations. The paper aims to identify the best technique to be adopted for the monitoring system. Three different methods have been implemented and compared. Two of them use statistical techniques: the first, the linear multiple regression, expresses the monitored variable as a linear function of the process parameters (independent variables), while the second, the dynamic kriging technique, is a modified technique of multiple linear regression representing the monitored variable as a linear combination of the process variables in such a way as to minimize the variance of the estimate error. The third is based on neural networks. Tests have shown that the monitoring system based on the kriging technique is not affected by some problems common to the other two models e.g. the requirement of a large amount of data for their tuning, both for training the neural network and defining the optimum plane for the multiple regression, not only in the system starting phase but also after a trivial operation of maintenance involving the substitution of machinery components having a direct impact on the observed variable. Or, in addition, the necessity of different models to describe in a satisfactory way the different ranges of operation of the plant. The monitoring system based on the kriging statistical technique overrides the previous difficulties: it does not require a large amount of data to be tuned and is immediately operational: given two points, the third can be immediately estimated; in addition the model follows the system without adapting itself to it. The results of the experimentation performed seem to indicate that a model based on a neural network or on a linear multiple regression is not optimal, and that a different approach is necessary to reduce the amount of work during the learning phase using, when available, all the information stored during the initial phase of the plant to build the reference baseline, elaborating, if it is the case, the raw information available. A mixed approach using the kriging statistical technique and neural network techniques could optimise the result.

  11. Longitudinal patterns and predictors of multiple health risk behaviors among adolescents: The TRAILS study.

    PubMed

    de Winter, Andrea F; Visser, Leenke; Verhulst, Frank C; Vollebergh, Wilma A M; Reijneveld, Sijmen A

    2016-03-01

    Most studies on multiple health risk behaviors among adolescents have cross-sectionally studied a limited number of health behaviors or determinants. To examine the prevalence, longitudinal patterns and predictors of individual and multiple health risk behaviors among adolescents. Eight health risk behaviors (no regular consumption of fruit, vegetables or breakfast, overweight or obesity, physical inactivity, smoking, alcohol use and cannabis use) were assessed in a prospective population study (second and third wave). Participants were assessed in three waves between ages 10 and 17 (2001-2008; n=2230). Multiple linear regression was used to assess the influence of gender, self-control, parental health risk behaviors, parental monitoring and socioeconomic factors on the number of health risk behaviors adjusted for preceding multiple health risk behaviors (analysis: 2013-2014). Rates of >5 health risk behaviors were high: 3.6% at age 13.5 and 10.2% at age 16. Smoking at age 13.5 was frequently associated with health risk behaviors at age 16. No regular consumption of fruit, vegetables and breakfast, overweight or obesity, physical inactivity and smoking predicted the co-occurrence of health risk behaviors at follow-up. Significant predictors of the development of multiple health risk behaviors were adolescents' levels of self-control, socioeconomic status and maternal smoking. Multiple health risk behaviors are common among adolescents. Individual and social factors predict changes in multiple health risk behaviors, showing that prevention targeting multiple risk behaviors is needed. Special attention should be paid to adolescents with low self-control and families with low socioeconomic status or a mother who smokes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Impacts of education level and employment status on health-related quality of life in multiple sclerosis patients.

    PubMed

    Šabanagić-Hajrić, Selma; Alajbegović, Azra

    2015-02-01

    To evaluate the impacts of education level and employment status on health-related quality of life (HRQoL) in multiple sclerosis patients. This study included 100 multiple sclerosis patients treated at the Department of Neurology, Clinical Center of the University of Sarajevo. Inclusion criteria were the Expanded Disability Status Scale (EDSS) score between 1.0 and 6.5, age between 18 and 65 years, stable disease on enrollment. Quality of life (QoL) was evaluated by the Multiple Sclerosis Quality of Life-54 questionnaire (MSQoL-54). Mann-Whitney and Kruskal-Wallis test were used for comparisons. Linear regression analyses were performed to evaluate prediction value of educational level and employment status in predicting MSQOL-54 physical and mental composite scores. Full employment status had positive impact on physical health (54.85 vs. 37.90; p les than 0.001) and mental health (59.55 vs. 45.90; p les than 0.001) composite scores. Employment status retained its independent predictability for both physical (r(2)=0.105) and mental (r(2)=0.076) composite scores in linear regression analysis. Patients with college degree had slightly higher median value of physical (49.36 vs. 45.30) and mental health composite score (66.74 vs. 55.62) comparing to others, without statistically significant difference. Employment proved to be an important factor in predicting quality of life in multiple sclerosis patients. Higher education level may determine better QOL but without significant predictive value. Sustained employment and development of vocational rehabilitation programs for MS patients living in the country with high unemployment level is an important factor in improving both physical and mental health outcomes in MS patients.

  13. Stature estimation from the lengths of the growing foot-a study on North Indian adolescents.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Passi, Neelam; DiMaggio, John A

    2012-12-01

    Stature estimation is considered as one of the basic parameters of the investigation process in unknown and commingled human remains in medico-legal case work. Race, age and sex are the other parameters which help in this process. Stature estimation is of the utmost importance as it completes the biological profile of a person along with the other three parameters of identification. The present research is intended to formulate standards for stature estimation from foot dimensions in adolescent males from North India and study the pattern of foot growth during the growing years. 154 male adolescents from the Northern part of India were included in the study. Besides stature, five anthropometric measurements that included the length of the foot from each toe (T1, T2, T3, T4, and T5 respectively) to pternion were measured on each foot. The data was analyzed statistically using Student's t-test, Pearson's correlation, linear and multiple regression analysis for estimation of stature and growth of foot during ages 13-18 years. Correlation coefficients between stature and all the foot measurements were found to be highly significant and positively correlated. Linear regression models and multiple regression models (with age as a co-variable) were derived for estimation of stature from the different measurements of the foot. Multiple regression models (with age as a co-variable) estimate stature with greater accuracy than the regression models for 13-18 years age group. The study shows the growth pattern of feet in North Indian adolescents and indicates that anthropometric measurements of the foot and its segments are valuable in estimation of stature in growing individuals of that population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2000-01-01

    A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.

  15. Nonlinear coherent optical image processing using logarithmic transmittance of bacteriorhodopsin films

    NASA Astrophysics Data System (ADS)

    Downie, John D.

    1995-08-01

    The transmission properties of some bacteriorhodopsin-film spatial light modulators are uniquely suited to allow nonlinear optical image-processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude-transmission characteristic of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. I present experimental results demonstrating the principle and the capability for several different image and noise situations, including deterministic noise and speckle. The bacteriorhodopsin film studied here displays the logarithmic transmission response for write intensities spanning a dynamic range greater than 2 orders of magnitude.

  16. Nonlinear Coherent Optical Image Processing Using Logarithmic Transmittance of Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The transmission properties of some bacteriorhodopsin-film spatial light modulators are uniquely suited to allow nonlinear optical image-processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude-transmission characteristic of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. I present experimental results demonstrating the principle and the capability for several different image and noise situations, including deterministic noise and speckle. The bacteriorhodopsin film studied here displays the logarithmic transmission response for write intensities spanning a dynamic range greater than 2 orders of magnitude.

  17. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

    NASA Astrophysics Data System (ADS)

    Heinkenschloss, Matthias

    2005-01-01

    We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

  18. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  19. Linear score tests for variance components in linear mixed models and applications to genetic association studies.

    PubMed

    Qu, Long; Guennel, Tobias; Marshall, Scott L

    2013-12-01

    Following the rapid development of genome-scale genotyping technologies, genetic association mapping has become a popular tool to detect genomic regions responsible for certain (disease) phenotypes, especially in early-phase pharmacogenomic studies with limited sample size. In response to such applications, a good association test needs to be (1) applicable to a wide range of possible genetic models, including, but not limited to, the presence of gene-by-environment or gene-by-gene interactions and non-linearity of a group of marker effects, (2) accurate in small samples, fast to compute on the genomic scale, and amenable to large scale multiple testing corrections, and (3) reasonably powerful to locate causal genomic regions. The kernel machine method represented in linear mixed models provides a viable solution by transforming the problem into testing the nullity of variance components. In this study, we consider score-based tests by choosing a statistic linear in the score function. When the model under the null hypothesis has only one error variance parameter, our test is exact in finite samples. When the null model has more than one variance parameter, we develop a new moment-based approximation that performs well in simulations. Through simulations and analysis of real data, we demonstrate that the new test possesses most of the aforementioned characteristics, especially when compared to existing quadratic score tests or restricted likelihood ratio tests. © 2013, The International Biometric Society.

  20. Evolutionary tree design: An exploratory study of the influence of linear versus branching format on visitors' interpretation and understanding across age groups

    NASA Astrophysics Data System (ADS)

    MacDonald, Teresa Elise

    This exploratory study sought to investigate the influence of tree graphic design---specifically linear versus branching depictions of taxa---on visitors in three different age groups (aged 11-13, 14-18, adults) interpretation and understanding using a multiple-case study strategy. The findings from this research indicate that linear and branched depictions elicit qualitatively different narratives and explanations about the relationships between the taxa in all age groups. Branched tree graphics support scientifically appropriate explanations of evolutionary relationships, i.e. that taxa are related via shared or common ancestry; while linear representations reinforce intuitive interpretations of ancestor-descendant or anagenic relationships. Furthermore, differences in the language used for linear and branched trees suggests that there is a spectrum within an analogy of developmental change that is thought to serve as a transitional concept between intuitive and scientific understanding--with 'evolved from' for branched depictions of taxa representing a shift towards an interpretation of shared ancestry rather than an individual transformation from one thing into another. In addition, branched graphics appear to support the correct reading and interpretation of shared or common ancestry in tree diagrams. Mixed reasoning was common and overall reasoning patterns were broadly similar among participants in all age groups, however, older youth (aged 14 to 18) and adults often provided more detail in their explanations and sometimes included references to evolutionary ideas such as variation, inheritance and selection.

  1. An extended car-following model considering random safety distance with different probabilities

    NASA Astrophysics Data System (ADS)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  2. Multiple continuous coverage of the earth based on multi-satellite systems with linear structure

    NASA Astrophysics Data System (ADS)

    Saulskiy, V. K.

    2009-04-01

    A new and wider definition is given to multi-satellite systems with linear structure (SLS), and efficiency of their application to multiple continuous coverage of the Earth is substantiated. Owing to this widening, SLS have incorporated already well-recognized “polar systems” by L. Rider and W.S. Adams, “kinematically regular systems” by G.V. Mozhaev, and “delta-systems” by J.G. Walker, as well as “near-polar systems” by Yu.P. Ulybyshev, and some other satellite constellations unknown before. A universal method of SLS optimization is presented, valid for any values of coverage multiplicity and the number of satellites in a system. The method uses the criterion of minimum radius of a circle seen from a satellite on the surface of the globe. Among the best SLS found in this way there are both systems representing the well-known classes mentioned above and new orbit constellations of satellites.

  3. Refractive Status at Birth: Its Relation to Newborn Physical Parameters at Birth and Gestational Age

    PubMed Central

    Varghese, Raji Mathew; Sreenivas, Vishnubhatla; Puliyel, Jacob Mammen; Varughese, Sara

    2009-01-01

    Background Refractive status at birth is related to gestational age. Preterm babies have myopia which decreases as gestational age increases and term babies are known to be hypermetropic. This study looked at the correlation of refractive status with birth weight in term and preterm babies, and with physical indicators of intra-uterine growth such as the head circumference and length of the baby at birth. Methods All babies delivered at St. Stephens Hospital and admitted in the nursery were eligible for the study. Refraction was performed within the first week of life. 0.8% tropicamide with 0.5% phenylephrine was used to achieve cycloplegia and paralysis of accommodation. 599 newborn babies participated in the study. Data pertaining to the right eye is utilized for all the analyses except that for anisometropia where the two eyes were compared. Growth parameters were measured soon after birth. Simple linear regression analysis was performed to see the association of refractive status, (mean spherical equivalent (MSE), astigmatism and anisometropia) with each of the study variables, namely gestation, length, weight and head circumference. Subsequently, multiple linear regression was carried out to identify the independent predictors for each of the outcome parameters. Results Simple linear regression showed a significant relation between all 4 study variables and refractive error but in multiple regression only gestational age and weight were related to refractive error. The partial correlation of weight with MSE adjusted for gestation was 0.28 and that of gestation with MSE adjusted for weight was 0.10. Birth weight had a higher correlation to MSE than gestational age. Conclusion This is the first study to look at refractive error against all these growth parameters, in preterm and term babies at birth. It would appear from this study that birth weight rather than gestation should be used as criteria for screening for refractive error, especially in developing countries where the incidence of intrauterine malnutrition is higher. PMID:19214228

  4. Female Literacy Rate is a Better Predictor of Birth Rate and Infant Mortality Rate in India

    PubMed Central

    Saurabh, Suman; Sarkar, Sonali; Pandey, Dhruv K.

    2013-01-01

    Background: Educated women are known to take informed reproductive and healthcare decisions. These result in population stabilization and better infant care reflected by lower birth rates and infant mortality rates (IMRs), respectively. Materials and Methods: Our objective was to study the relationship of male and female literacy rates with crude birth rates (CBRs) and IMRs of the states and union territories (UTs) of India. The data were analyzed using linear regression. CBR and IMR were taken as the dependent variables; while the overall literacy rates, male, and female literacy rates were the independent variables. Results: CBRs were inversely related to literacy rates (slope parameter = −0.402, P < 0.001). On multiple linear regression with male and female literacy rates, a significant inverse relationship emerged between female literacy rate and CBR (slope = −0.363, P < 0.001), while male literacy rate was not significantly related to CBR (P = 0.674). IMR of the states were also inversely related to their literacy rates (slope = −1.254, P < 0.001). Multiple linear regression revealed a significant inverse relationship between IMR and female literacy (slope = −0.816, P = 0.031), whereas male literacy rate was not significantly related (P = 0.630). Conclusion: Female literacy is relatively highly important for both population stabilization and better infant health. PMID:26664840

  5. Predictive value of grade point average (GPA), Medical College Admission Test (MCAT), internal examinations (Block) and National Board of Medical Examiners (NBME) scores on Medical Council of Canada qualifying examination part I (MCCQE-1) scores.

    PubMed

    Roy, Banibrata; Ripstein, Ira; Perry, Kyle; Cohen, Barry

    2016-01-01

    To determine whether the pre-medical Grade Point Average (GPA), Medical College Admission Test (MCAT), Internal examinations (Block) and National Board of Medical Examiners (NBME) scores are correlated with and predict the Medical Council of Canada Qualifying Examination Part I (MCCQE-1) scores. Data from 392 admitted students in the graduating classes of 2010-2013 at University of Manitoba (UofM), College of Medicine was considered. Pearson's correlation to assess the strength of the relationship, multiple linear regression to estimate MCCQE-1 score and stepwise linear regression to investigate the amount of variance were employed. Complete data from 367 (94%) students were studied. The MCCQE-1 had a moderate-to-large positive correlation with NBME scores and Block scores but a low correlation with GPA and MCAT scores. The multiple linear regression model gives a good estimate of the MCCQE-1 (R2 =0.604). Stepwise regression analysis demonstrated that 59.2% of the variation in the MCCQE-1 was accounted for by the NBME, but only 1.9% by the Block exams, and negligible variation came from the GPA and the MCAT. Amongst all the examinations used at UofM, the NBME is most closely correlated with MCCQE-1.

  6. Causal relationship model between variables using linear regression to improve professional commitment of lecturer

    NASA Astrophysics Data System (ADS)

    Setyaningsih, S.

    2017-01-01

    The main element to build a leading university requires lecturer commitment in a professional manner. Commitment is measured through willpower, loyalty, pride, loyalty, and integrity as a professional lecturer. A total of 135 from 337 university lecturers were sampled to collect data. Data were analyzed using validity and reliability test and multiple linear regression. Many studies have found a link on the commitment of lecturers, but the basic cause of the causal relationship is generally neglected. These results indicate that the professional commitment of lecturers affected by variables empowerment, academic culture, and trust. The relationship model between variables is composed of three substructures. The first substructure consists of endogenous variables professional commitment and exogenous three variables, namely the academic culture, empowerment and trust, as well as residue variable ɛ y . The second substructure consists of one endogenous variable that is trust and two exogenous variables, namely empowerment and academic culture and the residue variable ɛ 3. The third substructure consists of one endogenous variable, namely the academic culture and exogenous variables, namely empowerment as well as residue variable ɛ 2. Multiple linear regression was used in the path model for each substructure. The results showed that the hypothesis has been proved and these findings provide empirical evidence that increasing the variables will have an impact on increasing the professional commitment of the lecturers.

  7. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques.

    PubMed

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2011-03-04

    Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Hierarchical Linear Modeling (HLM): An Introduction to Key Concepts within Cross-Sectional and Growth Modeling Frameworks. Technical Report #1308

    ERIC Educational Resources Information Center

    Anderson, Daniel

    2012-01-01

    This manuscript provides an overview of hierarchical linear modeling (HLM), as part of a series of papers covering topics relevant to consumers of educational research. HLM is tremendously flexible, allowing researchers to specify relations across multiple "levels" of the educational system (e.g., students, classrooms, schools, etc.).…

  9. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    NASA Astrophysics Data System (ADS)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  10. How does a planet excite multiple spiral arms?

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-01-01

    Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.

  11. Discovery of a complex linearly polarized spectrum of Betelgeuse dominated by depolarization of the continuum

    NASA Astrophysics Data System (ADS)

    Aurière, M.; López Ariste, A.; Mathias, P.; Lèbre, A.; Josselin, E.; Montargès, M.; Petit, P.; Chiavassa, A.; Paletou, F.; Fabas, N.; Konstantinova-Antova, R.; Donati, J.-F.; Grunhut, J. H.; Wade, G. A.; Herpin, F.; Kervella, P.; Perrin, G.; Tessore, B.

    2016-06-01

    Context. Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. Aims: We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. Methods: We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach, to investigate the presence of an averaged linearly polarized profile for the photospheric lines. Results: We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10-4 of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant Na I D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse continuum is due to the anisotropy of the radiation field induced by brightness spots at the surface and Rayleigh scattering in the atmosphere. We have developed a geometrical model to interpret the observed polarization, from which we infer the presence of two brightness spots and their positions on the surface of Betelgeuse. We show that applying the model to each velocity bin along the Stokes Q and U profiles allows the derivation of a map of the bright spots. We use the Narval linear polarization observations of Betelgeuse obtained over a period of 1.4 yr to study the evolution of the spots and of the atmosphere. Conclusions: Our study of the linearly polarized spectrum of Betelgeuse provides a novel method for studying the evolution of brightness spots at its surface and complements quasi-simultaneous observations obtained with PIONIER at the VLTI. Based on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France.

  12. Escaping the snare of chronological growth and launching a free curve alternative: general deviance as latent growth model.

    PubMed

    Wood, Phillip Karl; Jackson, Kristina M

    2013-08-01

    Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating "protective" or "launch" factors or as "developmental snares." These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of "general deviance" over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the "general deviance" model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of "general deviance" can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve model used by Hussong et al. For models including multiple constructs, a general deviance model involving a single trait and multimethod factors (or a corresponding hierarchical factor model) fit the data better than either the "snares" alternatives or the general deviance model previously considered by Hussong et al. Taken together, the analyses support the view that linkages and turning points cannot be contrasted with general deviance models absent additional experimental intervention or control.

  13. Escaping the snare of chronological growth and launching a free curve alternative: General deviance as latent growth model

    PubMed Central

    WOOD, PHILLIP KARL; JACKSON, KRISTINA M.

    2014-01-01

    Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating “protective” or “launch” factors or as “developmental snares.” These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of “general deviance” over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the “general deviance” model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of “general deviance” can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve model used by Hussong et al. For models including multiple constructs, a general deviance model involving a single trait and multimethod factors (or a corresponding hierarchical factor model) fit the data better than either the “snares” alternatives or the general deviance model previously considered by Hussong et al. Taken together, the analyses support the view that linkages and turning points cannot be contrasted with general deviance models absent additional experimental intervention or control. PMID:23880389

  14. Predicting VO[subscript 2max] in College-Aged Participants Using Cycle Ergometry and Perceived Functional Ability

    ERIC Educational Resources Information Center

    Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.

    2010-01-01

    The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…

  15. Too Much of a Good Thing? How Breadth of Extracurricular Participation Relates to School-Related Affect and Academic Outcomes during Adolescence

    ERIC Educational Resources Information Center

    Knifsend, Casey A.; Graham, Sandra

    2012-01-01

    Although adolescents often participate in multiple extracurricular activities, little research has examined how the breadth of activities in which an adolescent is involved relates to school-related affect and academic performance. Relying on a large, multi-ethnic sample (N = 864; 55.9% female), the current study investigated linear and non-linear…

  16. Formative Assessment by First-Year Chemistry Students as Predictor of Success in Summative Assessment at a South African University

    ERIC Educational Resources Information Center

    Siweya, Hlengani J.; Letsoalo, Peter

    2014-01-01

    This study investigated whether formative assessment is a predictor of summative assessment in a university first-year chemistry class. The sample comprised a total of 1687 first-year chemistry students chosen from the 2011 and 2012 cohorts. Both simple and multiple linear regression (SLR and MLR) techniques were applied to perform the primary aim…

  17. Role of multiparton interactions on J /ψ production in p +p collisions at LHC energies

    NASA Astrophysics Data System (ADS)

    Thakur, Dhananjaya; De, Sudipan; Sahoo, Raghunath; Dansana, Soumya

    2018-05-01

    The production mechanism of quarkonia states in hadronic collisions is still to be understood by the scientific community. In high-multiplicity p +p collisions, underlying event observables are of major interest. The multiparton interactions (MPIs) are underlying event observables, in which several interactions occur at the partonic level in a single p +p event. This leads to dependence of particle production on event multiplicity. If the MPI occurs in a harder scale, there will be a correlation between the yield of quarkonia and total charged-particle multiplicity. The ALICE experiment at the LHC in p +p collisions at √{s }=7 and 13 TeV has observed an approximate linear increase of relative J /ψ yield, (d/NJ /ψ/d y ⟨d NJ /ψ/d y ⟩ ), with relative charged-particle multiplicity density, (d/Nch/d y ⟨d Nch/d y ⟩ ). In our present work, we have performed a comprehensive study of the production of charmonia as a function of charged-particle multiplicity in p +p collisions at LHC energies using the perturbative QCD-inspired multiparton interaction model, pythia8 tune 4C, with and without the color reconnection scheme. A detailed multiplicity and energy-dependent study is performed to understand the effects of MPI on J /ψ production. The ratio of ψ (2 S ) to J /ψ is also studied as a function of charged-particle multiplicity at LHC energies.

  18. Organometallic chemical vapor deposition and characterization of ZnGeP2/GaP multiple heterostructures on GaP substrates

    NASA Technical Reports Server (NTRS)

    Xing, G. C.; Bachmann, Klaus J.

    1993-01-01

    The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.

  19. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  20. Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: Analysis of 2008-2010 Korean National Health and Nutrition Examination Survey data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yangho; Lee, Byung-Kook, E-mail: bklee@sch.ac.kr

    Introduction: The objective of this study was to evaluate associations between blood lead, cadmium, and mercury levels with estimated glomerular filtration rate in a general population of South Korean adults. Methods: This was a cross-sectional study based on data obtained in the Korean National Health and Nutrition Examination Survey (KNHANES) (2008-2010). The final analytical sample consisted of 5924 participants. Estimated glomerular filtration rate (eGFR) was calculated using the MDRD Study equation as an indicator of glomerular function. Results: In multiple linear regression analysis of log2-transformed blood lead as a continuous variable on eGFR, after adjusting for covariates including cadmium andmore » mercury, the difference in eGFR levels associated with doubling of blood lead were -2.624 mL/min per 1.73 m Superscript-Two (95% CI: -3.803 to -1.445). In multiple linear regression analysis using quartiles of blood lead as the independent variable, the difference in eGFR levels comparing participants in the highest versus the lowest quartiles of blood lead was -3.835 mL/min per 1.73 m Superscript-Two (95% CI: -5.730 to -1.939). In a multiple linear regression analysis using blood cadmium and mercury, as continuous or categorical variables, as independent variables, neither metal was a significant predictor of eGFR. Odds ratios (ORs) and 95% CI values for reduced eGFR calculated for log2-transformed blood metals and quartiles of the three metals showed similar trends after adjustment for covariates. Discussion: In this large, representative sample of South Korean adults, elevated blood lead level was consistently associated with lower eGFR levels and with the prevalence of reduced eGFR even in blood lead levels below 10 {mu}g/dL. In conclusion, elevated blood lead level was associated with lower eGFR in a Korean general population, supporting the role of lead as a risk factor for chronic kidney disease.« less

  1. Testing a single regression coefficient in high dimensional linear models

    PubMed Central

    Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling

    2017-01-01

    In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z-test to assess the significance of each covariate. Based on the p-value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively. PMID:28663668

  2. Testing a single regression coefficient in high dimensional linear models.

    PubMed

    Lan, Wei; Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling

    2016-11-01

    In linear regression models with high dimensional data, the classical z -test (or t -test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z -test to assess the significance of each covariate. Based on the p -value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively.

  3. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    PubMed

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  4. Impact of Texas high school science teacher credentials on student performance in high school science

    NASA Astrophysics Data System (ADS)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  5. Multiple Long-Time Solutions for Intermediate Reynolds Number Flow past a Circular Cylinder with a Nonlinear Inertial and Dissipative Attachment

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine B. E.; Bergman, Lawrence A.; Vakakis, Alexander F.; Pearlstein, Arne J.

    2016-11-01

    We consider two-dimensional flow past a linearly-sprung cylinder allowed to undergo rectilinear motion normal to the mean flow, with an attached "nonlinear energy sink" consisting of a mass allowed to rotate about the cylinder axis, and whose rotational motion is linearly damped by a viscous damper. For Re < 50, where the flow is expected to be two-dimensional, we use different inlet transients to identify multiple long-time solutions, and to study how they depend on Re and a dimensionless spring constant. For fixed values of the ratio of cylinder density to fluid density, dimensionless damping coefficient, and ratio of the rotating mass to the total mass, we find that different inlet transients lead to different long-time solutions, including solutions that are steady and symmetric (with a motionless cylinder), time-periodic, quasi-periodic, and chaotic. The results show that over a wide range of the parameters, the steady symmetric motionless-cylinder solution is locally, but not globally, stable. Supported by NSF Grant CMMI-1363231.

  6. Association of Alimentary Factors and Nutritional Status with Caries in Children of Leon, Mexico.

    PubMed

    Guizar, Juan Manuel; Muñoz, Nathalie; Amador, Norma; Garcia, Gabriela

    To determine the association between types of food consumed, nutritional status (BMI) and caries in schoolchildren. A cross-sectional study was performed with 224 schoolchildren 6 to 12 years of age. DMFT/ dmft indices, level of oral hygiene, nutritional status as quantified by BMI and types of food consumed were determined in all participants. Data were analysed using multiple linear regression with significance set at p < 0.05. Caries prevalence was 36%. In the multiple linear regression analysis adjusted for BMI, variables related to a higher number of caries were younger age and lower intake of vitamin D, calcium and fiber, with higher consumption of phosphorous and carbohydrates (R2 = 0.30; p < 0.0001 for the model). Sweetened softdrinks and chewy candy were risk factors for higher caries prevalence, while consuming milk and carrots were protectors. Caries in schoolchildren is highly prevalent in this community and is related to younger age and lower intake of vitamin D, calcium and fiber, but a higher consumption of phosphorous and carbohydrates. No relationship was found between caries and nutritional status.

  7. The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses

    NASA Astrophysics Data System (ADS)

    Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.

    2008-12-01

    The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.

  8. Nonlinear modeling of wave-topography interactions, shear instabilities and shear induced wave breaking using vortex method

    NASA Astrophysics Data System (ADS)

    Guha, Anirban

    2017-11-01

    Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.

  9. Power amplifier linearization technique with IQ imbalance and crosstalk compensation for broadband MIMO-OFDM transmitters

    NASA Astrophysics Data System (ADS)

    Gregorio, Fernando; Cousseau, Juan; Werner, Stefan; Riihonen, Taneli; Wichman, Risto

    2011-12-01

    The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM) systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ) modulator to translate the predistorted baseband signal to RF. Furthermore, the coupling effects, which occur when the MIMO paths are implemented in the same reduced size chipset, cannot be avoided in MIMO transceivers structures. This study proposes a MIMO-PD system that linearizes the power amplifier response and compensates nonlinear crosstalk and IQ imbalance effects for each branch of the multiantenna system. Efficient recursive algorithms are presented to estimate the complete MIMO-PD coefficients. The algorithms avoid the high computational complexity in previous solutions based on least squares estimation. The performance of the proposed MIMO-PD structure is validated by simulations using a two-transmitter antenna MIMO system. Error vector magnitude and adjacent channel power ratio are evaluated showing significant improvement compared with conventional MIMO-PD systems.

  10. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    PubMed Central

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666

  11. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.

    PubMed

    Golmohammadi, Hassan

    2009-11-30

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.

  12. DSPCP: A Data Scalable Approach for Identifying Relationships in Parallel Coordinates.

    PubMed

    Nguyen, Hoa; Rosen, Paul

    2018-03-01

    Parallel coordinates plots (PCPs) are a well-studied technique for exploring multi-attribute datasets. In many situations, users find them a flexible method to analyze and interact with data. Unfortunately, using PCPs becomes challenging as the number of data items grows large or multiple trends within the data mix in the visualization. The resulting overdraw can obscure important features. A number of modifications to PCPs have been proposed, including using color, opacity, smooth curves, frequency, density, and animation to mitigate this problem. However, these modified PCPs tend to have their own limitations in the kinds of relationships they emphasize. We propose a new data scalable design for representing and exploring data relationships in PCPs. The approach exploits the point/line duality property of PCPs and a local linear assumption of data to extract and represent relationship summarizations. This approach simultaneously shows relationships in the data and the consistency of those relationships. Our approach supports various visualization tasks, including mixed linear and nonlinear pattern identification, noise detection, and outlier detection, all in large data. We demonstrate these tasks on multiple synthetic and real-world datasets.

  13. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research.

  14. Destination bedside: using research findings to visualize optimal unit layouts and health information technology in support of bedside care.

    PubMed

    Watkins, Nicholas; Kennedy, Mary; Lee, Nelson; O'Neill, Michael; Peavey, Erin; Ducharme, Maria; Padula, Cynthia

    2012-05-01

    This study explored the impact of unit design and healthcare information technology (HIT) on nursing workflow and patient-centered care (PCC). Healthcare information technology and unit layout-related predictors of nursing workflow and PCC were measured during a 3-phase study involving questionnaires and work sampling methods. Stepwise multiple linear regressions demonstrated several HIT and unit layout-related factors that impact nursing workflow and PCC.

  15. A policy-capturing study of the simultaneous effects of fit with jobs, groups, and organizations.

    PubMed

    Kristof-Brown, Amy L; Jansen, Karen J; Colbert, Amy E

    2002-10-01

    The authors report an experimental policy-capturing study that examines the simultaneous impact of person-job (PJ), person-group (PG), and person-organization (PO) fit on work satisfaction. Using hierarchical linear modeling, the authors determined that all 3 types of fit had important, independent effects on satisfaction. Work experience explained systematic differences in how participants weighted each type of fit. Multiple interactions also showed participants used complex strategies for combining fit cues.

  16. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  17. Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly.

    PubMed

    Lind, Lars; Zethelius, Björn; Salihovic, Samira; van Bavel, Bert; Lind, P Monica

    2014-03-01

    Several environmental contaminants, such as polychlorinated biphenyls, dioxins, bisphenol A and phthalates, have been linked to diabetes. We therefore investigated whether other kinds of contaminants, perfluoroalkyl substances (PFAS), also called perfluorinated compounds (PFCs), are also associated with diabetes. The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study investigated 1,016 men and women aged 70 years. Seven PFAS were detected in almost all participant sera by ultra-high performance liquid chromatograph/tandem mass spectrometry. Diabetes was defined as use of hypoglycaemic agents or fasting glucose >7.0 mmol/l. 114 people had diabetes. In the linear analysis, no significant relationships were seen between the seven PFAS and prevalent diabetes. However, inclusion of the quadratic terms of the PFAS revealed a significant non-linear relationship between perfluorononanoic acid (PFNA) and diabetes, even after adjusting for multiple confounders (OR 1.96, 95% CI 1.19, 3.22, p = 0.008 for the linear term and OR 1.25, 95% CI 1.08, 1.44, p = 0.002 for the quadratic term). Perfluorooctanoic acid (PFOA) also showed such a relationship (p = 0.01). PFOA was related to the proinsulin/insulin ratio (a marker of insulin secretion), but none of the PFAS was related to the HOMA-IR (a marker of insulin resistance) following adjustment for multiple confounders. PFNA was related to prevalent diabetes in a non-monotonic fashion in this cross-sectional study, supporting the view that this perfluoroalkyl substance might influence glucose metabolism in humans at the level of exposure seen in the general elderly population.

  18. Locomotive syndrome is associated not only with physical capacity but also degree of depression.

    PubMed

    Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro

    2016-05-01

    Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  19. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    NASA Astrophysics Data System (ADS)

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude (σl<~1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which are physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S3, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated.

  20. N-Way FRET Microscopy of Multiple Protein-Protein Interactions in Live Cells

    PubMed Central

    Hoppe, Adam D.; Scott, Brandon L.; Welliver, Timothy P.; Straight, Samuel W.; Swanson, Joel A.

    2013-01-01

    Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells. PMID:23762252

  1. FPGA/NIOS Implementation of an Adaptive FIR Filter Using Linear Prediction to Reduce Narrow-Band RFI for Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; van den Berg, Ad M.

    2013-10-01

    We present the FPGA/NIOS implementation of an adaptive finite impulse response (FIR) filter based on linear prediction to suppress radio frequency interference (RFI). This technique will be used for experiments that observe coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays. These experiments are designed to make a detailed study of the development of the electromagnetic part of air showers. Therefore, these radio signals provide information that is complementary to that obtained by water-Cherenkov detectors which are predominantly sensitive to the particle content of an air shower at ground. The radio signals from air showers are caused by the coherent emission due to geomagnetic and charge-excess processes. These emissions can be observed in the frequency band between 10-100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. A FIR filter implemented in the FPGA logic segment of the front-end electronics of a radio sensor significantly improves the signal-to-noise ratio. In this paper we discuss an adaptive filter which is based on linear prediction. The coefficients for the linear predictor (LP) are dynamically refreshed and calculated in the embedded NIOS processor, which is implemented in the same FPGA chip. The Levinson recursion, used to obtain the filter coefficients, is also implemented in the NIOS and is partially supported by direct multiplication in the DSP blocks of the logic FPGA segment. Tests confirm that the LP can be an alternative to other methods involving multiple time-to-frequency domain conversions using an FFT procedure. These multiple conversions draw heavily on the power consumption of the FPGA and are avoided by the linear prediction approach. Minimization of the power consumption is an important issue because the final system will be powered by solar panels. The FIR filter has been successfully tested in the Altera development kits with the EP4CE115F29C7 from the Cyclone IV family and the EP3C120F780C7 from the Cyclone III family at a 170 MHz sampling rate, a 12-bit I/O resolution, and an internal 30-bit dynamic range. Most of the slow floating-point NIOS calculations have been moved to the FPGA logic segments as extended fixed-point operations, which significantly reduced the refreshing time of the coefficients used in the LP. We conclude that the LP is a viable alternative to other methods such as non-adaptive methods involving digital notch filters or multiple time-to-frequency domain conversions using an FFT procedure.

  2. [Non-linear canonical correlation analysis between anthropometric indicators and multiple metabolic abnormalities].

    PubMed

    Fu, Xiaoli; Liu, Li; Ping, Zhiguang; Li, Linlin

    2013-09-01

    To define the general correlation between anthropometric indicators and multiple metabolic abnormalities, and to put forward some particular suggestions for the prevention of multiple metabolic abnormalities. A random cluster sampling was carried out in one county of Henan Province. Questionnaire, physical examination and biochemical tests were admitted to the adult inhabitants. Non-linear canonical correlation analysis (NLCCA) was applied with OVERALS of SPSS 13.0. The coefficients of canonical correlation and multiple correlation were calculated. The plot of centroids labeled by variables showed the correlation among various indicators. In total, 2,914 objects were investigated. It included 1,134 (38.9%) males and 1,780 (61.1%) females (60.0%). The average age was (50.58 +/- 13.70) years old. The fitting result of NLCCA were as follows: the loss of 0.577 accounting for 28.8% of the total variation was relatively small, and indicated that the two sets of variables of this study, namely sets of biochemical indicators (including serum total cholesterol, total triglyceride, high-density lipoprotein cholesterol, low density lipoprotein cholesterol and fasting plasma glucose) and sets of others (including gender, BMI and waist circumference) were closely related and often changed synchronously. Multivariate correlation coefficient showed that internal indicators of the above two sets were closely related respectively and often showed the multiple anomalies of the same set. The diagram of the center of gravity of the association of various indicators showed that the symptoms of metabolic abnormalities increased with age. Women were more liable to have metabolic abnormalities. Overweight and obese people often suffer multiple metabolic disorders. Waist circumference was positively correlated with metabolic abnormalities. (1) Biochemical indicators and anthropometric often change in combination. (2) Much attention should be paid to older people especially middle-aged or older men and older women in primary prevention. (3) Overweight and abdominal obesity can be considered the sensitive predictive indicator of multiple metabolic abnormalities. (4) Nonlinear canonical correlation and center of gravity Figure had the advantage of analyze the correlation between multiple sets of variables.

  3. Ultrasonic Fluid Quality Sensor System

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2003-10-21

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  4. Ultrasonic fluid quality sensor system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2002-10-08

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  5. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  6. Estimation in Linear Systems Featuring Correlated Uncertain Observations Coming from Multiple Sensors

    NASA Astrophysics Data System (ADS)

    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.

    2009-08-01

    In this paper, the state least-squares linear estimation problem from correlated uncertain observations coming from multiple sensors is addressed. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the uncertainty in the observations is characterized by a set of Bernoulli random variables which are only correlated at consecutive time instants. Assuming that the statistical properties of such variables are not necessarily the same for all the sensors, a recursive filtering algorithm is proposed, and the performance of the estimators is illustrated by a numerical simulation example wherein a signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.

  7. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing.

    PubMed

    Wang, Lixian; Nejad, Reza Mirzaei; Corsi, Alessandro; Lin, Jiachuan; Messaddeq, Younès; Rusch, Leslie; LaRochelle, Sophie

    2017-05-15

    We experimentally investigate mode-division multiplexing in an elliptical ring core fiber (ERCF) that supports linearly polarized vector modes (LPV). Characterization show that the ERCF exhibits good polarization maintaining properties over eight LPV modes with effective index difference larger than 1 × 10 -4 . The ERCF further displays stable mode power and polarization extinction ratio when subjected to external perturbations. Crosstalk between the LPV modes, after propagating through 0.9 km ERCF, is below -14 dB. By using six LPV modes as independent data channels, we achieved the transmission of 32 Gbaud QPSK over 0.9 km ERCF without any multiple-input-multiple-output (MIMO) or polarization-division multiplexing (PDM) signal processing.

  8. Optical computing using optical flip-flops in Fourier processors: use in matrix multiplication and discrete linear transforms.

    PubMed

    Ando, S; Sekine, S; Mita, M; Katsuo, S

    1989-12-15

    An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.

  9. A parametric LQ approach to multiobjective control system design

    NASA Technical Reports Server (NTRS)

    Kyr, Douglas E.; Buchner, Marc

    1988-01-01

    The synthesis of a constant parameter output feedback control law of constrained structure is set in a multiple objective linear quadratic regulator (MOLQR) framework. The use of intuitive objective functions such as model-following ability and closed-loop trajectory sensitivity, allow multiple objective decision making techniques, such as the surrogate worth tradeoff method, to be applied. For the continuous-time deterministic problem with an infinite time horizon, dynamic compensators as well as static output feedback controllers can be synthesized using a descent Anderson-Moore algorithm modified to impose linear equality constraints on the feedback gains by moving in feasible directions. Results of three different examples are presented, including a unique reformulation of the sensitivity reduction problem.

  10. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  11. Nonlinear Diophantine equation 11 x +13 y = z 2

    NASA Astrophysics Data System (ADS)

    Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.

    2018-03-01

    This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.

  12. Goal programming for land use planning.

    Treesearch

    Enoch F. Bell

    1976-01-01

    A simple transformation of the linear programing model used in land use planning to a goal programing model allows the multiple goals implied by multiple use management to be explicitly recognized. This report outlines the procedure for accomplishing the transformation and discusses problems with use of goal programing. Of particular concern are the expert opinions...

  13. Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Su, Yi

    2010-05-01

    This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.

  14. On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN

    NASA Astrophysics Data System (ADS)

    Patriarchi, P.; Perinotto, M.

    The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.

  15. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J; Bernard, D; Liao, Y

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcsmore » with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.« less

  16. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.

    PubMed

    Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W

    2016-02-01

    This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.

  17. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification.

    PubMed

    Peng, Jian; Tian, Lu; Liu, Yanxu; Zhao, Mingyue; Hu, Yi'na; Wu, Jiansheng

    2017-12-31

    Ecosystem service is the key comprehensive indicator for measuring the ecological effects of urbanization. Although various studies have found a causal relationship between urbanization and ecosystem services degradation, the linear or non-linear characteristics are still unclear, especially identifying the impact thresholds in this relationship. This study quantified four ecosystem services (i.e. soil conservation, carbon sequestration and oxygen production, water yield, and food production) and total ecosystem services (TES), and then identified multiple advantageous area of ecosystem services in the peri-urban area of Beijing City. Using piecewise linear regression, the response of TES to urbanization (i.e., population density, GDP density, and construction land proportion) and its thresholds were detected. The results showed that, the TES was high in the north and west and low in the southeast, and there were seven multiple advantageous areas (distributed in the new urban development zone and ecological conservation zone), one single advantageous area (distributed in the ecological conservation zone), and six disadvantageous areas (mainly distributed in the urban function extended zone). TES response to population and economic urbanization each had a threshold (229personkm -2 and 107.15millionyuankm -2 , respectively), above which TES decreased rapidly with intensifying urbanization. However, there was a negative linear relationship between land urbanization and TES, which indicated that the impact of land urbanization on ecosystem services was more direct and effective than that of population and economic urbanization. It was also found that the negative impact of urbanization on TES was highest in the urban function extended zone, followed in descending order by that in the new urban development zone and ecological conservation zone. According to the detected relationships between urbanization and TES, the economic and population urbanization should be strengthened accompanied by slowing or even reducing land urbanization, so as to achieve urban ecological sustainability with less ecosystem services degradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multivariate meta-analysis using individual participant data.

    PubMed

    Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R

    2015-06-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.

  19. Multiple spatially localized dynamical states in friction-excited oscillator chains

    NASA Astrophysics Data System (ADS)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  20. Linear indices of the "molecular pseudograph's atom adjacency matrix": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors.

    PubMed

    Marrero-Ponce, Yovani

    2004-01-01

    This report describes a new set of molecular descriptors of relevance to QSAR/QSPR studies and drug design, atom linear indices fk(xi). These atomic level chemical descriptors are based on the calculation of linear maps on Rn[fk(xi): Rn--> Rn] in canonical basis. In this context, the kth power of the molecular pseudograph's atom adjacency matrix [Mk(G)] denotes the matrix of fk(xi) with respect to the canonical basis. In addition, a local-fragment (atom-type) formalism was developed. The kth atom-type linear indices are calculated by summing the kth atom linear indices of all atoms of the same atom type in the molecules. Moreover, total (whole-molecule) linear indices are also proposed. This descriptor is a linear functional (linear form) on Rn. That is, the kth total linear indices is a linear map from Rn to the scalar R[ fk(x): Rn --> R]. Thus, the kth total linear indices are calculated by summing the atom linear indices of all atoms in the molecule. The features of the kth total and local linear indices are illustrated by examples of various types of molecular structures, including chain-lengthening, branching, heteroatoms-content, and multiple bonds. Additionally, the linear independence of the local linear indices to other 0D, 1D, 2D, and 3D molecular descriptors is demonstrated by using principal component analysis for 42 very heterogeneous molecules. Much redundancy and overlapping was found among total linear indices and most of the other structural indices presently in use in the QSPR/QSAR practice. On the contrary, the information carried by atom-type linear indices was strikingly different from that codified in most of the 229 0D-3D molecular descriptors used in this study. It is concluded that the local linear indices are an independent indices containing important structural information to be used in QSPR/QSAR and drug design studies. In this sense, atom, atom-type, and total linear indices were used for the prediction of pIC50 values for the cleavage process of a set of flavone derivatives inhibitors of HIV-1 integrase. Quantitative models found are significant from a statistical point of view (R of 0.965, 0.902, and 0.927, respectively) and permit a clear interpretation of the studied properties in terms of the structural features of molecules. A LOO cross-validation procedure revealed that the regression models had a fairly good predictability (q2 of 0.679, 0.543, and 0.721, respectively). The comparison with other approaches reveals good behavior of the method proposed. The approach described in this paper appears to be an excellent alternative or guides for discovery and optimization of new lead compounds.

  1. Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing.

    PubMed

    Sarkar, Debina; Oghabian, Ali; Bodiyabadu, Pasani K; Joseph, Wayne R; Leung, Euphemia Y; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2017-06-27

    The long non-coding RNA ANRIL , antisense to the CDKN2B locus, is transcribed from a gene that encompasses multiple disease-associated polymorphisms. Despite the identification of multiple isoforms of ANRIL , expression of certain transcripts has been found to be tissue-specific and the characterisation of ANRIL transcripts remains incomplete. Several functions have been associated with ANRIL . In our judgement, studies on ANRIL functionality are premature pending a more complete appreciation of the profusion of isoforms. We found differential expression of ANRIL exons, which indicates that multiple isoforms exist in melanoma cells. In addition to linear isoforms, we identified circular forms of ANRIL ( circANRIL ). Further characterisation of circANR IL in two patient-derived metastatic melanoma cell lines (NZM7 and NZM37) revealed the existence of a rich assortment of circular isoforms. Moreover, in the two melanoma cell lines investigated, the complements of circANRIL isoforms were almost completely different. Novel exons were also discovered. We also found the family of linear ANRIL was enriched in the nucleus, whilst the circular isoforms were enriched in the cytoplasm and they differed markedly in stability. With respect to the variable processing of circANRIL species, bioinformatic analysis indicated that intronic Arthrobacter luteus (Alu) restriction endonuclease inverted repeats and exon skipping were not involved in selection of back-spliced exon junctions. Based on our findings, we hypothesise that " ANRIL " has wholly distinct dual sets of functions in melanoma. This reveals the dynamic nature of the locus and constitutes a basis for investigating the functions of ANRIL in melanoma.

  2. Consistency between hydrological models and field observations: Linking processes at the hillslope scale to hydrological responses at the watershed scale

    USGS Publications Warehouse

    Clark, M.P.; Rupp, D.E.; Woods, R.A.; Tromp-van, Meerveld; Peters, N.E.; Freer, J.E.

    2009-01-01

    The purpose of this paper is to identify simple connections between observations of hydrological processes at the hillslope scale and observations of the response of watersheds following rainfall, with a view to building a parsimonious model of catchment processes. The focus is on the well-studied Panola Mountain Research Watershed (PMRW), Georgia, USA. Recession analysis of discharge Q shows that while the relationship between dQ/dt and Q is approximately consistent with a linear reservoir for the hillslope, there is a deviation from linearity that becomes progressively larger with increasing spatial scale. To account for these scale differences conceptual models of streamflow recession are defined at both the hillslope scale and the watershed scale, and an assessment made as to whether models at the hillslope scale can be aggregated to be consistent with models at the watershed scale. Results from this study show that a model with parallel linear reservoirs provides the most plausible explanation (of those tested) for both the linear hillslope response to rainfall and non-linear recession behaviour observed at the watershed outlet. In this model each linear reservoir is associated with a landscape type. The parallel reservoir model is consistent with both geochemical analyses of hydrological flow paths and water balance estimates of bedrock recharge. Overall, this study demonstrates that standard approaches of using recession analysis to identify the functional form of storage-discharge relationships identify model structures that are inconsistent with field evidence, and that recession analysis at multiple spatial scales can provide useful insights into catchment behaviour. Copyright ?? 2008 John Wiley & Sons, Ltd.

  3. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  4. Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays.

    PubMed

    Gori, Alessandro; Cretich, Marina; Vanna, Renzo; Sola, Laura; Gagni, Paola; Bruni, Giulia; Liprino, Marta; Gramatica, Furio; Burastero, Samuele; Chiari, Marcella

    2017-08-29

    Multiple ligand presentation is a powerful strategy to enhance the affinity of a probe for its corresponding target. A promising application of this concept lies in the analytical field, where surface immobilized probes interact with their corresponding targets in the context of complex biological samples. Here we investigate the effect of multiple epitope presentation (MEP) in the challenging context of IgE-detection in serum samples using peptide microarrays, and evaluate the influence of probes surface density on the assay results. Using the milk allergen alpha-lactalbumin as a model, we have synthesized three immunoreactive epitope sequences in a linear, branched and tandem form and exploited a chemoselective click strategy (CuAAC) for their immobilization on the surface of two biosensors, a microarray and an SPR chip both modified with the same clickable polymeric coating. We first demonstrated that a fine tuning of the surface peptide density plays a crucial role to fully exploit the potential of oriented and multiple peptide display. We then compared the three multiple epitope presentations in a microarray assay using sera samples from milk allergic patients, confirming that a multiple presentation, in particular that of the tandem construct, allows for a more efficient characterization of IgE-binding fingerprints at a statistically significant level. To gain insights on the binding parameters that characterize antibody/epitopes affinity, we selected the most reactive epitope of the series (LAC1) and performed a Surface Plasmon Resonance Imaging (SPRi) analysis comparing different epitope architectures (linear versus branched versus tandem). We demonstrated that the tandem peptide provides an approximately twofold increased binding capacity with respect to the linear and branched peptides, that could be attributed to a lower rate of dissociation (K d ). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Building "e-rater"® Scoring Models Using Machine Learning Methods. Research Report. ETS RR-16-04

    ERIC Educational Resources Information Center

    Chen, Jing; Fife, James H.; Bejar, Isaac I.; Rupp, André A.

    2016-01-01

    The "e-rater"® automated scoring engine used at Educational Testing Service (ETS) scores the writing quality of essays. In the current practice, e-rater scores are generated via a multiple linear regression (MLR) model as a linear combination of various features evaluated for each essay and human scores as the outcome variable. This…

  6. The Effects of the Concrete-Representational-Abstract Integration Strategy on the Ability of Students with Learning Disabilities to Multiply Linear Expressions within Area Problems

    ERIC Educational Resources Information Center

    Strickland, Tricia K.; Maccini, Paula

    2013-01-01

    We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…

  7. Simultaneous spectrophotometric determination of salbutamol and bromhexine in tablets.

    PubMed

    Habib, I H I; Hassouna, M E M; Zaki, G A

    2005-03-01

    Typical anti-mucolytic drugs called salbutamol hydrochloride and bromhexine sulfate encountered in tablets were determined simultaneously either by using linear regression at zero-crossing wavelengths of the first derivation of UV-spectra or by application of multiple linear partial least squares regression method. The results obtained by the two proposed mathematical methods were compared with those obtained by the HPLC technique.

  8. Maximizing the Information and Validity of a Linear Composite in the Factor Analysis Model for Continuous Item Responses

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2008-01-01

    This paper develops results and procedures for obtaining linear composites of factor scores that maximize: (a) test information, and (b) validity with respect to external variables in the multiple factor analysis (FA) model. I treat FA as a multidimensional item response theory model, and use Ackerman's multidimensional information approach based…

  9. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    PubMed

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  10. Nonlinear multiplicative dendritic integration in neuron and network models

    PubMed Central

    Zhang, Danke; Li, Yuanqing; Rasch, Malte J.; Wu, Si

    2013-01-01

    Neurons receive inputs from thousands of synapses distributed across dendritic trees of complex morphology. It is known that dendritic integration of excitatory and inhibitory synapses can be highly non-linear in reality and can heavily depend on the exact location and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite this known fact, most neuron models used in artificial neural networks today still only describe the voltage potential of a single somatic compartment and assume a simple linear summation of all individual synaptic inputs. We here suggest a new biophysical motivated derivation of a single compartment model that integrates the non-linear effects of shunting inhibition, where an inhibitory input on the route of an excitatory input to the soma cancels or “shunts” the excitatory potential. In particular, our integration of non-linear dendritic processing into the neuron model follows a simple multiplicative rule, suggested recently by experiments, and allows for strict mathematical treatment of network effects. Using our new formulation, we further devised a spiking network model where inhibitory neurons act as global shunting gates, and show that the network exhibits persistent activity in a low firing regime. PMID:23658543

  11. Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data.

    PubMed

    McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen

    2016-05-15

    Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach

    PubMed Central

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim. I.; Arif, Usman

    2017-01-01

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy. PMID:28420214

  13. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiebel-Kalish, Hadas, E-mail: kalishhadas@gmail.com; Sackler School of Medicine, Tel Aviv University, Tel Aviv; Reich, Ehud

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up atmore » our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.« less

  14. Pharmacokinetic study of single- and multiple-dosing with metolazone tablets in healthy Chinese population.

    PubMed

    Li, Xueqing; Wang, Rutao; Liu, Yang; Liu, Yun; Zheng, Heng; Feng, Yabo; Zhao, Na; Geng, Hongbin; Zhang, Wanzhi; Wen, Aidong

    2017-11-16

    Metolazone is a diuretic, saluretic and antihypertensive chemical compound from the quinazoline category that possesses medicinal features similar to those of other thiazide diuretic drugs. However, the pharmacokinetics of metolazone in the Chinese population has rarely been studied. This study aimed to examine the pharmacokinetic characteristics, safety characteristic, and tolerability of metolazone in healthy Chinese subjects after single and multiple doses taken orally as well as the effects that food and gender have on oral metolazone pharmacokinetic parameters. An open-label, randomized, and single- and multiple-dosing investigation was performed in healthy Chinese subjects. The investigation included 3 study groups: the 0.5 mg, 1 mg and 2 mg dose groups were the single-dose study groups in the first stage. Eligible volunteers were randomly and orally administered a single 0.5 mg, 1 mg, or 2 mg metolazone tablet. The 0.5 mg dose group was also part of the multiple-dose study group, and the 1 mg dose group was the food-effect study group in the second stage. Human plasma samples were gathered pre-dosing and up to 48 h after dosing. The human plasma sample concentration of metolazone was quantified using a validated liquid chromatography tandem mass spectrometry method. Pharmacokinetic data were calculated by a noncompartmental analysis method using WinNonlin version 6.4. Tolerability was evaluated based on adverse events, medical examination, 12-lead ECG, and other clinical laboratory exams. Thirty eligible subjects (15 men and 15 women) were registered in our investigation and completed all of the study stages. The AUC and C max showed dose proportionality after a single dose based on the linear-regression analysis. A comparison of the pharmacokinetic data revealed that the differences between the male and female groups were not statistically significant. The t max of metolazone was increased by approximately 100% in the fed condition. Metolazone was well tolerated at the tested dose, and no adverse effects were observed. Single dosing with 0.5 mg, 1 mg, or 2 mg metolazone yielded linear plasma pharmacokinetic properties in healthy Chinese subjects. Multiple oral doses of metolazone did not display significantly different distributions or elimination characteristics from those observed for a single dose. Gender factors did not appear to influence the pharmacokinetic parameter variation of metolazone. The t max of metolazone increased in the fed condition. Metolazone was well tolerated at the tested dose in this study. This investigation is retrospectively registered at chictr.org.cn (ChiCTR-IIR-17012929, October 09 2017).

  15. Hybrid Discrete-Continuous Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich

    2003-01-01

    This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.

  16. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  17. Solution of linear systems by a singular perturbation technique

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1976-01-01

    An approximate solution is obtained for a singularly perturbed system of initial valued, time invariant, linear differential equations with multiple boundary layers. Conditions are stated under which the approximate solution converges uniformly to the exact solution as the perturbation parameter tends to zero. The solution is obtained by the method of matched asymptotic expansions. Use of the results for obtaining approximate solutions of general linear systems is discussed. An example is considered to illustrate the method and it is shown that the formulas derived give a readily computed uniform approximation.

  18. TI-59 Programs for Multiple Regression.

    DTIC Science & Technology

    1980-05-01

    general linear hypothesis model of full rank [ Graybill , 19611 can be written as Y = x 8 + C , s-N(O,o 2I) nxl nxk kxl nxl where Y is the vector of n...a "reduced model " solution, and confidence intervals for linear functions of the coefficients can be obtained using (x’x) and a2, based on the t...O107)l UA.LLL. Library ModuIe NASTER -Puter 0NTINA Cards 1 PROGRAM DESCRIPTION (s s 2 ror the general linear hypothesis model Y - XO + C’ calculates

  19. Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays

    PubMed Central

    Yao, Nan; Yan, Liang; Wang, Tianyi; Wang, Shaoping

    2017-01-01

    The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation. PMID:29156577

  20. A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.

    PubMed

    Hu, Shoubo; Chen, Zhitang; Chan, Laiwan

    2018-05-01

    Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.

Top