Sample records for study non-perturbative effects

  1. Non-perturbative effects and wall-crossing from topological strings

    NASA Astrophysics Data System (ADS)

    Collinucci, Andrés; Soler, Pablo; Uranga, Angel M.

    2009-11-01

    We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d Script N = 2 IIB models. We also discuss the reduction to 4d Script N = 1 by fluxes and/or orientifolds and/or D-branes, and the prospects to resum brane instanton contributions to non-perturbative superpotentials. We argue that the connection between non-perturbative effects and the topological string underlies the continuity of non-perturbative effects across lines of BPS stability. We also confirm this statement in mirror B-model matrix model examples, relating matrix model instantons to non-perturbative D-brane instantons. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, reminiscent of that involved in the physical derivation of the Kontsevich-Soibelmann wall-crossing formula.

  2. Screening Effect of Plasma Flow on RMP Penetration in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, Lorenzo; Olofsson, Erik; Brunsell, Per; Menmuir, Sheena; Drake, James

    2011-10-01

    The penetration of resonant magnetic perturbations (RMP) can be screened by plasma flow and the understanding of this phenomenon is important for ELM mitigation techniques. This work studies the screening effect in EXTRAP T2R. EXTRAP T2R is equipped with a feedback system able to suppress all error fields and to produce one or more external perturbations in a controlled fashion. The EXTRAP T2R feedback system is used to generate a RMP that interacts with the dynamics of its corresponding tearing mode (TM). The level of RMP penetration is quantified by analyzing the RMP effect on the TM amplitude and velocity. To study the screening effect, the flow is changed by applying a second perturbation that is non resonant (non-RMP). This produces the flow reduction without perturbing significantly the other parameters. By modifying the amplitude of the non-RMP, an experimental study of the flow effect on the RMP penetration is performed. Experimental results are compared with the model described in [Fitzpatrick R et al., Phys. Plasmas 8, 4489 (2001)].

  3. New Methods in Non-Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsal, Mithat

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less

  4. Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2018-02-01

    Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Tirthabir; Notari, Alessio, E-mail: tbiswas@gravity.psu.edu, E-mail: notari@hep.physics.mcgill.ca

    We study an exact Swiss-cheese model of the universe, where inhomogeneous LTB patches are embedded in a flat FLRW background, in order to see how observations of distant sources are affected. We focus mainly on the redshift, both perturbatively and non-perturbatively: the net effect given by one patch is suppressed by (L/R{sub H}){sup 3} (where L is the size of one patch and R{sub H} is the Hubble radius). We disentangle this effect from the Doppler term (which is much larger and has been used recently (Biswas et al 2007 J. Cosmol. Astropart. Phys. JCAP12(2007)017 [astro-ph/0606703]) to try to fitmore » the SN curve without dark energy) by making contact with cosmological perturbation theory. Then, the correction to the angular distance is discussed analytically and estimated to be larger, O(L/R{sub H}){sup 2}, perturbatively and non-perturbatively (although it should go to zero after angular averaging)« less

  6. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Hao, E-mail: haoxiong1217@gmail.com; Si, Liu-Gang, E-mail: siliugang@gmail.com; Lü, Xin-You

    2014-10-15

    We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.

  7. Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package

    NASA Astrophysics Data System (ADS)

    Sulejmanpasic, Tin; Ünsal, Mithat

    2018-07-01

    We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.

  8. A new line-of-sight approach to the non-linear Cosmic Microwave Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Koyama, Kazuya; Pettinari, Guido W., E-mail: christian.fidler@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: guido.pettinari@gmail.com

    2015-04-01

    We develop the transport operator formalism, a new line-of-sight integration framework to calculate the anisotropies of the Cosmic Microwave Background (CMB) at the linear and non-linear level. This formalism utilises a transformation operator that removes all inhomogeneous propagation effects acting on the photon distribution function, thus achieving a split between perturbative collisional effects at recombination and non-perturbative line-of-sight effects at later times. The former can be computed in the framework of standard cosmological perturbation theory with a second-order Boltzmann code such as SONG, while the latter can be treated within a separate perturbative scheme allowing the use of non-linear Newtonianmore » potentials. We thus provide a consistent framework to compute all physical effects contained in the Boltzmann equation and to combine the standard remapping approach with Boltzmann codes at any order in perturbation theory, without assuming that all sources are localised at recombination.« less

  9. Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges

    NASA Astrophysics Data System (ADS)

    Cerjan, Alexander; Xiao, Meng; Yuan, Luqi; Fan, Shanhui

    2018-02-01

    We provide a systematic study of non-Hermitian topologically charged systems. Starting from a Hermitian Hamiltonian supporting Weyl points with arbitrary topological charge, adding a non-Hermitian perturbation transforms the Weyl points to one-dimensional exceptional contours. We analytically prove that the topological charge is preserved on the exceptional contours. In contrast to Hermitian systems, the addition of gain and loss allows for a new class of topological phase transition: when two oppositely charged exceptional contours touch, the topological charge can dissipate without opening a gap. These effects can be demonstrated in realistic photonics and acoustics systems.

  10. Non-gravitational perturbations and satellite geodesy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milani, A.; Nobill, A.M.; Farinella, P.

    1987-01-01

    This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.

  11. Divergence of perturbation theory in large scale structures

    NASA Astrophysics Data System (ADS)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  12. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  13. Holographic CBK relation

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Tukhashvili, Giorgi

    2018-07-01

    The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.

  14. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    DOE PAGES

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less

  15. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution ofmore » the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.« less

  16. Stabilizing all geometric moduli in heterotic Calabi-Yau vacua

    DOE PAGES

    Anderson, Lara B.; Gray, James; Lukas, Andre; ...

    2011-05-27

    We propose a scenario to stabilize all geometric moduli - that is, the complex structure, Kähler moduli and the dilaton - in smooth heterotic Calabi-Yau compactifications without Neveu-Schwarz three-form flux. This is accomplished using the gauge bundle required in any heterotic compactification, whose perturbative effects on the moduli are combined with non-perturbative corrections. We argue that, for appropriate gauge bundles, all complex structure and a large number of other moduli can be perturbatively stabilized - in the most restrictive case, leaving only one combination of Kähler moduli and the dilaton as a flat direction. At this stage, the remaining modulimore » space consists of Minkowski vacua. That is, the perturbative superpotential vanishes in the vacuum without the necessity to fine-tune flux. Finally, we incorporate non-perturbative effects such as gaugino condensation and/or instantons. These are strongly constrained by the anomalous U(1) symmetries which arise from the required bundle constructions. We present a specific example, with a consistent choice of non-perturbative effects, where all remaining flat directions are stabilized in an AdS vacuum.« less

  17. Non-perturbative calculation of orbital and spin effects in molecules subject to non-uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Tellgren, Erik I.

    2018-05-01

    External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.

  18. Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitajima, Naoya; Takahashi, Fuminobu, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-01-01

    We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion ofmore » the QCD axions into hidden axions.« less

  19. Perturbative studies of toroidal momentum transport in KSTAR H-mode and the effect of ion temperature perturbation

    NASA Astrophysics Data System (ADS)

    Yang, S. M.; Na, Yong-Su; Na, D. H.; Park, J.-K.; Shi, Y. J.; Ko, W. H.; Lee, S. G.; Hahm, T. S.

    2018-06-01

    Perturbative experiments have been carried out using tangential neutral beam injection (NBI) and non-resonant magnetic perturbation (NRMP) to analyze the momentum transport properties in KSTAR H-modes. Diffusive and non-diffusive terms of momentum transport are evaluated from the transient analysis. Although the operating conditions and methodologies applied in the two cases are similar, the momentum transport properties obtained show clear differences. The estimated momentum diffusivity and pinch obtained in the NBI modulation experiments is larger than that in the NRMP modulation experiments. We found that this discrepancy could be a result of uncertainties in the assumption for the analysis. By introducing time varying momentum transport coefficients depending on the temperature gradient, the linearized equation shows that if the temperature perturbation exists, the evolution of toroidal rotation perturbation could be faster than the transport rate of mean quantity, since the evolution of toroidal rotation perturbation is related to , a momentum diffusivity from perturbative analysis. This could explain the estimated higher momentum diffusivity using time independent transport coefficients in NBI experiments with higher ion temperature perturbation compared to that in NRMP modulation experiments. The differences in the momentum transport coefficient with NRMP and NBI are much reduced by considering time varying momentum transport coefficients in the time dependent transport simulation.

  20. Dynamic perturbation effects upon the circular dichroism intensity induced in an aggregate of dye chromophores bound to biopolymers

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1980-11-01

    The dynamic perturbation effects of polarizable monomer perturbers upon the circular dichroism intensity arising from absorption transitions of an arbitrary aggregate of dye chromophores bound to a large host polymer are formulated using the linear response theory in the decorrelation approximation, where the interchromophoric retardation phase factors are eliminated by a first-order Taylor expansion which is compatible with the use of the retarded helix selection rules in the long-wavelength approximation. A space-averaged and closed-form formulation of the non-conservative circular dichroism intensity which is perturbed by intensity with the outside perturber transitions is derived in the limit of the weak dynamic perturbation where perturber—perturber interactions are negligible. The relevant formulation is applied in order to investigate the intercalation model dependence of the non-conservative circular dichroism intensity induced at the visible absorption band of proflavine molecules intercalated in either poly(A—T) or poly(G—C).

  1. Alien calculus and non perturbative effects in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  2. Nonlocal transport in the presence of transport barriers

    NASA Astrophysics Data System (ADS)

    Del-Castillo-Negrete, D.

    2013-10-01

    There is experimental, numerical, and theoretical evidence that transport in plasmas can, under certain circumstances, depart from the standard local, diffusive description. Examples include fast pulse propagation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and non-Gaussian statistics of fluctuations. From the theoretical perspective, non-diffusive transport descriptions follow from the relaxation of the restrictive assumptions (locality, scale separation, and Gaussian/Markovian statistics) at the foundation of diffusive models. We discuss an alternative class of models able to capture some of the observed non-diffusive transport phenomenology. The models are based on a class of nonlocal, integro-differential operators that provide a unifying framework to describe non- Fickian scale-free transport, and non-Markovian (memory) effects. We study the interplay between nonlocality and internal transport barriers (ITBs) in perturbative transport including cold edge pulses and power modulation. Of particular interest in the nonlocal ``tunnelling'' of perturbations through ITBs. Also, flux-gradient diagrams are discussed as diagnostics to detect nonlocal transport processes in numerical simulations and experiments. Work supported by the US Department of Energy.

  3. Ab Initio Effective Rovibrational Hamiltonians for Non-Rigid Molecules via Curvilinear VMP2

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Baraban, Joshua H.

    2017-06-01

    Accurate predictions of spectroscopic constants for non-rigid molecules are particularly challenging for ab initio theory. For all but the smallest systems, ``brute force'' diagonalization of the full rovibrational Hamiltonian is computationally prohibitive, leaving us at the mercy of perturbative approaches. However, standard perturbative techniques, such as second order vibrational perturbation theory (VPT2), are based on the approximation that a molecule makes small amplitude vibrations about a well defined equilibrium structure. Such assumptions are physically inappropriate for non-rigid systems. In this talk, we will describe extensions to curvilinear vibrational Møller-Plesset perturbation theory (VMP2) that account for rotational and rovibrational effects in the molecular Hamiltonian. Through several examples, we will show that this approach provides predictions to nearly microwave accuracy of molecular constants including rotational and centrifugal distortion parameters, Coriolis coupling constants, and anharmonic vibrational and tunneling frequencies.

  4. Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, Rutwig

    2017-03-01

    Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.

  5. Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoamor-Stursberg, Rutwig, E-mail: rutwig@ucm.es

    Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.

  6. On the reach of perturbative descriptions for dark matter displacement fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel, E-mail: baldauf@ias.edu, E-mail: eschaan@astro.princeton.edu, E-mail: matiasz@ias.edu

    We study Lagrangian Perturbation Theory (LPT) and its regularization in the Effective Field Theory (EFT) approach. We evaluate the LPT displacement with the same phases as a corresponding N-body simulation, which allows us to compare perturbation theory to the non-linear simulation with significantly reduced cosmic variance, and provides a more stringent test than simply comparing power spectra. We reliably detect a non-vanishing leading order EFT coefficient and a stochastic displacement term, uncorrelated with the LPT terms. This stochastic term is expected in the EFT framework, and, to the best of our understanding, is not an artifact of numerical errors ormore » transients in our simulations. This term constitutes a limit to the accuracy of perturbative descriptions of the displacement field and its phases, corresponding to a 1% error on the non-linear power spectrum at k = 0.2 h{sup −1}Mpc at z = 0. Predicting the displacement power spectrum to higher accuracy or larger wavenumbers thus requires a model for the stochastic displacement.« less

  7. Quark Propagator with electroweak interactions in the Dyson-Schwinger approach

    NASA Astrophysics Data System (ADS)

    Mian, Walid Ahmed; Maas, Axel

    2017-03-01

    Motivated by the non-negligible dynamical backcoupling of the electroweak interactions with the strong interaction during neutron star mergers, we study the effects of the explicit breaking of C, P and flavor symmetry on the strong sector. The quark propagator is the simplest object which encodes the consequences of these breakings. To asses the impact, we study the influence of especially parity violation on the propagator for various masses. For this purpose the functional methods in form of Dyson-Schwinger-Equations are employed. We find that explicit isospin breaking leads to a qualitative change of behavior even for a slight explicit breaking, which is in contrast to the expectations from perturbation theory. Our results thus suggest that non-perturbative backcoupling effects could be larger than expected.

  8. A non-perturbative argument for the non-abelian Higgs mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Palma, G.; INFN, Sezione di Pisa, Pisa; Strocchi, F., E-mail: franco.strocchi@sns.it

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  9. Renormalization-group flow of the effective action of cosmological large-scale structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically,more » the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input values at the UV scale. This allows for a self-contained computation of matter and velocity power spectra for which the sensitivity to UV modes is under control.« less

  10. Relaxational effects in radiating stellar collapse

    NASA Astrophysics Data System (ADS)

    Govender, Megan; Maartens, Roy; Maharaj, Sunil D.

    1999-12-01

    Relaxational effects in stellar heat transport can in many cases be significant. Relativistic Fourier-Eckart theory is inherently quasi-stationary, and cannot incorporate these effects. The effects are naturally accounted for in causal relativistic thermodynamics, which provides an improved approximation to kinetic theory. Recent results, based on perturbations of a static star, show that relaxation effects can produce a significant increase in the central temperature and temperature gradient for a given luminosity. We use a simple stellar model that allows for non-perturbative deviations from staticity, and confirms qualitatively the predictions of the perturbative models.

  11. On the reach of perturbative methods for dark matter density fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel, E-mail: baldauf@ias.edu, E-mail: eschaan@astro.princeton.edu, E-mail: matiasz@ias.edu

    We study the mapping from Lagrangian to Eulerian space in the context of the Effective Field Theory (EFT) of Large Scale Structure. We compute Lagrangian displacements with Lagrangian Perturbation Theory (LPT) and perform the full non-perturbative transformation from displacement to density. When expanded up to a given order, this transformation reproduces the standard Eulerian Perturbation Theory (SPT) at the same order. However, the full transformation from displacement to density also includes higher order terms. These terms explicitly resum long wavelength motions, thus making the resulting density field better correlated with the true non-linear density field. As a result, the regimemore » of validity of this approach is expected to extend that of the Eulerian EFT, and match that of the IR-resummed Eulerian EFT. This approach thus effectively enables a test of the IR-resummed EFT at the field level. We estimate the size of stochastic, non-perturbative contributions to the matter density power spectrum. We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc{sup −1} (k = 0.46 hMpc{sup −1}). We believe that the dominant source of the remaining error is the stochastic contribution. Unfortunately, on these scales the stochastic term does not yet scale as k{sup 4} as it does in the very low k regime. Thus, modeling this contribution might be challenging.« less

  12. Non-Gaussianity from isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu

    2008-11-15

    We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.

  13. How does non-linear dynamics affect the baryon acoustic oscillation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do notmore » guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.« less

  14. Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit width

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yueqiang, E-mail: yueqiang.liu@ccfe.ac.uk; Chapman, I. T.; Graves, J. P.

    2014-05-15

    A non-perturbative magnetohydrodynamic-kinetic hybrid formulation is developed and implemented into the MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)] that takes into account the anisotropy and asymmetry [Graves et al., Nature Commun. 3, 624 (2012)] of the equilibrium distribution of energetic particles (EPs) in particle pitch angle space, as well as first order finite orbit width (FOW) corrections for both passing and trapped EPs. Anisotropic models, which affect both the adiabatic and non-adiabatic drift kinetic energy contributions, are implemented for both neutral beam injection and ion cyclotron resonant heating induced EPs. The first order FOW correction does notmore » contribute to the precessional drift resonance of trapped particles, but generally remains finite for the bounce and transit resonance contributions, as well as for the adiabatic contributions from asymmetrically distributed passing particles. Numerical results for a 9MA steady state ITER plasma suggest that (i) both the anisotropy and FOW effects can be important for the resistive wall mode stability in ITER plasmas; and (ii) the non-perturbative approach predicts less kinetic stabilization of the mode, than the perturbative approach, in the presence of anisotropy and FOW effects for the EPs. The latter may partially be related to the modification of the eigenfunction of the mode by the drift kinetic effects.« less

  15. Charged black rings at large D

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi

    2017-04-01

    We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.

  16. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    DOE PAGES

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; ...

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality,more » $$\

  17. Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells

    NASA Astrophysics Data System (ADS)

    Koshkin, Sergiy; Jovanovic, Vojin

    2017-10-01

    We study the dynamics of pairs of connected masses in the plane, when nonholonomic (knife-edge) constraints are realized by forces of viscous friction, in particular its relation to constrained dynamics, and its approximation by the method of matching asymptotics of singular perturbation theory when the mass to friction ratio is taken as the small parameter. It turns out that long term behaviors of the frictional and constrained systems may differ dramatically no matter how small the perturbation is, and when this happens is not determined by any transparent feature of the equations of motion. The choice of effective time scales for matching asymptotics is also subtle and non-obvious, and secular terms appearing in them can not be dealt with by the classical methods. Our analysis is based on comparison to analytic solutions, and we present a reduction procedure for plane dumbbells that leads to them in some cases.

  18. Drell-Yan Angular Distributions at the E906 SeaQuest Experiment

    NASA Astrophysics Data System (ADS)

    Kleinjan, David

    2016-09-01

    Measurement of Drell-Yan angular distributions in the Collins-Soper frame provide a unique study of QCD. Previous experimental results showed a violation of the Lam-Tung relation (1 - λ ≠ 2 ν). This violation could be described by a range of non-perturbative effects, including the naive T-odd Boer-Mulders TMD, which describes spin-momentum correlations in the nucleon. Presently, E906/SeaQuest experiment at Fermilab can measure Drell-Yan dimuon pairs produced from a 120 GeV unpolarized proton beam directed on various nuclear targets. The Drell-Yan angular distributions will be measured at higher-x than previous experiments, further disentangling the role the Boer-Mulders TMD and other non-perturbative effects play in the structure of the nucleon. SeaQuest.

  19. Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations

    NASA Astrophysics Data System (ADS)

    Kishor, Ram; Kushvah, Badam Singh

    2017-09-01

    For the study of nonlinear stability of a dynamical system, normalized Hamiltonian of the system is very important to discuss the dynamics in the vicinity of invariant objects. In general, it represents a nonlinear approximation to the dynamics, which is very helpful to obtain the information as regards a realistic solution of the problem. In the present study, normalization of the Hamiltonian and analysis of nonlinear stability in non-resonance case, in the Chermnykh-like problem under the influence of perturbations in the form of radiation pressure, oblateness, and a disc is performed. To describe nonlinear stability, initially, quadratic part of the Hamiltonian is normalized in the neighborhood of triangular equilibrium point and then higher order normalization is performed by computing the fourth order normalized Hamiltonian with the help of Lie transforms. In non-resonance case, nonlinear stability of the system is discussed using the Arnold-Moser theorem. Again, the effects of radiation pressure, oblateness and the presence of the disc are analyzed separately and it is observed that in the absence as well as presence of perturbation parameters, triangular equilibrium point is unstable in the nonlinear sense within the stability range 0<μ<μ1=\\bar{μc} due to failure of the Arnold-Moser theorem. However, perturbation parameters affect the values of μ at which D4=0, significantly. This study may help to analyze more generalized cases of the problem in the presence of some other types of perturbations such as P-R drag and solar wind drag. The results are limited to the regular symmetric disc but it can be extended in the future.

  20. Behaviour of a Premixed Flame Subjected to Acoustic Oscillations

    PubMed Central

    Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert

    2013-01-01

    In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501

  1. Linear response and correlation of a self-propelled particle in the presence of external fields

    NASA Astrophysics Data System (ADS)

    Caprini, Lorenzo; Marini Bettolo Marconi, Umberto; Vulpiani, Angelo

    2018-03-01

    We study the non-equilibrium properties of non interacting active Ornstein-Uhlenbeck particles (AOUP) subject to an external nonuniform field using a Fokker-Planck approach with a focus on the linear response and time-correlation functions. In particular, we compare different methods to compute these functions including the unified colored noise approximation (UCNA). The AOUP model, described by the position of the particle and the active force acting on it, is usually mapped into a Markovian process, describing the motion of a fictitious passive particle in terms of its position and velocity, where the effect of the activity is transferred into a position-dependent friction. We show that the form of the response function of the AOUP depends on whether we put the perturbation on the position and keep unperturbed the active force in the original variables or perturb the position and maintain unperturbed the velocity in the transformed variables. Indeed, as a result of the change of variables the perturbation on the position becomes a perturbation both on the position and on the fictitious velocity. We test these predictions by considering the response for three types of convex potentials: quadratic, quartic and double-well potential. Moreover, by comparing the response of the AOUP model with the corresponding response of the UCNA model we conclude that although the stationary properties are fairly well approximated by the UCNA, the non equilibrium properties are not, an effect which is not negligible when the persistence time is large.

  2. A new approach to analytic, non-perturbative and gauge-invariant QCD

    NASA Astrophysics Data System (ADS)

    Fried, H. M.; Grandou, T.; Sheu, Y.-M.

    2012-11-01

    Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional "idealistic" description of QCD and a more "realistic" description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of Green's functional G(x,y|A) and the vacuum functional L[A]. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision. The second result of this non-perturbative analysis is the appearance of a new and simplifying output called "Effective Locality", in which the interactions between quarks by the exchange of a "gluon bundle"-which "bundle" contains an infinite number of gluons, including cubic and quartic gluon interactions-display an exact locality property that reduces the several functional integrals of the formulation down to a set of ordinary integrals. It should be emphasized that "non-perturbative" here refers to the effective summation of all gluons between a pair of quark lines-which may be the same quark line, as in a self-energy graph-but does not (yet) include a summation over all closed-quark loops which are tied by gluon-bundle exchange to the rest of the "Bundle Diagram". As an example of the power of these methods we offer as a first analytic calculation the quark-antiquark binding potential of a pion, and the corresponding three-quark binding potential of a nucleon, obtained in a simple way from relevant eikonal scattering approximations. A second calculation, analytic, non-perturbative and gauge-invariant, of a nucleon-nucleon binding potential to form a model deuteron, will appear separately.

  3. Exploring soft constraints on effective actions

    NASA Astrophysics Data System (ADS)

    Bianchi, Massimo; Guerrieri, Andrea L.; Huang, Yu-tin; Lee, Chao-Jung; Wen, Congkao

    2016-10-01

    We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for N=4 sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order s n ˜ ∂2 n are completely determined in terms of the k-point amplitudes at order s k with k ≤ n. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particular, the effective action is fixed up to eight derivatives in terms of just one unknown four-point coefficient and one more coefficient for ten-derivative terms. Finally, we also study the interplay between scale and conformal invariance in this context.

  4. fNL‑gNL mixing in the matter density field at higher orders

    NASA Astrophysics Data System (ADS)

    Gressel, Hedda A.; Bruni, Marco

    2018-06-01

    In this paper we examine how primordial non-Gaussianity contributes to nonlinear perturbative orders in the expansion of the density field at large scales in the matter dominated era. General Relativity is an intrinsically nonlinear theory, establishing a nonlinear relation between the metric and the density field. Representing the metric perturbations with the curvature perturbation ζ, it is known that nonlinearity produces effective non-Gaussian terms in the nonlinear perturbations of the matter density field δ, even if the primordial ζ is Gaussian. Here we generalise these results to the case of a non-Gaussian primordial ζ. Using a standard parametrization of primordial non-Gaussianity in ζ in terms of fNL, gNL, hNL\\ldots , we show how at higher order (from third and higher) nonlinearity also produces a mixing of these contributions to the density field at large scales, e.g. both fNL and gNL contribute to the third order in δ. This is the main result of this paper. Our analysis is based on the synergy between a gradient expansion (aka long-wavelength approximation) and standard perturbation theory at higher order. In essence, mathematically the equations for the gradient expansion are equivalent to those of first order perturbation theory, thus first-order results convert into gradient expansion results and, vice versa, the gradient expansion can be used to derive results in perturbation theory at higher order and large scales.

  5. Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel

    DOE PAGES

    Collins, John; Rogers, Ted

    2015-04-01

    There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less

  6. Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, John; Rogers, Ted

    There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less

  7. Magnetized cosmological perturbations in the post-recombination era

    NASA Astrophysics Data System (ADS)

    Vasileiou, Hera; Tsagas, Christos G.

    2016-01-01

    We study inhomogeneous magnetized cosmologies through the post-recombination era in the framework of Newtonian gravity and the ideal-magnetohydrodynamic limit. The non-linear kinematic and dynamic equations are derived and linearized around the Newtonian counterpart of the Einstein-de Sitter universe. This allows for a direct comparison with the earlier relativistic treatments of the issue. Focusing on the evolution of linear density perturbations, we provide new analytic solutions which include the effects of the magnetic pressure as well as those of the field's tension. We confirm that the pressure of field inhibits the growth of density distortions and can induce a purely magnetic Jeans length. On scales larger than the aforementioned characteristic length the inhomogeneities grow, though slower than in non-magnetized universes. Wavelengths smaller than the magnetic Jeans length typically oscillate with decreasing amplitude. We also identify a narrow range of scales, just below the Jeans length, where the perturbations exhibit a slower power-law decay. In all cases, the effect of the field is proportional to its strength and increases as we move to progressively smaller lengths.

  8. The b Quark Fragmentation Function, From LEP to TeVatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-haim, Eli

    2004-12-01

    The b quark fragmentation distribution has been measured, using data registered by the DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of 176000 inclusively reconstructed B meson candidates. The errors of this measurement are dominated by systematic effects, the principal ones being related to the energy calibration. The distribution has been established in a nine bin histogram. Its mean value has been found to be = 0.704 ± 0.001(stat.) ± 0.008(syst.). Using this measurement, and other available analyses of the b-quark fragmentation distribution in e +e - collisions, the non-perturbative QCD component of the distribution has been extracted independently of any hadronic physics modeling. This distribution depends only on the way the perturbative QCD component has been defined. When the perturbative QCD component is taken from a parton shower Monte-Carlo, the non-perturbative QCD component is rather similar with those obtained from the Lund or Bowler models. When the perturbative QCD component is the result of an analytic NLL computation, the non-perturbative QCD component has to be extended in a non-physical region and thus cannot be described by any hadronic modeling. In the two examples, used to characterize these two situations, which are studied at present, it happens that the extracted non-perturbative QCD distribution has the same shape, being simply translated to higher-x values in the second approach, illustrating the ability of the analytic perturbative QCD approach to account for softer gluon radiation than with a parton shower generator. Using all the available analyses of the b-quark fragmentation distribution in e +e - collisions, together with the result from DELPHI presented in this thesis, a combined world average b fragmentation distribution has been obtained. Its mean value has been found to be = 0.714 ± 0.002. An analysis of the B hadron production at CDF is ongoing. It makes use of ~ 6000 B ± candidates, from 333 pb -1 of data registered by the CDF experiment, fully reconstructed in the decay channel B ± → J/ΨK ±. Characteristics of B mesons and for accompanying tracks have been examined, in the perspective of understanding the effect of fragmentation. These studies, done in the framework of the PYTHIA event generator, also involve the contributions from different bmore » $$\\bar{b}$$ production mechanisms. Distributions from a fully reconstructed Monte Carlo sample have been compared to data, and the agreement has been found to be reasonable. The analysis is ongoing, and the goal is to fit the fragmentation function parameters and/or the relative contributions from different production mechanisms to improve the agreement between data and Monte Carlo. A measurement of the b quark production cross section has been obtained using the same data. The analysis is still under way, and therefore the result is preliminary.« less

  9. Effects of visual focus and gait speed on walking balance in the frontal plane.

    PubMed

    Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle

    2015-08-01

    We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dynamics of anisotropies close to a cosmological bounce in quantum gravity

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Oriti, Daniele; Pithis, Andreas G. A.; Sakellariadou, Mairi

    2018-01-01

    We study the dynamics of perturbations representing deviations from perfect isotropy in the context of the emergent cosmology obtained from the group field theory formalism for quantum gravity. Working in the mean field approximation of the group field theory formulation of the Lorentzian EPRL model, we derive the equations of motion for such perturbations to first order. We then study these equations around a specific simple isotropic background, characterised by the fundamental representation of SU(2) , and in the regime of the effective cosmological dynamics corresponding to the bouncing region replacing the classical singularity, well approximated by the free GFT dynamics. In this particular example, we identify a region in the parameter space of the model such that perturbations can be large at the bounce but become negligible away from it, i.e. when the background enters the non-linear regime. We also study the departures from perfect isotropy by introducing specific quantities, such as the surface-area-to-volume ratio and the effective volume per quantum, which make them quantitative.

  11. D-brane instantons and the effective field theory of flux compactifications

    NASA Astrophysics Data System (ADS)

    Uranga, Angel M.

    2009-01-01

    We provide a description of the effects of fluxes on euclidean D-brane instantons purely in terms of the 4d effective action. The effect corresponds to the dressing of the effective non-perturbative 4d effective vertex with 4d flux superpotential interactions, generated when the moduli fields made massive by the flux are integrated out. The description in terms of effective field theory allows a unified description of non-perturbative effects in all flux compactifications of a given underlying fluxless model, globally in the moduli space of the latter. It also allows us to describe explicitly the effects on D-brane instantons of fluxes with no microscopic description, like non-geometric fluxes. At the more formal level, the description has interesting connections with the bulk-boundary map of open-closed two-dimensional topological string theory, and with the Script N = 1 special geometry.

  12. The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    DOE PAGES

    Argyres, Philip C.; Uensal, Mithat

    2012-08-10

    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less

  13. Damping of transient energy growth of three-dimensional perturbations in hydromagnetic pipe flow

    NASA Astrophysics Data System (ADS)

    Åkerstedt, Hans O.

    1995-05-01

    The stability of infinitesimal three-dimensional perturbations in hydromagnetic pipe flow where the applied magnetic field is in the streamwise direction is considered. The study is limited to the case of small magnetic Reynolds numbers and the main objective of the paper is to study the transient evolution of the kinetic energy. A general effect of the magnetic field is to increase the damping of the eigenvalues of the individual perturbation modes. For the case of infinitely long perturbations, which in the non-magnetic case has been found to have the largest transient growth, the magnetic field perturbations are decoupled from the flow and there is no effect on the stability properties of the flow. For shorter waves, and for moderate values of the interaction parameter ( I = RmA2 ≈ 1-3) the hydromagnetic damping effect on the transient energy growth is, however, substantial, especially for small azimuthal mode numbers n. (Here Rm is the magnetic Reynolds number and A is the Alfvén number.) This parameter range has been found in experiments to give significantly higher transitional Reynolds numbers (Fraim and Heiser, 1968). Since the hydromagnetic damping effect is weak for long waves and large for shorter waves, the implications of the results to ordinary pipe flow is that the energy growth found for short waves may be more crucial as a mechanism for transition than the corresponding growth for longer waves.

  14. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  15. Modelling non-linear effects of dark energy

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  16. Statistical State Dynamics Based Study of the Role of Nonlinearity in the Maintenance of Turbulence in Couette Flow

    NASA Astrophysics Data System (ADS)

    Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios-Andreas

    2017-11-01

    While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field, nonlinearity is also known to play an essential role in sustaining turbulence. We report a study based on the statistical state dynamics of Couette flow turbulence with the goal of better understanding the role of nonlinearity in sustaining turbulence. The statistical state dynamics implementations used are ensemble closures at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. Two fundamentally non-normal mechanisms potentially contributing to maintaining the second cumulant are identified. These are essentially parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of selectively including these mechanisms parametric growth is found to maintain the perturbation field in the turbulent state while the more commonly invoked mechanism associated with transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation variance. Funded by ERC Coturb Madrid Summer Program and NSF AGS-1246929.

  17. An analytical solution for Dean flow in curved ducts with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  18. Towards an explicit model of large field inflation

    NASA Astrophysics Data System (ADS)

    Dorronsoro, Juan Diaz; Schillo, Marjorie

    2018-05-01

    The unwinding inflation mechanism is studied in a type IIB flux compactification where all moduli are stabilized using flux, non-perturbative effects, and the leading α' corrections of the large volume scenario. We consider the backreaction on the geometry due to the presence of anti-D3 branes as well as the backreaction of inflation on the Kähler moduli, and compute the resulting corrections to the slow-roll potential. By taking large flux numbers, we are able to find inflationary epochs where backreaction effects are under control, the inflaton traverses a super-Planckian field range, and the resulting amplitude of scalar perturbations is consistent with observation.

  19. Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations

    NASA Astrophysics Data System (ADS)

    Gidea, Marian; de la Llave, Rafael

    2018-04-01

    We consider a mechanical system consisting of n-penduli and a d-degree-of-freedom rotator. The phase space of the rotator defines a normally hyperbolic invariant manifold Λ _0 . We apply a time-dependent perturbation, which is not assumed to be either Hamiltonian, or periodic, or quasi-periodic, as we allow for rather general time dependence. The strength of the perturbation is given by a parameter ɛ \\in R . For all |ɛ | sufficiently small, the augmented flow—obtained by making the time into a new variable—has a normally hyperbolic locally invariant manifold \\tilde{Λ }_ɛ . For ɛ =0 , \\tilde{Λ }_0=Λ _0× R . We define a Melnikov-type vector, which gives the first-order expansion of the displacement of the stable and unstable manifolds of \\tilde{Λ }_0 under the perturbation. We provide an explicit formula for the Melnikov vector in terms of convergent improper integrals of the perturbation along homoclinic orbits of the unperturbed system. We show that if the perturbation satisfies some explicit non-degeneracy conditions, then the stable and unstable manifolds of \\tilde{Λ }_ɛ , W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) , respectively, intersect along a transverse homoclinic manifold, and, moreover, the splitting of W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) can be explicitly computed, up to the first order, in terms of the Melnikov-type vector. This implies that the excursions along some homoclinic trajectories yield a non-trivial increase of order O(ɛ ) in the action variables of the rotator, for all sufficiently small perturbations. The formulas that we obtain are independent of the unperturbed motions in Λ _0 , and give, at the same time, the effects on periodic, quasi-periodic, or general-type orbits. When the perturbation is Hamiltonian, we express the effects of the perturbation, up to the first order, in terms of a Melnikov potential. In addition, if the perturbation is periodic, we obtain that the non-degeneracy conditions on the Melnikov potential are generic.

  20. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    PubMed

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  1. Stability of high-speed boundary layers in oxygen including chemical non-equilibrium effects

    NASA Astrophysics Data System (ADS)

    Klentzman, Jill; Tumin, Anatoli

    2013-11-01

    The stability of high-speed boundary layers in chemical non-equilibrium is examined. A parametric study varying the edge temperature and the wall conditions is conducted for boundary layers in oxygen. The edge Mach number and enthalpy ranges considered are relevant to the flight conditions of reusable hypersonic cruise vehicles. Both viscous and inviscid stability formulations are used and the results compared to gain insight into the effects of viscosity and thermal conductivity on the stability. It is found that viscous effects have a strong impact on the temperature and mass fraction perturbations in the critical layer and in the viscous sublayer near the wall. Outside of these areas, the perturbations closely match in the viscous and inviscid models. The impact of chemical non-equilibrium on the stability is investigated by analyzing the effects of the chemical source term in the stability equations. The chemical source term is found to influence the growth rate of the second Mack mode instability but not have much of an effect on the mass fraction eigenfunction for the flow parameters considered. This work was supported by the AFOSR/NASA/National Center for Hypersonic Laminar-Turbulent Transition Research.

  2. Leg preference associated with protective stepping responses in older adults.

    PubMed

    Young, Patricia M; Whitall, Jill; Bair, Woei-Nan; Rogers, Mark W

    2013-10-01

    Asymmetries in dynamic balance stability have been previously observed. The goal of this study was to determine whether leg preference influenced the stepping response to a waist-pull perturbation in older adult fallers and non-fallers. 39 healthy, community-dwelling, older adult (>65 years) volunteers participated. Participants were grouped into non-faller and faller cohorts based on fall history in the 12 months prior to the study. Participants received 60 lateral waist-pull perturbations of varying magnitude towards their preferred and non-preferred sides during quiet standing. Outcome measures included balance tolerance limit, number of recovery steps taken and type of recovery step taken for perturbations to each side. No significant differences in balance tolerance limit (P ≥ 0.102) or number of recovery steps taken (η(2)partial ≤ 0.027; P ≥ 0.442) were observed between perturbations towards the preferred and non-preferred legs. However, non-faller participants more frequently responded with a medial step when pulled towards their non-preferred side and cross-over steps when pulled towards their preferred side (P=0.015). Leg preference may influence the protective stepping response to standing balance perturbations in older adults at risk for falls, particularly with the type of recovery responses used. Such asymmetries in balance stability recovery may represent a contributing factor for falls among older individuals and should be considered for rehabilitation interventions aimed at improving balance stability and reducing fall risk. © 2013.

  3. Leg preference associated with protective stepping responses in older adults

    PubMed Central

    Young, Patricia M.; Whitall, Jill; Bair, Woei-Nan; Rogers, Mark W.

    2014-01-01

    Background Asymmetries in dynamic balance stability have been previously observed. The goal of this study was to determine whether leg preference influenced the stepping response to a waist-pull perturbation in older adult fallers and non-fallers. Methods 39 healthy, community-dwelling, older adult (>65 years) volunteers participated. Participants were grouped into non-faller and faller cohorts based on fall history in the 12 months prior to the study. Participants received 60 lateral waist-pull perturbations of varying magnitude towards their preferred and non-preferred sides during quiet standing. Outcome measures included balance tolerance limit, number of recovery steps taken and type of recovery step taken for perturbations to each side. Findings No significant differences in balance tolerance limit (P ≥ 0.102) or number of recovery steps taken (η2partial ≤ 0.027; P ≥ 0.442) were observed between perturbations towards the preferred and non-preferred legs. However, non-faller participants more frequently responded with a medial step when pulled towards their non-preferred side and cross-over steps when pulled towards their preferred side (P = 0.015). Interpretation Leg preference may influence the protective stepping response to standing balance perturbations in older adults at risk for falls, particularly with the type of recovery responses used. Such asymmetries in balance stability recovery may represent a contributing factor for falls among older individuals and should be considered for rehabilitation interventions aimed at improving balance stability and reducing fall risk. PMID:23962655

  4. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors (;diving; and ;fishing;). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  5. The trispectrum in the Effective Field Theory of Large Scale Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.

    2016-06-01

    We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporatemore » vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.« less

  6. Resurgence and dynamics of O(N) and Grassmannian sigma models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunne, Gerald V.; Unsal, Mithat

    Here, we study the non-perturbative dynamics of the two dimensional O( N) and Grassmannian sigma models by using compactification with twisted boundary conditions on R× S 1, semi-classical techniques and resurgence. While the O(N) model has no instantons for N > 3, it has (non-instanton) saddles on R 2, which we call 2d-saddles. On R× S 1, the resurgent relation between perturbation theory and non-perturbative physics is encoded in new saddles, which are associated with the affine root system of the o( N) algebra. These events may be viewed as fractionalizations of the 2d-saddles. The first beta function coefficient, givenmore » by the dual Coxeter number, can then be intepreted as the sum of the multiplicities (dual Kac labels) of these fractionalized objects. Surprisingly, the new saddles in O( N) models in compactified space are in one-to-one correspondence with monopole-instanton saddles in SO( N) gauge theory on R 3×S 1. The Grassmannian sigma models Gr( N, M) have 2d instantons, which fractionalize into N kink-instantons. The small circle dynamics of both sigma models can be described as a dilute gas of the one-events and two-events, bions. One-events are the leading source of a variety of non-perturbative effects, and produce the strong scale of the 2d theory in the compactified theory. We show that in both types of sigma models the neutral bion emulates the role of IR-renormalons. We also study the topological theta angle dependence in both the O(3) model and Gr( N, M), and describe the multi-branched structure of the observables in terms of the theta-angle dependence of the saddle amplitudes, providing a microscopic argument for Haldane’s conjecture.« less

  7. Resurgence and dynamics of O(N) and Grassmannian sigma models

    DOE PAGES

    Dunne, Gerald V.; Unsal, Mithat

    2015-09-29

    Here, we study the non-perturbative dynamics of the two dimensional O( N) and Grassmannian sigma models by using compactification with twisted boundary conditions on R× S 1, semi-classical techniques and resurgence. While the O(N) model has no instantons for N > 3, it has (non-instanton) saddles on R 2, which we call 2d-saddles. On R× S 1, the resurgent relation between perturbation theory and non-perturbative physics is encoded in new saddles, which are associated with the affine root system of the o( N) algebra. These events may be viewed as fractionalizations of the 2d-saddles. The first beta function coefficient, givenmore » by the dual Coxeter number, can then be intepreted as the sum of the multiplicities (dual Kac labels) of these fractionalized objects. Surprisingly, the new saddles in O( N) models in compactified space are in one-to-one correspondence with monopole-instanton saddles in SO( N) gauge theory on R 3×S 1. The Grassmannian sigma models Gr( N, M) have 2d instantons, which fractionalize into N kink-instantons. The small circle dynamics of both sigma models can be described as a dilute gas of the one-events and two-events, bions. One-events are the leading source of a variety of non-perturbative effects, and produce the strong scale of the 2d theory in the compactified theory. We show that in both types of sigma models the neutral bion emulates the role of IR-renormalons. We also study the topological theta angle dependence in both the O(3) model and Gr( N, M), and describe the multi-branched structure of the observables in terms of the theta-angle dependence of the saddle amplitudes, providing a microscopic argument for Haldane’s conjecture.« less

  8. Cosmological perturbation theory in 1+1 dimensions

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew; White, Martin

    2016-01-01

    Many recent studies have highlighted certain failures of the standard Eulerian-space cosmological perturbation theory (SPT). Its problems include (1) not capturing large-scale bulk flows [leading to an Script O( 1) error in the 1-loop SPT prediction for the baryon acoustic peak in the correlation function], (2) assuming that the Universe behaves as a pressureless, inviscid fluid, and (3) treating fluctuations on scales that are non-perturbative as if they were. Recent studies have highlighted the successes of perturbation theory in Lagrangian space or theories that solve equations for the effective dynamics of smoothed fields. Both approaches mitigate some or all of the aforementioned issues with SPT. We discuss these physical developments by specializing to the simplified 1D case of gravitationally interacting sheets, which allows us to substantially reduces the analytic overhead and still (as we show) maintain many of the same behaviors as in 3D. In 1D, linear-order Lagrangian perturbation theory ("the Zeldovich approximation") is exact up to shell crossing, and we prove that nth-order Eulerian perturbation theory converges to the Zeldovich approximation as narrow ∞. In no 1D cosmology that we consider (including a CDM-like case and power-law models) do these theories describe accurately the matter power spectrum on any mildly nonlinear scale. We find that theories based on effective equations are much more successful at describing the dynamics. Finally, we discuss many topics that have recently appeared in the perturbation theory literature such as beat coupling, the shift and smearing of the baryon acoustic oscillation feature, and the advantages of Fourier versus configuration space. Our simplified 1D case serves as an intuitive review of these perturbation theory results.

  9. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  10. Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth; Suslick, Kenneth

    2014-02-28

    A systematic study of the energy loss of a cavitation bubble in a close proximity of a glass surface is introduced for the first time in a low acoustic field (1.2-2.4 bar). Single bubble sonoluminescence (SBSL) is used as a tool to predict the temperature and pressure decrease of bubble (μm) versus surface distance. A glass as a model system is used to imitate the boundary conditions relevant for nano- or micromaterials. SBSL preequilibrated with 5% argon is perturbed by a glass rod with the tip (Z-perturbation) and with the long axis (X-perturbation) at a defined distance. From 2 mm to 500 μm argon-SBSL lines monotonically narrow and the effective emission temperature decreases from 9000 K to 6800 K comparable to multiple bubbles. The electron density decreases by two orders of magnitude in Z-perturbation and is by a factor of two higher in X-perturbation than the unperturbed cavitating bubble. The perturbed single bubble sonoluminescence pressure decreases from 2700 atm to 1200 atm at 2.4 bar. In water new non-SBSL SiO molecular emission lines are observed and OH emission disappears.

  11. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Richtmyer-Meshkov instability in shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Pallav Jha Collaboration

    2011-11-01

    Shock-flame interactions occur in supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer- Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a non-zero pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth for high wave numbers. A non-hydrodynamic flame representation leads to the definition of an additional scaling Peclet number, the effects of which are investigated. It is found that an increased flame-contact separation destabilizes the contact discontinuity by augmenting the tangential shear.

  13. Surface plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit

    PubMed Central

    Giannini, Vincenzo; Maier, Stefan A.; Craster, Richard V.

    2016-01-01

    According to the hydrodynamic Drude model, surface plasmon resonances of metallic nanostructures blueshift owing to the non-local response of the metal’s electron gas. The screening length characterizing the non-local effect is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained non-local description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary-shaped nanometallic structures is then developed. The effect of non-locality is not always a perturbation and we present a detailed analysis of the ‘bonding’ modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalization of those predicted assuming a local metal permittivity. PMID:27493575

  14. Aggregated responses of human mobility to severe winter storms: An empirical study.

    PubMed

    Wang, Yan; Wang, Qi; Taylor, John E

    2017-01-01

    Increasing frequency of extreme winter storms has resulted in costly damages and a disruptive impact on the northeastern United States. It is important to understand human mobility patterns during such storms for disaster preparation and relief operations. We investigated the effects of severe winter storms on human mobility during a 2015 blizzard using 2.69 million Twitter geolocations. We found that displacements of different trip distances and radii of gyration of individuals' mobility were perturbed significantly. We further explored the characteristics of perturbed mobility during the storm, and demonstrated that individuals' recurrent mobility does not have a higher degree of similarity with their perturbed mobility, when comparing with its similarity to non-perturbed mobility. These empirical findings on human mobility impacted by severe winter storms have potential long-term implications on emergency response planning and the development of strategies to improve resilience in severe winter storms.

  15. Lifting primordial non-Gaussianity above the noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welling, Yvette; Woude, Drian van der; Pajer, Enrico, E-mail: welling@strw.leidenuniv.nl, E-mail: D.C.vanderWoude@uu.nl, E-mail: enrico.pajer@gmail.com

    2016-08-01

    Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen current bounds with near future surveys, such as Euclid. We find that the EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG, while, for local PNG, our forecast is more optimistic. We consistently account for the theoretical error intrinsic to the perturbative approachmore » and discuss the details of its implementation in Fisher forecasts.« less

  16. Effect of higher muscle coactivation on standing postural response to perturbation in older adults.

    PubMed

    Nagai, Koutatsu; Okita, Yusuke; Ogaya, Shinya; Tsuboyama, Tadao

    2017-04-01

    Although several studies have reported that muscle coactivation during postural control increases with age, the effect of higher muscle coactivation on standing postural response to perturbation is unknown. To investigate whether higher muscle coactivation affects standing postural response to perturbation in older adults. Thirty-four community-dwelling older participants were randomly assigned either to the coactivation group (CG), where muscle coactivation was increased intentionally, or to the non-coactivation group (NCG). The participants were instructed to stand on a force plate that moved forward or backward. Electromyography data were collected from the lower leg muscles. We requested the participants in the CG to increase the activity of their tibialis anterior, and to maintain this posture during the tasks. We moved the force plate with a constant amplitude and velocity, and measured kinematic data with a camera during the tasks. During forward transfer, the knee extension and hip flexion decreased in the CG after perturbation compared to NCG, and the trunk extension angle increased. The center of pressure (COP) displacement decreased around the peak of the movement in the CG compared to NCG. During backward transfer, ankle dorsal and knee flexion changed after perturbation in the CG compared to NCG. Our study found that higher muscle coactivation inhibits lower limb and COP movement as well as increases trunk tilt and the risk for falls during forward perturbations. Postural control with higher coactivation appears to be inefficient for maintaining balance during the backward sway of posture.

  17. Cosmological perturbations through a non-singular ghost-condensate/Galileon bounce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battarra, Lorenzo; Koehn, Michael; Lehners, Jean-Luc

    2014-07-01

    We study the propagation of super-horizon cosmological perturbations in a non-singular bounce spacetime. The model we consider combines a ghost condensate with a Galileon term in order to induce a ghost-free bounce. Our calculation is performed in harmonic gauge, which ensures that the linearized equations of motion remain well-defined and non-singular throughout. We find that, despite the fact that near the bounce the speed of sound becomes imaginary, super-horizon curvature perturbations remain essentially constant across the bounce. In fact, we show that there is a time close to the bounce where curvature perturbations of all wavelengths are required to bemore » momentarily exactly constant. We relate our calculations to those performed in other gauges, and comment on the relation to previous results in the literature.« less

  18. Nonlinear spherical perturbations in quintessence models of dark energy

    NASA Astrophysics Data System (ADS)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  19. The mechanism by which nonlinearity sustains turbulence in plane Couette flow

    NASA Astrophysics Data System (ADS)

    Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.

    2018-04-01

    Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.

  20. Numerical studies of nonlocal effects of the low mode numbers tearing modes and their mitigation in the DIII-D

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima; Evans, Todd

    2006-10-01

    In this work, the method of maps [1-4] is used to study the trajectories of magnetic field lines in the DIII-D tokamak. Data from the DIII-D shot 115467 is used to determine the parameters in the maps. Effects of the m=1, n=±1 tearing modes and the dipole perturbation from the C-coils on the motion of field lines are calculated. Internal tearing modes produce non-local effects on the magnetic footprints, and destroy their symmetry. Dipole perturbations mitigate the effects of the tearing modes, spread the heat-flux on the plates over a wider area, reduce the peak heat-flux, and reorganize the phase space structure in a new pattern that has the same symmetry as that of the external perturbation. The low dimensionality of the system and its symplecticity impose severe restrictions on the motion of the system in phase space forcing it to take on the symmetry properties of the perturbations. This work is done under the DOE grant number DE-FG02-01ER54624. 1. A. Punjabi, A. Boozer, and A. Verma, Phys. Rev. lett., 69, 3322 (1992). 2. H. Ali, A. Punjabi, and A. Boozer, Phys. Plasmas 11, 4527 (2004). 3. A. Punjabi, H. Ali, and A. Boozer, Phys. Plasmas 10, 3992 (2003). 4. A. Punjabi, H. Ali, and A. Boozer, Phys. Plasmas 4, 337 (1997).

  1. Robustness of the non-Markovian Alzheimer walk under stochastic perturbation

    NASA Astrophysics Data System (ADS)

    Cressoni, J. C.; da Silva, L. R.; Viswanathan, G. M.; da Silva, M. A. A.

    2012-12-01

    The elephant walk model originally proposed by Schütz and Trimper to investigate non-Markovian processes led to the investigation of a series of other random-walk models. Of these, the best known is the Alzheimer walk model, because it was the first model shown to have amnestically induced persistence —i.e. superdiffusion caused by loss of memory. Here we study the robustness of the Alzheimer walk by adding a memoryless stochastic perturbation. Surprisingly, the solution of the perturbed model can be formally reduced to the solutions of the unperturbed model. Specifically, we give an exact solution of the perturbed model by finding a surjective mapping to the unperturbed model.

  2. DEMNUni: massive neutrinos and the bispectrum of large scale structures

    NASA Astrophysics Data System (ADS)

    Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano

    2018-03-01

    The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.

  3. Braking due to non-resonant magnetic perturbations and comparison with neoclassical toroidal viscosity torque in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Sun, Y.; Fridström, R.; Menmuir, S.; Olofsson, K. E. J.; Brunsell, P. R.; Khan, M. W. M.; Liang, Y.; Drake, J. R.

    2015-09-01

    The non-resonant magnetic perturbation (MP) braking is studied in the EXTRAP T2R reversed-field pinch (RFP) and the experimental braking torque is compared with the torque expected by the neoclassical toroidal viscosity (NTV) theory. The EXTRAP T2R active coils can apply magnetic perturbations with a single harmonic, either resonant or non-resonant. The non-resonant MP produces velocity braking with an experimental torque that affects a large part of the core region. The experimental torque is clearly related to the plasma displacement, consistent with a quadratic dependence as expected by the NTV theory. The work show a good qualitative agreement between the experimental torque in a RFP machine and NTV torque concerning both the torque density radial profile and the dependence on the non-resonant MP harmonic.

  4. Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir

    2017-06-01

    We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbationsmore » such as in DBI inflation.« less

  5. Elliptic CY3folds and non-perturbative modular transformation

    NASA Astrophysics Data System (ADS)

    Iqbal, Amer; Shabbir, Khurram

    2016-03-01

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections.

  6. Speaker compensation for local perturbation of fricative acoustic feedback.

    PubMed

    Casserly, Elizabeth D

    2011-04-01

    Feedback perturbation studies of speech acoustics have revealed a great deal about how speakers monitor and control their productions of segmental (e.g., formant frequencies) and non-segmental (e.g., pitch) linguistic elements. The majority of previous work, however, overlooks the role of acoustic feedback in consonant production and makes use of acoustic manipulations that effect either entire utterances or the entire acoustic signal, rather than more temporally and phonetically restricted alterations. This study, therefore, seeks to expand the feedback perturbation literature by examining perturbation of consonant acoustics that is applied in a time-restricted and phonetically specific manner. The spectral center of the alveopalatal fricative [∫] produced in vowel-fricative-vowel nonwords was incrementally raised until it reached the potential for [s]-like frequencies, but the characteristics of high-frequency energy outside the target fricative remained unaltered. An "offline," more widely accessible signal processing method was developed to perform this manipulation. The local feedback perturbation resulted in changes to speakers' fricative production that were more variable, idiosyncratic, and restricted than the compensation seen in more global acoustic manipulations reported in the literature. Implications and interpretations of the results, as well as future directions for research based on the findings, are discussed.

  7. GNSS orbit determination by precise modeling of non-gravitational forces acting on satellite's body

    NASA Astrophysics Data System (ADS)

    Wielgosz, Agata; Kalarus, Maciej; Liwosz, Tomasz

    2016-04-01

    Satellites orbiting around Earth are affected by gravitational forces and non-gravitational perturbations (NGP). While the perturbations caused by gravitational forces, which are due to central body gravity (including high-precision geopotential field) and its changes (due to secular variations and tides), solar bodies attraction and relativistic effects are well-modeled, the perturbations caused by the non-gravitational forces are the most limiting factor in Precise Orbit Determination (POD). In this work we focused on very precise non-gravitational force modeling for medium Earth orbit satellites by applying the various models of solar radiation pressure including changes in solar irradiance and Earth/Moon shadow transition, Earth albedo and thermal radiation. For computing influence of aforementioned forces on spacecraft the analytical box-wing satellite model was applied. Smaller effects like antenna thrust or spacecraft thermal radiation were also included. In the process of orbit determination we compared the orbit with analytically computed NGP with the standard procedure in which CODE model is fitted for NGP recovery. We considered satellites from several systems and on different orbits and for different periods: when the satellite is all the time in full sunlight and when transits the umbra and penumbra regions.

  8. Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements

    NASA Astrophysics Data System (ADS)

    Mukherjee, Suvodip; Das, Santanu; Joy, Minu; Souradeep, Tarun

    2015-01-01

    Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass meff for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independent parameters, namely spectral index for tensor perturbation νt and change in spectral index for scalar perturbation νst to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of ns=0.96 by having a non-zero value of effective mass of the inflaton field m2eff/H2. The analysis with WP + Planck likelihood shows a non-zero detection of m2eff/H2 with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m2eff/H2 = -0.0237 ± 0.0135 which is consistent with zero.

  9. Cognition and balance control: does processing of explicit contextual cues of impending perturbations modulate automatic postural responses?

    PubMed

    Coelho, Daniel Boari; Teixeira, Luis Augusto

    2017-08-01

    Processing of predictive contextual cues of an impending perturbation is thought to induce adaptive postural responses. Cueing in previous research has been provided through repeated perturbations with a constant foreperiod. This experimental strategy confounds explicit predictive cueing with adaptation and non-specific properties of temporal cueing. Two experiments were performed to assess those factors separately. To perturb upright balance, the base of support was suddenly displaced backwards in three amplitudes: 5, 10 and 15 cm. In Experiment 1, we tested the effect of cueing the amplitude of the impending postural perturbation by means of visual signals, and the effect of adaptation to repeated exposures by comparing block versus random sequences of perturbation. In Experiment 2, we evaluated separately the effects of cueing the characteristics of an impending balance perturbation and cueing the timing of perturbation onset. Results from Experiment 1 showed that the block sequence of perturbations led to increased stability of automatic postural responses, and modulation of magnitude and onset latency of muscular responses. Results from Experiment 2 showed that only the condition cueing timing of platform translation onset led to increased balance stability and modulation of onset latency of muscular responses. Conversely, cueing platform displacement amplitude failed to induce any effects on automatic postural responses in both experiments. Our findings support the interpretation of improved postural responses via optimized sensorimotor processes, at the same time that cast doubt on the notion that cognitive processing of explicit contextual cues advancing the magnitude of an impending perturbation can preset adaptive postural responses.

  10. Secondary isocurvature perturbations from acoustic reheating

    NASA Astrophysics Data System (ADS)

    Ota, Atsuhisa; Yamaguchi, Masahide

    2018-06-01

    The superhorizon (iso)curvature perturbations are conserved if the following conditions are satisfied: (i) (each) non adiabatic pressure perturbation is zero, (ii) the gradient terms are ignored, that is, at the leading order of the gradient expansion (iii) (each) total energy momentum tensor is conserved. We consider the case with the violation of the last two requirements and discuss the generation of secondary isocurvature perturbations during the late time universe. Second order gradient terms are not necessarily ignored even if we are interested in the long wavelength modes because of the convolutions which may pick products of short wavelength perturbations up. We then introduce second order conserved quantities on superhorizon scales under the conditions (i) and (iii) even in the presence of the gradient terms by employing the full second order cosmological perturbation theory. We also discuss the violation of the condition (iii), that is, the energy momentum tensor is conserved for the total system but not for each component fluid. As an example, we explicitly evaluate second order heat conduction between baryons and photons due to the weak Compton scattering, which dominates during the period just before recombination. We show that such secondary effects can be recast into the isocurvature perturbations on superhorizon scales if the local type primordial non Gaussianity exists a priori.

  11. Assessment Of Noise-induced Sleep Fragility In Two Age Ranges By Means Of Polysomnographic Microstructure

    NASA Astrophysics Data System (ADS)

    Terzano, M. G.; Parrino, L.; Spaggiari, M. C.; Buccino, G. P.; Fioriti, G.; Depoortere, H.

    1993-04-01

    The microstructure of sleep, which translates the short-lived fluctuations of the arousal level, is a commonly neglected feature in polysomnographic studies. Specifically arranged microstructural EEG events may provide important information on the dynamic characteristics of the sleep process. CAP (cyclic alternating pattern) and non-CAP are complementary modalities in which arousal-related "phasic" EEG phenomena are organized in non-REM sleep, and they correspond to opposite conditions of unstable and stable sleep depth, respectively. Thus, arousal instability can be measured by the CAP rate, the percentage ratio of total CAP time to total non-REM sleep time. The CAP rate, an age-related physiological variable that increases in several pathological conditions, is highly sensitive to acoustic perturbation. In the present study, two groups of healthy subjects without complaints about sleep, belonging to different age ranges (six young adults, three males and three females, between 20 and 30 years, and six middle-aged individuals, three males and three females, between 40 and 55 years) slept, after adaptation to the sleep laboratory, in a random sequence for two non-consecutive nights either under silent baseline (27·3 dB(A) Lcq) or noise-disturbed (continuous 55 dB(A) white noise) conditions. Age-related and noise-related effects on traditional sleep parameters and on the CAP rate were statistically evaluated by a split-plot test. Compared to young adults, the middle-aged individuals showed a significant reduction of total sleep time, stage 2 and REM sleep and significantly higher values of nocturnal awakenings and the CAP rate. The noisy nights were characterized by similar alterations. The disruptive effects of acoustic perturbation were greater on the more fragile sleep architecture of the older group. The increased fragility of sleep associated with aging probably reflects the decreased capacity of the sleeping brain to maintain steady states of vigilance. Total non-REM sleep described by traditional parameters was statistically unaffected during the disturbed nights, but the perturbing effects of noise on non-REM sleep stability and continuity were revealed by a significant increase in the CAP rate. The perspectives for a wide-ranging exploitation of this sleep parameter are discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, John; Jacobson, Noah Tobias; Baczewski, Andrew

    EMTpY is an implementation of effective mass theory in python. It is designed to simulate semiconductor qubits within a non-perturbative, multi-valley effective mass theory framework using robust Gaussian basis sets.

  13. SU-E-T-115: Dose Perturbation Study of Self-Expandable Metal and Polyester Esophageal Stents in Proton Therapy Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Li, Z; Jalaj, S

    2014-06-01

    Purpose: This work investigates dose perturbations due to Self-expandable metal and polyester esophageal stents undergoing proton radiotherapy for esophageal cancer. Methods: Five commercially available esophageal stents made of nitinol (Evolution, Wallflex and Ultraflex), stainless steel (Z-Stent) and polyester (Polyflex) were tested. Radiochromic film (GafChromic EBT3 film, Ashland, Covington, KY) wrapped around a stent and a 12cc syringe was irradiated with 2CGE (Cobalt Gray Equivalent) of proton beam in a custom fabricated acrylic phantom. An air-hollow syringe simulates the esophagus. Results: The Z-stent created the largest dose perturbations ranges from -14.5% to 6.1% due to the steel composition. The WallFlex, Evolutionmore » and Ultraflex stents produced the dose perturbation ranges of (−9.2%∼8.6%), (−6.8%∼5.7%) and (−6.2%∼6.2%), respectively. The PolyFlex stent contains the radiopaque tungsten markers located top, middle and bottom portions. When the focal cold spots induced by the markers were excluded in the analysis, the dose perturbation range was changed from (−11.6%∼6.4%) to (−0.6%∼5.0%). Conclusion: The magnitude of dose perturbation is related to material of a metallic stent. The non-metallic stent such as PolyFlex shows relatively lower dose perturbation than metallic stents except a radiopaque marker region. Overall Evolution and Ultraflex stent appear to be less dose perturbations. The largest dose perturbations (cold spots) were located at both edges of stents in distal area for the single proton beam irradiation study. The analysis of more than two proton beam which is more typical clinical beam arrangement would be necessary to minimize the doe perturbation effect in proton ratiotherapy.« less

  14. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl; Repisky, Michal, E-mail: michal.repisky@uit.no

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate themore » effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.« less

  15. Sensitivity analysis of hydrodynamic stability operators

    NASA Technical Reports Server (NTRS)

    Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.

    1992-01-01

    The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.

  16. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  17. Tackling non-linearities with the effective field theory of dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Papadomanolakis, Georgios

    2017-12-01

    We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.

  18. Investigation of a Diagnostic for Perturbation Theory: Comparison to the T(sub 1) Diagnostic of Coupled-Cluster Theory

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Rendell, Alistair P.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A diagnostic for perturbation theory calculations, S(sub 2), is defined and numerical results are compared to the established T(sub 1) diagnostic from coupled-cluster theory. S(sub 2) is the lowest order non-zero contribution to a perturbation expansion of T(sub 1). S(sub 2) is a reasonable estimate of the importance of non-dynamical electron correlation, although not as reliable as T(sub 1). S(sub 2) values less than or equal to 0.012 suggest that low orders of perturbation theory should yield reasonable results; S(sub 2) values between 0.012-0.015 suggest that caution is required in interpreting results from low orders of perturbation theory; S(sub 2) values greater than or equal to 0.015 indicate that low orders of perturbation theory are not reliable for accurate results. Although not required mathematically, S(sub 2) is always less than T(sub 1) for the examples studied here.

  19. Singular behavior of jet substructure observables

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian

    2016-01-20

    Jet substructure observables play a central role at the Large Hadron Collider for identifying the boosted hadronic decay products of electroweak scale resonances. The complete description of these observables requires understanding both the limit in which hard substructure is resolved, as well as the limit of a jet with a single hard core. In this paper we study in detail the perturbative structure of two prominent jet substructure observables, N-subjettiness and the energy correlation functions, as measured on background QCD jets. In particular, we focus on the distinction between the limits in which two-prong structure is resolved or unresolved. Dependingmore » on the choice of subjet axes, we demonstrate that at fixed order, N-subjettiness can manifest myriad behaviors in the unresolved region: smooth tails, end-point singularities, or singularities in the physical region. The energy correlation functions, by contrast, only have non-singular perturbative tails extending to the end point. We discuss the effect of hadronization on the various observables with Monte Carlo simulation and demonstrate that the modeling of these effects with non-perturbative shape functions is highly dependent on the N-subjettiness axes definitions. Lastly, our study illustrates those regions of phase space that must be controlled for high-precision jet substructure calculations, and emphasizes how such calculations can be facilitated by designing substructure observables with simple singular structures.« less

  20. Bayesian Sensitivity Analysis of Statistical Models with Missing Data

    PubMed Central

    ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG

    2013-01-01

    Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718

  1. Large-scale structure in brane-induced gravity. I. Perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less

  2. On information loss in AdS 3/CFT 2

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; ...

    2016-05-18

    We discuss information loss from black hole physics in AdS 3, focusing on two sharp signatures infecting CFT 2 correlators at large central charge c: ‘forbidden singularities’ arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change themore » behavior of correlators at times t ~S BH, the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1/c expansion of exact examples, we explicitly identify ‘information-restoring’ effects from heavy states that should correspond to classical solutions in AdS 3. Lastly, our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS 3.« less

  3. Renormalizing a viscous fluid model for large scale structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Führer, Florian; Rigopoulos, Gerasimos, E-mail: fuhrer@thphys.uni-heidelberg.de, E-mail: gerasimos.rigopoulos@ncl.ac.uk

    2016-02-01

    Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher ordermore » vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.« less

  4. A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.

    PubMed

    Doroudi, Alireza

    2012-01-01

    In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.

  5. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasilov, Sergei V.; Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov; Kernbichler, Winfried

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such thatmore » the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.« less

  6. Model of Selective and Non-Selective Management of Badgers (Meles meles) to Control Bovine Tuberculosis in Badgers and Cattle

    PubMed Central

    Smith, Graham C.; Delahay, Richard J.; McDonald, Robbie A.

    2016-01-01

    Bovine tuberculosis (bTB) causes substantial economic losses to cattle farmers and taxpayers in the British Isles. Disease management in cattle is complicated by the role of the European badger (Meles meles) as a host of the infection. Proactive, non-selective culling of badgers can reduce the incidence of disease in cattle but may also have negative effects in the area surrounding culls that have been associated with social perturbation of badger populations. The selective removal of infected badgers would, in principle, reduce the number culled, but the effects of selective culling on social perturbation and disease outcomes are unclear. We used an established model to simulate non-selective badger culling, non-selective badger vaccination and a selective trap and vaccinate or remove (TVR) approach to badger management in two distinct areas: South West England and Northern Ireland. TVR was simulated with and without social perturbation in effect. The lower badger density in Northern Ireland caused no qualitative change in the effect of management strategies on badgers, although the absolute number of infected badgers was lower in all cases. However, probably due to differing herd density in Northern Ireland, the simulated badger management strategies caused greater variation in subsequent cattle bTB incidence. Selective culling in the model reduced the number of badgers killed by about 83% but this only led to an overall benefit for cattle TB incidence if there was no social perturbation of badgers. We conclude that the likely benefit of selective culling will be dependent on the social responses of badgers to intervention but that other population factors including badger and cattle density had little effect on the relative benefits of selective culling compared to other methods, and that this may also be the case for disease management in other wild host populations. PMID:27893809

  7. Model of Selective and Non-Selective Management of Badgers (Meles meles) to Control Bovine Tuberculosis in Badgers and Cattle.

    PubMed

    Smith, Graham C; Delahay, Richard J; McDonald, Robbie A; Budgey, Richard

    2016-01-01

    Bovine tuberculosis (bTB) causes substantial economic losses to cattle farmers and taxpayers in the British Isles. Disease management in cattle is complicated by the role of the European badger (Meles meles) as a host of the infection. Proactive, non-selective culling of badgers can reduce the incidence of disease in cattle but may also have negative effects in the area surrounding culls that have been associated with social perturbation of badger populations. The selective removal of infected badgers would, in principle, reduce the number culled, but the effects of selective culling on social perturbation and disease outcomes are unclear. We used an established model to simulate non-selective badger culling, non-selective badger vaccination and a selective trap and vaccinate or remove (TVR) approach to badger management in two distinct areas: South West England and Northern Ireland. TVR was simulated with and without social perturbation in effect. The lower badger density in Northern Ireland caused no qualitative change in the effect of management strategies on badgers, although the absolute number of infected badgers was lower in all cases. However, probably due to differing herd density in Northern Ireland, the simulated badger management strategies caused greater variation in subsequent cattle bTB incidence. Selective culling in the model reduced the number of badgers killed by about 83% but this only led to an overall benefit for cattle TB incidence if there was no social perturbation of badgers. We conclude that the likely benefit of selective culling will be dependent on the social responses of badgers to intervention but that other population factors including badger and cattle density had little effect on the relative benefits of selective culling compared to other methods, and that this may also be the case for disease management in other wild host populations.

  8. On the chiral magnetic effect in Weyl superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.

    2017-01-01

    In the theory of the chiral anomaly in relativistic quantum field theories (RQFTs), some results depend on a regularization scheme at ultraviolet. In the chiral superfluid 3He-A, which contains two Weyl points and also experiences the effects of chiral anomaly, the "trans-Planckian" physics is known and the results can be obtained without regularization. We discuss this on example of the chiral magnetic effect (CME), which has been observed in 3He-A in the 1990s [1]. There are two forms of the contribution of the CME to the Chern-Simons term in free energy, perturbative and non-perturbative. The perturbative term comes from the fermions living in the vicinity of the Weyl point, where the fermions are "relativistic" and obey the Weyl equation. The non-perturbative term originates from the deep vacuum, being determined by the separation of the two Weyl points in momentum space. Both terms are obtained using the Adler-Bell-Jackiw equation for chiral anomaly, and both agree with the results of the microscopic calculations in the "trans-Planckian" region. Existence of the two nonequivalent forms of the Chern-Simons term demonstrates that the results obtained within the RQFT depend on the specific properties of the underlying quantum vacuum and may reflect different physical phenomena in the same vacuum.

  9. Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.G.; Norman, P.I.; Leadbeater, T.W.

    Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have beenmore » used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)« less

  10. CMB hemispherical asymmetry from non-linear isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan

    2015-04-01

    We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemisphericalmore » asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.« less

  11. Cosmic microwave background power asymmetry from non-Gaussian modulation.

    PubMed

    Schmidt, Fabian; Hui, Lam

    2013-01-04

    Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.

  12. One-loop perturbative coupling of A and A? through the chiral overlap operator

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi

    2018-03-01

    Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.

  13. Moduli stabilising in heterotic nearly Kähler compactifications

    NASA Astrophysics Data System (ADS)

    Klaput, Michael; Lukas, Andre; Matti, Cyril; Svanes, Eirik E.

    2013-01-01

    We study heterotic string compactifications on nearly Kähler homogeneous spaces, including the gauge field effects which arise at order α'. Using Abelian gauge fields, we are able to solve the Bianchi identity and supersymmetry conditions to this order. The four-dimensional external space-time consists of a domain wall solution with moduli fields varying along the transverse direction. We find that the inclusion of α' corrections improves the moduli stabilization features of this solution. In this case, one of the dilaton and the volume modulus asymptotes to a constant value away from the domain wall. It is further shown that the inclusion of non-perturbative effects can stabilize the remaining modulus and "lift" the domain wall to an AdS vacuum. The coset SU(3)/U(1)2 is used as an explicit example to demonstrate the validity of this AdS vacuum. Our results show that heterotic nearly Kähler compactifications can lead to maximally symmetric four-dimensional space-times at the non-perturbative level.

  14. THE FIRST FERMI IN A HIGH ENERGY NUCLEAR COLLISION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRASNITZ,A.

    1999-08-09

    At very high energies, weak coupling, non-perturbative methods can be used to study classical gluon production in nuclear collisions. One observes in numerical simulations that after an initial formation time, the produced partons are on shell, and their subsequent evolution can be studied using transport theory. At the initial formation time, a simple non-perturbative relation exists between the energy and number densities of the produced partons, and a scale determined by the saturated parton density in the nucleus.

  15. Experimental and analytical investigation of direct and indirect noise generated from non-isentropic boundaries

    NASA Astrophysics Data System (ADS)

    de Domenico, Francesca; Rolland, Erwan; Hochgreb, Simone

    2017-11-01

    Pressure fluctuations in combustors arise either directly from the heat release rate perturbations of the flame (direct noise), or indirectly from the acceleration of entropy, vorticity or compositional perturbations through nozzles or turbine guide vanes (indirect noise). In this work, the second mechanism is experimentally investigated in a simplified rig. Synthetic entropy spots are generated via Joule effect or helium injection and then accelerated via orifice plates of different area contraction and thickness. The objective of the study is to parametrically analyse the entropy-to-sound conversion in non isentropic contractions (e.g. with pressure losses), represented by the orifice plates. Acoustic measurements are performed to reconstruct the acoustic and entropic transfer functions of the orifices and compare experimental data with analytical predictions, to investigate the effect of orifice thickness and area ratio on the transfer functions. PIV measurements are performed to study the stretching and dispersion of the entropy waves due to mean flow effects. Secondly, PIV images taken in the jet exiting downstream of the orifices are used to investigate the coupling of the acoustic and entropy fields with the hydrodynamic field. EPRSC, Qualcomm.

  16. Time-sliced perturbation theory for large scale structure I: general formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less

  17. Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung

    2017-09-01

    We present proof of the axion as a cold dark matter (CDM) candidate to the fully nonlinear order perturbations based on Einstein’s gravity. We consider the axion as a coherently oscillating massive classical scalar field without interaction. We present the fully nonlinear and exact, except for ignoring the transverse-tracefree tensor-type perturbation, hydrodynamic equations for an axion fluid in Einstein’s gravity. We show that the axion has the characteristic pressure and anisotropic stress; the latter starts to appear from the second-order perturbation. But these terms do not directly affect the hydrodynamic equations in our axion treatment. Instead, what behaves as themore » effective pressure term in relativistic hydrodynamic equations is the perturbed lapse function and the relativistic result coincides exactly with the one known in the previous non-relativistic studies. The effective pressure term leads to a Jeans scale that is of the solar-system scale for conventional axion mass. As the fully nonlinear and relativistic hydrodynamic equations for an axion fluid coincide exactly with the ones of a zero-pressure fluid in the super-Jeans scale, we have proved the CDM nature of such an axion in that scale.« less

  18. Non-perturbative theory of dispersion interactions

    NASA Astrophysics Data System (ADS)

    Boström, M.; Thiyam, P.; Persson, C.; Parsons, D. F.; Buhmann, S. Y.; Brevik, I.; Sernelius, Bo E.

    2015-03-01

    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here, we present a full non-perturbative theory. In addition, we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.

  19. Validation and application of auxiliary density perturbation theory and non-iterative approximation to coupled-perturbed Kohn-Sham approach for calculation of dipole-quadrupole polarizability

    NASA Astrophysics Data System (ADS)

    Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.

    2011-07-01

    Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.

  20. Consistency relation and non-Gaussianity in a Galileon inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asadi, Kosar; Nozari, Kourosh, E-mail: k.asadi@stu.umz.ac.ir, E-mail: knozari@umz.ac.ir

    2016-12-01

    We study a particular Galileon inflation in the light of Planck2015 observational data in order to constraint the model parameter space. We study the spectrum of the primordial modes of the density perturbations by expanding the action up to the second order in perturbations. Then we pursue by expanding the action up to the third order and find the three point correlation functions to find the amplitude of the non-Gaussianity of the primordial perturbations in this setup. We study the amplitude of the non-Gaussianity both in equilateral and orthogonal configurations and test the model with recent observational data. Our analysismore » shows that for some ranges of the non-minimal coupling parameter, the model is consistent with observation and it is also possible to have large non-Gaussianity which would be observable by future improvements in experiments. Moreover, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation ( r = −8 n {sub T} ) against the latest bounds from the Planck2015 dataset. We find a slight deviation from the standard consistency relation in this setup. Nevertheless, such a deviation seems not to be sufficiently remarkable to be detected confidently.« less

  1. Non-perturbative String Theory from Water Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less

  2. Topics in structural dynamics: Nonlinear unsteady transonic flows and Monte Carlo methods in acoustics

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1974-01-01

    The results are reported of two unrelated studies. The first was an investigation of the formulation of the equations for non-uniform unsteady flows, by perturbation of an irrotational flow to obtain the linear Green's equation. The resulting integral equation was found to contain a kernel which could be expressed as the solution of the adjoint flow equation, a linear equation for small perturbations, but with non-constant coefficients determined by the steady flow conditions. It is believed that the non-uniform flow effects may prove important in transonic flutter, and that in such cases, the use of doublet type solutions of the wave equation would then prove to be erroneous. The second task covered an initial investigation into the use of the Monte Carlo method for solution of acoustical field problems. Computed results are given for a rectangular room problem, and for a problem involving a circular duct with a source located at the closed end.

  3. Test-retest reliability of a balance testing protocol with external perturbations in young healthy adults.

    PubMed

    Robbins, Shawn M; Caplan, Ryan M; Aponte, Daniel I; St-Onge, Nancy

    2017-10-01

    External perturbations are utilized to challenge balance and mimic realistic balance threats in patient populations. The reliability of such protocols has not been established. The purpose was to examine test-retest reliability of balance testing with external perturbations. Healthy adults (n=34; mean age 23 years) underwent balance testing over two visits. Participants completed ten balance conditions in which the following parameters were combined: perturbation or non-perturbation, single or double leg, and eyes open or closed. Three trials were collected for each condition. Data were collected on a force plate and external perturbations were applied by translating the plate. Force plate center of pressure (CoP) data were summarized using 13 different CoP measures. Test-retest reliability was examined using intraclass correlation coefficients (ICC) and Bland-Altman plots. CoP measures of total speed and excursion in both anterior-posterior and medial-lateral directions generally had acceptable ICC values for perturbation conditions (ICC=0.46 to 0.87); however, many other CoP measures (e.g. range, area of ellipse) had unacceptable test-retest reliability (ICC<0.70). Improved CoP measures were present on the second visit indicating a potential learning effect. Non-perturbation conditions generally produced more reliable CoP measures than perturbation conditions during double leg standing, but not single leg standing. Therefore, changes to balance testing protocols that include external perturbations should be made to improve test-retest reliability and diminish learning including more extensive participant training and increasing the number of trials. CoP measures that consider all data points (e.g. total speed) are more reliable than those that only consider a few data points. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp

    We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solvedmore » as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.« less

  5. Smoking, pregnancy and the subgingival microbiome

    PubMed Central

    Paropkari, Akshay D.; Leblebicioglu, Binnaz; Christian, Lisa M.; Kumar, Purnima S.

    2016-01-01

    The periodontal microbiome is known to be altered during pregnancy as well as by smoking. However, despite the fact that 2.1 million women in the United States smoke during their pregnancy, the potentially synergistic effects of smoking and pregnancy on the subgingival microbiome have never been studied. Subgingival plaque was collected from 44 systemically and periodontally healthy non-pregnant nonsmokers (control), non-pregnant smokers, pregnant nonsmokers and pregnant smokers and sequenced using 16S-pyrotag sequencing. 331601 classifiable sequences were compared against HOMD. Community ordination methods and co-occurrence networks were used along with non-parametric tests to identify differences between groups. Linear Discriminant Analysis revealed significant clustering based on pregnancy and smoking status. Alpha diversity was similar between groups, however, pregnant women (smokers and nonsmokers) demonstrated higher levels of gram-positive and gram-negative facultatives, and lower levels of gram-negative anaerobes when compared to smokers. Each environmental perturbation induced distinctive co-occurrence patterns between species, with unique network anchors in each group. Our study thus suggests that the impact of each environmental perturbation on the periodontal microbiome is unique, and that when they are superimposed, the sum is greater than its parts. The persistence of these effects following cessation of the environmental disruption warrants further investigation. PMID:27461975

  6. Weak-field multiphoton femtosecond coherent control in the single-cycle regime.

    PubMed

    Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar

    2011-03-28

    Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.

  7. Advanced dynamical models for very well observed asteroids : perturbations from small bodies, relativity, non - gravitational effects.

    NASA Astrophysics Data System (ADS)

    Bernardi, Fabrizio; Farnocchia, Davide; Milani, Andrea

    2012-08-01

    The availability of radar data and high precision optical observations has increased the number of objects with a very well constrained orbit, especially for those objects with a long observed arc. In these cases, the uncertainty of orbital predictions is often dominated by the inaccuracy of the dynamical model. However, the motion of small solar system bodies poses a serious challenge in modeling their dynamics. In particular, for those objects with a chaotic motion small differences in the model are amplified with propagation. Thus, we need to take into account small perturbations too, especially for long - term prediction. An improved dynamical model is relevant in several applications such as assessing the risk of an impact between an asteroid and the Earth. The N - body model describing the motion of a small solar system body includes the Newtonian attraction of the planets. The contribution o f other perturbing bodies has to be taken into account. We propose to include the Moon, two dwarf planets (Ceres and Pluto) and fifteen asteroids (Pallas, Vesta, Juno, Metis, Hygiea, Eunomia, Psyche, Amphitrite, Euphrosyne, Europa, Cybele, Sylvia, Davida, Herculina, Interamnia). The next step is the introduction of the relativity terms due to both the Sun and the planets . Despite their small magnitude, planetary relativistic terms turn out to be relevant for objects experiencing close approaches with a planet. Finally, we discuss non - gravitational effects such as solar radiation pressure and the Yarkovsky effect. In particular, the latter acts as a tiny but secular semimajor axis drift that may decisively drive long - term predictions. These non - gravitational effects are difficult to model as they depend on object ’ s physical properties that are typically unknown. However, a very well observed object can have an orbit precise enough to allow the determination of the parameters defining a non - gravitational perturbation and thus the modeling of the corresponding acceleration.

  8. Laboratory Plasma Studies

    DTIC Science & Technology

    1993-11-30

    dependent field to the main toroidal field, which provides an effective increment to the acceleration rate if it has a negative time derivative during...regions, non- uniformities in the beam develop in the drift region, scattering in the foils affects the beam entering the laser, effects due to a second...faster destroyed by a small perturbation. Note that this analogy is adequate only when the global RT mode cannot develop - otherwise, it is the rigid pen

  9. Non-hard sphere thermodynamic perturbation theory.

    PubMed

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  10. Instantons in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de

    2015-12-17

    These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.

  11. Gravitational perturbation of irregular bodies modeled with regular polyhedra

    NASA Astrophysics Data System (ADS)

    Venditti, Flaviane; Prado, Antonio

    In this work the study of the dynamics around bodies with non-spherical shapes is considered. The gravitational field of an irregular body, meaning that the mass distribution is asymmetric, generates orbits around this body to perform different from a keplerian orbit. In this case, there is a perturbation on the gravitational field that must be analyzed. To know the gravitational force of an irregular object, first it is necessary to model this body, which is not an easy thing to do, considering that, usually, they are not symmetric figures. To better model the irregular objects, a combination of several geometric figures can be used, like parallelepipeds. This can be applied to asteroids, which are objects with non-spherical shapes. The disturbing force generated by these bodies can then be obtained as the sum of the force on each figure. Here the equation for the potential of a cube is considered (MacMillan, 1930), which makes it possible to have analytical results. The main idea is to build a body with several cubes, and having the gravitational potential of each cube, it is possible to obtain the total perturbation as the sum of the forces acting on each piece. This methodology can be very helpful on space missions to small bodies, because when a spacecraft is in the vicinity of an irregular body, the gravitational perturbation generated by its shape must be considered to compensate this effect.

  12. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  13. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    PubMed

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  14. Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Suvodip; Das, Santanu; Souradeep, Tarun

    2015-01-01

    Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass m{sub eff} for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independentmore » parameters, namely spectral index for tensor perturbation ν{sub t} and change in spectral index for scalar perturbation ν{sub st} to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of n{sub s}=0.96 by having a non-zero value of effective mass of the inflaton field m{sup 2}{sub eff}/H{sup 2}. The analysis with WP + Planck likelihood shows a non-zero detection of m{sup 2}{sub eff}/H{sup 2} with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m{sup 2}{sub eff}/H{sup 2} = −0.0237 ± 0.0135 which is consistent with zero.« less

  15. Scalaron from R2-gravity as a heavy field

    NASA Astrophysics Data System (ADS)

    Pi, Shi; Zhang, Ying-li; Huang, Qing-Guo; Sasaki, Misao

    2018-05-01

    We study a model of inflation in which a scalar field χ is non-minimally coupled to Starobinsky's R2 gravity. After transforming it to the Einstein frame, a new scalar field, the scalaron phi, will appear and couple to χ with a nontrivial field metric, while χ acquires a positive mass via the non-minimal coupling. Initially inflation occurs along the phi direction with χ trapped near its origin by this induced mass. After phi crosses a critical value, it starts rolling down rapidly and proceeds to damped oscillations around an effective local minimum determined by the value of χ, while inflation still continues, driven by the χ field at this second stage where the effect of the non-minimal coupling becomes negligible. The presence of the damped oscillations during the transition from the first to second stage of inflation causes enhancement and oscillation features in the power spectrum of the curvature perturbation. Assuming that the oscillations may be treated perturbatively, we calculate these features by using the δ N formalism, and discuss its observational implications to large scale CMB anomalies or primordial black hole formation, depending on the scale of the features.

  16. Reduced Tolerance to Night Shift in Chronic Shift Workers: Insight From Fractal Regulation.

    PubMed

    Li, Peng; Morris, Christopher J; Patxot, Melissa; Yugay, Tatiana; Mistretta, Joseph; Purvis, Taylor E; Scheer, Frank A J L; Hu, Kun

    2017-07-01

    Healthy physiology is characterized by fractal regulation (FR) that generates similar structures in the fluctuations of physiological outputs at different time scales. Perturbed FR is associated with aging and age-related pathological conditions. Shift work, involving repeated and chronic exposure to misaligned environmental and behavioral cycles, disrupts circadian coordination. We tested whether night shifts perturb FR in motor activity and whether night shifts affect FR in chronic shift workers and non-shift workers differently. We studied 13 chronic shift workers and 14 non-shift workers as controls using both field and in-laboratory experiments. In the in-laboratory study, simulated night shifts were used to induce a misalignment between the endogenous circadian pacemaker and the sleep-wake cycles (ie, circadian misalignment) while environmental conditions and food intake were controlled. In the field study, we found that FR was robust in controls but broke down in shift workers during night shifts, leading to more random activity fluctuations as observed in patients with dementia. The night shift effect was present even 2 days after ending night shifts. The in-laboratory study confirmed that night shifts perturbed FR in chronic shift workers and showed that FR in controls was more resilience to the circadian misalignment. Moreover, FR during real and simulated night shifts was more perturbed in those who started shift work at older ages. Chronic shift work causes night shift intolerance, which is probably linked to the degraded plasticity of the circadian control system. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. A non-additive repulsive contribution in an equation of state: The development for homonuclear square well chains equation of state validated against Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinh, Thi-Kim-Hoang; Laboratoire de Science des Procédés et des Matériaux; Passarello, Jean-Philippe, E-mail: Jean-Philippe.Passarello@lspm.cnrs.fr

    This work consists of the adaptation of a non-additive hard sphere theory inspired by Malakhov and Volkov [Polym. Sci., Ser. A 49(6), 745–756 (2007)] to a square-well chain. Using the thermodynamic perturbation theory, an additional term is proposed that describes the effect of perturbing the chain of square well spheres by a non-additive parameter. In order to validate this development, NPT Monte Carlo simulations of thermodynamic and structural properties of the non-additive square well for a pure chain and a binary mixture of chains are performed. Good agreements are observed between the compressibility factors originating from the theory and thosemore » from molecular simulations.« less

  18. Non-gaussianity versus nonlinearity of cosmological perturbations.

    PubMed

    Verde, L

    2001-06-01

    Following the discovery of the cosmic microwave background, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us toward a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, nonlinear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but galaxies might not be faithful tracers of the underlying mass distribution. The relationship between fluctuations in the mass and in the galaxies distribution (bias), is often assumed to be local, but could well be nonlinear. Moreover, galaxy catalogues use the redshift as third spatial coordinate: the resulting redshift-space map of the galaxy distribution is nonlinearly distorted by peculiar velocities. Nonlinear gravitational evolution, biasing, and redshift-space distortion introduce non-gaussianity, even in an initially gaussian fluctuation field. I investigate the statistical tools that allow us, in principle, to disentangle the above different effects, and the observational datasets we require to do so in practice.

  19. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    NASA Astrophysics Data System (ADS)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  20. Analytical Solution of Coupled Perturbation of Tesseral Harmonic Terms of Mars's Non-Spherical Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Zhou, Chui-hong; Yu, Sheng-xian; Liu, Lin

    2012-10-01

    The non-spherical gravitational potential of the planet Mars is sig- nificantly different from that of the Earth. The magnitudes of Mars' tesseral harmonic coefficients are basically ten times larger than the corresponding val- ues of the Earth. Especially, the magnitude of its second degree and order tesseral harmonic coefficient J2,2 is nearly 40 times that of the Earth, and approaches to the one tenth of its second zonal harmonic coefficient J2. For a low-orbit Mars probe, if the required accuracy of orbit prediction of 1-day arc length is within 500 m (equivalent to the order of magnitude of 10-4 standard unit), then the coupled terms of J2 with the tesseral harmonics, and even those of the tesseral harmonics themselves, which are negligible for the Earth satellites, should be considered when the analytical perturbation solution of its orbit is built. In this paper, the analytical solutions of the coupled terms are presented. The anal- ysis and numerical verification indicate that the effect of the above-mentioned coupled perturbation on the orbit may exceed 10-4 in the along-track direc- tion. The conclusion is that the solutions of Earth satellites cannot be simply used without any modification when dealing with the analytical perturbation solutions of Mars-orbiting satellites, and that the effect of the coupled terms of Mars's non-spherical gravitational potential discussed in this paper should be taken into consideration.

  1. Primordial gravitational waves, precisely: the role of thermodynamics in the Standard Model

    NASA Astrophysics Data System (ADS)

    Saikawa, Ken'ichi; Shirai, Satoshi

    2018-05-01

    In this paper, we revisit the estimation of the spectrum of primordial gravitational waves originated from inflation, particularly focusing on the effect of thermodynamics in the Standard Model of particle physics. By collecting recent results of perturbative and non-perturbative analysis of thermodynamic quantities in the Standard Model, we obtain the effective degrees of freedom including the corrections due to non-trivial interaction properties of particles in the Standard Model for a wide temperature interval. The impact of such corrections on the spectrum of primordial gravitational waves as well as the damping effect due to free-streaming particles is investigated by numerically solving the evolution equation of tensor perturbations in the expanding universe. It is shown that the reevaluation of the effects of free-streaming photons and neutrinos gives rise to some additional damping features overlooked in previous studies. We also observe that the continuous nature of the QCD crossover results in a smooth spectrum for modes that reenter the horizon at around the epoch of the QCD phase transition. Furthermore, we explicitly show that the values of the effective degrees of freedom remain smaller than the commonly used value 106.75 even at temperature much higher than the critical temperature of the electroweak crossover, and that the amplitude of primordial gravitational waves at a frequency range relevant to direct detection experiments becomes Script O(1) % larger than previous estimates that do not include such corrections. This effect can be relevant to future high-sensitivity gravitational wave experiments such as ultimate DECIGO. Our results on the temperature evolution of the effective degrees of freedom are made available as tabulated data and fitting functions, which can also be used in the analysis of other cosmological relics.

  2. Quantum phases with differing computational power.

    PubMed

    Cui, Jian; Gu, Mile; Kwek, Leong Chuan; Santos, Marcelo França; Fan, Heng; Vedral, Vlatko

    2012-05-01

    The observation that concepts from quantum information has generated many alternative indicators of quantum phase transitions hints that quantum phase transitions possess operational significance with respect to the processing of quantum information. Yet, studies on whether such transitions lead to quantum phases that differ in their capacity to process information remain limited. Here we show that there exist quantum phase transitions that cause a distinct qualitative change in our ability to simulate certain quantum systems under perturbation of an external field by local operations and classical communication. In particular, we show that in certain quantum phases of the XY model, adiabatic perturbations of the external magnetic field can be simulated by local spin operations, whereas the resulting effect within other phases results in coherent non-local interactions. We discuss the potential implications to adiabatic quantum computation, where a computational advantage exists only when adiabatic perturbation results in coherent multi-body interactions.

  3. Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems.

    PubMed

    Tran, Tri; Ha, Q P

    2018-01-01

    A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Coupling the nongravitational forces and modified Newton dynamics for cometary orbits

    NASA Astrophysics Data System (ADS)

    Maquet, Lucie; Pierret, Frédéric

    2015-04-01

    In recent work [L. Blanchet and J. Novak, Mon. Not. R. Astron. Soc. 412, 2530 (2011); L. Blanchet and J. Novak, Testing MOND in the Solar System (2011); and M. Milgrom, Mon. Not. R. Astron. Soc. 399, 474 (2009)], the authors showed that modified Newton dynamics (MOND) has a non-negligible secular perturbation effect on planets with large semimajor axes (gaseous planets) in the Solar System. Some comets also have a very eccentric orbit with a large semimajor axis (Halley family comets) going far away from the Sun (more than 15 AU) in a low acceleration regime where they would be subject to MOND perturbation. They also approach the Sun very closely (less than 3 AU) and are affected by the sublimation of ices from their nucleus, triggering so-called nongravitational forces. The main goal of this paper is to investigate the effect of MOND perturbation on three comets with various orbital elements (2 P /Encke , 1 P /Halley and 153 P /Ikeya-Zhang ) and then compare it to the nongravitational perturbations. It is motivated by the fact that when fitting an outgassing model for a comet, we have to take into account all of the small perturbing effects to avoid absorbing these effects into the nongravitational parameters. Otherwise, we could derive a completely wrong estimation of the outgassing. For this work, we use six different forms of MOND functions and compute the secular variations of the orbital elements due to MOND and nongravitational perturbations. We show that, for comets with large semimajor axis, the MONDian effects are not negligible compared to the nongravitational perturbations.

  5. Light touch leads to increased stability in quiet and perturbed balance: Equivalent effects between post-stroke and healthy older individuals.

    PubMed

    Martinelli, Alessandra Rezende; Coelho, Daniel Boari; Teixeira, Luis Augusto

    2018-04-01

    Cerebral damage provoked by stroke may lead to deficits of quiet balance control and of the recovery of body equilibrium following an unanticipated postural perturbation. In this investigation we aimed to evaluate the effect of light touch (LT) of an earth-fixed surface on balance stability in individuals with post-stroke hemiparesis, taking performance of age-matched healthy participants as reference. Evaluations were made in conditions of full and no visual information. Analysis of quiet balance showed that LT induced higher balance stability, with reduced amplitude and velocity of postural sway. Evaluation of the effect of LT on automatic postural responses was made in the task of recovering body equilibrium following a mechanical perturbation of balance leading to fast forward body sway. Results showed that LT led to reduced amplitude of center of mass displacement following the perturbation, in addition to reduced amplitude and velocity of center of pressure under the feet, and lower activation of the lower legs muscles. Those effects of LT were observed in both the post-stroke and control groups, and did not interact with vision availability. Our results indicated then that individuals who suffered a cerebral stroke can stabilize perturbed and non-perturbed postural responses by lightly touching a stable surface to a similar extent of healthy older individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Influence of the resonant magnetic perturbations on transport in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Jakubowski, M. W.; Drewelow, P.; Masuzaki, S.; Tanaka, K.; Pedersen, T. S.; Akiyama, T.; Bozhenkov, S.; Dinklage, A.; Kobayashi, M.; Narushima, Y.; Sakakibara, S.; Suzuki, Y.; Wolf, R.; Yamada, H.; the LHD Experimental Group

    2013-11-01

    The purpose of this study is the investigation of the non-linear plasma response of transport due to stochastic effects. On the Large Helical Device, perturbation coils create a resonant magnetic perturbation (RMP) with the m/n = 1/1 and 2/1 Fourier components. Depending on the plasma conditions, the perturbation either enhances or heals the natural m/n = 1/1 magnetic island. For the case of an amplified island the enhanced heat and particle transport across the island causes a rather significant reduction in the confinement. For a healed island, there is a small decrease in beta with increasing perturbation current. These changes coincide with an increasing width of the open stochastic volume at the plasma edge near the x-point. Systematic experiments are performed, changing the amplitude of the perturbation linearly with IRMP in the range from 0 to 2.7 kA. Two scenarios are investigated: first, the discharge is ramped up with an external perturbation already superimposed on the main magnetic field. Second, the external perturbation is applied to the plasma already ignited (similar to experiments with RMPs in tokamaks). As will be shown, there is a clear difference in the size of the 1/1 island and the dependence of ne and Te on the perturbation when comparing these two scenarios. A hysteresis is observed up to a certain amplitude of the external perturbation. The particle transport and confinement are affected substantially in the discharges with a pre-existing magnetic perturbation. Interestingly, a global reduction in Te and ne is observed above a certain value of perturbation current in both cases. However, for the same island width, the plasma reacts differently to the applied perturbation depending on the direction of the ramp. For ramp-downs, we observe steeper electron density and temperature gradients, which leads to better plasma performance.

  7. Molecular perturbations restrict potential for liver repopulation of hepatocytes isolated from non-heart-beating donor rats.

    PubMed

    Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev

    2012-04-01

    Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in hepatocytes from non-heart-beating donors offer opportunities for improving donor cell viability, which will advance the utility of non-heart-beating donor organs for cell therapy or other applications. Copyright © 2012 American Association for the Study of Liver Diseases.

  8. Non-normal perturbation growth in idealised island and headland wakes

    NASA Astrophysics Data System (ADS)

    Aiken, C. M.; Moore, A. M.; Middleton, J. H.

    2003-12-01

    Generalised linear stability theory is used to calculate the linear perturbations that furnish most rapid growth in energy in a model of a steady recirculating island wake. This optimal peturbation is found to be antisymmetric and to evolve into a von Kármán vortex street. Eigenanalysis of the linearised system reveals that the eigenmodes corresponding to vortex sheet formation are damped, so the growth of the perturbation is understood through the non-normality of the linearised system. Qualitatively similar perturbation growth is shown to occur in a non-linear model of stochastically-forced subcritical flow, resulting in transition to an unsteady wake. Free-stream variability with amplitude 8% of the mean inflow speed sustains vortex street structures in the non-linear model with perturbation velocities the order of the inflow speed, suggesting that environmental stochastic forcing may similarly be capable of exciting growing disturbances in real island wakes. To support this, qualitatively similar perturbation growth is demonstrated in the straining wake of a realistic island obstacle. It is shown that for the case of an idealised headland, where the vortex street eigenmodes are lacking, vortex sheets are produced through a similar non-normal process.

  9. Cumulative effects in inflation with ultra-light entropy modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achúcarro, Ana; Atal, Vicente; Germani, Cristiano

    2017-02-01

    In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (''ultralight') while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressingmore » the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e -folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.« less

  10. Cumulative effects in inflation with ultra-light entropy modes

    NASA Astrophysics Data System (ADS)

    Achúcarro, Ana; Atal, Vicente; Germani, Cristiano; Palma, Gonzalo A.

    2017-02-01

    In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (``ultralight") while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressing the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e-folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.

  11. Linear ideal MHD predictions for n = 2 non-axisymmetric magnetic perturbations on DIII-D

    DOE PAGES

    Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2014-02-05

    Here, an extensive examination of the plasma response to dominantly n = 2 non-axisymmetric magnetic perturbations (MPs) on the DIII-D tokamak shows the potential to control 3D field interactions by varying the poloidal spectrum of the radial magnetic field. The plasma response is calculated as a function of the applied magnetic field structure and plasma parameters, using the linear magnetohydrodynamic code MARS-F. The ideal, single fluid plasma response is decomposed into two main components: a local pitch-resonant response occurring at rational magnetic flux surfaces, and a global kink response. The efficiency with which the field couples to the total plasmamore » response is determined by the safety factor and the structure of the applied field. In many cases, control of the applied field has a more significant effect than control of plasma parameters, which is of particular interest since it can be modified at will throughout a shot to achieve a desired effect. The presence of toroidal harmonics, other than the dominant n = 2 component, is examined revealing a significant n = 4 component in the perturbations applied by the DIII-D MP coils; however, modeling shows the plasma responses to n = 4 perturbations are substantially smaller than the dominant n = 2 responses in most situations.« less

  12. Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.

    2007-11-15

    The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.

  13. Stability analysis and future singularity of the m{sup 2} R □{sup -2} R model of non-local gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, Yves; Mitsou, Ermis, E-mail: yves.dirian@unige.ch, E-mail: ermis.mitsou@unige.ch

    2014-10-01

    We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ∼ m{sup 2} R □{sup -2} R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flatmore » space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.« less

  14. The AdS3 propagator and the fate of locality

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin; Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang

    2018-04-01

    We recently used Virasoro symmetry considerations to propose an exact formula for a bulk proto-field ϕ in AdS3. In this paper we study the propagator < ϕϕ>. We show that many techniques from the study of conformal blocks can be generalized to compute it, including the semiclassical monodromy method and both forms of the Zamolodchikov recursion relations. When the results from recursion are expanded at large central charge, they match gravitational perturbation theory for a free scalar field coupled to gravity in our chosen gauge. We find that although the propagator is finite and well-defined at long distances, its perturbative expansion in {G}_N=3/2c exhibits UV/IR mixing effects. If we nevertheless interpret < ϕϕ> as a probe of bulk locality, then when {G}_{N{m}_{φ }}≪ 1 locality breaks down at the new short-distance scale {σ}_{\\ast}˜ √[4]{G_N{R}_{AdS}^3} . For ϕ with very large bulk mass, or at small central charge, bulk locality fails at the AdS length scale. In all cases, locality `breakdown' manifests as singularities or branch cuts at spacelike separation arising from non-perturbative quantum gravitational effects.

  15. Multi-field inflation with a random potential

    NASA Astrophysics Data System (ADS)

    Tye, S.-H. Henry; Xu, Jiajun; Zhang, Yang

    2009-04-01

    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian-like motion with a drift in the D-dimensional field space, allowing entropic perturbation modes to continuously and randomly feed into the adiabatic mode. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario where the stochastic scatterings are frequent but mild, the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, in which the coarse-grained motion of the inflaton is significantly slowed down by the scatterings, leads to rich phenomenologies. The power spectrum exhibits primordial fluctuations on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and have been smoothed out by binning of data points. With more data coming in the future, we expect these features can be detected or falsified. On the other hand the tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced by the large ratio of the Brownian-like motion speed over the drift speed. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, and is negligible in the weakly random scenario. However, non-Gaussianity can possibly be enhanced by resonant effects in the strongly random scenario or arise from the entropic perturbations during the onset of (p)reheating if the background inflaton trajectory exhibits particular properties. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.

  16. A metabonomic investigation on the biochemical perturbation in post-stroke patients with depressive disorder (PSD).

    PubMed

    Ding, Xinghua; Liu, Ruoxu; Li, Wenkai; Ni, Hengjia; Liu, Yong; Wu, Dandan; Yang, Shuguang; Liu, Jing; Xiao, Bo; Liu, Shaojun

    2016-04-01

    A metabonomics study based on GC/MS and multivariate statistical analysis was performed involving 28 post stroke depressed (PSD) patients, 27 post-stroke non-depressed (PSND) patients and 33 healthy subjects to investigate the biochemical perturbation in their plasma samples. The outcome of this study showed that there was distinctive metabolic profile for PSD patients. Seven sentinel metabolites showed marked perturbations in PSD patients' blood. The introduction of metabonomics approach may provide a novel metabonomic insight about PSD and the sentinel metabolites for classifying PSD.

  17. Notes on wall crossing and instanton in compactified gauge theory with matter

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Yu; Petunin, Kirill

    2010-10-01

    We study the quantum effects on the Coulomb branch of mathcal{N} = 2 SU(2) super-symmetric Yang-Mills with fundamental matters compactified on {mathbb{R}^3} × {S^1} , and extract the explicit perturbative and leading non-perturbative corrections to the moduli space metric predicted from the recent work of Gaiotto, Moore and Neitzke on wall-crossing [1]. We verify the predicted metric by computing the leading weak coupling instanton contribution to the four fermion correlation using standard field theory techniques, and demonstrate perfect agreement. We also demonstrate how previously known three dimensional quantities can be recovered in appropriate small radius limit, and provide a simple geometric picture from brane construction.

  18. Do Aging and Dual-Tasking Impair the Capacity to Store and Retrieve Visuospatial Information Needed to Guide Perturbation-Evoked Reach-To-Grasp Reactions?

    PubMed Central

    Cheng, Kenneth C.; Pratt, Jay; Maki, Brian E.

    2013-01-01

    A recent study involving young adults showed that rapid perturbation-evoked reach-to-grasp balance-recovery reactions can be guided successfully with visuospatial-information (VSI) retained in memory despite: 1) a reduction in endpoint accuracy due to recall-delay (time between visual occlusion and perturbation-onset, PO) and 2) slowing of the reaction when performing a concurrent cognitive task during the recall-delay interval. The present study aimed to determine whether this capacity is compromised by effects of aging. Ten healthy older adults were tested with the previous protocol and compared with the previously-tested young adults. Reactions to recover balance by grasping a small handhold were evoked by unpredictable antero-posterior platform-translation (barriers deterred stepping reactions), while using liquid-crystal goggles to occlude vision post-PO and for varying recall-delay times (0-10s) prior to PO (the handhold was moved unpredictably to one of four locations 2s prior to vision-occlusion). Subjects also performed a spatial- or non-spatial-memory cognitive task during the delay-time in a subset of trials. Results showed that older adults had slower reactions than the young across all experimental conditions. Both age groups showed similar reduction in medio-lateral end-point accuracy when recall-delay was longest (10s), but differed in the effect of recall delay on vertical hand elevation. For both age groups, engaging in either the non-spatial or spatial-memory task had similar (slowing) effects on the arm reactions; however, the older adults also showed a dual-task interference effect (poorer cognitive-task performance) that was specific to the spatial-memory task. This provides new evidence that spatial working memory plays a role in the control of perturbation-evoked balance-recovery reactions. The delays in completing the reaction that occurred when performing either cognitive task suggest that such dual-task situations in daily life could increase risk of falling in seniors, particularly when combined with the general age-related slowing that was observed across all experimental conditions. PMID:24223942

  19. Continued-fraction representation of the Kraus map for non-Markovian reservoir damping

    NASA Astrophysics Data System (ADS)

    van Wonderen, A. J.; Suttorp, L. G.

    2018-04-01

    Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.

  20. Third-order Zeeman effect in highly charged ions

    NASA Astrophysics Data System (ADS)

    Varentsova, A. S.; Agababaev, V. A.; Volchkova, A. M.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.

    2017-10-01

    The contribution of the third order in magnetic field to the Zeeman splitting of the ground state of hydrogenlike, lithiumlike, and boronlike ions in the range Z = 6 - 82 is investigated within the relativistic approach. Both perturbative and non-perturbative methods of calculation are employed and found to be in agreement. For lithiumlike and boronlike ions the interelectronic-interaction effects are taken into account within the approximation of the local screening potential. The contribution of the third-order effect in low- and medium-Z boronlike ions is found to be important for anticipated high-precision measurements.

  1. The Stark Effect on the Wave Function of Tritium in Relativistic Condition

    NASA Astrophysics Data System (ADS)

    Supriadi, B.; Prastowo, S. H. B.; Bahri, S.; Ridlo, Z. R.; Prihandono, T.

    2018-03-01

    Tritium Atom is one of the isotopes of Hydrogen that has two Neutrons in the nucleus and an electron that surrounds the nucleus. The Stark Effect is an effect of a shift or polarization of the atomic spectrum caused by the external electrostatic field. The interaction between the electrons and the external electric field can be reviewed using an approximation method of perturbation theory. The perturbation theory used is a time Independent non-degenerate perturbation and reviewed to second order to obtain correction of Tritium Atomic wave function. The condition that used in the system is a relativistic condition by reviewing the movement of electrons within the Atom. The effects of relativity also affect the correction of the wave function of Atom Tritium in the ground state. Tritium is radioactive material that is still relatively safe, and one of the applications of Tritium Atom is on the battery of betavoltaics (Nano Tritium Battery).

  2. On the perturbation of the luminosity distance by peculiar motions

    NASA Astrophysics Data System (ADS)

    Kaiser, Nick; Hudson, Michael J.

    2015-06-01

    We consider some aspects of the perturbation to the luminosity distance d(z) that are of relevance for SN1a cosmology and for future peculiar velocity surveys at non-negligible redshifts. (1) Previous work has shown that the correction to the lowest order perturbation δd/d = -δv/cz has the peculiar characteristic that it appears to depend on the absolute state of motion of sources, rather than on their motion relative to that of the observer. The resolution of this apparent violation of the equivalence principle is that it is necessary to allow for evolution of the velocities with time, and also, when considering perturbations on the scale of the observer-source separation, to include the gravitational redshift effect. We provide an expression for δd/d that provides a physically consistent way to measure peculiar velocities and determine their impact for SN1a cosmology. (2) We then calculate the perturbation to the redshift as a function of source flux density, which has been proposed as an alternative probe of large-scale motions. We show how the inclusion of surface brightness modulation modifies the relation between δz(m) and the peculiar velocity, and that, while the noise properties of this method might appear promising, the velocity signal is swamped by the effect of galaxy clustering for most scales of interest. (3) We show how, in linear theory, peculiar velocity measurements are biased downwards by the effect of smaller scale motions or by measurement errors (such as in photometric redshifts). Our results nicely explain the effects seen in simulations by Koda et al. We critically examine the prospects for extending peculiar velocity studies to larger scales with near-term future surveys.

  3. Non-radial instabilities and progenitor asphericities in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Müller, B.; Janka, H.-Th.

    2015-04-01

    Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, , reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ˜ 25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma_prog^2 and therefore play a subdominant role.

  4. A hybrid model for coupling kinetic corrections of fusion reactivity to hydrodynamic implosion simulations

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-03-01

    Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.

  5. Effects of inhomogeneity at stagnation in 3D simulations of ICF implosions

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian

    2016-10-01

    The stagnation phase of an ICF implosion is characterized by a hotspot and dense fuel layer that are spatially and temporally inhomogeneous. Perturbation growth during the implosion results in significant asymmetry at stagnation while the hotspot size, density and temperature change rapidly, even in non-igniting capsules. Diagnosing these inhomogeneities is necessary to increase yield in ICF experiments. In this work, 3D radiation hydrodynamic simulations of perturbed indirect drive ICF capsules are carried out using the CHIMERA code. During the stagnation phase a suite of novel and computationally efficient simulation tools are used to produce synthetic time-resolved neutron spectra and images. These tools allow a detailed study of the effects of hotspot inhomogeneities on diagnostic signals. Results show that the burn-averaged ion temperature drops rapidly during thermonuclear burn as the hotspot evolves from a localised, shock-heated region to a more massive, non-uniform plasma. Primary DD and DT neutron spectra show that there is significant residual bulk fluid motion at stagnation, complicating the measurement of ion temperature. Different perturbation modes cause different levels of anisotropic spectra shifts and broadening. However, in all cases the discrepancies between the DD and DT spectra are a reliable indicator of residual motion at stagnation. The simulations are used to examine the relationship between neutron scattering and areal density (ρR). Three measures of areal density are simulated: downscattered neutron ratio, attenuated primary neutron yield and nT backscatter edge. Each of these diagnoses the magnitude and anisotropy of the ρR with varying success, with accuracy decreasing for higher mode perturbations. Contributions to the neutron energy spectra from T +T reactions, secondary DT reactions and deuteron break-up are also evaluated.

  6. Cosmological perturbation theory and the spherical collapse model - II. Non-Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Gaztanaga, Enrique; Fosalba, Pablo

    1998-12-01

    In Paper I of this series, we introduced the spherical collapse (SC) approximation in Lagrangian space as a way of estimating the cumulants xi_J of density fluctuations in cosmological perturbation theory (PT). Within this approximation, the dynamics is decoupled from the statistics of the initial conditions, so we are able to present here the cumulants for generic non-Gaussian initial conditions, which can be estimated to arbitrary order including the smoothing effects. The SC model turns out to recover the exact leading-order non-linear contributions up to terms involving non-local integrals of the J-point functions. We argue that for the hierarchical ratios S_J, these non-local terms are subdominant and tend to compensate each other. The resulting predictions show a non-trivial time evolution that can be used to discriminate between models of structure formation. We compare these analytic results with non-Gaussian N-body simulations, which turn out to be in very good agreement up to scales where sigma<~1.

  7. The influence of super-horizon scales on cosmological observables generated during inflation

    NASA Astrophysics Data System (ADS)

    Matarrese, Sabino; Musso, Marcello A.; Riotto, Antonio

    2004-05-01

    Using the techniques of out-of-equilibrium field theory, we study the influence on properties of cosmological perturbations generated during inflation on observable scales coming from fluctuations corresponding today to scales much bigger than the present Hubble radius. We write the effective action for the coarse grained inflaton perturbations, integrating out the sub-horizon modes, which manifest themselves as a coloured noise and lead to memory effects. Using the simple model of a scalar field with cubic self-interactions evolving in a fixed de Sitter background, we evaluate the two- and three-point correlation function on observable scales. Our basic procedure shows that perturbations do preserve some memory of the super-horizon scale dynamics, in the form of scale dependent imprints in the statistical moments. In particular, we find a blue tilt of the power spectrum on large scales, in agreement with the recent results of the WMAP collaboration which show a suppression of the lower multipoles in the cosmic microwave background anisotropies, and a substantial enhancement of the intrinsic non-Gaussianity on large scales.

  8. Evolution of helical perturbations in a thin-shell model of an imploding liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Dorf, M. A.

    A thin-shell model of the liner stability has been revisited and applied to the stability of the helical perturbations. Several stages of the implosion have been identified, starting from a long initial “latent” phase of an almost resting liner, continuing to the second stage of a rapid contraction and significant perturbation growth, and then transitioning to the third stage where perturbations become ballistic and highly non-linear. The stage of stagnation and rebound is beyond the scope of this paper. An importance of vorticity conservation during the late stages is emphasized. Nonlinear evolution of perturbations is followed up to the pointmore » of the formation of cusp structures. Effects of in-surface flows and of their enhancement due to the vorticity conservation are discussed. It is shown that the pre-machined perturbations created only on the outer surface of the liner grow much slower than one could anticipate. The limitations on the thin-shell description are discussed.« less

  9. Non scale-invariant density perturbations from chaotic extended inflation

    NASA Technical Reports Server (NTRS)

    Mollerach, Silvia; Matarrese, Sabino

    1991-01-01

    Chaotic inflation is analyzed in the frame of scalar-tensor theories of gravity. Fluctuations in the energy density arise from quantum fluctuations of the Brans-Dicke field and of the inflation field. The spectrum of perturbations is studied for a class of models: it is non scale-invarient and, for certain values of the parameters, it has a peak. If the peak appears at astrophysically interesting scales, it may help to reconcile the Cold Dark Matter scenario for structure formation with large scale observations.

  10. The intrinsic B-mode polarisation of the Cosmic Microwave Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Pettinari, Guido W.; Crittenden, Robert

    2014-07-01

    We estimate the B-polarisation induced in the Cosmic Microwave Background by the non-linear evolution of density perturbations. Using the second-order Boltzmann code SONG, our analysis incorporates, for the first time, all physical effects at recombination. We also include novel contributions from the redshift part of the Boltzmann equation and from the bolometric definition of the temperature in the presence of polarisation. The remaining line-of-sight terms (lensing and time-delay) have previously been studied and must be calculated non-perturbatively. The intrinsic B-mode polarisation is present independent of the initial conditions and might contaminate the signal from primordial gravitational waves. We find thismore » contamination to be comparable to a primordial tensor-to-scalar ratio of r ≅ 10{sup −7} at the angular scale ℓ ≅ 100, where the primordial signal peaks, and r ≅ 5 × 10{sup −5} at ℓ ≅ 700, where the intrinsic signal peaks. Therefore, we conclude that the intrinsic B-polarisation from second-order effects is not likely to contaminate future searches of primordial gravitational waves.« less

  11. Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun

    2014-05-15

    The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.

  12. Non-conservative perturbations of homoclinic snaking scenarios

    NASA Astrophysics Data System (ADS)

    Knobloch, Jürgen; Vielitz, Martin

    2016-01-01

    Homoclinic snaking refers to the continuation of homoclinic orbits to an equilibrium E near a heteroclinic cycle connecting E and a periodic orbit P. Typically homoclinic snaking appears in one-parameter families of reversible, conservative systems. Here we discuss perturbations of this scenario which are both non-reversible and non-conservative. We treat this problem analytically in the spirit of the work [3]. The continuation of homoclinic orbits happens with respect to both the original continuation parameter μ and the perturbation parameter λ. The continuation curves are parametrised by the dwelling time L of the homoclinic orbit near P. It turns out that λ (L) tends to zero while the μ vs. L diagram displays isolas or criss-cross snaking curves in a neighbourhood of the original snakes-and-ladder structure. In the course of our studies we adapt both Fenichel coordinates near P and the analysis of Shilnikov problems near P to the present situation.

  13. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  14. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro, E-mail: zvlah@stanford.edu, E-mail: mwhite@berkeley.edu, E-mail: aviles@berkeley.edu

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.« less

  15. A Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  16. Revealing the nonadiabatic nature of dark energy perturbations from galaxy clustering data

    NASA Astrophysics Data System (ADS)

    Velten, Hermano; Fazolo, Raquel

    2017-10-01

    We study structure formation using relativistic cosmological linear perturbation theory in the presence of intrinsic and relative (with respect to matter) nonadiabatic dark energy perturbations. For different dark energy models we assess the impact of nonadiabaticity on the matter growth promoting a comparison with growth rate data. The dark energy models studied lead to peculiar signatures of the (non)adiabatic nature of dark energy perturbations in the evolution of the f σ8(z ) observable. We show that nonadiabatic dark energy models become close to be degenerated with respect to the Λ CDM model at first order in linear perturbations. This would avoid the identification of the nonadiabatic nature of dark energy using current available data. Therefore, such evidence indicates that new probes are necessary to reveal the nonadiabatic features in the dark energy sector.

  17. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    NASA Astrophysics Data System (ADS)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  18. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.

    PubMed

    Olenšek, Andrej; Zadravec, Matjaž; Matjačić, Zlatko

    2016-06-11

    The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to assess normative balance responses to perturbations in transversal plane in a group of neurologically healthy individuals. BAR provides three passive degrees of freedom (DoF) and three actuated DoF in pelvis that are admittance-controlled in such a way that the natural movement of pelvis is not significantly affected. In this study BAR was used to assess normative balance responses in neurologically healthy individuals by applying linear perturbations in frontal and sagittal planes and angular perturbations in transversal plane of pelvis. One way repeated measure ANOVA was used to statistically evaluate the effect of selected perturbations on stepping responses. Standard deviations of assessed responses were similar in unperturbed and perturbed walking. Perturbations in frontal direction evoked substantial pelvis displacement and caused statistically significant effect on step length, step width and step time. Likewise, perturbations in sagittal plane also caused statistically significant effect on step length, step width and step time but with less explicit impact on pelvis movement in frontal plane. On the other hand, except from substantial pelvis rotation angular perturbations did not have substantial effect on pelvis movement in frontal and sagittal planes while statistically significant effect was noted only in step length and step width after perturbation in clockwise direction. Results indicate that the proposed device can repeatedly reproduce similar experimental conditions. Results also suggest that "stepping strategy" is the dominant strategy for coping with perturbations in frontal plane, perturbations in sagittal plane are to greater extent handled by "ankle strategy" while angular perturbations in transversal plane do not pose substantial challenge for balance. Results also show that specific perturbation in general elicits responses that extend also to other planes of movement that are not directly associated with plane of perturbation as well as to spatio temporal parameters of gait.

  19. The Dynamics of Dense Planetary Rings.

    NASA Astrophysics Data System (ADS)

    Mosqueira, Ignacio

    1995-01-01

    We study the dynamics of a two-mode narrow ring in the case that one of the modes dominates the overall ring perturbation. We use a simple two-streamline self -gravity model, including viscosity, and shepherd satellites. As might be expected, we find that n m = 1 mode appears to be a natural end state for the rings, inasmuch as the presence of a dominant eccentric mode inhibits the growth of other modes, but the reverse is not true. Why some rings exhibit other m values only remains unexplained. Using a modified N-body code to include periodic boundary conditions in a perturbed shear flow, we investigate the role of viscosity on the dynamics of perturbed rings with optical depth tau ~ 1. In particular, we are concerned with rings such that qe = a{de over da} ne 0, where a is the semi-major axis and e is the eccentricity. We confirm the possibility that, for a sufficiently perturbed ring, the angular momentum luminosity may reverse direction with respect to the unperturbed ring (Borderies et al. 1983a). We use observationally constrained parameters for the delta and epsilon Uranian rings, as well as the outer portion of Saturn's B ring. We find that understanding the effects of viscosity for the Uranian rings requires that both local and non-local transport terms be considered if the coefficient of restitution experimentally obtained by Bridges et al. (1984) is appropriate for ring particles. We also find evidence that the criterion for viscous overstability is satisfied in the case of high optical depth rings, as originally proposed by Borderies et al. (1985), making viscous overstability a leading candidate mechanism to explain the non-axisymmetric structure present in the outer portion of Saturn's B ring. To better understand our path-code results we extend a non-local and incompressible fluid model used by Borderies et al. (1985) for dense rings. We incorporate local and non-local transport terms as well as compressibility, while retaining the same number of arbitrary model parameters.

  20. Enhanced sensitivity at higher-order exceptional points

    NASA Astrophysics Data System (ADS)

    Hodaei, Hossein; Hassan, Absar U.; Wittek, Steffen; Garcia-Gracia, Hipolito; El-Ganainy, Ramy; Christodoulides, Demetrios N.; Khajavikhan, Mercedeh

    2017-08-01

    Non-Hermitian degeneracies, also known as exceptional points, have recently emerged as a new way to engineer the response of open physical systems, that is, those that interact with the environment. They correspond to points in parameter space at which the eigenvalues of the underlying system and the corresponding eigenvectors simultaneously coalesce. In optics, the abrupt nature of the phase transitions that are encountered around exceptional points has been shown to lead to many intriguing phenomena, such as loss-induced transparency, unidirectional invisibility, band merging, topological chirality and laser mode selectivity. Recently, it has been shown that the bifurcation properties of second-order non-Hermitian degeneracies can provide a means of enhancing the sensitivity (frequency shifts) of resonant optical structures to external perturbations. Of particular interest is the use of even higher-order exceptional points (greater than second order), which in principle could further amplify the effect of perturbations, leading to even greater sensitivity. Although a growing number of theoretical studies have been devoted to such higher-order degeneracies, their experimental demonstration in the optical domain has so far remained elusive. Here we report the observation of higher-order exceptional points in a coupled cavity arrangement—specifically, a ternary, parity-time-symmetric photonic laser molecule—with a carefully tailored gain-loss distribution. We study the system in the spectral domain and find that the frequency response associated with this system follows a cube-root dependence on induced perturbations in the refractive index. Our work paves the way for utilizing non-Hermitian degeneracies in fields including photonics, optomechanics, microwaves and atomic physics.

  1. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations.

    PubMed

    Perez-Lopez, Áron R; Szalay, Kristóf Z; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-05-11

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.

  2. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-05-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.

  3. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    PubMed Central

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates. PMID:25960144

  4. Massive Boson Production at Small qT in Soft-Collinear Effective Theory

    NASA Astrophysics Data System (ADS)

    Becher, Thomas; Neubert, Matthias; Wilhelm, Daniel

    2013-01-01

    We study the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse-momentum qT. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q*, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.

  5. New evidence and impact of electron transport non-linearities based on new perturbative inter-modulation analysis

    NASA Astrophysics Data System (ADS)

    van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group

    2017-12-01

    A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.

  6. Effect of stress perturbation on frictional instability: an experimental study

    NASA Astrophysics Data System (ADS)

    Yuanmin, H.; Shengli, M.

    2017-12-01

    We have performed a series of frictional experiments with direct shear configuration of three granite blocks by using a servo-controlled biaxial loading machine. In the experiments, a small- amplitude sine wave is modulated to shear and normal loading in order to study the effects of stress perturbation on stick-slip instability. The main results are as follows. Under the constant average normal stress and the constant loading point velocity in shear direction, the sample shows regular stick-slip behavior. After the stress perturbation is modulated, the correlation between the timing of stick-slip events and the perturbation increases with increasing the perturbation amplitude, and stress drop and interval time of stick-slip events tend to be discrete. This results imply that the change in Coulomb stress caused by stress perturbation may obviously change not only the occurrence time of earthquakes but also the earthquake magnitude. Both shear and normal stress perturbation can affect the stick-slip behavior, shear stress perturbation can only change the driving stress along fault, while the normal stress perturbation can change the contact state of asperities on the fault, so it's effect is more obviously. The stress perturbation can obviously affect acoustic emission (AE) activity during fault friction, which can trigger some AE events so that AE activity before stick-slip becomes stronger and occurs earlier. The perturbation in shear stress is more evident than that in normal stress in affecting AE activity, so we should not only pay attention to the magnitude of Coulomb stress changes caused by the perturbation, but also try to distinguish the stress changes are the shear stress changes or the normal stress changes, when study the effect of stress perturbation on fault friction.

  7. Solution to the Phase Problem Using Multibeam X-Ray Diffraction.

    NASA Astrophysics Data System (ADS)

    Shen, Qun

    Multi-beam x-ray diffraction, especially the asymmetry effect in the virtual Bragg scattering case, has been proved to provide useful phase information on the structure factors that are involved in the scattering process. A perturbation theory has been developed to provide an analytical expression for the diffracted wave field in virtual Bragg scattering situations, which explains the physical origin of the asymmetry effect. Two experiments on the (202) reflection of benzil, using 3.5 keV x-rays, have shown that the asymmetry effect is visible in a mosaic non-centrosymmetric organic crystal. The results do not depend on the shape of the crystal, hence proving that the method is universally applicable. A practical method to obtain arbitrary values of the phase triplet, based on the perturbation theory, has been developed and shown to work in the case of non-centrosymmetric crystals like benzil.

  8. How to resum perturbative series in 3d N =2 Chern-Simons matter theories

    NASA Astrophysics Data System (ADS)

    Honda, Masazumi

    2016-07-01

    Continuing the work of Honda [Phys. Rev. Lett. 116, 211601 (2016)], we study the perturbative series in general 3d N =2 supersymmetric Chern-Simons matter theory with U (1 )R symmetry, which is given by a power series expansion of inverse Chern-Simons levels. We find that the perturbative series is usually non-Borel summable along a positive real axis for various observables. Alternatively, we prove that the perturbative series is always Borel summable along a negative (positive) imaginary axis for positive (negative) Chern-Simons levels. It turns out that the Borel resummations along this direction are the same as the exact results and, therefore, are correct ways of resumming the perturbative series.

  9. Primordial spectra from sudden turning trajectory

    NASA Astrophysics Data System (ADS)

    Noumi, Toshifumi; Yamaguchi, Masahide

    2013-12-01

    Effects of heavy fields on primordial spectra of curvature perturbations are discussed in inflationary models with a sudden turning trajectory. When heavy fields are excited after the sudden turn and oscillate around the bottom of the potential, the following two effects are generically induced: deformation of the inflationary background spacetime and conversion interactions between adiabatic and isocurvature perturbations, both of which can affect the primordial density perturbations. In this paper, we calculate primordial spectra in inflationary models with sudden turning potentials taking into account both of the two effects appropriately. We find that there are some non-trivial correlations between the two effects in the power spectrum and, as a consequence, the primordial scalar power spectrum has a peak around the scale exiting the horizon at the turn. Though both effects can induce parametric resonance amplifications, they are shown to be canceled out for the case with the canonical kinetic terms. The peak feature and the scale dependence of bispectra are also discussed.

  10. Developing effective electronic-only coupled-cluster and Møller-Plesset perturbation theories for the muonic molecules.

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2018-06-20

    Recently we have proposed an effective Hartree-Fock (EHF) theory for the electrons of the muonic molecules that is formally equivalent to the HF theory within the context of the nuclear-electronic orbital theory [Phys. Chem. Chem. Phys., 2018, 20, 4466]. In the present report we extend the muon-specific effective electronic structure theory beyond the EHF level by introducing the effective second order Møller-Plesset perturbation theory (EMP2) and the effective coupled-cluster theory at single and double excitation levels (ECCSD) as well as an improved version including perturbative triple excitations (ECCSD(T)). These theories incorporate electron-electron correlation into the effective paradigm and through their computational implementation, a diverse set of small muonic species is considered as a benchmark at these post-EHF levels. A comparative computational study on this set demonstrates that the muonic bond length is in general non-negligibly longer than corresponding hydrogenic analogs. Next, the developed post-EHF theories are applied for the muoniated N-heterocyclic carbene/silylene/germylene and the muoniated triazolium cation revealing the relative stability of the sticking sites of the muon in each species. The computational results, in line with previously reported experimental data demonstrate that the muon generally prefers to attach to the divalent atom with carbeneic nature. A detailed comparison of these muonic adducts with the corresponding hydrogenic adducts reveals subtle differences that have already been overlooked.

  11. Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-08-01

    An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1 /N n-1. This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.

  12. Perturbations of non-resonant satellite orbits due to a rotating earth. [tesseral harmonics and the Von Ziepel method

    NASA Technical Reports Server (NTRS)

    Mueller, A.

    1978-01-01

    The dominant perturbations of the motion of a satellite near the earth are due to atmospheric drag and the non-symmetrical gravitational field. Atmospheric drag perturbation continually pulls the satellite in and out of the different long period resonant frequencies. The result is that the resonances never become apparent and may be neglected. The tesseral harmonics have no true secular perturbation but the periodicities in the mean motion induce a secular perturbation in the mean anomaly. This secular perturbation may be determined by simply using the average mean motion instead of the osculating mean motion. The Von Ziepel method is used to determine tesseral perturbations. The solution is found first in the singular DS phi elements and then rewritten in the PS phi elements to remove singularities. The notation used in the development is described in the appendix.

  13. Analytical approximations to the dynamics of an array of coupled DC SQUIDs

    NASA Astrophysics Data System (ADS)

    Berggren, Susan; Palacios, Antonio

    2014-04-01

    Coupled dynamical systems that operate near the onset of a bifurcation can lead, under certain conditions, to strong signal amplification effects. Over the past years we have studied this generic feature on a wide range of systems, including: magnetic and electric fields sensors, gyroscopic devices, and arrays of loops of superconducting quantum interference devices, also known as SQUIDs. In this work, we consider an array of SQUID loops connected in series as a case study to derive asymptotic analytical approximations to the exact solutions through perturbation analysis. Two approaches are considered. First, a straightforward expansion in which the non-linear parameter related to the inductance of the DC SQUID is treated as the small perturbation parameter. Second, a more accurate procedure that considers the SQUID phase dynamics as non-uniform motion on a circle. This second procedure is readily extended to the series array and it could serve as a mathematical framework to find approximate solutions to related complex systems with high-dimensionality. To the best of our knowledge, an approximate analytical solutions to an array of SQUIDs has not been reported yet in the literature.

  14. Imprint of non-linear effects on HI intensity mapping on large scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeh, Obinna, E-mail: umeobinna@gmail.com

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on themore » power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.« less

  15. Imprint of non-linear effects on HI intensity mapping on large scales

    NASA Astrophysics Data System (ADS)

    Umeh, Obinna

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  16. Difficulties in separating hurricane induced effects from natural benthic succession: Hurricane Isabel, a case study from Eastern Virginia, USA

    NASA Astrophysics Data System (ADS)

    Hughes, C.; Richardson, C. A.; Luckenbach, M.; Seed, R.

    2009-11-01

    Hurricane Isabel reached the Eastern seaboard of North America on 18 September 2003 causing estimated damage >3 billion US dollars and the death of ˜50 people. Isabel is considered to be one of the most significant tropical cyclones to affect Virginia, since the Chesapeake Potomac Hurricane of 1933 and Hurricane Hazel in 1954. A study of the temporal changes in the benthic fauna pre- and post-hurricane was conducted on an intertidal sandflat within the dynamic barrier island system near Wachapreague, Eastern Virginia. Replicate sediment cores were collected 3 weeks before Isabel made landfall and further samples were collected on 5 occasions over the following 20 months. An immediate effect of Isabel was a doubling in the number of species, a significant increase in invertebrate species diversity ( H') and a rise in opportunistic species and deposit feeders, but a non-significant increase in the total number of organisms. Changes in infauna occurred such that by the end of the study there were significantly increased numbers of species, faunal abundances and community diversity measures, as compared with pre-hurricane samples, suggesting a potentially positive medium-term effect of this hurricane perturbation. The most notable direct effects of the hurricane were on the relative abundances of feeding guilds with a reduction in interface feeders from 87% pre-hurricane to 64% post-hurricane, and an increase in surface deposit feeders from 7% pre-hurricane to 20% post-hurricane. The study highlights potential problems in interpreting post-perturbation data when insufficient pre-perturbation data exist.

  17. Can massive primordial black holes be produced in mild waterfall hybrid inflation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Tada, Yuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: yuichiro.tada@ipmu.jp

    We studied the possibility whether the massive primordial black holes (PBHs) surviving today can be produced in hybrid inflation. Though it is of great interest since such PBHs can be the candidate for dark matter or seeds of the supermassive black holes in galaxies, there have not been quantitatively complete works yet because of the non-perturbative behavior around the critical point of hybrid inflation. Therefore, combining the stochastic and δ N formalism, we numerically calculated the curvature perturbations in a non-perturbative way and found, without any specific assumption of the types of hybrid inflation, PBHs are rather overproduced when themore » waterfall phase of hybrid inflation continues so long that the PBH scale is well enlarged and the corresponding PBH mass becomes sizable enough.« less

  18. Non-Gaussianities in multifield DBI inflation with a waterfall phase transition

    NASA Astrophysics Data System (ADS)

    Kidani, Taichi; Koyama, Kazuya; Mizuno, Shuntaro

    2012-10-01

    We study multifield Dirac-Born-Infeld (DBI) inflation models with a waterfall phase transition. This transition happens for a D3 brane moving in the warped conifold if there is an instability along angular directions. The transition converts the angular perturbations into the curvature perturbation. Thanks to this conversion, multifield models can evade the stringent constraints that strongly disfavor single field ultraviolet (UV) DBI inflation models in string theory. We explicitly demonstrate that our model satisfies current observational constraints on the spectral index and equilateral non-Gaussianity as well as the bound on the tensor to scalar ratio imposed in string theory models. In addition, we show that large local type non-Gaussianity is generated together with equilateral non-Gaussianity in this model.

  19. Effect of error field correction coils on W7-X limiter loads

    NASA Astrophysics Data System (ADS)

    Bozhenkov, S. A.; Jakubowski, M. W.; Niemann, H.; Lazerson, S. A.; Wurden, G. A.; Biedermann, C.; Kocsis, G.; König, R.; Pisano, F.; Stephey, L.; Szepesi, T.; Wenzel, U.; Pedersen, T. S.; Wolf, R. C.; W7-X Team

    2017-12-01

    In the first campaign Wendelstein 7-X was operated with five poloidal graphite limiters installed stellarator symmetrically. In an ideal situation the power losses would be equally distributed between the limiters. The limiter shape was designed to smoothly distribute the heat flux over two strike lines. Vertically the strike lines are not uniform because of different connection lengths. In this paper it is demonstrated both numerically and experimentally that the heat flux distribution can be significantly changed by non-resonant n=1 perturbation field of the order of 10-4 . Numerical studies are performed with field line tracing. In experiments perturbation fields are excited with five error field trim coils. The limiters are diagnosed with infrared cameras, neutral gas pressure gauges, thermocouples and spectroscopic diagnostics. Experimental results are qualitatively consistent with the simulations. With a suitable choice of the phase and amplitude of the perturbation a more symmetric plasma-limiter interaction can be potentially achieved. These results are also of interest for the later W7-X divertor operation.

  20. Non-perturbative quark mass renormalisation and running in N_{f}=3 QCD

    NASA Astrophysics Data System (ADS)

    Campos, I.; Fritzsch, P.; Pena, C.; Preti, D.; Ramos, A.; Vladikas, A.

    2018-05-01

    We determine from first principles the quark mass anomalous dimension in N_{f}=3 QCD between the electroweak and hadronic scales. This allows for a fully non-perturbative connection of the perturbative and non-perturbative regimes of the Standard Model in the hadronic sector. The computation is carried out to high accuracy, employing massless O (a)-improved Wilson quarks and finite-size scaling techniques. We also provide the matching factors required in the renormalisation of light quark masses from lattice computations with O (a)-improved Wilson fermions and a tree-level Symanzik improved gauge action. The total uncertainty due to renormalisation and running in the determination of light quark masses in the SM is thus reduced to about 1%.

  1. Electromagnetic effects on the light hadron spectrum

    DOE PAGES

    Basak, S.; Bazavov, A.; Bernard, C.; ...

    2015-09-28

    Calculations studying electromagnetic effects on light mesons are reported. The calculations use fully dynamical QCD, but only quenched photons, which suffices to NLO in χPT; that is, the sea quarks are electrically neutral, while the valence quarks carry charge. The non-compact formalism is used for photons. New results are obtained with lattice spacing as small as 0.045 fm and a large range of volumes. The success of chiral perturbation theory in describing these results and the implications for light quark masses are considered.

  2. Perturbed Newtonian description of the Lemaître model with non-negligible pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav

    2016-03-01

    We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as longmore » as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ{sup 2})—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ{sup 2}),O(c{sub s}{sup 2φ} δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c{sub s} are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ{sup 2}) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1.« less

  3. An automated integration-free path-integral method based on Kleinert's variational perturbation theory

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Yiu; Gao, Jiali

    2007-12-01

    Based on Kleinert's variational perturbation (KP) theory [Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed. (World Scientific, Singapore, 2004)], we present an analytic path-integral approach for computing the effective centroid potential. The approach enables the KP theory to be applied to any realistic systems beyond the first-order perturbation (i.e., the original Feynman-Kleinert [Phys. Rev. A 34, 5080 (1986)] variational method). Accurate values are obtained for several systems in which exact quantum results are known. Furthermore, the computed kinetic isotope effects for a series of proton transfer reactions, in which the potential energy surfaces are evaluated by density-functional theory, are in good accordance with experiments. We hope that our method could be used by non-path-integral experts or experimentalists as a "black box" for any given system.

  4. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    DOE Data Explorer

    Frerichs, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Waters, I. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Schmitz, O. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Canal, G. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Evans, T. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Feng, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Soukhanovskii, V. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

  5. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems.

    PubMed

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-02-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.

  6. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems

    PubMed Central

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change. PMID:23467451

  7. Optimal Transient Growth of Submesoscale Baroclinic Instabilities

    NASA Astrophysics Data System (ADS)

    White, Brian; Zemskova, Varvara; Passaggia, Pierre-Yves

    2016-11-01

    Submesoscale instabilities are analyzed using a transient growth approach to determine the optimal perturbation for a rotating Boussinesq fluid subject to baroclinic instabilities. We consider a base flow with uniform shear and stratification and consider the non-normal evolution over finite-time horizons of linear perturbations in an ageostrophic, non-hydrostatic regime. Stone (1966, 1971) showed that the stability of the base flow to normal modes depends on the Rossby and Richardson numbers, with instabilities ranging from geostrophic (Ro -> 0) and ageostrophic (finite Ro) baroclinic modes to symmetric (Ri < 1 , Ro > 1) and Kelvin-Helmholtz (Ri < 1 / 4) modes. Non-normal transient growth, initiated by localized optimal wave packets, represents a faster mechanism for the growth of perturbations and may provide an energetic link between large-scale flows in geostrophic balance and dissipation scales via submesoscale instabilities. Here we consider two- and three-dimensional optimal perturbations by means of direct-adjoint iterations of the linearized Boussinesq Navier-Stokes equations to determine the form of the optimal perturbation, the optimal energy gain, and the characteristics of the most unstable perturbation.

  8. Galilean invariant resummation schemes of cosmological perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Pietroni, Massimo, E-mail: peloso@physics.umn.edu, E-mail: massimo.pietroni@unipr.it

    2017-01-01

    Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them inmore » the so called Time-Flow, or TRG, equations.« less

  9. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults.

    PubMed

    McCrum, Christopher; Gerards, Marissa H G; Karamanidis, Kiros; Zijlstra, Wiebren; Meijer, Kenneth

    2017-01-01

    Falls are a leading cause of injury among older adults and most often occur during walking. While strength and balance training moderately improve falls risk, training reactive recovery responses following sudden perturbations during walking may be more task-specific for falls prevention. The aim of this review was to determine the variety, characteristics and effectiveness of gait perturbation paradigms that have been used for improving reactive recovery responses during walking and reducing falls among healthy older adults. A systematic search was conducted in PubMed, Web of Science, MEDLINE and CINAHL databases in December 2015, repeated in May 2016, using sets of terms relating to gait, perturbations, adaptation and training, and ageing. Inclusion criteria: studies were conducted with healthy participants of 60 years or older; repeated, unpredictable, mechanical perturbations were applied during walking; and reactive recovery responses to gait perturbations or the incidence of laboratory or daily life falls were recorded. Results were narratively synthesised. The risk of bias for each study (PEDro Scale) and the levels of evidence for each perturbation type were determined. In the nine studies that met the inclusion criteria, moveable floor platforms, ground surface compliance changes, or treadmill belt accelerations or decelerations were used to perturb the gait of older adults. Eight studies used a single session of perturbations, with two studies using multiple sessions. Eight of the studies reported improvement in the reactive recovery response to the perturbations. Four studies reported a reduction in the percentage of laboratory falls from the pre- to post-perturbation experience measurement and two studies reported a reduction in daily life falls. As well as the range of perturbation types, the magnitude and frequency of the perturbations varied between the studies. To date, a range of perturbation paradigms have been used successfully to perturb older adults' gait and stimulate reactive response adaptations. Variation also exists in the number and magnitudes of applied perturbations. Future research should examine the effects of perturbation type, magnitude and number on the extent and retention of the reactive recovery response adaptations, as well as on falls, over longer time periods among older adults.

  10. Falls-risk post-stroke: Examining contributions from paretic versus non paretic limbs to unexpected forward gait slips.

    PubMed

    Kajrolkar, Tejal; Bhatt, Tanvi

    2016-09-06

    Community-dwelling stroke survivors show a high incidence of falls with unexpected external perturbations during dynamic activities like walking. Previous evidence has demonstrated the importance of compensatory stepping to restore dynamic stability in response to perturbations in hemiparetic stroke survivors. However, these studies were limited to either stance perturbations or perturbation induced under the unaffected limb. This study aimed to compare the differences, if any, between the non-paretic and paretic sides in dynamic stability and protective stepping strategies when exposed to unexpected external perturbation during walking. Twenty hemiparetic subjects experienced an unexpected forward slip during walking on the laboratory walkway either on the paretic (n=10) or the nonparetic limb (n=10). Both groups demonstrated a backward loss of balance with a compensatory stepping response, with the nonparetic-side slip group resorting mainly to an aborted step response (60%) and the paretic-side slip group mainly exhibiting a recovery step response (90%). Although both groups showed an equal incidence of falls, the nonparetic-side slip group demonstrated a higher stability at recovery step touchdown, resulting from lower perturbation magnitudes (slip displacement and velocity) compared to the paretic-side slip group. The results indicate that the paretic side had difficulty initiating and executing a successful stepping response (nonparetic-side slip) and also in reactive limb control while in stance (paretic-side slip). Based on these results it is suggested that intervention strategies for fall-prevention in chronic stroke survivors should focus on paretic limb training for both reactive stepping and weight bearing for improving balance control for recovery from unpredictable perturbations during dynamic activities such as walking. Copyright © 2016. Published by Elsevier Ltd.

  11. Photonic all-silicon microsensor for electromagnetic power in the microwave and millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario

    2000-03-01

    A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.

  12. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidationmore » of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.« less

  13. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    NASA Astrophysics Data System (ADS)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  14. Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boglione, Mariaelena; Gonzalez Hernandez, Jose O.; Melis, Stefano

    We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q T. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.

  15. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy

    PubMed Central

    Allet, L; Kim, H; Ashton-Miller, JA; De Mott, T; Richardson, JK

    2013-01-01

    Aims Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Methods Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Results Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Fallers demonstrated greater extreme step length changes after medial perturbation than non fallers (percent change = 16.41±8.42 vs 11.0±4.95; p=.06) Conclusions The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter, which distinguishes between fallers and non fallers. PMID:24183899

  16. Development and Application of Optical Coherence Elastography for Detection of Mechanical Property Changes Occurring in Early Osteoarthritis

    NASA Astrophysics Data System (ADS)

    Hirota, Koji

    We demonstrate a computationally-efficient method for optical coherence elastography (OCE) based on fringe washout method for a spectral-domain OCT (SD-OCT) system. By sending short pulses of mechanical perturbation with ultrasound or shock wave during the image acquisition of alternating depth profiles, we can extract cross-sectional mechanical assessment of tissue in real-time. This was achieved through a simple comparison of the intensity in adjacent depth profiles acquired during the states of perturbation and non-perturbation in order to quantify the degree of induced fringe washout. Although the results indicate that our OCE technique based on the fringe washout effect is sensitive enough to detect mechanical property changes in biological samples, there is some loss of sensitivity in comparison to previous techniques in order to achieve computationally efficiency and minimum modification in both hardware and software in the OCT system. The tissue phantom study was carried with various agar density samples to characterize our OCE technique. Young's modulus measurements were achieved with the atomic force microscopy (AFM) to correlate to our OCE assessment. Knee cartilage samples of monosodium iodoacetate (MIA) rat models were utilized to replicate cartilage damage of a human model. Our proposed OCE technique along with intensity and AFM measurements were applied to the MIA models to assess the damage. The results from both the phantom study and MIA model study demonstrated the strong capability to assess the changes in mechanical properties of the OCE technique. The correlation between the OCE measurements and the Young's modulus values demonstrated in the OCE data that the stiffer material had less magnitude of fringe washout effect. This result is attributed to the fringe washout effect caused by axial motion that the displacement of the scatterers in the stiffer samples in response to the external perturbation induces less fringe washout effect.

  17. Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant

    NASA Astrophysics Data System (ADS)

    Meyer, Sven; Bartelmann, Matthias

    2017-12-01

    We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.

  18. Correction to Neutrino Mass Square Difference in the Co-Bimaximal Mixings due to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Koranga, Bipin Singh; Narayan, Mohan

    2017-11-01

    We consider non-renormalizable interaction term as a perturbation of the neutrino mass matrix. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck scale and the electroweak breaking scale. We also assume that, just above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is Co-bimaximal mixing by assumming mixing angle θ _{13}≠ 0=10°,θ _{23}={π/4}, tanθ _{12}2= {1-3sinθ _{13}2}/{2}=34° and Dirac phase δ =± π/2. Quantum gravity (Planck scale effects) lead to an effective S U(2) L × U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields. On symmetry breaking, this operator gives rise to correction to the above masses and mixing. The gravitational interaction M X = M p l , we find that for degenerate neutrino mass spectrum, the considered perturbation term change the {Δ }_{21}^' } by 12% and {Δ }_{31}^' } mass square difference is unchanged above GUT scale. The nature of gravitational interaction demands that the element of this perturbation matrix should be independent of flavor indices. In this paper, we study the quantum gravity effects on neutrino mass square difference, namely modified dispersion relation for neutrino mass square differences.

  19. Combined effect of Piezo-viscous dependency and non- Newtonian couple stresses in Annular Plates Squeeze-Film characteristics

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Savitramma, G.; Salma, A.; Noorjahan

    2018-04-01

    In this article, the theoretical analysis of the combined study of non-Newtonian couple stresses with piezo-viscous dependency for annular plates squeeze film bearings have been carried out, with help of stokes micro continuum theory along with the exponential variation of viscosity with pressure. An approximate analytical solution is found using a small perturbation method. The solution for pressure and load capacity with distinct values of viscosity-pressure parameter are calculated and compared with iso-viscous couple stress and Newtonian lubricants and the results reveals that the effect of couple stresses and pressure-dependent viscosity variation enhances the load-carrying capacity and lengthens the squeeze film time.

  20. Towards investigation of evolution of dynamical systems with independence of time accuracy: more classes of systems

    NASA Astrophysics Data System (ADS)

    Gurzadyan, V. G.; Kocharyan, A. A.

    2015-07-01

    The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.

  1. Systematic investigation of NLTE phenomena in the limit of small departures from LTE

    NASA Astrophysics Data System (ADS)

    Libby, S. B.; Graziani, F. R.; More, R. M.; Kato, T.

    1997-04-01

    In this paper, we begin a systematic study of Non-Local Thermal Equilibrium (NLTE) phenomena in near equilibrium (LTE) high energy density, highly radiative plasmas. It is shown that the principle of minimum entropy production rate characterizes NLTE steady states for average atom rate equations in the case of small departures form LTE. With the aid of a novel hohlraum-reaction box thought experiment, we use the principles of minimum entropy production and detailed balance to derive Onsager reciprocity relations for the NLTE responses of a near equilibrium sample to non-Planckian perturbations in different frequency groups. This result is a significant symmetry constraint on the linear corrections to Kirchoff's law. We envisage applying our strategy to a number of test problems which include: the NLTE corrections to the ionization state of an ion located near the edge of an otherwise LTE medium; the effect of a monochromatic radiation field perturbation on an LTE medium; the deviation of Rydberg state populations from LTE in recombining or ionizing plasmas; multi-electron temperature models such as that of Busquet; and finally, the effect of NLTE population shifts on opacity models.

  2. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    NASA Astrophysics Data System (ADS)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  3. Bilateral coupling facilitates recovery of rhythmical movements from perturbation in healthy and post-stroke subjects.

    PubMed

    Ustinova, Ksenia I; Feldman, Anatol G; Levin, Mindy F

    2013-06-01

    The paretic arm of subjects with stroke has a decreased ability to quickly adapt to and recover from perturbations during rhythmical arm swinging. We investigated whether bilateral coupling in the synchronous motion of two arms may facilitate the restoration of rhythmical movement of the paretic arm in subjects with chronic hemiparesis due to stroke. While standing, stroke and age-matched healthy (control) subjects swung one or both arms synchronously at ~0.8 Hz from the shoulder joints. In randomly selected cycles, one arm was transiently arrested by an electromagnetic device when moving forward or backward. In the control group, bilateral swinging resumed faster than unilateral swinging regardless of which arm was perturbed. In the stroke group, this effect was observed only when the perturbation was applied to the paretic arm, suggesting that the motion of the non-paretic arm accelerated the recovery from perturbation of the paretic arm. In addition, bilateral swinging resumed after reduced anterior-posterior excursions of both arms in stroke subjects. Results confirm previous findings that bilateral swinging is normally guided by central changes in the referent configuration of the two arms that function as a single unit. As a consequence, both arms cooperate in recovery from perturbation of motion applied to one arm. Results also suggest that stroke-related brain damage alters the symmetry of bilateral interaction, resulting in deficits of inter-manual cooperative action. The involvement of the non-paretic arm could be beneficial for the recovery of swinging of both arms and may also facilitate movements of the paretic arm in certain tasks.

  4. Local and non-local effects of spanwise finite perturbations in erodible river bathymetries

    NASA Astrophysics Data System (ADS)

    Musa, Mirko; Hill, Craig; Guala, Michele

    2015-11-01

    Laboratory experiments were performed to study the effect of axial-flow hydrokinetic turbine models on an erodible river bed under live-bed conditions. Results indicate that the presence of an operating turbine rotor creates a blockage in the mean flow which produces a remarkable geomorphic signature in the migrating bedforms. These impacts affect a local area downstream of the turbines when placed symmetrically with respect to the cross section of the channel. On the other hand, more interesting results are observed with an asymmetric installation of the turbines. This configuration demonstrates a stronger effect on the mean flow, resulting in a larger plan-wise distortion of the mean topography and differential migration patterns of bedforms. Different turbine installation arrangements and hub heights above the mean bed were investigated, focusing mainly on the perturbation of sediment transport characteristics influenced by the turbine wake. Additional results with spanwise modulated submerged walls explore the possibility to control river topography harvesting this type of geomorphic destabilization.

  5. Gluon and ghost correlation functions of 2-color QCD at finite density

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar

    2018-03-01

    2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.

  6. Perturbation theory from automorphic forms

    NASA Astrophysics Data System (ADS)

    Lambert, Neil; West, Peter

    2010-05-01

    Using our previous construction of Eisenstein-like automorphic forms we derive formulae for the perturbative and non-perturbative parts for any group and representation. The result is written in terms of the weights of the representation and the derivation is largely group theoretical. Specialising to the E n+1 groups relevant to type II string theory and the representation associated with node n + 1 of the E n+1 Dynkin diagram we explicitly find the perturbative part in terms of String Theory variables, such as the string coupling g d and volume V n . For dimensions seven and higher we find that the perturbation theory involves only two terms. In six dimensions we construct the SO(5, 5) automorphic form using the vector representation. Although these automorphic forms are generally compatible with String Theory, the one relevant to R 4 involves terms with g d -6 and so is problematic. We then study a constrained SO(5, 5) automorphic form, obtained by summing over null vectors, and compute its perturbative part. We find that it is consistent with String Theory and makes precise predictions for the perturbative results. We also study the unconstrained automorphic forms for E 6 in the 27 representation and E 7 in the 133 representation, giving their perturbative part and commenting on their role in String Theory.

  7. A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.

  8. Primordial black holes for the LIGO events in the axionlike curvaton model

    NASA Astrophysics Data System (ADS)

    Ando, Kenta; Inomata, Keisuke; Kawasaki, Masahiro; Mukaida, Kyohei; Yanagida, Tsutomu T.

    2018-06-01

    We review primordial black hole (PBH) formation in the axionlike curvaton model and investigate whether PBHs formed in this model can be the origin of the gravtitational wave (GW) signals detected by the Advanced LIGO. In this model, small-scale curvature perturbations with large amplitude are generated, which is essential for PBH formation. On the other hand, large curvature perturbations also become a source of primordial GWs by their second-order effects. Severe constraints are imposed on such GWs by pulsar timing array (PTA) experiments. We also check the consistency of the model with these constraints. In this analysis, it is important to take into account the effect of non-Gaussianity, which is generated easily in the curvaton model. We see that, if there are non-Gaussianities, the fixed amount of PBHs can be produced with a smaller amplitude of the primordial power spectrum.

  9. Non-perturbative determination of cV, ZV and ZS/ZP in Nf = 3 lattice QCD

    NASA Astrophysics Data System (ADS)

    Heitger, Jochen; Joswig, Fabian; Vladikas, Anastassios; Wittemeier, Christian

    2018-03-01

    We report on non-perturbative computations of the improvement coefficient cV and the renormalization factor ZV of the vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action. To reduce finite quark mass effects, our improvement and normalization conditions exploit massive chiral Ward identities formulated in the Schrödinger functional setup, which also allow deriving a new method to extract the ratio ZS/ZP of scalar to pseudoscalar renormalization constants. We present preliminary results of a numerical evaluation of ZV and cV along a line of constant physics with gauge couplings corresponding to lattice spacings of about 0:09 fm and below, relevant for phenomenological applications.

  10. A linear shock cell model for non-circular jets using conformal mapping with a pseudo-spectral hybrid scheme

    NASA Technical Reports Server (NTRS)

    Bhat, Thonse R. S.; Baty, Roy S.; Morris, Philip J.

    1990-01-01

    The shock structure in non-circular supersonic jets is predicted using a linear model. This model includes the effects of the finite thickness of the mixing layer and the turbulence in the jet shear layer. A numerical solution is obtained using a conformal mapping grid generation scheme with a hybrid pseudo-spectral discretization method. The uniform pressure perturbation at the jet exit is approximated by a Fourier-Mathieu series. The pressure at downstream locations is obtained from an eigenfunction expansion that is matched to the pressure perturbation at the jet exit. Results are presented for a circular jet and for an elliptic jet of aspect ratio 2.0. Comparisons are made with experimental data.

  11. Anisotropic Bispectrum of Curvature Perturbations from Primordial Non-Abelian Vector Fields

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2009-10-01

    We consider a primordial SU(2) vector multiplet during inflation in models where quantum fluctuations of vector fields are involved in producing the curvature perturbation. Recently, a lot of attention has been paid to models populated by vector fields, given the interesting possibility of generating some level of statistical anisotropy in the cosmological perturbations. The scenario we propose is strongly motivated by the fact that, for non-Abelian gauge fields, self-interactions are responsible for generating extra terms in the cosmological correlation functions, which are naturally absent in the Abelian case. We compute these extra contributions to the bispectrum of the curvature perturbation, using the δN formula and the Schwinger-Keldysh formalism. The primordial violation of rotational invariance (due to the introduction of the SU(2) gauge multiplet) leaves its imprint on the correlation functions introducing, as expected, some degree of statistical anisotropy in our results. We calculate the non-Gaussianity parameter fNL, proving that the new contributions derived from gauge bosons self-interactions can be important, and in some cases the dominat ones. We study the shape of the bispectrum and we find that it turns out to peak in the local configuration, with an amplitude that is modulated by the preferred directions that break statistical isotropy.

  12. Trapped Inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Horn, Bart; /SLAC /Stanford U., Phys. Dept.

    2009-06-19

    We analyze a distinctive mechanism for inflation in which particle production slows down a scalar field on a steep potential, and show how it descends from angular moduli in string compactifications. The analysis of density perturbations - taking into account the integrated effect of the produced particles and their quantum fluctuations - requires somewhat new techniques that we develop. We then determine the conditions for this effect to produce sixty e-foldings of inflation with the correct amplitude of density perturbations at the Gaussian level, and show that these requirements can be straightforwardly satisfied. Finally, we estimate the amplitude of themore » non-Gaussianity in the power spectrum and find a significant equilateral contribution.« less

  13. Many-body perturbation theory and non-perturbative approaches: screened interaction as the key ingredient

    NASA Astrophysics Data System (ADS)

    Tarantino, Walter; Mendoza, Bernardo S.; Romaniello, Pina; Berger, J. A.; Reining, Lucia

    2018-04-01

    Many-body perturbation theory is often formulated in terms of an expansion in the dressed instead of the bare Green’s function, and in the screened instead of the bare Coulomb interaction. However, screening can be calculated on different levels of approximation, and it is important to define what is the most appropriate choice. We explore this question by studying a zero-dimensional model (so called ‘one-point model’) that retains the structure of the full equations. We study both linear and non-linear response approximations to the screening. We find that an expansion in terms of the screening in the random phase approximation is the most promising way for an application in real systems. Moreover, by making use of the nonperturbative features of the Kadanoff-Baym equation for the one-body Green’s function, we obtain an approximate solution in our model that is very promising, although its applicability to real systems has still to be explored.

  14. Fluid Dynamics Lagrangian Simulation Model

    DTIC Science & Technology

    1994-02-08

    In recent experimental studies by Ramberg where all variables are non -dimensionalised by h and et al.6 and Swean et al.s.7 single-point hot-film mea- 0...determining the effect on the vortex street of superimposing a small perturbation on the incident mean flow upstream of the cylinder. Experimental work...region. The results were compared with experimental data and with data obtained numerically by other 0 investigators, who had not attempted to define the

  15. Diabetes Associated Metabolomic Perturbations in NOD Mice

    PubMed Central

    Hwang, Jessica; Poudel, Ananta; Jo, Junghyo; Periwal, Vipul; Fiehn, Oliver; Hara, Manami

    2014-01-01

    Non-obese diabetic (NOD) mice are a widely-used model oftype1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D. Total beta-cell mass was quantified in the intact pancreas using transgenic NOD mice expressinggreen fluorescent protein under the control of mouse insulin I promoter.While both progressor and non-progressor animals displayed lymphocyte infiltration and endoplasmic reticulum stress in the pancreas tissue;overt T1D did not develop until animals lost ~70% of the total beta-cell mass.Gas chromatography time of flight mass spectrometry (GC-TOF) was used to measure >470 circulating metabolites in male and female progressor and non-progressor animals (n=76) across a wide range of ages (neonates to >40-wk).Statistical and multivariate analyses were used to identify age and sex independent metabolic markers which best differentiated progressor and non-progressor animals’ metabolic profiles. Key T1D-associated perturbations were related with: (1) increased plasma glucose and reduced 1,5-anhydroglucitol markers of glycemic control; (2) increased allantoin, gluconic acid and nitric oxide-derived saccharic acid markers of oxidative stress; (3) reduced lysine, an insulin secretagogue; (4) increased branched-chain amino acids, isoleucine and valine; (5) reduced unsaturated fatty acids including arachidonic acid; and (6)perturbations in urea cycle intermediates suggesting increased arginine-dependent NO synthesis. Together these findings highlight the strength of the unique approach of comparing progressor and non-progressor NOD mice to identify metabolic perturbations involved in T1D progression. PMID:25755629

  16. Plasma Braking Due to External Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.

    2010-11-01

    The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.

  17. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Bugaev, Edgar; Klimai, Peter

    2011-11-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian.

  18. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

    PubMed Central

    Irmis, Randall B.; Whiteside, Jessica H.

    2012-01-01

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom–bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle. PMID:22031757

  19. Spin(7) compactifications and 1/4-BPS vacua in heterotic supergravity

    NASA Astrophysics Data System (ADS)

    Angus, Stephen; Matti, Cyril; Svanes, Eirik E.

    2016-03-01

    We continue the investigation into non-maximally symmetric compactifications of the heterotic string. In particular, we consider compactifications where the internal space is allowed to depend on two or more external directions. For preservation of supersymmetry, this implies that the internal space must in general be that of a Spin(7) manifold, which leads to a 1/4-BPS four-dimensional supersymmetric perturbative vacuum breaking all but one supercharge. We find that these solutions allow for internal geometries previously excluded by the domain-wall-type solutions, and hence the resulting four-dimensional superpotential is more generic. In particular, we find an interesting resemblance to the superpotentials that appear in non-geometric flux compactifications of type II string theory. If the vacua are to be used for phenomenological applications, they must be lifted to maximal symmetry by some non-perturbative or higher-order effect.

  20. All-electron molecular Dirac-Hartree-Fock calculations: The group 4 tetrahydrides CH4, SiH4, GeH4, SnH4 and PbH4

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Taylor, Peter R.; Faegri, Knut, Jr.; Partridge, Harry

    1990-01-01

    A basis-set-expansion Dirac-Hartree-Fock program for molecules is described. Bond lengths and harmonic frequencies are presented for the ground states of the group 4 tetrahydrides, CH4, SiH4, GeH4, SnH4, and PbH4. The results are compared with relativistic effective core potential (RECP) calculations, first-order perturbation theory (PT) calculations and with experimental data. The bond lengths are well predicted by first-order perturbation theory for all molecules, but non of the RECP's considered provides a consistent prediction. Perturbation theory overestimates the relativistic correction to the harmonic frequencies; the RECP calculations underestimate the correction.

  1. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    PubMed Central

    2011-01-01

    Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. Conclusions A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation. PMID:22082453

  2. Topological Defects and Structures in the Early Universe

    NASA Astrophysics Data System (ADS)

    Zhu, Yong

    1997-08-01

    This thesis discusses the topological defects generated in the early universe and their contributions to cosmic structure formation. First, we investigate non-Gaussian isocurvature perturbations generated by the evolution of Goldstone modes during inflation. If a global symmetry is broken before inflation, the resulting Goldstone modes are disordered during inflation in a precise and predictable way. After inflation these Goldstone modes order themselves in a self-similar way, much as Goldstone modes in field ordering scenarios based on the Kibble mechanism. For (Hi2/Mpl2)~10- 6, through their gravitational interaction these Goldstone modes generate density perturbations of approximately the right magnitude to explain the cosmic microwave background (CMB) anisotropy and seed the structure seen in the universe today. In such a model non-Gaussian perturbations result because to lowest order density perturbations are sourced by products of Gaussian fields. We explore the issue of phase dispersion and conclude that this non-Gaussian model predicts Doppler peaks in the CMB anisotropy. Topological defects generated from quantum fluctuations during inflation are studied in chapter four. We present a calculation of the power spectrum generated in a classically symmetry-breaking O(N) scalar field through inflationary quantum fluctuations, using the large-N limit. The effective potential of the theory in de Sitter space is obtained from a gap equation which is exact at large N. Quantum fluctuations restore the O(N) symmetry in de Sitter space, but for the finite values of N of interest, there is symmetry breaking and phase ordering after inflation, described by the classical nonlinear sigma model. The scalar field power spectrum is obtained as a function of the scalar field self-coupling. In the second part of the thesis, we investigate non-Abelian topological worm-holes, obtained when winding number one texture field is coupled to Einstein gravity with a conserved global charge. This topological wormhole has the same Euclidean action as axion wormholes and charged scalar wormholes. We find that free topological wormholes are spontaneously generated in the Euclidean space-time with finite density. It is then shown that wormholes with finite density might destroy any long range order in the global fields.

  3. Eisenstein Series and String Thresholds

    NASA Astrophysics Data System (ADS)

    Obers, N. A.; Pioline, B.

    We investigate the relevance of Eisenstein series for representing certain G()-invariant string theory amplitudes which receive corrections from BPS states only. G() may stand for any of the mapping class, T-duality and U-duality groups Sl(d,(), SO(d,d,() or Ed+1(d+1)(() respectively. Using G()-invariant mass formulae, we construct invariant modular functions on the symmetric space K\\G() of non-compact type, with K the maximal compact subgroup of G(), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincaré upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4 and R4H4g-4 couplings in toroidal compactifications of M-theory to any dimension D>= 4 and D>= 6 respectively.

  4. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    NASA Astrophysics Data System (ADS)

    Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe

    2017-10-01

    In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.

  5. Nonlinear phenomena in general relativity

    NASA Astrophysics Data System (ADS)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2018-04-01

    The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.

  6. Aspects of Chiral Symmetry Breaking in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Horkel, Derek P.

    In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism--the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative. In chapter 4, we delve deeper into the technical details of the analysis in chapter 3. We determine the phase diagram and chiral condensate for lattice QCD with two flavors of twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization errors and a nonzero value of thetaQCD. We find that, in general, the only phase structure is a first-order transition of finite length. Pion masses are nonvanishing throughout the phase plane except at the endpoints of the first-order line. Only for extremal values of the twist angle and thetaQCD (o = 0 or pi/2 and thetaQCD = 0 or pi) are there second-order transitions. In chapter 5 we move on to a new topic, working to make a first measurement of non-perturbative Greens functions which vanish in perturbation theory but have a non-vanishing one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi- classical approach. This measurement was done using 163 x 48 configurations generated by the MILC collaboration, with coupling beta = 6.572, light quark mass m la = 0.0097, strange quark mass msa = 0.0484, lattice spacing a ≈ 0.14 fm and pion mass mpia = 0.2456. The analysis was done by separating the Green function of interest into pseudoscalar and scalar components. These are separately calculated on 440 configurations, using the Chroma software package. To improve statistics, we used the various reduction technique suggested in Ref. [13]. We subtracted out the long distance contributions from the pion, excited pion and a0 from the Green function, in the hope of obtaining the short distance form predicted by Ref. [24]. Unfortunately, after subtraction of the a0 and pion states only noise remained. While the results are not in themselves useful, we believe this approach will be worth repeating in the future with finer lattices with a fermion action with better chiral symmetry.

  7. Metabolomic Markers of Altered Nucleotide Metabolism in Early Stage Adenocarcinoma

    PubMed Central

    Wikoff, William R.; Grapov, Dmitry; Fahrmann, Johannes F.; DeFelice, Brian; Rom, William; Pass, Harvey; Kim, Kyoungmi; Nguyen, UyenThao; Taylor, Sandra L.; Kelly, Karen; Fiehn, Oliver; Miyamoto, Suzanne

    2015-01-01

    Adenocarcinoma, a type of non-small-cell lung cancer (NSCLC), is the most frequently diagnosed lung cancer and the leading cause of lung cancer mortality in the United States. It is well documented that biochemical changes occur early in the transition from normal to cancer cells, but the extent to which these alterations affect tumorigenesis in adenocarcinoma remains largely unknown. Herein we describe the application of mass spectrometry and multivariate statistical analysis in one of the largest biomarker research studies to date aimed at distinguishing metabolic differences between malignant and non-malignant lung tissue. Gas chromatography time-of-flight mass spectrometry was used to measure 462 metabolites in 39 malignant and non-malignant lung tissue pairs from current or former smokers with early stage (Stage IA–IB) adenocarcinoma. Statistical mixed effects models, orthogonal partial least squares discriminant analysis and network integration, were used to identify key cancer-associated metabolic perturbations in adenocarcinoma compared to non-malignant tissue. Cancer-associated biochemical alterations were characterized by: 1) decreased glucose levels, consistent with the Warburg effect, 2) changes in cellular redox status highlighted by elevations in cysteine and antioxidants, alpha- and gamma-tocopherol, 3) elevations in nucleotide metabolites 5,6-dihydrouracil and xanthine suggestive of increased dihydropyrimidine dehydrogenase and xanthine oxidoreductase activity, 4) increased 5'-deoxy-5'-methylthioadenosine levels indicative of reduced purine salvage and increased de novo purine synthesis and 5) coordinated elevations in glutamate and UDP-N-acetylglucosamine suggesting increased protein glycosylation. The present study revealed distinct metabolic perturbations associated with early stage lung adenocarcinoma which may provide candidate molecular targets for personalizing therapeutic interventions and treatment efficacy monitoring. PMID:25657018

  8. QCD PHASE TRANSITIONS-VOLUME 15.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less

  9. QCD Phase Transitions, Volume 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less

  10. Modelling of three dimensional equilibrium and stability of MAST plasmas with magnetic perturbations using VMEC and COBRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.

    2014-10-15

    It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium ofmore » a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and infinite n ballooning modes are correlated to kinetic ballooning modes which are thought to limit the pressure gradient of the pedestal [Snyder et al., Phys. Plasmas 16, 056118 (2009)]. The ballooning mode growth rate gains a variation in toroidal angle. The equilibria with midplane displacements due to RMP coils have a higher ballooning mode growth rate than the axisymmetric case and the possible implications are discussed.« less

  11. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    DOE PAGES

    Frerichs, H.; Schmitz, O.; Waters, I.; ...

    2016-06-01

    The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their inter- action based onmore » the NSTX-U setup. An overview of different divertor con gurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.« less

  12. Linearization instability for generic gravity in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  13. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr

    2016-06-15

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less

  14. Heat and mass transfer in MHD free convection from a moving permeable vertical surface by a perturbation technique

    NASA Astrophysics Data System (ADS)

    Abdelkhalek, M. M.

    2009-05-01

    Numerical results are presented for heat and mass transfer effect on hydromagnetic flow of a moving permeable vertical surface. An analysis is performed to study the momentum, heat and mass transfer characteristics of MHD natural convection flow over a moving permeable surface. The surface is maintained at linear temperature and concentration variations. The non-linear coupled boundary layer equations were transformed and the resulting ordinary differential equations were solved by perturbation technique [Aziz A, Na TY. Perturbation methods in heat transfer. Berlin: Springer-Verlag; 1984. p. 1-184; Kennet Cramer R, Shih-I Pai. Magneto fluid dynamics for engineers and applied physicists 1973;166-7]. The solution is found to be dependent on several governing parameter, including the magnetic field strength parameter, Prandtl number, Schmidt number, buoyancy ratio and suction/blowing parameter, a parametric study of all the governing parameters is carried out and representative results are illustrated to reveal a typical tendency of the solutions. Numerical results for the dimensionless velocity profiles, the temperature profiles, the concentration profiles, the local friction coefficient and the local Nusselt number are presented for various combinations of parameters.

  15. Perturbation of longitudinal relaxation rate in rotating frame (PLRF) analysis for quantification of chemical exchange saturation transfer signal in a transient state.

    PubMed

    Wang, Yi; Zhang, Yaoyu; Zhao, Xuna; Wu, Bing; Gao, Jia-Hong

    2017-11-01

    To develop a novel analytical method for quantification of chemical exchange saturation transfer (CEST) in the transient state. The proposed method aims to reduce the effects of non-chemical-exchange (non-CE) parameters on the CEST signal, emphasizing the effect of chemical exchange. The difference in the longitudinal relaxation rate in the rotating frame ( ΔR1ρ) was calculated based on perturbation of the Z-value by R1ρ, and a saturation-pulse-amplitude-compensated exchange-dependent relaxation rate (SPACER) was determined with a high-exchange-rate approximation. In both phantom and human subject experiments, MTRasym (representative of the traditional CEST index), ΔR1ρ, and SPACER were measured, evaluated, and compared by altering the non-CE parameters in a transient-state continuous-wave CEST sequence. In line with the theoretical expectation, our experimental data demonstrate that the effects of the non-CE parameters can be more effectively reduced using the proposed indices (  ΔR1ρ and SPACER) than using the traditional CEST index ( MTRasym). The proposed method allows for the chemical exchange weight to be better emphasized in the transient-state CEST signal, which is beneficial, in practice, for quantifying the CEST signal. Magn Reson Med 78:1711-1723, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Prospects for asteroid mass determination from close encounters between asteroids: ESA's Gaia space mission and beyond

    NASA Astrophysics Data System (ADS)

    Ivantsov, Anatoliy; Hestroffer, Daniel; Eggl, Siegfried

    2018-04-01

    We present a catalog of potential candidates for asteroid mass determination based on mutual close encounters of numbered asteroids with massive perturbers (D>20 km). Using a novel geometric approach tuned to optimize observability, we predict optimal epochs for mass determination observations. In contrast to previous studies that often used simplified dynamical models, we have numerically propagated the trajectories of all numbered asteroids over the time interval from 2013 to 2023 using relativistic equations of motion including planetary perturbations, J2 of the Sun, the 16 major asteroid perturbers and the perturbations due to non-sphericities of the planets. We compiled a catalog of close encounters between asteroids where the observable perturbation of the sky plane trajectory is greater than 0.5 mas so that astrometric measurements of the perturbed asteroids in the Gaia data can be leveraged. The catalog v1.0 is available at ftp://dosya.akdeniz.edu.tr/ivantsov.

  17. Isocurvature constraints and anharmonic effects on QCD axion dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Kurematsu, Ryosuke; Takahashi, Fuminobu, E-mail: takeshi@cita.utoronto.ca, E-mail: rkurematsu@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2013-09-01

    We revisit the isocurvature density perturbations induced by quantum fluctuations of the axion field by extending a recently developed analytic method and approximations to a time-dependent scalar potential, which enables us to follow the evolution of the axion until it starts to oscillate. We find that, as the initial misalignment angle approaches the hilltop of the potential, the isocurvature perturbations become significantly enhanced, while the non-Gaussianity parameter increases slowly but surely. As a result, the isocurvature constraint on the inflation scale is tightened as H{sub inf}∼

  18. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    PubMed

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-07-27

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.

  19. Modulation of Small-scale Turbulence Structure by Large-scale Motions in the Absence of Direct Energy Transfer.

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1996-11-01

    Previous DNS studies indicate that small-scale structure can be directly altered through ``distant'' dynamical interactions by energetic forcing of the large scales. To remove the possibility of stimulating energy transfer between the large- and small-scale motions in these long-range interactions, we here perturb the large scale structure without altering its energy content by suddenly altering only the phases of large-scale Fourier modes. Scale-dependent changes in turbulence structure appear as a non zero difference field between two simulations from identical initial conditions of isotropic decaying turbulence, one perturbed and one unperturbed. We find that the large-scale phase perturbations leave the evolution of the energy spectrum virtually unchanged relative to the unperturbed turbulence. The difference field, on the other hand, is strongly affected by the perturbation. Most importantly, the time scale τ characterizing the change in in turbulence structure at spatial scale r shortly after initiating a change in large-scale structure decreases with decreasing turbulence scale r. Thus, structural information is transferred directly from the large- to the smallest-scale motions in the absence of direct energy transfer---a long-range effect which cannot be explained by a linear mechanism such as rapid distortion theory. * Supported by ARO grant DAAL03-92-G-0117

  20. Driven similarity renormalization group: Third-order multireference perturbation theory.

    PubMed

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  1. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory

    PubMed Central

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R.; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-01-01

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R2 of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system. PMID:27460882

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr

    In warm inflation scenarios, radiation always exists, so that the radiation energy density is also assumed to be finite when inflation starts. To find out the origin of the non-vanishing initial radiation energy density, we revisit thermodynamic analysis for a warm inflation model and then derive an effective Stefan-Boltzmann law which is commensurate with the temperature-dependent effective potential by taking into account the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law shows that the zero energy density for radiation at the Grand Unification epoch increases until the inflation starts and it becomes eventually finite at the initialmore » stage of warm inflation. By using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation.« less

  3. Local convertibility of the ground state of the perturbed toric code

    NASA Astrophysics Data System (ADS)

    Santra, Siddhartha; Hamma, Alioscia; Cincio, Lukasz; Subasi, Yigit; Zanardi, Paolo; Amico, Luigi

    2014-12-01

    We present analytical and numerical studies of the behavior of the α -Renyi entropies in the toric code in presence of several types of perturbations aimed at studying the simulability of these perturbations to the parent Hamiltonian using local operations and classical communications (LOCC)—a property called local convertibility. In particular, the derivatives, with respect to the perturbation parameter, present different signs for different values of α within the topological phase. From the information-theoretic point of view, this means that such ground states cannot be continuously deformed within the topological phase by means of catalyst assisted local operations and classical communications (LOCC). Such LOCC differential convertibility is on the other hand always possible in the trivial disordered phase. The non-LOCC convertibility is remarkable because it can be computed on a system whose size is independent of correlation length. This method can therefore constitute an experimentally feasible witness of topological order.

  4. System-level perturbations of cell metabolism using CRISPR/Cas9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakočiūnas, Tadas; Jensen, Michael K.; Keasling, Jay D.

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  5. Expectation of an upcoming large postural perturbation influences the recovery stepping response and outcome.

    PubMed

    Pater, Mackenzie L; Rosenblatt, Noah J; Grabiner, Mark D

    2015-01-01

    Tripping during locomotion, the leading cause of falls in older adults, generally occurs without prior warning and often while performing a secondary task. Prior warning can alter the state of physiological preparedness and beneficially influence the response to the perturbation. Previous studies have examined how altering the initial "preparedness" for an upcoming perturbation can affect kinematic responses following small disturbances that did not require a stepping response to restore dynamic stability. The purpose of this study was to examine how expectation affected fall outcome and recovery response kinematics following a large, treadmill-delivered perturbation simulating a trip and requiring at least one recovery step to avoid a fall. Following the perturbation, 47% of subjects fell when they were not expecting the perturbation whereas 12% fell when they were aware that the perturbation would occur "sometime in the next minute". The between-group differences were accompanied by slower reaction times in the non-expecting group (p < 0.01). Slower reaction times were associated with kinematics that have previously been shown to increase the likelihood of falling following a laboratory-induced trip. The results demonstrate the importance of considering the context under which recovery responses are assessed, and further, gives insight to the context during which task-specific perturbation training is administered. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Tube dynamics and low energy Earth-Moon transfers in the 4-body system

    NASA Astrophysics Data System (ADS)

    Onozaki, Kaori; Yoshimura, Hiroaki; Ross, Shane D.

    2017-11-01

    In this paper, we show a low energy Earth-Moon transfer in the context of the Sun-Earth-Moon-spacecraft 4-body system. We consider the 4-body system as the coupled system of the Sun-Earth-spacecraft 3-body system perturbed by the Moon (which we call the Moon-perturbed system) and the Earth-Moon-spacecraft 3-body system perturbed by the Sun (which we call the Sun-perturbed system). In both perturbed systems, analogs of the stable and unstable manifolds are computed numerically by using the notion of Lagrangian coherent structures, wherein the stable and unstable manifolds play the role of separating orbits into transit and non-transit orbits. We obtain a family of non-transit orbits departing from a low Earth orbit in the Moon-perturbed system, and a family of transit orbits arriving into a low lunar orbit in the Sun-perturbed system. Finally, we show that we can construct a low energy transfer from the Earth to the Moon by choosing appropriate trajectories from both families and patching these trajectories with a maneuver.

  7. Deconstructing zero: resurgence, supersymmetry and complex saddles

    DOE PAGES

    Dunne, Gerald V.; Ünsal, Mithat

    2016-12-01

    We explain how a vanishing, or truncated, perturbative expansion, such as often arises in semi-classically tractable supersymmetric theories, can nevertheless be related to fluctuations about non-perturbative sectors via resurgence. We also demonstrate that, in the same class of theories, the vanishing of the ground state energy (unbroken supersymmetry) can be attributed to the cancellation between a real saddle and a complex saddle (with hidden topological angle π), and positivity of the ground state energy (broken supersymmetry) can be interpreted as the dominance of complex saddles. In either case, despite the fact that the ground state energy is zero to allmore » orders in perturbation theory, all orders of fluctuations around non-perturbative saddles are encoded in the perturbative E (N, g). Finally, we illustrate these ideas with examples from supersymmetric quantum mechanics and quantum field theory.« less

  8. Timescales of isotropic and anisotropic cluster collapse

    NASA Astrophysics Data System (ADS)

    Bartelmann, M.; Ehlers, J.; Schneider, P.

    1993-12-01

    From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be verified and strengthened, even if a more general approach to the collapse of density perturbations is employed. A simple analytic formula for the cluster redshift distribution in an Einstein-deSitter universe is derived.

  9. The Effect of Global-Scale, Steady-State Convection and Elastic-Gravitational Asphericities on Helioseismic Oscillations

    NASA Astrophysics Data System (ADS)

    Lavely, Eugene M.; Ritzwoller, Michael H.

    1992-06-01

    In this paper we derive a theory, based on quasi-degenerate perturbation theory, that governs the effect of global-scale, steady-state convection and associated static asphericities in the elastic-gravitational variables (adiabatic bulk modulus kappa , density ρ , and gravitational potential φ ) on helioseismic eigenfrequencies and eigenfunctions and present a formalism with which this theory can be applied computationally. The theory rests on three formal assumptions: (1) that convection is temporally steady in a frame corotating with the Sun, (2) that accurate eigenfrequencies and eigenfunctions can be determined by retaining terms in the seismically perturbed equations of motion only to first order in p-mode displacement, and (3) that we are justified in retaining terms only to first order in convective velocity (this is tantamount to assuming that the convective flow is anelastic). The most physically unrealistic assumption is (1), and we view the results of this paper as the first step toward a more general theory governing the seismic effects of time-varying fields. Although the theory does not govern the seismic effects of non-stationary flows, it can be used to approximate the effects of unsteady flows on the acoustic wavefield if the flow is varying smoothly in time. The theory does not attempt to model seismic modal amplitudes since these are governed, in part, by the exchange of energy between convection and acoustic motions which is not a part of this theory. However, we show how theoretical wavefields can be computed given a description of the stress field produced by a source process such as turbulent convection. The basic reference model that will be perturbed by rotation, convection, structural asphericities, and acoustic oscillations is a spherically symmetric, non-rotating, non-magnetic, isotropic, static solar model that, when subject to acoustic oscillations, oscillates adiabatically. We call this the SNRNMAIS model. An acoustic mode of the SNRNMAIS model is denoted by k = (n,l,m), where n is the radial order, l is the harmonic degree, and m is the azimuthal order of the mode. The main result of the paper is the general matrix element Hn'n,l'lm'm for steady-state convection satisfying the anelastic condition with static structural asphericities. It is written in terms of the radial, scalar eigenfunctions of the SNRNMAIS model, resulting in equations (90)-(110). We prove Rayleigh's principle in our derivation of quasi-degenerate perturbation theory which, as a by-product, yields the general matrix element. Within this perturbative method, modes need not be exactly degenerate in the SNRNMAIS solar model to couple, only nearly so. General matrix elements compose the hermitian supermatrix Z. The eigenvalues of the supermatrix are the eigenfrequency perturbations of the convecting, aspherical model and the eigenvector components of Z are the expansion coefficients in the linear combination forming the eigenfunctions in which the eigenfunctions of the SNRNMAIS solar model act as basis functions. The properties of the Wigner 3j symbols and the reduced matrix elements composing Hn'n,l'lm' produce selection rules governing the coupling of SNRNMAIS modes that hold even for time-varying flows. We state selection rules for both quasi-degenerate and degenerate perturbation theories. For example, within degenerate perturbation theory, only odd-degree s toroidal flows and even degree structural asphericities, both with s <= 2l, will couple and/or split acoustic modes with harmonic degree l. In addition, the frequency perturbations caused by a toroidal flow display odd symmetry with respect to the degenerate frequency when ordered from the minimum to the maximum frequency perturbation. We consider the special case of differential rotation, the odd-degree, axisymmetric, toroidal component of general convection, and present the general matrix element and selection rules under quasi-degenerate perturbation theory. We argue that due to the spacing of modes that satisfy the selection rules, quasi-degenerate coupling can, for all practical purposes, be neglected in modelling the effect of low-degree differential rotation on helioseismic data. In effect, modes that can couple through low-degree differential rotation are too far separated in frequency to couple strongly. This is not the case for non-axisymmetric flows and asphericities where near degeneracies will regularly occur, and couplings can be relatively strong especially among SNRNMAIS modes within the same multiplet. All derivations are performed and all solutions are presented in a frame corotating with the mean solar angular rotation rate. Equation (18) shows how to transform the eigenfrequencies and eigenfunctions in the corotating frame into an inertial frame. The transformation has the effect that each eigenfunction in the inertial frame is itself time varying. That is, a mode of oscillation, which is defined to have a single frequency in the corotating frame, becomes multiply periodic in the inertial frame.

  10. Early universe with modified scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  11. Modal expansions for infrasound propagation and their implications for ground-to-ground propagation.

    PubMed

    Waxler, Roger; Assink, Jelle; Velea, Doru

    2017-02-01

    The use of expansions in vertical eigenmodes for long range infrasound propagation modeling in the effective sound speed approximation is investigated. The question of convergence of such expansions is related to the maximum elevation angles that are required. Including atmospheric attenuation leads to a non-self-adjoint vertical eigenvalue problem. The use of leading order perturbation theory for the modal attenuation is compared to the results of numerical solutions to the non-self-adjoint eigenvalue problem and conditions under which the perturbative result is expected to be valid are obtained. Modal expansions are obtained in the frequency domain; broadband signals must be modeled through Fourier reconstruction. Such broadband signal reconstruction is investigated and the relation between bandwidth, wavetrain duration, and frequency sampling is discussed.

  12. Secondary metabolite perturbations in Phaseolus vulgaris leaves due to gamma radiation.

    PubMed

    Ramabulana, T; Mavunda, R D; Steenkamp, P A; Piater, L A; Dubery, I A; Madala, N E

    2015-12-01

    Oxidative stress is a condition in which the balance between the production and elimination of reactive oxygen species (ROS) is disturbed. However, plants have developed a very sophisticated mechanism to mitigate the effect of ROS by constantly adjusting the concentration thereof to acceptable levels. Electromagnetic radiation is one of the factors which results in oxidative stress. In the current study, ionizing gamma radiation generated from a Cobalt-60 source was used to induce oxidative stress in Phaseolus vulgaris seedlings. Plants were irradiated with several radiation doses, with 2 kGy found to be the optimal, non-lethal dose. Metabolite distribution patterns from irradiated and non-irradiated plants were analyzed using UHPLC-qTOF-MS and multivariate data models such as principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Metabolites such as hydroxycinnamic phenolic acids, flavonoids, terpenes, and a novel chalcone were found to be perturbed in P. vulgaris seedlings treated with the aforementioned conditions. The results suggest that there is a compensatory link between constitutive protectants and inducible responses to injury as well as defense against oxidative stress induced by ionizing radiation. The current study is also the first to illustrate the power of a metabolomics approach to decipher the effect of gamma radiation on crop plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Knee functional recovery and limb-to-limb symmetry restoration after anterior cruciate ligament (ACL) rupture and ACL reconstruction

    NASA Astrophysics Data System (ADS)

    Nawasreh, Zakariya Hussein

    Anterior cruciate ligament (ACL) rupture is a common sport injury of young athletes who participate in jumping, cutting, and pivoting activities. Although ACL reconstruction (ACLR) surgery has the goal of enabling athletes to return to preinjury activity levels, treatment results often fall short of this goal. The outcomes after ACLR are variable and less than optimal with low rate of return to preinjury activity level and high risk for second ACL injury. Factors related to the knee functional limitations, strength deficits, and limb-to-limb movement asymmetry may be associated with poor outcomes after ACLR. Additionally, the criteria that are used to determine a patient's readiness to return to the preinjury activity level are undefined which may also be associated with poor outcomes after ACLR. The clinical decision-making to clear patients' for safe and successful return to high physical activities should be based on a universal comprehensive set of objective criteria that ensure normal knee function and limb-to-limb symmetry. A battery of return to activity criteria (RTAC) that emphases normal knee function and limb-to-limb movement symmetry has been constituted to better ensure safe and successful return to preinjury activity level. Yet, only variables related to patients' demographics, concomitant injuries, and treatment measures have been used to predict return to preinjury activity levels after ACLR. However, the ability of RTAC variables that ensure normal knee function and limb movement symmetry to predict the return to participate in the same preinjury activity level after ACLR has not been investigated. In light of this background, the first aim of the present study was to compare functional knee performance-based and patient-reported measures of those who PASS and who FAIL on RTAC at 6 months (6-M) following ACLR with those at 12 months (12-M) and 24 months (24-M) following ACLR and to determine how performance-based and patient-reported measures change over time. Further to investigate whether RTAC variables at 6-M following ACLR predict return to the same preinjury activity level at 12 and 24 months following ACLR. The findings of this work revealed that patients who fail on RTAC 6-M after ACLR are more likely to demonstrate impaired knee function and limb-to-limb movement asymmetry at 12-M and 24-M after ACLR. Additionally, RTAC variables can predict the return to participate in the same preinjury activity level at 12-M and 24-M after ACLR. The combination of RTAC variables explain more than one-fourth to one-third of returning to participate in the same preinjury activity level 12-M and 24-M respectively after ACLR. For athletes choosing non-surgical management, the physical therapy recommendation is to administrate progressive strength training augmented with manual perturbation training. Manual perturbation training is a type of specialized neuromuscular training that includes purposeful manipulations of support surfaces by a therapist. While manual perturbation promotes dynamic knee stability, enhances dynamic knee function, mitigates abnormal movement pattern and normalizes the muscle co-contraction, perturbation training is not widely used as part of the ACL rehabilitation program in the United States. Further, the perturbation training requires extensive physical labor and one-on-one time from the treating therapist. The effect of administering perturbation training using mechanical device as part of the ACL rehabilitation program has not investigated. An automated "Reactive Agility System" device provides perturbation stimuli including multidirectional translations similar to those of manual perturbation training. Administrating the perturbation training using a mechanical device may facilitate the use of controlled and standardized training in a wide range of the rehabilitation clinics and allow administering controlled and standardized training. However, it is unknown whether administering perturbation training using mechanical device provides effects similar to manual perturbation training on knee mechanics, knee functional performance, and neuromuscular activation pattern in patients with ACL rupture. The second aim of this study was to measure whether the mechanical perturbation training provides an effect similar to that of manual perturbation training on gait mechanics, knee functional performance, muscle co-contraction, and neuromuscular activation pattern in athletes with an acute ACL rupture who are managed non-surgically. The findings of this work revealed that mechanical perturbation training provides effects similar to the manual perturbation training on knee kinematics and kinetics during walking and performance-based and patient-reported measures. Gait limb-to-limb asymmetries continue persist after the training regardless of the treatment group which may indicate that patients require participating in an extended rehabilitation program. Additionally, Perturbation training attempts to resolve the neuromuscular deficits and restore a balance in muscle activation and strength between knee flexors and extensors to enhance the dynamic stability of the knee joint. There are moderate to strong relationships between time duration of muscles' activities and the muscle co-contraction that may reflect neuromuscular adaptations to provide dynamic knee stability.

  14. Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Janečka, Adam; Pavelka, Michal

    2018-04-01

    Reformulating constitutive relation in terms of gradient dynamics (being derivative of a dissipation potential) brings additional information on stability, metastability and instability of the dynamics with respect to perturbations of the constitutive relation, called CR-stability. CR-instability is connected to the loss of convexity of the dissipation potential, which makes the Legendre-conjugate dissipation potential multivalued and causes dissipative phase transitions that are not induced by non-convexity of free energy, but by non-convexity of the dissipation potential. CR-stability of the constitutive relation with respect to perturbations is then manifested by constructing evolution equations for the perturbations in a thermodynamically sound way (CR-extension). As a result, interesting experimental observations of behavior of complex fluids under shear flow and supercritical boiling curve can be explained.

  15. Phonon Effects on Charge Transport Through a Two State Molecule

    NASA Astrophysics Data System (ADS)

    Ulloa, Sergio E.; Yudiarsah, Efta

    2008-03-01

    We study the effect of local and non-local phonon on the transport properties of a molecule model described by two- electronic states. The local phonon interaction is tackled by means of a Lang Firsov transformation [1,2]. The interaction with non-local phonons (phonon-assisted hopping) is considered perturbatively up to the first nonzero order in the self energy. The presence of different kinds of electron-phonon interaction open new transmission channels. In addition to the polaron shift and replicas due to local phonons, non-local phonons cause the appearance of new satellite states around the initial states. In the weak coupling regime of non-local phonon and electrons, states are shifted an amount proportional to square of the interaction. However, in the strong coupling regime, the non-linear effects emerge and display more interesting features on transport properties. Additional features on transport properties due to new transmission channel are shown to appear at finite temperatures. [1] G. D. Mahan, Many-particle physics, 3rd ed. (Plenum Publishers, New York, 2000). [2] R. Gutierrez et al., Phys. Rev. B. 74, 235105 (2006).

  16. Quantum Field Theory in Two Dimensions: Light-front Versus Space-like Solutions

    NASA Astrophysics Data System (ADS)

    Martinovic̆, L'ubomír

    2017-07-01

    A few non-perturbative topics of quantum field theory in D=1+1 are studied in both the conventional (SL) and light-front (LF) versions. First, we give a concise review of the recently proposed quantization of the two-dimensional massless LF fields. The LF version of bosonization follows in a simple and natural way including the bosonized form of the Thirring model. As a further application, we demonstrate the closeness of the 2D massless LF quantum fields to conformal field theory (CFT). We calculate several correlation functions including those between the components of the LF energy-momentum tensor and derive the LF version of the Virasoro algebra. Using the Euclidean time variable, we can immediately transform calculated quantities to the (anti)holomorphic form. The results found are in agreement with those from CFT. Finally, we show that the proposed framework provides us with the elements needed for an independent LF study of exactly solvable models. We compute the non-perturbative correlation functions from the exact operator solution of the LF Thirring model and compare it to the analogous results in the SL theory. While the vacuum effects are automatically taken into account in the LF case, the non-trivial vacuum structure has to be incorported by an explicit diagonalization of the SL Hamiltonians, to obtain the equivalently complete solution.

  17. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  18. Field Theoretical Methods in Cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Anupam

    1995-01-01

    To optimally utilize all the exciting cosmological data coming in we need to sharpen also the theoretical tools available to cosmologists. One such indispensible tool to understand hot big bang cosmology is finite temperature field theory. We review and summarise the efforts made by us to use finite temperature field theory to address issues of current interest to cosmologists. An introduction to both the real time and the imaginary time formalisms is provided. The imaginary time formalism is illustrated by applying it to understand the interesting possibility of late Time Phase Transitions. Recent observations of the space distribution of quasars indicate a very notable peak in space density at a redshift of 2 to 3. It is pointed out that this may be the result of a phase transition which has a critical temperature of roughly a few meV (in the cosmological units, h = c = k = 1), which is natural in the context of massive neutrinos. In fact, the neutrino masses required for quasar production and those required to solve the solar neutrino problem by the MSW mechanism are consistent with each other. As a bonus, the cosmological constant implied by this model may also help resolve the discrepancy between the recently measured value of the Hubble Constant and the age of the universe. We illustrate the real time formalism by studying one of the most important time-dependent and non-equilibrium phenomena associated with phase transitions. The non-equilibrium dynamics of the first stage of the reheating process, that is dissipation via particle production is studied in scalar field theories. We show that a complete understanding of the mechanism of dissipation via particle production requires a non-perturbative resummation. We then study a Hartree approximation and clearly exhibit dissipative effects related to particle production. The effect of dissipation by Goldstone bosons is studied non-perturbatively in the large N limit in an O(N) theory. We also place our work in perspective and point out some of the related issues which clearly need further exploration.

  19. Non-Gaussianities due to relativistic corrections to the observed galaxy bispectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dio, E. Di; Perrier, H.; Durrer, R.

    2017-03-01

    High-precision constraints on primordial non-Gaussianity (PNG) will significantly improve our understanding of the physics of the early universe. Among all the subtleties in using large scale structure observables to constrain PNG, accounting for relativistic corrections to the clustering statistics is particularly important for the upcoming galaxy surveys covering progressively larger fraction of the sky. We focus on relativistic projection effects due to the fact that we observe the galaxies through the light that reaches the telescope on perturbed geodesics. These projection effects can give rise to an effective f {sub NL} that can be misinterpreted as the primordial non-Gaussianity signalmore » and hence is a systematic to be carefully computed and accounted for in modelling of the bispectrum. We develop the technique to properly account for relativistic effects in terms of purely observable quantities, namely angles and redshifts. We give some examples by applying this approach to a subset of the contributions to the tree-level bispectrum of the observed galaxy number counts calculated within perturbation theory and estimate the corresponding non-Gaussianity parameter, f {sub NL}, for the local, equilateral and orthogonal shapes. For the local shape, we also compute the local non-Gaussianity resulting from terms obtained using the consistency relation for observed number counts. Our goal here is not to give a precise estimate of f {sub NL} for each shape but rather we aim to provide a scheme to compute the non-Gaussian contamination due to relativistic projection effects. For the terms considered in this work, we obtain contamination of f {sub NL}{sup loc} ∼ O(1).« less

  20. Arsenic exposure induces the Warburg effect in cultured human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines.more » Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.« less

  1. Perturbing Practices: A Case Study of the Effects of Virtual Manipulatives as Novel Didactic Objects on Rational Function Instruction

    ERIC Educational Resources Information Center

    Pampel, Krysten

    2017-01-01

    The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors' abilities to teach…

  2. Combined effects of drift waves and neoclassical transport on density profiles in tokamaks

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Strand, P.

    2005-10-01

    The relative importance of neoclassical and anomalous particle transport depends on the charge number of the species being studied. The detailed particle balance including the EDWM [1] drift wave model for anomalous transport that includes ITG, TEM and in some cases ETG modes, and the neoclassical model NCLASS [2], are illustrated by simulations with the DEA particle transport code. DEA models the evolution of all ion species, and can be run in a mode to evaluate dynamic responses to perturbations or to conditions far from equilibrium by perturbing the profiles from the experimental measurements. The perturbations allow the fluxes to be decomposed into diffusive and convective (pinch) terms. The different scaling with charge number between drift wave and neoclassical models favors a stronger component of neoclassical transport for higher Z impurities through the effective pinch term. Although trace impurities illustrate a simple Ficks Law form, the main ions as well as higher concentrations of intrinsic impurities exhibit non-linear responses to the density gradients as well as off-diagonal gradient dependencies, leading to a more complicated response for the particle fluxes.[1] H. Nordman, et al., Plasma Phys. Control. Fusion 47 (2005) L11. [2] W.A. Houlberg, et al., Phys. Plasmas 4 (1997) 3230.

  3. Effect of a glucose-triazole-hydrogenated cardanol conjugate on lipid bilayer membrane organization and thermotropic phase transition

    NASA Astrophysics Data System (ADS)

    Swain, Jitendriya; Kamalraj, M.; Surya Prakash Rao, H.; Mishra, Ashok K.

    2015-02-01

    This work focuses on the membrane perturbation, solubilisation and thermotropic phase transition process of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) MLVs induced by a glucose-triazole-hydrogenated cardanol conjugate (GTHCC). GTHCC is a recently introduced non toxic sugar derivative. Differential scanning calorimetry (DSC) and fluorescence molecular probe based techniques have been used to understand the concentration dependent membrane perturbation, solubilisation and thermotropic phase transition process of DPPC MLVs. The phase transition temperature of DPPC MLVs decreases with increase in mol% of GTHCC. At higher concentration above 10 mol%, GTHCC was significantly perturbed the membrane organization. The intrinsic fluorescence of GTHCC is also found to be sensitive towards phase behaviour and changes in membrane organization of DPPC MLVs.

  4. Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach

    PubMed Central

    2017-01-01

    Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673

  5. The hypermultiplet with Heisenberg isometry in N = 2 global and local supersymmetry

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Nicola; Antoniadis, Ignatios; Derendinger, Jean-Pierre; Tziveloglou, Pantelis

    2011-06-01

    The string coupling of N = 2 supersymmetric compactifications of type II string theory on a Calabi-Yau manifold belongs to the so-called universal dilaton hyper-multiplet, that has four real scalars living on a quaternion-Kähler manifold. Requiring Heisenberg symmetry, which is a maximal subgroup of perturbative isometries, reduces the possible manifolds to a one-parameter family that describes the tree-level effective action deformed by the only possible perturbative correction arising at one-loop level. A similar argument can be made at the level of global supersymmetry where the scalar manifold is hyper-Kähler. In this work, the connection between global and local supersymmetry is explicitly constructed, providing a non-trivial gravity decoupled limit of type II strings already in perturbation theory.

  6. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  7. On the restricted four-body problem with the effect of small perturbations in the Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Suraj, Md Sanam; Aggarwal, Rajiv; Arora, Monika

    2017-09-01

    We have studied the restricted four-body problem (R4BP) with the effect of the small perturbation in the Coriolis and centrifugal forces on the libration points and zero velocity curves (ZVCs). Further, we have supposed that all the primaries are set in an equilateral triangle configuration, moving in the circular orbits around their common centre of mass. We have observed that the effect of the small perturbation in centrifugal force has a substantial effect on the location of libration points but a small perturbation in the Coriolis force has no impact on the location of libration points. But the stability of the libration points is highly influenced by the effect of the small perturbation in the Coriolis force. It is observed that as the Coriolis parameter increases, the libration points become stable. Further, it is found that the effect of the small perturbation in the centrifugal force has a substantial influence on the regions of possible motion. Also, when the effect of small perturbation in the centrifugal force increases the forbidden region decreases; here the motion is not possible for the infinitesimal mass. It is observed when the value of the Jacobian constant decreases, the regions of possible motion increase. In addition, we have also discussed how small perturbations in the Coriolis and centrifugal forces influence the Newton-Raphson basins of convergence.

  8. Linear effects models of signaling pathways from combinatorial perturbation data

    PubMed Central

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-01-01

    Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem. Contact: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307630

  9. Linear effects models of signaling pathways from combinatorial perturbation data.

    PubMed

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-06-15

    Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiaeAvailability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  10. Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal

    DOE PAGES

    Holod, I.; Lin, Z.; Taimourzadeh, S.; ...

    2016-10-03

    Vacuum resonant magnetic perturbations (RMP) applied to otherwise axisymmetric tokamak plasmas produce in general a combination of non-resonant effects that preserve closed flux surfaces (kink response) and resonant effects that introduce magnetic islands and/or stochasticity (tearing response). The effect of the plasma kink response on the linear stability and nonlinear transport of edge turbulence is studied using the gyrokinetic toroidal code GTC for a DIII-D plasma with applied n = 2 vacuum RMP. GTC simulations use the 3D equilibrium of DIII-D discharge 158103 (Nazikian et al 2015 Phys. Rev. Lett. 114 105002), which is provided by nonlinear ideal MHD VMECmore » equilibrium solver in order to include the effect of the plasma kink response to the external field but to exclude island formation at rational surfaces. Analysis using the GTC simulation results reveal no increase of growth rates for the electrostatic drift wave instability and for the electromagnetic kinetic-ballooning mode in the presence of the plasma kink response to the RMP. Moreover, nonlinear electrostatic simulations show that the effect of the 3D equilibrium on zonal flow damping is very weak and found to be insufficient to modify turbulent transport in the electrostatic turbulence.« less

  11. Linear and non-linear perturbations in dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escamilla-Rivera, Celia; Casarini, Luciano; Fabris, Júlio C.

    2016-11-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state w ( z ). In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected w ( z ) parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard ΛCDM model.

  12. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  13. Resummed memory kernels in generalized system-bath master equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavros, Michael G.; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2014-08-07

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between themore » two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.« less

  14. Joint statistics of strongly correlated neurons via dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  15. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  16. Indirect effects of bioinsecticides on the nontarget fauna: The Camargue experiment calls for future research

    NASA Astrophysics Data System (ADS)

    Poulin, Brigitte

    2012-10-01

    Following its high selectivity and low toxicity to nontarget organisms, Bacillus thuringiensis var. israelensis (Bti) has become the most commonly used microbial agent to control mosquitoes worldwide. Considered non-toxic to mammals, birds, fish, plants and most aquatic organisms, Bti direct effects on the nontarget fauna are largely limited to non-biting midges (Chironomidae). Studies addressing the indirect effects of Bti through food web perturbations are scanty and showed no significant results. Mosquito-control in southern France was implemented in 1965 using various insecticides over 400 km of coast. In spite of a high mosquito nuisance, the Camargue wetlands were excluded from this control programme to preserve biodiversity. The expanding use of Bti has prompted the implementation of an experimental mosquito control in 2006 involving 2500 of the 25,000 ha of larval biotopes of the Camargue, accompanied by impact studies on the nontarget fauna. Using birds from natural and human-inhabited areas as model species, we assessed trophic perturbations caused by three years of Bti applications. The preliminary results of this 5-yr programme revealed significant effects of Bti spraying on abundance of reed-dwelling invertebrates serving as food to passerines, as well as on the diet and breeding success of house martins nesting in rural estates and small towns. Very few studies (if any) have provided such compelling evidence of an insecticide affecting vertebrate populations, putting into question the environmental-friendly character of Bti, at least in some areas. The significance of these results are discussed within a wider context and completed with an analysis of the current Bti bibliography to highlight and orient priorities for future research on this topic.

  17. Formation of primordial black holes from non-Gaussian perturbations produced in a waterfall transition

    NASA Astrophysics Data System (ADS)

    Bugaev, Edgar; Klimai, Peter

    2012-05-01

    We consider the process of primordial black hole (PBH) formation originated from primordial curvature perturbations produced during waterfall transition (with tachyonic instability), at the end of hybrid inflation. It is known that in such inflation models, rather large values of curvature perturbation amplitudes can be reached, which can potentially cause a significant PBH production in the early Universe. The probability distributions of density perturbation amplitudes in this case can be strongly non-Gaussian, which requires a special treatment. We calculated PBH abundances and PBH mass spectra for the model and analyzed their dependence on model parameters. We obtained the constraints on the parameters of the inflationary potential, using the available limits on βPBH.

  18. Validation of extended magnetohydrodynamic simulations of the HIT-SI3 experiment using the NIMROD code

    NASA Astrophysics Data System (ADS)

    Morgan, K. D.; Jarboe, T. R.; Hossack, A. C.; Chandra, R. N.; Everson, C. J.

    2017-12-01

    The HIT-SI3 experiment uses a set of inductively driven helicity injectors to apply a non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. These helicity injectors drive a non-axisymmetric perturbation that oscillates in time, with relative temporal phasing of the injectors modifying the mode structure of the applied perturbation. A set of three experimental discharges with different perturbation spectra are modelled using the NIMROD extended magnetohydrodynamics code, and comparisons are made to both magnetic and fluid measurements. These models successfully capture the bulk dynamics of both the perturbation and the equilibrium, though disagreements related to the pressure gradients experimentally measured exist.

  19. An elaborate data set on human gait and the effect of mechanical perturbations

    PubMed Central

    Hnat, Sandra K.; van den Bogert, Antonie J.

    2015-01-01

    Here we share a rich gait data set collected from fifteen subjects walking at three speeds on an instrumented treadmill. Each trial consists of 120 s of normal walking and 480 s of walking while being longitudinally perturbed during each stance phase with pseudo-random fluctuations in the speed of the treadmill belt. A total of approximately 1.5 h of normal walking (>5000 gait cycles) and 6 h of perturbed walking (>20,000 gait cycles) is included in the data set. We provide full body marker trajectories and ground reaction loads in addition to a presentation of processed data that includes gait events, 2D joint angles, angular rates, and joint torques along with the open source software used for the computations. The protocol is described in detail and supported with additional elaborate meta data for each trial. This data can likely be useful for validating or generating mathematical models that are capable of simulating normal periodic gait and non-periodic, perturbed gaits. PMID:25945311

  20. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    PubMed Central

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  1. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    PubMed

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  2. Minimal string theories and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.

  3. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    PubMed

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  4. Sigma decomposition: the CP-odd Lagrangian

    NASA Astrophysics Data System (ADS)

    Hierro, I. M.; Merlo, L.; Rigolin, S.

    2016-04-01

    In Alonso et al., JHEP 12 (2014) 034, the CP-even sector of the effective chiral Lagrangian for a generic composite Higgs model with a symmetric coset has been constructed, up to four momenta. In this paper, the CP-odd couplings are studied within the same context. If only the Standard Model bosonic sources of custodial symmetry breaking are considered, then at most six independent operators form a basis. One of them is the weak- θ term linked to non-perturbative sources of CP violation, while the others describe CP-odd perturbative couplings between the Standard Model gauge bosons and an Higgs-like scalar belonging to the Goldstone boson sector. The procedure is then applied to three distinct exemplifying frameworks: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-preserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2) × U(1)) model, which intrinsically breaks custodial symmetry. Moreover, the projection of the high-energy electroweak effective theory to the low-energy chiral effective Lagrangian for a dynamical Higgs is performed, uncovering strong relations between the operator coefficients and pinpointing the differences with the elementary Higgs scenario.

  5. Optimal energy growth in a stably stratified shear flow

    NASA Astrophysics Data System (ADS)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  6. Non linear shock wave propagation in heterogeneous fluids: a numerical approach beyond the parabolic approximation with application to sonic boom.

    NASA Astrophysics Data System (ADS)

    Dagrau, Franck; Coulouvrat, François; Marchiano, Régis; Héron, Nicolas

    2008-06-01

    Dassault Aviation as a civil aircraft manufacturer is studying the feasibility of a supersonic business jet with the target of an "acceptable" sonic boom at the ground level, and in particular in case of focusing. A sonic boom computational process has been performed, that takes into account meteorological effects and aircraft manoeuvres. Turn manoeuvres and aircraft acceleration create zones of convergence of rays (caustics) which are the place of sound amplification. Therefore two elements have to be evaluated: firstly the geometrical position of the caustics, and secondly the noise level in the neighbourhood of the caustics. The modelling of the sonic boom propagation is based essentially on the assumptions of geometrical acoustics. Ray tracing is obtained according to Fermat's principle as paths that minimise the propagation time between the source (the aircraft) and the receiver. Wave amplitude and time waveform result from the solution of the inviscid Burgers' equation written along each individual ray. The "age variable" measuring the cumulative nonlinear effects is linked to the ray tube area. Caustics are located as the place where the ray tube area vanishes. Since geometrical acoustics does not take into account diffraction effects, it breaks down in the neighbourhood of caustics where it would predict unphysical infinite pressure amplitude. The aim of this study is to describe an original method for computing the focused noise level. The approach involves three main steps that can be summarised as follows. The propagation equation is solved by a forward marching procedure split into three successive steps: linear propagation in a homogeneous medium, linear perturbation due to the weak heterogeneity of the medium, and non-linear effects. The first step is solved using an "exact" angular spectrum algorithm. Parabolic approximation is applied only for the weak perturbation due to the heterogeneities. Finally, non linear effects are performed by solving the in-viscid Burgers' equation. As this one is valid for a plane wave, the direction of this last one is not prescribed a priori, but is computed in a self-adaptative way using an efficient numerical solver of the non-linear eikonal equation (Fast Marching Method).

  7. Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz

    Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they canmore » be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing-Yuan, E-mail: chjy@uchicago.edu; Stanford Institute for Theoretical Physics, Stanford University, CA 94305; Son, Dam Thanh, E-mail: dtson@uchicago.edu

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current–current correlator exactly matches with the result obtained from the kinetic theory.more » - Highlights: • We extend Landau’s kinetic theory of Fermi liquid to incorporate Berry phase. • Berry phase effects in Fermi liquid take exactly the same form as in Fermi gas. • There is a new “emergent electric dipole” contribution to the anomalous Hall effect. • Our kinetic theory is matched to field theory to all orders in Feynman diagrams.« less

  9. An inverse method using toroidal mode data

    USGS Publications Warehouse

    Willis, C.

    1986-01-01

    The author presents a numerical method for calculating the density and S-wave velocity in the upper mantle of a spherically symmetric, non-rotating Earth which consists of a perfect elastic, isotropic material. The data comes from the periods of the toroidal oscillations. She tests the method on a smoothed version of model A. The error in the reconstruction is less than 1%. The effects of perturbations in the eigenvalues are studied and she finds that the final model is sensitive to errors in the data.

  10. The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon, Jose Manuel

    We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.

  11. Supersonic molecular beam injection effects on tokamak plasma applied non-axisymmetric magnetic perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; In, Y.; Jeon, Y. M.

    The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.

  12. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.

    PubMed

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2010-04-01

    Compensatory stepping and grasping reactions are prevalent responses to sudden loss of balance and play a critical role in preventing falls. The ability to execute these reactions effectively is impaired in older adults. The purpose of this study was to evaluate a perturbation-based balance training program designed to target specific age-related impairments in compensatory stepping and grasping balance recovery reactions. This was a double-blind randomized controlled trial. The study was conducted at research laboratories in a large urban hospital. Thirty community-dwelling older adults (aged 64-80 years) with a recent history of falls or self-reported instability participated in the study. Participants were randomly assigned to receive either a 6-week perturbation-based (motion platform) balance training program or a 6-week control program involving flexibility and relaxation training. Features of balance reactions targeted by the perturbation-based program were: (1) multi-step reactions, (2) extra lateral steps following anteroposterior perturbations, (3) foot collisions following lateral perturbations, and (4) time to complete grasping reactions. The reactions were evoked during testing by highly unpredictable surface translation and cable pull perturbations, both of which differed from the perturbations used during training. /b> Compared with the control program, the perturbation-based training led to greater reductions in frequency of multi-step reactions and foot collisions that were statistically significant for surface translations but not cable pulls. The perturbation group also showed significantly greater reduction in handrail contact time compared with the control group for cable pulls and a possible trend in this direction for surface translations. Further work is needed to determine whether a maintenance program is needed to retain the training benefits and to assess whether these benefits reduce fall risk in daily life. Perturbation-based training shows promise as an effective intervention to improve the ability of older adults to prevent themselves from falling when they lose their balance.

  13. On the effective Stefan-Boltzmann law and the thermodynamic origin of the initial radiation density in warm inflation

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    In this presentation, we are going to explain the thermodynamic origin of warm inflation scenarios by using the effetive Stefan-Boltzmann law. In the warm inflation scenarios, radiation always exists to avoid the graceful exit problem, for which the radiation energy density should be assumed to be finite at the starting point of the warm inflation. To find out the origin of the non-vanishing initial radiation energy density, we derive an effective Stefan-Boltzmann law by considering the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law successfully shows where the initial radiation energy density is thermodynamically originated from. And by using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation. This proceeding is based on Ref. [1

  14. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    DOE PAGES

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; ...

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme-tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one andmore » two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro-modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. Lastly, we describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.« less

  15. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme-tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one andmore » two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro-modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. Lastly, we describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.« less

  16. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    NASA Astrophysics Data System (ADS)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.

    2018-04-01

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1  +  1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  17. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods.

    PubMed

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1  +  1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  18. Spherical collapse and virialization in f ( T ) gravities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Rui-Hui; Zhai, Xiang-Hua; Li, Xin-Zhou, E-mail: 1000379711@smail.shnu.edu.cn, E-mail: zhaixh@shnu.edu.cn, E-mail: kychz@shnu.edu.cn

    2017-03-01

    Using the classical top-hat profile, we study the non-linear growth of spherically symmetric density perturbation and structure formation in f ( T ) gravities. In particular, three concrete models, which have been tested against the observation of large-scale evolution and linear perturbation of the universe in the cosmological scenario, are investigated in this framework, covering both minimal and nonminimal coupling cases of f ( T ) gravities. Moreover, we consider the virialization of the overdense region in the models after they detach from the background expanding universe and turn around to collapse. We find that there are constraints in themore » magnitude and occurring epoch of the initial perturbation. The existence of these constraints indicates that a perturbation that is too weak or occurs too late will not be able to stop the expanding of the overdense region. The illustration of the evolution of the perturbation shows that in f ( T ) gravities, the initial perturbation within the constraints can eventually lead to clustering and form structure. The evolution also shows that nonminimal coupling models collapse slower than the minimal coupling one.« less

  19. A finsler perturbation of the Poincaré metric

    NASA Astrophysics Data System (ADS)

    Rutz, Solange F.; McCarthy, Patrick J.

    1993-02-01

    One method of gaining some insight into Finsler geomety is that of studying small Finsler perturbations of Riemannian metrics. We consider here the the standard two-dimensional upper half plane Poincaré metric, for which the geodesics are semi-circles and vertical lines. The effect of a simple Finsler perturbation on these geodesics is given by an explicit computation of the perturbed geodesics.

  20. Fluids, superfluids and supersolids: dynamics and cosmology of self-gravitating media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celoria, Marco; Comelli, Denis; Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: comelli@fe.infn.it, E-mail: luigi.pilo@aquila.infn.it

    We compute cosmological perturbations for a generic self-gravitating media described by four derivatively-coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids, solids and supersolids media. Symmetries dictate both dynamical and thermodynamical properties of the media. Generically, scalar perturbations include, besides the gravitational potential, an additional non-adiabatic mode associated with the entropy per particle σ. While perfect fluids and solids are adiabatic with σ constant in time, superfluids and supersolids feature a non-trivial dynamics for σ. Special classes of isentropic media with zero σ can also be found. Tensormore » modes become massive for solids and supersolids. Such an effective approach can be used to give a very general and symmetry driven modelling of the dark sector.« less

  1. Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training

    PubMed Central

    Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin

    2014-01-01

    For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598

  2. Intensities of K-X-ray satellite and hypersatellite target radiation in Bi83+-Xe @70 MeV/u collisions

    NASA Astrophysics Data System (ADS)

    Kozhedub, Y. S.; Bondarev, A. I.; Cai, X.; Gumberidze, A.; Hagmann, S.; Kozhuharov, C.; Maltsev, I. A.; Plunien, G.; Shabaev, V. M.; Shao, C.; Stöhlker, Th.; Tupitsyn, I. I.; Yang, B.; Yu, D.

    2017-10-01

    Non-perturbative calculations of the relativistic quantum dynamics of electrons in the Bi83+-Xe collisions at 70 AMeV are performed. A method of calculation employs an independent particle model with effective single-electron Dirac-Kohn-Sham operator. Solving of the single-electron equations is based on the coupled-channel approach with atomic-like Dirac-Sturm-Fock orbitals, localized at the ions (atoms). Special attention is paid to the inner-shell processes. Intensities of the K satellite and hypersatellite target radiation are evaluated. The role of the relativistic effects is studied.

  3. F-theoretic vs microscopic description of a conformal mathcal{N} = 2 SYM theory

    NASA Astrophysics Data System (ADS)

    Billò, Marco; Gallot, Laurent; Lerda, Alberto; Pesando, Igor

    2010-11-01

    The F-theory background of four D7 branes in a type I' orientifold was conjectured to be described by the Seiberg-Witten curve for the superconformal SU(2) gauge theory with four flavors. This relation was explained by considering in this background a probe D3 brane, which supports this theory with SU(2) realized as Sp(1). Here we explicitly compute the non-perturbative corrections to the D7/D3 system in type I' due to D-instantons. This computation provides both the quartic effective action on the D7 branes and the quadratic effective action on the D3 brane; the latter agrees with the F-theoretic prediction. The action obtained in this way is related to the one derived from the usual instanton calculus à la Nekrasov (or from its AGT realization in terms of Liouville conformal blocks) by means of a non-perturbative redefinition of the coupling constant. We also point out an intriguing relation between the four-dimensional theory on the probe D3 brane with SO(8) flavor symmetry and the eight-dimensional dynamics on the D7 branes. On the latter, SO(8) represents a gauge group and the flavor masses correspond to the vacuum expectation values of an adjoint scalar field m: what we find is that the exact effective coupling in four dimensions is obtained from its perturbative part by taking into account in its mass dependence the full quantum dynamics of the field m in eight dimensions.

  4. Bubble nucleation and inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Jazayeri, Sadra; Karami, Asieh; Rostami, Tahereh

    2017-12-01

    In this work we study the imprints of bubble nucleation on primordial inflationary perturbations. We assume that the bubble is formed via the tunneling of a spectator field from the false vacuum of its potential to its true vacuum. We consider the configuration in which the observable CMB sphere is initially outside of the bubble. As the bubble expands, more and more regions of the exterior false vacuum, including our CMB sphere, fall into the interior of the bubble. The modes which leave the horizon during inflation at the time when the bubble wall collides with the observable CMB sphere are affected the most. The bubble wall induces non-trivial anisotropic and scale dependent corrections in the two point function of the curvature perturbation. The corrections in the curvature perturbation and the diagonal and off-diagonal elements of CMB power spectrum are estimated.

  5. Dynamic postural stability during advancing pregnancy.

    PubMed

    McCrory, J L; Chambers, A J; Daftary, A; Redfern, M S

    2010-08-26

    Pregnant women are at an increased risk of experiencing a fall. Numerous anatomical, physiological, and hormonal alterations occur during pregnancy, but the influence of these factors on dynamic postural stability has not been explored. The purpose of this study was to examine dynamic postural stability in pregnant women during their second and third trimesters as well as in a group of non-pregnant control women. Eighty-one women (41 pregnant, 40 controls) participated stood on a force plate that translated anteroposteriorly at small, medium, and large magnitudes. Reaction time and center of pressure (COP) movement during the translations were analyzed. Trimester, perturbation direction, and perturbation magnitude were the independent variables in a mixed-model analysis of variance on each of the following dependent variables: reaction time, initial sway, total sway, and sway velocity. Reaction time to the perturbation was not significantly different between the groups. Initial sway, total sway, and sway velocity were significantly less during the third trimester than during the second trimester and when compared to the non-pregnant controls (P<0.05). No differences were found in any of the measures between the pregnant women in their second trimesters and the control group. Alterations in sway responses to perturbations are seen in the third trimester in healthy women with uncomplicated pregnancies. Further study is needed to examine the biomechanical and physiological reasons behind this altered dynamic postural stability. 2010 Elsevier Ltd. All rights reserved.

  6. On the Treatment of l-changing Proton-hydrogen Rydberg Atom Collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel; Onofrio, Roberto; Sadeghpour, Hossein

    2018-01-01

    Energy-conserving, angular momentum-changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of the primordial recombination cascade, and the elemental abundance.Early approaches to l-changing collisions used perturbation theory for only dipole-allowed (Δl = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at computational cost for highly excited Rydberg states. In this note we show how to obtain a semi-classical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  7. Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation.

    PubMed

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2017-08-24

    For the tipping elements in the Earth's climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents L´evy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.

  8. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaime, E-mail: jaime.haro@upc.edu

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce providedmore » by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.« less

  9. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  10. Phase-relationships between scales in the perturbed turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Jacobi, I.; McKeon, B. J.

    2017-12-01

    The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.

  11. The long-period librations of large synchronous icy moons

    NASA Astrophysics Data System (ADS)

    Yseboodt, Marie; Van Hoolst, Tim

    2014-11-01

    A moon in synchronous rotation has longitudinal librations because of its non-spherical mass distribution and its elliptical orbit around the planet. We study the long-period librations of the Galilean satellites and Titan and include deformation effects and the existence of a subsurface ocean. We take into account the fact that the orbit is not keplerian and has other periodicities than the main period of orbital motion around Jupiter or Saturn due to perturbations by the Sun, other planets and moons. An orbital theory is used to compute the orbital perturbations due to these other bodies. For Titan we also take into account the large atmospheric torque at the semi-annual period of Saturn around the Sun.We numerically evaluate the amplitude and phase of the long-period librations for many interior structure models of the icy moons constrained by the mass, radius and gravity field.

  12. Robust permanence for ecological equations with internal and external feedbacks.

    PubMed

    Patel, Swati; Schreiber, Sebastian J

    2018-07-01

    Species experience both internal feedbacks with endogenous factors such as trait evolution and external feedbacks with exogenous factors such as weather. These feedbacks can play an important role in determining whether populations persist or communities of species coexist. To provide a general mathematical framework for studying these effects, we develop a theorem for coexistence for ecological models accounting for internal and external feedbacks. Specifically, we use average Lyapunov functions and Morse decompositions to develop sufficient and necessary conditions for robust permanence, a form of coexistence robust to large perturbations of the population densities and small structural perturbations of the models. We illustrate how our results can be applied to verify permanence in non-autonomous models, structured population models, including those with frequency-dependent feedbacks, and models of eco-evolutionary dynamics. In these applications, we discuss how our results relate to previous results for models with particular types of feedbacks.

  13. Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach.

    PubMed

    Lee, Wen-Chung

    2014-02-05

    The randomized controlled study is the gold-standard research method in biomedicine. In contrast, the validity of a (nonrandomized) observational study is often questioned because of unknown/unmeasured factors, which may have confounding and/or effect-modifying potential. In this paper, the author proposes a perturbation test to detect the bias of unmeasured factors and a perturbation adjustment to correct for such bias. The proposed method circumvents the problem of measuring unknowns by collecting the perturbations of unmeasured factors instead. Specifically, a perturbation is a variable that is readily available (or can be measured easily) and is potentially associated, though perhaps only very weakly, with unmeasured factors. The author conducted extensive computer simulations to provide a proof of concept. Computer simulations show that, as the number of perturbation variables increases from data mining, the power of the perturbation test increased progressively, up to nearly 100%. In addition, after the perturbation adjustment, the bias decreased progressively, down to nearly 0%. The data-mining perturbation analysis described here is recommended for use in detecting and correcting the bias of unmeasured factors in observational studies.

  14. Studying the Perturbed Wess-Zumino-Novikov-Witten SU(2) k Theory Using the Truncated Conformal Spectrum Approach

    DOE PAGES

    Konik, R. M.; Palmai, T.; Takacs, G.; ...

    2015-08-24

    We study the SU(2) k Wess-Zumino-Novikov-Witten (WZNW) theory perturbed by the trace of the primary field in the adjoint representation, a theory governing the low-energy behaviour of a class of strongly correlated electronic systems. While the model is non-integrable, its dynamics can be investigated using the numerical technique of the truncated conformal spectrum approach combined with numerical and analytical renormalization groups (TCSA+RG). The numerical results so obtained provide support for a semiclassical analysis valid at k » 1. Namely, we find that the low energy behavior is sensitive to the sign of the coupling constant, λ. Moreover for λ >more » 0 this behavior depends on whether k is even or odd. With k even, we find definitive evidence that the model at low energies is equivalent to the massive O(3) sigma model. For k odd, the numerical evidence is more equivocal, but we find indications that the low energy effective theory is critical.« less

  15. Quantiative reliability of the Migdal-Eliashberg theory for strong coupling superconductors

    NASA Astrophysics Data System (ADS)

    Bauer, Johannes; Han, Jong; Gunnarsson, Olle

    2012-02-01

    The Migdal-Eliashberg (ME) theory for strong electron-phonon coupling and retardation effects of the Morel-Anderson type form the basis for the quantitative understanding of conventional superconductors. The validity of the ME theory for values of the electron-phonon coupling strength λ>1 has been questioned by model studies. By distinguishing bare and effective parameters, and by comparing the ME theory with the dynamical mean field theory (DMFT), we clarify the range of applicability of the ME theory. Specifically, we show that ME theory is very accurate as long as the product of effective parameters, λφph/D, where φph is an appropriate phonon scale and D an electronic scale, is small enough [1]. The effectiveness of retardation effects is usually considered based on the lowest order diagram in the perturbation theory. We analyze these effects to higher order and find modifications to the usual result for the Coulomb pseudo-potential &*circ;. Retardation effects are weakened due to a reduced effective bandwidth. Comparison with the non-perturbative DMFT corroborates our findings [2]. [4pt] [1] J Bauer, J E Han, and O Gunnarsson, Phys. Rev. B. 84, 184531 (2011).[0pt] [2] J Bauer, J E Han, and O Gunnarsson, in preparation (2011).

  16. Probing the cosmological initial conditions using the CMB

    NASA Astrophysics Data System (ADS)

    Yadav, Amit P. S.

    In the last few decades, advances in observational cosmology have given us a standard model of cosmology. The basic cosmological parameters have been laid out to high precision. Cosmologists have started asking questions about the nature of the cosmological initial conditions. Many ambitious experiments such as Planck satellite, EBEX, ACT, CAPMAP, QUaD, BICEP, SPIDER, QUIET, and GEM are underway. Experiments like these will provide us with a wealth of information about CMB polarization, CMB lensing, and polarization foregrounds. These experiments will be complemented with great observational campaigns to map the 3D structure in the Universe and new particle physics constraints from the Large Hadron Collider. In my graduate work I have made explicit how observations of the CMB temperature and E-polarization anisotropies can be combined to provide optimal constraints on models of the early universe at the highest energies. I have developed new ways of constraining models of the early universe using CMB temperature and polarization data. Inflation is one of the most promising theories of the early universe. Different inflationary models predict different amounts of non-Gaussian perturbations. Although any non-Gaussianity predicted by the canonical inflation model is very small, there exist models which can generate significant amounts of non-Gaussianities. Hence any characterization of non-Gaussianity of the primordial perturbations constrains the models of inflation. The information in the bispectrum (or higher order moments) is completely independent of the power spectrum constraints on the amplitude of primordial power spectrum (A), the scalar spectral index of the primordial power spectrum ns, and the running of the primordial power spectrum. My work has made it possible to extract the bispectrum information from large, high resolution CMB temperature and polarization data. We have demonstrated that the primordial adiabatic perturbations can be reconstructed using CMB temperature and E-polarization information (Yadav and Wandelt 2005). One of the main motivations of reconstructing the primordial perturbations is to study the primordial non-Gaussianities. Since the amplitude of primordial non-Gaussianity is very small, any enhancement in sensitivity to the primordial features is useful because it improves the characterization of the primordial non-Gaussianity. Our reconstruction allows us to be more sensitive to the primordial features, whereas most of the current probes of non-Gaussianity do not specifically select for them. We have also developed a fast cubic (bispectrum) estimator of non-Gaussianity f NL of local type, using combined temperature and E-polarization data (Yadavet al. 2007). The estimator is computationally efficient, scaling as O( N 3/2 ) compared to the O( N 5/2 ) scaling of the brute force bispectrum calculation for sky maps with N pixels. For the Planck satellite, this translates into a speed-up by factors of millions, reducing the required computing time from thousands of years to just hours and thus making f NL estimation feasible. The speed of our estimator allows us to study its statistical properties using Monte Carlo simulations. Our estimator in its original form was optimal for homogeneous noise. In order to apply our estimator to realistic data, the estimator needed to be able to deal with inhomogeneous noise. We have generalized the fast polarized estimator to deal with inhomogeneous noise. The generalized estimator is also computationally efficient, scaling as O( N 3/2 ). Furthermore, we have studied and characterized our estimators in the presence of realistic noise, finite resolution, incomplete sky-coverage, and using non-Gaussian CMB maps (Yadavet al. 2008a). We have also developed a numerical code to generate CMB temperature and polarization non-Gaussian maps starting from a given primordial non-Gaussianity (f NL ) (Liguori et al. 2007). In the process of non-Gaussian CMB map making, the code also generates corresponding non-Gaussian primordial curvature perturbations. We use these curvature perturbations to quantify the quality of the tomographic reconstruction method described in (Yadav and Wandelt 2005). We check whether the tomographic reconstruction method preserves the non-Gaussian features, especially the phase information, in the reconstructed curvature perturbations (Yadav et al. in preparation). Finally, using our estimator we found (Yadav and Wandelt 2008) evidence for primordial non-Gaussianity of the local type (f NL ) in the temperature anisotropy of the Cosmic Microwave Background. Analyzing the bispectrum of the WMAP 3-year data up to l max =750 we find 27< f NL <147 (95% CL). This amounts to a rejection of f NL =0 at 2.8s, disfavoring canonical single field slow-roll inflation. The signal is robust to variations in l max , frequency, and masks. No known foreground, instrument systematic, or secondary anisotropy explains it. We explore the impact of several analysis choices on the quoted significance and find 2.5s to be conservative.

  17. ER = EPR and non-perturbative action integrals for quantum gravity

    NASA Astrophysics Data System (ADS)

    Alsaleh, Salwa; Alasfar, Lina

    In this paper, we construct and calculate non-perturbative path integrals in a multiply-connected spacetime. This is done by summing over homotopy classes of paths. The topology of the spacetime is defined by Einstein-Rosen bridges (ERB) forming from the entanglement of quantum foam described by virtual black holes. As these “bubbles” are entangled, they are connected by Planckian ERBs because of the ER = EPR conjecture. Hence, the spacetime will possess a large first Betti number B1. For any compact 2-surface in the spacetime, the topology (in particular the homotopy) of that surface is non-trivial due to the large number of Planckian ERBs that define homotopy through this surface. The quantization of spacetime with this topology — along with the proper choice of the 2-surfaces — is conjectured to allow non-perturbative path integrals of quantum gravity theory over the spacetime manifold.

  18. A startling acoustic stimulus facilitates voluntary lower extremity movements and automatic postural responses in people with chronic stroke.

    PubMed

    Coppens, Milou J M; Roelofs, Jolanda M B; Donkers, Nicole A J; Nonnekes, Jorik; Geurts, Alexander C H; Weerdesteyn, Vivian

    2018-05-14

    A startling acoustic stimulus (SAS) involuntary releases prepared movements at accelerated latencies, known as the StartReact effect. Previous work has demonstrated intact StartReact in paretic upper extremity movements in people after stroke, suggesting preserved motor preparation. The question remains whether motor preparation of lower extremity movements is also unaffected after stroke. Here, we investigated StartReact effects on ballistic lower extremity movements and on automatic postural responses (APRs) following perturbations to standing balance. These APRs are particularly interesting as they are critical to prevent a fall following balance perturbations, but show substantial delays and poor muscle coordination after stroke. Twelve chronic stroke patients and 12 healthy controls performed voluntary ankle dorsiflexion movements in response to a visual stimulus, and responded to backward balance perturbations evoking APRs. Twenty-five percent of all trials contained a SAS (120 dB) simultaneously with the visual stimulus or balance perturbation. As expected, in the absence of a SAS muscle and movement onset latencies at the paretic side were delayed compared to the non-paretic leg and to controls. The SAS accelerated ankle dorsiflexion onsets in both the legs of the stroke subjects and in controls. Following perturbations, the SAS accelerated bilateral APR onsets not only in controls, but for the first time, we also demonstrated this effect in people after stroke. Moreover, APR inter- and intra-limb muscle coordination was rather weak in our stroke subjects, but substantially improved when the SAS was applied. These findings show preserved movement preparation, suggesting that there is residual (subcortical) capacity for motor recovery.

  19. (Magneto)caloric refrigeration: Is there light at the end of the tunnel?

    DOE PAGES

    Pecharsky, Vitalij K.; Cui, Jun; Johnson, Duane D.

    2016-07-11

    Here, caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by verymore » small perturbations of the driving field(s).« less

  20. (Magneto)caloric refrigeration: Is there light at the end of the tunnel?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecharsky, Vitalij K.; Cui, Jun; Johnson, Duane D.

    Here, caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by verymore » small perturbations of the driving field(s).« less

  1. Non-Lambertian effects on remote sensing of surface reflectance and vegetation index

    NASA Technical Reports Server (NTRS)

    Lee, T. Y.; Kaufman, Y. J.

    1986-01-01

    This paper discusses the effects of non-Lambertian reflection from a homogeneous surface on remote sensing of the surface reflectance and vegetation index from a satellite. Remote measurement of the surface characteristics is perturbed by atmospheric scattering of sun light. This scattering tends to smooth the angular dependence of non-Lambertian surface reflectances, an effect that is not present in the case of Lambertian surfaces. This effect is calculated to test the validity of a Lambertian assumption used in remote sensing. For the three types of vegetations considered in this study, the assumption of Lambertian surface can be used satisfactorily in the derivation of surface reflectance from remotely measured radiance for a view angle outside the backscattering region. Within the backscattering region, however, the use of the assumption can result in a considerable error in the derived surface reflectance. Accuracy also deteriorates with increasing solar zenith angle. The angular distribution of the surface reflectance derived from remote measurements is smoother than that at the surface. The effect of surface non-Lambertianity on remote sensing of vegetation index is very weak. Since the effect is similiar in the visible and near infrared part of the solar spectrum for the vegetations treated in this study, it is canceled in deriving the vegetation index. The effect of the diffuse skylight on surface reflectance measurements at ground level is also discussed.

  2. Effect of tape recording on perturbation measures.

    PubMed

    Jiang, J; Lin, E; Hanson, D G

    1998-10-01

    Tape recorders have been shown to affect measures of voice perturbation. Few studies, however, have been conducted to quantitatively justify the use or exclusion of certain types of recorders in voice perturbation studies. This study used sinusoidal and triangular waves and synthesized vowels to compare perturbation measures extracted from directly digitized signals with those recorded and played back through various tape recorders, including 3 models of digital audio tape recorders, 2 models of analog audio cassette tape recorders, and 2 models of video tape recorders. Signal contamination for frequency perturbation values was found to be consistently minimal with digital recorders (percent jitter = 0.01%-0.02%), mildly increased with video recorders (0.05%-0.10%), moderately increased with a high-quality analog audio cassette tape recorder (0.15%), and most prominent with a low-quality analog audio cassette tape recorder (0.24%). Recorder effect on amplitude perturbation measures was lowest in digital recorders (percent shimmer = 0.09%-0.20%), mildly to moderately increased in video recorders and a high-quality analog audio cassette tape recorder (0.25%-0.45%), and most prominent in a low-quality analog audio cassette tape recorder (0.98%). The effect of cassette tape material, length of spooled tape, and duration of analysis were also tested and are discussed.

  3. Non-Gaussian statistics of soliton timing jitter induced by amplifier noise.

    PubMed

    Ho, Keang-Po

    2003-11-15

    Based on first-order perturbation theory of the soliton, the Gordon-Haus timing jitter induced by amplifier noise is found to be non-Gaussian distributed. Both frequency and timing jitter have larger tail probabilities than Gaussian distribution given by the linearized perturbation theory. The timing jitter has a larger discrepancy from Gaussian distribution than does the frequency jitter.

  4. A hybrid model for computing nonthermal ion distributions in a long mean-free-path plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; McDevitt, Chris; Guo, Zehua; Berk, Herb

    2014-10-01

    Non-thermal ions, especially the suprathermal ones, are known to make a dominant contribution to a number of important physics such as the fusion reactivity in controlled fusion, the ion heat flux, and in the case of a tokamak, the ion bootstrap current. Evaluating the deviation from a local Maxwellian distribution of these non-thermal ions can be a challenging task in the context of a global plasma fluid model that evolves the plasma density, flow, and temperature. Here we describe a hybrid model for coupling such constrained kinetic calculation to global plasma fluid models. The key ingredient is a non-perturbative treatment of the tail ions where the ion Knudsen number approaches or surpasses order unity. This can be sharply constrasted with the standard Chapman-Enskog approach which relies on a perturbative treatment that is frequently invalidated. The accuracy of our coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space. Although our specific application examples will be drawn from laboratory controlled fusion experiments, the general approach is applicable to space and astrophysical plasmas as well. Work supported by DOE.

  5. A Non-Perturbative Treatment of Quantum Impurity Problems in Real Lattices

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew C.

    Historically, the RKKY or indirect exchange, interaction has been accepted as being able to be described by second order perturbation theory. A typical universal expression is usually given in this context. This approach, however, fails to incorporate many body effects, quantum fluctuations, and other important details. In Chapter 2, a novel numerical approach is developed to tackle these problems in a quasi-exact, non-perturbative manner. Behind the method lies the main concept of being able to exactly map an n-dimensional lattice problem onto a 1-dimensional chain. The density matrix renormalization group algorithm is then employed to solve the newly cast Hamiltonian. In the following chapters, it is demonstrated that conventional RKKY theory does not capture the crucial physics. It is found that the Kondo effect, i.e. the screening of an impurity spin, tends to dominate over a ferromagnetic interaction between impurity spins. Furthermore, it is found that the indirect exchange interaction does not decay algebraically. Instead, there is a crossover upon increasing JK, where impurities favor forming their own independent Kondo states after just a few lattice spacings. This is not a trivial result, as one may naively expect impurities to interact when their conventional Kondo clouds overlap. The spin structure around impurities coupled to the edge of a 2D topological insulator is investigated in Chapter 7. Modeled after materials such as silicine, germanene, and stanene, it is shown with spatial resolution of the lattice that the specific impurity placement plays a key role. Effects of spin-orbit interactions are also discussed. Finally, in the last chapter, transition metal complexes are studied. This really shows the power and versatility of the method developed throughout the work. The spin states of an iron atom in the molecule FeN4C 10 are calculated and compared to DFT, showing the importance of inter-orbital coulomb interactions. Using dynamical DMRG, the density of states for the 3d-orbitals can also be obtained.

  6. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy.

    PubMed

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K

    2014-01-01

    Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Injured subjects demonstrated greater extreme step length changes after medial perturbation than non-injured subjects (percent change = 18.5 ± 9.2 vs. 11.3 ± 4.57; p = .01). The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter which distinguishes between subjects sustaining a fall-related injury and those who did not. © 2014.

  7. The spectrum of density perturbations in an expanding universe

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  8. Comprehensive analysis of the simplest curvaton model

    NASA Astrophysics Data System (ADS)

    Byrnes, Christian T.; Cortês, Marina; Liddle, Andrew R.

    2014-07-01

    We carry out a comprehensive analysis of the simplest curvaton model, which is based on two noninteracting massive fields. Our analysis encompasses cases where the inflaton and curvaton both contribute to observable perturbations, and where the curvaton itself drives a second period of inflation. We consider both power spectrum and non-Gaussianity observables, and focus on presenting constraints in model parameter space. The fully curvaton-dominated regime is in some tension with observational data, while an admixture of inflaton-generated perturbations improves the fit. The inflating curvaton regime mimics the predictions of Nflation. Some parts of parameter space permitted by power spectrum data are excluded by non-Gaussianity constraints. The recent BICEP2 results [P. A. R. Ade et al. (BICEP2 Collaboration), Phys. Rev. Lett. 112, 241101 (2014)], if confirmed as of predominantly primordial origin, require that the inflaton perturbations provide a significant fraction of the total perturbation, ruling out the usual curvaton scenario in which the inflaton perturbations are negligible, though not the admixture regime where both inflaton and curvaton contribute to the spectrum.

  9. Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial.

    PubMed

    Mansfield, Avril; Aqui, Anthony; Centen, Andrew; Danells, Cynthia J; DePaul, Vincent G; Knorr, Svetlana; Schinkel-Ivy, Alison; Brooks, Dina; Inness, Elizabeth L; McIlroy, William E; Mochizuki, George

    2015-06-06

    Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve reactive balance control by repeatedly exposing participants to postural perturbations. There is emerging evidence that perturbation training reduces fall rates among individuals with neurological conditions, such as Parkinson disease. The primary aim of this work is to determine if perturbation-based balance training can reduce occurrence of falls in daily life among individuals with chronic stroke. Secondary objectives are to determine the effect of perturbation training on balance confidence and activity restriction, and functional balance and mobility. Individuals with chronic stroke will be recruited. Participants will be randomly assigned to one of two groups: 1) perturbation training, or 2) 'traditional' balance training. Perturbation training will involve both manual perturbations (e.g., a push or pull from a physiotherapist), and rapid voluntary movements to cause a loss of balance. Training will occur twice per week for 6 weeks. Participants will record falls and activity for 12 months following completion of the training program. Standardized clinical tools will be used to assess functional balance and mobility, and balance confidence before and after training. Falls are a significant problem for those with stroke. Despite the large body of work demonstrating effective interventions, such as exercise, for preventing falls in other populations, there is little evidence for interventions that prevent falls post-stroke. The proposed study will investigate a novel and promising intervention: perturbation training. If effective, this training has the potential to not only prevent falls, but to also improve safe independent mobility and engagement in daily activities for those with stroke. Current Controlled Trials: ISRCTN05434601 .

  10. Cosmology with a light ghost

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail M.; Tokareva, Anna A.

    2016-12-01

    We study the creation and evolution of cosmological perturbations in renormalizable quadratic gravity with a Weyl term. We adopt a prescription that implies the stability of the vacuum at the price of introducing a massive spin-two ghost state, leading to the loss of unitarity. The theory may still be predictive regardless the interpretation of non-unitary processes provided that their rate is negligible compared to the Universe expansion rate. This implies that the ghost is effectively stable. In such a setup, there are two scalar degrees of freedom excited during inflation. The first one is the usual curvature perturbation whose power spectrum appears to coincide with that of single-field inflation. The second one is a scalar component of the ghost encoded in the shift vector of the metric in the uniform inflaton gauge. The amplitudes of primordial tensor and vector perturbations are strongly suppressed. After inflation the ghost field starts to oscillate and its energy density shortly becomes dominant in the Universe. For all ghost masses allowed by laboratory constraints ghosts should have ``overclosed'' the Universe at temperatures higher than that of primordial nucleosynthesis. Thus, the model with the light Weyl ghost is ruled out.

  11. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  12. Into rude air: hummingbird flight performance in variable aerial environments

    PubMed Central

    Ortega-Jimenez, V. M.; Badger, M.; Wang, H.; Dudley, R.

    2016-01-01

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528777

  13. Cosmology with a light ghost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Mikhail M.; Tokareva, Anna A., E-mail: mikhail.ivanov@cern.ch, E-mail: anna.tokareva@epfl.ch

    2016-12-01

    We study the creation and evolution of cosmological perturbations in renormalizable quadratic gravity with a Weyl term. We adopt a prescription that implies the stability of the vacuum at the price of introducing a massive spin-two ghost state, leading to the loss of unitarity. The theory may still be predictive regardless the interpretation of non-unitary processes provided that their rate is negligible compared to the Universe expansion rate. This implies that the ghost is effectively stable. In such a setup, there are two scalar degrees of freedom excited during inflation. The first one is the usual curvature perturbation whose powermore » spectrum appears to coincide with that of single-field inflation. The second one is a scalar component of the ghost encoded in the shift vector of the metric in the uniform inflaton gauge. The amplitudes of primordial tensor and vector perturbations are strongly suppressed. After inflation the ghost field starts to oscillate and its energy density shortly becomes dominant in the Universe. For all ghost masses allowed by laboratory constraints ghosts should have ''overclosed'' the Universe at temperatures higher than that of primordial nucleosynthesis. Thus, the model with the light Weyl ghost is ruled out.« less

  14. A New Model of the Mean Albedo of the Earth: Estimation and Validation from the GRACE Mission and SLR Satellites.

    NASA Astrophysics Data System (ADS)

    Deleflie, F.; Sammuneh, M. A.; Coulot, D.; Pollet, A.; Biancale, R.; Marty, J. C.

    2017-12-01

    This talk provides new results of a study that we began last year, and that was the subject of a poster by the same authors presented during AGU FM 2016, entitled « Mean Effect of the Albedo of the Earth on Artificial Satellite Trajectories: an Update Over 2000-2015. »The emissivity of the Earth, split into a part in the visible domain (albedo) and the infrared domain (thermic emissivity), is at the origin of non gravitational perturbations on artificial satellite trajectories. The amplitudes and periods of these perturbations can be investigated if precise orbits can be carried out, and reveal some characteristics of the space environment where the satellite is orbiting. Analyzing the perturbations is, hence, a way to characterize how the energy from the Sun is re-emitted by the Earth. When led over a long period of time, such an approach enables to quantify the variations of the global radiation budget of the Earth.Additionally to the preliminary results presented last year, we draw an assessment of the validity of the mean model based on the orbits of the GRACE missions, and, to a certain extent, of some of the SLR satellite orbits. The accelerometric data of the GRACE satellites are used to evaluate the accuracy of the models accounting for non gravitational forces, and the ones induced by the albedo and the thermic emissivity in particular. Three data sets are used to investigate the mean effects on the orbit perturbations: Stephens tables (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts) data sets and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available). From the trajectography point of view, based on post-fit residual analysis, we analyze what is the data set leading to the lowest residual level, to define which data set appears to be the most suitable one to derive a new « mean albedo model » from accelerometric data sets of the GRACE mission. The period of investigation covers the full GRACE period, and especially the first years.

  15. A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.

    We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. In order to describe it over a wide region of qT, soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be appliedmore » in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. As a result, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.« less

  16. A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes

    NASA Astrophysics Data System (ADS)

    Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.; Prokudin, A.

    2015-02-01

    We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q T . In order to describe it over a wide region of q T , soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. Moreover, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.

  17. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    PubMed

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Stark effect on an excited hydrogen atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barratt, C.

    1983-07-01

    The method of degenerate perturbation theory is used to study the dipolar nature of an excited hydrogen atom in an external electric field. The dependence of the atoms perturbed energy levels on the principal and magnetic quantum numbers, n and m, is investigated, along with the perturbed wave functions.

  19. Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription

    NASA Astrophysics Data System (ADS)

    d'Onofrio, Alberto; Caravagna, Giulio; de Franciscis, Sebastiano

    2018-02-01

    In this work we consider, from a statistical mechanics point of view, the effects of bounded stochastic perturbations of the protein decay rate for a bistable biomolecular network module. Namely, we consider the perturbations of the protein decay/binding rate constant (DBRC) in a circuit modeling the positive feedback of a transcription factor (TF) on its own synthesis. The DBRC models both the spontaneous degradation of the TF and its linking to other unknown biomolecular factors or drugs. We show that bounded perturbations of the DBRC preserve the positivity of the parameter value (and also its limited variation), and induce effects of interest. First, the noise amplitude induces a first-order phase transition. This is of interest since the system in study has neither spatial components nor it is composed by multiple interacting networks. In particular, we observe that the system passes from two to a unique stochastic attractor, and vice-versa. This behavior is different from noise-induced transitions (also termed phenomenological bifurcations), where a unique stochastic attractor changes its shape depending on the values of a parameter. Moreover, we observe irreversible jumps as a consequence of the above-mentioned phase transition. We show that the illustrated mechanism holds for general models with the same deterministic hysteresis bifurcation structure. Finally, we illustrate the possible implications of our findings to the intracellular pharmacodynamics of drugs delivered in continuous infusion.

  20. Patient observers and non-perturbative infrared dynamics in inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S.

    2018-02-01

    We have previously derived the effect of soft graviton modes on the quantum state of de Sitter using spontaneously broken asymptotic symmetries. In the present paper we prove that this effect can be reinterpreted in terms of Bogoliubov transformations acting on the quantum state. This also enables us to address the much discussed issues regarding the observability of infrared effects in de Sitter from a new perspective. While it is commonly agreed that infrared effects are not visible to a single sub-horizon observer at late times, we argue that the question is less trivial for a patient observer who has lived long enough to have a record of the state before the soft mode was created. Though classically there is no obstruction to measuring this effect locally, we give several indications that quantum mechanical uncertainties may censor the effect. We then apply our methods to find a non-perturbative description of the quantum state pertaining to the Page time of de Sitter, and derive with these new methods the probability distribution for the local quantum states of de Sitter and slow-roll inflation in the presence of long modes. Finally, we show that this formalism reproduces and generalizes the usual criterion for the presence of eternal inflation in general classes of slow-roll inflation.

  1. Influence of non-spatial working memory demands on reach-grasp responses to loss of balance: Effects of age and fall risk.

    PubMed

    Westlake, Kelly P; Johnson, Brian P; Creath, Robert A; Neff, Rachel M; Rogers, Mark W

    2016-03-01

    Reactive balance recovery strategies following an unexpected loss of balance are crucial to the prevention of falls, head trauma and other major injuries in older adults. While a longstanding focus has been on understanding lower limb recovery responses, the upper limbs also play a critical role. However, when a fall occurs, little is known about the role of memory and attention shifting on the reach to grasp recovery strategy and what factors determine the speed and precision of this response beyond simple reaction time. The objective of this study was to compare response time and accuracy of a stabilizing grasp following a balance perturbation in older adult fallers compared to non-fallers and younger adults while loading the processing demands of non-spatial, verbal working memory. Working memory was engaged with a progressively challenging verb-generation task that was interrupted by an unexpected sideways platform perturbation and a pre-instructed reach to grasp response. Results revealed that the older adults, particularly those at high fall risk, demonstrated significantly increased movement time to handrail contact and grasping errors during conditions in which non-spatial memory was actively engaged. These findings provide preliminary evidence of the cognitive deficit in attention shifting away from an ongoing working memory task that underlies delayed and inaccurate protective reach to grasp responses in older adult fallers. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Redshift and lateshift from homogeneous and isotropic modified dispersion relations

    NASA Astrophysics Data System (ADS)

    Pfeifer, Christian

    2018-05-01

    Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.

  3. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  4. Statistical variation in progressive scrambling

    NASA Astrophysics Data System (ADS)

    Clark, Robert D.; Fox, Peter C.

    2004-07-01

    The two methods most often used to evaluate the robustness and predictivity of partial least squares (PLS) models are cross-validation and response randomization. Both methods may be overly optimistic for data sets that contain redundant observations, however. The kinds of perturbation analysis widely used for evaluating model stability in the context of ordinary least squares regression are only applicable when the descriptors are independent of each other and errors are independent and normally distributed; neither assumption holds for QSAR in general and for PLS in particular. Progressive scrambling is a novel, non-parametric approach to perturbing models in the response space in a way that does not disturb the underlying covariance structure of the data. Here, we introduce adjustments for two of the characteristic values produced by a progressive scrambling analysis - the deprecated predictivity (Q_s^{ast^2}) and standard error of prediction (SDEP s * ) - that correct for the effect of introduced perturbation. We also explore the statistical behavior of the adjusted values (Q_0^{ast^2} and SDEP 0 * ) and the sensitivity to perturbation (d q 2/d r yy ' 2). It is shown that the three statistics are all robust for stable PLS models, in terms of the stochastic component of their determination and of their variation due to sampling effects involved in training set selection.

  5. Tidal Effects on the Oort Cloud Comets and Dynamics of the Sun in the Spiral Arms of the Galaxy

    NASA Astrophysics Data System (ADS)

    De Biasi, Alice

    2014-01-01

    The Solar System presents a complex dynamical structure and is not isolated from the Galaxy. In particular the comet reservoir of our planetary system, the Oort cloud, is extremely sensitive to the the galactic environment due to its peripheral collocation inside the Solar System. In this framework, the growing evidences about a possible migration of the Sun open new research scenarios relative to the effects that such kind of migration might induce on the cometary motion. Following several previous studied, we identified the spiral arm structure as the main perturbation that is able to produce an efficient solar migration through the disk. Widening the classical model for the spiral arms, provided by Lin& Shu to a 3D formalism, we verified the compatibility between the presence of the spiral perturbation and a significant solar motion for an inner Galactic position to the current one, in agreement with the constrains in position, velocity and metallicity due to the present conditions of our star. The main perturbers of the Oort cloud, the close stellar passages and the tidal field of the Galaxy, might be both affected by the variation of Galactic environment that the solar migration entails. Despite that, in order to isolate the effects to the two different perturbators, we decided to focus our attention only on the Galactic tide. The perturbation due to the spiral structure was included in the study on the cometary motion, introducing the solar migration and adding the direct presence of the non-axisymmetric component in the Galactic potential of the tidal field. The results show a significant influence of the spiral arm in particular on cometary objects belonged to the outer shell of the Oort cloud, for which provides an injection rate three times bigger than the integration performed without the spiral arms. The introduction of the spiral perturbation seems to bolster the planar component of the tide, indeed it produces the most significant variation of the perihelion distance for moderate inclination orbits with respect to the plane. The peak for the cometary injections has been registered between 6 and 7 kpc. If this evidence will be confirmed by more realistic cometary sample, it might involve a redefinition of the habitability edges in the Galaxy (GHZ). In particular regions not precluded to the formation of life, may compromise the development of the life with a high cometary impact risk

  6. Nonplanar KdV and KP equations for quantum electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit

    2015-12-01

    Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.

  7. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  8. Dirac equation on a curved surface

    NASA Astrophysics Data System (ADS)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2016-09-01

    The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein-Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles.

  9. Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo'o, Nora; Bellan, Josette

    2008-01-01

    A computational-simulation study has been presented of effects of perturbation wavelengths and initial Reynolds numbers on the transition to turbulence of a heptane/nitrogen mixing layer at supercritical pressure. The governing equations for the simulations were the same as those of related prior studies reported in NASA Tech Briefs. Two-dimensional (2D) simulations were performed with initially im posed span wise perturbations whereas three-dimensional (3D) simulations had both streamwise and spanwise initial perturbations. The 2D simulations were undertaken to ascertain whether perturbations having the shortest unstable wavelength obtained from a linear stability analysis for inviscid flow are unstable in viscous nonlinear flows. The goal of the 3D simulations was to ascertain whether perturbing the mixing layer at different wavelengths affects the transition to turbulence. It was found that transitions to turbulence can be obtained at different perturbation wavelengths, provided that they are longer than the shortest unstable wavelength as determined by 2D linear stability analysis for the inviscid case and that the initial Reynolds number is proportionally increased as the wavelength is decreased. The transitional states thus obtained display different dynamic and mixture characteristics, departing strongly from the behaviors of perfect gases and ideal mixtures.

  10. On the treatment of ℓ-changing proton-hydrogen Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R.

    2017-11-01

    Energy-conserving, angular momentum changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of atomic recombination at the photon decoupling era and the elemental abundance after primordial nucleosynthesis. Early approaches to ℓ-changing collisions used perturbation theory only for dipole-allowed (Δℓ = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at a computational cost for highly excited Rydberg states. In this paper, we show how to obtain a semiclassical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  11. The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D

    DOE PAGES

    Frerichs, H.; Schmitz, Oliver; Evans, Todd; ...

    2015-07-13

    High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e. where the safety factor is equal to rational values q = m/n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are alignedmore » with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. Lastly, an additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.« less

  12. Non-Perturbative Renormalization of the Lattice Heavy Quark Classical Velocity

    NASA Astrophysics Data System (ADS)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1997-02-01

    We discuss the renormalization of the lattice formulation of the Heavy Quark Effective Theory (LHQET). In addition to wave function and composite operator renormalizations, on the lattice the classical velocity is also renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. We present results of a new, direct lattice simulation of this finite renormalization, and compare the results to the perturbative (one loop) result. The simulation results are obtained with the use of a variationally optimized heavy-light meson operator, using an ensemble of lattices provided by the Fermilab ACP-MAPS collaboration.

  13. Renormalization of the Lattice Heavy Quark Classical Velocity

    NASA Astrophysics Data System (ADS)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1996-03-01

    In the lattice formulation of the Heavy Quark Effective Theory (LHQET), the "classical velocity" v becomes renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. The renormalization is finite and depends on the form of the decretization of the reduced heavy quark Dirac equation. For the Forward Time — Centered Space discretization, the renormalization is computed both perturbatively, to one loop, and non-perturbatively using two ensembles of lattices, one at β = 5.7 and the other at β = 6.1 The estimates agree, and indicate that for small classical velocities, ν→ is reduced by about 25-30%.

  14. Multidimensional stability of traveling fronts in combustion and non-KPP monostable equations

    NASA Astrophysics Data System (ADS)

    Bu, Zhen-Hui; Wang, Zhi-Cheng

    2018-02-01

    This paper is concerned with the multidimensional stability of traveling fronts for the combustion and non-KPP monostable equations. Our study contains two parts: in the first part, we first show that the two-dimensional V-shaped traveling fronts are asymptotically stable in R^{n+2} with n≥1 under any (possibly large) initial perturbations that decay at space infinity, and then, we prove that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which implies that even very small perturbations to the V-shaped traveling front can lead to permanent oscillation. In the second part, we establish the multidimensional stability of planar traveling front in R^{n+1} with n≥1.

  15. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    PubMed

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  16. Sub-structure formation in starless cores

    NASA Astrophysics Data System (ADS)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  17. Constraining compensated isocurvature perturbations using the CMB

    NASA Astrophysics Data System (ADS)

    Smith, Tristan L.; Rhiannon Smith, Kyle Yee, Julian Munoz, Daniel Grin

    2017-01-01

    Compensated isocurvature perturbations (CIPs) are variations in the cosmic baryon fraction which leave the total non-relativistic matter (and radiation) density unchanged. They are predicted by models of inflation which involve more than one scalar field, such as the curvaton scenario. At linear order, they leave the CMB two-point correlation function nearly unchanged: this is why existing constraints to CIPs are so much more permissive than constraints to typical isocurvature perturbations. Recent work articulated an efficient way to calculate the second order CIP effects on the CMB two-point correlation. We have implemented this method in order to explore constraints to the CIP amplitude using current Planck temperature and polarization data. In addition, we have computed the contribution of CIPs to the CMB lensing estimator which provides us with a novel method to use CMB data to place constraints on CIPs. We find that Planck data places a constraint to the CIP amplitude which is competitive with other methods.

  18. Subsonic Dynamic Stability Tests of a Sample Return Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael; Johnson, R. Keith

    2006-01-01

    An investigation has been conducted in the NASA Langley 20-Foot Vertical Spin Tunnel (VST) to determine the subsonic dynamic stability characteristics of a proposed atmospheric entry vehicle for sample return missions. In particular, the effects of changes in aft-body geometry on stability were examined. Freeflying tests of a dynamically scaled model with various geometric features were conducted, including cases in which the model was perturbed to measure dynamic response. Both perturbed and non-perturbed runs were recorded as motion time histories using the VST optical data acquisition system and reduced for post-test analysis. In addition, preliminary results from a static force and moment test of a similar model in the Langley 12-Foot Low Speed Tunnel are presented. Results indicate that the configuration is dynamically stable for the baseline geometry, but exhibits degraded dynamic behavior for the geometry modifications tested.

  19. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  20. Non-rigid precession of magnetic stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.; Jones, D. I.

    2017-06-01

    Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.

  1. Improving GOCE cross-track gravity gradients

    NASA Astrophysics Data System (ADS)

    Siemes, Christian

    2018-01-01

    The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauza, Oriol Salto

    This Ph.D. thesis presents the measurement of inclusive jet cross sections in Z/γ*→ e +e - events using 1.7 fb -1 of data collected by the upgraded CDF detector during the Run II of the Tevatron. The Midpoint cone algorithm is used to search for jets in the events after identifying the presence of a Z/γ* boson through the reconstruction of its decay products. The measurements are compared to next-to-LO (NLO) pQCD predictions for events with one and two jets in the final state. The perturbative predictions are corrected for the contributions of non-perturbative processes, like the underlying event andmore » the fragmentation of the partons into jets of hadrons. These processes are not described by perturbation theory and must be estimated from phenomenological models. In this thesis, a number of measurements are performed to test different models of underlying event and hadronization implemented in LO plus parton shower Monte Carlo generator programs. Chapter 2 is devoted to the description of the theory of strong interactions and jet phenomenology at hadron colliders. Chapter 3 contains the description of the Tevatron collider and the CDF detector. The analysis is described in detail in Chapter 4. Chapter 5 shows the measurement of those observables sensitive to non-perturbative effects compared to the predictions from several Monte Carlo programs. Chapter 6 discusses the final results and the comparison with theoretical expectations. Finally, Chapter 7 is devoted to the conclusions.« less

  3. Bias in the effective field theory of large scale structures

    DOE PAGES

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local inmore » space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/k NL and k/k M, where k is the wavenumber of interest, k NL is the wavenumber associated to the non-linear scale, and k M is the comoving wavenumber enclosing the mass of a galaxy.« less

  4. Eigenpairs of Toeplitz and Disordered Toeplitz Matrices with a Fisher-Hartwig Symbol

    NASA Astrophysics Data System (ADS)

    Movassagh, Ramis; Kadanoff, Leo P.

    2017-05-01

    Toeplitz matrices have entries that are constant along diagonals. They model directed transport, are at the heart of correlation function calculations of the two-dimensional Ising model, and have applications in quantum information science. We derive their eigenvalues and eigenvectors when the symbol is singular Fisher-Hartwig. We then add diagonal disorder and study the resulting eigenpairs. We find that there is a "bulk" behavior that is well captured by second order perturbation theory of non-Hermitian matrices. The non-perturbative behavior is classified into two classes: Runaways type I leave the complex-valued spectrum and become completely real because of eigenvalue attraction. Runaways type II leave the bulk and move very rapidly in response to perturbations. These have high condition numbers and can be predicted. Localization of the eigenvectors are then quantified using entropies and inverse participation ratios. Eigenvectors corresponding to Runaways type II are most localized (i.e., super-exponential), whereas Runaways type I are less localized than the unperturbed counterparts and have most of their probability mass in the interior with algebraic decays. The results are corroborated by applying free probability theory and various other supporting numerical studies.

  5. Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument

    NASA Astrophysics Data System (ADS)

    Xia, Yonghui; Huang, Zhenkun; Han, Maoan

    2007-09-01

    Certain almost periodic forced perturbed systems with piecewise argument are considered in this paper. By using the contraction mapping principle and some new analysis technique, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of these systems. Furthermore, we study the harmonic and subharmonic solutions of these systems. The obtained results generalize the previous known results such as [A.M. Fink, Almost Periodic Differential Equation, Lecture Notes in Math., volE 377, Springer-Verlag, Berlin, 1974; C.Y. He, Almost Periodic Differential Equations, Higher Education Press, Beijing, 1992 (in Chinese); Z.S. Lin, The existence of almost periodic solution of linear system, Acta Math. Sinica 22 (5) (1979) 515-528 (in Chinese); C.Y. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (2) (1992) 173-181; Y.H. Xia, M. Lin, J. Cao, The existence of almost periodic solutions of certain perturbation system, J. Math. Anal. Appl. 310 (1) (2005) 81-96]. Finally, a tangible example and its numeric simulations show the feasibility of our results, the comparison between non-perturbed system and perturbed system, the relation between systems with and without piecewise argument.

  6. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com; Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235; Pal, Nikhil

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, usingmore » the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essman, Eric P.; Aganagic, Mina; Okuda, Takuya

    We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preservemore » a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.« less

  8. Non-perturbative reheating and Nnaturalness

    NASA Astrophysics Data System (ADS)

    Hardy, Edward

    2017-11-01

    We study models in which reheating happens only through non-perturbative processes. The energy transferred can be exponentially suppressed unless the inflaton is coupled to a particle with a parametrically small mass. Additionally, in some models a light scalar with a negative mass squared parameter leads to much more efficient reheating than one with a positive mass squared of the same magnitude. If a theory contains many sectors similar to the Standard Model coupled to the inflaton via their Higgses, such dynamics can realise the Nnaturalness solution to the hierarchy problem. A sector containing a light Higgs with a non-zero vacuum expectation value is dominantly reheated and there is little energy transferred to the other sectors, consistent with cosmological constraints. The inflaton must decouple from other particles and have a flat potential at large field values, in which case the visible sector UV cutoff can be raised to 10 TeV in a simple model.

  9. Perturbative Gaussianizing transforms for cosmological fields

    NASA Astrophysics Data System (ADS)

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  10. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  11. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  12. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  13. Contributions of changes in climatology and perturbation and the resulting nonlinearity to regional climate change.

    PubMed

    Adachi, Sachiho A; Nishizawa, Seiya; Yoshida, Ryuji; Yamaura, Tsuyoshi; Ando, Kazuto; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2017-12-20

    Future changes in large-scale climatology and perturbation may have different impacts on regional climate change. It is important to understand the impacts of climatology and perturbation in terms of both thermodynamic and dynamic changes. Although many studies have investigated the influence of climatology changes on regional climate, the significance of perturbation changes is still debated. The nonlinear effect of these two changes is also unknown. We propose a systematic procedure that extracts the influences of three factors: changes in climatology, changes in perturbation and the resulting nonlinear effect. We then demonstrate the usefulness of the procedure, applying it to future changes in precipitation. All three factors have the same degree of influence, especially for extreme rainfall events. Thus, regional climate assessments should consider not only the climatology change but also the perturbation change and their nonlinearity. This procedure can advance interpretations of future regional climates.

  14. Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Stuchlík, Zdeněk; Schee, Jan; Ahmedov, Bobomurat

    2018-04-01

    The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.

  15. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  16. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    NASA Astrophysics Data System (ADS)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  17. Bethe/Gauge correspondence in odd dimension: modular double, non-perturbative corrections and open topological strings

    NASA Astrophysics Data System (ADS)

    Sciarappa, Antonio

    2016-10-01

    Bethe/Gauge correspondence as it is usually stated is ill-defined in five dimensions and needs a "non-perturbative" completion; a related problem also appears in three dimensions. It has been suggested that this problem, probably due to incompleteness of Omega background regularization in odd dimension, may be solved if we consider gauge theory on compact S 5 and S 3 geometries. We will develop this idea further by giving a full Bethe/Gauge correspondence dictionary on S 5 and S 3 focussing mainly on the eigenfunctions of (open and closed) relativistic 2-particle Toda chain and its quantized spectral curve: these are most properly written in terms of non-perturbatively completed NS open topological strings. A key ingredient is Faddeev's modular double structure which is naturally implemented by the S 5 and S 3 geometries.

  18. Optimal free descriptions of many-body theories

    NASA Astrophysics Data System (ADS)

    Turner, Christopher J.; Meichanetzidis, Konstantinos; Papić, Zlatko; Pachos, Jiannis K.

    2017-04-01

    Interacting bosons or fermions give rise to some of the most fascinating phases of matter, including high-temperature superconductivity, the fractional quantum Hall effect, quantum spin liquids and Mott insulators. Although these systems are promising for technological applications, they also present conceptual challenges, as they require approaches beyond mean-field and perturbation theory. Here we develop a general framework for identifying the free theory that is closest to a given interacting model in terms of their ground-state correlations. Moreover, we quantify the distance between them using the entanglement spectrum. When this interaction distance is small, the optimal free theory provides an effective description of the low-energy physics of the interacting model. Our construction of the optimal free model is non-perturbative in nature; thus, it offers a theoretical framework for investigating strongly correlated systems.

  19. Interlimb Coordination in Body-Weight Supported Locomotion: A Pilot Study

    PubMed Central

    Seiterle, Stefan; Susko, Tyler; Artemiadis, Panagiotis K.; Riener, Robert; Krebs, Hermano Igo

    2015-01-01

    Locomotion involves complex neural networks responsible for automatic and volitional actions. During locomotion, motor strategies can rapidly compensate for any obstruction or perturbation that could interfere with forward progression. In this pilot study, we examined the contribution of interlimb pathways for evoking muscle activation patterns in the contralateral limb when a unilateral perturbation was applied and in the case where body weight was externally supported. In particular, the latency of neuromuscular responses was measured, while the stimulus to afferent feedback was limited. The pilot experiment was conducted with six healthy young subjects. It employed the MIT-Skywalker (beta-prototype), a novel device intended for gait therapy. Subjects were asked to walk on the split-belt treadmill, while a fast unilateral perturbation was applied mid-stance by unexpectedly lowering one side of the split-treadmill walking surfaces. Subject's weight was externally supported via the body-weight support system consisting of an underneath bicycle seat and the torso was stabilized via a loosely fitted chest harness. Both the weight support and the chest harness limited the afferent feedback. The unilateral perturbations evoked changes in the electromyographic activity of the non-perturbed contralateral leg. The latency of all muscle responses exceeded 100 ms, which precludes the conjecture that spinal cord alone is responsible for the perturbation response. It suggests the role of supraspinal or midbrain level pathways at the inter-leg coordination during gait. PMID:25990210

  20. Perturbative Out of Equilibrium Quantum Field Theory beyond the Gradient Approximation and Generalized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Ozaki, H.

    2004-01-01

    Using the closed-time-path formalism, we construct perturbative frameworks, in terms of quasiparticle picture, for studying quasiuniform relativistic quantum field systems near equilibrium and non-equilibrium quasistationary systems. We employ the derivative expansion and take in up to the second-order term, i.e., one-order higher than the gradient approximation. After constructing self-energy resummed propagator, we formulated two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the ``bare'' number density function, and the second one is formulated on the basis of ``physical'' number density function. In the course of construction of the second framework, the generalized Boltzmann equations directly come out, which describe the evolution of the system.

  1. 3D Multispecies Nonlinear Perturbative Particle Simulation of Intense Nonneutral Particle Beams (Research supported by the Department of Energy and the Short Pulse Spallation Source Project and LANSCE Division of LANL.)

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Lee, W. Wei-Li

    1999-11-01

    The Beam Equilibrium Stability and Transport (BEST) code, a 3D multispecies nonlinear perturbative particle simulation code, has been developed to study collective effects in intense charged particle beams described self-consistently by the Vlasov-Maxwell equations. A Darwin model is adopted for transverse electromagnetic effects. As a 3D multispecies perturbative particle simulation code, it provides several unique capabilities. Since the simulation particles are used to simulate only the perturbed distribution function and self-fields, the simulation noise is reduced significantly. The perturbative approach also enables the code to investigate different physics effects separately, as well as simultaneously. The code can be easily switched between linear and nonlinear operation, and used to study both linear stability properties and nonlinear beam dynamics. These features, combined with 3D and multispecies capabilities, provides an effective tool to investigate the electron-ion two-stream instability, periodically focused solutions in alternating focusing fields, and many other important problems in nonlinear beam dynamics and accelerator physics. Applications to the two-stream instability are presented.

  2. Effects of nuclear electromagnetic pulse (EMP) on synchronous stability of the electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manweiler, R.W.

    1975-11-01

    The effects of a nuclear electromagnetic pulse (EMP) on the synchronous stability of the electric power transmission and distribution systems are evaluated. The various modes of coupling of EMP to the power system are briefly discussed, with particular emphasis on those perturbations affecting the synchronous stability of the transmission system. A brief review of the fundamental concepts of the stability problem is given, with a discussion of the general characteristics of transient analysis. A model is developed to represent single sets as well as repetitive sets of multiple faults on the distribution systems, as might be produced by EMP. Themore » results of many numerical stability calculations are presented to illustrate the transmission system's response from different types of perturbations. The important parameters of both multiple and repetitive faults are studied, including the dependence of the response on the size of the perturbed area, the fault density, and the effective impedance between the fault location and the transmission system. Both major load reduction and the effect of the opening of tie lines at the time of perturbation are also studied. We conclude that there is a high probability that EMP can induce perturbations on the distribution networks causing a large portion of the transmission network in the perturbed area to lose synchronism. The result would be an immediate and massive power failure. (auth)« less

  3. The Chiral Separation Effect in quenched finite-density QCD

    NASA Astrophysics Data System (ADS)

    Puhr, Matthias; Buividovich, Pavel

    2018-03-01

    We present results of a study of the Chiral Separation Effect (CSE) in quenched finite-density QCD. Using a recently developed numerical method we calculate the conserved axial current for exactly chiral overlap fermions at finite density for the first time. We compute the anomalous transport coeffcient for the CSE in the confining and deconfining phase and investigate possible deviations from the universal value. In both phases we find that non-perturbative corrections to the CSE are absent and we reproduce the universal value for the transport coeffcient within small statistical errors. Our results suggest that the CSE can be used to determine the renormalisation factor of the axial current.

  4. Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients.

    PubMed

    Yamamoto, Takeshi

    2008-12-28

    Conventional quantum chemical solvation theories are based on the mean-field embedding approximation. That is, the electronic wavefunction is calculated in the presence of the mean field of the environment. In this paper a direct quantum mechanical/molecular mechanical (QM/MM) analog of such a mean-field theory is formulated based on variational and perturbative frameworks. In the variational framework, an appropriate QM/MM free energy functional is defined and is minimized in terms of the trial wavefunction that best approximates the true QM wavefunction in a statistically averaged sense. Analytical free energy gradient is obtained, which takes the form of the gradient of effective QM energy calculated in the averaged MM potential. In the perturbative framework, the above variational procedure is shown to be equivalent to the first-order expansion of the QM energy (in the exact free energy expression) about the self-consistent reference field. This helps understand the relation between the variational procedure and the exact QM/MM free energy as well as existing QM/MM theories. Based on this, several ways are discussed for evaluating non-mean-field effects (i.e., statistical fluctuations of the QM wavefunction) that are neglected in the mean-field calculation. As an illustration, the method is applied to an S(N)2 Menshutkin reaction in water, NH(3)+CH(3)Cl-->NH(3)CH(3) (+)+Cl(-), for which free energy profiles are obtained at the Hartree-Fock, MP2, B3LYP, and BHHLYP levels by integrating the free energy gradient. Non-mean-field effects are evaluated to be <0.5 kcal/mol using a Gaussian fluctuation model for the environment, which suggests that those effects are rather small for the present reaction in water.

  5. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    DOE PAGES

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; ...

    2016-07-20

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agreemore » well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.« less

  6. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agreemore » well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.« less

  7. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvaskis, Vladas

    2004-12-06

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F 2(x,Q 2) is known with high precision over about four orders of magnitude in x and Q 2. In the region of Q 2 > 1 (GeV/c) 2 the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoreticalmore » framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q 2 becomes of the order of 1 (GeV/c) 2, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q 2, since they include a factor 1/(Q 2n) (n ≥ 1).« less

  8. A simple non-perturbing cell migration assay insensitive to proliferation effects.

    PubMed

    Glenn, Honor L; Messner, Jacob; Meldrum, Deirdre R

    2016-08-18

    Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells.

  9. Effect of an ac Perturbation on the Electroosmotic Behavior of a Cation-Exchange Membrane. Influence of the Cation Nature.

    PubMed

    Barragán, V. M.; Bauzá, C. Ruíz

    2001-08-01

    The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed on the usual dc applied electric voltage difference on the electroosmotic flow through a typical cation-exchange membrane has been studied using different monovalent electrolytes. As a general trend, the presence of the ac perturbation increases the value of the electroosmotic flow with respect to the value in the absence of ac perturbation. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three studied electrolytes, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. This behavior may be related to the different relaxation processes in heterogeneous mediums. Copyright 2001 Academic Press.

  10. Nonglobal correlations in collider physics

    DOE PAGES

    Moult, Ian; Larkoski, Andrew J.

    2016-01-13

    Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions of phase space have never directly been observed. These so-called non-global effects are present generically whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to isolate these non-global correlations between measurements made in different regions of phase space. We study this procedure both analytically and in Monte Carlo simulations in the context of observables measured on hadronic final states produced in e+e- collisions, though itmore » is more widely applicable.The procedure exploits the sensitivity of soft radiation at large angles to non-global correlations, and we calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these non-global correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of non-perturbative effects, which we show can be incorporated in our calculation through the use of a model shape function. As a result, this procedure illuminates the source of non-global correlations and has connections more broadly to fundamental quantities in quantum field theory.« less

  11. Offshore Wind Turbines Subjected to Hurricanes

    NASA Astrophysics Data System (ADS)

    Amirinia, Gholamreza

    Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed. Then a new formulation for addressing unsteady wind forces on the tower was introduced and NREL-FAST package was modified with the new formulation. Interaction of wind-wave-soil-structure was also included in the modification. After customizing the package, the tower and blade buffeting responses, the low cycle fatigue during different hurricane categories, and extreme value of the short-term responses were analyzed. In the second part, piezoelectric materials were used to generate perturbations on the surface of a specimen in the wind tunnel. This perturbation was used to combine upward wall motion and surface curvature. For this purpose, a Macro Fiber Composite (MFC) material was mounted on the surface of a cylindrical specimen for generating perturbation in the wind tunnel. Four different perturbation frequencies (1 Hz, 2 Hz, 3 Hz, and 4Hz) as well as the baseline specimen were tested in a low-speed wind tunnel (Re= 2.8x104). Results showed that recently observed turbulence models resulted in larger structural responses and low-cycle fatigue damage than existing models. In addition, extreme value analysis of the short-term results showed that the IEC 61400-3 recommendation for wind turbine class I was sufficient for designing the tower for wind turbine class S subjected to hurricane; however, for designing the blade, IEC 61400-3 recommendations for class I underestimated the responses. In addition, wind tunnel testing results showed that the perturbation of the surface of the specimen increased the turbulence in the leeward in specific distance from the specimen. The surface perturbation technique had potential to reduce the drag by 4.8%.

  12. A generalized non-Gaussian consistency relation for single field inflation

    NASA Astrophysics Data System (ADS)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We show that a perturbed inflationary spacetime, driven by a canonical single scalar field, is invariant under a special class of coordinate transformations together with a field reparametrization of the curvature perturbation in co-moving gauge. This transformation may be used to derive the squeezed limit of the 3-point correlation function of the co-moving curvature perturbations valid in the case that these do not freeze after horizon crossing. This leads to a generalized version of Maldacena's non-Gaussian consistency relation in the sense that the bispectrum squeezed limit is completely determined by spacetime diffeomorphisms. Just as in the case of the standard consistency relation, this result may be understood as the consequence of how long-wavelength modes modulate those of shorter wavelengths. This relation allows one to derive the well known violation to the consistency relation encountered in ultra slow-roll, where curvature perturbations grow exponentially after horizon crossing.

  13. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    PubMed

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  14. Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces

    NASA Astrophysics Data System (ADS)

    Bautista, Oscar; Sanchez, Salvador; Mendez, Federico

    2015-11-01

    In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.

  15. Many-body localization in disorder-free systems: The importance of finite-size constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papić, Z., E-mail: zpapic@perimeterinstitute.ca; Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5; Stoudenmire, E. Miles

    2015-11-15

    Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that variousmore » bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.« less

  16. Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp

    2015-08-14

    We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) andmore » between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.« less

  17. Quasinormal modes of the BTZ black hole under scalar perturbations with a non-minimal coupling: exact spectrum

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris

    2018-06-01

    We perturb the non-rotating BTZ black hole with a non-minimally coupled massless scalar field, and we compute the quasinormal spectrum exactly. We solve the radial equation in terms of hypergeometric functions, and we obtain an analytical expression for the quasinormal frequencies. In addition, we compare our analytical results with the 6th order semi-analytical WKB method, and we find an excellent agreement. The impact of the nonminimal coupling as well as of the cosmological constant on the quasinormal spectrum is briefly discussed.

  18. Mass-improvement of the vector current in three-flavor QCD

    NASA Astrophysics Data System (ADS)

    Fritzsch, P.

    2018-06-01

    We determine two improvement coefficients which are relevant to cancel mass-dependent cutoff effects in correlation functions with operator insertions of the non-singlet local QCD vector current. This determination is based on degenerate three-flavor QCD simulations of non-perturbatively O( a) improved Wilson fermions with tree-level improved gauge action. Employing a very robust strategy that has been pioneered in the quenched approximation leads to an accurate estimate of a counterterm cancelling dynamical quark cutoff effects linear in the trace of the quark mass matrix. To our knowledge this is the first time that such an effect has been determined systematically with large significance.

  19. Experimental and Monte Carlo measurements of dose perturbation around a non-radioactive brachytherapy seed in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Steinman, James P.

    I-125 seeds used in permanent prostate brachytherapy are composed of high-Z metals and may number from 40 to over 100 in a typical implant. If any supplemental external beam treatment is administered afterward (as for salvaging failed brachytherapy treatment), it is possible that the seeds may cause substantial dose perturbation which will depend on numerous factors (photon energy, depth, field size, number of seeds, etc.) and this effect needs to be thoroughly investigated. Film measurements were primarily done using Kodak XV2 layered above and below a non-radioactive I-125 seed placed in a groove on a Lucite plate with 5 cm buildup and 10 cm backscatter added at 95 cm SSD. The phantom was irradiated with and without seed with 6 MV photons for a 1 x 1 cm2 field size. Monte Carlo simulations were carried out using DOSXYZnrc using the same parameters and compared with Gafchromic EBT2 film. Other comparisons looked at changing energy, depth, and field size in both with and without seeds configuration. This study was further extended to include metals of various Z of the seed's dimensions and also looked into effect of 3 seeds spaced 0.5 cm vertically. Another measurement was done using two opposing fields using single as well as 3 seed configuration to see whether the dose enhancement and attenuation cancel out in multi-field treatments which is the norm clinically in a prostate treatment. For a single I-125 seed, on XV film a localized dose enhancement of 6.3% upstream and -10.9% downstream was noticed. With three seeds, this effect did not change. With two opposing fields, a cold spot around the seed of ~3% was noticed from film measurements. Increasing energy and field size decreased the effect while increase in Z of material greatly increased the effect. Increasing depth appeared to have no effect. DOSXYZnrc and EBT2 film verified maximum dose enhancement of +15% upstream and -20% downstream of the I-125 seed surface. In general, the range of the effect was limited to ~2 mm upstream and ~5 mm downstream with reference to the seed surface in relation to the incident photon beam. As with other heterogeneities in a human body, the dose perturbation due to I-125 seeds in external beam radiotherapy depends on incident beam energy, field size, and the composition of the seed. However, unlike other heterogeneities, no depth dependence of the seed in the material was noted. With multiple seeds spaced apart and multiple fields normally used in prostate treatment, the dose perturbation due to them may not be clinically significant.

  20. Thermalized axion inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  1. Thermalized axion inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Ricardo Z.; Notari, Alessio, E-mail: rferreira@icc.ub.edu, E-mail: notari@ub.edu

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton φ to gauge fields of the form φ F F-tilde / f , as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= φ-dot /(2 fH ), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H , due to the very large occupation numbers, and create a thermal bath of particlesmore » of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξ∼>2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξ∼>3.4; however, observations require ξ∼>6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of T {sub eq} ≅ ξ H / g-bar where g-bar is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if φ is thermal and find that the tensor to scalar ratio is suppressed by H /(2 T ), if tensors do not thermalize.« less

  2. Neural mechanisms and functional correlates of altered postural responses to perturbed standing balance with chronic low back pain

    PubMed Central

    Jacobs, Jesse V.; Roy, Carrie L.; Hitt, Juvena R.; Popov, Roman E.; Henry, Sharon M.

    2016-01-01

    This study sought to determine the effects of chronic low back pain (LBP) on the cortical evoked potentials, muscle activation, and kinematics of postural responses to perturbations of standing balance. Thirteen subjects with chronic, recurrent, non-specific LBP and 13 subjects without LBP participated. The subjects responded to unpredictably timed postural perturbations while standing on a platform that randomly rotated either “toes up” or “toes down”. Electroencephalography (EEG) was used to calculate the negative peak (N1) and subsequent positive peak (P2) amplitudes of the perturbation evoked cortical potentials. Passive-marker motion capture was used to calculate joint and center-of-mass (CoM) displacements. Surface electromyography was used to record muscle onset latencies. Questionnaires assessed pain, interference with activity, fear of activity, and pain catastrophizing. Results demonstrated that subjects with LBP exhibited significantly larger P2 potentials, delayed erector spinae, rectus abdominae, and external oblique onset latencies, as well as smaller trunk extension yet larger trunk flexion, knee flexion, and ankle dorsiflexion displacements compared to subjects without LBP. For the subjects with LBP, CoM displacements significantly and positively correlated with knee displacements as well as activity interference and fear scores. The P2 potentials significantly and negatively correlated with CoM displacements as well as activity interference, catastrophizing, and fear scores. These results demonstrate that people with LBP exhibit altered late-phase cortical processing of postural perturbations concomitant with altered kinematic and muscle responses, and these cortical and postural response characteristics correlate with each other as well as with clinical reports of pain-related fears and activity interference. PMID:27771534

  3. Short term impact risk assessment for asteroids 2011 AG5

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pravec, P.; Nolan, M.

    2013-04-01

    Among the potentially hazardous asteroids (PHAs) in orbit around the Earth, some of them can become a real threat. The most famous PHA presently known is asteroid (99942) Apophis which briefly presented an unusually high impact probability (up to 2.3 %) for a collision with the Earth in 2029. It remains the only asteroid to have reached level 4 of the Torino Scale. Even if Apophis is not a threat anymore, other PHAs are still monitored and now, only one asteroid is scaled to 1 with the highest impact probability. Asteroid 2011 AG5 has 1 chance over 500 to hit the Earth on 2040. This asteroid is challenging because it will remain of faint magnitude around 23.0 until its close encounter with the Earth in February 2023. It will come close to the Earth by 0.012 AU. Intensive ground-based (optical and mainly radar measurements) will be performed. Before this date, optical measurements would be possible (provided that large telescopes are used) and orbital refinement could be performed in order to improve the orbital uncertainty of this asteroid. Nevertheless, no physical data can be derived before 2023 and therefore, the influence of non gravitational forces, mainly Yarkovsky effect, can not be precisely determined. This non gravitational effect produces a secular drift da/dt (positive or negative) of the semi-major axis due to the anisotropic re-emission of the incident solar radiation. We propose here a dynamical study of the asteroid 2011 AG5. We discuss first the location of primary and secondary keyholes in the target plane of 2023 as well as the quantification of the impact probability. Secondary keyholes are due to two consecutive close encounters, the second usually happening near a keyhole or a resonant return. Then, we will address how those quantities evolve with future dedicated ground-based measurements. In a second part, we will discuss non gravitational perturbations through Yarkovsky effect. Assuming that this asteroid is a C or S-type, we can statistically derive some maximum intensity of Yarkovsky force, without any assumptions on the physical parameters. This will help to assess the maximum deviation expected on the geocentric distance expressed in the 2023 target plane. This deviation will have a direct consequence on the impact probability. Finally, a deeper study will include a Monte Carlo test on the orbital fit in order to compute virtual asteroids (VA) moving under gravity, relativistic and Yarkovsky perturbations. Using a simple model of Yarkovsky force as a perturbation along the transverse component and inversely proportional to the heliocentric square distance of the asteroid, we include a random deviation da/dt to assess the number of VA becoming virtual impactors (VI). We will compare this number to the one obtained with VA moving only under gravity and relativistic perturbations.

  4. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry

    NASA Astrophysics Data System (ADS)

    Zink, K.; Wulff, J.

    2012-04-01

    Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.

  5. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the onset of hierarchical clustering. This success is found at a considerable higher non-linearity than is usual for perturbation theory. Whether a truncation of the initial power-spectrum in hierarchical models retains this improvement will be analyzed in a forthcoming work.

  6. Response formulae for n-point correlations in statistical mechanical systems and application to a problem of coarse graining

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Wouters, Jeroen

    2017-09-01

    Predicting the response of a system to perturbations is a key challenge in mathematical and natural sciences. Under suitable conditions on the nature of the system, of the perturbation, and of the observables of interest, response theories allow to construct operators describing the smooth change of the invariant measure of the system of interest as a function of the small parameter controlling the intensity of the perturbation. In particular, response theories can be developed both for stochastic and chaotic deterministic dynamical systems, where in the latter case stricter conditions imposing some degree of structural stability are required. In this paper we extend previous findings and derive general response formulae describing how n- point correlations are affected by perturbations to the vector flow. We also show how to compute the response of the spectral properties of the system to perturbations. We then apply our results to the seemingly unrelated problem of coarse graining in multiscale systems: we find explicit formulae describing the change in the terms describing the parameterisation of the neglected degrees of freedom resulting from applying perturbations to the full system. All the terms envisioned by the Mori-Zwanzig theory—the deterministic, stochastic, and non-Markovian terms—are affected at first order in the perturbation. The obtained results provide a more comprehensive understanding of the response of statistical mechanical systems to perturbations. They also contribute to the goal of constructing accurate and robust parameterisations and are of potential relevance for fields like molecular dynamics, condensed matter, and geophysical fluid dynamics. We envision possible applications of our general results to the study of the response of climate variability to anthropogenic and natural forcing and to the study of the equivalence of thermostatted statistical mechanical systems.

  7. Ground state energies from converging and diverging power series expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, C.; Norris, S.; Pelphrey, R.

    2016-10-15

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent,more » consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.« less

  8. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  9. Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D

    DOE PAGES

    Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-01-05

    Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F. Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to whichmore » resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary. As a result, good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling.« less

  10. Hydrodynamic description of spin Calogero-Sutherland model

    NASA Astrophysics Data System (ADS)

    Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio

    2009-03-01

    We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)

  11. Dependence of image quality on image operator and noise for optical diffusion tomography

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Graber, Harry L.; Barbour, Randall L.

    1998-04-01

    By applying linear perturbation theory to the radiation transport equation, the inverse problem of optical diffusion tomography can be reduced to a set of linear equations, W(mu) equals R, where W is the weight function, (mu) are the cross- section perturbations to be imaged, and R is the detector readings perturbations. We have studied the dependence of image quality on added systematic error and/or random noise in W and R. Tomographic data were collected from cylindrical phantoms, with and without added inclusions, using Monte Carlo methods. Image reconstruction was accomplished using a constrained conjugate gradient descent method. Result show that accurate images containing few artifacts are obtained when W is derived from a reference states whose optical thickness matches that of the unknown teste medium. Comparable image quality was also obtained for unmatched W, but the location of the target becomes more inaccurate as the mismatch increases. Results of the noise study show that image quality is much more sensitive to noise in W than in R, and the impact of noise increase with the number of iterations. Images reconstructed after pure noise was substituted for R consistently contain large peaks clustered about the cylinder axis, which was an initially unexpected structure. In other words, random input produces a non- random output. This finding suggests that algorithms sensitive to the evolution of this feature could be developed to suppress noise effects.

  12. Spin dynamics of close-in planets exhibiting large transit timing variations

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.

    2017-09-01

    We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.

  13. Physical limitations in sensors for a drag-free deep space probe

    NASA Technical Reports Server (NTRS)

    Juillerat, R.

    1971-01-01

    The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.

  14. Study of the Reynolds Number Effect on the Process of Instability Transition Into the Turbulent Stage.

    PubMed

    Nevmerzhitskiy, N V; Sotskov, E A; Sen'kovskiy, E D; Krivonos, O L; Polovnikov, A A; Levkina, E V; Frolov, S V; Abakumov, S A; Marmyshev, V V

    2014-09-01

    The results of the experimental study of the Reynolds number effect on the process of the Rayleigh-Taylor (R-T) instability transition into the turbulent stage are presented. The experimental liquid layer was accelerated by compressed gas. Solid particles were scattered on the layer free surface to specify the initial perturbations in some experiments. The process was recorded with the use of a high-speed motion picture camera. The following results were obtained in experiments: (1) Long-wave perturbation is developed at the interface at the Reynolds numbers Re < 10 4 . If such perturbation growth is limited by a hard wall, the jet directed in gas is developed. If there is no such limitation, this perturbation is resolved into the short-wave ones with time, and their growth results in gas-liquid mixing. (2) Short-wave perturbations specified at the interface significantly reduce the Reynolds number Re for instability to pass into the turbulent mixing stage.

  15. A simple method to design non-collision relative orbits for close spacecraft formation flying

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  16. Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system

    NASA Astrophysics Data System (ADS)

    Mahmoud, Abeer A.

    2018-01-01

    Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey q-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.

  17. Mapping the Braiding Properties of Non-Abelian FQHE Liquids.

    NASA Astrophysics Data System (ADS)

    Prodan, Emil; Haldane, F. D. M.

    2007-03-01

    Non-Abelian FQHE (NAFQHE) states have elementary excitations that cannot be individually locally-created. When widely separated, they give rise to topological (quasi-)degeneracy of the quantum states; braiding of such non-Abelian quasiparticles (NAQP's) implements unitary transformations among the degenerate states that may be useful for ``topological quantum computing'' (TQC). We have developed a new technique for explicit computation of NAQP braiding in models exhibiting ideal NAFQHE behavior (where the topological degeneracy is exact), in particular the Moore-Read ν = 5/2 state. For systems of small numbers of NAQP's on a sphere, we have computed the non-Abelian Berry curvature and Hilbert space metric, as one NAQP is moved relative to a fixed configuration of the others, showing how the topological properties develop as the system size (NAQP separation) increases. We also studied the effect of perturbations (Coulomb interaction and substrate potentials) that lift the exact degeneracy, and become the dominant corrections when NAQP's are brought together so that quantum measurements can be made; these effects are likely to be crucial in determining whether TQC is viable in NAFQHE systems.

  18. Regulation of autonomic nervous system in space and magnetic storms.

    PubMed

    Baevsky, R M; Petrov, V M; Chernikova, A G

    1998-01-01

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main "targets" for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88% precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  19. Caracterisation, modelisation et validation du transfert radiatif d'atmospheres non standard; impact sur les corrections atmospheriques d'images de teledetection

    NASA Astrophysics Data System (ADS)

    Zidane, Shems

    This study is based on data acquired with an airborne multi-altitude sensor on July 2004 during a nonstandard atmospheric event in the region of Saint-Jean-sur-Richelieu, Quebec. By non-standard atmospheric event we mean an aerosol atmosphere that does not obey the typical monotonic, scale height variation employed in virtually all atmospheric correction codes. The surfaces imaged during this field campaign included a diverse variety of targets : agricultural land, water bodies, urban areas and forests. The multi-altitude approach employed in this campaign allowed us to better understand the altitude dependent influence of the atmosphere over the array of ground targets and thus to better characterize the perturbation induced by a non-standard (smoke) plume. The transformation of the apparent radiance at 3 different altitudes into apparent reflectance and the insertion of the plume optics into an atmospheric correction model permitted an atmospheric correction of the apparent reflectance at the two higher altitudes. The results showed consistency with the apparent validation reflectances derived from the lowest altitude radiances. This approach effectively confirmed the accuracy of our non-standard atmospheric correction approach. This test was particularly relevant at the highest altitude of 3.17 km : the apparent reflectances at this altitude were above most of the plume and therefore represented a good test of our ability to adequately correct for the influence of the perturbation. Standard atmospheric disturbances are obviously taken into account in most atmospheric correction models, but these are based on monotonically decreasing aerosol variations with increasing altitude. When the atmospheric radiation is affected by a plume or a local, non-standard pollution event, one must adapt the existing models to the radiative transfer constraints of the local perturbation and to the reality of the measurable parameters available for ingestion into the model. The main inputs of this study were those normally used in an atmospheric correction : apparent at-sensor radiance and the aerosol optical depth (AOD) acquired using ground-based sunphotometry. The procedure we employed made use of a standard atmospheric correction code (CAM5S, for Canadian Modified 5S, which comes from the 5S radiative transfer model in the visible and near infrared) : however, we also used other parameters and data to adapt and correctly model the special atmospheric situation which affected the multi-altitude images acquired during the St. Jean field campaign. We then developed a modeling protocol for these atmospheric perturbations where auxiliary data was employed to complement our main data-set. This allowed for the development of a robust and simple methodology adapted to this atmospheric situation. The auxiliary data, i.e. meteorological data, LIDAR profiles, various satellite images and sun photometer retrievals of the scattering phase function, were sufficient to accurately model the observed plume in terms of a unusual, vertical distribution. This distribution was transformed into an aerosol optical depth profile that replaced the standard aerosol optical depth profile employed in the CAM5S atmospheric correction model. Based on this model, a comparison between the apparent ground reflectances obtained after atmospheric corrections and validation values of R*(0) obtained from the lowest altitude data showed that the error between the two was less than 0.01 rms. This correction was shown to be a significantly better estimation of the surface reflectance than that obtained using the atmospheric correction model. Significant differences were nevertheless observed in the non-standard solution : these were mainly caused by the difficulties brought about by the acquisition conditions, significant disparities attributable to inconsistencies in the co-sampling / co-registration of different targets from three different altitudes, and possibly modeling errors and / or calibration. There is accordingly room for improvement in our approach to dealing with such conditions. The modeling and forecasting of such a disturbance is explicitly described in this document: our goal in so doing is to permit the establishment of a better protocol for the acquisition of more suitable supporting data. The originality of this study stems from a new approach for incorporating a plume structure into an operational atmospheric correction model and then demonstrating that the approach was a significant improvement over an approach that ignored the perturbations in the vertical profile while employing the correct overall AOD. The profile model we employed was simple and robust but captured sufficient plume detail to achieve significant improvements in atmospheric correction accuracy. The overall process of addressing all the problems encountered in the analysis of our aerosol perturbation helped us to build an appropriate methodology for characterizing such events based on data availability, distributed freely and accessible to the scientific community. This makes our study adaptable and exportable to other types of non-standard atmospheric events. Keywords : non-standard atmospheric perturbation, multi-altitude apparent radiances, smoke plume, Gaussian plume modelization, radiance fit, AOD, CASI

  20. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials.

    PubMed

    Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Knorr, Svetlana; Patterson, Kara K

    2015-05-01

    Older adults and individuals with neurological conditions are at an increased risk for falls. Although physical exercise can prevent falls, certain types of exercise may be more effective. Perturbation-based balance training is a novel intervention involving repeated postural perturbations aiming to improve control of rapid balance reactions. The purpose of this study was to estimate the effect of perturbation-based balance training on falls in daily life. MEDLINE (1946-July 2014), EMBASE (1974-July 2014), PEDro (all dates), CENTRAL (1991-July 2014), and Google Scholar (all dates) were the data sources used in this study. Randomized controlled trials written in English were included if they focused on perturbation-based balance training among older adults or individuals with neurological conditions and collected falls data posttraining. Two investigators extracted data independently. Study authors were contacted to obtain missing information. A PEDro score was obtained for each study. Primary outcomes were proportion of participants who reported one or more falls (ie, number of "fallers") and the total number of falls. The risk ratio (proportion of fallers) and rate ratio (number of falls) were entered into the analysis. Eight studies involving 404 participants were included. Participants who completed perturbation-based balance training were less likely to report a fall (overall risk ratio=0.71; 95% confidence interval=0.52, 0.96; P=.02) and reported fewer falls than those in the control groups (overall rate ratio=0.54; 95% confidence interval=0.34, 0.85; P=.007). Study authors do not always identify that they have included perturbation training in their intervention; therefore, it is possible that some appropriate studies were not included. Study designs were heterogeneous, preventing subanalyses. Perturbation-based balance training appears to reduce fall risk among older adults and individuals with Parkinson disease. © 2015 American Physical Therapy Association.

  1. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  2. Phase-locked laser array having a non-uniform spacing between lasing regions

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E. (Inventor)

    1986-01-01

    A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.

  3. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine.

    PubMed

    Lee, Young J; Lee, Jeong Y; Jang, Yo H; Seo, Sang-Uk; Chang, Jun; Seong, Baik L

    2018-01-01

    The non-specific effects (NSEs) of vaccines have been discussed for their potential long-term beneficial effects beyond direct protection against a specific pathogen. Cold-adapted, live attenuated influenza vaccine (CAIV) induces local innate immune responses that provide a broad range of antiviral immunity. Herein, we examined whether X-31ca, a donor virus for CAIVs, provides non-specific cross-protection against respiratory syncytial virus (RSV). The degree of RSV replication was significantly reduced when X-31ca was administered before RSV infection without any RSV-specific antibody responses. The vaccination induced an immediate release of cytokines and infiltration of leukocytes into the respiratory tract, moderating the immune perturbation caused by RSV infection. The potency of protection against RSV challenge was significantly reduced in TLR3 -/- TLR7 -/- mice, confirming that the TLR3/7 signaling pathways are necessary for the observed immediate and short-term protection. The results suggest that CAIVs provide short-term, non-specific protection against genetically unrelated respiratory pathogens. The additional benefits of CAIVs in mitigating acute respiratory infections for which vaccines are not yet available need to be assessed in future studies.

  4. Study of the Motion of an Anharmonic Oscillator Under the Action of a Sinusoidal Force, of Variable Frequency, near the Principal Resonance; ETUDE DU MOVEMENT D'UN OSCILLATEUR ANHARMONIQUE SOUS L'ACTION D'UNE FORCE SINUSOIDALE, DE FREQUENCE VARIABLE, AU VOISINAGE DE LA RESONANCE PRINCIPALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbier, M.; Robouch, B.V.

    1959-11-01

    A study of non-linear oscillators is described which made possible the establishment of the space distribution of phases at the resonance of points corresronding to a given amplitude remote from this resonance and for a deviation direction of given frequency. An atlas of curves dyfining these; distributions for different initial amplitudes and perturbations was obtained. An evaluation was made dyviation direction of given frequency. An atlas of curves dyfining these distributions for different initial amplitudes and perturbations was obtained. An evaluation was made of the beam fraction whose oscillation amplitude does not exceed the initial amplitude after undergoing perturbation inmore » the course of a given passage. It was supposed that in all the calculations there was a uniform particle distribution in the phase-space before application of the perturbation and that the first approximation o; the Liouville theorem was valid ior the area of the contours which in fact do not correspond to a movement of the arrangement itself the results are presented graphically. The beam fraction susceptible to entrainment beginning with the resonance was studied as a function of the perturbation for different dimensions of the initial beam. (T.R.H.)« less

  5. Scalar perturbations of nonsingular nonrotating black holes in conformal gravity

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan

    2017-09-01

    We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.

  6. CRRES combined radiation and release effects satellite program

    NASA Technical Reports Server (NTRS)

    Giles, B. L. (Compiler); Mccook, M. A. (Compiler); Mccook, M. W. (Compiler); Miller, G. P. (Compiler)

    1995-01-01

    The various regions of the magnetosphere-ionosphere system are coupled by flows of charged particle beams and electromagnetic waves. This coupling gives rise to processes that affect both technical and non-technical aspects of life on Earth. The CRRES Program sponsored experiments which were designed to produce controlled and known input to the space environment and the effects were measured with arrays of diagnostic instruments. Large amounts of material were used to modify and perturb the environment in a controlled manner, and response to this was studied. The CRRES and PEGSAT satellites were dual-mission spacecraft with a NASA mission to perform active chemical-release experiments, grouped into categories of tracer, modification, and simulation experiments. Two sounding rocket chemical release campaigns completed the study.

  7. Perturbative calculation of two-photon double electron ionization of helium

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2008-05-01

    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.

  8. Perturbative transport modeling and comparison to cold-pulse and heat-pulse propagation experiments in Alcator C-Mod and DIII-D

    NASA Astrophysics Data System (ADS)

    Rodriguez Fernandez, P.; White, A. E.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Petty, C. C.; Rice, J. E.; Alcator C-Mod Team

    2016-10-01

    Possible ``non-local'' transport phenomena are often observed in tokamak plasmas. Different models have been proposed to explain fast responses during perturbative transport experiments, including non-diffusive effects. Specific tools to characterize the dynamic behavior and power balance analysis using TRANSP and the quasi-linear trapped gyro-landau fluid code TGLF have been developed to analyze Alcator C-Mod experiments. Recent results from cold pulse experiments show that fast core temperature increases following edge cold-pulse injections (peak within 10ms , while τE 25ms) are not correlated with the direction of intrinsic rotation, and instead the amplitude of the core response depends on density, plasma current and RF input power. The propagation of the cold pulse can be compared with propagation of heat pulses from sawteeth, and both may be used to probe changes in temperature profile stiffness. A Laser Blow Off (LBO) system is being developed for DIII-D that will allow further validation and cross-machine comparison of cold pulse experiments. LBO at DIII-D will also allow for direct comparisons with ECH perturbative heat pulse experiments. Work supported by US DOE under Grants DE-FC02-99ER54512 (C-Mod) and DE-FC02-04ER54698 (DIII-D) and La Caixa Fellowship.

  9. Fast kinematic ray tracing of first- and later-arriving global seismic phases

    NASA Astrophysics Data System (ADS)

    Bijwaard, Harmen; Spakman, Wim

    1999-11-01

    We have developed a ray tracing algorithm that traces first- and later-arriving global seismic phases precisely (traveltime errors of the order of 0.1 s), and with great computational efficiency (15 rays s- 1). To achieve this, we have extended and adapted two existing ray tracing techniques: a graph method and a perturbation method. The two resulting algorithms are able to trace (critically) refracted, (multiply) reflected, some diffracted (Pdiff), and (multiply) converted seismic phases in a 3-D spherical geometry, thus including the largest part of seismic phases that are commonly observed on seismograms. We have tested and compared the two methods in 2-D and 3-D Cartesian and spherical models, for which both algorithms have yielded precise paths and traveltimes. These tests indicate that only the perturbation method is computationally efficient enough to perform 3-D ray tracing on global data sets of several million phases. To demonstrate its potential for non-linear tomography, we have applied the ray perturbation algorithm to a data set of 7.6 million P and pP phases used by Bijwaard et al. (1998) for linearized tomography. This showed that the expected heterogeneity within the Earth's mantle leads to significant non-linear effects on traveltimes for 10 per cent of the applied phases.

  10. Computing induced velocity perturbations due to a helicopter fuselage in a free stream

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Althoff, Susan L.

    1989-01-01

    The velocity field of a representative helicopter fuselage in a free stream is computed. Perturbation velocities due to the fuselage are computed in a plan above the location of the helicopter rotor (rotor removed). The velocity perturbations computed by a source-panel model of the fuselage are compared with experimental measurements taken with a laser velocimeter. Three paneled fuselage models are studied: fuselage shape, fuselage shape with hub shape, and a body of revolution. The velocity perturbations computed for both fuselage shape models agree well with the measured velocity field except in the close vicinity of the rotor hub. In the hub region, without knowing the extent of separation, modeling of the effective source shape is difficult. The effects of the fuselage perturbations are not well-predicted with a simplified ellipsoid fuselage. The velocity perturbations due to the fuselage at the plane of the measurements have magnitudes of less than 8 percent of free-stream velocity. The velocity perturbations computed by the panel method are tabulated for the same locations at which previously reported rotor-inflow velocity measurements were made.

  11. Arithmetic and Hyperbolic Structures in String Theory

    NASA Astrophysics Data System (ADS)

    Persson, Daniel

    2010-01-01

    This monograph is an updated and extended version of the author's PhD thesis. It consists of an introductory text followed by two separate parts which are loosely related but may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of a spacelike singularity (the "BKL-limit"). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be described in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of the theory. Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are described by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by automorphic forms on the double quotient G(Z)G/K. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on non-holomorphic Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also show how these techniques can be applied to hypermultiplet moduli spaces in type II Calabi-Yau compactifications, and we provide a detailed analysis for the universal hypermultiplet.

  12. On the Newtonian and Spin-induced Perturbations Felt by the Stars Orbiting around the Massive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Iorio, Lorenzo

    2017-01-01

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, I.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster of disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100-400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.

  13. ON THE NEWTONIAN AND SPIN-INDUCED PERTURBATIONS FELT BY THE STARS ORBITING AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fupeng; Iorio, Lorenzo, E-mail: zhangfp7@mail.sysu.edu.cn, E-mail: lorenzo.iorio@libero.it

    2017-01-10

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, i.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster ofmore » disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100–400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.« less

  14. Chiral dynamics with (non)strange quarks

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  15. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  16. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    PubMed

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.

  17. Compensatory but not anticipatory adjustments are altered in older adults during lateral postural perturbations.

    PubMed

    Claudino, Renato; dos Santos, Eloá C C; Santos, Marcio J

    2013-08-01

    This study investigated anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs) and their relationship in older adults during lateral postural perturbations. Unpredictable and predictable postural disturbances were induced by a swinging pendulum that impacted at the shoulder level of two groups of older adults, non-fallers (20) and fallers (20), and in a group of young control subjects (20). The electromyographic (EMG) activity of the postural muscles and the center of pressure (COP) displacement were recorded and quantified within the time intervals typical for APAs and CPAs. Both groups of older adults (non-fallers and fallers) showed higher magnitude of EMG activity in the lateral muscles and increased COP displacement, particularly, during the CPAs time interval when compared to the young group. Older adults, however, were able to change the electrical activity of the muscles during the predictable task by generating APAs with similar magnitudes of those found in young subjects. Compensatory but not anticipatory adjustments are altered in older adults during predictable lateral postural perturbations. These findings provide new data on the role of APAs and CPAs in their relationship in older adults during external lateral perturbations and may advance current rehabilitative management strategies to improve balance control in older individuals. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    PubMed Central

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797

  19. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    PubMed

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  20. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  1. Coronal Jet Collimation by Nonlinear Induced Flows

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, S.; Hejazi, S. M.

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.

  2. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-06-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers. 13 references.

  3. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-01-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers.

  4. Unsteady Blood Flow with Nanoparticles Through Stenosed Arteries in the Presence of Periodic Body Acceleration

    NASA Astrophysics Data System (ADS)

    Fatin Jamil, Dzuliana; Roslan, Rozaini; Abdulhameed, Mohammed; Che-Him, Norziha; Sufahani, Suliadi; Mohamad, Mahathir; Ghazali Kamardan, Muhamad

    2018-04-01

    The effects of nanoparticles such as Fe 3O4,TiO2, and Cu on blood flow inside a stenosed artery are studied. In this study, blood was modelled as non-Newtonian Bingham plastic fluid subjected to periodic body acceleration and slip velocity. The flow governing equations were solved analytically by using the perturbation method. By using the numerical approaches, the physiological parameters were analyzed, and the blood flow velocity distributions were generated graphically and discussed. From the flow results, the flow speed increases as slip velocity increases and decreases as the values of yield stress increases.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi

    It has been pointed out that the null energy condition can be violated stably in some non-canonical scalar-field theories. This allows us to consider the Galilean Genesis scenario in which the universe starts expanding from Minkowski spacetime and hence is free from the initial singularity. We use this scenario to study the early-time completion of inflation, pushing forward the recent idea of Pirtskhalava et al. We present a generic form of the Lagrangian governing the background and perturbation dynamics in the Genesis phase, the subsequent inflationary phase, and the graceful exit from inflation, as opposed to employing the effective fieldmore » theory approach. Our Lagrangian belongs to a more general class of scalar-tensor theories than the Horndeski theory and Gleyzes-Langlois-Piazza-Vernizzi generalization, but still has the same number of the propagating degrees of freedom, and thus can avoid Ostrogradski instabilities. We investigate the generation and evolution of primordial perturbations in this scenario and show that one can indeed construct a stable model of inflation preceded by (generalized) Galilean Genesis.« less

  6. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findingsmore » in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.« less

  7. GTC Turbulence Simulations near H-mode Pedestal with Resonant Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Ferraro, Nathaniel; Taimourzadeh, Sam; Fu, Jingyuan; Lin, Zhihong; Nazikian, Raffi

    2017-10-01

    Full plasma responses to Resonant Magnetic Perturbations (RMPs) as provided by the resistive MHD code M3D-C1 are implemented into Gyrokinetic Toroidal Code (GTC) to study the effect of magnetic islands and stochastic field regions on microturbulence in realistic DIII-D geometry. Electrostatic turbulence simulations with adiabatic electrons show no significant increase of the saturated ion heat conductivity in the presence of RMP-induced islands. However, electron response to zonal flow in the presence of magnetic islands and stochastic fields can drastically increase zonal flow dielectric constant for long wavelength fluctuations. Zonal flow generation can then be reduced and the microturbulence can be enhanced greatly. Furthermore, because the RMP magnetic island size is comparable to the ion banana width, electron and ion responses to these islands may be fundamentally different, which could drive non-ambipolar particles fluxes leading to changes of the radial electric field shear. This work is supported by General Atomics subcontract.

  8. Stability issues of black hole in non-local gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  9. Spherically symmetric analysis on open FLRW solution in non-linear massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin, E-mail: chienichiang@berkeley.edu, E-mail: izumi@phys.ntu.edu.tw, E-mail: chen@slac.stanford.edu

    2012-12-01

    We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity frommore » general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.« less

  10. Promoting or Perturbing Success: The Effects of Aid on Timing to Latino Students' First Departure from College

    ERIC Educational Resources Information Center

    Gross, Jacob P. K.

    2011-01-01

    Using event history modeling, this study explored to what extent loans, grants, institutional aid, and work-study affect timing to first departure for Latino college students. The goal is to understand more about how aid promotes or perturbs success for Latino students as well as how those effects vary over time. Federal grants and targeted loans…

  11. Supersymmetric asymptotic safety is not guaranteed

    DOE PAGES

    Intriligator, Kenneth; Sannino, Francesco

    2015-11-05

    It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.

  12. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    NASA Astrophysics Data System (ADS)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run a forecast with the corresponding perturbed initial state (PV-satellite). The non hydrostatic MM5 mesoscale model has been used to run all forecasts. The simulations are performed for a two-day period with a 22.5 km resolution domain (Domain 1 in http://mm5forecasts.uib.es) nested in the ECMWF large-scale forecast fields. The MEDEX cyclone of 10 June 2000, also known as the Montserrat Case, is a suitable testbed to compare the performance of each ensemble and the PV-satellite method. This case is characterized by an Atlantic upper-level trough and low-level cold front which generated a stationary mesoscale cyclone over the Spanish Mediterranean coast, advecting warm and moist air toward Catalonia from the Mediterranean Sea. The consequences of the resulting mesoscale convective system were 6-h accumulated rainfall amounts of 180 mm with estimated material losses to exceed 65 million euros by media. The performace of both ensemble forecasting systems and PV-satellite technique for our case study is evaluated through the verification of the rainfall field. Since the EPSs are probabilistic forecasts and the PV-satellite is deterministic, their comparison is done using the individual ensemble members. Therefore the verification procedure uses deterministic scores, like the ROC curve, the Taylor diagram or the Q-Q plot. These scores cover the different quality attributes of the forecast such as reliability, resolution, uncertainty and sharpness. The results show that the PV-satellite technique performance lies within the performance range obtained by both ensembles; it is even better than the non-perturbed ensemble member. Thus, perturbing randomly using the PV error climatology and introducing the perturbations in the zones given by each EPS captures the mismatch between PV and WV fields better than manual perturbations made by an expert forecaster, at least for this case study.

  13. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain.

    PubMed

    Hartwigsen, Gesa

    2015-09-01

    With the advent of non-invasive brain stimulation (NIBS), a new decade in the study of language has started. NIBS allows for testing the functional relevance of language-related brain activation and enables the researcher to investigate how neural activation changes in response to focal perturbations. This review focuses on the application of NIBS in the healthy brain. First, some basic mechanisms will be introduced and the prerequisites for carrying out NIBS studies of language are addressed. The next section outlines how NIBS can be used to characterize the contribution of the stimulated area to a task. In this context, novel approaches such as multifocal transcranial magnetic stimulation and the condition-and-perturb approach are discussed. The third part addresses the combination of NIBS and neuroimaging in the study of plasticity. These approaches are particularly suited to investigate short-term reorganization in the healthy brain and may inform models of language recovery in post-stroke aphasia. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  14. Stability of the line preserving flows

    NASA Astrophysics Data System (ADS)

    Figura, Przemysław

    2017-11-01

    We examine the equations that are used to describe flows which preserve field lines. We study what happens if we introduce perturbations to the governing equations. The stability of the line preserving flows in the case of the magneto-fluids permeated by magnetic fields is strictly connected to the non-null magnetic reconnection processes. In most of our study we use the Euler potential representation of the external magnetic field. We provide general expressions for the perturbations of the Euler potentials that describe the magnetic field. Similarly, we provide expressions for the case of steady flow as well as we obtain certain conditions required for the stability of the flow. In addition, for steady flows we formulate conditions under which the perturbations of the external field are negligible and the field may be described by its initial unperturbed form. Then we consider the flow equation that transforms quantities from the laboratory coordinate system to the related external field coordinate system. We introduce perturbations to the equation and obtain its simplified versions for the case of a steady flow. For a given system, use of this method allows us to simplify the considerations provided that some part of the system may be described as a perturbation. Next, to study regions favourable for the magnetic reconnection to occur we introduce a deviation vector to the basic line preserving flows condition equation. We provide expressions of the vector for some simplifying cases. This method allows us to examine if given perturbations either stabilise the system or induce magnetic reconnection. To illustrate some of our results we study two examples, namely a simple laboratory plasma flow and a simple planetary magnetosphere model.

  15. Gromov-Witten invariants and localization

    NASA Astrophysics Data System (ADS)

    Morrison, David R.

    2017-11-01

    We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kähler potential on the conformal manifold. We show how the Kähler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed V Pestun and M Zabzine) which contains 17 chapters, available at [1].

  16. General Relativistic MHD Simulations of Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.

    2005-01-01

    We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.

  17. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    PubMed

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Auxiliary field loop expansion of the effective action for a class of stochastic partial differential equations

    NASA Astrophysics Data System (ADS)

    Cooper, Fred; Dawson, John F.

    2016-02-01

    We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields ϕi(x , t) in the presence of external noise ηi(x , t) , namely (∂t - ν∇2) ϕ - F [ ϕ ] = η, as well as chemical reaction annihilation processes obtained by applying the many-body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies.

  19. Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.

    2018-02-01

    We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

  20. Soft thermal contributions to 3-loop gauge coupling

    NASA Astrophysics Data System (ADS)

    Laine, M.; Schicho, P.; Schröder, Y.

    2018-05-01

    We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.

  1. Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure.

    PubMed

    Hanley, Torrance C; Kimbro, David L; Hughes, Anne Randall

    2017-07-01

    Environmental perturbations can strongly affect community processes and ecosystem functions by acting primarily as a subsidy that increases productivity, a stress that decreases productivity, or both, with the predominant effect potentially shifting from subsidy to stress as the overall intensity of the perturbation increases. While perturbations are often considered along a single axis of intensity, they consist of multiple components (e.g., magnitude, frequency, and duration) that may not have equivalent stress and/or subsidy effects. Thus, different combinations of perturbation components may elicit community and ecosystem responses that differ in strength and/or direction (i.e., stress or subsidy) even if they reflect a similar overall perturbation intensity. To assess the independent and interactive effects of perturbation components, we experimentally manipulated the magnitude, frequency, and duration of wrack deposition, a common stress-subsidy in a variety of coastal systems. The effects of wrack perturbation on salt marsh community and ecosystem properties were assessed both in the short-term (at the end of a 12-week experimental manipulation) and long-term (6 months after the end of the experiment). In the short-term, plants and associated benthic invertebrates exhibited primarily stress-based responses to wrack perturbation. The extent of these stress effects on density of the dominant plant Spartina alterniflora, total plant percent cover, invertebrate abundance, and sediment oxygen availability were largely determined by perturbation duration. Yet, higher nitrogen content of Spartina, which indicates a subsidy effect of wrack, was influenced primarily by perturbation magnitude in the short-term. In the longer term, perturbation magnitude determined the extent of both stress and subsidy effects of wrack perturbation, with lower subordinate plant percent cover and snail density, and higher Spartina nitrogen content in high wrack biomass treatments. However, stress effects on the marsh community were generally less pronounced 6 months after the wrack perturbation, indicating capacity for recovery. Our results demonstrate that individual perturbation components can determine the degree to which its effects on the community elicit primarily stress- and/or subsidy-based responses. Further, the nature and extent of stress-subsidy effects can change over time, depending on species' relative ability to tolerate and/or recover from perturbation. © 2017 by the Ecological Society of America.

  2. Hemispheric specificity for proprioception: Postural control of standing following right or left hemisphere damage during ankle tendon vibration.

    PubMed

    Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge

    2015-11-02

    Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems

    NASA Astrophysics Data System (ADS)

    Si, Wen; Si, Jianguo

    2018-06-01

    This paper includes two parts. In the first part, we first focus on quasi-periodic time dependent perturbations of one-dimensional quasi-periodically forced systems with degenerate equilibrium. We study the system in two cases, for one of which system admits a response solution under a non-resonant condition on the frequency vector weaker than Brjuno–Rüssmann’s and for another of which system also admits a response solution without any non-resonant conditions. Next, we investigate the existence of response solutions of a quasi-periodic perturbed system with degenerate (including completely degenerate) equilibrium under Brjuno–Rüssmann’s non-resonant condition by using the Herman method. In the second part, we consider, firstly, the quasi-periodic perturbation of a universal unfolding of one-dimensional degenerate vector field . Secondly, we consider the perturbation of a universal unfolding of normal two-dimensional Hamiltonian system with completely degenerate equilibrium. With KAM theory and singularity theory, we show that these two classes of universal unfolding can persist on large Cantor sets under Brjuno–Rüssmann’s non-resonant condition, which implies all the invariant tori in the integrable part and all the bifurcation scenario can survive on large Cantor sets. The result for Hamiltonian system can apply directly to the response context for quasi-periodically forced systems. Our results in this paper can be regarded as an improvement with respect to several results in various literature (Broer et al 2005 Nonlinearity 18 1735–69 Broer et al 2006 J. Differ. Equ. 222 233–62 Wagener 2005 J. Differ. Equ. 216 216–81 Xu 2010 J. Differ. Equ. 250 551–71 Xu and Jiang 2010 Ergod. Theor. Dynam. Syst. 31 599–611 Lu and Xu 2014 Nonlinear Differ. Equ. Appl. 21 361–70). This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11171185, 11571201).

  4. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  5. Music and speech distractors disrupt sensorimotor synchronization: effects of musical training.

    PubMed

    Białuńska, Anita; Dalla Bella, Simone

    2017-12-01

    Humans display a natural tendency to move to the beat of music, more than to the rhythm of any other auditory stimulus. We typically move with music, but rarely with speech. This proclivity is apparent early during development and can be further developed over the years via joint dancing, singing, or instrument playing. Synchronization of movement to the beat can thus improve with age, but also with musical experience. In a previous study, we found that music perturbed synchronization with a metronome more than speech fragments; music superiority disappeared when distractors shared isochrony and the same meter (Dalla Bella et al., PLoS One 8(8):e71945, 2013). Here, we examined if the interfering effect of music and speech distractors in a synchronization task is influenced by musical training. Musicians and non-musicians synchronized by producing finger force pulses to the sounds of a metronome while music and speech distractors were presented at one of various phase relationships with respect to the target. Distractors were familiar musical excerpts and fragments of children poetry comparable in terms of beat/stress isochrony. Music perturbed synchronization with the metronome more than speech did in both groups. However, the difference in synchronization error between music and speech distractors was smaller for musicians than for non-musicians, especially when the peak force of movement is reached. These findings point to a link between musical training and timing of sensorimotor synchronization when reacting to music and speech distractors.

  6. Perturbative momentum transport in MAST L-mode plasmas

    DOE PAGES

    Guttenfelder, W.; Field, A. R.; Lupelli, I.; ...

    2017-03-28

    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (beta N = 3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen thesemore » electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (beta N = 2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation ( similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (chi(phi))and convective (V-phi) transport coefficients, an inward pinch is inferred with magnitudes, (RV phi/chi(phi)) = (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, ( RV phi/chi(phi)) = (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, ( RV phi/chi(phi))(sim) approximate to -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in understanding momentum transport in these low aspect ratio plasmas.« less

  7. Perturbative momentum transport in MAST L-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttenfelder, W.; Field, A. R.; Lupelli, I.

    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (beta N = 3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen thesemore » electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (beta N = 2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation ( similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (chi(phi))and convective (V-phi) transport coefficients, an inward pinch is inferred with magnitudes, (RV phi/chi(phi)) = (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, ( RV phi/chi(phi)) = (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, ( RV phi/chi(phi))(sim) approximate to -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in understanding momentum transport in these low aspect ratio plasmas.« less

  8. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.

    2017-04-01

    In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.

  9. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    DOE PAGES

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...

    2017-02-14

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  10. Plasma response measurements of non-axisymmetric magnetic perturbations on DIII-D via soft x-ray imaging

    DOE PAGES

    Shafer, Morgan W.; Unterberg, Ezekial A.; Wingen, Andreas; ...

    2014-12-29

    Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. In this study, these measurements are used to test and to validate plasma response models, which are crucial for providing predictivemore » capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic(MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measuredperturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. Finally, these results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core.« less

  11. Evidence for inflation in an axion landscape

    NASA Astrophysics Data System (ADS)

    Nath, Pran; Piskunov, Maksim

    2018-03-01

    We discuss inflation models within supersymmetry and supergravity frameworks with a landscape of chiral superfields and one U(1) shift symmetry which is broken by non-perturbative symmetry breaking terms in the superpotential. We label the pseudo scalar component of the chiral fields axions and their real parts saxions. Thus in the models only one combination of axions will be a pseudo-Nambu-Goldstone-boson which will act as the inflaton. The proposed models constitute consistent inflation for the following reasons: the inflation potential arises dynamically with stabilized saxions, the axion decay constant can lie in the sub-Planckian region, and consistency with the Planck data is achieved. The axion landscape consisting of m axion pairs is assumed with the axions in each pair having opposite charges. A fast roll-slow roll splitting mechanism for the axion potential is proposed which is realized with a special choice of the axion basis. In this basis the 2 m coupled equations split into 2 m - 1 equations which enter in the fast roll and there is one unique linear combination of the 2 m fields which controls the slow roll and thus the power spectrum of curvature and tensor perturbations. It is shown that a significant part of the parameter space exists where inflation is successful, i.e., N pivot = [50, 60], the spectral index n s of curvature perturbations, and the ratio r of the power spectrum of tensor perturbations and curvature perturbations, lie in the experimentally allowed regions given by the Planck experiment. Further, it is shown that the model allows for a significant region of the parameter space where the effective axion decay constant can lie in the sub-Planckian domain. An analysis of the tensor spectral index n t is also given and the future experimental data which constraints n t will further narrow down the parameter space of the proposed inflationary models. Topics of further interest include implications of the model for gravitational waves and non-Gaussianities in the curvature perturbations. Also of interest is embedding of the model in strings which are expected to possess a large axionic landscape.

  12. Curvaton as dark matter with secondary inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jinn-Ouk; Kitajima, Naoya; Terada, Takahiro, E-mail: jinn-ouk.gong@apctp.org, E-mail: naoya.kitajima@apctp.org, E-mail: terada@kias.re.kr

    2017-03-01

    We consider a novel cosmological scenario in which a curvaton is long-lived and plays the role of cold dark matter (CDM) in the presence of a short, secondary inflation. Non-trivial evolution of the large scale cosmological perturbation in the curvaton scenario can affect the duration of the short term inflation, resulting in the inhomogeneous end of inflation. Non-linear parameters of the curvature perturbation are predicted to be f {sub NL} ≈ 5/4 and g {sub NL} ≈ 0. The curvaton abundance can be well diluted by the short-term inflation and accordingly, it does not have to decay into the Standardmore » Model particles. Then the curvaton can account for the present CDM with the isocurvature perturbation being sufficiently suppressed because both the adiabatic and CDM isocurvature perturbations have the same origin. As an explicit example, we consider the thermal inflation scenario and a string axion as a candidate for this curvaton-dark matter. We further discuss possibilities to identify the curvaton-dark matter with the QCD axion.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. Themore » resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.« less

  14. Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting.

    PubMed

    Mavor, David; Barlow, Kyle; Thompson, Samuel; Barad, Benjamin A; Bonny, Alain R; Cario, Clinton L; Gaskins, Garrett; Liu, Zairan; Deming, Laura; Axen, Seth D; Caceres, Elena; Chen, Weilin; Cuesta, Adolfo; Gate, Rachel E; Green, Evan M; Hulce, Kaitlin R; Ji, Weiyue; Kenner, Lillian R; Mensa, Bruk; Morinishi, Leanna S; Moss, Steven M; Mravic, Marco; Muir, Ryan K; Niekamp, Stefan; Nnadi, Chimno I; Palovcak, Eugene; Poss, Erin M; Ross, Tyler D; Salcedo, Eugenia C; See, Stephanie K; Subramaniam, Meena; Wong, Allison W; Li, Jennifer; Thorn, Kurt S; Conchúir, Shane Ó; Roscoe, Benjamin P; Chow, Eric D; DeRisi, Joseph L; Kortemme, Tanja; Bolon, Daniel N; Fraser, James S

    2016-04-25

    Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.

  15. The helminth community of the wood mouse Apodemus sylvaticus in a Mediterranean ecosystem in regeneration ten years after a wildfire.

    PubMed

    Fuentes, M V; Sainz-Elipe, S; Sáez-Durán, S; Galán-Puchades, M T

    2010-03-01

    This study was carried out 10 years after a wildfire in the Spanish Serra Calderona Natural Park, following a previous analysis comprising the first 5 years after the fire. Its primary aim was to elucidate the impact of this perturbation on the population biology of the wood mouse Apodemus sylvaticus, and the repercussions on its helminth community in this regenerating Mediterranean ecosystem. Second, confirmation of the ability of the parasites to tolerate environmental stressors and the effects on their transmission strategies was sought. Five hundred and sixty-four individuals of A. sylvaticus were studied in a 9-year period, from the second to the tenth post-fire year: 408 mice from the burned area and 156 from the control--non-burned--area. The helminth community for both areas and the effect of intrinsic (host age and sex) and extrinsic (site, period and year of capture) factors on helminth prevalence, abundance and diversity, and species richness were analysed. Our findings show that, after an environmental disaster, the behaviour of helminth species might be related to their pre-catastrophe presence, their biological cycles, the host's immunological condition, the change of host dynamics, the direct effects of the perturbation, and the processes related to the re-establishment of the ecological balance of a devastated ecosystem.

  16. Perturbatively deformed defects in Pöschl-Teller-driven scenarios for quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; da Rocha, Roldão

    2016-07-01

    Pöschl-Teller-driven solutions for quantum mechanical fluctuations are triggered off by single scalar field theories obtained through a systematic perturbative procedure for generating deformed defects. The analytical properties concerning the quantum fluctuations in one-dimension, zero-mode states, first- and second-excited states, and energy density profiles are all obtained from deformed topological and non-topological structures supported by real scalar fields. Results are firstly derived from an integrated λϕ4 theory, with corresponding generalizations applied to starting λχ4 and sine-Gordon theories. By focusing our calculations on structures supported by the λϕ4 theory, the outcome of our study suggests an exact quantitative correspondence to Pöschl-Teller-driven systems. Embedded into the perturbative quantum mechanics framework, such a correspondence turns into a helpful tool for computing excited states and continuous mode solutions, as well as their associated energy spectrum, for quantum fluctuations of perturbatively deformed structures. Perturbative deformations create distinct physical scenarios in the context of exactly solvable quantum systems and may also work as an analytical support for describing novel braneworld universes embedded into a 5-dimensional gravity bulk.

  17. Online contributions of auditory feedback to neural activity in avian song control circuitry

    PubMed Central

    Sakata, Jon T.; Brainard, Michael S.

    2008-01-01

    Birdsong, like human speech, relies critically on auditory feedback to provide information about the quality of vocalizations. Although the importance of auditory feedback to vocal learning is well established, whether and how feedback signals influence vocal premotor circuitry has remained obscure. Previous studies in singing birds have not detected changes to vocal premotor activity following perturbations of auditory feedback, leading to the hypothesis that contributions of feedback to vocal plasticity might rely on ‘offline’ processing. Here, we recorded single and multi-unit activity in the premotor nucleus HVC of singing Bengalese finches in response to feedback perturbations that are known to drive plastic changes in song. We found that transient feedback perturbation caused reliable decreases in HVC activity at short latencies (20-80 ms). Similar changes to HVC activity occurred in awake, non-singing finches when the bird’s own song was played back with auditory perturbations that simulated those experienced by singing birds. These data indicate that neurons in avian vocal premotor circuitry are rapidly influenced by perturbations of auditory feedback and support the possibility that feedback information in HVC contributes online to the production and plasticity of vocalizations. PMID:18971480

  18. An analysis of the impacts of global climate and emissions changes on regional tropospheric ozone

    NASA Technical Reports Server (NTRS)

    John, Kuruvilla; Crist, Kevin C.; Carmichael, Gregory R.

    1994-01-01

    Many of the synergistic impacts resulting from future changes in emissions as well as changes in ambient temperature, moisture, and UV flux have not been quantified. A three-dimensional regional-scale photo-chemical model (STEM-2) is used in this study to evaluate these perturbations to trace gas cycles over the eastern half of the United States of America. The model was successfully used to simulate a regional-scale ozone episode (base case - June 1984) and four perturbations scenarios - viz., perturbed emissions, temperature, water vapor column, and incoming UV flux cases, and a future scenario (for the year 2034). The impact of these perturbation scenarios on the distribution of ozone and other major pollutants such as SO2 and sulfates were analyzed in detail. The spatial distribution and the concentration of ozone at the surface increased by about 5-15 percent for most cases except for the perturbed water vapor case. The regional scale surface ozone concentration distribution for the year 2034 (future scenario) showed an increase of non-attainment areas. The rural areas of Pennsylvania, West Virginia, and Georgia showed the largest change in the surface ozone field for the futuristic scenario when compared to the base case.

  19. Nonplanar dust-ion acoustic shock waves with transverse perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue Jukui

    2005-01-01

    The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.

  20. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

Top