Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079
Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.
2012-01-01
Background Coronary heart disease (CHD) is a common medical problem in general practice. Due to its chronic character, shared care of the patient between general practitioner (GP) and cardiologist (C) is required. In order to improve the cooperation between both medical specialists for patients with CHD, a local treatment pathway was developed. The objective of this study was first to evaluate GPs’ opinions regarding the pathway and its practical implications, and secondly to suggest a theoretical framework of the findings by feeding the identified key factors influencing the pathway implementation into a multi-dimensional model. Methods The evaluation of the pathway was conducted in a qualitative design on a sample of 12 pathway developers (8 GPs and 4 cardiologists) and 4 pathway users (GPs). Face-to face interviews, which were aligned with previously conducted studies of the department and assumptions of the theory of planned behaviour (TPB), were performed following a semi-structured interview guideline. These were audio-taped, transcribed verbatim, coded, and analyzed according to the standards of qualitative content analysis. Results We identified 10 frequently mentioned key factors having an impact on the implementation success of the CHD treatment pathway. We thereby differentiated between pathway related (pathway content, effort, individual flexibility, ownership), behaviour related (previous behaviour, support), interaction related (patient, shared care/colleagues), and system related factors (context, health care system). The overall evaluation of the CHD pathway was positive, but did not automatically lead to a change of clinical behaviour as some GPs felt to have already acted as the pathway recommends. Conclusions By providing an account of our experience creating and implementing an intersectoral care pathway for CHD, this study contributes to our knowledge of factors that may influence physicians’ decisions regarding the use of a local treatment pathway. An improved adaptation of the pathway in daily practice might be best achieved by a combined implementation strategy addressing internal and external factors. A simple, direct adaptation regards the design of the pathway material (e.g. layout, PC version), or the embedding of the pathway in another programme, like a Disease Management Programme (DMP). In addition to these practical implications, we propose a theoretical framework to understand the key factors’ influence on the pathway implementation, with the identified factors along the microlevel (pathway related factors), the mesolevel (interaction related factors), and system- related factors along the macrolevel. PMID:22584032
Kramer, Lena; Schlößler, Kathrin; Träger, Susanne; Donner-Banzhoff, Norbert
2012-05-14
Coronary heart disease (CHD) is a common medical problem in general practice. Due to its chronic character, shared care of the patient between general practitioner (GP) and cardiologist (C) is required. In order to improve the cooperation between both medical specialists for patients with CHD, a local treatment pathway was developed. The objective of this study was first to evaluate GPs' opinions regarding the pathway and its practical implications, and secondly to suggest a theoretical framework of the findings by feeding the identified key factors influencing the pathway implementation into a multi-dimensional model. The evaluation of the pathway was conducted in a qualitative design on a sample of 12 pathway developers (8 GPs and 4 cardiologists) and 4 pathway users (GPs). Face-to face interviews, which were aligned with previously conducted studies of the department and assumptions of the theory of planned behaviour (TPB), were performed following a semi-structured interview guideline. These were audio-taped, transcribed verbatim, coded, and analyzed according to the standards of qualitative content analysis. We identified 10 frequently mentioned key factors having an impact on the implementation success of the CHD treatment pathway. We thereby differentiated between pathway related (pathway content, effort, individual flexibility, ownership), behaviour related (previous behaviour, support), interaction related (patient, shared care/colleagues), and system related factors (context, health care system). The overall evaluation of the CHD pathway was positive, but did not automatically lead to a change of clinical behaviour as some GPs felt to have already acted as the pathway recommends. By providing an account of our experience creating and implementing an intersectoral care pathway for CHD, this study contributes to our knowledge of factors that may influence physicians' decisions regarding the use of a local treatment pathway. An improved adaptation of the pathway in daily practice might be best achieved by a combined implementation strategy addressing internal and external factors. A simple, direct adaptation regards the design of the pathway material (e.g. layout, PC version), or the embedding of the pathway in another programme, like a Disease Management Programme (DMP). In addition to these practical implications, we propose a theoretical framework to understand the key factors' influence on the pathway implementation, with the identified factors along the microlevel (pathway related factors), the mesolevel (interaction related factors), and system- related factors along the macrolevel.
Quiñones, Karin D; Su, Hua; Marshall, Byron; Eggers, Shauna; Chen, Hsinchun
2007-09-01
Explosive growth in biomedical research has made automated information extraction, knowledge integration, and visualization increasingly important and critically needed. The Arizona BioPathway (ABP) system extracts and displays biological regulatory pathway information from the abstracts of journal articles. This study uses relations extracted from more than 200 PubMed abstracts presented in a tabular and graphical user interface with built-in search and aggregation functionality. This paper presents a task-centered assessment of the usefulness and usability of the ABP system focusing on its relation aggregation and visualization functionalities. Results suggest that our graph-based visualization is more efficient in supporting pathway analysis tasks and is perceived as more useful and easier to use as compared to a text-based literature-viewing method. Relation aggregation significantly contributes to knowledge-acquisition efficiency. Together, the graphic and tabular views in the ABP Visualizer provide a flexible and effective interface for pathway relation browsing and analysis. Our study contributes to pathway-related research and biological information extraction by assessing the value of a multiview, relation-based interface that supports user-controlled exploration of pathway information across multiple granularities.
Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Lu, Guohui; Huang, Tao; Cai, Yu-Dong
2017-02-01
Cancer is a disease that involves abnormal cell growth and can invade or metastasize to other tissues. It is known that several factors are related to its initiation, proliferation, and invasiveness. Recently, it has been reported that long non-coding RNAs (lncRNAs) can participate in specific functional pathways and further regulate the biological function of cancer cells. Studies on lncRNAs are therefore helpful for uncovering the underlying mechanisms of cancer biological processes. We investigated cancer-related lncRNAs using gene ontology (GO) terms and KEGG pathway enrichment scores of neighboring genes that are co-expressed with the lncRNAs by extracting important GO terms and KEGG pathways that can help us identify cancer-related lncRNAs. The enrichment theory of GO terms and KEGG pathways was adopted to encode each lncRNA. Then, feature selection methods were employed to analyze these features and obtain the key GO terms and KEGG pathways. The analysis indicated that the extracted GO terms and KEGG pathways are closely related to several cancer associated processes, such as hormone associated pathways, energy associated pathways, and ribosome associated pathways. And they can accurately predict cancer-related lncRNAs. This study provided novel insight of how lncRNAs may affect tumorigenesis and which pathways may play important roles during it. These results could help understanding the biological mechanisms of lncRNAs and treating cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparative study of visual pathways in owls (Aves: Strigiformes).
Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Lisney, Thomas J; Wylie, Douglas R
2013-01-01
Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer. Copyright © 2012 S. Karger AG, Basel.
Xu, Song; Liu, Renwang; Da, Yurong
2018-06-05
This study compared tumor-related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma (LUAD) treatment. Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses were performed based on LUAD differentially expressed genes from The Cancer Genome Atlas (TCGA) project and genotype-tissue expression controls. These results were compared to various known compounds using the Connectivity Mapping dataset. The clinical significance of the hub genes identified by overlapping pathway enrichment analysis was further investigated using data mining from multiple sources. A drug-pathway network for LUAD was constructed, and molecular docking was carried out. After the integration of 57 LUAD-related pathways and 35 pathways affected by small molecules, five overlapping pathways were revealed. Among these five pathways, the p53 signaling pathway was the most significant, with CCNB1, CCNB2, CDK1, CDKN2A, and CHEK1 being identified as hub genes. The p53 signaling pathway is implicated as a risk factor for LUAD tumorigenesis and survival. A total of 88 molecules significantly inhibiting the five LUAD-related oncogenic pathways were involved in the LUAD drug-pathway network. Daunorubicin, mycophenolic acid, and pyrvinium could potentially target the hub gene CHEK1 directly. Our study highlights the critical pathways that should be targeted in the search for potential LUAD treatments, most importantly, the p53 signaling pathway. Some compounds, such as ciclopirox and AG-028671, may have potential roles for LUAD treatment but require further experimental verification. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao
2015-01-01
Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.
Zhao, Min; Li, XiaoMo; Qu, Hong
2013-12-01
Eating disorder is a group of physiological and psychological disorders affecting approximately 1% of the female population worldwide. Although the genetic epidemiology of eating disorder is becoming increasingly clear with accumulated studies, the underlying molecular mechanisms are still unclear. Recently, integration of various high-throughput data expanded the range of candidate genes and started to generate hypotheses for understanding potential pathogenesis in complex diseases. This article presents EDdb (Eating Disorder database), the first evidence-based gene resource for eating disorder. Fifty-nine experimentally validated genes from the literature in relation to eating disorder were collected as the core dataset. Another four datasets with 2824 candidate genes across 601 genome regions were expanded based on the core dataset using different criteria (e.g., protein-protein interactions, shared cytobands, and related complex diseases). Based on human protein-protein interaction data, we reconstructed a potential molecular sub-network related to eating disorder. Furthermore, with an integrative pathway enrichment analysis of genes in EDdb, we identified an extended adipocytokine signaling pathway in eating disorder. Three genes in EDdb (ADIPO (adiponectin), TNF (tumor necrosis factor) and NR3C1 (nuclear receptor subfamily 3, group C, member 1)) link the KEGG (Kyoto Encyclopedia of Genes and Genomes) "adipocytokine signaling pathway" with the BioCarta "visceral fat deposits and the metabolic syndrome" pathway to form a joint pathway. In total, the joint pathway contains 43 genes, among which 39 genes are related to eating disorder. As the first comprehensive gene resource for eating disorder, EDdb ( http://eddb.cbi.pku.edu.cn ) enables the exploration of gene-disease relationships and cross-talk mechanisms between related disorders. Through pathway statistical studies, we revealed that abnormal body weight caused by eating disorder and obesity may both be related to dysregulation of the novel joint pathway of adipocytokine signaling. In addition, this joint pathway may be the common pathway for body weight regulation in complex human diseases related to unhealthy lifestyle.
Relational Identities of Students, Families, and Educators: Shaping Educational Pathways
ERIC Educational Resources Information Center
March, Evangelia; Gaffney, Janet S.
2010-01-01
This retrospective study sketched the educational pathways of two seniors attending an alternative high school in an attempt to discern how relational identities of students, families, and educators are defining forces of such pathways. Cumulative school records and special education files were triangulated with interviews of the students, their…
Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice
NASA Astrophysics Data System (ADS)
Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun
2017-01-01
Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome.
Waugh, Stacey; Kashon, Michael L; Li, Shengqiao; Miller, Gerome R; Johnson, Claud; Krajnak, Kristine
2016-04-01
The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division.
Correlated cone noise decreases rod signal contributions to the post-receptoral pathways.
Hathibelagal, Amithavikram R; Feigl, Beatrix; Zele, Andrew J
2018-04-01
This study investigated how invisible extrinsic temporal white noise that correlates with the activity of one of the three [magnocellular (MC), parvocellular (PC), or koniocellular (KC)] post-receptoral pathways alters mesopic rod signaling. A four-primary photostimulator provided independent control of the rod and three cone photoreceptor excitations. The rod contributions to the three post-receptoral pathways were estimated by perceptually matching a 20% contrast rod pulse by independently varying the LMS (MC pathway), +L-M (PC pathway), and S-cone (KC pathway) excitations. We show that extrinsic cone noise caused a predominant decrease in the overall magnitude and ratio of the rod contributions to each pathway. Thus, the relative cone activity in the post-receptoral pathways determines the relative mesopic rod inputs to each pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana
2014-10-15
According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro.more » Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.« less
Ou, Yang; Shi, Wenjing; Smith, Steven J; Ledna, Catherine M; West, J Jason; Nolte, Christopher G; Loughlin, Daniel H
2018-04-15
There are many technological pathways that can lead to reduced carbon dioxide emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the energy system to compare environmental impacts of alternative low-carbon pathways for the United States. One set of pathways emphasizes nuclear energy and carbon capture and storage, while another set emphasizes renewable energy, including wind, solar, geothermal power, and bioenergy. These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter smaller than 2.5 μm in diameter, and energy-related water demands are evaluated for 50% and 80% carbon dioxide reduction targets in 2050. The renewable low-carbon pathways require less water withdrawal and consumption than the nuclear and carbon capture pathways. However, the renewable low-carbon pathways modeled in this study produce higher particulate matter-related mortality costs due to greater use of biomass in residential heating. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies.
Malhotra, Jyoti; Sartori, Samantha; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Świątkowska, Beata; Rudnai, Peter; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Gaborieau, Valerie; Stücker, Isabelle; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo
2015-03-01
Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR. ©2015 American Association for Cancer Research.
Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju
2017-04-27
Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
Muntaner, Carles; Solar, Orielle; Vanroelen, Christophe; Martínez, José Miguel; Vergara, Montserrat; Santana, Vilma; Castedo, Antía; Kim, Il-Ho; Benach, Joan
2010-01-01
The study explores the pathways and mechanisms of the relation between employment conditions and health inequalities. A significant amount of published research has proved that workers in several risky types of labor--precarious employment, unemployment, informal labor, child and bonded labor--are exposed to behavioral, psychosocial, and physio-pathological pathways leading to physical and mental health problems. Other pathways, linking employment to health inequalities, are closely connected to hazardous working conditions (material and social deprivation, lack of social protection, and job insecurity), excessive demands, and unattainable work effort, with little power and few rewards (in salaries, fringe benefits, or job stability). Differences across countries in the social contexts and types of jobs result in varying pathways, but the general conceptual model suggests that formal and informal power relations between employees and employers can determine health conditions. In addition, welfare state regimes (unionization and employment protection) can increase or decrease the risk of mortality, morbidity, and occupational injury. In a multilevel context, however, these micro- and macro-level pathways have yet to be fully studied, especially in middle- and low-income countries. The authors recommend some future areas of study on the pathways leading to employment-related health inequalities, using worldwide standard definitions of the different forms of labor, authentic data, and a theoretical framework.
Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang
2018-06-05
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.
Twelkmeyer, Brigitte; Tardif, Nicolas; Rooyackers, Olav
2017-05-01
The purpose of this review is to recapture recent advances in cachexia-related diseases, mainly cancer cachexia, and treatment using genomic, transcriptomics, proteomic, and metabolomics-related techniques. From recent studies in the cancer cachexia field it is clear that the tumor has a direct effect on distant organs via its secretome. The affected pathways on the other hand were largely known from earlier studies with changes in energy-related pathways (mainly lipid metabolism) and the protein degradation pathways. Treatment-oriented studies use mostly rodent models and in-vivo cultures and it is too early for human studies. Omics tools are powerful if used in the right way. Omics research has identified the tumor as an important player in cancer cachexia and some interesting novel treatments have been found in experimental models.
Psychological Perspectives on Pathways Linking Socioeconomic Status and Physical Health
Matthews, Karen A.; Gallo, Linda C.
2011-01-01
Low socioeconomic status (SES) is a reliable correlate of poor physical health. Rather than treat SES as a covariate, health psychology has increasingly focused on the psychobiological pathways that inform understanding why SES is related to physical health. This review assesses the status of research that has examined stress and its associated distress, and social and personal resources as pathways. It highlights work on biomarkers and biological pathways related to SES that can serve as intermediate outcomes in future studies. Recent emphasis on the accumulation of psychobiological risks across the life course is summarized and represents an important direction for future research. Studies that test pathways from SES to candidate psychosocial pathways to health outcomes are few in number but promising. Future research should test integrated models rather than taking piecemeal approaches to evidence. Much work remains to be done, but the questions are of great health significance. PMID:20636127
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome
Waugh, Stacey; Kashon, Michael L.; Li, Shengqiao; Miller, Gerome R.; Johnson, Claud; Krajnak, Kristine
2016-01-01
Objective The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Methods Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s2, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Results Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Conclusion Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division. PMID:27058473
Yoon, Susan; Kobulsky, Julia M.; Yoon, Dalhee; Kim, Wonhee
2018-01-01
While many studies have identified a significant relation between child maltreatment and adolescent substance use, the developmental pathways linking this relation remain sparsely explored. The current study examines posttraumatic stress (PTS) symptoms, mother-child relationships, and internalizing and externalizing problems as potential longitudinal pathways through which child maltreatment influences adolescent substance use. Structural equation modeling was conducted on 883 adolescents drawn from the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN). The pathways of PTS symptoms linked physical and sexual abuse to substance use, and the pathways of mother-child relationships linked emotional abuse and neglect to substance use. None of the four types of maltreatment affected substance use via internalizing or externalizing problems. The findings suggest that intervention efforts aimed at addressing posttraumatic stress symptoms and improving mother-child relationship quality may be beneficial in reducing substance use among adolescents with child maltreatment histories. PMID:29503490
Ye, Yaqiong; Lin, Shumao; Mu, Heping; Tang, Xiaohong; Ou, Yangdan; Chen, Jian; Ma, Yongjiang; Li, Yugu
2014-01-01
Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF-β/SMAD3 and Wnt/catenin-β pathway). PMID:24757673
Visual Pathway Deficit in Female Fragile X Premutation Carriers: A Potential Endophenotype
ERIC Educational Resources Information Center
Keri, Szabolcs; Benedek, Gyorgy
2009-01-01
Previous studies indicated impaired magnocellular (M) and relatively spared parvocellular (P) visual pathway functioning in patients with fragile X syndrome. In this study, we assessed M and P pathways in 22 female fragile X premutation carriers with normal intelligence and in 20 healthy non-carrier controls. Testing procedure included visual…
Stier, Antoine; Reichert, Sophie; Criscuolo, Francois; Bize, Pierre
2015-11-01
Ageing is characterized by a progressive deterioration of multiple physiological and molecular pathways, which impair organismal performance and increase risks of death with advancing age. Hence, ageing studies must identify physiological and molecular pathways that show signs of age-related deterioration, and test their association with the risk of death and longevity. This approach necessitates longitudinal sampling of the same individuals, and therefore requires a minimally invasive sampling technique that provides access to the larger spectrum of physiological and molecular pathways that are putatively associated with ageing. The present paper underlines the interest in using red blood cells (RBCs) as a promising target for longitudinal studies of ageing in vertebrates. RBCs provide valuable information on the following six pathways: cell maintenance and turnover (RBC number, size, and heterogeneity), glucose homeostasis (RBC glycated haemoglobin), oxidative stress parameters, membrane composition and integrity, mitochondrial functioning, and telomere dynamics. The last two pathways are specific to RBCs of non-mammalian species, which possess a nucleus and functional mitochondria. We present the current knowledge about RBCs and age-dependent changes in these pathways in non-model and wild species that are especially suitable to address questions related to ageing using longitudinal studies. We discuss how the different pathways relate with survival and lifespan and give information on their genetic and environmental determinants to appraise their evolutionary potential. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke
Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expressionmore » were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.« less
Observed and Modeled Pathways of the Iceland Scotland Overflow Water in the eastern North Atlantic
NASA Astrophysics Data System (ADS)
Zou, Sijia; Lozier, Susan; Zenk, Walter; Bower, Amy; Johns, William
2017-04-01
The Iceland Scotland Overflow Water (ISOW), one of the major components of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC), is formed in the Nordic Seas and enters the eastern North Atlantic subpolar gyre via the Iceland-Scotland sill. After entraining the ambient waters, the relatively homogeneous ISOW spreads southward into the North Atlantic. An understanding of the distribution and variability of the spreading pathways of the ISOW is fundamental to our understanding of AMOC structure and variability. Three major ISOW pathways have been identified in the eastern North Atlantic by previous studies: 1) across the Reykjanes Ridge via deep gaps, 2) through the Charlie Gibbs Fracture Zone, and 3) southward along the eastern flank of the Mid Atlantic Ridge (MAR). However, most of these studies were conducted using an Eulerian frame with limited observations, especially for the third pathway along the eastern flank of the MAR. In this work, we give a comprehensive description of ISOW pathways in the Eulerian and Lagrangian frames, quantify the relative importance of each pathway and examine the temporal variability of these pathways. Our study distinguishes itself from past studies by using both Eulerian (current meter data) and Lagrangian (eddy-resolving RAFOS float data) observations in combination with modeling output (1/12° FLAME) to describe ISOW spreading pathways and their variability.
"I Am-We Are": Personal and Social Pathways to Further Study, Work and Family Life
ERIC Educational Resources Information Center
Bornholt, L. J.; Maras, P. M.; Robinson, R. A.
2009-01-01
This project explores the apparent layers in motivation for young people's plans in order to extend Pathways Theory. We bring together personal, relational and group motivation to explain the planned pathways to study, work and family life. Location was an Australian town, close to the national socio-economic average, to control broad social…
Genome scale transcriptomics of baculovirus-insect interactions.
Nguyen, Quan; Nielsen, Lars K; Reid, Steven
2013-11-12
Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences
Zhang, Ye; Moreno-Villanueva, Maria; Krieger, Stephanie; Ramesh, Govindarajan T.; Neelam, Srujana; Wu, Honglu
2017-01-01
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space. PMID:28561779
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences.
Zhang, Ye; Moreno-Villanueva, Maria; Krieger, Stephanie; Ramesh, Govindarajan T; Neelam, Srujana; Wu, Honglu
2017-05-31
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.
Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis
Newaz, Khalique; Sriram, K.; Bera, Debajyoti
2015-01-01
Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these immunological pathways occupy influential positions in the PFNs (protein functional networks) that are related to prion disease. Importantly, this functional network involvement is prevalent in all the five different mouse strain-prion strain combinations that we studied. We also conclude that the dysregulation of the core elements of the bow-tie structure, which belongs to PI3K-Akt signaling pathway, leads to dysregulation of the downstream components corresponding to other biological pathways. PMID:26646948
Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei
2013-01-01
Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.
Different Pathways Explain Alcohol-Related Problems in Female and Male College Students
ERIC Educational Resources Information Center
Pedrelli, Paola; Collado, Anahi; Shapero, Benjamin G.; Brill, Charlotte; MacPherson, Laura
2016-01-01
Objectives: Comprehensive models elucidating the intricate associations of depressive symptoms, coping motives, alcohol use, alcohol-related problems (ARPs), and gender among young adults have been scarcely examined. This study investigated relationships among these variables and the effect of gender on these pathways. Methods: College students (N…
Deziel, Nicole C; Freeman, Laura E Beane; Graubard, Barry I; Jones, Rena R; Hoppin, Jane A; Thomas, Kent; Hines, Cynthia J; Blair, Aaron; Sandler, Dale P; Chen, Honglei; Lubin, Jay H; Andreotti, Gabriella; Alavanja, Michael C R; Friesen, Melissa C
2017-03-01
Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. To guide future exposure assessment efforts, we quantified relative contributions of these pathways using meta-regression models of published data on dust pesticide concentrations. From studies in North American agricultural areas published from 1995 to 2015, we abstracted dust pesticide concentrations reported as summary statistics [e.g., geometric means (GM)]. We analyzed these data using mixed-effects meta-regression models that weighted each summary statistic by its inverse variance. Dependent variables were either the log-transformed GM (drift) or the log-transformed ratio of GMs from two groups (para-occupational, residential use). For the drift pathway, predicted GMs decreased sharply and nonlinearly, with GMs 64% lower in homes 250 m versus 23 m from fields (interquartile range of published data) based on 52 statistics from seven studies. For the para-occupational pathway, GMs were 2.3 times higher [95% confidence interval (CI): 1.5, 3.3; 15 statistics, five studies] in homes of farmers who applied pesticides more recently or frequently versus less recently or frequently. For the residential use pathway, GMs were 1.3 (95% CI: 1.1, 1.4) and 1.5 (95% CI: 1.2, 1.9) times higher in treated versus untreated homes, when the probability that a pesticide was used for the pest treatment was 1-19% and ≥ 20%, respectively (88 statistics, five studies). Our quantification of the relative contributions of pesticide exposure pathways in agricultural populations could improve exposure assessments in epidemiologic studies. The meta-regression models can be updated when additional data become available. Citation: Deziel NC, Beane Freeman LE, Graubard BI, Jones RR, Hoppin JA, Thomas K, Hines CJ, Blair A, Sandler DP, Chen H, Lubin JH, Andreotti G, Alavanja MC, Friesen MC. 2017. Relative contributions of agricultural drift, para-occupational, and residential use exposure pathways to house dust pesticide concentrations: meta-regression of published data. Environ Health Perspect 125:296-305; http://dx.doi.org/10.1289/EHP426.
Deziel, Nicole C.; Freeman, Laura E. Beane; Graubard, Barry I.; Jones, Rena R.; Hoppin, Jane A.; Thomas, Kent; Hines, Cynthia J.; Blair, Aaron; Sandler, Dale P.; Chen, Honglei; Lubin, Jay H.; Andreotti, Gabriella; Alavanja, Michael C. R.; Friesen, Melissa C.
2016-01-01
Background: Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. Objective: To guide future exposure assessment efforts, we quantified relative contributions of these pathways using meta-regression models of published data on dust pesticide concentrations. Methods: From studies in North American agricultural areas published from 1995 to 2015, we abstracted dust pesticide concentrations reported as summary statistics [e.g., geometric means (GM)]. We analyzed these data using mixed-effects meta-regression models that weighted each summary statistic by its inverse variance. Dependent variables were either the log-transformed GM (drift) or the log-transformed ratio of GMs from two groups (para-occupational, residential use). Results: For the drift pathway, predicted GMs decreased sharply and nonlinearly, with GMs 64% lower in homes 250 m versus 23 m from fields (interquartile range of published data) based on 52 statistics from seven studies. For the para-occupational pathway, GMs were 2.3 times higher [95% confidence interval (CI): 1.5, 3.3; 15 statistics, five studies] in homes of farmers who applied pesticides more recently or frequently versus less recently or frequently. For the residential use pathway, GMs were 1.3 (95% CI: 1.1, 1.4) and 1.5 (95% CI: 1.2, 1.9) times higher in treated versus untreated homes, when the probability that a pesticide was used for the pest treatment was 1–19% and ≥ 20%, respectively (88 statistics, five studies). Conclusion: Our quantification of the relative contributions of pesticide exposure pathways in agricultural populations could improve exposure assessments in epidemiologic studies. The meta-regression models can be updated when additional data become available. Citation: Deziel NC, Beane Freeman LE, Graubard BI, Jones RR, Hoppin JA, Thomas K, Hines CJ, Blair A, Sandler DP, Chen H, Lubin JH, Andreotti G, Alavanja MC, Friesen MC. 2017. Relative contributions of agricultural drift, para-occupational, and residential use exposure pathways to house dust pesticide concentrations: meta-regression of published data. Environ Health Perspect 125:296–305; http://dx.doi.org/10.1289/EHP426 PMID:27458779
Balatsoukas, Panos; Williams, Richard; Davies, Colin; Ainsworth, John; Buchan, Iain
2015-11-01
Integrated care pathways (ICPs) define a chronological sequence of steps, most commonly diagnostic or treatment, to be followed in providing care for patients. Care pathways help to ensure quality standards are met and to reduce variation in practice. Although research on the computerisation of ICP progresses, there is still little knowledge on what are the requirements for designing user-friendly and usable electronic care pathways, or how users (normally health care professionals) interact with interfaces that support design, analysis and visualisation of ICPs. The purpose of the study reported in this paper was to address this gap by evaluating the usability of a novel web-based tool called COCPIT (Collaborative Online Care Pathway Investigation Tool). COCPIT supports the design, analysis and visualisation of ICPs at the population level. In order to address the aim of this study, an evaluation methodology was designed based on heuristic evaluations and a mixed method usability test. The results showed that modular visualisation and direct manipulation of information related to the design and analysis of ICPs is useful for engaging and stimulating users. However, designers should pay attention to issues related to the visibility of the system status and the match between the system and the real world, especially in relation to the display of statistical information about care pathways and the editing of clinical information within a care pathway. The paper concludes with recommendations for interface design.
Rodrigues, Luis P; Stodden, David F; Lopes, Vítor P
2016-01-01
To test how different developmental pathways of health-related physical fitness and motor competence tests relate to weight status (overweight and obesity) at the end of primary school. Longitudinal study on growth, health-related physical fitness, and motor competence of 472 primary school children assessed yearly throughout 1st to 4th grade, with an average age of 6.3±0.7 years of age at 1st grade. Children's pathways of change on each of the fitness and motor competence tests were determined along the four years of the study. Participants were divided into three groups according to their rate of change in each test over time: Low Rate of Change, Average Rate of Change, and High Rate of Change. A logistic regression was used to predict the odds ratio of becoming overweight or obese, depending on the developmental pathway of change in fitness and motor competence across childhood. Children with a low or average rate of change in their developmental pathways of fitness and motor competence were several times more prone to become overweight or obese at the end of primary school (OR 2.0 to 6.3), independent of sex and body mass index at baseline. Specifically, a negative developmental pathway (Low Rate of Change) in cardiorespiratory fitness demonstrated over a six-fold elevated risk of being overweight or obese, compared to peers with a positive pathway. Not all children improve their motor competence and fitness levels over time and many actually regress over time. Developing positive fitness and motor competence pathways during childhood protects from obesity and overweight. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
There are many technological pathways that can lead to reduced carbon dioxide emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessmen...
Comorbidity of Anxiety and Depression in Children and Adolescents: 20 Years After
Cummings, Colleen M.; Caporino, Nicole E.; Kendall, Philip C.
2014-01-01
Brady and Kendall (1992) concluded that although anxiety and depression in youth are meaningfully linked, there are important distinctions, and additional research was needed. Since then, studies of anxiety-depression comorbidity in youth have increased exponentially. Following a discussion of comorbidity, we review existing conceptual models and propose a multiple pathways model to anxiety-depression comorbidity. Pathway 1 describes youth with a diathesis for anxiety, with subsequent comorbid depression resulting from anxiety-related impairment. Pathway 2 refers to youth with a shared diathesis for anxiety and depression, who may experience both disorders simultaneously. Pathway 3 describes youth with a diathesis for depression, with subsequent comorbid anxiety resulting from depression-related impairment. Additionally, shared and stratified risk factors contribute to the development of the comorbid disorder, either by interacting with disorder-related impairment or by predicting the simultaneous development of the disorders. Our review addresses descriptive and developmental factors, gender differences, suicidality, assessments, and treatment-outcome research as they relate to comorbid anxiety and depression, and to our proposed pathways. Research since 1992 indicates that comorbidity varies depending on the specific anxiety disorder, with Pathway 1 describing youth with either social phobia or separation anxiety disorder and subsequent depression, Pathway 2 applying to youth with co-primary generalized anxiety disorder and depression, and Pathway 3 including depressed youth with subsequent social phobia. The need to test the proposed multiple pathways model and to examine (a) developmental change and (b) specific anxiety disorders is highlighted. PMID:24219155
Comorbidity of anxiety and depression in children and adolescents: 20 years after.
Cummings, Colleen M; Caporino, Nicole E; Kendall, Philip C
2014-05-01
Brady and Kendall (1992) concluded that although anxiety and depression in youths are meaningfully linked, there are important distinctions, and additional research is needed. Since then, studies of anxiety-depression comorbidity in youths have increased exponentially. Following a discussion of comorbidity, we review existing conceptual models and propose a multiple pathways model to anxiety-depression comorbidity. Pathway 1 describes youths with a diathesis for anxiety, with subsequent comorbid depression resulting from anxiety-related impairment. Pathway 2 refers to youths with a shared diathesis for anxiety and depression, who may experience both disorders simultaneously. Pathway 3 describes youths with a diathesis for depression, with subsequent comorbid anxiety resulting from depression-related impairment. Additionally, shared and stratified risk factors contribute to the development of the comorbid disorder, either by interacting with disorder-related impairment or by predicting the simultaneous development of the disorders. Our review addresses descriptive and developmental factors, gender differences, suicidality, assessments, and treatment-outcome research as they relate to comorbid anxiety and depression and to our proposed pathways. Research since 1992 indicates that comorbidity varies depending on the specific anxiety disorder, with Pathway 1 describing youths with either social phobia or separation anxiety disorder and subsequent depression, Pathway 2 applying to youths with coprimary generalized anxiety disorder and depression, and Pathway 3 including depressed youths with subsequent social phobia. The need to test the proposed multiple pathways model and to examine (a) developmental change and (b) specific anxiety disorders is highlighted.
ERIC Educational Resources Information Center
Clement, Pierre; Mouelhi, Lassaad; Kochkar, Momahed; Valanides, Nicos; Nisiforou, Olia; Thiaw, Seyni Mame; Ndiaye, Valdiodio; Jeanbart, Paula; Horvath, Daniel; Ferreira, Claudia; Carvalho, Graca S.
2010-01-01
In the human brain, the neuronal pathways are networks which support our learning, memory and thought, and which work with permanent feedback. However, only 19% of illustrations of these neuronal pathways, in the 55 analysed school textbooks coming from 15 countries, were showing feedbacks. The neuronal pathways related to movements were generally…
Bu, Xiangmei; Wang, Bo; Wang, Yaoqi; Wang, Zhigang; Gong, Chunzhi; Qi, Feng; Zhang, Caixia
2017-07-01
Off-pump coronary artery bypass graft (CABG) surgery has recently emerged as a means to avoid the sequelae of extracorporeal circulation, including the whole-body inflammatory response, coagulation disorders and multiple organ dysfunction. At present, gas anesthesia, sevoflurane and intravenous anesthesia and propofol have been widely used during the CABG. To further understand the underlying mechanisms of these anesthetics on the gene level, the present study conducted pathway-related module analysis based on a co-expression network. This was performed in order to identify significant pathways in coronary artery disease patients who had undergone off-pump CABG surgery before and after applying sevoflurane or propofol. A total of 269 and 129 differentially expressed genes were obtained in the sevoflurane and propofol groups, respectively. In total, eight and seven pathways (P<0.05) in the sevoflurane and propofol groups were separately obtained via Kyoto Encyclopedia of Genes and Genome pathway analysis. Finally, eight and seven pathway-related modules in the sevoflurane and propofol groups were obtained, respectively. Furthermore, the mean degree of complement and coagulation cascades pathway-related module in both of the groups was the highest. It was predicted that during the CABG, the anesthetics might activate the complement and coagulation systems in order to possess some cardioprotective properties.
Shim, Unjin; Kim, Han-Na; Sung, Yeon-Ah; Kim, Hyung-Lae
2014-12-01
Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, 52.2 ± 8.9 years; body mass index, 24.6 ± 3.2 kg/m(2)). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < 5 × 10(-6)), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < 1.38 × 10(-7), Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-01-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS. PMID:28949383
Cui, Huan-Xian; Liu, Ran-Ran; Zhao, Gui-Ping; Zheng, Mai-Qing; Chen, Ji-Lan; Wen, Jie
2012-05-30
Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34-70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here.
Chen, Yue; Shen, Qi; Lin, Renan; Zhao, Zhuangliu; Shen, Chenjia; Sun, Chongbo
2017-10-01
Artificial control of flowering time is pivotal for the ornamental value of orchids including the genus Dendrobium. Although various flowering pathways have been revealed in model plants, little information is available on the genetic regualtion of flowering in Dendrobium. To identify the critical genes associated with flowering, transcriptomes from four organs (leaf, root, stem and flower) of D. officinale were analyzed in our study. In total, 2645 flower-specific transcripts were identified. Functional annotation and classification suggested that several metabolic pathways, including four sugar-related pathways and two fatty acid-related pathways, were enriched. A total of 24 flowering-related transcripts were identified in D. officinale according to the similarities to their homologous genes from Arabidopsis, suggesting that most classical flowering pathways existed in D. officinale. Furthermore, phylogenetic analysis suggested that the FLOWERING LOCUS T homologs in orchids are highly conserved during evolution process. In addition, expression changes in nine randomly-selected critical flowering-related transcripts between the vegetative stage and reproductive stage were quantified by qRT-PCR analysis. Our study provided a number of candidate genes and sequence resources for investigating the mechanisms underlying the flowering process of the Dendrobium genus. Copyright © 2017. Published by Elsevier Masson SAS.
Mason, Tyler B; Lewis, Robin J
2015-08-01
The dual pathway model is a widely accepted model of binge eating that focuses on the role of sociocultural factors, negative affect, and dietary restraint. However, less is known about demographic (e.g., gender and ethnicity) differences in the model and the role of other variables in the model. To further our understanding of the dual pathway model of binge eating, the current study examined the role of demographics (i.e., gender, race, BMI, parental education and obesity), impulsivity, and food-related cognitions in the dual pathway model. A sample of college students completed a battery of measures. Multi-group structural equation modeling was used to evaluate the dual pathway model separately for men and women. Results supported the dual pathway model of binge eating among men and women, and also supported food-related cognitions as an important variable prior to binge eating. In other words, body shame was associated with more dietary restraint and negative affect, and in turn, dietary restraint and negative affect were associated with increased negative food-related cognitions. Then, food-related cognitions predicted binge eating. Additionally impulsivity was related to body shame, negative affect, and food-related cognitions, but was unrelated to binge eating after controlling for the other variables. Racial differences existed among women in BMI and body shame, but there were no racial differences among men. Our results suggest that the dual pathway model adequately explains binge eating among men and women, but that food-related cognitions may be an imporant anteceden to binge eating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Dafu; Guo, Rui; Xu, Xijian; Xiong, Cuiling; Liang, Qin; Zheng, Yanzhen; Luo, Qun; Zhang, Zhaonan; Huang, Zhijian; Kumar, Dhiraj; Xi, Weijun; Zou, Xuan; Liu, Min
2017-07-20
Honeybees are susceptible to a variety of diseases, including chalkbrood, which is capable of causing huge losses of both the number of bees and colony productivity. This research is designed to characterize the transcriptome profiles of Ascosphaera apis-treated and un-treated larval guts of Apis mellifera ligustica in an attempt to unravel the molecular mechanism underlying the immune responses of western honeybee larval guts to mycosis. In this study, 24, 296 and 2157 genes were observed to be differentially expressed in A. apis-treated Apis mellifera (4-, 5- and 6-day-old) compared with un-treated larval guts. Moreover, the expression patterns of differentially expressed genes (DEGs) were examined via trend analysis, and subsequently, gene ontology analysis and KEGG pathway enrichment analysis were conducted for DEGs involved in up- and down-regulated profiles. Immunity-related pathways were selected for further analysis, and our results demonstrated that a total of 13 and 50 DEGs were annotated in the humoral immune-related and cellular immune-related pathways, respectively. Additionally, we observed that many DEGs up-regulated in treated guts were part of cellular immune pathways, such as the lysosome, ubiquitin mediated proteolysis, and insect hormone biosynthesis pathways and were induced by A. apis invasion. However, more down-regulated DEGs were restrained. Surprisingly, a majority of DEGs within the Toll-like receptor signaling pathway, and the MAPK signaling pathway were up-regulated in treated guts, while all but two genes involved in the NF-κB signaling pathway were down-regulated, which suggested that most genes involved in humoral immune-related pathways were activated in response to the invasive fungal pathogen. This study's findings provide valuable information regarding the investigation of the molecular mechanism of immunity defenses of A. m. ligustica larval guts to infection with A. apis. Furthermore, these studies lay the groundwork for future researches on key genes controlling the susceptibility of A. m. ligustica larvae to chalkbrood. Copyright © 2017 Elsevier B.V. All rights reserved.
2014-01-01
Background Due to the recent European legislations posing a ban of animal tests for safety assessment within the cosmetic industry, development of in vitro alternatives for assessment of skin sensitization is highly prioritized. To date, proposed in vitro assays are mainly based on single biomarkers, which so far have not been able to classify and stratify chemicals into subgroups, related to risk or potency. Methods Recently, we presented the Genomic Allergen Rapid Detection (GARD) assay for assessment of chemical sensitizers. In this paper, we show how the genome wide readout of GARD can be expanded and used to identify differentially regulated pathways relating to individual chemical sensitizers. In this study, we investigated the mechanisms of action of a range of skin sensitizers through pathway identification, pathway classification and transcription factor analysis and related this to the reactive mechanisms and potency of the sensitizing agents. Results By transcriptional profiling of chemically stimulated MUTZ-3 cells, 33 canonical pathways intimately involved in sensitization to chemical substances were identified. The results showed that metabolic processes, cell cycling and oxidative stress responses are the key events activated during skin sensitization, and that these functions are engaged differently depending on the reactivity mechanisms of the sensitizing agent. Furthermore, the results indicate that the chemical reactivity groups seem to gradually engage more pathways and more molecules in each pathway with increasing sensitizing potency of the chemical used for stimulation. Also, a switch in gene regulation from up to down regulation, with increasing potency, was seen both in genes involved in metabolic functions and cell cycling. These observed pathway patterns were clearly reflected in the regulatory elements identified to drive these processes, where 33 regulatory elements have been proposed for further analysis. Conclusions This study demonstrates that functional analysis of biomarkers identified from our genomics study of human MUTZ-3 cells can be used to assess sensitizing potency of chemicals in vitro, by the identification of key cellular events, such as metabolic and cell cycling pathways. PMID:24517095
A variety of technological pathways lead to reduced greenhouse gas (GHG) emissions. However, different pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. In this study we use the Global Change ...
Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins
Muñoz Bello, Jesus Omar; Olmedo Nieva, Leslie; Contreras Paredes, Adriana; Fuentes Gonzalez, Alma Mariana; Rocha Zavaleta, Leticia; Lizano, Marcela
2015-01-01
Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV)-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway. PMID:26295406
[Transcriptome analysis of Dunaliella viridis].
Zhu, Shuai-qi; Gong, Yi-fu; Hang, Yu-qing; Liu, Hao; Wang, He-yu
2015-08-01
In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis.
Patock-Peckham, Julie A; Medina, Mia; Terrell, Nathan; Belton, Daniel; King, Kevin M
2016-01-01
Emerging research suggests significant positive associations between bullying and substance use behaviors. However, these studies typically focused either on the link between substance use and bullying perpetration or victimization, and few have conceptualized bullying perpetration and/or victimization as mediators. In this study, we simultaneously tested past bullying perpetration and victimization as mediational pathways from retrospective report of parenting styles and global self-esteem to current depressive symptoms, alcohol use and alcohol-related problems. Data were collected from a college sample of 419 drinkers. Mediation effects were conducted using a bias-corrected bootstrap technique in structural equation modeling. Two-path mediation analyses indicated that mother and father authoritativeness were protective against bully victimization and depression through higher self-esteem. Conversely, having a permissive or authoritarian mother was positively linked to bullying perpetration, which in turn was associated with increased alcohol use, and to a lesser degree, more alcohol-related problems. Mother authoritarianism was associated with alcohol-related problems through depressive symptoms. Three-path mediation analyses suggested a trend in which individuals with higher self-esteem were less likely to report alcohol-related problems through lower levels of bullying victimization and depression. Results suggested that bullying perpetration and victimization may respectively serve as externalizing and internalizing pathways through which parenting styles and self-esteem are linked to depression and alcohol-related outcomes. The present study identified multiple modifiable precursors of, and mediational pathways to, alcohol-related problems which could guide the development and implementation of prevention programs targeting problematic alcohol use. PMID:26757486
Luk, Jeremy W; Patock-Peckham, Julie A; Medina, Mia; Terrell, Nathan; Belton, Daniel; King, Kevin M
2016-01-02
Emerging research suggests significant positive associations between bullying and substance use behaviors. However, these studies typically focused either on the link between substance use and bullying perpetration or victimization, and few have conceptualized bullying perpetration and/or victimization as mediators. In this study, we simultaneously tested past bullying perpetration and victimization as mediational pathways from retrospective report of parenting styles and global self-esteem to current depressive symptoms, alcohol use, and alcohol-related problems. Data were collected from a college sample of 419 drinkers. Mediation effects were conducted using a bias-corrected bootstrap technique within a structural equation modeling framework. Two-path mediation analyses indicated that mother and father authoritativeness were protective against bully victimization and depression through higher self-esteem. Conversely, having a permissive or authoritarian mother was positively linked to bullying perpetration, which in turn, was associated with increased alcohol use, and to a lesser degree, more alcohol-related problems. Mother authoritarianism was associated with alcohol-related problems through depressive symptoms. Three-path mediation analyses suggested a trend in which individuals with higher self-esteem were less likely to report alcohol-related problems through lower levels of bullying victimization and depression. Results suggested that bullying perpetration and victimization may, respectively, serve as externalizing and internalizing pathways through which parenting styles and self-esteem are linked to depression and alcohol-related outcomes. The present study identified multiple modifiable precursors of, and mediational pathways to, alcohol-related problems which could guide the development and implementation of prevention programs targeting problematic alcohol use.
Mas, Sergi; Blázquez, Ana; Rodríguez, Natalia; Boloc, Daniel; Lafuente, Amalia; Arnaiz, Joan A; Lázaro, Luisa; Gassó, Patricia
2016-11-01
Pharmacogenetic studies of fluoxetine in children and adolescents are scarce. After reporting the effect of genetic variants in genes related to the fluoxetine pharmacokinetics on clinical response in a pediatric population, we now evaluate the impact of genetic markers involved in its pharmacodynamics. The assessment was performed in 83 patients after 12 weeks of fluoxetine treatment. The genetic association analysis included a total of 316 validated single nucleotide polymorphisms in 45 candidate genes involved in six different pathways. Clinical improvement after treatment with fluoxetine in our pediatric population was associated significantly with two polymorphisms located in genes related to the serotonergic system: the 5-hydroxytryptamine receptor 1B (HTR1B) and the tryptophan 5-hydroxylase 2 (TPH2). Although a wide range of candidate genes related to different pathways were assessed, the results show that genetic markers directly related to serotonin have an important effect on fluoxetine response.
Zulauf, Courtney A; Sokolovsky, Alexander W; Grabell, Adam S; Olson, Sheryl L
2018-03-01
Children who aggress against their peers may use physical or relational forms, yet little research has looked at early childhood risk factors and characteristics that uniquely predict high levels of relational versus physical aggression in preadolescence. Accordingly, the main aim of our study was to link early corporal punishment and externalizing behavior to children's physical and relational peer aggression during preadolescence and to examine how these pathways differed by sex. Participants were 193, 3-year-old boys (39%) and girls who were reassessed following the transition to kindergarten (5.5 years) and preadolescence (10.5 years). A series of autoregressive, cross-lagged path analyses were conducted to examine the relationships between child externalizing problems and corporal punishment at ages 3 and 5.5 years, and their association with physical and relational aggression at age 10.5. Multiple group analysis was used to determine whether pathways differed by sex. Three developmental pathways were identified: (i) direct associations between stable childhood externalizing problems and later physical aggression; (ii) a direct pathway from early corporal punishment to preadolescent relational and physical peer aggression; and (iii) an indirect pathway from early corporal punishment to later physical aggression via continuing externalizing problems in middle childhood. Child sex moderated the nature of these pathways, as well as the direction of association between risk and outcome variables. These data advance our understanding of the etiology of distinct forms of peer aggression and highlight the potential for more efficacious prevention and intervention efforts in the early childhood years. © 2018 Wiley Periodicals, Inc.
Oechslin, Mathias S; Gschwind, Markus; James, Clara E
2018-04-01
As a functional homolog for left-hemispheric syntax processing in language, neuroimaging studies evidenced involvement of right prefrontal regions in musical syntax processing, of which underlying white matter connectivity remains unexplored so far. In the current experiment, we investigated the underlying pathway architecture in subjects with 3 levels of musical expertise. Employing diffusion tensor imaging tractography, departing from seeds from our previous functional magnetic resonance imaging study on music syntax processing in the same participants, we identified a pathway in the right ventral stream that connects the middle temporal lobe with the inferior frontal cortex via the extreme capsule, and corresponds to the left hemisphere ventral stream, classically attributed to syntax processing in language comprehension. Additional morphometric consistency analyses allowed dissociating tract core from more dispersed fiber portions. Musical expertise related to higher tract consistency of the right ventral stream pathway. Specifically, tract consistency in this pathway predicted the sensitivity for musical syntax violations. We conclude that enduring musical practice sculpts ventral stream architecture. Our results suggest that training-related pathway plasticity facilitates the right hemisphere ventral stream information transfer, supporting an improved sound-to-meaning mapping in music.
Social molecular pathways and the evolution of bee societies
Bloch, Guy; Grozinger, Christina M.
2011-01-01
Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review ‘ground plan’ and ‘genetic toolkit’ models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into ‘social pathways’, which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure. PMID:21690132
Pathways Involved in Sasang Constitution from Genome-Wide Analysis in a Korean Population
Yu, Sung-Gon; Kim, Jong-Yeol; Song, Kwang Hoon
2012-01-01
Abstract Objective Sasang constitution (SC) medicine, a branch of Korean traditional medicine, classifies the individual into one of four constitutional types (Taeum, TE; Soeum, SE; Soyang, SY; and Taeyang, TY) based on physiologic characteristics. The authors of the current article recently reported individual genetic elements associated with SC types via genome-wide association (GWA) analysis. However, to understand the biologic mechanisms underlying constitution, a comprehensive approach that combines individual genetic effects was applied. Design Genotypes of 1222 subjects of defined constitution types were measured for 341,998 genetic loci across the entire genome. The biologic pathways associated with SC types were identified via GWA analysis using three different algorithms—namely, the Z-static method, a restandardized gene set assay, and a gene set enrichment assay. Results Distinct pathways were associated (p<0.05) with each constitution type. The TE type was significantly associated with cytoskeleton-related pathways. The SE type was significantly associated with cardio- and amino-acid metabolism–related pathways. The SY type was associated with enriched melanoma-related pathways. TY subjects were excluded because of the small size of that sample. Among these functionally related pathways, core-node genes regulating multiple pathways were identified. TJP1, PTK2, and SRC were selected as core-nodes for TE; RHOA, and MAOA/MAOB for SE; and GNAO1 for SY (p<0.05), respectively. Conclusions The current authors systematically identified the biologic pathways and core-node genes associated with SC types from the GWA study; this information should provide insights regarding the molecular mechanisms inherent in constitutional pathophysiology. PMID:22889377
Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.
He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai
2014-03-01
Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.
Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun
2017-11-20
Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
ERIC Educational Resources Information Center
Schnell-Anzola, Beatrice; Rowe, Meredith L.; LeVine, Robert A.
2005-01-01
This article addresses the mechanisms by which women's schooling might affect the survival and health of their children. A theoretical model is proposed in which academic literacy skills serve as a pathway between formal schooling and maternal health-related behaviors. The model is tested through multivariate analyses of interview and literacy…
ERIC Educational Resources Information Center
Kim, Young-Suk Grace; Petscher, Yaacov
2016-01-01
Emerging evidence suggests that children's sensitivity to suprasegmental phonology such as stress and timing (i.e., prosodic sensitivity) contributes to reading. The primary goal of this study was to investigate pathways of the relation of prosodic sensitivity to reading (word reading and reading comprehension) using data from 370 first-grade…
Lee, Hyeonjeong; Shin, Miyoung
2017-01-01
The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into distinctive associations between pathway activities in case and control samples.
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-11-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.
Negotiating Assignment Pathways: Students and Academic Assignments
ERIC Educational Resources Information Center
McDowell, Liz
2008-01-01
Existing research identifies that students' approaches to assignments are related to their general approaches to study. It is suggested that students need to better understand the requirements of assignments and acquire new concepts such as "argument". This fine-grained study proposes four qualitatively distinct assignment pathways: gathering,…
Exploring pathway interactions in insulin resistant mouse liver
2011-01-01
Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well. PMID:21843341
Reading impairment in schizophrenia: dysconnectivity within the visual system.
Vinckier, Fabien; Cohen, Laurent; Oppenheim, Catherine; Salvador, Alexandre; Picard, Hernan; Amado, Isabelle; Krebs, Marie-Odile; Gaillard, Raphaël
2014-01-01
Patients with schizophrenia suffer from perceptual visual deficits. It remains unclear whether those deficits result from an isolated impairment of a localized brain process or from a more diffuse long-range dysconnectivity within the visual system. We aimed to explore, with a reading paradigm, the functioning of both ventral and dorsal visual pathways and their interaction in schizophrenia. Patients with schizophrenia and control subjects were studied using event-related functional MRI (fMRI) while reading words that were progressively degraded through word rotation or letter spacing. Reading intact or minimally degraded single words involves mainly the ventral visual pathway. Conversely, reading in non-optimal conditions involves both the ventral and the dorsal pathway. The reading paradigm thus allowed us to study the functioning of both pathways and their interaction. Behaviourally, patients with schizophrenia were selectively impaired at reading highly degraded words. While fMRI activation level was not different between patients and controls, functional connectivity between the ventral and dorsal visual pathways increased with word degradation in control subjects, but not in patients. Moreover, there was a negative correlation between the patients' behavioural sensitivity to stimulus degradation and dorso-ventral connectivity. This study suggests that perceptual visual deficits in schizophrenia could be related to dysconnectivity between dorsal and ventral visual pathways. © 2013 Published by Elsevier Ltd.
Refining the quantitative pathway of the Pathways to Mathematics model.
Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda
2015-03-01
In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Pantalone, David W.; Hessler, Danielle M.; Simoni, Jane M.
2010-01-01
Objective: We examined mental health pathways between interpersonal violence (IPV) and health-related outcomes in HIV-positive sexual minority men engaged with medical care. Method: HIV-positive gay and bisexual men (N = 178) were recruited for this cross-sectional study from 2 public HIV primary care clinics that treated outpatients in an urban…
Monnereau, Claire; Vogelezang, Suzanne; Kruithof, Claudia J; Jaddoe, Vincent W V; Felix, Janine F
2016-08-18
Results from genome-wide association studies (GWAS) identified many loci and biological pathways that influence adult body mass index (BMI). We aimed to identify if biological pathways related to adult BMI also affect infant growth and childhood adiposity measures. We used data from a population-based prospective cohort study among 3,975 children with a mean age of 6 years. Genetic risk scores were constructed based on the 97 SNPs associated with adult BMI previously identified with GWAS and on 28 BMI related biological pathways based on subsets of these 97 SNPs. Outcomes were infant peak weight velocity, BMI at adiposity peak and age at adiposity peak, and childhood BMI, total fat mass percentage, android/gynoid fat ratio, and preperitoneal fat area. Analyses were performed using linear regression models. A higher overall adult BMI risk score was associated with infant BMI at adiposity peak and childhood BMI, total fat mass, android/gynoid fat ratio, and preperitoneal fat area (all p-values < 0.05). Analyses focused on specific biological pathways showed that the membrane proteins genetic risk score was associated with infant peak weight velocity, and the genetic risk scores related to neuronal developmental processes, hypothalamic processes, cyclicAMP, WNT-signaling, membrane proteins, monogenic obesity and/or energy homeostasis, glucose homeostasis, cell cycle, and muscle biology pathways were associated with childhood adiposity measures (all p-values <0.05). None of the pathways were associated with childhood preperitoneal fat area. A genetic risk score based on 97 SNPs related to adult BMI was associated with peak weight velocity during infancy and general and abdominal fat measurements at the age of 6 years. Risk scores based on genetic variants linked to specific biological pathways, including central nervous system and hypothalamic processes, influence body fat development from early life onwards.
Li, Wei; Liu, Xu; Zhang, Guoqian; Zhang, Linlin
2017-08-20
It has been proven that chlorogenic acids can produce anticancer effects by regulating cell cycle, inducing apoptosis, inhibiting cell growth, Notch signaling pathways are closely related to many human tumors. The aim of this study is to study the mechanism of chlorogenic acid on apoptosis of non-small lung cancer through Notch1 pathway in animal level, and hope to provide theory basis on clinical treatment and research aimed at targeting Notch1 signaling in non-small cell carcinoma (NSCLC). MTT assay was used to evaluate the A549 cell proliferation under the treatment of chlorogenic acid. The effect of chlorogenic acid on apoptotic and cell cycle were detected by flow cytometry. The animal model of A549 cell transplanted in nude was established, tumer size and weight were detected. The mRNA level of Notch1 signal pathway related facter were detected by RT-PCR; the expression of Notch1 signal pathway related facter in tumor tissue was detected by western blot. Chlorogenic acid inhibited the A549 cell proliferation. incresed cell apoptotic and cell percentagein G2/M (P<0.05), and in a dose-dependent manner. In animal model, tumer size and weight were lower than control group, the difference was statistically significant (P<0.05). The relative expression of mRNA of Notch1, VEGF, Delta4, HES1 and HEY1 were decreaced (P<0.05) in tumor tissue which treated with chlorogenic. The expression of Notch1 were decreaced, PTEN, p-PTEN, p-AKT were increced significantly in tumor tissue which treated with chlorogenic (P<0.05). Chlorogenic acid can regulate theapoptosis of non-small lung cancer through Notch pathway in animal level, which may be associated with the down-regulating the expression of VEGF and Delta4. Notch pathway may cross talk with PI3K/AKT pathway through PTEN in NSCLC.
Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L
2017-01-01
Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.
2012-01-01
Background Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Results Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. Conclusion The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here. PMID:22646994
PathNER: a tool for systematic identification of biological pathway mentions in the literature
2013-01-01
Background Biological pathways are central to many biomedical studies and are frequently discussed in the literature. Several curated databases have been established to collate the knowledge of molecular processes constituting pathways. Yet, there has been little focus on enabling systematic detection of pathway mentions in the literature. Results We developed a tool, named PathNER (Pathway Named Entity Recognition), for the systematic identification of pathway mentions in the literature. PathNER is based on soft dictionary matching and rules, with the dictionary generated from public pathway databases. The rules utilise general pathway-specific keywords, syntactic information and gene/protein mentions. Detection results from both components are merged. On a gold-standard corpus, PathNER achieved an F1-score of 84%. To illustrate its potential, we applied PathNER on a collection of articles related to Alzheimer's disease to identify associated pathways, highlighting cases that can complement an existing manually curated knowledgebase. Conclusions In contrast to existing text-mining efforts that target the automatic reconstruction of pathway details from molecular interactions mentioned in the literature, PathNER focuses on identifying specific named pathway mentions. These mentions can be used to support large-scale curation and pathway-related systems biology applications, as demonstrated in the example of Alzheimer's disease. PathNER is implemented in Java and made freely available online at http://sourceforge.net/projects/pathner/. PMID:24555844
Chao, Tianle; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Wang, Jin; Wang, Jianmin
2017-07-13
The large intestine, also known as the hindgut, is an important part of the animal digestive system. Recent studies on digestive system development in ruminants have focused on the rumen and the small intestine, but the molecular mechanisms underlying sheep large intestine metabolism remain poorly understood. To identify genes related to intestinal metabolism and to reveal molecular regulation mechanisms, we sequenced and compared the transcriptomes of mucosal epithelial tissues among the cecum, proximal colon and duodenum. A total of 4,221 transcripts from 3,254 genes were identified as differentially expressed transcripts. Between the large intestine and duodenum, differentially expressed transcripts were found to be significantly enriched in 6 metabolism-related pathways, among which PPAR signaling was identified as a key pathway. Three genes, CPT1A, LPL and PCK1, were identified as higher expression hub genes in the large intestine. Between the cecum and colon, differentially expressed transcripts were significantly enriched in 5 lipid metabolism related pathways, and CEPT1 and MBOAT1 were identified as hub genes. This study provides important information regarding the molecular mechanisms of intestinal metabolism in sheep and may provide a basis for further study.
Bex, F; Yin, M J; Burny, A; Gaynor, R B
1998-04-01
The human T-cell leukemia virus type 1 Tax protein transforms human T lymphocytes, which can lead to the development of adult T-cell leukemia. Tax transformation is related to its ability to activate gene expression via the ATF/CREB and the NF-kappaB pathways. Transcriptional activation of these pathways is mediated by the actions of the related coactivators CREB binding protein (CBP) and p300. In this study, immunocytochemistry and confocal microscopy were used to localize CBP and p300 in cells expressing wild-type Tax or Tax mutants that are able to selectively activate gene expression from either the NF-kappaB or ATF/CREB pathway. Wild-type Tax colocalized with both CBP and p300 in nuclear bodies which also contained ATF-1 and the RelA subunit of NF-kappaB. However, a Tax mutant that selectively activates gene expression from only the ATF/CREB pathway colocalized with CBP but not p300, while a Tax mutant that selectively activates gene expression from only the NF-kappaB pathway colocalized with p300 but not CBP. In vitro and in vivo protein interaction studies indicated that the integrity of two independent domains of Tax delineated by these mutants was involved in the direct interaction of Tax with either CBP or p300. These studies are consistent with a model in which activation of either the NF-kappaB or the ATF/CREB pathway by specific Tax mutants is mediated by distinct interactions with related coactivator proteins.
Silver, Matt; Montana, Giovanni
2012-01-01
Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small. PMID:22499682
PathJam: a new service for integrating biological pathway information.
Glez-Peña, Daniel; Reboiro-Jato, Miguel; Domínguez, Rubén; Gómez-López, Gonzalo; Pisano, David G; Fdez-Riverola, Florentino
2010-10-28
Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i) being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii) giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.
Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Garnett, Tara; Godfray, H Charles J; Gollin, Douglas; Rayner, Mike; Ballon, Paola; Scarborough, Peter
2016-05-07
One of the most important consequences of climate change could be its effects on agriculture. Although much research has focused on questions of food security, less has been devoted to assessing the wider health impacts of future changes in agricultural production. In this modelling study, we estimate excess mortality attributable to agriculturally mediated changes in dietary and weight-related risk factors by cause of death for 155 world regions in the year 2050. For this modelling study, we linked a detailed agricultural modelling framework, the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), to a comparative risk assessment of changes in fruit and vegetable consumption, red meat consumption, and bodyweight for deaths from coronary heart disease, stroke, cancer, and an aggregate of other causes. We calculated the change in the number of deaths attributable to climate-related changes in weight and diets for the combination of four emissions pathways (a high emissions pathway, two medium emissions pathways, and a low emissions pathway) and three socioeconomic pathways (sustainable development, middle of the road, and more fragmented development), which each included six scenarios with variable climatic inputs. The model projects that by 2050, climate change will lead to per-person reductions of 3·2% (SD 0·4%) in global food availability, 4·0% (0·7%) in fruit and vegetable consumption, and 0·7% (0·1%) in red meat consumption. These changes will be associated with 529,000 climate-related deaths worldwide (95% CI 314,000-736,000), representing a 28% (95% CI 26-33) reduction in the number of deaths that would be avoided because of changes in dietary and weight-related risk factors between 2010 and 2050. Twice as many climate-related deaths were associated with reductions in fruit and vegetable consumption than with climate-related increases in the prevalence of underweight, and most climate-related deaths were projected to occur in south and east Asia. Adoption of climate-stabilisation pathways would reduce the number of climate-related deaths by 29-71%, depending on their stringency. The health effects of climate change from changes in dietary and weight-related risk factors could be substantial, and exceed other climate-related health impacts that have been estimated. Climate change mitigation could prevent many climate-related deaths. Strengthening of public health programmes aimed at preventing and treating diet and weight-related risk factors could be a suitable climate change adaptation strategy. Oxford Martin Programme on the Future of Food. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of functional aspects of the coagulation cascade in human and sea turtle plasmas.
Soslau, Gerald; Wallace, Bryan; Vicente, Catherine; Goldenberg, Seth J; Tupis, Todd; Spotila, James; George, Robert; Paladino, Frank; Whitaker, Brent; Violetta, Gary; Piedra, Rotney
2004-08-01
Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased, to varying extents, in a linear fashion relative to reduced pH with the rate of change greatest in leatherbacks>green>loggerhead turtles. All studies were conducted with reagents developed for human samples which would impact on the quantitative results with the turtle samples, but are not likely to alter the qualitative results. These comparative studies of the coagulation pathway in sea turtles and humans could enhance our knowledge of structure/function relationships and evolution of coagulation factors.
Intersection of AHR and Wnt Signaling in Development, Health, and Disease
Schneider, Andrew J.; Branam, Amanda M.; Peterson, Richard E.
2014-01-01
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development. PMID:25286307
A micro-level model of employment relations and health inequalities.
Benach, Joan; Solar, Orielle; Santana, Vilma; Castedo, Antía; Chung, Haejoo; Muntaner, Carles
2010-01-01
Theoretical models are a way of visualizing, in context, the many factors that contribute to inequalities in health. This article presents a model showing the micro-level pathways relating employment and working conditions to health inequalities. A first important (indirect) pathway runs through the unequal distribution of harmful working conditions. Both employment and working conditions tend to be unequally distributed along the same social axes: social class, gender, ethnicity/race, immigration/migration status, territory, and so forth. Underlying mechanisms are exploitation, domination, and discrimination. Material deprivation and economic inequalities constitute a second direct pathway linking (nonstandard) employment conditions to health inequalities. In a third pathway, employment conditions may have an important effect on health inequalities via several psychosocial, behavioral, and physiopathological pathways. Although these several pathways are separated for analytical purposes, they are largely intertwined and, ideally, should be studied in an integrated way. The theoretical model presented in this article serves three main purposes: providing analytical clarity for organizing scientific data, encouraging further observation and causal testing, and identifying policy entry points.
PASS Student Leader and Mentor Roles: A Tertiary Leadership Pathway
ERIC Educational Resources Information Center
Skalicky, Jane; Caney, Annaliese
2010-01-01
In relation to developing leadership skills during tertiary studies, this paper considers the leadership pathway afforded by a Peer Assisted Study Sessions (PASS) program which includes the traditional PASS Leader role and a more senior PASS Mentor role. Data was collected using a structured survey with open-ended questions designed to capture the…
Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie
2017-01-06
Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.
Poliovirus Cell Entry: Common Structural Themes in Viral Cell Entry Pathways
Hogle, James M.
2006-01-01
Structural studies of polio- and closely related viruses have provided a series of snapshots along their cell entry pathways. Based on the structures and related kinetic, biochemical, and genetic studies, we have proposed a model for the cell entry pathway for polio- and closely related viruses. In this model a maturation cleavage of a capsid protein precursor locks the virus in a metastable state, and the receptor acts like a transition-state catalyst to overcome an energy barrier and release the mature virion from the metastable state. This initiates a series of conformational changes that allow the virus to attach to membranes, form a pore, and finally release its RNA genome into the cytoplasm. This model has striking parallels with emerging models for the maturation and cell entry of more complex enveloped viruses such as influenza virus and HIV. PMID:12142481
Verona, Edelyn
Researchers have long acknowledged heterogeneity among persons who exhibit antisocial and violent behaviours. The study of psychopathic personality or psychopathy can help elucidate this heterogeneity through examination of the different facets that constitute this disorder. In particular, the distinct correlates of the interpersonal-affective traits (Factor 1) and the impulsive-antisocial traits (Factor 2) of psychopathy suggest at least two possible pathways to antisocial behaviours. Building on basic studies in cognitive and affective neuroscience, we provide a focused, non-comprehensive review of work identifying the biopsychological mechanisms involved in these two pathways, with special attention to studies using event-related potential (ERP) methods. In specific, a series of studies are discussed which examined affective and cognitive processes that may distinguish offenders high on psychopathic traits from other offenders, with emphasis on alterations in emotion-cognition interactions related to each factor of psychopathy. The set of findings reviewed highlight a central conclusion: Factor 1 represents a pathway involving reduced emotional responding, exacerbated by attentional abnormalities, that make for a more deliberate and emotionally insensitive offender profile. In contrast, Factor 2 characterizes a pathway marked by emotional and behavioural dysregulation and cognitive control dysfunctions, particularly in emotional contexts. Implications for identifying etiological processes and the further understanding of antisocial and violent behaviours are discussed.
2012-01-01
Background Glutathione has a wide range of functions; it is an endogenous anti-oxidant and plays a key role in the maintenance of intracellular redox balance and detoxification of xenobiotics. Several studies have indicated that children with autism spectrum disorders may have altered glutathione metabolism which could play a key role in the condition. Methods A systematic literature review and meta-analysis was conducted of studies examining metabolites, interventions and/or genes of the glutathione metabolism pathways i.e. the γ-glutamyl cycle and trans-sulphuration pathway in autism spectrum disorders. Results Thirty nine studies were included in the review comprising an in vitro study, thirty two metabolite and/or co-factor studies, six intervention studies and six studies with genetic data as well as eight studies examining enzyme activity. Conclusions The review found evidence for the involvement of the γ-glutamyl cycle and trans-sulphuration pathway in autistic disorder is sufficiently consistent, particularly with respect to the glutathione redox ratio, to warrant further investigation to determine the significance in relation to clinical outcomes. Large, well designed intervention studies that link metabolites, cofactors and genes of the γ-glutamyl cycle and trans-sulphuration pathway with objective behavioural outcomes in children with autism spectrum disorders are required. Future risk factor analysis should include consideration of multiple nutritional status and metabolite biomarkers of pathways linked with the γ-glutamyl cycle and the interaction of genotype in relation to these factors. PMID:22524510
Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.
2013-01-01
Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166
Yao, Song; Haddad, Stephen A.; Hu, Qiang; Liu, Song; Lunetta, Kathryn L.; Ruiz-Narvaez, Edward A.; Hong, Chi-Chen; Zhu, Qianqian; Sucheston-Campbell, Lara; Cheng, Ting-Yuan David; Bensen, Jeannette T.; Johnson, Candace S.; Trump, Donald L.; Haiman, Christopher A.; Olshan, Andrew F.; Palmer, Julie R.; Ambrosone, Christine B.
2016-01-01
Studies of genetic variations in vitamin D-related pathways and breast cancer risk have been conducted mostly in populations of European ancestry, and only sparsely in African Americans (AA), who are known for a high prevalence of vitamin D deficiency. We analyzed 24,445 germline variants in 63 genes from vitamin D-related pathways in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium, including 3,663 breast cancer cases and 4,687 controls. Odds ratios (OR) were derived from logistic regression models for overall breast cancer, by estrogen receptor (ER) status (1,983 ER positive and 1,098 ER negative), and for case-only analyses of ER status. None of the three vitamin D-related pathways were associated with breast cancer risk overall or by ER status. Gene-level analyses identified associations with risk for several genes at a nominal p ≤ 0.05, particularly for ER− breast cancer, including rs4647707 in DDB2. In case-only analyses, vitamin D metabolism and signaling pathways were associated with ER− cancer (pathway-level p = 0.02), driven by a single gene CASR (gene-level p = 0.001). The top SNP in CASR was rs112594756 (p = 7 × 10−5, gene-wide corrected p = 0.01), followed by a second signal from a nearby SNP rs6799828 (p = 1 × 10−4, corrected p = 0.03). In summary, several variants in vitamin D pathways were associated with breast cancer risk in AA women. In addition, CASR may be related to tumor ER status, supporting a role of vitamin D or calcium in modifying breast cancer phenotypes. PMID:26650177
Xu, Yiran; Cheng, Xiaorui; Cui, Xiuliang; Wang, Tongxing; Liu, Gang; Yang, Ruishang; Wang, Jianhui; Bo, Xiaochen; Wang, Shengqi; Zhou, Wenxia; Zhang, Yongxiang
2015-09-01
Stress induces cognitive impairments, which are likely related to the damaged dendritic morphology in the brain. Treatments for stress-induced impairments remain limited because the molecules and pathways underlying these impairments are unknown. Therefore, the aim of this study was to find the potential molecules and pathways related to damage of the dendritic morphology induced by stress. To do this, we detected gene expression, constructed a protein-protein interaction (PPI) network, and analyzed the molecular pathways in the brains of mice exposed to 5-h multimodal stress. The results showed that stress increased plasma corticosterone concentration, decreased cognitive function, damaged dendritic morphologies, and altered APBB1, CLSTN1, KCNA4, NOTCH3, PLAU, RPS6KA1, SYP, TGFB1, KCNA1, NTRK3, and SNCA expression in the brains of mice. Further analyses found that the abnormal expressions of CLSTN1, PLAU, NOTCH3, and TGFB1 induced by stress were related to alterations in the dendritic morphology. These four genes demonstrated interactions with 55 other genes, and configured a closed PPI network. Molecular pathway analysis use the Database for Annotation, Visualization, and Integrated Discovery (DAVID), specifically the gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG), each identified three pathways that were significantly enriched in the gene list of the PPI network, with genes belonging to the Notch and transforming growth factor-beta (TGF-B) signaling pathways being the most enriched. Our results suggest that TGFB1, PLAU, NOTCH3, and CLSTN1 may be related to the alterations in dendritic morphology induced by stress, and imply that the Notch and TGF-B signaling pathways may be involved. Copyright © 2015 Elsevier Inc. All rights reserved.
Parental and adolescent health behaviors and pathways to adulthood.
Bauldry, Shawn; Shanahan, Michael J; Macmillan, Ross; Miech, Richard A; Boardman, Jason D; O Dean, Danielle; Cole, Veronica
2016-07-01
This paper examines associations among parental and adolescent health behaviors and pathways to adulthood. Using data from the National Longitudinal Study of Adolescent to Adult Health, we identify a set of latent classes describing pathways into adulthood and examine health-related predictors of these pathways. The identified pathways are consistent with prior research using other sources of data. Results also show that both adolescent and parental health behaviors differentiate pathways. Parental and adolescent smoking are associated with lowered probability of the higher education pathway and higher likelihood of the work and the work & family pathways (entry into the workforce soon after high school completion). Adolescent drinking is positively associated with the work pathway and the higher education pathway, but decreases the likelihood of the work & family pathway. Neither parental nor adolescent obesity are associated with any of the pathways to adulthood. When combined, parental/adolescent smoking and adolescent drinking are associated with displacement from the basic institutions of school, work, and family. Copyright © 2016 Elsevier Inc. All rights reserved.
Messing, Barbara Pisano; Ward, Elizabeth C; Lazarus, Cathy; Ryniak, Keri; Kim, Melissa; Silinonte, Jessica; Gold, Dorothy; Thompson, Carol B; Pitman, Karen T; Blanco, Ray; Sobel, Ryan; Harrer, Karen; Ulmer, Karen; Neuner, Geoffrey; Patel, Kruti; Tang, Mei; Lee, Gregory
2018-06-19
Head and neck cancer (HNC) guidelines recommend regular multidisciplinary team (MDT) monitoring and early intervention to optimize dysphagia outcomes; however, many factors affect the ability to achieve these goals. The aims of this study were to explore the barriers/facilitators to establishing and sustaining a MDT HNC care pathway and to examine the dysphagia-related speech-language pathology (SLP) and dietetic components of the pathway. Using the Consolidated Framework for Implementation Research (CFIR), a mixed methods study design was used to evaluate an established MDT HNC pathway. Ten MDT members provided perceptions of facilitators/barriers to implementing and sustaining the pathway. Patients attending the SLP and dietetic components of the pathway who commenced treatment between 2013 and 2014 (n = 63) were audited for attendance, outcome data collected per visit, and swallowing outcomes to 24-month post-treatment. Dysphagia outcomes were compared to a published cohort who had received intensive prophylactic dysphagia management. Multiple CFIR constructs were identified as critical to implementing and sustaining the pathway. Complexity was a barrier. Patient attendance was excellent during treatment, with low rates of non-compliance (< 15%) to 24 months. Collection of clinician/patient outcome tools was good during treatment, but lower post-treatment. Dysphagia outcomes were good and comparable to prior published data. The pathway provided patients with access to regular supportive care and provided staff opportunities to provide early and ongoing dysphagia monitoring and management. However, implementing and sustaining a HNC pathway is complex, requiring significant staff resources, financial investment, and perseverance. Regular audits are necessary to monitor the quality of the pathway.
ERIC Educational Resources Information Center
Zalewski, Maureen; Lengua, Liliana J.; Kiff, Cara J.; Fisher, Philip A.
2012-01-01
This study examined the relation of low income and poverty to cortisol levels, and tested potential pathways from low income to disruptions in cortisol through cumulative family risk and parenting. The sample of 306 mothers and their preschool children included 29 % families at or near poverty, 27 % families below the median income, and the…
Code of Federal Regulations, 2012 CFR
2012-10-01
..., plume pathway EPZ biennial exercise-related component services and other services. 354.5 Section 354.5... Description of site-specific, plume pathway EPZ biennial exercise-related component services and other... will assess fees on licensees include the following: (a) Site-specific, plume pathway EPZ biennial...
Vanderauwera, Jolijn; De Vos, Astrid; Forkel, Stephanie J; Catani, Marco; Wouters, Jan; Vandermosten, Maaike; Ghesquière, Pol
2018-05-18
Insight in the developmental trajectory of the neuroanatomical reading correlates is important to understand related cognitive processes and disorders. In adults, a dual pathway model has been suggested encompassing a dorsal phonological and a ventral orthographic white matter system. This dichotomy seems not present in pre-readers, and the specific role of ventral white matter in reading remains unclear. Therefore, the present longitudinal study investigated the relation between ventral white matter and cognitive processes underlying reading in children with a broad range of reading skills (n = 61). Ventral pathways of the reading network were manually traced using diffusion tractography: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF). Pathways were examined pre-reading (5-6 years) and after two years of reading acquisition (7-8 years). Dimension reduction for the cognitive measures resulted in one component for pre-reading cognitive measures and a separate phonological and orthographic component for the early reading measures. Regression analyses revealed a relation between the pre-reading cognitive component and bilateral IFOF and left ILF. Interestingly, exclusively the left IFOF was related to the orthographic component, whereas none of the pathways was related to the phonological component. Hence, the left IFOF seems to serve as the lexical reading route, already in the earliest reading stages. Copyright © 2018 Elsevier Inc. All rights reserved.
Scaglione, Nichole M.; Hultgren, Brittney A.; Reavy, Racheal; Mallett, Kimberly A.; Turrisi, Rob; Cleveland, Michael J.; Sell, Nichole M.
2015-01-01
Objective Recent studies suggest drinking protective behaviors (DPBs) and contextual protective behaviors (CPBs) can uniquely reduce alcohol-related sexual risk in college students. Few studies have examined CPBs independently, and even fewer have utilized theory to examine modifiable psychosocial predictors of students’ decisions to use CPBs. The current study used a prospective design to examine 1) rational and reactive pathways and psychosocial constructs predictive of CPB use, and 2) how gender might moderate these influences in a sample of college students. Method Students (n = 508) completed web-based baseline (mid-spring semester) and 1- and 6-month follow-up assessments of CPB use; psychosocial constructs (expectancies, normative beliefs, attitudes, and self-concept); and rational and reactive pathways (intentions and willingness). Regression was used to examine rational and reactive influences as proximal predictors of CPB use at the 6-month follow-up. Subsequent path analyses examined the effects of psychosocial constructs, as distal predictors of CPB use, mediated through the rational and reactive pathways. Results Both rational (intentions to use CPB) and reactive (willingness to use CPB) influences were significantly associated with increased CPB use. The examined distal predictors were found to effect CPB use differentially through the rational and reactive pathways. Gender did not significantly moderate any relationships within in the model. Discussion Findings suggest potential entry points for increasing CPB use that include both rational and reactive pathways. Overall, this study demonstrates the mechanisms underlying how to increase the use of CPBs in programs designed to reduce alcohol-related sexual consequences and victimization. PMID:26415062
Scaglione, Nichole M; Hultgren, Brittney A; Reavy, Racheal; Mallett, Kimberly A; Turrisi, Rob; Cleveland, Michael J; Sell, Nichole M
2015-09-01
Recent studies suggest drinking protective behaviors (DPBs) and contextual protective behaviors (CPBs) can uniquely reduce alcohol-related sexual risk in college students. Few studies have examined CPBs independently, and even fewer have utilized theory to examine modifiable psychosocial predictors of students' decisions to use CPBs. The current study used a prospective design to examine (a) rational and reactive pathways and psychosocial constructs predictive of CPB use and (b) how gender might moderate these influences in a sample of college students. Students (n = 508) completed Web-based baseline (mid-Spring semester) and 1- and 6-month follow-up assessments of CPB use; psychosocial constructs (expectancies, normative beliefs, attitudes, and self-concept); and rational and reactive pathways (intentions and willingness). Regression was used to examine rational and reactive influences as proximal predictors of CPB use at the 6-month follow-up. Subsequent path analyses examined the effects of psychosocial constructs, as distal predictors of CPB use, mediated through the rational and reactive pathways. Both rational (intentions to use CPB) and reactive (willingness to use CPB) influences were significantly associated with increased CPB use. The examined distal predictors were found to effect CPB use differentially through the rational and reactive pathways. Gender did not significantly moderate any relationships within in the model. Findings suggest potential entry points for increasing CPB use that include both rational and reactive pathways. Overall, this study demonstrates the mechanisms underlying how to increase the use of CPBs in programs designed to reduce alcohol-related sexual consequences and victimization. (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Slominski, Lisa; Sameroff, Arnold; Rosenblum, Katherine; Kasser, Tim
2011-01-01
Longitudinal pathways between maternal mental health in infancy and offspring romantic relationship outcomes in adulthood were examined using a 30-year prospective longitudinal study of 196 mothers and their children. Structural equation modeling revealed that maternal mental health at 30 months was related to offspring relationship status and…
Sass, Hjalte C R; Borup, Rehannah; Alanin, Mikkel; Nielsen, Finn Cilius; Cayé-Thomasen, Per
2017-01-01
The objective of this study was to determine global gene expression in relation to Vestibular schwannomas (VS) growth rate and to identify signal transduction pathways and functional molecular networks associated with growth. Repeated magnetic resonance imaging (MRI) prior to surgery determined tumor growth rate. Following tissue sampling during surgery, mRNA was extracted from 16 sporadic VS. Double stranded cDNA was synthesized from the mRNA and used as template for in vitro transcription reaction to synthesize biotin-labeled antisense cRNA, which was hybridized to Affymetrix HG-U133A arrays and analyzed by dChip software. Differential gene expression was defined as a 1.5-fold difference between fast and slow growing tumors (><0.5 ccm/year), employing a p-value <0.01. Deregulated transcripts were matched against established gene ontology. Ingenuity Pathway Analysis was used for identification of signal transduction pathways and functional molecular networks associated with tumor growth. In total 109 genes were deregulated in relation to tumor growth rate. Genes associated with apoptosis, growth and cell proliferation were deregulated. Gene ontology included regulation of the cell cycle, cell differentiation and proliferation, among other functions. Fourteen pathways were associated with tumor growth. Five functional molecular networks were generated. This first study on global gene expression in relation to vestibular schwannoma growth rate identified several genes, signal transduction pathways and functional networks associated with tumor progression. Specific genes involved in apoptosis, cell growth and proliferation were deregulated in fast growing tumors. Fourteen pathways were associated with tumor growth. Generated functional networks underlined the importance of the PI3K family, among others.
Stress responses during ageing: molecular pathways regulating protein homeostasis.
Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios
2015-01-01
The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.
Wang, Da-Zhi; Jin, Ya-Nan; Ding, Xi-Han; Wang, Wen-Jia; Zhai, Shan-Shan; Bai, Li-Ping; Guo, Zhi-Fu
2017-10-01
Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.
Sinha, Shriprakash
2017-12-04
Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway. Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous study of these issues. This manuscript ∙ explores the strength of contributing factors in the signaling pathway, ∙ analyzes the existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological knowledge and ∙ investigates the deviations in fold changes in the recently found prevalence of psychophysical laws working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear responses between the factors obtained from static and time series expression profiles using the density (Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices. The results show the advantage of using density based indices over variance based indices mainly due to the former's employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In time series data, using these indices it is now possible to observe where in time, which factors get influenced & contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based administration of target therapeutic drugs & reveal hidden biological information within colorectal cancer samples.
Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua
2016-03-17
L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.
A Pathway-Centered Analysis of Pig Domestication and Breeding in Eurasia
Leno-Colorado, Jordi; Hudson, Nick J.; Reverter, Antonio; Pérez-Enciso, Miguel
2017-01-01
Ascertaining the molecular and physiological basis of domestication and breeding is an active area of research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig (Sus scrofa) is an excellent model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium (nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a q-value < 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin. Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes present in >10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance (ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding. Different levels of recombination cannot explain these results, since we found no correlation between Fst and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs. wild populations, suggesting a relaxed functional constraint associated with the domestication and breeding processes. Purifying selection was, nevertheless, stronger in significantly differentiated pathways than in random pathways, mainly in Europe. We conclude that pathway analysis facilitates the biological interpretation of genome-wide studies. Notably, in the case of pig, behavior played an important role, among other physiological and developmental processes. PMID:28500056
A Pathway-Centered Analysis of Pig Domestication and Breeding in Eurasia.
Leno-Colorado, Jordi; Hudson, Nick J; Reverter, Antonio; Pérez-Enciso, Miguel
2017-07-05
Ascertaining the molecular and physiological basis of domestication and breeding is an active area of research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig ( Sus scrofa ) is an excellent model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium (nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a q -value < 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin. Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes present in >10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance (ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding. Different levels of recombination cannot explain these results, since we found no correlation between Fst and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs. wild populations, suggesting a relaxed functional constraint associated with the domestication and breeding processes. Purifying selection was, nevertheless, stronger in significantly differentiated pathways than in random pathways, mainly in Europe. We conclude that pathway analysis facilitates the biological interpretation of genome-wide studies. Notably, in the case of pig, behavior played an important role, among other physiological and developmental processes. Copyright © 2017 Leno-Colorado et al.
Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine
Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng
2012-01-01
Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296
Hormone-Related Pathways and Risk of Breast Cancer Subtypes in African American Women
Haddad, Stephen A.; Lunetta, Kathryn L.; Ruiz-Narváez, Edward A.; Bensen, Jeannette T.; Hong, Chi-Chen; Sucheston-Campbell, Lara E.; Yao, Song; Bandera, Elisa V.; Rosenberg, Lynn; Haiman, Christopher A.; Troester, Melissa A.; Ambrosone, Christine B.; Palmer, Julie R.
2016-01-01
Purpose We sought to investigate genetic variation in hormone pathways in relation to risk of overall and subtype-specific breast cancer in women of African ancestry (AA). Methods Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related genes for 3663 breast cancer cases (1098 ER-, 1983 ER+, 582 ER unknown) and 4687 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, the Women's Circle of Health Study, the Black Women's Health Study, and the Multiethnic Cohort Study. Pathway- and gene-based analyses were conducted, and single SNP tests were run for the top genes. Results There were no strong associations at the pathway level. The most significantly associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based nominal p ≤0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p ≤0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER- disease (p ≤0.02). Single-SNP tests for SNPs with pairwise linkage disequilibrium r2 <0.8 in the top genes identified 12 common SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated with overall or subtype-specific breast cancer after gene-level correction for multiple testing. Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER- disease. Conclusion We identified eight genes in hormone pathways that contain common variants associated with breast cancer in AA women after gene-level correction for multiple testing. PMID:26458823
Du, Y F; Ding, Q L; Li, Y M; Fang, W R
2017-04-03
In the modern chicken industry, fast-growing broilers have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with slow-growing chickens. However, the molecular mechanism underlying these phenotypes differences remains unknown. In this study, a systematic identification of candidate genes and new pathways related to myofiber development and composition in chicken Soleus muscle (SOL) has been made using gene expression profiles of two distinct breeds: Qingyuan partridge (QY), a slow-growing Chinese breed possessing high meat quality and Cobb 500 (CB), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of soleus muscle sampled at sexual maturity age of QY (112 d) and CB (42 d). The 1318 genes with at least 2-fold differences were identified (P < 0.05, FDR <0.05, FC ≥ 2) in SOL muscles of QY and CB chickens. Differentially expressed genes (DEGs) related to muscle development, energy metabolism or lipid metabolism processes were examined further in each breed based on Gene Ontology (GO) analysis, and 11 genes involved in these processes were selected for further validation studies by qRT-PCR. In addition, based on KEGG pathway analysis of DEGs in both QY and CB chickens, it was found that in addition to pathways affecting myogenic fibre-type development and differentiation (pathways for Hedgehog & Calcium signaling), energy metabolism (Phosphatidylinositol signaling system, VEGF signaling pathway, Purine metabolism, Pyrimidine metabolism) were also enriched and might form a network with pathways related to muscle metabolism to influence the development of myofibers. This study is the first stage in the understanding of molecular mechanisms underlying variations in poultry meat quality. Large scale analyses are now required to validate the role of the genes identified and ultimately to find molecular markers that can be used for selection or to optimize rearing practices.
van Wieringen, Wessel N; van de Wiel, Mark A
2011-05-01
Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.
Enriched pathways for major depressive disorder identified from a genome-wide association study.
Kao, Chung-Feng; Jia, Peilin; Zhao, Zhongming; Kuo, Po-Hsiu
2012-11-01
Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.
The effect of red light and far-red light conditions on secondary metabolism in agarwood.
Kuo, Tony Chien-Yen; Chen, Chuan-Hung; Chen, Shu-Hwa; Lu, I-Hsuan; Chu, Mei-Ju; Huang, Li-Chun; Lin, Chung-Yen; Chen, Chien-Yu; Lo, Hsiao-Feng; Jeng, Shih-Tong; Chen, Long-Fang O
2015-06-12
Agarwood, a heartwood derived from Aquilaria trees, is a valuable commodity that has seen prevalent use among many cultures. In particular, it is widely used in herbal medicine and many compounds in agarwood are known to exhibit medicinal properties. Although there exists much research into medicinal herbs and extraction of high value compounds, few have focused on increasing the quantity of target compounds through stimulation of its related pathways in this species. In this study, we observed that cucurbitacin yield can be increased through the use of different light conditions to stimulate related pathways and conducted three types of high-throughput sequencing experiments in order to study the effect of light conditions on secondary metabolism in agarwood. We constructed genome-wide profiles of RNA expression, small RNA, and DNA methylation under red light and far-red light conditions. With these profiles, we identified a set of small RNA which potentially regulates gene expression via the RNA-directed DNA methylation pathway. We demonstrate that light conditions can be used to stimulate pathways related to secondary metabolism, increasing the yield of cucurbitacins. The genome-wide expression and methylation profiles from our study provide insight into the effect of light on gene expression for secondary metabolism in agarwood and provide compelling new candidates towards the study of functional secondary metabolic components.
Bayer, Angela M.; Cabrera, Lilia Z.; Gilman, Robert H.; Hindin, Michelle J.; Tsui, Amy O.
2011-01-01
The primary objective of this study was to identify and describe individual- and environmental-level factors that Peruvian adolescents perceive to be related to adolescent sexuality. A series of concept mapping sessions were carried out from January-March 2006 with 63 15–17 year olds from a low-income community near Lima in order for adolescents to (1) brainstorm items that they thought were related to sexuality (2) sort, group and rate items to score their importance for sexuality-related outcomes, and (3) create pathways from the groups of items to engaging in sex. Brainstorming resulted in 61 items, which participants grouped into 11 clusters. The highest rated clusters were personal values, respect and confidence in relationships, future achievements and parent-child communication. The pathway of decision-making about having sex primarily contained items rated as only moderately important. This study identified important understudied factors, new perspectives on previously-recognized factors, and possible pathways to sexual behavior. These interesting, provocative findings underscore the importance of directly integrating adolescent voices into future sexual and reproductive health research, policies and programs that target this population. PMID:20382462
Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander
2016-01-01
Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894
Yu, Tonghu; Zhang, Huaping; Qi, Hong
2018-01-01
The aim of the present study was to investigate more colon cancer-related genes in different stages. Gene expression profile E-GEOD-62932 was extracted for differentially expressed gene (DEG) screening. Series test of cluster analysis was used to obtain significant trending models. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, functional and pathway enrichment analysis were processed and a pathway relation network was constructed. Gene co-expression network and gene signal network were constructed for common DEGs. The DEGs with the same trend were clustered and in total, 16 clusters with statistical significance were obtained. The screened DEGs were enriched into small molecule metabolic process and metabolic pathways. The pathway relation network was constructed with 57 nodes. A total of 328 common DEGs were obtained. Gene signal network was constructed with 71 nodes. Gene co-expression network was constructed with 161 nodes and 211 edges. ABCD3, CPT2, AGL and JAM2 are potential biomarkers for the diagnosis of colon cancer. PMID:29928385
Quantitative trait loci and metabolic pathways
McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.
1998-01-01
The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823
Entourage: Visualizing Relationships between Biological Pathways using Contextual Subsets
Lex, Alexander; Partl, Christian; Kalkofen, Denis; Streit, Marc; Gratzl, Samuel; Wassermann, Anne Mai; Schmalstieg, Dieter; Pfister, Hanspeter
2014-01-01
Biological pathway maps are highly relevant tools for many tasks in molecular biology. They reduce the complexity of the overall biological network by partitioning it into smaller manageable parts. While this reduction of complexity is their biggest strength, it is, at the same time, their biggest weakness. By removing what is deemed not important for the primary function of the pathway, biologists lose the ability to follow and understand cross-talks between pathways. Considering these cross-talks is, however, critical in many analysis scenarios, such as judging effects of drugs. In this paper we introduce Entourage, a novel visualization technique that provides contextual information lost due to the artificial partitioning of the biological network, but at the same time limits the presented information to what is relevant to the analyst’s task. We use one pathway map as the focus of an analysis and allow a larger set of contextual pathways. For these context pathways we only show the contextual subsets, i.e., the parts of the graph that are relevant to a selection. Entourage suggests related pathways based on similarities and highlights parts of a pathway that are interesting in terms of mapped experimental data. We visualize interdependencies between pathways using stubs of visual links, which we found effective yet not obtrusive. By combining this approach with visualization of experimental data, we can provide domain experts with a highly valuable tool. We demonstrate the utility of Entourage with case studies conducted with a biochemist who researches the effects of drugs on pathways. We show that the technique is well suited to investigate interdependencies between pathways and to analyze, understand, and predict the effect that drugs have on different cell types. Fig. 1Entourage showing the Glioma pathway in detail and contextual information of multiple related pathways. PMID:24051820
Interleukin-6 signalling: more than Jaks and STATs.
Eulenfeld, René; Dittrich, Anna; Khouri, Christina; Müller, Pia J; Mütze, Barbara; Wolf, Alexandra; Schaper, Fred
2012-01-01
The hallmark of signalling by many cytokines is the activation of the Janus kinase (Jak)/signal transducer and activator of transcription (STAT) pathway. However, cytokines additionally activate other pathways. In past years we realised that these pathways significantly contribute to the physiological functions of IL-6 and pathophysiological functions in the context of many inflammatory and proliferative diseases. Whereas other articles in this issue of the European Journal of Cell Biology focus on STAT activation and its regulation we here aim to summarise our knowledge and some remaining questions on interleukin-6 (IL-6)-induced STAT-independent pathways as well as the cross-talk with the Jak/STAT pathway. In the early stages of studying cytokine signalling we were used to analysing individual signalling pathways. These days we know about the importance of both, the crosstalk between pathways initiated by combinations of cytokines as well as the crosstalk between individual pathways initiated by a single cytokine. Whereas the inter-cytokine crosstalk can be studied relatively easily, more sophisticated experimental approaches are required to elucidate the intra-cytokine crosstalk. Copyright © 2011 Elsevier GmbH. All rights reserved.
Defining Adverse Outcome Pathways for Effects of the Fungicide Propiconazole of Fish Reproduction
Adverse outcome pathways (AOPs) are used to describe the linkage of chemical interactions in terms of molecular initiating events to whole organism responses suitable for risk assessment. This study was conducted to develop AOPs for the model fungicide propiconazole relative to r...
Reflections on a Career in Second Language Studies: Promising Pathways for Future Research
ERIC Educational Resources Information Center
Cohen, Andrew D.
2018-01-01
This article highlights a series of areas deemed worthy of attention by L2 researchers. In some cases the research effort would entail following up on studies initiated some years ago and in other cases the effort would involve relatively new research thrusts. The article includes ideas about research regarding: (1) "pathways to success in…
Pathways to Death Row for America's Disabled Youth: Three Case Studies Driving Reform
ERIC Educational Resources Information Center
Schroeder, Julie; Guin, Cecile C.; Chaisson, Rebecca; Houchins, David
2004-01-01
This article uses the case study method to examine the lives of three youths with disabilities living in the southern part of the United States who have followed a pathway to death row. An empirically established developmental and theoretical framework is used to examine issues related to the influence of disabilities and race on children and…
Xue, Jing; Ideraabdullah, Folami Y.
2015-01-01
In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating behaviors (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By compiling these data we illustrate that obesity-related phenotypes are repeatedly linked to disruption of critical epigenetic mechanisms that regulate of key metabolic genes. These data are supported by genetic mutation of key epigenetic regulators and many of the diet induced epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity strengthens the translational applications of these findings. We also discuss many of the ongoing challenges to understanding the role of environmentally-induced epigenetic pathways in obesity and suggest future studies to elucidate these roles. This assessment illustrates our current understanding of molecular pathways of obesity that are susceptible to environmental perturbation via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions between diet, genes, and toxicants that contribute to obesity and obesity-related phenotypes. PMID:27012616
Lanska, Douglas J
2016-01-01
As a result of the wars in the early 20th century, elaboration of the visual pathways was greatly facilitated by the meticulous study of visual defects in soldiers who had suffered focal injuries to the visual cortex. Using relatively crude techniques, often under difficult wartime circumstances, investigators successfully mapped key features of the visual pathways. Studies during the Russo- Japanese War (1904-1905) by Tatsuji Inouye (1881-1976) and during World War I by Gordon Holmes (1876-1965), William Lister (1868-1944), and others produced increasingly refined retinotopic maps of the primary visual cortex, which were later supported and refined by studies during and after World War II. Studies by George Riddoch (1888-1947) during World War I also demonstrated that some patients could still perceive motion despite blindness caused by damage to their visual cortex and helped to establish the concept of functional partitioning of visual processes in the occipital cortex. © 2016 S. Karger AG, Basel.
Adams, Zachary W; Kaiser, Alison J; Lynam, Donald R; Charnigo, Richard J; Milich, Richard
2012-07-01
Trait impulsivity is a reliable, robust predictor of risky, problematic alcohol use. Mounting evidence supports a multidimensional model of impulsivity, whereby several distinct traits serve as personality pathways to rash action. Different impulsivity-related traits may predispose individuals to drink for different reasons (e.g., to enhance pleasure, to cope with distress) and these different motives may, in turn, influence drinking behavior. Previous findings support such a mediational model for two well-studied traits: sensation seeking and lack of premeditation. This study addresses other impulsivity-related traits, including negative urgency. College students (N=432) completed questionnaires assessing personality, drinking motives, and multiple indicators of problematic drinking. Negative urgency, sensation seeking, and lack of premeditation were all significantly related to problematic drinking. When drinking motives were included in the model, direct effects for sensation seeking and lack of premeditation remained significant, and indirect effects of sensation seeking and lack of premeditation on problematic drinking were observed through enhancement motives. A distinct pathway was observed for negative urgency. Negative urgency bore a significant total effect on problematic drinking through both coping and enhancement motives. This study highlights unique motivational pathways through which different impulsive traits may operate, suggesting that interventions aimed at preventing or reducing problematic drinking should be tailored to individuals' personalities. For instance, individuals high in negative urgency may benefit from learning healthier strategies for coping with distress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Adams, Zachary W.; Kaiser, Alison J.; Lynam, Donald R.; Charnigo, Richard J.; Milich, Richard
2012-01-01
Trait impulsivity is a reliable, robust predictor of risky, problematic alcohol use. Mounting evidence supports a multidimensional model of impulsivity, whereby several distinct traits serve as personality pathways to rash action. Different impulsivity-related traits may predispose individuals to drink for different reasons (e.g., to enhance pleasure, to cope with distress) and these different motives may, in turn, influence drinking behavior. Previous findings support such a mediational model for two well-studied traits: sensation seeking and lack of premeditation. This study addresses other impulsivity-related traits, including negative urgency. College students (N = 432) completed questionnaires assessing personality, drinking motives, and multiple indicators of problematic drinking. Negative urgency, sensation seeking, and lack of premeditation were all significantly related to problematic drinking. When drinking motives were included in the model, direct effects for sensation seeking and lack of premeditation remained significant, and indirect effects of sensation seeking and lack of premeditation on problematic drinking were observed through enhancement motives. A distinct pathway was observed for negative urgency. Negative urgency bore a significant total effect on problematic drinking through both coping and enhancement motives. This study highlights unique motivational pathways through which different impulsive traits may operate, suggesting that interventions aimed at preventing or reducing problematic drinking should be tailored to individuals' personalities. For instance, individuals high in negative urgency may benefit from learning healthier strategies for coping with distress. PMID:22472524
Rare copy number variants in patients with congenital conotruncal heart defects.
Xie, Hongbo M; Werner, Petra; Stambolian, Dwight; Bailey-Wilson, Joan E; Hakonarson, Hakon; White, Peter S; Taylor, Deanne M; Goldmuntz, Elizabeth
2017-03-01
Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ward, William O; Delker, Don A; Hester, Susan D; Thai, Sheau-Fung; Wolf, Douglas C; Allen, James W; Nesnow, Stephen
2006-01-01
Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays (Allen et al., 2006), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-beta-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.
Shih, Wei-Liang; Kao, Chung-Feng; Chuang, Li-Chung; Kuo, Po-Hsiu
2012-01-01
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators that are involved in the etiology of complex psychiatric traits. The present study aimed to incorporate miRNAs information into pathway analysis using a genome-wide association dataset to identify relevant biological pathways for bipolar disorder (BPD). We selected psychiatric- and neurological-associated miRNAs (N = 157) from PhenomiR database. The miRNA target genes (miTG) predictions were obtained from microRNA.org. Canonical pathways (N = 4,051) were downloaded from the Molecule Signature Database. We employed a novel weighting scheme for miTGs in pathway analysis using methods of gene set enrichment analysis and sum-statistic. Under four statistical scenarios, 38 significantly enriched pathways (P-value < 0.01 after multiple testing correction) were identified for the risk of developing BPD, including pathways of ion channels associated (e.g., gated channel activity, ion transmembrane transporter activity, and ion channel activity) and nervous related biological processes (e.g., nervous system development, cytoskeleton, and neuroactive ligand receptor interaction). Among them, 19 were identified only when the weighting scheme was applied. Many miRNA-targeted genes were functionally related to ion channels, collagen, and axonal growth and guidance that have been suggested to be associated with BPD previously. Some of these genes are linked to the regulation of miRNA machinery in the literature. Our findings provide support for the potential involvement of miRNAs in the psychopathology of BPD. Further investigations to elucidate the functions and mechanisms of identified candidate pathways are needed. PMID:23264780
NASA Astrophysics Data System (ADS)
Chen, P. Y.; Tung, C. P.
2016-12-01
The study focuses on developing the methodology of adaptation pathway for storm water management in a community scale. Following previous results on adaptation procedures including problem and goal setup, current risk assessment and analysis, future risk assessment and analysis, and adaptation options identification and evaluation, the study aims at analyzing adaptation pathway planning and implementation, namely the fifth step, for applying low impact development (LID). Based on the efficacy analyses of the feasible adaptation options, an adaptation pathway map can be build. Each pathway is a combination of the adaptation measures arranged in certain order. The developed adaptation pathway map visualizes the relative effectiveness and the connection of the adaptation measures. In addition, the tipping points of the system can be clearly identified and the triggers can be defined accordingly. There are multiple choices of pathways in an adaptation pathway map, which can be referred as pathway candidates. To ensure the applicability and operability, the methodology of adaptation pathway analysis is applied to a case study. Required information for developing an adaptation pathway map includes the scores of the adaptation options on the criteria, namely the effects, costs, immediacy, and side effect. Feasible adaptation options for the design case are dredging, pipeline expansion, pumping station, LID and detention pond. By ranking the options according to the criteria, LID is found dominating dredging and pumping station in this case. The information of the pathway candidates can be further used by the stakeholders to select the most suitable and promising pathway.
Gourh, Pravitt; Remmers, Elaine F; Boyden, Steven E; Alexander, Theresa; Morgan, Nadia D; Shah, Ami A; Mayes, Maureen D; Doumatey, Ayo; Bentley, Amy R; Shriner, Daniel; Domsic, Robyn T; Medsger, Thomas A; Steen, Virginia D; Ramos, Paula S; Silver, Richard M; Korman, Benjamin; Varga, John; Schiopu, Elena; Khanna, Dinesh; Hsu, Vivien; Gordon, Jessica K; Saketkoo, Lesley Ann; Gladue, Heather; Kron, Brynn; Criswell, Lindsey A; Derk, Chris T; Bridges, S Louis; Shanmugam, Victoria K; Kolstad, Kathleen D; Chung, Lorinda; Jan, Reem; Bernstein, Elana J; Goldberg, Avram; Trojanowski, Marcin; Kafaja, Suzanne; Maksimowicz-McKinnon, Kathleen M; Mullikin, James C; Adeyemo, Adebowale; Rotimi, Charles; Boin, Francesco; Kastner, Daniel L; Wigley, Fredrick M
2018-05-06
Whole-exome sequencing (WES) studies in systemic sclerosis (SSc) patients of European American (EA) ancestry have identified variants in the ATP8B4 gene and enrichment of variants in genes in the extracellular matrix (ECM)-related pathway increasing SSc susceptibility. Our goal was to evaluate the association of the ATP8B4 gene and the ECM-related pathway with SSc in a cohort of African Americans (AA). SSc patients of AA ancestry were enrolled from 23 academic centers across the United States under the Genome Research in African American Scleroderma Patients (GRASP) consortium. Unrelated AA individuals without serological evidence of autoimmunity enrolled in the Howard University Family Study were used as unaffected controls. Functional variants in genes reported in the two WES studies in EA SSc were selected for gene association testing using the optimized sequence kernel association test (SKAT-O) and pathway analysis by Ingenuity pathway analysis in 379 patients and 411 controls. Principal components analysis demonstrated that the patients and controls had similar ancestral backgrounds with about equal proportions of mean European admixture. Using SKAT-O, we examined the association of individual genes that were previously reported in EAs, and none remained significant including ATP8B4 (P U nCorr =0.98). However, we confirm the previously reported association of the ECM-related pathway with enrichment of variants within the COL13A1, COL18A1, COL22A1, COL4A3, COL4A4, COL5A2, PROK1, and SERPINE1 genes (P C orr =1.95×10 -4 ). This is the largest genetic study in AAs with SSc to date, corroborating the role of functional variants aggregating in a fibrotic pathway and increasing SSc susceptibility. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Neurodevelopment in Schizophrenia: The Role of the Wnt Pathways
Panaccione, Isabella; Napoletano, Flavia; Forte, Alberto Maria; Kotzalidis, Giorgio D.; Del Casale, Antonio; Rapinesi, Chiara; Brugnoli, Chiara; Serata, Daniele; Caccia, Federica; Cuomo, Ilaria; Ambrosi, Elisa; Simonetti, Alessio; Savoja, Valeria; De Chiara, Lavinia; Danese, Emanuela; Manfredi, Giovanni; Janiri, Delfina; Motolese, Marta; Nicoletti, Ferdinando; Girardi, Paolo; Sani, Gabriele
2013-01-01
Objectives. To review the role of Wnt pathways in the neurodevelopment of schizophrenia. Methods: Systematic PubMed search, using as keywords all the terms related to the Wnt pathways and crossing them with each of the following areas: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. Results: Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. Conclusions: The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data. PMID:24403877
Pollen Acceptance or Rejection: A Tale of Two Pathways.
Doucet, Jennifer; Lee, Hyun Kyung; Goring, Daphne R
2016-12-01
While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Similarities and differences between the Wnt and reelin pathways in the forming brain.
Reiner, Orly; Sapir, Tamar
2005-01-01
One of the key features in development is the reutilization of successful signaling pathways. Here, we emphasize the involvement of the Wnt pathway, one of the five kinds of signal transduction pathway predominating early embryonic development of all animals, in regulating the formation of brain structure. We discuss the interrelationships between the Wnt and reelin pathways in the regulation of cortical layering. We summarize data emphasizing key molecules, which, when mutated, result in abnormal brain development. This integrated view, which is based on conservation of pathways, reveals the relative position of participants in the pathway, points to control mechanisms, and allows raising testable working hypotheses. Nevertheless, although signaling pathways are highly conserved from flies to humans, the overall morphology is not. We propose that future studies directed at understanding of diversification will provide fruitful insights on mammalian brain formation.
Previous studies have shown that mitigating climate change through curbing greenhouse gas (GHG) emissions can bring about substantial environmental co-benefits, such as for air quality and reductions in energy-related water demand. A variety of pathways are available for reducing...
Further Education Pathways of Canadian University Graduates
ERIC Educational Resources Information Center
Adamuti-Trache, Maria
2008-01-01
Through secondary analysis of the National Graduate Survey data, this study examines determinants of choice of further education pathways by Canadian university graduates in early 2000s. This paper extends the Cross' participation model by introducing a typology of path choices that are related to socio-demographic, post-secondary and situational…
Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens.
Chen, Shun; Wang, Anqi; Sun, Lipei; Liu, Fei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun
2016-12-01
Goose parvovirus (GPV) and avian influenza virus subtype H9N2 are single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) viruses, respectively, both of which can spread in goslings and cause a significant economic loss. To explore the comprehensive transcriptome of GPV- or H9N2-infected goose spleens and to understand the immune responses induced by a DNA virus (GPV) or a RNA virus (H9N2), RNA-seq was performed on the spleens of goslings at the fifth day post infection. In the present study, 2604 and 2409 differentially expressed unigenes were identified in the GPV- and H9N2-infected groups, respectively. Through KEGG pathway enrichment analyses, the up-regulated transcripts in the two virus-infected groups were mainly involved in immune-related pathways. In addition, the two virus-infected groups displayed similar expression patterns in the immune response pathways, including pattern-recognition receptor signaling pathways, the antigen processing and presentation pathway, the NF-κB signaling pathway and the JAK-STAT signaling pathway, as well as cytokines. Furthermore, most of the immune-related genes, particularly TLR7, TRAF3, Mx, TRIM25, CD4, and CD8α, increased in response to GPV and H9N2 infection. However, the depression of NF-κB signaling may be a mechanism by which the viruses evade the host immune system or a strategy to achieve immune homeostasis.
Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.
Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T
2017-04-01
Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.
Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer
Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.
2018-01-01
Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910
Zhang, Kunlin; Chang, Suhua; Cui, Sijia; Guo, Liyuan; Zhang, Liuyan; Wang, Jing
2011-07-01
Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at http://icsnpathway.psych.ac.cn/.
Carbonetto, Peter; Stephens, Matthew
2013-01-01
Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study. PMID:24098138
Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Treutter, D; Valcke, R
2013-11-01
Flavonoids, which are synthesized by the phenylpropanoid-flavonoid pathway, not only contribute to fruit colour and photoprotection, they also may provide antimicrobial and structural components during interaction with micro-organisms. A possible response of this pathway was assessed in both mature and immature leaves of shoots of 2-year-old pear trees cv. Conférence, which were inoculated with the gram-negative bacterium Erwinia amylovora strain SGB 225/12, were mock-inoculated or were left untreated. The phenylpropanoid-flavonoid pathway was analysed by histological studies, by gene expression using RT-qPCR and by HPLC analyses of the metabolites at different time intervals after infection. Transcription patterns of two key genes anthocyanidin reductase (ANR) and chalcone synthase (CHS) related to the phenylpropanoid-flavonoid pathway showed differences between control, mock-inoculated and E. amylovora-inoculated mature leaves, with the strongest reaction 48 h after inoculation. The impact of E. amylovora was also visualised in histological sections, and confirmed by HPLC, as epicatechin -which is produced via ANR- augmented 72 h after inoculation in infected leaf tissue. Besides the effect of treatments, ontogenesis-related differences were found as well. The increase of certain key genes, the rise in epicatechin and the visualisation in several histological sections in this study suggest a non-negligible impact on the phenylpropanoid-flavonoid pathway in Pyrus communis due to inoculation with E. amylovora. In this study, we propose a potential role of this pathway in defence mechanisms, providing a detailed analysis of the response of this system attributable to inoculation with E. amylovora. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Systematic reconstruction of autism biology from massive genetic mutation profiles
Zhang, Chaolin; Jiang, Yong-hui
2018-01-01
Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3′,5′-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein–coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity. PMID:29651456
Systematic reconstruction of autism biology from massive genetic mutation profiles.
Luo, Weijun; Zhang, Chaolin; Jiang, Yong-Hui; Brouwer, Cory R
2018-04-01
Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.
Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard
2013-01-01
We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682
Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard
2013-06-01
We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.
The Pathway Coexpression Network: Revealing pathway relationships
Tanzi, Rudolph E.
2018-01-01
A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer’s Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/. PMID:29554099
Young, W; McShane, J; O'Connor, T; Rewa, G; Goodman, S; Jaglal, S B; Cash, L; Coyte, P
2004-01-01
To obtain home health nurses' comments on an evidence-based care pathway for post myocardial infarction. A qualitative design was used. Culturally diverse, lower income area of a large city. All home health nurses from one nursing agency who participated in a comparative study on the impact of the evidence-based care pathway. The largest number of comments made by the nurses were related to the beneficial impact of the pathway on the provision of quality nursing care and on increased job satisfaction. The home health nurses reported that the pathway increased clients' knowledge of medications and diet. In addition, they commented that they were able to use the pathway effectively because of the training they received from the inpatient cardiac nurses. This qualitative study demonstrates the benefits of investing in the implementation of best practice guidelines by home health nurses. However, nursing associations, such as the Canadian Community Health Nurses Initiatives Group, will need to continue to champion for additional funds to support the additional expenses incurred.
Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan
2015-06-10
As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellularmore » energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.« less
An Adaptive Genetic Association Test Using Double Kernel Machines.
Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis
2015-10-01
Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.
Genetic association of impulsivity in young adults: a multivariate study
Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D
2014-01-01
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255
DOE Office of Scientific and Technical Information (OSTI.GOV)
Euling, Susan Y., E-mail: euling.susan@epa.gov; White, Lori D.; Kim, Andrea S.
An evaluation of the toxicogenomic data set for dibutyl phthalate (DBP) and male reproductive developmental effects was performed as part of a larger case study to test an approach for incorporating genomic data in risk assessment. The DBP toxicogenomic data set is composed of nine in vivo studies from the published literature that exposed rats to DBP during gestation and evaluated gene expression changes in testes or Wolffian ducts of male fetuses. The exercise focused on qualitative evaluation, based on a lack of available dose–response data, of the DBP toxicogenomic data set to postulate modes and mechanisms of action formore » the male reproductive developmental outcomes, which occur in the lower dose range. A weight-of-evidence evaluation was performed on the eight DBP toxicogenomic studies of the rat testis at the gene and pathway levels. The results showed relatively strong evidence of DBP-induced downregulation of genes in the steroidogenesis pathway and lipid/sterol/cholesterol transport pathway as well as effects on immediate early gene/growth/differentiation, transcription, peroxisome proliferator-activated receptor signaling and apoptosis pathways in the testis. Since two established modes of action (MOAs), reduced fetal testicular testosterone production and Insl3 gene expression, explain some but not all of the testis effects observed in rats after in utero DBP exposure, other MOAs are likely to be operative. A reanalysis of one DBP microarray study identified additional pathways within cell signaling, metabolism, hormone, disease, and cell adhesion biological processes. These putative new pathways may be associated with DBP effects on the testes that are currently unexplained. This case study on DBP identified data gaps and research needs for the use of toxicogenomic data in risk assessment. Furthermore, this study demonstrated an approach for evaluating toxicogenomic data in human health risk assessment that could be applied to future chemicals. - Highlights: ► We evaluate the dibutyl phthalate toxicogenomic data for use in risk assessment. ► We focus on information about the mechanism of action for the developing testis. ► Multiple studies report effects on testosterone and insl3-related pathways. ► We identify additional affected pathways that may explain some testis effects. ► The case study is a template for evaluating toxicogenomic data in risk assessment.« less
Relative Contributions of Agricultural Drift, Para-Occupational ...
Background: Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. Objective: To guide future exposure assessment efforts, we quantified relative contributions of these pathways using meta-regression models of published data on dust pesticide concentrations. Methods: From studies in North American agricultural areas published from 1995-2015, we abstracted dust pesticide concentrations reported as summary statistics (e.g., geometric means (GM)). We analyzed these data using mixed-effects meta-regression models that weighted each summary statistic by its inverse variance. Dependent variables were either the log-transformed GM (drift) or the log-transformed ratio of GMs from two groups (para-occupational, residential use). Results: For the drift pathway, predicted GMs decreased sharply and nonlinearly, with GMs 64% lower in homes 250 m versus 23 m from fields (inter-quartile range of published data) based on 52 statistics from 7 studies. For the para-occupational pathway, GMs were 2.3 times higher (95% confidence interval [CI]: 1.5-3.3; 15 statistics, 5 studies) in homes of farmers who applied pesticides more versus less recently or frequently. For the residential use pathway, GMs were 1.3 (95%CI: 1.1-1.4) and 1.5 (95%CI: 1.2-1.9) times higher in treated versus untreated homes, when the probability that a pesticide was used for
Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus
2015-01-01
Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. PMID:26019233
Whole genome survey of coding SNPs reveals a reproducible pathway determinant of Parkinson disease
Srinivasan, Balaji S; Doostzadeh, Jaleh; Absalan, Farnaz; Mohandessi, Sharareh; Jalili, Roxana; Bigdeli, Saharnaz; Wang, Justin; Mahadevan, Jaydev; Lee, Caroline LG; Davis, Ronald W; William Langston, J; Ronaghi, Mostafa
2009-01-01
It is quickly becoming apparent that situating human variation in a pathway context is crucial to understanding its phenotypic significance. Toward this end, we have developed a general method for finding pathways associated with traits that control for pathway size. We have applied this method to a new whole genome survey of coding SNP variation in 187 patients afflicted with Parkinson disease (PD) and 187 controls. We show that our dataset provides an independent replication of the axon guidance association recently reported by Lesnick et al. [PLoS Genet 2007;3:e98], and also indicates that variation in the ubiquitin-mediated proteolysis and T-cell receptor signaling pathways may predict PD susceptibility. Given this result, it is reasonable to hypothesize that pathway associations are more replicable than individual SNP associations in whole genome association studies. However, this hypothesis is complicated by a detailed comparison of our dataset to the second recent PD association study by Fung et al. [Lancet Neurol 2006;5:911–916]. Surprisingly, we find that the axon guidance pathway does not rank at the very top of the Fung dataset after controlling for pathway size. More generally, in comparing the studies, we find that SNP frequencies replicate well despite technologically different assays, but that both SNP and pathway associations are globally uncorrelated across studies. We thus have a situation in which an association between axon guidance pathway variation and PD has been found in 2 out of 3 studies. We conclude by relating this seeming inconsistency to the molecular heterogeneity of PD, and suggest future analyses that may resolve such discrepancies. PMID:18853455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Li
Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) is ubiquitous in the environment, wildlife, and humans. Evidence from past studies suggests that BPA is associated with decreased semen quality. However, the molecular basis for the adverse effect of BPA on male reproductive toxicity remains unclear. We evaluated the effect of BPA on mouse spermatocytes GC-2 cells and adult mice, and we explored the potential mechanism of its action. The results showed that BPA inhibited cell proliferation and increased the apoptosis rate. The testes from BPA-treated mice showed fewer spermatogenic cells and sperm in the seminiferous tubules. In addition, BPA caused reactive oxygen species (ROS)more » accumulation. Previous study has verified that mitochondrion was the organelle affected by the BPA-triggered ROS accumulation. We found that BPA induced damage to the endoplasmic reticulum (ER) in addition to mitochondria, and most ER stress-related proteins were activated in cellular and animal models. Knocking down of the PERK/EIF2α/chop pathway, one of the ER stress pathways, partially recovered the BPA-induced cell apoptosis. In addition, an ROS scavenger attenuated the expression of the PERK/EIF2α/chop pathway-related proteins. Taken together, these data suggested that the ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced male reproductive toxicity. - Highlights: • BPA exposure caused the damage of the endoplasmic reticulum. • BPA exposure activated ER stress related proteins in male reproductive system. • ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced toxicity.« less
Zhang, Xin; Ye, Zhi-Hua; Liang, Hai-Wei; Ren, Fang-Hui; Li, Ping; Dang, Yi-Wu; Chen, Gang
2017-04-01
Our previous research has demonstrated that miR-146a-5p is down-regulated in hepatocellular carcinoma (HCC) and might play a tumor-suppressive role. In this study, we sought to validate the decreased expression with a larger cohort and to explore potential molecular mechanisms. GEO and TCGA databases were used to gather miR-146a-5p expression data in HCC, which included 762 HCC and 454 noncancerous liver tissues. A meta-analysis of the GEO-based microarrays, TCGA-based RNA-seq data, and additional qRT-PCR data validated the down-regulation of miR-146a-5p in HCC and no publication bias was observed. Integrated genes were generated by overlapping miR-146a-5p-related genes from predicted and formerly reported HCC-related genes using natural language processing. The overlaps were comprehensively analyzed to discover the potential gene signatures, regulatory pathways, and networks of miR-146a-5p in HCC. A total of 251 miR-146a-5p potential target genes were predicted by bioinformatics platforms and 104 genes were considered as both HCC- and miR-146a-5p-related overlaps. RAC1 was the most connected hub gene for miR-146a-5p and four pathways with high enrichment (VEGF signaling pathway, adherens junction, toll-like receptor signaling pathway, and neurotrophin signaling pathway) were denoted for the overlapped genes. The down-regulation of miR-146a-5p in HCC has been validated with the most complete data possible. The potential gene signatures, regulatory pathways, and networks identified for miR-146a-5p in HCC could prove useful for molecular-targeted diagnostics and therapeutics.
Krohn, Johannes; Lozanovska, Ivana; Kuzyakov, Yakov; Parvin, Shahnaj; Dorodnikov, Maxim
2017-05-15
Two peatland micro-relief forms (microforms) - hummocks and hollows - differ by their hydrological characteristics (water table level, i.e. oxic-anoxic conditions) and vegetation communities. We studied the CH 4 and CO 2 production potential and the localization of methanogenic pathways in both hummocks and hollows at depths of 15, 50, 100, 150 and 200cm in a laboratory incubation experiment. For this purpose, we measured CH 4 and CO 2 production rates, peat elemental composition, as well as δ 13 C values of gases and solids; the specific inhibitor of methanogenesis BES (2-bromo-ethane sulfonate, 1mM) was aimed to preferentially block the acetoclastic pathway. The cumulative CH 4 production of all depths was almost one fold higher in hollows than in hummocks, with no differences in CO 2 . With depth, CO 2 and CH 4 production decreased, and the relative contribution of the hydrogenotrophic pathway of methanogenesis increased. The highest methanogenic activity among all depths and both microforms was measured at 15cm of hollows (91%) at which the highest relative contribution of acetoclastic vs. hydrogenotrophic pathway (92 and 8%, respectively) was detected. For hummocks, the CH 4 production was the highest at 50cm (82%), where relative contribution of acetoclastic methanogenesis comprised 89%. The addition of 1mM BES was not selective and inhibited both methanogenic pathways in the soil. Thus, BES was less efficient in partitioning the pathways compared with the δ 13 C signature. We conclude that the peat microforms - dry hummocks and wet hollows - play an important role for CH 4 but not for CO 2 production when the effects of living vegetation are excluded. Copyright © 2017 Elsevier B.V. All rights reserved.
Genes and (Common) Pathways Underlying Drug Addiction
Li, Chuan-Yun; Mao, Xizeng; Wei, Liping
2008-01-01
Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280
Bai, Jie; Yao, Xiaofeng; Jiang, Liping; Qiu, Tianming; Liu, Shuang; Qi, Baoxu; Zheng, Yue; Kong, Yuan; Yang, Guang; Chen, Min; Liu, Xiaofang; Sun, Xiance
2016-04-01
Arsenic was increasingly to blame as a risk factor for type 2 diabetes mellitus. In our previous study, we had found iAs stimulated autophagic flux and caused autophagic cell death through ROS pathway in INS-1 cells. Since NF-E2-related factor 2 (Nrf2) and the thioredoxin (Trx) system was a crucial line of defense against ROS, we investigated whether Nrf2/Trx pathway contributed to As2O3-stimulated autophagy and the role of taurine in this study. After treatment with 2 mg/kg BW-8 mg/kg BW As2O3 for 57 d, the expression of Nrf2 protein was decreased significantly in offsprings' pancreas. The expression of Trx gene was decreased significantly in pancreas subsequently. Finally, the generation of reactive oxygen species stimulated autophagy in arsenic-treated pancreas. Taurine could reverse arsenic-inhibited Nrf2 and Trx and inhibit autophagy. In short, inhibition of Nrf2/Trx pathway might play an important role in the pathogenesis of arsenic-related diabetes. Taurine could serve as nutrition supplementation against arsenic-related diabetes in high arsenic exposure area. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Pathways to STEMM Professions for Students from Noncollege Homes
ERIC Educational Resources Information Center
Miller, Jon D.; Pearson, Willie, Jr.
2012-01-01
In this article we use data from the Longitudinal Study of American Youth to examine the influence of parent education on pathways to science, technology, engineering, mathematics, and medicine (STEMM) professions. Building on a general model of factors related to STEMM education and employment, we employ a two-group structural equation model to…
Cognitive Pathways: Analysis of Students' Written Texts for Science Understanding
ERIC Educational Resources Information Center
Grimberg, Bruna Irene; Hand, Brian
2009-01-01
The purpose of this study was to reconstruct writers' reasoning process as reflected in their written texts. The codes resulting from the text analysis were related to cognitive operations, ranging from simple to more sophisticated ones. The sequence of the cognitive operations as the text unfolded represents the writer's cognitive pathway at the…
An Open Metadata Schema for Clinical Pathway (openCP) in China.
Xu, Wei; Zhu, Yanxin; Wang, Xia
2017-01-01
China has issued and implemented standard clinical pathways (Chinese standard CPs) since 2009; however, they are still paper-based CPs. The aim of the study is to reorganize Chinese standard CPs based on related Chinese medical standards, by using archetype approach, and develop an Open platform for CP (openCP) in China.
The Adverse Outcome Pathway (AOP) framework summarizes key information about mechanistic events leading to an adverse health or ecological outcome. In recent years computationally predicted AOPs (cpAOP) making use of publicly available data have been proposed as a means of accele...
The Pathways from Parents' Marital Quality to Adolescents' School Adjustment in South Korea
ERIC Educational Resources Information Center
Jeong, Yu-Jin; Chun, Young-Ju
2010-01-01
This study tested the hypothesized pathways from parents' marital quality to Korean adolescents' school adjustment through the perception of self and parent-child relations. Based on previous literature and two major family theories, the authors hypothesized a path model to explain the process of how parents' marital quality influenced school…
Bai, Y; Zhang, Q; Yang, Z; Meng, Z; Zhao, Q
2017-10-01
It is reported that methanol is generally used as an industrial solvent, antifreeze, windshield washer fluid, cooking fuel and perfume. Methanol ingestion can lead to severe metabolic disturbances, blindness, or even death. So far, few studies about its negative effects on cardiovascular system have been reported. The purpose of this study was to determine the vasoactive effect of methanol and roles of ion channels and signal transduction pathways on isolated rat aorta. The results suggested that the mechanism of methanol-induced vasorelaxation at low concentrations (<500 mM) was mediated by ATP-sensitive K + (K ATP ) and L-type Ca 2+ channels, but the mechanism at high concentrations (>600 mM) was related to K ATP , voltage-dependent K + , big-conductance Ca 2+ -activated K + , L-type Ca 2+ channels as well as prostacyclin, protein kinase C, β-adrenoceptors pathways. In addition, methanol induced a dose-dependent inhibition of vasoconstrictions caused by calcium chloride, potassium chloride, or norepinephrine. Further work is needed to investigate the relative contribution of each channel and pathway in methanol-induced vasoactive effect.
Li, Tieluo; Kilic, Ahmet; Wei, Xufeng; Wu, Changfu; Schwartzbauer, Gary; Yankey, G Kwame; DeFilippi, Christopher; Bond, Meredith; Wu, Zhongjun J; Griffith, Bartley P
2013-06-05
The underlying molecular mechanisms of the remodeling after myocardial infarction (MI) remain unclear. The purpose of this study was to investigate the role of a survival pathway (PI3K/Akt) and an apoptosis pathway (calcineurin/BAD) in the remodeling after MI in a large animal model. Ten Dorset hybrid sheep underwent 25% MI in the left ventricle (LV, n=10). Five sheep were used as sham control. The regional strain was calculated from sonomicrometry. Apoptosis and the activation of the PI3K/Akt and calcineurin/BAD pathways were evaluated in the non-ischemic adjacent zone and the remote zone relative to infarct by immunoblotting, immunoprecipitation, and immunofluorescence staining. Dilation and dysfunction of LV were present at 12 weeks after MI. The regional strain in the adjacent zone was significantly higher than in the remote zone at 12 weeks (36.6 ± 4.0% vs 9.5 ± 3.6%, p<0.05). Apoptosis was more severe in the adjacent zone than in the remote zone. The PI3K/Akt and calcineurin/BAD pathways were activated in the adjacent zone. Dephosphorylation and translocation of BAD were evident in the adjacent zone. Regional correlation between the strain and the expression of calcineurin/BAD indicated that the activation was strain-related (R(2)=0.46, 0.48, 0.39 for calcineurin, BAD, mitochondrial BAD, respectively, p<0.05). The PI3K/Akt survival and calcineurin/BAD apoptotic pathways were concomitantly activated in the non-ischemic adjacent zone after MI. The calcineurin/BAD pathway is strain related and its imbalanced activation may be one of the causes of progressive remodeling after MI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Li, Tieluo; Kilic, Ahmet; Wei, Xufeng; Wu, Changfu; Schwartzbauer, Gary; Yankey, G. Kwame; DeFilippi, Christopher; Bond, Meredith; Wu, Zhongjun J; Griffith, Bartley P
2011-01-01
Background The underlying molecular mechanisms of the remodeling after myocardial infarction (MI) remain unclear. The purpose of this study was to investigate the role of a survival pathway (PI3K/Akt) and an apoptosis pathway (calcineurin/BAD) in the remodeling after MI in a large animal model. Methods Ten Dorset hybrid sheep underwent 25% MI in the left ventricle (LV, n=10). Five sheep were used as sham control. The regional strain was calculated from sonomicrometry. Apoptosis and the activation of the PI3K/Akt and calcineurin/BAD pathways were evaluated in the non-ischemic adjacent zone and the remote zone relative to infarct by immunoblotting, immunoprecipitation, and immunofluorescence staining. Results Dilation and dysfunction of LV were present at 12 weeks after MI. The regional strain in the adjacent zone was significantly higher than in the remote zone at 12 weeks (36.6 ± 4.0% vs 9.5 ± 3.6%, p < 0.05). Apoptosis was more severe in the adjacent zone than in the remote zone. The PI3K/Akt and calcineurin/BAD pathways were activated in the adjacent zone. Dephosphorylation and translocation of BAD were evident in the adjacent zone. Regional correlation between the strain and the expression of calcineurin/BAD indicated that the activation was strain-related (R2 = 0.46, 0.48, 0.39 for calcineurin, BAD, mitochondrial BAD, respectively, p < 0.05). Conclusions The PI3K/Akt survival and calcineurin/BAD apoptotic pathways were concomitantly activated in the non-ischemic adjacent zone after MI. The calcineurin/BAD pathway is strain related and its imbalanced activation may be one of the causes of progressive remodeling after MI. PMID:22088220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karp, Peter D.
Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manuallymore » curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds. The pathways were to be generated using metabolic reactions from a reference database (DB). 5: Develop computational tools for ranking the pathways generated in objective (4) according to their optimality. The ranking criteria include stoichiometric yield, the number and cost of additional inputs and the cofactor compounds required by the pathway, pathway length, and pathway energetics. 6: Develop tools for visualizing generated pathways to facilitate the evaluation of a large space of generated pathways.« less
NASA Astrophysics Data System (ADS)
Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor
2015-05-01
We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meiser, Jerome; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de
Using classical molecular dynamics simulations and the Meyer-Entel interaction potential, we study the martensitic transformation pathway in a pure iron bi-crystal containing a symmetric tilt grain boundary. Upon cooling the system from the austenitic phase, the transformation starts with the nucleation of the martensitic phase near the grain boundary in a plate-like arrangement. The Kurdjumov-Sachs orientation relations are fulfilled at the plates. During further cooling, the plates expand and merge. In contrast to the orientation relation in the plate structure, the complete transformation proceeds via the Pitsch pathway.
Kim, Suk-Sun; Hayward, R David; Gil, Minji
2017-07-17
The purpose of this study was to examine the mechanisms that might account for the effects of spirituality and self-transcendence on Korean college students' depression among 197 Korean fathers, mothers, and children. A structural equation analysis indicated that spiritual perspective related to lower depression through the mediating pathway of self-transcendence for individuals. Mothers' spiritual perspective and self-transcendence related to their children's depression through the mediating pathway of their own depression, but the same was not true for fathers. Findings help explicate the intergenerational transmission of depression and important predictors of depression related to spirituality.
Dong, Bin; Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang
2017-01-01
The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI 'nr' (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant.
Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang
2017-01-01
Background The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. Results In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI ‘nr’ (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. Conclusions In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant. PMID:28759610
Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng
2016-01-01
Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway. PMID:27189192
Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng
2016-05-18
Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.
Yu, Xin; Wan, Qilong; Cheng, Gu; Cheng, Xin; Zhang, Jing; Pathak, Janak L; Li, Zubing
2018-06-16
Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl 2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression i.e., metal-loproteinase (MMP) 7, MMP9 and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hy-poxia-induced BMSCs migration, cell migration related signaling molecules phos-phorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK and MMP9 signaling pathways. This article is protected by copyright. All rights reserved.
Mentzel, Caroline M Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen; Jacobsen, Mette Juul; Jørgensen, Claus Bøttcher; Cirera, Susanna; Fredholm, Merete
2018-02-01
The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is 'unhealthy', a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase in BMI and amount of SATa.
Li, Hong-Mei; Yang, Hong; Wen, Dong-Yue; Luo, Yi-Huan; Liang, Chun-Yan; Pan, Deng-Hua; Ma, Wei; Chen, Gang; He, Yun; Chen, Jun-Qiang
2017-05-01
The role of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) in thyroid carcinoma (TC) remains unclear. The current study was aimed to assess the clinical value of HOTAIR expression levels in TC based on publically available data and to evaluate its potential signaling pathways. The expression data of HOTAIR and clinical information concerning TC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Furthermore, 3 online biological databases, Starbase, Cbioportal, and Multi Experiment Matrix, were used to identify HOTAIR-related genes in TC. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Panther pathway analyses were then undertaken to study the most enriched signaling pathways in TC (EASE score<0.1, Bonferroni<0.05). The TCGA results demonstrated that the expression level of HOTAIR in TC tissues was significantly increased compared with non-cancerous tissues (p<0.001). HOTAIR over-expression was significantly associated with poor survival in TC patients (p=0.03). Meta-analyses of GEO datasets revealed a trend consistent with the above results on HOTAIR expression levels in TC (SMD=0.23; 95%CI, 0.00-0.45; p=0.047). Finally, the results of functional analysis for HOTAIR-related genes indicated that HOTAIR might participate in tumorigenesis via the Wnt signaling pathway. In conclusion, our study demonstrates that HOTAIR may be involved in thyroid carcinogenesis, and the over-expression of HOTAIR could act as a biomarker associated with a poor outcome in TC patients. Moreover, the Wnt signaling pathway may be the key pathway regulated by HOTAIR in TC. © Georg Thieme Verlag KG Stuttgart · New York.
Ramanan, Vijay K; Kim, Sungeun; Holohan, Kelly; Shen, Li; Nho, Kwangsik; Risacher, Shannon L; Foroud, Tatiana M; Mukherjee, Shubhabrata; Crane, Paul K; Aisen, Paul S; Petersen, Ronald C; Weiner, Michael W; Saykin, Andrew J
2012-12-01
Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer's disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value < 0.05) against this composite memory score. Processes classically understood to be involved in memory consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Yang; Shi, Wenjing; Smith, Steven J.
There are many technological pathways that can lead to reduced carbon dioxide (CO 2) emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the U.S. energy system to compare environmental impacts of alternative low-carbon pathways. One set of pathways emphasizes nuclear energy and carbon capture and storage (NUC/CCS), while another set emphasizes renewable energy (RE). These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter less thanmore » 2.5 microns in diameter (PM2.5), and energy-related water demands are evaluated for 50% and 80% CO 2 reduction targets in the U.S. in 2050. The RE low-carbon pathways require less water withdrawal and consumption than the NUC/CCS pathways because of the large cooling demands of nuclear power and CCS. However, the NUC/CCS low-carbon pathways produce greater health benefits, mainly because the NUC/CCS assumptions result in less primary PM2.5 emissions from residential wood combustion. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies. An important finding is that biomass in the building sector can offset some of the health co-benefits of the low-carbon pathways even though it plays only a minor role in reducing CO 2 emissions.« less
Targeting G protein coupled receptor-related pathways as emerging molecular therapies
Ghanemi, Abdelaziz
2013-01-01
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties. PMID:25972730
Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.
Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas
2017-01-21
We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.
The Lectin Pathway in Thrombotic Conditions-A Systematic Review.
Larsen, Julie Brogaard; Hvas, Christine Lodberg; Hvas, Anne-Mette
2018-06-04
The lectin pathway of the complement system can activate the coagulation system in vitro, but the role of the lectin pathway in haemostatic activation and thrombosis in vivo is not clear. We performed a systematic review of the existing literature on associations between the lectin pathway and arterial and venous thrombosis, in accordance with the Assessing the Methodological Quality of Systematic Reviews guidelines. PubMed and Embase were searched from January 1990 to March 2017. We included original studies on human study populations investigating associations between the lectin pathway (protein serum levels, genotype or gene expression) and thrombotic conditions or laboratory coagulation markers. Exclusion criteria were case studies including fewer than five cases, conference abstracts or any other language than English. In total, 43 studies were included which investigated associations between the lectin pathway and cardiovascular thrombotic events (CVEs) ( n = 22), ischaemic stroke ( n = 9), CVE and stroke ( n = 1) and other conditions (systemic lupus erythematosus [ n = 6], sepsis-related coagulopathy [ n = 3], pulmonary embolism [ n = 1], asparaginase treatment [ n = 1]). Studies on the lectin pathway and CVE risk reported discrepant results, as both high and low mannose-binding lectin (MBL) serum levels were found to correlate with increased CVE risk. In ischaemic stroke patients, occurrence of stroke as well as increased stroke severity and poor outcome were consistently associated with high serum MBL. For other thromboembolic conditions, only few studies were identified. In conclusion, lectin pathway activation may negatively influence outcome after ischaemic stroke and possibly contribute to CVE risk. Further research is warranted to elucidate the role of the lectin pathway in other thrombotic conditions. Schattauer GmbH Stuttgart.
Li, Yanyun; Chen, Minjian; Liu, Cuiping; Xia, Yankai; Xu, Bo; Hu, Yanhui; Chen, Ting; Shen, Meiping; Tang, Wei
2018-05-01
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. Nuclear magnetic resonance (NMR)‑based metabolomic technique is the gold standard in metabolite structural elucidation, and can provide different coverage of information compared with other metabolomic techniques. Here, we firstly conducted NMR based metabolomics study regarding detailed metabolic changes especially metabolic pathway changes related to PTC pathogenesis. 1H NMR-based metabolomic technique was adopted in conju-nction with multivariate analysis to analyze matched tumor and normal thyroid tissues obtained from 16 patients. The results were further annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG), and Human Metabolome Database, and then were analyzed using modules of pathway analysis and enrichment analysis of MetaboAnalyst 3.0. Based on the analytical techniques, we established the models of principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least-squares discriminant analysis (OPLS‑DA) which could discriminate PTC from normal thyroid tissue, and found 15 robust differentiated metabolites from two OPLS-DA models. We identified 8 KEGG pathways and 3 pathways of small molecular pathway database which were significantly related to PTC by using pathway analysis and enrichment analysis, respectively, through which we identified metabolisms related to PTC including branched chain amino acid metabolism (leucine and valine), other amino acid metabolism (glycine and taurine), glycolysis (lactate), tricarboxylic acid cycle (citrate), choline metabolism (choline, ethanolamine and glycerolphosphocholine) and lipid metabolism (very-low‑density lipoprotein and low-density lipoprotein). In conclusion, the PTC was characterized with increased glycolysis and inhibited tricarboxylic acid cycle, increased oncogenic amino acids as well as abnormal choline and lipid metabolism. The findings in this study provide new insights into detailed metabolic changes of PTC, and hold great potential in the treatment of PTC.
Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z
2015-09-01
miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo
2014-01-01
This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.
Statistical and methodological issues in the evaluation of case management studies.
Lesser, M L; Robertson, S; Kohn, N; Cooper, D J; Dlugacz, Y D
1996-01-01
For the past 3 years, the nursing case management team at North Shore University Hospital in Manhasset, NY, has been involved in a project to implement more than 50 clinical pathways, which provide a written "time line" for clinical events that should occur during a patient's hospital stay. A major objective of this project was to evaluate the efficacy of these pathways with respect to a number of important outcomes, such as length of stay, hospital costs, quality of patient care, and nursing and patient satisfaction. This article discusses several statistics-related issues in the design and evaluation of such case management studies. In particular, the role of a research approach in implementing and evaluating hospital programs, the choice of a comparison (control) group, the exclusion of selected patients from analysis, and the problems of equating pathways with diagnosis-related groups are addressed.
Marshal, Michael P; Burton, Chad M; Chisolm, Deena J; Sucato, Gina S; Friedman, Mark S
2013-08-01
Sexual minority girls (SMGs) are four times more likely to engage in substance use than are heterosexual girls. A better understanding of the explanatory mechanisms of this disparity is needed to inform prevention and intervention programs. The goal of this study was to conduct a preliminary test of a "stress-negative affect" pathway by examining gay-related victimization and depression as mediators of substance use among SMGs. Adolescent girls (N = 156, 41% SMGs) were recruited from two urban adolescent medicine clinics to participate in an NIH-funded study of adolescent substance use. The average age was 17.0 years old and 57% were nonwhite. Mediation analyses were conducted in a multiple regression framework using SPSS and a mediation macro utilizing bias-corrected bootstrapping. Four models were estimated to test mediated pathways from sexual orientation to gay-related victimization (Mediator 1), to depression symptoms (Mediator 2), and then to each of four substance use variables: cigarettes, marijuana, alcohol, and heavy alcohol use. Significant mediated pathways (mediation tests with 95% CIs) were found for cigarette, alcohol and heavy alcohol use outcome variables. Results provide preliminary support for the minority stress hypothesis and the stress-negative affect pathway, and may inform the development of future prevention and intervention programs. © 2013 Wiley Periodicals, Inc.
Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2017-01-25
With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yi; Zhang, Qing; Shen, Yi
Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts hasmore » been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.« less
Jia, Shuqin; Qu, Tingting; Feng, Mengmeng; Ji, Ke; Li, Ziyu; Jiang, Wenguo; Ji, Jiafu
2017-06-01
Wnt1-inducible signaling pathway protein-1 is a cysteine-rich protein that belongs to the CCN family, which has been implicated in mediating the occurrence and progression through distinct molecular mechanisms in several tumor types. However, the association of Wnt1-inducible signaling pathway protein-1 with gastric cancer and the related molecular mechanisms remain to be elucidated. Therefore, this study aimed to clarify the biological role of Wnt1-inducible signaling pathway protein-1 in the proliferation, migration, and invasion in gastric cancer cells and further investigated the associated molecular mechanism on these biological functions. We first detected the expression level of Wnt1-inducible signaling pathway protein-1 in gastric cancer, and the reverse transcription polymerase chain reaction have shown that Wnt1-inducible signaling pathway protein-1 expression levels were upregulated in gastric cancer tissues. The expression of Wnt1-inducible signaling pathway protein-1 in gastric cancer cell lines was also detected by quantitative real-time polymerase chain reaction and Western blotting. Furthermore, two gastric cancer cell lines with high expression of Wnt1-inducible signaling pathway protein-1 were selected to explore the biological function of Wnt1-inducible signaling pathway protein-1 in gastric cancer. Function assays indicated that knockdown of Wnt1-inducible signaling pathway protein-1 suppressed cell proliferation, migration, and invasion in BGC-823 and AGS gastric cancer cells. Further investigation of mechanisms suggested that cyclinD1 was identified as one of Wnt1-inducible signaling pathway protein-1 related genes to accelerate proliferation in gastric cancer cells. In addition, one pathway of Wnt1-inducible signaling pathway protein-1 induced migration and invasion was mainly through the enhancement of epithelial-to-mesenchymal transition progression. Taken together, our findings presented the first evidence that Wnt1-inducible signaling pathway protein-1 was upregulated in gastric cancer and acted as an oncogene by promoting proliferation, migration, and invasion in gastric cancer cells.
Neural pathway in the right hemisphere underlies verbal insight problem solving.
Zhao, Q; Zhou, Z; Xu, H; Fan, W; Han, L
2014-01-03
Verbal insight problem solving means to break mental sets, to select the novel semantic information and to form novel, task-related associations. Although previous studies have identified the brain regions associated with these key processes, the interaction among these regions during insight is still unclear. In the present study, we explored the functional connectivity between the key regions during solving Chinese 'chengyu' riddles by using event-related functional magnetic resonance imaging. Results showed that both insight and noninsight solutions activated the bilateral inferior frontal gyri, middle temporal gyri and hippocampi, and these regions constituted a frontal to temporal to hippocampal neural pathway. Compared with noninsight solution, insight solution had a stronger functional connectivity between the inferior frontal gyrus and middle temporal gyrus in the right hemisphere. Our study reveals the neural pathway of information processing during verbal insight problem solving, and supports the right-hemisphere advantage theory of insight. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Stynen, Dave; Jansen, Nicole W H; Kant, IJmert
2017-12-01
This study aims to examine the impact of work-related and personal resources on older workers' retirement intentions by studying the pathways (fatigue and work enjoyment) from resources to retirement intentions, the buffering role of resources for psychological job demands, in a cross-sectional and longitudinal timeframe. Longitudinal results on a subsample of full-time, older workers (n = 1642) from the Maastricht Cohort Study suggest that over four years of follow-up personal resources like personal mastery and perceived health related to less (prolonged) fatigue and more work enjoyment. Personal mastery also related to later retirement intentions. A work-related resource like decision authority related to less prolonged fatigue. (Prolonged) fatigue related to earlier retirement intentions, suggesting that fatigue may be a pathway to early retirement. Finally, little evidence was found for effect modification by resources. This prospective study indicates that work-related and personal resources may be useful for prolonging working careers. Practitioner Summary: To date, the impact of work-related and personal resources on older workers' retirement intentions is rarely studied. As this prospective study shows that resources may impact older workers' (prolonged) fatigue, work enjoyment and retirement intentions, the monitoring and fostering of resources is of importance for prolonging their working careers.
Teaniniuraitemoana, Vaihiti; Huvet, Arnaud; Levy, Peva; Gaertner-Mazouni, Nabila; Gueguen, Yannick; Le Moullac, Gilles
2015-01-01
The genomics of economically important marine bivalves is studied to provide better understanding of the molecular mechanisms underlying their different reproductive strategies. The recently available gonad transcriptome of the black-lip pearl oyster Pinctada margaritifera is a novel and powerful resource to study these mechanisms in marine mollusks displaying hermaphroditic features. In this study, RNAseq quantification data of the P. margaritifera gonad transcriptome were analyzed to identify candidate genes in histologically-characterized gonad samples to provide molecular signatures of the female and male sexual pathway in this pearl oyster. Based on the RNAseq data set, stringent expression analysis identified 1,937 contigs that were differentially expressed between the gonad histological categories. From the hierarchical clustering analysis, a new reproduction model is proposed, based on a dual histo-molecular analytical approach. Nine candidate genes were identified as markers of the sexual pathway: 7 for the female pathway and 2 for the male one. Their mRNA levels were assayed by real-time PCR on a new set of gonadic samples. A clustering method revealed four principal expression patterns based on the relative gene expression ratio. A multivariate regression tree realized on these new samples and validated on the previously analyzed RNAseq samples showed that the sexual pathway of P. margaritifera can be predicted by a 3-gene-pair expression ratio model of 4 different genes: pmarg-43476, pmarg-foxl2, pmarg-54338 and pmarg-fem1-like. This 3-gene-pair expression ratio model strongly suggests only the implication of pmarg-foxl2 and pmarg-fem1-like in the sex inversion of P. margaritifera. This work provides the first histo-molecular model of P. margaritifera reproduction and a gene expression signature of its sexual pathway discriminating the male and female pathways. These represent useful tools for understanding and studying sex inversion, sex differentiation and sex determinism in this species and other related species for aquaculture purposes such as genetic selection programs. PMID:25815473
Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS.
Kangelaris, Kirsten Neudoerffer; Prakash, Arun; Liu, Kathleen D; Aouizerat, Bradley; Woodruff, Prescott G; Erle, David J; Rogers, Angela; Seeley, Eric J; Chu, Jeffrey; Liu, Tom; Osterberg-Deiss, Thomas; Zhuo, Hanjing; Matthay, Michael A; Calfee, Carolyn S
2015-06-01
The early sequence of events leading to the development of the acute respiratory distress syndrome (ARDS) in patients with sepsis remains inadequately understood. The purpose of this study was to identify changes in gene expression early in the course of illness, when mechanisms of injury may provide the most relevant treatment and prognostic targets. We collected whole blood RNA in critically ill patients admitted from the Emergency Department to the intensive care unit within 24 h of admission at a tertiary care center. Whole genome expression was compared in patients with sepsis and ARDS to patients with sepsis alone. We selected genes with >1 log2 fold change and false discovery rate <0.25, determined their significance in the literature, and performed pathway analysis. Several genes were upregulated in 29 patients with sepsis with ARDS compared with 28 patients with sepsis alone. The most differentially expressed genes included key mediators of the initial neutrophil response to infection: olfactomedin 4, lipocalin 2, CD24, and bactericidal/permeability-increasing protein. These gene expression differences withstood adjustment for age, sex, study batch, white blood cell count, and presence of pneumonia or aspiration. Pathway analysis demonstrated overrepresentation of genes involved in known respiratory and infection pathways. These data indicate that several neutrophil-related pathways may be involved in the early pathogenesis of sepsis-related ARDS. In addition, identifiable gene expression differences occurring early in the course of sepsis-related ARDS may further elucidate understanding of the neutrophil-related mechanisms in progression to ARDS. Copyright © 2015 the American Physiological Society.
Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS
Prakash, Arun; Liu, Kathleen D.; Aouizerat, Bradley; Woodruff, Prescott G.; Erle, David J.; Rogers, Angela; Seeley, Eric J.; Chu, Jeffrey; Liu, Tom; Osterberg-Deiss, Thomas; Zhuo, Hanjing; Matthay, Michael A.; Calfee, Carolyn S.
2015-01-01
The early sequence of events leading to the development of the acute respiratory distress syndrome (ARDS) in patients with sepsis remains inadequately understood. The purpose of this study was to identify changes in gene expression early in the course of illness, when mechanisms of injury may provide the most relevant treatment and prognostic targets. We collected whole blood RNA in critically ill patients admitted from the Emergency Department to the intensive care unit within 24 h of admission at a tertiary care center. Whole genome expression was compared in patients with sepsis and ARDS to patients with sepsis alone. We selected genes with >1 log2 fold change and false discovery rate <0.25, determined their significance in the literature, and performed pathway analysis. Several genes were upregulated in 29 patients with sepsis with ARDS compared with 28 patients with sepsis alone. The most differentially expressed genes included key mediators of the initial neutrophil response to infection: olfactomedin 4, lipocalin 2, CD24, and bactericidal/permeability-increasing protein. These gene expression differences withstood adjustment for age, sex, study batch, white blood cell count, and presence of pneumonia or aspiration. Pathway analysis demonstrated overrepresentation of genes involved in known respiratory and infection pathways. These data indicate that several neutrophil-related pathways may be involved in the early pathogenesis of sepsis-related ARDS. In addition, identifiable gene expression differences occurring early in the course of sepsis-related ARDS may further elucidate understanding of the neutrophil-related mechanisms in progression to ARDS. PMID:25795726
Protective Mechanism of STAT3-siRNA on Cerebral Ischemia Injury
NASA Astrophysics Data System (ADS)
He, Jinting; Yang, Le; Liang, Wenzhao
2018-01-01
Nerve cells in ischemic brain injury will occur a series of complex signal transduction pathway changes and produce the corresponding biological function, thus affecting the central nervous system functionally different cells in the ischemic brain injury metabolism, division, Differentiation and death process, while changes in signal pathways also play an important role in the repair process of the post-ischemic nervous system. JAK/STAT pathway and vascular lesions have some relevance, but its exact mechanism after cerebral ischemia is not yet fully understood. This study is intended to further explore the JAK / STAT pathway in the functional site of STAT3 in neuronal ischemia Hypoxic injury and related molecular mechanisms, targeting these targets design intervention strategies to block the signal pathway, in order to provide a theoretical basis for the treatment of ischemic brain damage in this pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng
2013-04-19
Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal andmore » glial cultures, and protects neurons against glutamate-induced excitotoxicity.« less
The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.
Sun, Yahui; Ma, Chenkai; Halgamuge, Saman
2017-12-28
Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.
Gendered Pathways: Violent Childhood Maltreatment, Sex Exchange, and Drug Use.
Verona, Edelyn; Murphy, Brett; Javdani, Shabnam
2015-04-20
Recent work has emphasized the role of violent victimization, along with risky contexts like sex exchange, in pathways to problems of externalizing and substance use in women. Nonetheless, few studies have empirically tested gender differences involving the roles of adversity factors (e.g., childhood violent maltreatment, sex exchange) in drug use patterns. The present study tested a model of gender differences in relationships between childhood physical and sexual abuse, sex exchange, and two indicators of drug use: engagement and symptoms of disorder. We recruited an ethnically-diverse sample of 304 (130 women) adults with recent histories of violence and/or drug use, who completed a substance use diagnostic interview, the Childhood Trauma Questionnaire, and a sex exchange questionnaire. First, structural equation modeling revealed that childhood sexual and physical abuse were related to increased drug engagement in women and men, respectively, above the influence of early childhood contextual variables (e.g., neighborhood, family) and age. Second, sexual abuse was related to sex exchange, which in turn was related to drug use symptoms in women but not men. These data provide empirical support for distinct trauma-related pathways to drug use problems in men and women, which has implications for gendered explanations and prevention approaches.
Perturbation of metabonome of embryo/larvae zebrafish after exposure to fipronil.
Yan, Lu; Gong, Chenxue; Zhang, Xiaofeng; Zhang, Quan; Zhao, Meirong; Wang, Cui
2016-12-01
The escalating demand for fipronil by the increasing insects' resistance to synthetic pyrethroids placed a burden on aquatic vertebrates. Although awareness regarding the toxicity of fipronil to fish is arising, the integral alteration caused by fipronil remains unexplored. Here, we investigated on the development toxicity of fipronil and the metabolic physiology perturbation at 120h post fertilization through GC-MS metabolomics on zebrafish embryo. We observed that fipronil dose-dependently induced malformations including uninflated swim bladder and bent spine. Further, the "omic" technique hit 26 differential metabolites after exposure to fipronil and five significant signaling pathways. We speculated that changes in primary bile acid synthesis pathway and the content of saturated fatty acid in the chemical-related group indicated the liver toxicity. Pathway of Aminoacyl-tRNA biosynthesis changed by fipronil may relate to the macromolecular synthesis. Concurrently, methane metabolism pathway was also identified while the role in zebrafish needs further determination. Overall, this study revealed several new signaling pathways in fipronil-treated zebrafish embryo/larval. Copyright © 2016 Elsevier B.V. All rights reserved.
Challenges of the information age: the impact of false discovery on pathway identification.
Rog, Colin J; Chekuri, Srinivasa C; Edgerton, Mary E
2012-11-21
Pathways with members that have known relevance to a disease are used to support hypotheses generated from analyses of gene expression and proteomic studies. Using cancer as an example, the pitfalls of searching pathways databases as support for genes and proteins that could represent false discoveries are explored. The frequency with which networks could be generated from 100 instances each of randomly selected five and ten genes sets as input to MetaCore, a commercial pathways database, was measured. A PubMed search enumerated cancer-related literature published for any gene in the networks. Using three, two, and one maximum intervening step between input genes to populate the network, networks were generated with frequencies of 97%, 77%, and 7% using ten gene sets and 73%, 27%, and 1% using five gene sets. PubMed reported an average of 4225 cancer-related articles per network gene. This can be attributed to the richly populated pathways databases and the interest in the molecular basis of cancer. As information sources become enriched, they are more likely to generate plausible mechanisms for false discoveries.
Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Cai, Yu-Dong
2017-01-01
Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.
Bhattacharyya, P; Roy, K S; Das, M; Ray, S; Balachandar, D; Karthikeyan, S; Nayak, A K; Mohapatra, T
2016-01-15
Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and abundances of C and N decomposing bacteria in lowland rice rhizosphere were found under e-CO2T, which could be explored further for their specific role in nutrient cycling, sustainable agriculture and environment management. Copyright © 2015 Elsevier B.V. All rights reserved.
Proteomic analysis of peel browning of 'Nanguo' pears after low-temperature storage.
Wang, Jun-Wei; Zhou, Xin; Zhou, Qian; Liu, Zhi-Yong; Sheng, Lei; Wang, Long; Cheng, Shun-Chang; Ji, Shu-Juan
2017-06-01
Postharvest ripening of the 'Nanguo' pear (Pyrus ussuriensis Maxim.) can be impeded by low-temperature storage. However, pears after long-term refrigeration are prone to peel browning when returned to room temperature conditions. This study investigated the browning mechanism of 'Nanguo' pear stored at a low temperature by analysing the differentially expressed proteins between healthy fruit and fruit with peel browning. The results showed that 181 proteins underwent statistically significant changes. A categorisation of the disparately accumulated proteins was performed using gene ontology annotation. The results showed that the 'metabolic process', 'cellular process', 'catalytic activity', and 'binding' proteins were the most affected after low-temperature storage. Further analysis revealed that the differentially expressed proteins, which are related to peel browning, are primarily involved in the phenylpropanoid pathway, linoleic acid pathways, fatty acid biosynthesis pathway, glutathione metabolism pathway, photosynthesis pathway, oxidative phosphorylation pathway, and glycolysis pathway. This study reveals that there are variations in key proteins in 'Nanguo' pear after low-temperature storage, and the identification of these proteins will be valuable in future functional genomics studies, as well as provide protein resources that can be used in the efforts to improve pear quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
ERIC Educational Resources Information Center
Fischbach, Soren; Kopec, Ashley M.; Carew, Thomas J.
2014-01-01
Mechanistically distinct forms of long-lasting plasticity and memory can be induced by a variety of different training patterns. Although several studies have identified distinct molecular pathways that are engaged during these different training patterns, relatively little work has explored potential interactions between pathways when they are…
Ma, Jing-E; Li, Lin-Miao; Jiang, Hai-Ying; Zhang, Xiu-Juan; Li, Juan; Li, Guan-Yu; Yuan, Li-Hong; Wu, Jun
2017-01-01
The Malayan pangolin (Manis javanica) is an unusual, scale-covered, toothless mammal that specializes in myrmecophagy. Due to their threatened status and continuing decline in the wild, concerted efforts have been made to conserve and rescue this species in captivity in China. Maintaining this species in captivity is a significant challenge, partly because little is known of the molecular mechanisms of its digestive system. Here, the first large-scale sequencing analyses of the salivary gland, liver and small intestine transcriptomes of an adult M. javanica genome were performed, and the results were compared with published liver transcriptome profiles for a pregnant M. javanica female. A total of 24,452 transcripts were obtained, among which 22,538 were annotated on the basis of seven databases. In addition, 3,373 new genes were predicted, of which 1,459 were annotated. Several pathways were found to be involved in myrmecophagy, including olfactory transduction, amino sugar and nucleotide sugar metabolism, lipid metabolism, and terpenoid and polyketide metabolism pathways. Many of the annotated transcripts were involved in digestive functions: 997 transcripts were related to sensory perception, 129 were related to digestive enzyme gene families, and 199 were related to molecular transporters. One transcript for an acidic mammalian chitinase was found in the annotated data, and this might be closely related to the unique digestive function of pangolins. These pathways and transcripts are involved in specialization processes related to myrmecophagy (a form of insectivory) and carbohydrate, protein and lipid digestive pathways, probably reflecting adaptations to myrmecophagy. Our study is the first to investigate the molecular mechanisms underlying myrmecophagy in M. javanica, and we hope that our results may play a role in the conservation of this species. PMID:29302388
Social Identities as Pathways into and out of Addiction.
Dingle, Genevieve A; Cruwys, Tegan; Frings, Daniel
2015-01-01
There exists a predominant identity loss and "redemption" narrative in the addiction literature describing how individuals move from a "substance user" identity to a "recovery" identity. However, other identity related pathways influencing onset, treatment seeking and recovery may exist, and the process through which social identities unrelated to substance use change over time is not well understood. This study was designed to provide a richer understanding of such social identities processes. Semi-structured interviews were conducted with 21 adults residing in a drug and alcohol therapeutic community (TC) and thematic analysis revealed two distinct identity-related pathways leading into and out of addiction. Some individuals experienced a loss of valued identities during addiction onset that were later renewed during recovery (consistent with the existing redemption narrative). However, a distinct identity gain pathway emerged for socially isolated individuals, who described the onset of their addiction in terms of a new valued social identity. Almost all participants described their TC experience in terms of belonging to a recovery community. Participants on the identity loss pathway aimed to renew their pre-addiction identities after treatment while those on the identity gain pathway aimed to build aspirational new identities involving study, work, or family roles. These findings help to explain how social factors are implicated in the course of addiction, and may act as either motivations for or barriers to recovery. The qualitative analysis yielded a testable model for future research in other samples and settings.
Social Identities as Pathways into and out of Addiction
Dingle, Genevieve A.; Cruwys, Tegan; Frings, Daniel
2015-01-01
There exists a predominant identity loss and “redemption” narrative in the addiction literature describing how individuals move from a “substance user” identity to a “recovery” identity. However, other identity related pathways influencing onset, treatment seeking and recovery may exist, and the process through which social identities unrelated to substance use change over time is not well understood. This study was designed to provide a richer understanding of such social identities processes. Semi-structured interviews were conducted with 21 adults residing in a drug and alcohol therapeutic community (TC) and thematic analysis revealed two distinct identity-related pathways leading into and out of addiction. Some individuals experienced a loss of valued identities during addiction onset that were later renewed during recovery (consistent with the existing redemption narrative). However, a distinct identity gain pathway emerged for socially isolated individuals, who described the onset of their addiction in terms of a new valued social identity. Almost all participants described their TC experience in terms of belonging to a recovery community. Participants on the identity loss pathway aimed to renew their pre-addiction identities after treatment while those on the identity gain pathway aimed to build aspirational new identities involving study, work, or family roles. These findings help to explain how social factors are implicated in the course of addiction, and may act as either motivations for or barriers to recovery. The qualitative analysis yielded a testable model for future research in other samples and settings. PMID:26648882
Zhang, S-R; Li, D-B; Xue, J-W
2018-03-01
Given the important functions of TP53 pathway in various biological processes, this study aimed to investigate the expression of TP53 pathway-related proteins in ovarian carcinoma transplanted subcutaneously in nude mice with and without the presence of p53 inhibitor and to explore possible roles of p53 in the development of ovarian cancer. Thirty BALB/c-nu female nude mice were randomly divided into model group, control group and p53 inhibitor group (Pftα group). There were 10 rats in each group. The nude mice were subcutaneously inoculated with human ovarian cancer cell line SKOV3, and the tumor growth was observed. Morphological changes of tumor tissue were observed by hematoxylin and eosin (HE) staining. The mRNA and protein levels of TP53 pathway related factors-p53, p21 and mouse double minute 2 homolog (MDM2) were detected by RT-PCR and Western blot. p53 inhibitor can increase the growth rate of subcutaneously transplanted tumor in nude mice. p53 inhibitor could decrease the expression of p53 and p21 at both mRNA and protein levels and increase the expression of MDM2 at both mRNA and protein levels in ovarian carcinoma transplanted subcutaneously in nude mice. TP53 pathway may play pivotal roles in the development of ovarian cancer and TP53 pathway may be a new target for the treatment of ovarian cancer.
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-01-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.
Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-11-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.
Dong, Zhiwei; Liu, Fen; Zhang, Yu; Yu, Yang; Shang, Fengqing; Wu, Lizheng; Wang, Xiaojing; Jin, Yan
2013-01-01
Aims Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor (α7 nAChR). Methods hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. Results Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. Conclusions These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis. PMID:24376645
García-Jiménez, Beatriz; Pons, Tirso; Sanchis, Araceli; Valencia, Alfonso
2014-01-01
Biological pathways are important elements of systems biology and in the past decade, an increasing number of pathway databases have been set up to document the growing understanding of complex cellular processes. Although more genome-sequence data are becoming available, a large fraction of it remains functionally uncharacterized. Thus, it is important to be able to predict the mapping of poorly annotated proteins to original pathway models. We have developed a Relational Learning-based Extension (RLE) system to investigate pathway membership through a function prediction approach that mainly relies on combinations of simple properties attributed to each protein. RLE searches for proteins with molecular similarities to specific pathway components. Using RLE, we associated 383 uncharacterized proteins to 28 pre-defined human Reactome pathways, demonstrating relative confidence after proper evaluation. Indeed, in specific cases manual inspection of the database annotations and the related literature supported the proposed classifications. Examples of possible additional components of the Electron transport system, Telomere maintenance and Integrin cell surface interactions pathways are discussed in detail. All the human predicted proteins in the 2009 and 2012 releases 30 and 40 of Reactome are available at http://rle.bioinfo.cnio.es.
Prioritizing biological pathways by recognizing context in time-series gene expression data.
Lee, Jusang; Jo, Kyuri; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2016-12-23
The primary goal of pathway analysis using transcriptome data is to find significantly perturbed pathways. However, pathway analysis is not always successful in identifying pathways that are truly relevant to the context under study. A major reason for this difficulty is that a single gene is involved in multiple pathways. In the KEGG pathway database, there are 146 genes, each of which is involved in more than 20 pathways. Thus activation of even a single gene will result in activation of many pathways. This complex relationship often makes the pathway analysis very difficult. While we need much more powerful pathway analysis methods, a readily available alternative way is to incorporate the literature information. In this study, we propose a novel approach for prioritizing pathways by combining results from both pathway analysis tools and literature information. The basic idea is as follows. Whenever there are enough articles that provide evidence on which pathways are relevant to the context, we can be assured that the pathways are indeed related to the context, which is termed as relevance in this paper. However, if there are few or no articles reported, then we should rely on the results from the pathway analysis tools, which is termed as significance in this paper. We realized this concept as an algorithm by introducing Context Score and Impact Score and then combining the two into a single score. Our method ranked truly relevant pathways significantly higher than existing pathway analysis tools in experiments with two data sets. Our novel framework was implemented as ContextTRAP by utilizing two existing tools, TRAP and BEST. ContextTRAP will be a useful tool for the pathway based analysis of gene expression data since the user can specify the context of the biological experiment in a set of keywords. The web version of ContextTRAP is available at http://biohealth.snu.ac.kr/software/contextTRAP .
The Dual Role of Media Internalization in Adolescent Sexual Behavior.
Rousseau, Ann; Beyens, Ine; Eggermont, Steven; Vandenbosch, Laura
2017-08-01
Sexualizing media content is prevalent in various media types. Sexualizing media messages and portrayals emphasize unattainable body and appearance ideals as the primary components of sexual desirability. The internalization of these ideals is positively related to self-objectification and sexual body consciousness. In turn, self-objectification and sexual body consciousness affect adolescents' sexual behavior, albeit in opposing directions. While objectifying self-perceptions are linked to higher levels of sexual behavior, body consciousness during physical intimacy is linked to lower levels of sexual behavior. Based on this knowledge, the present three-wave panel study of 824 Belgian, predominant heterosexual adolescents (M age = 15.33; SD = 1.45) proposes a dual-pathway model that investigates two different pathways through which the internalization of media ideals may impact adolescents' sexual behavior. An inhibitory pathway links media internalization to lower levels of sexual behavior through sexual body consciousness, and a supportive pathway links media internalization to higher levels of sexual behavior through self-objectification. Structural equation analyses supported the proposed dual-pathway, showing that the impact of media internalization on adolescents' sexual behavior proceeds through an inhibitory pathway and a supportive pathway. Regarding the supportive pathway, media internalization (W1) positively predicted sexual behavior (W3), through valuing appearance over competence (W2). Regarding the inhibitory pathway, media internalization (W1) positively predicted body surveillance, which, in turn, positively predicted sexual body consciousness (all W2). Sexual body consciousness (W2) is negatively related to sexual behavior (W3). From a sexual developmental perspective, these findings emphasize the importance of guiding adolescents in interpreting and processing sexualizing media messages.
Biomarkers of the Hedgehog/Smoothened pathway in healthy volunteers
Kadam, Sunil K; Patel, Bharvin K R; Jones, Emma; Nguyen, Tuan S; Verma, Lalit K; Landschulz, Katherine T; Stepaniants, Sergey; Li, Bin; Brandt, John T; Brail, Leslie H
2012-01-01
The Hedgehog (Hh) pathway is involved in oncogenic transformation and tumor maintenance. The primary objective of this study was to select surrogate tissue to measure messenger ribonucleic acid (mRNA) levels of Hh pathway genes for measurement of pharmacodynamic effect. Expression of Hh pathway specific genes was measured by quantitative real time polymerase chain reaction (qRT-PCR) and global gene expression using Affymetrix U133 microarrays. Correlations were made between the expression of specific genes determined by qRT-PCR and normalized microarray data. Gene ontology analysis using microarray data for a broader set of Hh pathway genes was performed to identify additional Hh pathway-related markers in the surrogate tissue. RNA extracted from blood, hair follicle, and skin obtained from healthy subjects was analyzed by qRT-PCR for 31 genes, whereas 8 samples were analyzed for a 7-gene subset. Twelve sample sets, each with ≤500 ng total RNA derived from hair, skin, and blood, were analyzed using Affymetrix U133 microarrays. Transcripts for several Hh pathway genes were undetectable in blood using qRT-PCR. Skin was the most desirable matrix, followed by hair follicle. Whether processed by robust multiarray average or microarray suite 5 (MAS5), expression patterns of individual samples showed co-clustered signals; both normalization methods were equally effective for unsupervised analysis. The MAS5- normalized probe sets appeared better suited for supervised analysis. This work provides the basis for selection of a surrogate tissue and an expression analysis-based approach to evaluate pathway-related genes as markers of pharmacodynamic effect with novel inhibitors of the Hh pathway. PMID:22611475
Liu, Yi; Li, Mengxun; Bo, Xinwen; Li, Tao; Ma, Lipeng; Zhai, Tenjiao; Huang, Tao
2018-06-11
The dynamic process involving the selection and maturation of follicles is regulated and controlled by a highly synchronized and exquisitely timed cascade of gene expression. Studies have shown that long non-coding RNA (lncRNA) is essential for the normal maintenance of animal reproductive function and has an important regulatory function in ovarian development and hormone secretion. In this study, a total of 2076 lncRNAs (1362 known lncRNAs and 714 new lncRNAs) and 25,491 mRNAs were identified in libraries constructed from Duroc ovaries on days 0, 2 and 4 of follicle development. lncRNAs were shorter, had fewer exons, exhibited a shorter ORF (Open Reading Frame) length and lower expression levels, and were less conserved than mRNAs. Furthermore, 1694 transcripts (140 lncRNAs and 1554 mRNAs) were found to be differentially expressed in pairwise comparisons. A total of 6945 co-localized mRNAs were detected in cis in 2076 lncRNAs. The most enriched GO (Gene Ontology) terms were related to developmental processes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the differentially expressed lncRNAs targeted mRNAs, and the differentially expressed mRNAs were related to the TGF-β signaling pathway, the PI3K-Akt signaling pathway, the Retinol metabolic pathway and the Wnt signaling pathway. This study deepened our understanding of the genetic basis and molecular mechanisms of follicular development in pigs.
Construction of a biodynamic model for Cry protein production studies.
Navarro-Mtz, Ana Karin; Pérez-Guevara, Fermín
2014-12-01
Mathematical models have been used from growth kinetic simulation to gen regulatory networks prediction for B. thuringiensis culture. However, this culture is a time dependent dynamic process where cells physiology suffers several changes depending on the changes in the cell environment. Therefore, through its culture, B. thuringiensis presents three phases related with the predominance of three major metabolic pathways: vegetative growth (Embded-Meyerhof-Parnas pathway), transition (γ-aminobutiric cycle) and sporulation (tricarboxylic acid cycle). There is not available a mathematical model that relates the different stages of cultivation with the metabolic pathway active on each one of them. Therefore, in the present study, and based on published data, a biodynamic model was generated to describe the dynamic of the three different phases based on their major metabolic pathways. The biodynamic model is used to study the interrelation between the different culture phases and their relationship with the Cry protein production. The model consists of three interconnected modules where each module represents one culture phase and its principal metabolic pathway. For model validation four new fermentations were done showing that the model constructed describes reasonably well the dynamic of the three phases. The main results of this model imply that poly-β-hydroxybutyrate is crucial for endospore and Cry protein production. According to the yields of dipicolinic acid and Cry from poly-β-hydroxybutyrate, calculated with the model, the endospore and Cry protein production are not just simultaneous and parallel processes they are also competitive processes.
The role of complement system in septic shock.
Charchaflieh, Jean; Wei, Jiandong; Labaze, Georges; Hou, Yunfang Joan; Babarsh, Benjamin; Stutz, Helen; Lee, Haekyung; Worah, Samrat; Zhang, Ming
2012-01-01
Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3) and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL) against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2) in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock.
An Adaptive Genetic Association Test Using Double Kernel Machines
Zhan, Xiang; Epstein, Michael P.; Ghosh, Debashis
2014-01-01
Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study. PMID:26640602
Yendiki, Anastasia; Panneck, Patricia; Srinivasan, Priti; Stevens, Allison; Zöllei, Lilla; Augustinack, Jean; Wang, Ruopeng; Salat, David; Ehrlich, Stefan; Behrens, Tim; Jbabdi, Saad; Gollub, Randy; Fischl, Bruce
2011-01-01
We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls. PMID:22016733
Mixotrophy and intraguild predation - dynamic consequences of shifts between food web motifs
NASA Astrophysics Data System (ADS)
Karnatak, Rajat; Wollrab, Sabine
2017-06-01
Mixotrophy is ubiquitous in microbial communities of aquatic systems with many flagellates being able to use autotroph as well as heterotroph pathways for energy acquisition. The usage of one over the other pathway is associated with resource availability and the coupling of alternative pathways has strong implications for system stability. We investigated the impact of dominance of different energy pathways related to relative resource availability on system dynamics in the setting of a tritrophic food web motif. This motif consists of a mixotroph feeding on a purely autotroph species while competing for a shared resource. In addition, the autotroph can use an additional exclusive food source. By changing the relative abundance of shared vs. exclusive food source, we shift the food web motif from an intraguild predation motif to a food chain motif. We analyzed the dependence of system dynamics on absolute and relative resource availability. In general, the system exhibits a transition from stable to oscillatory dynamics with increasing nutrient availability. However, this transition occurs at a much lower nutrient level for the food chain in comparison to the intraguild predation motif. A similar transition is also observed with variations in the relative abundance of food sources for a range of nutrient levels. We expect this shift in food web motifs to occur frequently in microbial communities and therefore the results from our study are highly relevant for natural systems.
Genome-Wide Gene Set Analysis for Identification of Pathways Associated with Alcohol Dependence
Biernacka, Joanna M.; Geske, Jennifer; Jenkins, Gregory D.; Colby, Colin; Rider, David N.; Karpyak, Victor M.; Choi, Doo-Sup; Fridley, Brooke L.
2013-01-01
It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence. PMID:22717047
Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou
2015-01-01
Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411
Garey, Lorra; Cheema, Mina K; Otal, Tanveer K; Schmidt, Norman B; Neighbors, Clayton; Zvolensky, Michael J
2016-10-01
Smoking rates are markedly higher among trauma-exposed individuals relative to non-trauma-exposed individuals. Extant work suggests that both perceived stress and negative affect reduction smoking expectancies are independent mechanisms that link trauma-related symptoms and smoking. Yet, no work has examined perceived stress and negative affect reduction smoking expectancies as potential explanatory variables for the relation between trauma-related symptom severity and smoking in a sequential pathway model. Methods The present study utilized a sample of treatment-seeking, trauma-exposed smokers (n = 363; 49.0% female) to examine perceived stress and negative affect reduction expectancies for smoking as potential sequential explanatory variables linking trauma-related symptom severity and nicotine dependence, perceived barriers to smoking cessation, and severity of withdrawal-related problems and symptoms during past quit attempts. As hypothesized, perceived stress and negative affect reduction expectancies had a significant sequential indirect effect on trauma-related symptom severity and criterion variables. Findings further elucidate the complex pathways through which trauma-related symptoms contribute to smoking behavior and cognitions, and highlight the importance of addressing perceived stress and negative affect reduction expectancies in smoking cessation programs among trauma-exposed individuals. (Am J Addict 2016;25:565-572). © 2016 American Academy of Addiction Psychiatry.
1995-01-01
We have used the cryosection immunogold technique to study the composition of the Mycobacterium tuberculosis phagosome. We have used quantitative immunogold staining to determine the distribution of several known markers of the endosomal-lysosomal pathway in human monocytes after ingestion of either M. tuberculosis, Legionella pneumophila, or polystyrene beads. Compared with the other phagocytic particles studied, the M. tuberculosis phagosome exhibits delayed clearance of major histocompatibility complex (MHC) class I molecules, relatively intense staining for MHC class II molecules and the endosomal marker transferrin receptor, and relatively weak staining for the lysosomal membrane glycoproteins, CD63, LAMP-1, and LAMP-2 and the lysosomal acid protease, cathepsin D. In contrast to M. tuberculosis, the L. pneumophila phagosome rapidly clears MHC class I molecules and excludes all endosomal-lysosomal markers studied. In contrast to both live M. tuberculosis and L. pneumophila phagosomes, phagosomes containing either polystyrene beads or heat-killed M. tuberculosis stain intensely for lysosomal membrane glycoproteins and cathepsin D. These findings suggest that (a) M. tuberculosis retards the maturation of its phagosome along the endosomal-lysosomal pathway and resides in a compartment with endosomal, as opposed to lysosomal, characteristics; and (b) the intraphagosomal pathway, i.e., the pathway followed by several intracellular parasites that inhibit phagosome-lysosome fusion, is heterogeneous. PMID:7807006
Programmed Cell Death-1/Programmed Death-ligand 1 Pathway: A New Target for Sepsis.
Liu, Qiang; Li, Chun-Sheng
2017-04-20
Sepsis remains a leading cause of death in many Intensive Care Units worldwide. Immunosuppression has been a primary focus of sepsis research as a key pathophysiological mechanism. Given the important role of the negative costimulatory molecules programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in the occurrence of immunosuppression during sepsis, we reviewed literatures related to the PD-1/PD-L1 pathway to examine its potential as a new target for sepsis treatment. Studies of the association between PD-1/PD-L1 and sepsis published up to January 31, 2017, were obtained by searching the PubMed database. English language studies, including those based on animal models, clinical research, and reviews, with data related to PD-1/PD-L1 and sepsis, were evaluated. Immunomodulatory therapeutics could reverse the deactivation of immune cells caused by sepsis and restore immune cell activation and function. Blockade of the PD-1/PD-L1 pathway could reduce the exhaustion of T-cells and enhance the proliferation and activation of T-cells. The anti-PD-1/PD-L1 pathway shows promise as a new target for sepsis treatment. This review provides a basis for clinical trials and future studies aimed at revaluating the efficacy and safety of this targeted approach.
Frontier of Epilepsy Research - mTOR signaling pathway
2011-01-01
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839
Berendeeva, T A; Ponomarev, S A; Antropova, E N; Rykova, M P
2015-01-01
Studies of Toll-like receptors (TLR) in 20 cosmonauts-members of long-duration (124-199-day) missions to the International space station evidenced changes in relative and absolute counts of peripheral blood monocytes with TLR2, TLR4 and TLR6 on the surface, expression of TLR2 and TLR6 genes, and genes of molecules involved in the TLR signaling pathway and TLR-related NF-KB-, JNK/p38- and IRF pathways on the day of return to Earth. The observed changes displayed individual variability.
Wang, Ju; Yuan, Wenji; Li, Ming D
2011-12-01
Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.
Dang, Yunfei; Xu, Xiaoyan; Shen, Yubang; Hu, Moyan; Zhang, Meng; Li, Lisen; Lv, Liqun; Li, Jiale
2016-01-01
The grass carp (Ctenopharyngodon idella) is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs). 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens. PMID:27383749
Banerjee, Sushanta K; Andersen, Kathryn L; Warvadekar, Janardan
2012-09-01
This study aimed to understand women's pathways of seeking care for postabortion complications in Madhya Pradesh, India. The study recruited 786 women between July and November 2007. Data were collected on service provision, abortion-related complications, care-seeking behavior, knowledge about abortion legality and availability, methods used, symptoms, referral source, and out-of-pocket costs. Women seeking care for complications from induced abortion followed more complex pathways to treatment than women with complications of spontaneous abortion. More complex pathways were associated with higher out-of-pocket costs. Improving community awareness on legal aspects, safe abortion methods, and trained providers are necessary to reduce morbidity associated with unsafe abortion. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Oberg, Ann L.; Zimmermann, Michael T.; Grill, Diane E.; Poland, Gregory A.
2016-01-01
The goal of annual influenza vaccination is to reduce mortality and morbidity associated with this disease through the generation of protective immune responses. The objective of the current study was to examine markers of immunosenescence and identify immunosenescence-related differences in gene expression, gene regulation, cytokine secretion, and immunologic changes in an older study population receiving seasonal influenza A/H1N1 vaccination. Surprisingly, prior studies in this cohort revealed weak correlations between immunosenescence markers and humoral immune response to vaccination. In this report, we further examined the relationship of each immunosenescence marker (age, T cell receptor excision circle frequency, telomerase expression, percentage of CD28− CD4+ T cells, percentage of CD28− CD8+ T cells, and the CD4/CD8 T cell ratio) with additional markers of immune response (serum cytokine and chemokine expression) and measures of gene expression and/or regulation. Many of the immunosenescence markers indeed correlated with distinct sets of individual DNA methylation sites, miRNA expression levels, mRNA expression levels, serum cytokines, and leukocyte subsets. However, when the individual immunosenescence markers were grouped by pathways or functional terms, several shared biological functions were identified: antigen processing and presentation pathways, MAPK, mTOR, TCR, BCR, and calcium signaling pathways, as well as key cellular metabolic, proliferation and survival activities. Furthermore, the percent of CD4+ and/or CD8+ T cells lacking CD28 expression also correlated with miRNAs regulating clusters of genes known to be involved in viral infection. Integrated (DNA methylation, mRNA, miRNA, and protein levels) network biology analysis of immunosenescence-related pathways and genesets identified both known pathways (e.g., chemokine signaling, CTL, and NK cell activity), as well as a gene expression module not previously annotated with a known function. These results may improve our ability to predict immune responses to influenza and aid in new vaccine development, and highlight the need for additional studies to better define and characterize immunosenescence. PMID:27853459
A multi-pathway hypothesis for human visual fear signaling
Silverstein, David N.; Ingvar, Martin
2015-01-01
A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513
The influence of age on gait parameters during the transition from a wide to a narrow pathway.
Shkuratova, Nataliya; Taylor, Nicholas
2008-06-01
The ability to negotiate pathways of different widths is a prerequisite of daily living. However, only a few studies have investigated changes in gait parameters in response to walking on narrow pathways. The aim of this study is to examine the influence of age on gait adjustments during the transition from a wide to a narrow pathway. Two-group repeated measures design. Gait Laboratory. Twenty healthy older participants (mean [M] = 74.3 years, Standard deviation [SD] = 7.2 years); 20 healthy young participants (M = 26.6 years, SD = 6.1 years). Making the transition from walking on a wide pathway (68 cm) to walking on a narrow pathway (15 cm). Step length, step time, step width, double support time and base of support. Healthy older participants were able to make the transition from a wide to a narrow pathway successfully. There was only one significant interaction, between age and base of support (p < 0.003). Older adults decreased their base of support only when negotiating the transition step, while young participants started decreasing their base of support prior to the negotiation of transition step (p < 0.01). Adjustments to the transition from a wide to a narrow pathway are largely unaffected by normal ageing. Difficulties in making the transition to a narrow pathway during walking should not be attributed to normal age-related changes. (c) 2008 John Wiley & Sons, Ltd.
Klein, Ronald; Myers, Chelsea E; Buitendijk, Gabriëlle H S; Rochtchina, Elena; Gao, Xiaoyi; de Jong, Paulus T V M; Sivakumaran, Theru A; Burlutsky, George; McKean-Cowdin, Roberta; Hofman, Albert; Iyengar, Sudha K; Lee, Kristine E; Stricker, Bruno H; Vingerling, Johannes R; Mitchell, Paul; Klein, Barbara E K; Klaver, Caroline C W; Wang, Jie Jin
2014-09-01
To describe associations of serum lipid levels and lipid pathway genes to the incidence of age-related macular degeneration (AMD). Meta-analysis. setting: Three population-based cohorts. population: A total of 6950 participants from the Beaver Dam Eye Study (BDES), Blue Mountains Eye Study (BMES), and Rotterdam Study (RS). observation procedures: Participants were followed over 20 years and examined at 5-year intervals. Hazard ratios associated with lipid levels per standard deviation above the mean or associated with each additional risk allele for each lipid pathway gene were calculated using random-effects inverse-weighted meta-analysis models, adjusting for known AMD risk factors. main outcome measures: Incidence of AMD. The average 5-year incidences of early AMD were 8.1%, 15.1%, and 13.0% in the BDES, BMES, and RS, respectively. Substantial heterogeneity in the effect of cholesterol and lipid pathway genes on the incidence and progression of AMD was evident when the data from the 3 studies were combined in meta-analysis. After correction for multiple comparisons, we did not find a statistically significant association between any of the cholesterol measures, statin use, or serum lipid genes and any of the AMD outcomes in the meta-analysis. In a meta-analysis, there were no associations of cholesterol measures, history of statin use, or lipid pathway genes to the incidence and progression of AMD. These findings add to inconsistencies in earlier reports from our studies and others showing weak associations, no associations, or inverse associations of high-density lipoprotein cholesterol and total cholesterol with AMD. Copyright © 2014 Elsevier Inc. All rights reserved.
Chartrand, Thomas; McCollum, Gin; Hanes, Douglas A; Boyle, Richard D
2016-02-01
Sensory contribution to perception and action depends on both sensory receptors and the organization of pathways (or projections) reaching the central nervous system. Unlike the semicircular canals that are divided into three discrete sensitivity directions, the utricle has a relatively complicated anatomical structure, including sensitivity directions over essentially 360° of a curved, two-dimensional disk. The utricle is not flat, and we do not assume it to be. Directional sensitivity of individual utricular afferents decreases in a cosine-like fashion from peak excitation for movement in one direction to a null or near null response for a movement in an orthogonal direction. Directional sensitivity varies slowly between neighboring cells except within the striolar region that separates the medial from the lateral zone, where the directional selectivity abruptly reverses along the reversal line. Utricular primary afferent pathways reach the vestibular nuclei and cerebellum and, in many cases, converge on target cells with semicircular canal primary afferents and afference from other sources. Mathematically, some canal pathways are known to be characterized by symmetry groups related to physical space. These groups structure rotational information and movement. They divide the target neural center into distinct populations according to the innervation patterns they receive. Like canal pathways, utricular pathways combine symmetries from the utricle with those from target neural centers. This study presents a generic set of transformations drawn from the known structure of the utricle and therefore likely to be found in utricular pathways, but not exhaustive of utricular pathway symmetries. This generic set of transformations forms a 32-element group that is a semi-direct product of two simple abelian groups. Subgroups of the group include order-four elements corresponding to discrete rotations. Evaluation of subgroups allows us to functionally identify the spatial implications of otolith and canal symmetries regarding action and perception. Our results are discussed in relation to observed utricular pathways, including those convergent with canal pathways. Oculomotor and other sensorimotor systems are organized according to canal planes. However, the utricle is evolutionarily prior to the canals and may provide a more fundamental spatial framework for canal pathways as well as for movement. The fullest purely otolithic pathway is likely that which reaches the lumbar spine via Deiters' cells in the lateral vestibular nucleus. It will be of great interest to see whether symmetries predicted from the utricle are identified within this pathway.
Clinging to the Past: The Air Force’s War on Dual-Career Families
2014-06-01
combines existing research on stress and work-family conflict with new primary research on current USAF dual-career families in the form of a case...incompatibilities between the Air Force family schema (conceptions of, and practices relating to, USAF families). The study combines existing research on stress ... Stress Pathways ..................................................... 74 Figure 5, Civilian Dual-Career Stress Pathways
ERIC Educational Resources Information Center
Gottfried, Adele Eskeles; Preston, Kathleen Suzanne Johnson; Gottfried, Allen W.; Oliver, Pamella H.; Delany, Danielle E.; Ibrahim, Sirena M.
2016-01-01
Curiosity is fundamental to scientific inquiry and pursuance. Parents are important in encouraging children's involvement in science. This longitudinal study examined pathways from parental stimulation of children's curiosity per se to their science acquisition (SA). A latent variable of SA was indicated by the inter-related variables of high…
Forslund, Tommie; Brocki, Karin C; Bohlin, Gunilla; Granqvist, Pehr; Eninger, Lilianne
2016-09-01
This study examined the contributions of several important domains of functioning to attention-deficit/hyperactivity disorder (ADHD) symptoms and conduct problems. Specifically, we investigated whether cognitive inhibition, emotion regulation, emotionality, and disorganized attachment made independent and specific contributions to these externalizing behaviour problems from a multiple pathways perspective. The study included laboratory measures of cognitive inhibition and disorganized attachment in 184 typically developing children (M age = 6 years, 10 months, SD = 1.7). Parental ratings provided measures of emotion regulation, emotionality, and externalizing behaviour problems. Results revealed that cognitive inhibition, regulation of positive emotion, and positive emotionality were independently and specifically related to ADHD symptoms. Disorganized attachment and negative emotionality formed independent and specific relations to conduct problems. Our findings support the multiple pathways perspective on ADHD, with poor regulation of positive emotion and high positive emotionality making distinct contributions to ADHD symptoms. More specifically, our results support the proposal of a temperamentally based pathway to ADHD symptoms. The findings also indicate that disorganized attachment and negative emotionality constitute pathways specific to conduct problems rather than to ADHD symptoms. © 2016 The British Psychological Society.
Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor
2015-03-07
A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiao-qing; Liu, Xu, E-mail: xkliuxu@126.com; Wang, Quan-xing, E-mail: wqxejd@126.com
2015-01-01
The exact mechanisms underlying inhibitory effects of pioglitazone (Pio) on Angiotensin II (AngII)-induced atrial fibrosis are complex and remain largely unknown. In the present study, we examined the effect of Pio on AngII-induced mice atrial fibrosis in vivo and atrial fibroblasts proliferation in vitro. In vivo study showed that AngII infusion induced atrial fibrosis and increased expressions of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and tumor necrosis factor receptor associated factor 6 (TRAF6) in mice models. However, those effects could be attenuated by Pio (P<0.01). As for in vitro experiment, Pio suppressed AngII-induced atrial fibroblasts proliferation via nuclear factor-κB/transformingmore » growth factor-β1/TRIF/TRAF6 signaling pathway in primary cultured mice atrial fibroblasts (P<0.01). In conclusion, suppression of Pio on AngII-induced atrial fibrosis might be related to its inhibitory effects on above signaling pathway. - Highlights: • Angiotensin II increased atrial fibrosis and related gene expressions in mice. • Angiotensin II induced atrial fibroblasts proliferation by activating signaling pathway. • Pioglitazone reversed both aforementioned changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming
2013-04-15
Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strainsmore » enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.« less
Zhang, Jing-Shu; Zhang, Shu-Jing; Li, Qian; Liu, Ying-Hua; He, Ning; Zhang, Jing; Zhou, Peng-Hui; Li, Min; Guan, Tong; Liu, Jia-Ren
2015-01-01
Tocotrienols have been shown many biologic functions such as antioxidant, anti-cancer, maintaining fertility and regulating the immune system and so on. In this study, after feeding with tocotrienol-rich fraction from palm oil (TRF) for 2 weeks, Balb/c nude mice were inoculated human colon SW620 cancer cell and then continued to feed TRF for 4 weeks. At termination of experiments, xenografts were removed and determined the expression of Wnt-pathways related protein by immunohistochemistry or western blotting. Liver tissues were homogenated for determining the levels of antioxidative enzymes activity or malondialdehyde (MDA). The results showed that TRF significantly inhibited the growth of xenografts in nude mice. TRF also affected the activity of antioxidative enzymes in the liver tissue of mice. These changes were partly contributed to activation of wnt pathways or affecting their related protein. Thus, these finding suggested that the potent anticancer effect of TRF is associated with the regulation of Wnt signal pathways. PMID:25807493
Zhang, Jing-Shu; Zhang, Shu-Jing; Li, Qian; Liu, Ying-Hua; He, Ning; Zhang, Jing; Zhou, Peng-Hui; Li, Min; Guan, Tong; Liu, Jia-Ren
2015-01-01
Tocotrienols have been shown many biologic functions such as antioxidant, anti-cancer, maintaining fertility and regulating the immune system and so on. In this study, after feeding with tocotrienol-rich fraction from palm oil (TRF) for 2 weeks, Balb/c nude mice were inoculated human colon SW620 cancer cell and then continued to feed TRF for 4 weeks. At termination of experiments, xenografts were removed and determined the expression of Wnt-pathways related protein by immunohistochemistry or western blotting. Liver tissues were homogenated for determining the levels of antioxidative enzymes activity or malondialdehyde (MDA). The results showed that TRF significantly inhibited the growth of xenografts in nude mice. TRF also affected the activity of antioxidative enzymes in the liver tissue of mice. These changes were partly contributed to activation of wnt pathways or affecting their related protein. Thus, these finding suggested that the potent anticancer effect of TRF is associated with the regulation of Wnt signal pathways.
Drug-Path: a database for drug-induced pathways
Zeng, Hui; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661
Drug-Path: a database for drug-induced pathways.
Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.
Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.
2009-01-01
Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.
NF-κB signaling pathways: role in nervous system physiology and pathology.
Mincheva-Tasheva, Stefka; Soler, Rosa M
2013-04-01
Intracellular pathways related to cell survival regulate neuronal physiology during development and neurodegenerative disorders. One of the pathways that have recently emerged with an important role in these processes is nuclear factor-κB (NF-κB). The activity of this pathway leads to the nuclear translocation of the NF-κB transcription factors and the regulation of anti-apoptotic gene expression. Different stimuli can activate the pathway through different intracellular cascades (canonical, non-canonical, and atypical), contributing to the translocation of specific dimers of the NF-κB transcription factors, and each of these dimers can regulate the transcription of different genes. Recent studies have shown that the activation of this pathway regulates opposite responses such as cell survival or neuronal degeneration. These apparent contradictory effects depend on conditions such as the pathway stimuli, the origin of the cells, or the cellular context. In the present review, the authors summarize these findings and discuss their significance with respect to survival or death in the nervous system.
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
Marraffini, Luciano A.; Sontheimer, Erik J.
2010-01-01
Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs — small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway. PMID:20125085
Diversity and origins of anaerobic metabolism in mitochondria and related organelles
Stairs, Courtney W.; Leger, Michelle M.; Roger, Andrew J.
2015-01-01
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes. PMID:26323757
Academic Provenance: Mapping Geoscience Students' Academic Pathways to their Career Trajectories
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Gonzales, L. M.; Keane, C. M.
2011-12-01
Targeted recruitment and retention efforts for the geosciences have become increasingly important with the growing concerns about program visibility on campuses, and given that geoscience degree production remains low relative to the demand for new geoscience graduates. Furthermore, understanding the career trajectories of geoscience degree recipients is essential for proper occupational placement. A theoretical framework was developed by Houlton (2010) to focus recruitment and retention efforts. This "pathway model" explicitly maps undergraduate students' geoscience career trajectories, which can be used to refine existing methods for recruiting students into particular occupations. Houlton's (2010) framework identified three main student population groups: Natives, Immigrants or Refugees. Each student followed a unique pathway, which consisted of six pathway steps. Each pathway step was comprised of critical incidents that influenced students' overall career trajectories. An aggregate analysis of students' pathways (Academic Provenance Analysis) showed that different populations' pathways exhibited a deviation in career direction: Natives indicated intentions to pursue industry or government sectors, while Immigrants intended to pursue academic or research-based careers. We expanded on Houlton's (2010) research by conducting a follow-up study to determine if the original participants followed the career trajectories they initially indicated in the 2010 study. A voluntary, 5-question, short-answer survey was administered via email. We investigated students' current pathway steps, pathway deviations, students' goals for the near future and their ultimate career ambitions. This information may help refine Houlton's (2010) "pathway model" and may aid geoscience employers in recruiting the new generation of professionals for their respective sectors.
Zhang, Xi-Mei; Guo, Lin; Chi, Mei-Hua; Sun, Hong-Mei; Chen, Xiao-Wen
2015-03-07
Obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of metabolic syndrome (MS). Recently, a growing body of evidence supports that miRNAs are largely dysregulated in obesity and that specific miRNAs regulate obesity-associated inflammation. We applied an approach aiming to identify active miRNA-TF-gene regulatory pathways in obesity. Firstly, we detected differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) from mRNA and miRNA expression profiles, respectively. Secondly, by mapping the DEGs and DEmiRs to the curated miRNA-TF-gene regulatory network as active seed nodes and connect them with their immediate neighbors, we obtained the potential active miRNA-TF-gene regulatory subnetwork in obesity. Thirdly, using a Breadth-First-Search (BFS) algorithm, we identified potential active miRNA-TF-gene regulatory pathways in obesity. Finally, through the hypergeometric test, we identified the active miRNA-TF-gene regulatory pathways that were significantly related to obesity. The potential active pathways with FDR < 0.0005 were considered to be the active miRNA-TF regulatory pathways in obesity. The union of the active pathways is visualized and identical nodes of the active pathways were merged. We identified 23 active miRNA-TF-gene regulatory pathways that were significantly related to obesity-related inflammation.
Buas, Matthew F.; He, Qianchuan; Johnson, Lisa G.; Onstad, Lynn; Levine, David M.; Thrift, Aaron P.; Gharahkhani, Puya; Palles, Claire; Lagergren, Jesper; Fitzgerald, Rebecca C.; Ye, Weimin; Caldas, Carlos; Bird, Nigel C.; Shaheen, Nicholas J.; Bernstein, Leslie; Gammon, Marilie D.; Wu, Anna H.; Hardie, Laura J.; Pharoah, Paul D.; Liu, Geoffrey; Iyer, Prassad; Corley, Douglas A.; Risch, Harvey A.; Chow, Wong-Ho; Prenen, Hans; Chegwidden, Laura; Love, Sharon; Attwood, Stephen; Moayyedi, Paul; MacDonald, David; Harrison, Rebecca; Watson, Peter; Barr, Hugh; deCaestecker, John; Tomlinson, Ian; Jankowski, Janusz; Whiteman, David C.; MacGregor, Stuart; Vaughan, Thomas L.; Madeleine, Margaret M.
2017-01-01
Esophageal adenocarcinoma (EA) incidence has risen sharply in Western countries over recent decades. Local and systemic inflammation, operating downstream of disease-associated exposures, is considered an important contributor to EA pathogenesis. Several risk factors have been identified for EA and its precursor, Barrett’s esophagus (BE), including symptomatic reflux, obesity, and smoking. The role of inherited genetic susceptibility remains an area of active investigation. To explore whether germline variation related to inflammatory processes influences susceptibility to BE/EA, we used data from a genome-wide association study (GWAS) of 2,515 EA cases, 3,295 BE cases, and 3,207 controls. Our analysis included 7,863 single nucleotide polymorphisms (SNPs) in 449 genes assigned to five pathways: cyclooxygenase (COX), cytokine signaling, oxidative stress, human leukocyte antigen, and NFκB. A principal components-based analytic framework was employed to evaluate pathway-level and gene-level associations with disease risk. We identified a significant signal for the COX pathway in relation to BE risk (P=0.0059, FDR q=0.03), and in gene-level analyses found an association with MGST1 (microsomal glutathione-S-transferase 1; P=0.0005, q=0.005). Assessment of 36 MGST1 SNPs identified 14 variants associated with elevated BE risk (q<0.05). Of these, four were subsequently confirmed (P<5.5 × 10−5) in a meta-analysis encompassing an independent set of 1,851 BE cases and 3,496 controls. Three of these SNPs (rs3852575, rs73112090, rs4149204) were associated with similar elevations in EA risk. This study provides the most comprehensive evaluation of inflammation-related germline variation in relation to risk of BE/EA, and suggests that variants in MGST1 influence disease susceptibility. PMID:27486097
Geng, Xingxia; Ye, Jiali; Yang, Xuetong; Li, Sha; Zhang, Lingli; Song, Xiyue
2018-01-23
Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.
Feiring, Candice; Simon, Valerie A; Cleland, Charles M; Barrett, Ellen P
2013-01-01
Although experiencing childhood sexual abuse (CSA) puts youth at risk for involvement in relationship violence, research is limited on the potential pathways from CSA to subsequent dating aggression. The current study examined prospective pathways from externalizing behavior problems and stigmatization (abuse-specific shame and self-blame attributions) to anger and dating aggression. One hundred sixty youth (73% female, 69% ethnic/racial minorities) with confirmed CSA histories were interviewed at the time of abuse discovery (T1, when they were 8-15 years of age), and again 1 and 6 years later (T2 and T3). Externalizing behavior and abuse-specific stigmatization were assessed at T1 and T2. Anger and dating aggression were assessed at T3. The structural equation model findings supported the proposed relations from stigmatization following the abuse to subsequent dating aggression through anger. Only externalizing behavior at T1 was related to later dating aggression, and externalizing was not related to subsequent anger. This longitudinal research suggests that clinical interventions for victims of CSA be sensitive to the different pathways by which youth come to experience destructive conflict behavior in their romantic relationships.
Common genetic variants related to genomic integrity and risk of papillary thyroid cancer
Neta, Gila; Brenner, Alina V.; Sturgis, Erich M.; Pfeiffer, Ruth M.; Hutchinson, Amy A.; Aschebrook-Kilfoy, Briseis; Yeager, Meredith; Xu, Li; Wheeler, William; Abend, Michael; Ron, Elaine; Tucker, Margaret A.; Chanock, Stephen J.; Sigurdson, Alice J.
2011-01-01
DNA damage is an important mechanism in carcinogenesis, so genes related to maintaining genomic integrity may influence papillary thyroid cancer (PTC) risk. Candidate gene studies targeting some of these genes have identified only a few polymorphisms associated with risk of PTC. Here, we expanded the scope of previous candidate studies by increasing the number and coverage of genes related to maintenance of genomic integrity. We evaluated 5077 tag single-nucleotide polymorphisms (SNPs) from 340 candidate gene regions hypothesized to be involved in DNA repair, epigenetics, tumor suppression, apoptosis, telomere function and cell cycle control and signaling pathways in a case–control study of 344 PTC cases and 452 matched controls. We estimated odds ratios for associations of single SNPs with PTC risk and combined P values for SNPs in the same gene region or pathway to obtain gene region-specific or pathway-specific P values using adaptive rank-truncated product methods. Nine SNPs had P values <0.0005, three of which were in HDAC4 and were inversely related to PTC risk. After multiple comparisons adjustment, no SNPs remained associated with PTC risk. Seven gene regions were associated with PTC risk at P < 0.01, including HUS1, ALKBH3, HDAC4, BAK1, FAF1_CDKN2C, DACT3 and FZD6. Our results suggest a possible role of genes involved in maintenance of genomic integrity in relation to risk of PTC. PMID:21642358
Pathways between Self-Esteem and Depression in Couples
ERIC Educational Resources Information Center
Johnson, Matthew D.; Galambos, Nancy L.; Finn, Christine; Neyer, Franz J.; Horne, Rebecca M.
2017-01-01
Guided by concepts from a relational developmental perspective, this study examined intra- and interpersonal associations between self-esteem and depressive symptoms in a sample of 1,407 couples surveyed annually across 6 years in the Panel Analysis of Intimate Relations and Family Dynamics (pairfam) study. Autoregressive cross-lagged model…
A gender-related action of IFNbeta-therapy was found in multiple sclerosis.
Contasta, Ida; Totaro, Rocco; Pellegrini, Patrizia; Del Beato, Tiziana; Carolei, Antonio; Berghella, Anna Maria
2012-11-14
Understanding how sexual dimorphism affects the physiological and pathological responses of the immune system is of considerable clinical importance and could lead to new approaches in therapy. Sexual dimorphism has already been noted as an important factor in autoimmune diseases: the aim of this study was to establish whether sexual dimorphism in autoimmune diseases is the result of differing pathways being involved in the regulation of T-helper (Th) cell network homeostasis. We focused on sexually dimorphic changes in the immune response in multiple sclerosis (MS) patients in order to ascertain how these alterations relate to the pathway regulation of the cytokine homeostasis and the Th cell networks. We studied antigen presenting cell (APC)-dependent T cell activation in groups of healthy subjects, in patients under interferon (IFN) β-therapy and untreated. Cytokines, soluble (s) CD30 and the expanded disability status scale (EDSS) were used as biomarkers for T cell differentiation and neurological deficit. The data confirm our belief that sexual dimorphism in autoimmune diseases is the result of differing pathways that regulate Th cell network homeostasis: interleukin (IL) 6 pathways in women and IFNγ pathways in men. Given the increased susceptibility of women to MS and the significance of IL6 in the autoimmune process compared to IFNγ, it is logical to assume that IL6 pathways are in some way implicated in the prevalence of autoimmune diseases in women. Indeed, our data indicate that IL6 pathways are also involved in T regulatory (Treg) cell imbalance and an increase in neurological deficit in both men and women groups of MS patients, underlining the autoimmune etiology of multiple sclerosis. In further support of differing cytokine pathways in men and women, we noted that the efficacy of IFNβ-treatment in the re-establishment of Th-network balance and in the delaying of the neurological disability progression is linked to the IL6 pathway in women, but to the IFNγ pathway in men. Lastly, we also identified specific gender biomarkers for the use in therapy. The identification of gender-specific drugs is of considerable importance in translational medicine and will undoubtedly lead to more appropriate therapeutic strategies and more successful treatment.
Igamberdiev, Abir U; Kleczkowski, Leszek A
2018-01-01
Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.
The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection.
de Mutsert, Renée; den Heijer, Martin; Rabelink, Ton Johannes; Smit, Johannes Willem Adriaan; Romijn, Johannes Anthonius; Jukema, Johan Wouter; de Roos, Albert; Cobbaert, Christa Maria; Kloppenburg, Margreet; le Cessie, Saskia; Middeldorp, Saskia; Rosendaal, Frits Richard
2013-06-01
Obesity is a well-established risk factor for many chronic diseases. Incomplete insight exists in the causal pathways responsible for obesity-related disorders and consequently, in the identification of obese individuals at risk of these disorders. The Netherlands Epidemiology of Obesity (NEO) study is designed for extensive phenotyping to investigate pathways that lead to obesity-related diseases. The NEO study is a population-based, prospective cohort study that includes 6,673 individuals aged 45-65 years, with an oversampling of individuals with overweight or obesity. At baseline, data on demography, lifestyle, and medical history have been collected by questionnaires. In addition, samples of 24-h urine, fasting and postprandial blood plasma and serum, and DNA were collected. Participants underwent an extensive physical examination, including anthropometry, electrocardiography, spirometry, and measurement of the carotid artery intima-media thickness by ultrasonography. In random subsamples of participants, magnetic resonance imaging of abdominal fat, pulse wave velocity of the aorta, heart, and brain, magnetic resonance spectroscopy of the liver, indirect calorimetry, dual-energy X-ray absorptiometry, or accelerometry measurements were performed. The collection of data started in September 2008 and completed at the end of September 2012. Participants are followed for the incidence of obesity-related diseases and mortality. The NEO study investigates pathways that lead to obesity-related diseases. A better understanding of the mechanisms underlying the development of disease in obesity may help to identify individuals who are susceptible to the detrimental metabolic, cardiovascular and other consequences of obesity and has implications for the development of prevention and treatment strategies.
Pachymic acid promotes induction of autophagy related to IGF-1 signaling pathway in WI-38 cells.
Lee, Su-Gyeong; Kim, Moon-Moo
2017-12-01
The insulin-like growth factor 1 (IGF-1) signaling pathway has spotlighted as a mechanism to elucidate aging associated with autophagy in recent years. Therefore, we have tried to screen an effective compound capable of inducing autophagy to delay aging process. The aim of this study is to investigate whether pachymic acid, a main compound in Poria cocos, induces autophagy in the aged cells. The aging of young cells was induced by treatment with IGF-1 at 50 ng/ml three times every two days. The effect of pachymic acid on cell viability was evaluated in human lung fibroblasts, WI-38 cells, using MTT assay. The induction of autophagy was detected using autophagy detection kit. The expression of proteins related to autophagy and IGF-1 signaling pathway was examined by western blot analysis and immunofluorescence assay. In this study, pachymic acid showed cytotoxic effect in a dose dependent manner and remarkably induced autophagy at the same time. Moreover, pachymic acid increased the expression of proteins related to autophagy such as LC3-II and Beclin1 and decreased the levels of mTor phosphorylation and p70S6K in the aged cells. In particular, pachymic acid increased the expression of p-PI3K, p-FoxO and Catalase. In addition, pachymic acid remarkably increased the expression of IGFBP-3. Above results suggest that pachymic acid could induce autophagy related to IGF-1 signaling pathway in the aged cells. Copyright © 2017 Elsevier GmbH. All rights reserved.
Gendered Pathways to Burnout: Results from the SALVEO Study.
Beauregard, Nancy; Marchand, Alain; Bilodeau, Jaunathan; Durand, Pierre; Demers, Andrée; Haines, Victor Y
2018-04-18
Burnout is a pervasive mental health problem in the workforce, with mounting evidence suggesting ties with occupational and safety outcomes such as work injuries, critical events and musculoskeletal disorders. While environmental [work and non-work, work-to-family conflict (WFC)] and individual (personality) pathways to burnout are well documented, little is known about how gender comes to influence such associative patterns. The aim of the study consisted in examining gendered pathways to burnout. Data were derived from the SALVEO study, a cross-sectional study of 2026 workers from 63 workplaces from the province of Québec (Canada). Data were analyzed using multilevel path analysis. Direct effects of gendered pathways were evidenced for work (e.g. decision latitude) and non-work (e.g. child-related strains) environmental pathways, as well as for individual pathways (i.e. internal locus of control). Indirect effects of gendered pathways were also evidenced, with women reporting higher levels of burnout compared to men due to lower levels of decision latitude and of self-esteem, as well as higher levels of WFC. Women also reported lower burnout levels through investing more time into domestic tasks, which could represent a recovery strategy to highly demanding work. WFC further mediated the associations between working hours and burnout, as well as the between irregular work schedules and burnout. These result suggest than men distinctively reported higher levels of burnout due to the specific nature of their work contract negatively impacting on WFC, and incidentally, on their mental health. Study results supported our hypotheses positing that gender distinctively shapes environmental and individual pathways to burnout. OHS prevention efforts striving for better mental health outcomes in the workforce could relevantly be informed by a gendered approach to burnout.
Analysing Local Sparseness in the Macaque Brain Network
Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.
2015-01-01
Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077
Dai, Bingling; Ma, Yujiao; Yang, Tianfeng; Wang, Wenjie; Zhang, Yanmin
2017-03-01
12k, a taspine derivative, has been demonstrated to have the potent anti-tumor activity in lung cancer and colorectal cancer. The study aims to further explore the underlying mechanisms of 12k on A549 cell migration in vitro. Our data demonstrated that 12k negatively regulated Wnt signaling pathway by suppressing the phosphorylation of LRP5/6, and inhibiting the expression and nuclear translocation of β-catenin. 12k was shown to downregulate MMP3 and MMP7 expression which regulated by β-catenin interacts with TCF/LEF in the nucleus, and effectively impaired the related migration protein expression of MMP2 and MMP9 in A549 cells. In addition, 12k repressed the EphrinB2 and its PDZ protein, impairing the VEGFR2 and VEGFR3 expression in A549 cells, as well as inhibited the downstream of VEGFR2 included PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Taken together, our findings revealed that 12k suppressed migration of A549 cells through the Wnt/β-catenin signaling pathway and EphrinB2 related signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Interaction of Adverse Disease Related Pathways in Hypertrophic Cardiomyopathy.
Rowin, Ethan J; Maron, Martin S; Chan, Raymond H; Hausvater, Anais; Wang, Wendy; Rastegar, Hassan; Maron, Barry J
2017-12-15
Hypertrophic cardiomyopathy (HC) has been characterized as a generally progressive genetic heart disease, creating an ominous perspective for patients and managing cardiologists. We explored the HC disease burden and interaction of adverse clinical pathways to clarify patient expectations over long time periods in the contemporary therapeutic era. We studied 1,000 consecutive HC patients (52 ± 17 years) at Tufts Medical Center, followed 9.3 ± 8 years from diagnosis, employing a novel disease pathway model: 46% experienced a benign course free of adverse pathways, but 42% of patients progressed along 1 major pathway, most commonly refractory heart failure to New York Heart Association class III or IV requiring surgical myectomy (or alcohol ablation) or heart transplant; repetitive or permanent atrial fibrillation; and least commonly arrhythmic sudden death events. Eleven percent experienced 2 of these therapeutic end points at different times in their clinical course, most frequently the combination of advanced heart failure and atrial fibrillation, whereas only 1% incurred all 3 pathways. Freedom of progression from 1 to 2 disease pathways, or from 2 to 3 was 80% and 93% at 5 years, respectively. Annual HC-related mortality did not differ according to the number of pathways: 1 (0.8%), 2 (0.8%), or 3 (2.4%) (p = 0.56), and 93% of patients were in New York Heart Association classes I or II at follow-up. In conclusion, it is uncommon for HC patients to experience multiple adverse (but treatable) disease pathways, underscoring the principle that HC is not a uniformly progressive disease. These observations provide a measure of clarity and/or reassurance to patients regarding the true long-term disease burden of HC. Copyright © 2017 Elsevier Inc. All rights reserved.
Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus
2015-08-15
Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. © The Author 2015. Published by Oxford University Press.
Why do hair cells and spiral ganglion neurons in the cochlea die during aging?
Perez, Philip; Bao, Jianxin
2011-01-01
Age-related decline of cochlear function is mainly due to the loss of hair cells and spiral ganglion neurons (SGNs). Recent findings clearly indicate that survival of these two cell types during aging depends on genetic and environmental interactions, and this relationship is seen at the systemic, tissue, cellular, and molecular levels. At cellular and molecular levels, age-related loss of hair cells and SGNs can occur independently, suggesting distinct mechanisms for the death of each during aging. This mechanistic independence is also observed in the loss of medial olivocochlear efferent innervation and outer hair cells during aging, pointing to a universal independent cellular mechanism for age-related neuronal death in the peripheral auditory system. While several molecular signaling pathways are implicated in the age-related loss of hair cells and SGNs, studies with the ability to locally modify gene expression in these cell types are needed to address whether these signaling pathways have direct effects on hair cells and SGNs during aging. Finally, the issue of whether age-related loss of these cells occurs via typical apoptotic pathways requires further examination. As new studies in the field of aging reshape the framework for exploring these underpinnings, understanding of the loss of hair cells and SGNs associated with age and the interventions that can treat and prevent these changes will result in dramatic benefits for an aging population. PMID:22396875
Mapping and annotating obesity-related genes in pig and human genomes.
Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita
2014-01-01
Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.
Glucocorticoid Administration Improves Aberrant Fear-Processing Networks in Spider Phobia
Nakataki, Masahito; Soravia, Leila M; Schwab, Simon; Horn, Helge; Dierks, Thomas; Strik, Werner; Wiest, Roland; Heinrichs, Markus; de Quervain, Dominique J-F; Federspiel, Andrea; Morishima, Yosuke
2017-01-01
Glucocorticoids reduce phobic fear in patients with anxiety disorders. Previous studies have shown that fear-related activation of the amygdala can be mediated through the visual cortical pathway, which includes the fusiform gyrus, or through other pathways. However, it is not clear which of the pathways that activate the amygdala is responsible for the pathophysiology of a specific phobia and how glucocorticoid treatment alleviates fear processing in these neural networks. We recorded the brain activity with functional magnetic resonance imaging in patients with spider phobia, who received either 20 mg of cortisol or a placebo while viewing pictures of spiders. We also tested healthy participants who did not receive any medication during the same task. We performed dynamic causal modelling (DCM), a connectivity analysis, to examine the effects of cortisol on the networks involved in processing fear and to examine if there was an association between these networks and the symptoms of the phobia. Cortisol administration suppressed the phobic stimuli-related amygdala activity to levels comparable to the healthy participants and reduced subjective phobic fear. The DCM analysis revealed that cortisol administration suppressed the aberrant inputs into the amygdala that did not originate from the visual cortical pathway, but rather from a fast subcortical pathway mediated by the pulvinar nucleus, and suppressed the interactions between the amygdala and fusiform gyrus. This network changes were distinguishable from healthy participants and considered the residual changes under cortisol administration. We also found that the strengths of the aberrant inputs into the amygdala were positively correlated with the severity of spider phobia. This study demonstrates that patients with spider phobia show an aberrant functional connectivity of the amygdala when they are exposed to phobia-related stimuli and that cortisol administration can alleviate this fear-specific neural connectivity. PMID:27644128
Glucocorticoid Administration Improves Aberrant Fear-Processing Networks in Spider Phobia.
Nakataki, Masahito; Soravia, Leila M; Schwab, Simon; Horn, Helge; Dierks, Thomas; Strik, Werner; Wiest, Roland; Heinrichs, Markus; de Quervain, Dominique J-F; Federspiel, Andrea; Morishima, Yosuke
2017-01-01
Glucocorticoids reduce phobic fear in patients with anxiety disorders. Previous studies have shown that fear-related activation of the amygdala can be mediated through the visual cortical pathway, which includes the fusiform gyrus, or through other pathways. However, it is not clear which of the pathways that activate the amygdala is responsible for the pathophysiology of a specific phobia and how glucocorticoid treatment alleviates fear processing in these neural networks. We recorded the brain activity with functional magnetic resonance imaging in patients with spider phobia, who received either 20 mg of cortisol or a placebo while viewing pictures of spiders. We also tested healthy participants who did not receive any medication during the same task. We performed dynamic causal modelling (DCM), a connectivity analysis, to examine the effects of cortisol on the networks involved in processing fear and to examine if there was an association between these networks and the symptoms of the phobia. Cortisol administration suppressed the phobic stimuli-related amygdala activity to levels comparable to the healthy participants and reduced subjective phobic fear. The DCM analysis revealed that cortisol administration suppressed the aberrant inputs into the amygdala that did not originate from the visual cortical pathway, but rather from a fast subcortical pathway mediated by the pulvinar nucleus, and suppressed the interactions between the amygdala and fusiform gyrus. This network changes were distinguishable from healthy participants and considered the residual changes under cortisol administration. We also found that the strengths of the aberrant inputs into the amygdala were positively correlated with the severity of spider phobia. This study demonstrates that patients with spider phobia show an aberrant functional connectivity of the amygdala when they are exposed to phobia-related stimuli and that cortisol administration can alleviate this fear-specific neural connectivity.
Ching, Terence H W; Tang, Catherine S; Wu, Anise; Yan, Elsie
2016-06-01
Background and aims The addictive nature of compulsive buying implies that mood disturbances, stress, and cognitive biases that underlie compulsive buying might operate in ways similar in both genders. In the current study, we aimed to test hypothetical pathways of mood compensation and irrational cognitions, which may explain compulsive buying tendencies. We also examined potential gender differences in these pathways. Methods Two-hundred and thirty-two male (age: M = 20.30, SD = 1.74) and 373 female Chinese college students (age: M = 19.97, SD = 1.74) in Hong Kong and Macau completed measures assessing compulsive buying, psychological distress, avoidance coping, materialism, and buying-related cognitions. Mediation analyses via a structural equation modeling approach explained by Cheung (2007, 2009) were conducted, with gender as a grouping variable. Results There was a gender difference in the mood compensation pathway; avoidance coping partially mediated the link between psychological distress and compulsive buying severity in females only. On the other hand, the irrational cognitive pathway, in which irrational buying-related cognitions fully mediated the link between materialism and compulsive buying severity, was supported for both genders. There was no gender difference in the extent of mediation within the irrational cognitive pathway, and the mediation effect within the irrational cognitive pathway was larger than that within the mood compensation pathway for both genders. Conclusions Mood compensation processes in compulsive buying might be female specific, and secondary to irrational cognitions, which were gender invariant. Gender-dependent mechanisms and irrational cognitions should be emphasized in compulsive buying treatment.
Ching, Terence H. W.; Tang, Catherine S.; Wu, Anise; Yan, Elsie
2016-01-01
Background and aims The addictive nature of compulsive buying implies that mood disturbances, stress, and cognitive biases that underlie compulsive buying might operate in ways similar in both genders. In the current study, we aimed to test hypothetical pathways of mood compensation and irrational cognitions, which may explain compulsive buying tendencies. We also examined potential gender differences in these pathways. Methods Two-hundred and thirty-two male (age: M = 20.30, SD = 1.74) and 373 female Chinese college students (age: M = 19.97, SD = 1.74) in Hong Kong and Macau completed measures assessing compulsive buying, psychological distress, avoidance coping, materialism, and buying-related cognitions. Mediation analyses via a structural equation modeling approach explained by Cheung (2007, 2009) were conducted, with gender as a grouping variable. Results There was a gender difference in the mood compensation pathway; avoidance coping partially mediated the link between psychological distress and compulsive buying severity in females only. On the other hand, the irrational cognitive pathway, in which irrational buying-related cognitions fully mediated the link between materialism and compulsive buying severity, was supported for both genders. There was no gender difference in the extent of mediation within the irrational cognitive pathway, and the mediation effect within the irrational cognitive pathway was larger than that within the mood compensation pathway for both genders. Conclusions Mood compensation processes in compulsive buying might be female specific, and secondary to irrational cognitions, which were gender invariant. Gender-dependent mechanisms and irrational cognitions should be emphasized in compulsive buying treatment. PMID:27156378
The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents.
Chen, Clark C; Taniguchi, Toshiyasu; D'Andrea, Alan
2007-05-01
DNA alkylating agents including temozolomide (TMZ) and 1,3-bis[2-chloroethyl]-1-nitroso-urea (BCNU) are the most common form of chemotherapy in the treatment of gliomas. Despite their frequent use, the therapeutic efficacy of these agents is limited by the development of resistance. Previous studies suggest that the mechanism of this resistance is complex and involves multiple DNA repair pathways. To better define the pathways contributing to the mechanisms underlying glioma resistance, we tested the contribution of the Fanconi anemia (FA) DNA repair pathway. TMZ and BCNU treatment of FA-proficient cell lines led to a dose- and time-dependent increase in FANCD2 mono-ubiquitination and FANCD2 nuclear foci formation, both hallmarks of FA pathway activation. The FA-deficient cells were more sensitive to TMZ/BCNU relative to their corrected, isogenic counterparts. To test whether these observations were pertinent to glioma biology, we screened a panel of glioma cell lines and identified one (HT16) that was deficient in the FA repair pathway. This cell line exhibited increased sensitivity to TMZ and BCNU relative to the FA-proficient glioma cell lines. Moreover, inhibition of FA pathway activation by a small molecule inhibitor (curcumin) or by small interference RNA suppression caused increased sensitivity to TMZ/BCNU in the U87 glioma cell line. The BCNU sensitizing effect of FA inhibition appeared additive to that of methyl-guanine methyl transferase inhibition. The results presented in this paper underscore the complexity of cellular resistance to DNA alkylating agents and implicate the FA repair pathway as a determinant of this resistance.
The different time courses of reading different levels of Chinese characters: an ERP study.
Lu, Qilin; Tang, Yi-Yuan; Zhou, Li; Yu, Qingbao
2011-07-12
The dual route processing was generally accepted in the reading of alphabetic languages, which suggests alphabetic words can be read by either addressed pathway or assembled pathway. However, it was still unclear whether there was a particular 'dual route mechanism' during reading Chinese characters. In our previous fMRI study, the result showed that there might be a particular 'dual route mechanism', and its addressed pathway was similar between Chinese and English, whereas for the need of spatial analysis, the assembled pathway of Chinese was different from that of English which involved grapheme-to-phoneme correspondences. The present study, using event-related potential, which provide more temporal information, aimed to further support our previous view, and peered inside the different time courses of reading different types of Chinese characters. It was found that reading high frequency Chinese characters increased the N170 component which was believed to enhance attention to the addressed pathway in the left occipital-temporal area. Pseudo Chinese characters could be read by a particular assembled pathway, which caused the largest amplitude of P320 component in the right occipital-temporal area, which considered as a key brain area for radical analysis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input
Henssen, Dylan J. H. A.; Kurt, Erkan; Kozicz, Tamas; van Dongen, Robert; Bartels, Ronald H. M. A.; van Cappellen van Walsum, Anne-Marie
2016-01-01
Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes. PMID:27242449
Li, Shengjie; Li, Yao; Shen, Li; Jin, Ping; Chen, Liming; Ma, Fei
2017-02-01
Drosophila melanogaster is widely used as a model system to study innate immunity and signaling pathways related to innate immunity, including the Toll signaling pathway. Although this pathway is well studied, the precise mechanisms of posttranscriptional regulation of key components of the Toll signaling pathway by microRNAs (miRNAs) remain obscure. In this study, we used an in silico strategy in combination with the Gal80 ts -Gal4 driver system to identify microRNA-958 (miR-958) as a candidate Toll pathway regulating miRNA in Drosophila We report that overexpression of miR-958 significantly reduces the expression of Drosomycin, a key antimicrobial peptide involved in Toll signaling and the innate immune response. We further demonstrate in vitro and in vivo that miR-958 targets the Toll and Dif genes, key components of the Toll signaling pathway, to negatively regulate Drosomycin expression. In addition, a miR-958 sponge rescued the expression of Toll and Dif, resulting in increased expression of Drosomycin. These results, not only revealed a novel function and modulation pattern of miR-958, but also provided a new insight into the underlying molecular mechanisms of Toll signaling in regulation of innate immunity. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Blodgett Salafia, Elizabeth H.; Gondoli, Dawn M.
2011-01-01
Bulimic symptoms are fairly common among adolescent girls, and the dual pathway model outlines one possible etiological chain leading to bulimic symptoms. The present study seeks to longitudinally examine the pathways proposed by this model while focusing on the relative contribution of parents and peers (via direct encouragement or pressure to be…
Matching and selection of a specific subjective experience: conjugate matching and experience.
Vimal, Ram Lakhan Pandey
2010-06-01
We incorporate the dual-mode concept in our dual-aspect PE-SE (proto-experience-subjective experience) framework. The two modes are: (1) the non-tilde mode that is the physical (material) and mental aspect of cognition (memory and attention) related feedback signals in a neural-network, which refers to the cognitive nearest past approaching towards present; and (2) the tilde mode that is the material and mental aspect of the feed-forward signals due to external environmental input and internal endogenous input, which pertains to the nearest future approaching towards present and is a entropy-reversed representation of non-tilde mode. Furthermore, one could argue that there are at least five sub-pathways in the stimulus-dependent feed-forward pathway and cognitive feedback pathway for information transfer in the brain dynamics: (i) classical axonal-dendritic neural sub-pathway including electromagnetic information field sub-pathway; (ii) quantum dendritic-dendritic microtubule (MT) (dendritic webs) sub-pathway; (iii) Ca(++)-related astroglial-neural sub-pathway; (iv) (a) the sub-pathway related to extrasynaptic signal transmission between fine distal dendrites of cortical neurons for the local subtle modulation due to voltages created by intradendritic dual-aspect charged surface effects within the Debye layer around endogenous structures such as microtubules (MT) and endoplasmic reticulum (ER) in dendrites, and (b) the sub-pathway related to extracellular volume transmission as fields of neural activity for the global modulation in axonal-dendritic neural sub-pathway; and (v) the sub-pathway related to information transmission via soliton propagation. We propose that: (i) the quantum conjugate matching between experiences in the mental aspect of the tilde mode and that of the non-tilde mode is related more to the mental aspect of the quantum microtubule-dendritic-web and less to that of the non-quantum sub-pathways; and (ii) the classical matching between experiences in the mental aspect of the tilde mode and that of the non-tilde mode is related to the mental aspect of the non-quantum sub-pathways (such as classical axonal-dendritic neural sub-pathway). In both cases, a specific SE is selected when the tilde mode interacts with the non-tilde mode to match for a specific SE, and when the necessary ingredients of SEs (such as the formation of neural networks, wakefulness, re-entry, attention, working memory, and so on) are satisfied. When the conjugate match is made between the two modes, the world-presence (Now) is disclosed. The material aspects in the tilde mode and that in the non-tilde mode are matched to link structure with function, whereas the mental aspects in the tilde mode and that in the non-tilde mode are matched to link experience with structure and function.
Wiwanitkit, Viroj
2007-04-01
Diabetes is a worldwide medical problem and is a significant cause of morbidity and mortality. Type 1 diabetes results from the autoimmune destruction of insulin-producing beta cells in the pancreas. The identification of causative genes for the autoimmune disease type 1 diabetes in humans has made significant progress in recent years. Studies of pathways for type 1 diabetes in other living things can give useful information on the nature of type 1 diabetes. Here, the author used a new pathway technology to compare type 1 diabetes mellitus in the human and the chimpanzee. According to the comparison, the mainframes of pathways are similar for both the human and the chimpanzee. These results can imply a close relation between the human and the chimpanzee. They also confirm usage of the chimpanzee model for studies of type 1 diabetes pathophysiology.
Koch, Karoline; Havermann, Susannah; Büchter, Christian
2014-01-01
Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research. PMID:24895670
Bhaskar, Lakkakula V K S; Kumar, Shanmugasundaram Arun
2014-04-01
Alcohol dependence (AD) is one of the major elements that significantly influence drinking pattern that provoke the alcohol-induced organ damage. The structural and neurophysiologic abnormalities in the frontal lobes of chronic alcoholics were revealed by magnetic resonance imaging scans. It is well known that candidate genes involved in dopaminergic pathway are of immense interest to the researchers engaged in a wide range of addictive disorders. Dopaminergic pathway gene polymorphisms are being extensively studied with respect to addictive and behavioral disorders. From the broad literature available, the current review summarizes the specific polymorphisms of dopaminergic genes that play a role in alcohol dependence. No evidence indicating any strong association between AD and polymorphisms of dopamine pathway genes has emerged from the literature. Further studies are warranted, considering a range of alcohol-related traits to determine the genes that influence alcohol dependence.
Genetic variants in IL-6/JAK/STAT3 pathway and the risk of CRC.
Wang, Shuwei; Zhang, Weidong
2016-05-01
Interleukin (IL)-6 and the downstream Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway have previously been reported to be important in the development of colorectal cancer (CRC), and several studies have shown the relationship between the polymorphisms of related genes in this pathway with the risk of CRC. However, the findings of these related studies are inconsistent. Moreover, there has no systematic review and meta-analysis to evaluate the relationship between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility. Hence, we conducted a meta-analysis to explore the relationship between polymorphisms in IL-6/JAK/STAT3 pathway genes and CRC risk. Eighteen eligible studies with a total of 13,795 CRC cases and 18,043 controls were identified by searching PubMed, Web of Science, Embase, and the Cochrane Library databases for the period up to September 15, 2015. Odds ratios (ORs) and their 95 % confidence intervals (CIs) were used to calculate the strength of the association. Our results indicated that IL-6 genetic variants in allele additive model (OR = 1.05, 95 % CI = 1.00, 1.09) and JAK2 genetic variants (OR = 1.40, 95 % CI = 1.15, 1.65) in genotype recessive model were significantly associated with CRC risk. Moreover, the pooled data revealed that IL-6 rs1800795 polymorphism significantly increased the risk of CRC in allele additive model in Europe (OR = 1.07, 95 % CI = 1.01, 1.14). In conclusion, the present findings indicate that IL-6 and JAK2 genetic variants are associated with the increased risk of CRC while STAT3 genetic variants not. We need more well-designed clinical studies covering more countries and population to definitively establish the association between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility.
Rengaraj, Deivendran; Lee, Bo Ram; Jang, Hyun-Jun; Kim, Young Min; Han, Jae Yong
2013-01-01
Metabolism provides energy and nutrients required for the cellular growth, maintenance, and reproduction. When compared with genomics and proteomics, metabolism studies provide novel findings in terms of cellular functions. In this study, we examined significant and differentially expressed genes in primordial germ cells (PGCs), gonadal stromal cells, and chicken embryonic fibroblasts compared with blastoderms using microarray. All upregulated genes (1001, 1118, and 974, respectively) and downregulated genes (504, 627, and 1317, respectively) in three test samples were categorized into functional groups according to gene ontology. Then all selected genes were tested to examine their involvement in metabolic pathways through Kyoto Encyclopedia of Genes and Genomes pathway database using overrepresentation analysis. In our results, most of the upregulated and downregulated genes were involved in at least one subcategory of seven major metabolic pathways. The main objective of this study is to compare the PGC expressed genes and their metabolic pathways with blastoderms, gonadal stromal cells, and chicken embryonic fibroblasts. Among the genes involved in metabolic pathways, a higher number of PGC upregulated genes were identified in retinol metabolism, and a higher number of PGC downregulated genes were identified in sphingolipid metabolism. In terms of the fold change, acyl-CoA synthetase medium-chain family member 3 (ACSM3), which is involved in butanoate metabolism, and N-acetyltransferase, pineal gland isozyme NAT-10 (PNAT10), which is involved in energy metabolism, showed higher expression in PGCs. To validate these gene changes, the expression of 12 nucleotide metabolism-related genes in chicken PGCs was examined by real-time polymerase chain reaction. The results of this study provide new information on the expression of genes associated with metabolism function of PGCs and will facilitate more basic research on animal PGC differentiation and function. Copyright © 2013 Elsevier Inc. All rights reserved.
Stienen, Jozette Jc; Ottevanger, Petronella B; Wennekes, Lianne; Dekker, Helena M; van der Maazen, Richard Wm; Mandigers, Caroline Mpw; van Krieken, Johan Hjm; Blijlevens, Nicole Ma; Hermens, Rosella Pmg
2015-01-09
An overload of health-related information is available for patients on numerous websites, guidelines, and information leaflets. However, the increasing need for personalized health-related information is currently unmet. This study evaluates an educational e-tool for patients with non-Hodgkin's lymphoma (NHL) designed to meet patient needs with respect to personalized and complete health-related information provision. The e-tool aims to help NHL patients manage and understand their personal care pathway, by providing them with insight into their own care pathway, the possibility to keep a diary, and structured health-related information. Together with a multidisciplinary NHL expert panel, we developed an e-tool consisting of two sections: (1) a personal section for patients' own care pathway and their experiences, and (2) an informative section including information on NHL. We developed an ideal NHL care pathway based on the available (inter)national guidelines. The ideal care pathway, including date of first consultation, diagnosis, and therapy start, was used to set up the personal care pathway. The informative section was developed in collaboration with the patient association, Hematon. Regarding participants, 14 patients and 6 laymen were asked to evaluate the e-tool. The 24-item questionnaire used discussed issues concerning layout (6 questions), user convenience (3 questions), menu clarity (3 questions), information clarity (5 questions), and general impression (7 questions). In addition, the panel members were asked to give their feedback by email. A comprehensive overview of diagnostics, treatments, and aftercare can be established by patients completing the questions from the personal section. The informative section consisted of NHL information regarding NHL in general, diagnostics, therapy, aftercare, and waiting times. Regarding participants, 6 patients and 6 laymen completed the questionnaire. Overall, the feedback was positive, with at least 75% satisfaction on each feedback item. Important strengths mentioned were the use of a low health-literacy level, the opportunity to document the personal care pathway and experiences, and the clear overview of the information provided. The added value of the e-tool in general was pointed out as very useful for preparing the consultation with one's doctor and for providing all information on one website, including the opportunity for a personalized care pathway and diary. The majority of the revisions concerned wording and clarity. In addition, more explicit information on immunotherapy, experimental therapy, and psychosocial support was added. We have developed a personal care management e-tool for NHL patients. This tool contains a unique way to help patients manage their personal care pathway and give them insight into their NHL by providing health-related information and a personal diary. This evaluation showed that our e-tool meets patients' needs concerning personalized health-related information, which might serve as a good example for other oncologic diseases. Future research should focus on the possible impact of the e-tool on doctor-patient communication during consultations.
Sprangers, Mirjam A.G.; Thong, Melissa S.Y.; Bartels, Meike; Barsevick, Andrea; Ordoñana, Juan; Shi, Qiuling; Wang, Xin Shelley; Klepstad, Pål; Wierenga, Eddy A.; Singh, Jasvinder A.; Sloan, Jeff A.
2014-01-01
Background There is compelling evidence of a genetic foundation of patient-reported QOL. Given the rapid development of substantial scientific advances in this area of research, the current paper updates and extends reviews published in 2010. Objectives The objective is to provide an updated overview of the biological pathways, candidate genes and molecular markers involved in fatigue, pain, negative (depressed mood) and positive (well-being/happiness) emotional functioning, social functioning, and overall QOL. Methods We followed a purposeful search algorithm of existing literature to capture empirical papers investigating the relationship between biological pathways and molecular markers and the identified QOL domains. Results Multiple major pathways are involved in each QOL domain. The inflammatory pathway has the strongest evidence as a controlling mechanism underlying fatigue. Inflammation and neurotransmission are key processes involved in pain perception and the COMT gene is associated with multiple sorts of pain. The neurotransmitter and neuroplasticity theories have the strongest evidence for their relationship with depression. Oxytocin-related genes and genes involved in the serotonergic and dopaminergic pathways play a role in social functioning. Inflammatory pathways, via cytokines, also play an important role in overall QOL. Conclusions Whereas the current findings need future experiments and replication efforts, they will provide researchers supportive background information when embarking on studies relating candidate genes and/or molecular markers to QOL domains. The ultimate goal of this area of research is to enhance patients’ QOL. PMID:24604075
Alterations in metabolic pathways and networks in Alzheimer's disease
Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E
2013-01-01
The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809
Sprangers, Mirjam A G; Thong, Melissa S Y; Bartels, Meike; Barsevick, Andrea; Ordoñana, Juan; Shi, Qiuling; Wang, Xin Shelley; Klepstad, Pål; Wierenga, Eddy A; Singh, Jasvinder A; Sloan, Jeff A
2014-09-01
There is compelling evidence of a genetic foundation of patient-reported quality of life (QOL). Given the rapid development of substantial scientific advances in this area of research, the current paper updates and extends reviews published in 2010. The objective was to provide an updated overview of the biological pathways, candidate genes, and molecular markers involved in fatigue, pain, negative (depressed mood) and positive (well-being/happiness) emotional functioning, social functioning, and overall QOL. We followed a purposeful search algorithm of existing literature to capture empirical papers investigating the relationship between biological pathways and molecular markers and the identified QOL domains. Multiple major pathways are involved in each QOL domain. The inflammatory pathway has the strongest evidence as a controlling mechanism underlying fatigue. Inflammation and neurotransmission are key processes involved in pain perception, and the catechol-O-methyltransferase (COMT) gene is associated with multiple sorts of pain. The neurotransmitter and neuroplasticity theories have the strongest evidence for their relationship with depression. Oxytocin-related genes and genes involved in the serotonergic and dopaminergic pathways play a role in social functioning. Inflammatory pathways, via cytokines, also play an important role in overall QOL. Whereas the current findings need future experiments and replication efforts, they will provide researchers supportive background information when embarking on studies relating candidate genes and/or molecular markers to QOL domains. The ultimate goal of this area of research is to enhance patients' QOL.
Alterations in metabolic pathways and networks in Alzheimer's disease.
Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E
2013-04-09
The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.
lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia
Pan, Jia-Qi; Zhang, Yan-Qing; Wang, Jing-Hua; Xu, Ping; Wang, Wei
2017-01-01
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy with great variability of prognostic behaviors. Previous studies have reported that long non-coding RNAs (lncRNAs) play an important role in AML and may thus be used as potential prognostic biomarkers. However, thus use of lncRNAs as prognostic biomarkers in AML and their detailed mechanisms of action in this disease have not yet been well characterized. For this purpose, in the present study, the expression levels of lncRNAs and mRNAs were calculated using the RNA-seq V2 data for AML, following which a lncRNA-lncRNA co-expression network (LLCN) was constructed. This revealed a total of 8 AML prognosis-related lncRNA modules were identified, which displayed a significant correlation with patient survival (p≤0.05). Subsequently, a prognosis-related lncRNA module pathway network was constructed to interpret the functional mechanism of the prognostic modules in AML. The results indicated that these prognostic modules were involved in the AML pathway, chemokine signaling pathway and WNT signaling pathway, all of which play important roles in AML. Furthermore, the investigation of lncRNAs in these prognostic modules suggested that an lncRNA (ZNF571-AS1) may be involved in AML via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway by regulating KIT and STAT5. The results of the present study not only provide potential lncRNA modules as prognostic biomarkers, but also provide further insight into the molecular mechanisms of action of lncRNAs. PMID:28204819
Zeng, Huawei; Wu, Min; Botnen, James H
2009-09-01
Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.
Stress and visceral pain: from animal models to clinical therapies
Larauche, Muriel; Mulak, Agata; Taché, Yvette
2011-01-01
Epidemiological studies have implicated stress (psychosocial and physical) as a trigger of first onset or exacerbation of irritable bowel syndrome (IBS) symptoms of which visceral pain is an integrant landmark. A number of experimental acute or chronic exteroceptive or interoceptive stressors induce visceral hyperalgesia in rodents although recent evidence also points to stress-related visceral analgesia as established in the somatic pain field. Underlying mechanisms of stress-related visceral hypersensitivity may involve a combination of sensitization of primary afferents, central sensitization in response to input from the viscera and dysregulation of descending pathways that modulate spinal nociceptive transmission or analgesic response. Biochemical coding of stress involves the recruitment of corticotropin releasing factor (CRF) signaling pathways. Experimental studies established that activation of brain and peripheral CRF receptor subtype 1 plays a primary role in the development of stress-related delayed visceral hyperalgesia while subtype 2 activation induces analgesic response. In line with stress pathways playing a role in IBS, non-pharmacologic and pharmacologic treatment modalities aimed at reducing stress perception using a broad range of evidence-based mind-body interventions and centrally-targeted medications to reduce anxiety impact on brain patterns activated by visceral stimuli and dampen visceral pain. PMID:21575632
Educational Pathways and Change in Crime Between Adolescence and Early Adulthood
Swisher, Raymond R.; Dennison, Christopher R.
2016-01-01
Objectives This article examines the relationship between intergenerational educational pathways and change in crime. Moreover, it examines the potential mediating roles of family and employment transitions, economic stressors, and social psychological factors. Method Data from the National Longitudinal Study of Adolescent to Adult Health (N = 14,742) and negative binomial models are used to assess associations between educational pathways (i.e., upward, downward, and stable) and change in crime between adolescence and early adulthood. Selection effects are assessed with lagged dependent variables and controls for self-control, grades, and the Add Health Picture Vocabulary Test. Results Intergenerational educational pathways are significantly associated with changes in crime. Downward educational pathways were predictive of increases in crime, whereas upward pathways were associated with decreases in crime. These associations were partly mediated by family transitions, and more strongly by economic stressors. These results were robust to controls for selection related variables. Conclusions This study is among the first to examine the relationship between intergenerational educational pathways and crime in the United States. Both upward and downward changes in educational attainments were found to be significant for crime. These findings are notable given the continuing expansion of higher education as well as concerns regarding increasing stratification and downward mobility in the United States. PMID:28348441
Care Pathways in Persistent Orofacial Pain: Qualitative Evidence from the DEEP Study.
Breckons, M; Bissett, S M; Exley, C; Araujo-Soares, V; Durham, J
2017-01-01
Persistent orofacial pain is relatively common and known to have an adverse effect on quality of life. Previous studies suggest that the current care pathway may be problematic, but it is not well understood which health services patients access and what their experience is. The aim of this study was to explore care pathways and their impact from the perspective of patients. Qualitative interviews were conducted with a maximum variation sample of patients recruited from primary (community based) and secondary (specialist hospital based) care in the United Kingdom. Questions focused on the stages in their pathway and the impact of the care that they had received. Interviews were digitally recorded and transcribed verbatim, and analysis followed principles of the constant comparative method. NVivo 10 was used to help organize and analyze data. Twenty-two patients were interviewed at baseline, and 18 took part in a second interview at 12 mo. Three main themes emerged from the data: the "fluidity of the care pathway," in which patients described moving among health care providers in attempts to have their pain diagnosed and managed, occurring alongside a "failure to progress," where despite multiple appointments, patients described frustration at delays in obtaining a diagnosis and effective treatment for their pain. Throughout their care pathways, patients described the "effects of unmanaged pain," where the longer the pain went unmanaged, the greater its potential to negatively affect their lives. Findings of this study suggest that the current care pathway is inefficient and fails to meet patient needs. Future work needs to focus on working with stakeholder groups to redesign patient-centered care pathways. Knowledge Transfer Statement: Data from qualitative interviews conducted with patients with persistent orofacial pain suggest significant problems with the existing care pathway, consisting of delays to diagnosis, treatment, and referral. Patients describing their struggle to progress through the current care pathway highlighted the difficulties occurring while living with orofacial pain. This study suggests a need for a revised care pathway, which better meets the needs of people with persistent orofacial pain.
[Pathways, science, and the State in Peru, 1850-1930].
Contreras, Carlos; Cueto, Marcos
2008-01-01
This study offers a panoramic view of the relation between the development of naturalist studies and the control of territory in Peru from the mid-nineteenth century through the first decades of the twentieth. Notable scientific development took place during this period, in terms of research and of academic institutions. Both research and academe enjoyed the support of the State, which had greater resources within its reach following the period of relative instability subsequent to Independence in 1821. Although this process of development was fragmented and discontinuous, it resulted in the first mapmaking work and geographic and naturalist studies, as well as the creation of communication pathways. Further, it was justified by its potential contribution to an export economy and to the cultural prestige of civilian elites.
Modeling evolution of crosstalk in noisy signal transduction networks
NASA Astrophysics Data System (ADS)
Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2018-02-01
Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.
NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster
Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal
2011-01-01
Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted. PMID:20852987
Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James
2010-06-30
Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.
MicroRNA expression analysis of feline and canine parvovirus infection in vivo (felis)
Zhang, Xin; Zeng, Weijie; Zheng, Qingxu; Hao, Xiangqi; Lin, Xi; Zheng, Yun; Wang, Lifang; Zhang, Guihong; Li, Shoujun
2017-01-01
Feline panleukopenia is a common contagious disease with high morbidity and mortality. At present, feline parvovirus (FPV) and canine parvovirus (CPV) variants are the pathogens of feline panleukopenia. Many studies have shown that miRNAs are involved in virus-host interactions. Nevertheless, miRNA expression profiling of FPV (original virus) or CPV-2b (new virus) in cats has not been reported. To investigate these profiles, three 10-week-old cats were orally inoculated with 106 TCID50 of the viruses (FPV and CPV-2b), and the jejunums of one cat in each group were sectioned for miRNA sequencing at 5 days post-inoculation (dpi). This study is the first attempt to use miRNA analysis to understand the molecular basis of FPV and CPV infection in cats. The miRNA expression profiles of the jejunums of cats infected with FPV and CPV were obtained, and a subset of miRNAs was validated by real-time qPCR. The results show that a variety of metabolism-related pathways, cytokine- and pathogen-host interaction-related pathways, and pathology- and cellar structure-related pathways, as well as others, were affected. Specifically, the JAK-STAT signaling pathway, which is critical for cytokines and growth factors, was enriched. This description of the miRNAs involved in regulating FPV and CPV infection in vivo provides further insight into the mechanisms of viral infection and adaptation and might provide an alternative antiviral strategy for disease control and prevention. PMID:29049413
2013-01-01
Major depressive disorder (MDD) is a multifactorial disorder known to be influenced by both genetic and environmental factors. MDD presents a heritability of 37%, and a genetic contribution has also been observed in studies of family members of individuals with MDD that imply that the probability of suffering the disorder is approximately three times higher if a first-degree family member is affected. Childhood maltreatment and stressful life events (SLEs) have been established as critical environmental factors that profoundly influence the onset of MDD. The serotonin pathway has been a strong candidate for genetic studies, but it only explains a small proportion of the heritability of the disorder, which implies the involvement of other pathways. The serotonin (5-HT) pathway interacts with the stress response pathway in a manner mediated by the hypothalamic-pituitary-adrenal (HPA) axis. To analyze the interaction between the pathways, we propose the use of a synchronous Boolean network (SBN) approximation. The principal aim of this work was to model the interaction between these pathways, taking into consideration the presence of selective serotonin reuptake inhibitors (SSRIs), in order to observe how the pathways interact and to examine if the system is stable. Additionally, we wanted to study which genes or metabolites have the greatest impact on model stability when knocked out in silico. We observed that the biological model generated predicts steady states (attractors) for each of the different runs performed, thereby proving that the system is stable. These attractors changed in shape, especially when anti-depressive drugs were also included in the simulation. This work also predicted that the genes with the greatest impact on model stability were those involved in the neurotrophin pathway, such as CREB, BDNF (which has been associated with major depressive disorder in a variety of studies) and TRkB, followed by genes and metabolites related to 5-HT synthesis. PMID:24093582
Subbiah, Vivek; Brown, Robert E; Jiang, Yunyun; Buryanek, Jamie; Hayes-Jordan, Andrea; Kurzrock, Razelle; Anderson, Pete M
2013-01-01
Desmoplastic small round cell tumor (DSRCT) is a rare sarcoma in adolescents and young adults. The hallmark of this disease is a EWS-WT1 translocation resulting from apposition of the Ewing's sarcoma (EWS) gene with the Wilms' tumor (WT1) gene. We performed morphoproteomic profiling of DSRCT (EWS-WT1), Ewing's sarcoma (EWS-FLI1) and Wilms' tumor (WT1) to better understand the signaling pathways for selecting future targeted therapies. This pilot study assessed patients with DSRCT, Wilms' tumor and Ewing's sarcoma. Morphoproteomics and immunohistochemical probes were applied to detect: p-mTOR (Ser2448); p-Akt (Ser473); p-ERK1/2 (Thr202/Tyr204); p-STAT3 (Tyr 705); and cell cycle-related analytes along with their negative controls. In DSRCT the PI3K/Akt/mTOR pathway is constitutively activated by p-Akt (Ser 473) expression in the nuclear compartment of the tumor cells and p-mTOR phosphorylated on Ser 2448, suggesting mTORC2 (rictor+mTOR) as the dominant form. Ewing's sarcoma had upregulated p-Akt and p-mTOR, predominantly mTORC2. In Wilm's tumor, the mTOR pathway is also activated with most tumor cells moderately expressing p-mTOR (Ser 2448) in plasmalemmal and cytoplasmic compartments. This coincides with the constitutive activation of one of the downstream effectors of the mTORC1 signaling pathway, namely p-p70S6K (Thr 389). There was constitutive activation of the Ras/Raf/ERK pathway p-ERK 1/2 (Thr202/Tyr204) expression in the Wilms tumor and metastatic Ewing's sarcoma, but not in the DSRCT. MORPHOPROTEOMIC TUMOR ANALYSES REVEALED CONSTITUTIVE ACTIVATION OF THE MTOR PATHWAY AS EVIDENCED BY: (a) expression of phosphorylated (p)-mTOR, p-p70S6K; (b) mTORC 2 in EWS and DSRCT; (c) ERK signaling was seen in the advanced setting indicating these as resistance pathways to IGF1R related therapies. This is the first morphoproteomic study of such pathways in these rare malignancies and may have potential therapeutic implications. Further study using morphoproteomic assessments of these tumors are warranted.
Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival
Kong, Jinyu; Xu, Fangxiu; Qu, Jinli; Wang, Yu; Gao, Ming; Yu, Herbert; Qian, Biyun
2015-01-01
Studies have suggested that vitamin D may have protective effects against cancer development or tumor progression. To search for additional evidence, we investigated the role of genetic polymorphisms involved in the vitamin D pathway in non-small cell lung cancer (NSCLC). We evaluated common genetic polymorphisms associated with the vitamin D pathway in relation to NSCLC in a case-control study of 603 newly diagnosed NSCLC patients and 661 matched healthy controls. Seven single nucleotide polymorphisms (SNPs) were genotyped, the expression of CYP27B1 and CYP24A1 were measured in 153 tumor samples and their associations with genotypes and patient survival were also analyzed. In the case-control comparison, we found SNP rs3782130 (CYP27B1), rs7041 (GC), rs6068816 and rs4809957 (CYP24A1) associated with NSCLC risk. The risk of NSCLC was increased with the number of risk alleles. CYP27B1 and CYP24A1 expression were significantly different between tumor and normal tissues in NSCLC. High CYP27B1 expression was associated with better overall survival, and the expression was different by the rs3782130 genotype. The study suggests that some genetic polymorphisms involved in the vitamin D pathway may associate with NSCLC risk, and one of the polymorphisms (rs3782130) may affect gene expression and patient survival. PMID:25544771
Co-clustering phenome–genome for phenotype classification and disease gene discovery
Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui
2012-01-01
Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708
Modeling life course pathways from adverse childhood experiences to adult mental health.
Jones, Tiffany M; Nurius, Paula; Song, Chiho; Fleming, Christopher M
2018-06-01
Although the association between adverse childhood experiences (ACEs) and adult mental health is becoming well established, less is known about the complex and multiple pathways through which ACEs exert their influence. Growing evidence suggests that adversity early in life conveys not only early impacts, but also augments risk of stress-related life course cascades that continue to undermine health. The present study aims to test pathways of stress proliferation and stress embodiment processes linking ACEs to mental health impairment in adulthood. Data are from the 2011 Behavioral Risk Factor Surveillance Survey, a representative sample of Washington State adults ages 18 and over (N = 14,001). Structural equation modeling allowed for testing of direct and indirect effects from ACEs though low income status, experiences of adversity in adulthood, and social support. The model demonstrated that adult low income, social support and adult adversity are in fact conduits through which ACEs exert their influence on mental health impairment in adulthood. Significant indirect pathways through these variables supported hypotheses that the effect of ACEs is carried through these variables. This is among the first models that demonstrates multiple stress-related life course pathways through which early life adversity compromises adult mental health. Discussion elaborates multiple service system opportunities for intervention in early and later life to interrupt direct and indirect pathways of ACE effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
I'll take the low road: the evolutionary underpinnings of visually triggered fear
Carr, James A.
2015-01-01
Although there is general agreement that the central nucleus of the amygdala (CeA) is critical for triggering the neuroendocrine response to visual threats, there is uncertainty about the role of subcortical visual pathways in this process. Primates in general appear to depend less on subcortical visual pathways than other mammals. Yet, imaging studies continue to indicate a role for the superior colliculus and pulvinar nucleus in fear activation, despite disconnects in how these brain structures communicate not only with each other but with the amygdala. Studies in fish and amphibians suggest that the neuroendocrine response to visual threats has remained relatively unchanged for hundreds of millions of years, yet there are still significant data gaps with respect to how visual information is relayed to telencephalic areas homologous to the CeA, particularly in fish. In fact ray finned fishes may have evolved an entirely different mechanism for relaying visual information to the telencephalon. In part because they lack a pathway homologous to the lateral geniculate-striate cortex pathway of mammals, amphibians continue to be an excellent model for studying how stress hormones in turn modulate fear activating visual pathways. Glucocorticoids, melanocortin peptides, and CRF all appear to play some role in modulating sensorimotor processing in the optic tectum. These observations, coupled with data showing control of the hypothalamus-pituitary-adrenal axis by the superior colliculus, suggest a fear/stress/anxiety neuroendocrine circuit that begins with first order synapses in subcortical visual pathways. Thus, comparative studies shed light not only on how fear triggering visual pathways came to be, but how hormones released as a result of this activation modulate these pathways. PMID:26578871
Sier, M F; Oostenbroek, R J; Dijkgraaf, M G W; Veldink, G J; Bemelman, W A; Pronk, A; Spillenaar-Bilgen, E J; Kelder, W; Hoff, C; Ubbink, D T
2017-08-01
Morbidity in patients with an ostomy is high. A new care pathway, including perioperative home visits by enterostomal therapists, was studied to assess whether more elaborate education and closer guidance could reduce stoma-related complications and improve quality of life (QoL), at acceptable cost. Patients requiring an ileostomy or colostomy, for any inflammatory or malignant bowel disease, were included in a 15-centre cluster-randomized 'stepped-wedge' study. Primary outcomes were stoma-related complications and QoL, measured using the Stoma-QOL, 3 months after surgery. Secondary outcomes included costs of care. The standard pathway (SP) was followed by 113 patients and the new pathway (NP) by 105 patients. Although the overall number of stoma-related complications was similar in both groups (SP 156, NP 150), the proportion of patients experiencing one or more stoma-related complications was significantly higher in the NP (72% vs 84%, risk difference 12%; 95% CI: 0.3-23.3%). Although in the NP more patients had stoma-related complications, QoL scores were significantly better (P < 0.001). In the SP more patients required extra care at home for their ostomy than in the NP (60.6% vs 33.7%, respectively; risk difference 26.9%, 95% CI: 13.5-40.4%). Stoma revision was done more often in the SP (n = 11) than in the NP (n = 2). Total costs in the SP did not differ significantly from the NP. The NP did not reduce the number of stoma-related complications but did lead to improved quality of care and life, against similar costs. Based on these results the NP, including perioperative home visits by an enterostomal therapist, can be recommended. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.
Gauthier, Kimberley; Rocheleau, Christian E
2017-01-01
Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.
Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Huang, Jing
2016-01-01
Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions) by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.
Mattiazzi, M.; Jambhekar, A.; Kaferle, P.; DeRisi, J. L.; Križaj, I.
2010-01-01
Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users. PMID:20379744
Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects.
Dowling, Daniel; Pauli, Thomas; Donath, Alexander; Meusemann, Karen; Podsiadlowski, Lars; Petersen, Malte; Peters, Ralph S; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Misof, Bernhard; Niehuis, Oliver
2016-12-01
RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Mi-Bo; Song, Youngwoo; Kim, Changhee
Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element bindingmore » protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.« less
Enhanced recovery pathways in abdominal gynecologic surgery: a systematic review and meta-analysis.
de Groot, Jeanny J A; Ament, Stephanie M C; Maessen, José M C; Dejong, Cornelis H C; Kleijnen, Jos M P; Slangen, Brigitte F M
2016-04-01
Enhanced recovery pathways have been widely accepted and implemented for different types of surgery. Their overall effect in abdominal gynecologic surgery is still underdetermined. A systematic review and meta-analysis were performed to provide an overview of current evidence and to examine their effect on postoperative outcomes in women undergoing open gynecologic surgery. Searches were conducted using Embase, Medline, CINAHL, and the Cochrane Library up to 27 June 2014. Reference lists were screened to identify additional studies. Studies were included if at least four individual items of an enhanced recovery pathway were described. Outcomes included length of hospital stay, complication rates, readmissions, and mortality. Quantitative analysis was limited to comparative studies. Effect sizes were presented as relative risks or as mean differences (MD) with 95% confidence intervals (CI). Thirty-one records, involving 16 observational studies, were included. Diversity in reported elements within studies was observed. Preoperative education, early oral intake, and early mobilization were included in all pathways. Five studies, with a high risk of bias, were eligible for quantitative analysis. Enhanced recovery pathways reduced primary (MD -1.57 days, 95% CI CI -2.94 to -0.20) and total (MD -3.05 days, 95% CI -4.87 to -1.23) length of hospital stay compared with traditional perioperative care, without an increase in complications, mortality or readmission rates. The available evidence based on a broad range of non-randomized studies at high risk of bias suggests that enhanced recovery pathways may reduce length of postoperative hospital stay in abdominal gynecologic surgery. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans
2016-01-01
Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087
ERIC Educational Resources Information Center
Sebastian, James; Huang, Haigen; Allensworth, Elaine
2017-01-01
Research on school leadership suggests that both principal and teacher leadership are important for school improvement. However, few studies have studied the interaction of principal and teacher leadership as separate but linked systems in how they relate to student outcomes. In this study, we examine how leadership pathways are related in the…
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccas e 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like ( Sil1 ), scavenger receptor class C ( Src ), and scavenger receptor class B ( Srb3 and Srb4 ) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean. PMID:29773992
Cells of Origin of Epithelial Ovarian Cancers
2015-09-01
cells in oral squamous cell carcinomas by a novel pathway-based lineage tracing approach in a murine model. ! 13! Specific aims: 1. Determine...SUNDARESAN Lineage tracing and clonal analysis of oral cancer initiating cells The goal of this project is to study cancer stem cells /cancer initiating...whether oral cancer cells genetically marked based on their activities for stem cell -related pathways exhibit cancer stem cell properties in vivo by
Mining gene link information for survival pathway hunting.
Jing, Gao-Jian; Zhang, Zirui; Wang, Hong-Qiang; Zheng, Hong-Mei
2015-08-01
This study proposes a gene link-based method for survival time-related pathway hunting. In this method, the authors incorporate gene link information to estimate how a pathway is associated with cancer patient's survival time. Specifically, a gene link-based Cox proportional hazard model (Link-Cox) is established, in which two linked genes are considered together to represent a link variable and the association of the link with survival time is assessed using Cox proportional hazard model. On the basis of the Link-Cox model, the authors formulate a new statistic for measuring the association of a pathway with survival time of cancer patients, referred to as pathway survival score (PSS), by summarising survival significance over all the gene links in the pathway, and devise a permutation test to test the significance of an observed PSS. To evaluate the proposed method, the authors applied it to simulation data and two publicly available real-world gene expression data sets. Extensive comparisons with previous methods show the effectiveness and efficiency of the proposed method for survival pathway hunting.
Shi, Haitao; Wang, Xin; Tan, Dun-Xian; Reiter, Russel J; Chan, Zhulong
2015-08-01
The fact of melatonin as an important antioxidant in animals led plant researchers to speculate that melatonin also acts in the similar manner in plants. Although melatonin has significant effects on alleviating stress-triggered reactive oxygen species (ROS), the involvement of melatonin in direct oxidative stress and the underlying physiological and molecular mechanisms remain unclear in plants. In this study, we found that exogenous melatonin significantly alleviated hydrogen peroxide (H2O2)-modulated plant growth, cell damage, and ROS accumulation in Bermuda grass. Additionally, 76 proteins significantly influenced by melatonin during mock or H2O2 treatment were identified by gel-free proteomics using iTRAQ (isobaric tags for relative and absolute quantitation). Metabolic pathway analysis showed that several pathways were markedly enhanced by melatonin and H2O2 treatments, including polyamine metabolism, ribosome pathway, major carbohydrate metabolism, photosynthesis, redox, and amino acid metabolism. Taken together, this study provides more comprehensive insights into the physiological and molecular mechanisms of melatonin in Bermuda grass responses to direct oxidative stress. This may relate to the activation of antioxidants, modulation of metabolic pathways, and extensive proteome reprograming. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions
Li, Yanjun; Wang, Guixin; Xu, Zeqian; Li, Jing; Sun, Mengwei; Guo, Jingsong; Ji, Wei
2017-01-01
Covalent attachment of the small ubiquitin-related modifier, SUMO, to substrate proteins plays a significant role in plants under stress conditions, which can alter target proteins' function, location, and protein-protein interactions. Despite this importance, information about SUMOylation in the major legume crop, soybean, remains obscure. In this study, we performed a bioinformatics analysis of the entire soybean genome and identified 40 genes belonged to six families involved in a cascade of enzymatic reactions in soybean SUMOylation system. The cis-acting elements analysis revealed that promoters of SUMO pathway genes contained different combinations of stress and development-related cis-regulatory elements. RNA-seq data analysis showed that SUMO pathway components exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. qRT-PCR analysis of 13 SUMO pathway members indicated that majority of the SUMO pathway members were transcriptionally up-regulated by NaCl, heat and ABA stimuli during the 24 h period of treatment. Furthermore, SUMOylation dynamics in soybean roots under abiotic stress treatment were analyzed by western blot, which were characterized by regulation of SUMOylated proteins. Collectively, this study defined the organization of the soybean SUMOylation system and implied an essential function for SUMOylation in soybean abiotic stress responses. PMID:28878795
Amelot, Nicolas; Dorlhac de Borne, François; San Clemente, Hélène; Mazars, Christian; Grima-Pettenati, Jacqueline; Brière, Christian
2012-02-01
Cryptogein is a proteinaceous elicitor secreted by the oomycete Phytophthora cryptogea, which induces a hypersensitive response in tobacco plants. We have previously reported that in tobacco BY-2 cells treated with cryptogein, most of the genes of the phenylpropanoid pathway were upregulated and cell wall-bound phenolics accumulated. Both events were Ca(2+) dependent. In this study, we designed a microarray covering a large proportion of the tobacco genome and monitored gene expression in cryptogein-elicited BY-2 cells to get a more complete view of the transcriptome changes and to assess their Ca(2+) dependence. The predominant functional gene categories affected by cryptogein included stress- and disease-related proteins, phenylpropanoid pathway, signaling components, transcription factors and cell wall reinforcement. Among the 3819 unigenes whose expression changed more than fourfold, 90% were Ca(2+) dependent, as determined by their sensitivity to lanthanum chloride. The most Ca(2+)-dependent transcripts upregulated by cryptogein were involved in defense responses or the oxylipin pathway. This genome-wide study strongly supports the importance of Ca(2+)-dependent transcriptional regulation of regulatory and defense-related genes contributing to cryptogein responses in tobacco. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, Akimasa; Kitazawa, Yuya; Ochi, Toshiro; Shoji, Mitsuo; Komatsu, Yu; Kayanuma, Megumi; Aikawa, Yuri; Umemura, Masayuki; Shigeta, Yasuteru
2018-03-01
Glycine, the simplest amino acid, has been intensively searched for in molecular clouds, and the comprehensive clarification of the formation path of interstellar glycine is now imperative. Among all the possible glycine formation pathways, we focused on the radical pathways revealed by Garrod (2013). In the present study, we have precisely investigated all the chemical reaction steps related to the glycine formation processes based on state-of-the-art density functional theory (DFT) calculations. We found that two reaction pathways require small activation barriers (ΔE‡ ≤ 7.75 kJ mol-1), which demonstrates the possibility of glycine formation even at low temperatures in interstellar space if the radical species are generated. The origin of carbon and nitrogen in the glycine backbone and their combination patterns are further discussed in relation to the formation mechanisms. According to the clarification of the atomic correspondence between glycine and its potential parental molecules, it is shown that the nitrogen and two carbons in the glycine can originate in three common interstellar molecules, methanol, hydrogen cyanide, and ammonia, and that the source molecules of glycine can be described by any of their combinations. The glycine formation processes can be categorized into six patterns. Finally, we discussed two other glycine formation pathways expected from the present DFT calculation results.
Poplar Wood Rays Are Involved in Seasonal Remodeling of Tree Physiology1[C][W
Larisch, Christina; Dittrich, Marcus; Wildhagen, Henning; Lautner, Silke; Fromm, Jörg; Polle, Andrea; Hedrich, Rainer; Rennenberg, Heinz; Müller, Tobias; Ache, Peter
2012-01-01
Understanding seasonality and longevity is a major challenge in tree biology. In woody species, growth phases and dormancy follow one another consecutively. In the oldest living individuals, the annual cycle may run for more than 1,000 years. So far, however, not much is known about the processes triggering reactivation from dormancy. In this study, we focused on wood rays, which are known to play an important role in tree development. The transition phase from dormancy to flowering in early spring was compared with the phase of active growth in summer. Rays from wood samples of poplar (Populus × canescens) were enriched by laser microdissection, and transcripts were monitored by poplar whole-genome microarrays. The resulting seasonally varying complex expression and metabolite patterns were subjected to pathway analyses. In February, the metabolic pathways related to flower induction were high, indicating that reactivation from dormancy was already taking place at this time of the year. In July, the pathways related to active growth, like lignin biosynthesis, nitrogen assimilation, and defense, were enriched. Based on “marker” genes identified in our pathway analyses, we were able to validate periodical changes in wood samples by quantitative polymerase chain reaction. These studies, and the resulting ray database, provide new insights into the steps underlying the seasonality of poplar trees. PMID:22992511
Prx I Suppresses K-ras-Driven Lung Tumorigenesis by Opposing Redox-Sensitive ERK/Cyclin D1 Pathway
Park, Young-Ho; Kim, Sun-Uk; Lee, Bo-Kyoung; Kim, Hyun-Sun; Song, In-Sung; Shin, Hye-Jun; Han, Ying-Hao; Chang, Kyu-Tae; Kim, Jin-Man; Lee, Dong-Seok; Kim, Yeul-Hong; Choi, Chang-Min; Kim, Bo-Yeon
2013-01-01
Abstract Aims: Coupled responses of mutated K-ras and oxidative stress are often an important etiological factor in non–small-cell lung cancer (NSCLC). However, relatively few studies have examined the control mechanism of oxidative stress in oncogenic K-ras-driven NSCLC progression. Here, we studied whether the redox signaling pathway governed by peroxiredoxin I (Prx I) is involved in K-rasG12D-mediated lung adenocarcinogenesis. Results: Using human-lung adenocarcinoma tissues and lung-specific K-rasG12D-transgenic mice, we found that Prx I was significantly up-regulated in the tumor regions via activation of nuclear erythroid 2-related factor 2 (Nrf2) transcription. Interestingly, the increased reactive oxygen species (ROS) by null mutation of Prx I greatly promoted K-rasG12D-driven lung tumorigenesis in number and size, which appeared to require the activation of the ROS-dependent extracellular signal-regulated kinase (ERK)/cyclin D1 pathway. Innovation: Taken together, these results suggest that Prx I functions as an Nrf2-dependently inducible tumor suppressant in K-ras-driven lung adenocarcinogenesis by opposing ROS/ERK/cyclin D1 pathway activation. Conclusion: These findings provide a better understanding of oxidative stress-mediated lung tumorigenesis. Antioxid. Redox Signal. 19, 482–496. PMID:23186333
Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-01-01
Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus. PMID:28885552
Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-09-08
Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.
Adverse outcome pathways: a concise introduction for toxicologists
Vergauwen, Lucia; Hengstler, Jan G.; Angrish, Michelle; Whelan, Maurice
2018-01-01
Adverse outcome pathways are designed to provide a clear-cut mechanistic representation of critical toxicological effects that propagate over different layers of biological organization from the initial interaction of a chemical with a molecular target to an adverse outcome at the individual or population level. Adverse outcome pathways are currently gaining momentum, especially in view of their many potential applications as pragmatic tools in the fields of human toxicology, ecotoxicology and risk assessment. A number of guidance documents, issued by the Organization for Economic Cooperation and Development, as well as landmark papers, outlining best practices to develop, assess and use adverse outcome pathways, have been published in the last few years. The present paper provides a synopsis of the main principles related to the adverse outcome pathway framework for the toxicologist less familiar with this area, followed by two case studies relevant for human toxicology and ecotoxicology. PMID:28660287
Borrie, Sarah C; Brems, Hilde; Legius, Eric; Bagni, Claudia
2017-08-31
The Ras-MAPK and PI3K-AKT-mTOR signaling cascades were originally identified as cancer regulatory pathways but have now been demonstrated to be critical for synaptic plasticity and behavior. Neurodevelopmental disorders arising from mutations in these pathways exhibit related neurological phenotypes, including cognitive dysfunction, autism, and intellectual disability. The downstream targets of these pathways include regulation of transcription and protein synthesis. Other disorders that affect protein translation include fragile X syndrome (an important cause of syndromal autism), and other translational regulators are now also linked to autism. Here, we review how mechanisms of synaptic plasticity have been revealed by studies of mouse models for Ras-MAPK, PI3K-AKT-mTOR, and translation regulatory pathway disorders. We discuss the face validity of these mouse models and review current progress in clinical trials directed at ameliorating cognitive and behavioral symptoms.
NASA Astrophysics Data System (ADS)
Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin
2013-11-01
Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.
Jacobs, Simone; Jäger, Susanne; Jansen, Eugene; Peter, Andreas; Stefan, Norbert; Boeing, Heiner; Schulze, Matthias B.; Kröger, Janine
2015-01-01
Background Biomarker fatty acids (FAs) reflecting de novo lipogenesis (DNL) are strongly linked to the risk of cardiometabolic diseases. Liver fat accumulation could mediate this relation. There is very limited data from human population-based studies that have examined this relation. Objective The aim of this study was to investigate the relation between specific FAs in the DNL pathway and liver fat accumulation in a large population-based study. Methods We conducted a cross-sectional analysis of a subsample (n = 1,562) of the EPIC-Potsdam study, which involves 27,548 middle-aged men and women. Baseline blood samples have been analyzed for proportions of 32 FAs in erythrocyte membranes (determined by gas chromatography) and biomarker concentrations in plasma. As indicators for DNL, the DNL-index (16:0 / 18:2n-6) and proportions of individual blood FAs in the DNL pathway were used. Plasma parameters associated with liver fat content (fetuin-A, ALT, and GGT) and the algorithm-based fatty liver index (FLI) were used to reflect liver fat accumulation. Results The DNL-index tended to be positively associated with the FLI and was positively associated with GGT activity in men (p for trend: 0.12 and 0.003). Proportions of 14:0 and 16:0 in erythrocytes were positively associated with fetuin-A, whereas 16:1n-7 were positively associated with the FLI and GGT activity (all p for trends in both sexes at least 0.004). Furthermore, the proportion of 16:1n-7 was positively related to fetuin-A in women and ALT activity in men (all p for trend at least 0.03). The proportion of 16:1n-9 showed positive associations with the FLI and GGT activity in men and fetuin-A in both sexes, whereas 18:1n-7 was positively associated with GGT activity in men (all p for trend at least 0.048). Conclusion Findings from this large epidemiological study suggest that liver fat accumulation could link erythrocyte FAs in the DNL pathway to the risk of cardiometabolic diseases. PMID:25984792
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yongbaek; Thai-Vu Ton; De Angelo, Anthony B.
2006-07-15
This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo arrays, with over 20,000 target genes, were used to evaluate o-NT- and BCA-induced RPMs, when compared to a non-transformed mesothelial cell line (Fred-PE). Analysis using Ingenuity Pathway Analysis software revealed 169 cancer-related genes that were categorized into binding activity, growth and proliferation, cell cycle progression, apoptosis, and invasion and metastasis. The microarray data were validated by positive correlation with quantitative real-time RT-PCRmore » on 16 selected genes including igf1, tgfb3 and nov. Important carcinogenic pathways involved in RPM formation included insulin-like growth factor 1 (IGF-1), p38 MAPkinase, Wnt/{beta}-catenin and integrin signaling pathways. This study demonstrated that mesotheliomas in rats exposed to o-NT- and BCA were similar to mesotheliomas in humans, at least at the cellular and molecular level.« less
Tserga, Aggeliki; Chatziandreou, Ilenia; Michalopoulos, Nicolaos V; Patsouris, Efstratios; Saetta, Angelica A
2016-07-01
Deregulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is closely associated with cancer development and cancer progression. PIK3CA, AKT1, and PTEN are the fundamental molecules of the PI3K/AKT pathway with increased mutation rates in cancer cases leading to aberrant regulation of the pathway. Even though molecular alterations of the PI3K/AKT pathway have been studied in breast cancer, correlations between specific molecular alterations and clinicopathological features remain contradictory. In this study, we examined mutations of the PI3K/AKT pathway in 75 breast carcinomas using high-resolution melting analysis and pyrosequencing, in parallel with analysis of relative expression of PIK3CA and AKT2 genes. Mutations of PIK3CA were found in our cohort in 21 cases (28 %), 10 (13 %) in exon 9 and 11(15 %) in exon 20. Mutation frequency of AKT1 and PTEN genes was 4 and 3 %, respectively. Overall, alterations in the PI3K/AKT signaling cascade were detected in 35 % of the cases. Furthermore, comparison of 50 breast carcinomas with adjacent normal tissues showed elevated PIK3CA messenger RNA (mRNA) levels in 18 % of tumor cases and elevated AKT2 mRNA levels in 14 %. Our findings, along with those of previous studies, underline the importance of the PI3K/AKT pathway components as potential biomarkers for breast carcinogenesis.
Contreras-Hernández, E; Chávez, D; Rudomin, P
2015-01-01
Previous studies on the correlation between spontaneous cord dorsum potentials recorded in the lumbar spinal segments of anaesthetized cats suggested the operation of a population of dorsal horn neurones that modulates, in a differential manner, transmission along pathways mediating Ib non-reciprocal postsynaptic inhibition and pathways mediating primary afferent depolarization and presynaptic inhibition. In order to gain further insight into the possible neuronal mechanisms that underlie this process, we have measured changes in the correlation between the spontaneous activity of individual dorsal horn neurones and the cord dorsum potentials associated with intermittent activation of these inhibitory pathways. We found that high levels of neuronal synchronization within the dorsal horn are associated with states of incremented activity along the pathways mediating presynaptic inhibition relative to pathways mediating Ib postsynaptic inhibition. It is suggested that ongoing changes in the patterns of functional connectivity within a distributed ensemble of dorsal horn neurones play a relevant role in the state-dependent modulation of impulse transmission along inhibitory pathways, among them those involved in the central control of sensory information. This feature would allow the same neuronal network to be involved in different functional tasks. Key points We have examined, in the spinal cord of the anaesthetized cat, the relationship between ongoing correlated fluctuations of dorsal horn neuronal activity and state-dependent activation of inhibitory reflex pathways. We found that high levels of synchronization between the spontaneous activity of dorsal horn neurones occur in association with the preferential activation of spinal pathways leading to primary afferent depolarization and presynaptic inhibition relative to activation of pathways mediating Ib postsynaptic inhibition. It is suggested that changes in synchronization of ongoing activity within a distributed network of dorsal horn neurones play a relevant role in the configuration of structured (non-random) patterns of functional connectivity that shape the interaction of sensory inputs with spinal reflex pathways subserving different functional tasks. PMID:25653206
Brain Networks Shaping Religious Belief
Deshpande, Gopikrishna; Krueger, Frank; Thornburg, Matthew P.; Grafman, Jordan Henry
2014-01-01
Abstract We previously demonstrated with functional magnetic resonance imaging (fMRI) that religious belief depends upon three cognitive dimensions, which can be mapped to specific brain regions. In the present study, we considered these co-activated regions as nodes of three networks each one corresponding to a particular dimension, corresponding to each dimension and examined the causal flow within and between these networks to address two important hypotheses that remained untested in our previous work. First, we hypothesized that regions involved in theory of mind (ToM) are located upstream the causal flow and drive non-ToM regions, in line with theories attributing religion to the evolution of ToM. Second, we hypothesized that differences in directional connectivity are associated with differences in religiosity. To test these hypotheses, we performed a multivariate Granger causality-based directional connectivity analysis of fMRI data to demonstrate the causal flow within religious belief-related networks. Our results supported both hypotheses. Religious subjects preferentially activated a pathway from inferolateral to dorsomedial frontal cortex to monitor the intent and involvement of supernatural agents (SAs; intent-related ToM). Perception of SAs engaged pathways involved in fear regulation and affective ToM. Religious beliefs are founded both on propositional statements for doctrine, but also on episodic memory and imagery. Beliefs based on doctrine engaged a pathway from Broca's to Wernicke's language areas. Beliefs related to everyday life experiences engaged pathways involved in imagery. Beliefs implying less involved SAs and evoking imagery activated a pathway from right lateral temporal to occipital regions. This pathway was more active in non-religious compared to religious subjects, suggesting greater difficulty and procedural demands for imagining and processing the intent of SAs. Insights gained by Granger connectivity analysis inform us about the causal binding of individual regions activated during religious belief processing. PMID:24279687
Brain networks shaping religious belief.
Kapogiannis, Dimitrios; Deshpande, Gopikrishna; Krueger, Frank; Thornburg, Matthew P; Grafman, Jordan Henry
2014-02-01
We previously demonstrated with functional magnetic resonance imaging (fMRI) that religious belief depends upon three cognitive dimensions, which can be mapped to specific brain regions. In the present study, we considered these co-activated regions as nodes of three networks each one corresponding to a particular dimension, corresponding to each dimension and examined the causal flow within and between these networks to address two important hypotheses that remained untested in our previous work. First, we hypothesized that regions involved in theory of mind (ToM) are located upstream the causal flow and drive non-ToM regions, in line with theories attributing religion to the evolution of ToM. Second, we hypothesized that differences in directional connectivity are associated with differences in religiosity. To test these hypotheses, we performed a multivariate Granger causality-based directional connectivity analysis of fMRI data to demonstrate the causal flow within religious belief-related networks. Our results supported both hypotheses. Religious subjects preferentially activated a pathway from inferolateral to dorsomedial frontal cortex to monitor the intent and involvement of supernatural agents (SAs; intent-related ToM). Perception of SAs engaged pathways involved in fear regulation and affective ToM. Religious beliefs are founded both on propositional statements for doctrine, but also on episodic memory and imagery. Beliefs based on doctrine engaged a pathway from Broca's to Wernicke's language areas. Beliefs related to everyday life experiences engaged pathways involved in imagery. Beliefs implying less involved SAs and evoking imagery activated a pathway from right lateral temporal to occipital regions. This pathway was more active in non-religious compared to religious subjects, suggesting greater difficulty and procedural demands for imagining and processing the intent of SAs. Insights gained by Granger connectivity analysis inform us about the causal binding of individual regions activated during religious belief processing.
Hypothalamic digoxin, hemispheric chemical dominance and sarcoidosis.
Ravi Kumar, A; Kurup, Parameswara Achutha
2004-06-01
The isoprenoid pathway produces three key metabolites: endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins) and ubiquinone (free radical scavenger). The role of the isoprenoid pathway in the pathogenesis of sarcoidosis in relation to hemispheric dominance was studied. The isoprenoid pathway-related cascade was assessed in patients with systemic sarcoidosis with pulmonary involvement. The pathway was also assessed in patients with right hemispheric, left hemispheric and bihemispheric dominance for comparison to find out the role of hemispheric dominance in the pathogenesis of sarcoidosis. In patients with sarcoidosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in the cholesterol:phospholipid ratio and a reduction in the glycoconjugate level of red blood cell (RBC) membrane in this group of patients. The same biochemical patterns were obtained in individuals with right hemispheric dominance. In individuals with left hemispheric dominance the patterns were reversed. Endogenous digoxin, by activating the calcineurin signal transduction pathway of T cells, can contribute to immune activation in sarcoidosis. An altered glycoconjugate metabolism can lead to the generation of endogenous self-glycoprotein antigens in the lung as well as other tissues. Increased free radical generation can also lead to immune activation. The role of a dysfunctional isoprenoid pathway and endogenous digoxin in the pathogenesis of sarcoidosis in relation to right hemispheric chemical dominance is discussed. All the patients with sarcoidosis were right-handed/left hemispheric dominant according to the dichotic listening test, but their biochemical patterns were suggestive of right hemispheric chemical dominance. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test.
Wiegers, Maike; Walter, Martin; Abler, Birgit; Graf, Heiko
2016-01-01
Background: Various psychiatric populations are currently investigated with resting state fMRI, with the aim of individualizing diagnostics and treatment options and improving treatment outcomes. Many of these studies are conducted in large naturalistic samples, providing rich insights regarding disease-related neural alterations, but with the common psychopharmacological medication limiting interpretations of the results. We therefore investigated the effects of common noradrenergic and anti-dopaminergic medications on local and global resting state activity (rs-activity) in healthy volunteers to further the understanding of the respective effects independent from disease-related alterations. Methods: Within a randomized, double-blind, placebo-controlled crossover design, we investigated 19 healthy male subjects by resting state fMRI after the intake of reboxetine (4mg/d), amisulpride (200mg/d), and placebo for 7 days each. Treatment-related differences in local and global rs-activity were measured by the fractional amplitude of low frequency fluctuations (fALFF) and resting state functional connectivity (rs-FC). Results: fALFF revealed alterations of local rs-activity within regions of the core noradrenergic pathway, including the locus coeruleus under reboxetine, correlated with its plasma levels. Moreover, reboxetine led to increased rs-FC between regions within this pathway, i.e. the locus coeruleus, tectum, thalamus, and amygdala. Amisulpride modulated local rs-activity of regions within the dopaminergic pathway, with the altered signal in the putamen correlating with amisulpride plasma levels. Correspondingly, amisulpride increased rs-FC between regions of the dopaminergic pathway comprising the substantia nigra and putamen. Conclusion: Our data provide evidence of how psychopharmacological agents alter local and global rs-activity within the respective neuroanatomical pathways in healthy subjects, which may help with interpreting data in psychiatric populations. PMID:26209860
Genome Sequencing Reveals the Potential of Achromobacter sp. HZ01 for Bioremediation
Hong, Yue-Hui; Ye, Cong-Cong; Zhou, Qian-Zhi; Wu, Xiao-Ying; Yuan, Jian-Ping; Peng, Juan; Deng, Hailin; Wang, Jiang-Hai
2017-01-01
Petroleum pollution is a severe environmental issue. Comprehensively revealing the genetic backgrounds of hydrocarbon-degrading microorganisms contributes to developing effective methods for bioremediation of crude oil-polluted environments. Marine bacterium Achromobacter sp. HZ01 is capable of degrading hydrocarbons and producing biosurfactants. In this study, the draft genome (5.5 Mbp) of strain HZ01 has been obtained by Illumina sequencing, containing 5,162 predicted genes. Genome annotation shows that “amino acid metabolism” is the most abundant metabolic pathway. Strain HZ01 is not capable of using some common carbohydrates as the sole carbon sources, which is due to that it contains few genes associated with carbohydrate transport and lacks some important enzymes related to glycometabolism. It contains abundant proteins directly related to petroleum hydrocarbon degradation. AlkB hydroxylase and its homologs were not identified. It harbors a complete enzyme system of terminal oxidation pathway for n-alkane degradation, which may be initiated by cytochrome P450. The enzymes involved in the catechol pathway are relatively complete for the degradation of aromatic compounds. This bacterium lacks several essential enzymes for methane oxidation, and Baeyer-Villiger monooxygenase involved in the subterminal oxidation pathway and cycloalkane degradation was not identified. These results suggest that strain HZ01 degrades n-alkanes via the terminal oxidation pathway, degrades aromatic compounds primarily via the catechol pathway and cannot perform methane oxidation or cycloalkane degradation. Additionally, strain HZ01 possesses abundant genes related to the metabolism of secondary metabolites, including some genes involved in biosurfactant (such as glycolipids and lipopeptides) synthesis. The genome analysis also reveals its genetic basis for nitrogen metabolism, antibiotic resistance, regulatory responses to environmental changes, cell motility, and material transport. The obtained genome data provide us with a better understanding of hydrocarbon-degrading bacteria, which may contribute to the future design of rational strategies for bioremediation of petroleum-polluted marine environments. PMID:28848520
Heim, Stefan; Weidner, Ralph; von Overheidt, Ann-Christin; Tholen, Nicole; Grande, Marion; Amunts, Katrin
2014-03-01
Phonological and visual dysfunctions may result in reading deficits like those encountered in developmental dyslexia. Here, we use a novel approach to induce similar reading difficulties in normal readers in an event-related fMRI study, thus systematically investigating which brain regions relate to different pathways relating to orthographic-phonological (e.g. grapheme-to-phoneme conversion, GPC) vs. visual processing. Based upon a previous behavioural study (Tholen et al. 2011), the retrieval of phonemes from graphemes was manipulated by lowering the identifiability of letters in familiar vs. unfamiliar shapes. Visual word and letter processing was impeded by presenting the letters of a word in a moving, non-stationary manner. FMRI revealed that the visual condition activated cytoarchitectonically defined area hOC5 in the magnocellular pathway and area 7A in the right mesial parietal cortex. In contrast, the grapheme manipulation revealed different effects localised predominantly in bilateral inferior frontal gyrus (left cytoarchitectonic area 44; right area 45) and inferior parietal lobule (including areas PF/PFm), regions that have been demonstrated to show abnormal activation in dyslexic as compared to normal readers. This pattern of activation bears close resemblance to recent findings in dyslexic samples both behaviourally and with respect to the neurofunctional activation patterns. The novel paradigm may thus prove useful in future studies to understand reading problems related to distinct pathways, potentially providing a link also to the understanding of real reading impairments in dyslexia.
Zhao, Wei; Han, Fang; Shi, Yuxiu
2016-08-01
Our previous studies have shown evidence of endoplasmic reticulum (ER) stress-induced apoptosis in the hippocampus and mPFC in an animal model of post- traumatic stress disorder (PTSD). Inositol-requiring enzyme 1α (IRE1α) and its downstream molecule X-box binding protein 1 (XBP1) play key roles in the ER-related apoptosis pathway. Dysregulation of the locus coeruleus (LC) has been reported to contribute to cognitive and/or arousal impairments associated with PTSD. The aim of the present study was to explore the role of IRE1α pathway in neuronal apoptosis in the LC of rat models of PTSD. We used an acute exposure to prolonged stress (single prolonged stress, SPS) to model PTSD in rats and examined the effects related to the IRE1α pathway. Neuronal apoptosis in LC was detected by transmission electron microscopy and TUNEL staining. The results showed that the level of LC neuronal apoptosis was markedly increased after SPS. SPS exposure triggered IRE1α pathway, as evidenced by the increased activity of IRE1α, specific splicing of XBP1, and up-regulated expression of binding immunoglobulin protein/78kDa glucose-regulated protein (BiP/GRP78), and C/EBP-homologous protein (CHOP). Treatment with STF-083010, an IRE1α RNase-specific inhibitor, successfully attenuated the above changes. These results indicate that excessive activation of the ER stress-associated IRE1α pathway is involved in LC neuronal apoptosis induced by SPS exposure; this may be a crucial mechanism of the pathogenesis of PTSD. Copyright © 2016 Elsevier Inc. All rights reserved.
Pentland, Jacqueline; Maciver, Donald; Owen, Christine; Forsyth, Kirsty; Irvine, Linda; Walsh, Mike; Crowe, Miriam
2016-01-01
The National Health Service in Scotland published a best practice framework to support occupational therapists and physiotherapists to deliver effective services for children with developmental co-ordination disorder (DCD); however, adherence is variable. To highlight areas for development, this study compared the care pathway within a paediatric DCD service against the NHS Scotland framework. A partnership of researchers and clinicians based in the United Kingdom conducted a qualitative study with 37 participants (N = 13 interview participants, N = 24 workshop participants). In-depth interviews and/or workshops were used to map the DCD service against the NHS framework. Identified gaps were aligned with four key stages of the care pathway. Qualitative analysis software was used to analyse the data. Core principles to guide future development were identified for each phase of the pathway. These core principles related to the NHS framework and focused on issues such as involving the family, defining clear pathways and enhancing children's participation. Participants identified potential strategies for service improvement such as developing community-based interventions and information provision. Challenges when providing services for children with DCD include confusing service pathways and poor partnership working. It is, therefore, important that clinicians utilise collaborative working strategies that support children's participation. There are numerous challenges related to the implementation of best practice principles into the provision of therapy services for children with developmental coordination disorder (DCD). It is important that AHPs seek ways of engaging parents and educational professionals at all stages of the care pathway in order to ensure optimum service provision for the child. Addressing participation is an important aspect and community-based strategies may be particularly beneficial, both as a preventative activity and as an intervention approach.
van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B
2015-01-01
Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.
Effects of Clinical Pathways for Common Outpatient Infections on Antibiotic Prescribing
Jenkins, Timothy C.; Irwin, Amy; Coombs, Letoynia; DeAlleaume, Lauren; Ross, Stephen E.; Rozwadowski, Jeanne; Webster, Brian; Dickinson, L. Miriam; Sabel, Allison L.; MacKenzie, Thomas D.; West, David R.; Price, Connie S.
2013-01-01
Background Antibiotic overuse in the primary care setting is common. Our objective was to evaluate the effect of a clinical pathway-based intervention on antibiotic use. Methods Eight primary care clinics were randomized to receive clinical pathways for upper respiratory infection, acute bronchitis, acute rhinosinusitis, pharyngitis, acute otitis media, urinary tract infection, skin infections, and pneumonia and patient education materials (study group) versus no intervention (control group). Generalized linear mixed effects models were used to assess trends in antibiotic prescriptions for non-pneumonia acute respiratory infections and broad-spectrum antibiotic use for all eight conditions during a 2-year baseline and 1-year intervention period. Results In the study group, antibiotic prescriptions for non-pneumonia acute respiratory infections decreased from 42.7% of cases at baseline to 37.9% during the intervention period (11.2% relative reduction) (p <.0001) and from 39.8% to 38.7%, respectively, in the control group (2.8% relative reduction) (p=0.25). Overall use of broad-spectrum antibiotics in the study group decreased from 26.4% to 22.6% of cases, respectively, (14.4% relative reduction) (p <.0001) and from 20.0% to 19.4%, respectively, in the control group (3.0% relative reduction) (p=0.35). There were significant differences in the trends of prescriptions for acute respiratory infections (p<.0001) and broad-spectrum antibiotic use (p=0.001) between the study and control groups during the intervention period, with greater declines in the study group. Conclusions This intervention was associated with declining antibiotic prescriptions for non-pneumonia acute respiratory infections and use of broad-spectrum antibiotics over the first year. Evaluation of the impact over a longer study period is warranted. PMID:23507206
Wu, Zhaomeng; Zhu, Qingyi; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Zhang, Yu; Lu, Shan; Liu, Ping
2018-04-01
Traditional Chinese medicine (TCM) has a combined therapeutic result in cancer treatment by integrating holistic and local therapeutical effects, by which TCM can enhance the curative effect and reduce the side effect. In this study, we analyzed the effect of CFF-1 (alcohol extract from an anticancer compound Chinese medicine) on prostate cancer (PCa) cell lines and studied in detail the mechanism of cell death induced by CFF-1 in vitro and in vivo. From our data, we found for the first time that CFF-1 obviously arrested cell cycle in G1 phase, decreased cell viability and then increased nuclear rupture in a dose-dependent manner and finally resulted in apoptosis in prostate cancer cells. In molecular level, our data showed that CFF-1 induced inhibition of EGFR auto-phosphorylation and inactivation of EGFR. Disruption of EGFR activity in turn suppressed downstream PI3K/AKT and Raf/Erk signal pathways, resulted in the decrease of p-FOXO1 (Ser256) and regulated the expression of apoptosis-related and cycle-related genes. Moreover, CFF-1 markedly induced cell autophagy through inhibiting PI3K/AKT/mTOR pathway and then up-regulating Beclin-1 and LC-3II and down-regulating phosphorylation of p70S6K. In vivo, CFF-1-treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft tumor in nude mice via inhibiting EGFR-related signal pathways. Thus, bio-functions of Chinese medicine CFF-1 in inducing PCa cell growth inhibition, autophagy, and apoptosis suggested that CFF-1 had the clinical potential to treat patients with prostate cancer. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Binbin; Zhao, Li; Zhu, Litao
Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells.more » The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tung-Cheng; Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Yeh, Chi-Tai
2015-10-15
4-Acetylantroquinonol B (4-AAQB), closely related to the better known antroquinonol, is a bioactive isolate of the mycelia of Antrodia camphorata, a Taiwanese mushroom with documented anti-inflammatory, hypoglycemic, vasorelaxative, and recently demonstrated, antiproliferative activity. Based on its traditional use, we hypothesized that 4-AAQB may play an active role in the suppression of cellular transformation, tumor aggression and progression, as well as chemoresistance in colorectal carcinoma (CRC). In this study, we investigated the antiproliferative role of 4-AAQB and its underlying molecular mechanism. We also compared its anticancer therapeutic potential with that of antroquinonol and the CRC combination chemotherapy of choice — folinicmore » acid, fluorouracil and oxaliplatin (FOLFOX). Our results showed that 4-AAQB was most effective in inhibiting tumor proliferation, suppressing tumor growth and attenuating stemness-related chemoresistance. 4-AAQB negatively regulates vital oncogenic and stem cell maintenance signal transduction pathways, including the Lgr5/Wnt/β-catenin, JAK–STAT, and non-transmembrane receptor tyrosine kinase signaling pathways, as well as inducing a dose-dependent downregulation of ALDH and other stemness related factors. These results were validated in vivo, with animal studies showing 4-AAQB possessed comparable tumor-shrinking ability as FOLFOX and potentiates ability of the later to reduce tumor size. Thus, 4-AAQB, a novel small molecule, projects as a potent therapeutic agent for monotherapy or as a component of standard combination chemotherapy. - Highlights: • 4-Acetylantroquinonol B (4-AAQB) suppressed tumor cell proliferation. • 4-AAQB regulates oncogenic and stem cell maintenance signal pathways. • 4-AAQB negatively regulates Lgr5/Wnt/β-catenin and JAK–STAT pathways. • 4-AAQB reduced ALDH and other stemness related factor expression. • In vivo, 4-AAQB has comparable tumor-shrinking ability as FOLFOX.« less
Raposa, Elizabeth; Hammen, Constance; Brennan, Patricia; Najman, Jake
2014-01-01
Cross-sectional and retrospective studies have highlighted the long-term negative effects of maternal depression on offspring physical, social, and emotional development, but longitudinal research is needed to clarify the pathways by which maternal depression during pregnancy and early childhood affects offspring outcomes. The current study tested one developmental pathway by which maternal depression during pregnancy might negatively impact offspring mental health in young adulthood, via poor physical health in early childhood. The sample consisted of 815 Australian youth and their mothers who were followed for 20 years. Mothers reported on their own depressive symptoms during pregnancy and offspring early childhood. Youth completed interviews about health-related stress and social functioning at age 20 years, and completed a questionnaire about their own depressive symptoms 2 to 5 years later. Path analysis indicated that prenatal maternal depressive symptoms predicted worse physical health during early childhood for offspring, and this effect was partially explained by ongoing maternal depression in early childhood. Offspring poor physical health during childhood predicted increased health-related stress and poor social functioning at age 20. Finally, increased health-related stress and poor social functioning predicted increased levels of depressive symptoms later in young adulthood. Maternal depression had a significant total indirect effect on youth depression via early childhood health and its psychosocial consequences. Poor physical health in early childhood and its effects on young adults' social functioning and levels of health related stress is one important pathway by which maternal depression has long-term consequences for offspring mental health. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Schmidt-Erfurth, Ursula; van Lookeren Campagne, Menno; Henry, Erin C.; Brittain, Christopher
2017-01-01
Purpose: Geographic atrophy (GA) is an advanced, vision-threatening form of age-related macular degeneration (AMD) affecting approximately five million individuals worldwide. To date, there are no approved therapeutics for GA treatment; however, several are in clinical trials. This review focuses on the pathophysiology of GA, particularly the role of complement cascade dysregulation and emerging therapies targeting the complement cascade. Methods: Primary literature search on PubMed for GA, complement cascade in age-related macular degeneration. ClinicalTrials.gov was searched for natural history studies in GA and clinical trials of drugs targeting the complement cascade for GA. Results: Cumulative damage to the retina by aging, environmental stress, and other factors triggers inflammation via multiple pathways, including the complement cascade. When regulatory components in these pathways are compromised, as with several GA-linked genetic risk factors in the complement cascade, chronic inflammation can ultimately lead to the retinal cell death characteristic of GA. Complement inhibition has been identified as a key candidate for therapeutic intervention, and drugs targeting the complement pathway are currently in clinical trials. Conclusion: The complement cascade is a strategic target for GA therapy. Further research, including on natural history and genetics, is crucial to expand the understanding of GA pathophysiology and identify effective therapeutic targets. PMID:27902638
Basomedial amygdala mediates top-down control of anxiety and fear.
Adhikari, Avishek; Lerner, Talia N; Finkelstein, Joel; Pak, Sally; Jennings, Joshua H; Davidson, Thomas J; Ferenczi, Emily; Gunaydin, Lisa A; Mirzabekov, Julie J; Ye, Li; Kim, Sung-Yon; Lei, Anna; Deisseroth, Karl
2015-11-12
Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.
Basomedial amygdala mediates top–down control of anxiety and fear
Adhikari, Avishek; Lerner, Talia N.; Finkelstein, Joel; Pak, Sally; Jennings, Joshua H.; Davidson, Thomas J.; Ferenczi, Emily; Gunaydin, Lisa A.; Mirzabekov, Julie J.; Ye, Li; Kim, Sung-Yon; Lei, Anna; Deisseroth, Karl
2016-01-01
Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC–BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway. PMID:26536109
Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus.
Weng, Xiaoling; Liu, Fatao; Zhang, Hong; Kan, Mengyuan; Wang, Ting; Dong, Mingyue; Liu, Yun
2018-03-26
Offspring exposed to gestational diabetes mellitus (GDM) are at a high risk for metabolic diseases. The mechanisms behind the association between offspring exposed to GDM in utero and an increased risk of health consequences later in life remain unclear. The aim of this study was to clarify the changes in methylation levels in the foetuses of women with GDM and to explore the possible mechanisms linking maternal GDM with a high risk of metabolic diseases in offspring later in life. A genome-wide comparative methylome analysis on the umbilical cord blood of infants born to 30 women with GDM and 33 women with normal pregnancy was performed using Infinium HumanMethylation 450 BeadChip assays. A quantitative methylation analysis of 18 CpG dinucleotides was verified in the validation umbilical cord blood samples from 102 newborns exposed to GDM and 103 newborns who experienced normal pregnancy by MassARRAY EpiTYPER. A total of 4485 differentially methylated sites (DMSs), including 2150 hypermethylated sites and 2335 hypomethylated sites, with a mean β-value difference of >0.05, were identified by the 450k array. Good agreement was observed between the massarray validation data and the 450k array data (R 2 > 0.99; P < 0.0001). Thirty-seven CpGs (representing 20 genes) with a β-value difference of >0.15 between the GDM and healthy groups were identified and showed potential as clinical biomarkers for GDM. "hsa04940: Type I diabetes mellitus" was the most significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, with a P-value = 3.20E-07 and 1.36E-02 in the hypermethylated and hypomethylated genepathway enrichment analyses, respectively. In the Gene Ontology (GO) pathway analyses, immune MHC-related pathways and neuron development-related pathways were significantly enriched. Our results suggest that GDM has epigenetic effects on genes that are preferentially involved in the Type I diabetes mellitus pathway, immune MHC (major histocompatibility complex)-related pathways and neuron development-related pathways, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming. Copyright © 2018. Published by Elsevier B.V.
Sarker, Malabika; Mohammad, Din; Paul, Sukanta; Akter, Rahima; Islam, Shayla; Biswas, Goutam; Hossain, Asheque; Islam, Akramul
2017-03-28
Although extra pulmonary tuberculosis (EPTB) has long been known as a major public health concern globally, the complex healthcare-seeking pathways of EPTB patients are not widely studied. This study aims to explore the pattern of healthcare-seeking pathways of rural and urban EPTB patients registered with the BRAC TB control programme. BRAC is a Bangladesh-based non-governmental organization dedicated to alleviating poverty through empowering the poor. Data were collected through 60 in-depth interviews with rural and urban EPTB patients in Bangladesh. The findings reveal that the rural EPTB patients encountered a substantial diagnostic delay as compared to the urban patients. However, the difference between the average number of healthcare providers consulted by the rural verses the urban EPTB patients was not significant. This study also shows that the healthcare-seeking journey of rural and urban EPTB patients usually starts either at pharmacies or private facilities. Through exploring the detailed nature of the pathway, this study reveals the ways in which non-medical informants, mainly relatives and friends, can benefit patients. The private and informal healthcare providers should receive appropriate training on the diagnosis of EPTB. Such training could effectively shorten the long and complex healthcare-seeking pathways of EPTB patients.
Wolkow, Catherine A
2010-01-01
Dramatic changes in body composition accompany aging in humans, particularly with respect to adiposity and the musculature. People accumulate fat as they age and lose muscle mass and strength. Caenorhabditis elegans nematodes are small, hermaphroditic soil nematodes that offer a flexible model for studying genetic pathways regulating body composition in humans. While there are significant physiological differences between worms and people, many of the genetic pathways relevant to human lipid and muscle homeostasis are present in worms. Initial studies indicate that adiposity increases in C. elegans during aging, as occurs in humans. Furthermore, substantial evidence demonstrates age-related loss of muscle mass in worms. Possible mechanisms for these changes in C. elegans are presented. Recent studies have highlighted neuroendocrine and environmental signals regulating C. elegans fat metabolism. Potential dysfunction of these pathways during aging could affect overall fat accumulation. By contrast, muscle decline in aging worms results from accumulated damage and 'wear-and-tear' over life span. However, neuroendocrine pathways also regulate muscle mass in response to food availability. Such pathways might provide useful therapeutic approaches for combating muscle loss during aging. From this chapter, readers will develop a deeper understanding of the ways that C.elegans can be used for mechanistic gerontological studies. Copyright © 2010 S. Karger AG, Basel.
Genetics pathway-based imaging approaches in Chinese Han population with Alzheimer's disease risk.
Bai, Feng; Liao, Wei; Yue, Chunxian; Pu, Mengjia; Shi, Yongmei; Yu, Hui; Yuan, Yonggui; Geng, Leiyu; Zhang, Zhijun
2016-01-01
The tau hypothesis has been raised with regard to the pathophysiology of Alzheimer's disease (AD). Mild cognitive impairment (MCI) is associated with a high risk for developing AD. However, no study has directly examined the brain topological alterations based on combined effects of tau protein pathway genes in MCI population. Forty-three patients with MCI and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) in Chinese Han, and a tau protein pathway-based imaging approaches (7 candidate genes: 17 SNPs) were used to investigate changes in the topological organisation of brain activation associated with MCI. Impaired regional activation is related to tau protein pathway genes (5/7 candidate genes) in patients with MCI and likely in topologically convergent and divergent functional alterations patterns associated with genes, and combined effects of tau protein pathway genes disrupt the topological architecture of cortico-cerebellar loops. The associations between the loops and behaviours further suggest that tau protein pathway genes do play a significant role in non-episodic memory impairment. Tau pathway-based imaging approaches might strengthen the credibility in imaging genetic associations and generate pathway frameworks that might provide powerful new insights into the neural mechanisms that underlie MCI.
Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.
Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S
2016-04-01
A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Dhayat, Nasser A; Dick, Bernhard; Frey, Brigitte M; d'Uscio, Claudia H; Vogt, Bruno; Flück, Christa E
2017-01-01
The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An boys -An girls ), and uses predominantly the alternative backdoor pathway (An/Et; Δ5<Δ4 lyase activity). Modelling of steroid enzyme activities showed age-related effects for 21-, 11-, 17-hydroxylase and P450 oxidoreductase activities as well as 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase type 1/2 and 5α-reductase activities. Sex-related characteristics were found for 21-hydroxylase and 5α-reductase activities. Overall, our study shows that androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway. Calculations of specific diagnostic ratios for enzyme activities seem to allow the diagnosis of specific steroid disorders from the urinary steroid metabolome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J.; Walther, Sebastian
2012-01-01
Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD. PMID:23284950
Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J; Walther, Sebastian
2012-01-01
Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.
Gupta, Subash C; Kim, Ji Hye; Kannappan, Ramaswamy; Reuter, Simone; Dougherty, Patrick M; Aggarwal, Bharat B
2011-01-01
Cancer is a disease characterized by dysregulation of multiple genes and is associated with symptoms such as cachexia, anorexia, fatigue, depression, neuropathic pain, anxiety, cognitive impairment, sleep disorders and delirium (acute confusion state) in medically ill patients. These symptoms are caused by either the cancer itself or the cancer treatment. During the past decade, increasing evidence has shown that the dysregulation of inflammatory pathways contributes to the expression of these symptoms. Cancer patients have been found to have higher levels of proinflammatory cytokines such as interleukin-6. The nuclear factor (NF)- κB is a major mediator of inflammatory pathways. Therefore, anti-inflammatory agents that can modulate the NF-κB activation and inflammatory pathways may have potential in improving cancer-related symptoms in patients. Because of their multitargeting properties, low cost, low toxicity and immediate availability, natural agents have gained considerable attention for prevention and treatment of cancer-related symptoms. How NF-κB and inflammatory pathways contribute to cancer-related symptoms is the focus of this review. We will also discuss how nutritional agents such as curcumin, genistein, resveratrol, epigallocatechin gallate and lycopene can modulate inflammatory pathways and thereby reduce cancer-related symptoms in patients. PMID:21565893
Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults.
Nho, Kwangsik; Ramanan, Vijay K; Horgusluoglu, Emrin; Kim, Sungeun; Inlow, Mark H; Risacher, Shannon L; McDonald, Brenna C; Farlow, Martin R; Foroud, Tatiana M; Gao, Sujuan; Callahan, Christopher M; Hendrie, Hugh C; Niculescu, Alexander B; Saykin, Andrew J
2015-01-01
Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.
Ahmed, Yusra; Wagner, Richard K.; Lopez, Danielle
2013-01-01
Relations between reading and writing have been studied extensively but the less is known about the developmental nature of their interrelations. This study applied latent change score modeling to investigate longitudinal relations between reading and writing skills at the word, sentence and text levels. Latent change score models were used to compare unidirectional pathways (reading-to-writing and writing-to-reading) and bidirectional pathways in a test of nested models. Participants included 316 boys and girls who were assessed annually in grades 1 through 4. Measures of reading included pseudo-word decoding, sentence reading efficiency, oral reading fluency and passage comprehension. Measures of writing included spelling, a sentence combining task and writing prompts. Findings suggest that a reading-to-writing model better described the data for the word and text levels of language, but a bidirectional model best fit the data at the sentence level. PMID:24954951
Childhood emotional abuse, negative emotion-driven impulsivity, and alcohol use in young adulthood☆
Shin, Sunny H.; Lee, Sungkyu; Jeon, Sae-Mi; Wills, Thomas A.
2015-01-01
Childhood emotional abuse has been linked to problematic alcohol use in later life but there is a paucity of empirically based knowledge about the developmental pathways linking emotional abuse and alcohol use in young adulthood. Using a community sample of young individuals aged 18–25 (N = 268; female 52%), we performed structural equation modeling to investigate whether emotional abuse influences alcohol use through urgent personality trait and to determine pathways for these effects in a multivariate context. We also examined variations in these pathways by four different alcohol use outcomes including frequency of alcohol use, binge drinking, alcohol-related problems, and alcohol use disorders (AUD). The present study found that emotional abuse was related to urgency, which in turn influenced four types of alcohol use. Urgency may play a significant role in linking childhood maltreatment to alcohol use in young adulthood. PMID:25743371
Childhood emotional abuse, negative emotion-driven impulsivity, and alcohol use in young adulthood.
Shin, Sunny H; Lee, Sungkyu; Jeon, Sae-Mi; Wills, Thomas A
2015-12-01
Childhood emotional abuse has been linked to problematic alcohol use in later life but there is a paucity of empirically based knowledge about the developmental pathways linking emotional abuse and alcohol use in young adulthood. Using a community sample of young individuals aged 18-25 (N=268; female 52%), we performed structural equation modeling to investigate whether emotional abuse influences alcohol use through urgent personality trait and to determine pathways for these effects in a multivariate context. We also examined variations in these pathways by four different alcohol use outcomes including frequency of alcohol use, binge drinking, alcohol-related problems, and alcohol use disorders (AUD). The present study found that emotional abuse was related to urgency, which in turn influenced four types of alcohol use. Urgency may play a significant role in linking childhood maltreatment to alcohol use in young adulthood. Copyright © 2015. Published by Elsevier Ltd.
HOPE, SELF-ESTEEM, AND SELF-REGULATION: POSITIVE CHARACTERISTICS AMONG MEN AND WOMEN IN RECOVERY
Ferrari, Joseph R.; Stevens, Edward B.; Legler, Raymond; Jason, Leonard A.
2014-01-01
Hopefulness remains unclear in relation to aspects of self-control and self-esteem among adults in substance abuse recovery. The present study explored the relationship between dispositional hope (agency and pathway) with self-esteem (self-liking, self-competency, and self-confidence) and self-regulation (impulse control and self-discipline), using a latent variable measurement model and structural equation modeling among adults (n = 601) residing in a communal living setting for persons in substance abuse recovery. Results showed that multiple dimensions of these constructs were significant as individual predictors. With persons in recovery, self-regulation included impulsivity control and self-discipline, while self-esteem reflected self-liking, competence, and a sense of self-confidence. Furthermore, both hope-pathways and hope-agency significantly related to self-control/impulse control but not self-control/discipline, and self-esteem/competency was associated with hope-pathways but not hope-agency. PMID:25382880
Veatch, Olivia J; Pendergast, Julie S; Allen, Melissa J; Leu, Roberta M; Johnson, Carl Hirschie; Elsea, Sarah H; Malow, Beth A
2015-01-01
Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with comorbid expression of sleep onset delay. We evaluated variation in two melatonin pathway genes, acetylserotonin O-methyltransferase (ASMT) and cytochrome P450 1A2 (CYP1A2). We observed higher frequencies than currently reported (p < 0.04) for variants evidenced to decrease ASMT expression and related to decreased CYP1A2 enzyme activity (p ≤ 0.0007). We detected a relationship between genotypes in ASMT and CYP1A2 (r(2) = 0.63). Our results indicate that expression of sleep onset delay relates to melatonin pathway genes.
Lu, Jiang; Lu, Kehuan; Li, Dongsheng
2012-01-01
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789
Psychological pathways from racial discrimination to cortisol in African American males and females.
Lee, Daniel B; Peckins, Melissa K; Heinze, Justin E; Miller, Alison L; Assari, Shervin; Zimmerman, Marc A
2018-04-01
The association between racial discrimination (discrimination) and stress-related alterations in the neuroendocrine response-namely, cortisol secretion-is well documented in African Americans (AAs). Dysregulation in production of cortisol has been implicated as a contributor to racial health disparities. Guided by Clark et al. (Am Psychol 54(10):805-816, 1999. doi: 10.1037/0003-066X.54.10.805 ) biopsychosocial model of racism and health, the present study examined the psychological pathways that link discrimination to total cortisol concentrations in AA males and females. In a sample of 312 AA emerging adults (45.5% males; ages 21-23), symptoms of anxiety, but not depression, mediated the relation between discrimination and total concentrations of cortisol. In addition, the results did not reveal sex differences in the direct and indirect pathways. These findings advance our understanding of racial health disparities by suggesting that the psychological consequences of discrimination can uniquely promote physiologic dysregulation in AAs.
Alivand, Mohammad Reza; Soheili, Zahra-Soheila; Pornour, Majid; Solali, Saeed; Sabouni, Farzaneh
2017-10-01
CpG methylation of DNA takes part in a specific epigenetic memory that plays crucial roles in the differentiation and abnormality of the cells. The methylation pattern aberration of genomes is affected in three ways, namely DNA methyltransferase (DNMT), ten-eleven translocation (TET), and methyl-binding domain (MBD) proteins. Of these, TET enzymes have recently been demonstrated to be master modifier enzymes in the DNA methylation process. Additionally, recent studies emphasize that not only epigenetic phenomena play a role in controlling hypoxia pathway, but the hypoxia condition also triggers hypomethylation of genomes that may help with the expression of hypoxia pathway genes. In this study, we suggested that TET1 and TET2 could play a role in the demethylation of genomes under chemical hypoxia conditions. Herein, the evaluating methylation status and mRNA expression of mentioned genes were utilized through real-time PCR and methylation-specific PCR (MSP), respectively. Our results showed that TET1 and TET2 genes were overexpressed (P < 0.05) under chemical hypoxia conditions in Retinal Pigment Epithelial (RPE) cells, whereas the promoter methylation status of them were hypomethylated in the same condition. Therefore, chemical hypoxia not only causes overexpression of TET1 and TET2 but also could gradually do promoter demethylation of same genes. This is the first study to show the relationship between epigenetics and the expression of mentioned genes related to hypoxia pathways. Furthermore, it seems that these associations in RPE cells are subjected to chemical hypoxia as a mechanism that could play a crucial role in methylation pattern changes of hypoxia-related diseases such as cancer and ischemia. J. Cell. Biochem. 118: 3193-3204, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.
Cui, Qunli; Li, Xin; Zhu, Hongcan
2016-02-01
Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.
Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review.
Tan, Benjamin H L; Ross, James A; Kaasa, Stein; Skorpen, Frank; Fearon, Kenneth C H
2011-04-01
Cancer cachexia is a polygenic and complex syndrome. Genetic variations in regulation of the inflammatory response, muscle and fat metabolic pathways, and pathways in appetite regulation are likely to contribute to the susceptibility or resistance to developing cancer cachexia. A systematic search of Medline and EmBase databases, covering 1986-2008 was performed for potential candidate genes/genetic polymorphisms relating to cancer cachexia. Related genes were then identified using pathway functional analysis software. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Genes with variants which had functional or clinical associations with cachexia and replicated in at least one study were entered into pathway analysis software to reveal possible network associations between genes. A total of 184 polymorphisms with functional or clinical relevance to cancer cachexia were identified in 92 candidate genes. Of these, 42 polymorphisms (in 33 genes) were replicated in more than one study with 13 polymorphisms found to influence two or more hallmarks of cachexia (i.e. inflammation, loss of fat mass and/or lean mass and reduced survival). Thirty-three genes were found to be significantly interconnected in two major networks with four genes (ADIPOQ, IL6, NFKB1 and TLR4) interlinking both networks. Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides an initial framework to select genes/polymorphisms for further study in cancer cachexia, and to develop their potential as susceptibility biomarkers of developing cachexia.
LENS: web-based lens for enrichment and network studies of human proteins
2015-01-01
Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011
Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola
2011-09-27
Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3β to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.
Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi
2017-09-01
This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p < 0.001, OR: 0.25, 95% CI 0.16-0.38). Dominance analysis showed that the most important predictor for smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram
2016-05-01
Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.
Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram
2016-05-17
Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.
Truong, Anh Duc; Rengaraj, Deivendran; Hong, Yeojin; Hoang, Cong Thanh; Hong, Yeong Ho; Lillehoj, Hyun S
2017-05-01
The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate the expression of candidate JAK-STAT pathway genes and their regulators and interactors in the intestinal mucosal layer of two genetically disparate chicken lines [Marek's disease (MD)-resistant line 6.3 and MD-susceptible line 7.2] induced with necrotic enteritis (NE). Through RNA-sequencing, we investigated 116 JAK-STAT signaling pathway-related genes that were significant and differentially expressed between the intestinal mucosa of the two lines compared with respective uninfected controls. About 15 JAK-STAT pathway genes were further verified by qRT-PCR, and the results were in agreement with our sequencing data. All the identified 116 genes were annotated through Gene Ontology and mapped to the KEGG chicken JAK-STAT signaling pathway. To the best of our knowledge, this is the first study to represent the transcriptional analysis of a large number of candidate genes, regulators, and potential interactors in the JAK-STAT pathway of the two chicken lines induced with NE. Several key genes of the interactome, namely, STAT1/3/4, STAT5B, JAK1-3, TYK2, AKT1/3, SOCS1-5, PIAS1/2/4, PTPN6/11, and PIK3, were determined to be differentially expressed in the two lines. Moreover, we detected 68 known miRNAs variably targeting JAK-STAT pathway genes and differentially expressed in the two lines induced with NE. The RNA-sequencing and bioinformatics analyses in this study provided an abundance of data that will be useful for future studies on JAK-STAT pathways associated with the functions of two genetically disparate chicken lines induced with NE. Copyright © 2017 Elsevier B.V. All rights reserved.
Boenisch, Marike Johanne; Broz, Karen Lisa; Purvine, Samuel Owen; ...
2017-03-13
Eukaryotic cells routinely compartmentalize metabolic pathways to particular organelles for biosynthetic purposes. Relatively few studies have addressed the cellular localization of pathways for secondary metabolites synthesis. In this study, the phytopathogenic fungus Fusarium graminearum reorganized its endoplasmic reticulum (ER) when triggered to produce mycotoxins, both in vitro and in planta. Fluorescence tagged biosynthetic proteins were found to co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. Microscopy, cell sorting, and proteomics were applied in this FICUS collaborative effort.
Protein degradation pathways in Parkinson's disease: curse or blessing.
Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J
2012-08-01
Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.
Transcriptome profiling indicating canine parvovirus type 2a as a potential immune activator.
Fan, Xu-Xu; Gao, Yuan; Shu, Long; Wei, Yan-Quan; Yao, Xue-Ping; Cao, Sui-Zhong; Peng, Guang-Neng; Liu, Xiang-Tao; Sun, Shi-Qi
2016-12-01
Canine parvovirus type 2a (CPV-2a) is a variant of CPV-2, which is a highly contagious pathogen causing severe gastroenteritis and death in young dogs. However, how CPV-2 participates in cell regulation and immune response remains unknown. In this study, persistently infected MDCK cells were generated through culture passage of the CPV-2a-infected cells for ten generations. Our study showed that CPV-2a induces cell proliferation arrest and cell morphology alternation before the fourth generation, whereas, the cell morphology returns to normal after five times of passages. PCR detection of viral VP2 gene demonstrated that CPV-2a proliferate with cell passage. An immunofluorescence assay revealed that CPV-2a particles were mainly located in the cell nuclei of MDCK cell. Then transcriptome microarray revealed that gene expression pattern of MDCK with CPV-2a persistent infection is distinct compared with normal cells. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genome pathway analysis demonstrated that CPV-2a infection induces a series of membrane-associated genes expression, including many MHC protein or MHC-related complexes. These genes are closely related to signaling pathways of virus-host interaction, including antigen processing and presentation pathway, intestinal immune network, graft-versus-host disease, and RIG-I-like helicases signaling pathway. In contrast, the suppressed genes mediated by CPV-2a showed low enrichment in any category, and were only involved in pathways linking to synthesis and metabolism of amino acids, which was confirmed by qPCR analysis. Our studies indicated that CPV-2a is a natural immune activator and has the capacity to activate host immune responses, which could be used for the development of antiviral strategy and biomaterial for medicine.
Transcriptomic profile of leg muscle during early growth in chicken
Zhang, Genxi; Li, Tingting; Ling, Jiaojiao; Zhang, Xiangqian; Wang, Jinyu
2017-01-01
The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development. PMID:28291821
mTOR is a key modulator of ageing and age-related disease
Johnson, Simon C.; Rabinovitch, Peter S.; Kaeberlein, Matt
2013-01-01
Many experts in the biology of ageing believe that pharmacological interventions to slow ageing are a matter of ‘when’ rather than ‘if’. A leading target for such interventions is the nutrient response pathway defined by the mechanistic target of rapamycin (mTOR). Inhibition of this pathway extends lifespan in model organisms and confers protection against a growing list of age-related pathologies. Characterized inhibitors of this pathway are already clinically approved, and others are under development. Although adverse side effects currently preclude use in otherwise healthy individuals, drugs that target the mTOR pathway could one day become widely used to slow ageing and reduce age-related pathologies in humans. PMID:23325216
Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.
2014-01-01
Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it. PMID:25071839
Rouigari, Maedeh; Dehbashi, Moein; Ghaedi, Kamran; Pourhossein, Meraj
2018-07-01
For the first time, we used molecular signaling pathway enrichment analysis to determine possible involvement of miR-126 and IRS-1 in neurotrophin pathway. In this prospective study, Validated and predicted targets (targetome) of miR-126 were collected following searching miRtarbase (http://mirtarbase.mbc.nctu.edu.tw/) and miRWalk 2.0 databases, respectively. Then, approximate expression of miR-126 targeting in Glioma tissue was examined using UniGene database (http://www.ncbi. nlm.nih.gov/unigene). In silico molecular pathway enrichment analysis was carried out by DAVID 6.7 database (http://david. abcc.ncifcrf.gov/) to explore which signaling pathway is related to miR-126 targeting and how miR-126 attributes to glioma development. MiR-126 exerts a variety of functions in cancer pathogenesis via suppression of expression of target gene including PI3K, KRAS, EGFL7, IRS-1 and VEGF. Our bioinformatic studies implementing DAVID database, showed the involvement of miR-126 target genes in several signaling pathways including cancer pathogenesis, neurotrophin functions, Glioma formation, insulin function, focal adhesion production, chemokine synthesis and secretion and regulation of the actin cytoskeleton. Taken together, we concluded that miR-126 enhances the formation of glioma cancer stem cell probably via down regulation of IRS-1 in neurotrophin signaling pathway. Copyright© by Royan Institute. All rights reserved.
Developing Effective and Efficient care pathways in chronic Pain: DEEP study protocol.
Durham, Justin; Breckons, Matthew; Araujo-Soares, Vera; Exley, Catherine; Steele, Jimmy; Vale, Luke
2014-01-21
Pain affecting the face or mouth and lasting longer than three months ("chronic orofacial pain", COFP) is relatively common in the UK. This study aims to describe and model current care pathways for COFP patients, identify areas where current pathways could be modified, and model whether these changes would improve outcomes for patients and use resources more efficiently. The study takes a prospective operations research approach. A cohort of primary and secondary care COFP patients (n = 240) will be recruited at differing stages of their care in order to follow and analyse their journey through care. The cohort will be followed for two years with data collected at baseline 6, 12, 18, and 24 months on: 1) experiences of the care pathway and its impacts; 2) quality of life; 3) pain; 4) use of health services and costs incurred; 5) illness perceptions. Qualitative in-depth interviews will be used to collect data on patient experiences from a purposive sub-sample of the total cohort (n = 30) at baseline, 12 and 24 months. Four separate appraisal groups (public, patient, clincian, service manager/commissioning) will then be given data from the pathway analysis and asked to determine their priority areas for change. The proposals from appraisal groups will inform an economic modelling exercise. Findings from the economic modelling will be presented as incremental costs, Quality Adjusted Life Years (QALYs), and the incremental cost per QALY gained. At the end of the modelling a series of recommendations for service change will be available for implementation or further trial if necessary. The recent white paper on health and the report from the NHS Forum identified chronic conditions as priority areas and whilst technology can improve outcomes, so can simple, appropriate and well-defined clinical care pathways. Understanding the opportunity cost related to care pathways benefits the wider NHS. This research develops a method to help design efficient systems built around one condition (COFP), but the principles should be applicable to a wide range of other chronic and long-term conditions.
Relative contributions of four exposure pathways to influenza infection risk.
Nicas, Mark; Jones, Rachael M
2009-09-01
The relative contribution of four influenza virus exposure pathways-(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes-must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.
Thomas, Duncan C.; Zhang, Junfeng; Kipen, Howard M.; Rich, David Q.; Zhu, Tong; Huang, Wei; Hu, Min; Wang, Guangfa; Wang, Yuedan; Zhu, Ping; Lu, Shou-En; Ohman-Strickland, Pamela; Diehl, Scott R.; Eckel, Sandrah P.
2014-01-01
Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001) and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005). These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours) and the hemostasis pathway responds gradually over a 2–3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system. PMID:25502951
Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis
Qian, Feng; Tang, Feng-Ru
2016-01-01
Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer’s disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis. PMID:27030135
Turning over renal osteodystrophy dogma: direct actions of FGF23 on osteoblast β-catenin pathway.
Schiavi, Susan C; Moysés, Rosa M A
2016-07-01
Although recognized as a major complication of chronic kidney disease (CKD), the pathophysiology of the CKD-related mineral and bone disorder (CKD-MBD) is not completely understood. Recently, the inhibition of Wnt/β-catenin pathway in osteocytes by sclerostin has been shown to play a role in CKD-MBD. The study by Carrilo-Lopez et al. confirms this inhibition in an experimental model of CKD. Moreover, they describe direct actions of FGF23-Klotho on osteoblasts, increasing the expression of DKK1, another Wnt/β-catenin pathway inhibitor. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran
2016-12-30
For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya; Weedon, Michael N; Knowles, Joshua W; Alkayyali, Sami; Assimes, Themistocles L; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M; Nolan, John J; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E; Frayling, Timothy M; Walker, Mark
2013-06-01
Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.
Xie, Weijia; Wood, Andrew R.; Lyssenko, Valeriya; Weedon, Michael N.; Knowles, Joshua W.; Alkayyali, Sami; Assimes, Themistocles L.; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M.; Nolan, John J.; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E.; Frayling, Timothy M.; Walker, Mark
2013-01-01
Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity–related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites—glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)—and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits. PMID:23378610
Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng
2016-01-01
Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach. PMID:26793222
Relation of pediatric blood lead levels to lead in gasoline.
Billick, I H; Curran, A S; Shier, D R
1980-01-01
Analysis of a large data set of pediatric blood lead levels collected in New York City (1970-1976) shows a highly significant association between geometric mean blood lead levels and the amount of lead present in gasoline sold during the same period. This association was observed for all age and ethnic groups studied, and it suggests that possible exposure pathways other than ambient air should be considered. Even without detailed knowledge of the exact exposure pathways, sufficient information now exists for policy analysis and decisions relevant to controls and standards related to lead in gasoline and its effect on subsets of the population. PMID:7389685
Could drugs inhibiting the mevalonate pathway also target cancer stem cells?
Likus, Wirginia; Siemianowicz, Krzysztof; Bieńk, Konrad; Pakuła, Małgorzata; Pathak, Himani; Dutta, Chhanda; Wang, Qiong; Shojaei, Shahla; Assaraf, Yehuda G; Ghavami, Saeid; Cieślar-Pobuda, Artur; Łos, Marek J
2016-03-01
Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka
2017-09-05
Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic approach for ADPKD redressal. Copyright © 2017 Elsevier B.V. All rights reserved.
A Review of Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas
Friesen, Melissa C.; Hoppin, Jane A.; Hines, Cynthia J.; Thomas, Kent; Freeman, Laura E. Beane
2015-01-01
Background Women living in agricultural areas may experience high pesticide exposures compared with women in urban or suburban areas because of their proximity to farm activities. Objective Our objective was to review the evidence in the published literature for the contribution of nonoccupational pathways of pesticide exposure in women living in North American agricultural areas. Methods We evaluated the following nonoccupational exposure pathways: paraoccupational (i.e., take-home or bystander exposure), agricultural drift, residential pesticide use, and dietary ingestion. We also evaluated the role of hygiene factors (e.g., house cleaning, shoe removal). Results Among 35 publications identified (published 1995–2013), several reported significant or suggestive (p < 0.1) associations between paraoccupational (n = 19) and agricultural drift (n = 10) pathways and pesticide dust or biomarker levels, and 3 observed that residential use was associated with pesticide concentrations in dust. The 4 studies related to ingestion reported low detection rates of most pesticides in water; additional studies are needed to draw conclusions about the importance of this pathway. Hygiene factors were not consistently linked to exposure among the 18 relevant publications identified. Conclusions Evidence supported the importance of paraoccupational, drift, and residential use pathways. Disentangling exposure pathways was difficult because agricultural populations are concurrently exposed to pesticides via multiple pathways. Most evidence was based on measurements of pesticides in residential dust, which are applicable to any household member and are not specific to women. An improved understanding of nonoccupational pesticide exposure pathways in women living in agricultural areas is critical for studying health effects in women and for designing effective exposure-reduction strategies. Citation Deziel NC, Friesen MC, Hoppin JA, Hines CJ, Thomas K, Beane Freeman LE. 2015. A review of nonoccupational pathways for pesticide exposure in women living in agricultural areas. Environ Health Perspect 123:515–524; http://dx.doi.org/10.1289/ehp.1408273 PMID:25636067
Klassert, Tilman E; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R; Flores, Carlos; Slevogt, Hortense
2018-01-01
Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro . In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.
Klassert, Tilman E.; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R.; Flores, Carlos; Slevogt, Hortense
2018-01-01
Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance. PMID:29515573
Eguchi, Akifumi; Sakurai, Kenichi; Watanabe, Masahiro; Mori, Chisato
2017-05-01
Polychlorinated biphenyls (PCBs) have been associated with adverse human reproductive and fetal developmental measures or outcomes because of their endocrine-disrupting effects; however, the biological mechanisms of adverse effects of PCB exposure in humans are not currently well established. In this study, we aimed to identify the biological pathways and potential biomarkers of PCB exposure in maternal and umbilical cord serum using a hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) metabolomics platform. The median concentration of total PCBs in maternal (n=93) and cord serum (n=93) were 350 and 70pgg -1 wet wt, respectively. PCB levels in maternal and fetal serum from the Chiba Study of Mother and Children's Health (C-MACH) cohort are comparable to those of earlier cohort studies conducted in Japan, the USA, and European countries. We used the random forest model with the metabolome profile to predict exposure levels of PCB (first quartile [Q1] and fourth quartile [Q4]) for pregnant women and fetuses. In the prediction model for classification of Q1 versus Q4 (area-under-curve [AUC]: pregnant women=0.812 and fetuses=0.919), citraconic acid level in maternal serum and ethanolamine, p-hydroxybenzoate, and purine levels in cord serum had >0.70 AUC values. These candidate biomarkers and metabolite included in composited models were related to glutathione and amino acid metabolism in maternal serum and the amino acid metabolism and ubiquinone and other terpenoid-quinone biosynthesis in cord serum (FDR <0.10), indicating disruption of metabolic pathways by PCB exposure in pregnant women and fetuses. These results showed that metabolome analysis might be useful to explore potential biomarkers and related biological pathways for PCB exposure. Thus, more detailed studies are needed to verify sensitivity of the biomarkers and clarify the biochemical changes resulting from PCB exposure. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hedgehog signaling in the murine melanoma microenvironment.
Geng, Ling; Cuneo, Kyle C; Cooper, Michael K; Wang, Hong; Sekhar, Konjeti; Fu, Allie; Hallahan, Dennis E
2007-01-01
The Hedgehog intercellular signaling pathway regulates cell proliferation and differentiation. This pathway has been implicated to play a role in the pathogenesis of cancer and in embryonic blood vessel development. In the current study, Hedgehog signaling in tumor related vasculature and microenvironment was examined using human umbilical vein endothelial cells and B16F0 (murine melanoma) tumors models. Use of exogenous Sonic hedgehog (Shh) peptide significantly increased BrdU incorporation in endothelial cells in vitro by a factor of 2 (P < 0.001). The Hedgehog pathway antagonist cyclopamine effectively reduced Shh-induced proliferation to control levels. To study Hedgehog signaling in vivo a hind limb tumor model with the B16F0 cell line was used. Treatment with 25 mg/kg cyclopamine significantly attenuated BrdU incorporation in tumor cells threefold (P < 0.001), in tumor related endothelial cells threefold (P = 0.004), and delayed tumor growth by 4 days. Immunohistochemistry revealed that the Hedgehog receptor Patched was localized to the tumor stroma and that B16F0 cells expressed Shh peptide. Furthermore, mouse embryonic fibroblasts required the presence of B16F0 cells to express Patched in a co-culture assay system. These studies indicate that Shh peptide produced by melanoma cells induces Patched expression in fibroblasts. To study tumor related angiogenesis a vascular window model was used to monitor tumor vascularity. Treatment with cyclopamine significantly attenuated vascular formation by a factor of 2.5 (P < 0.001) and altered vascular morphology. Furthermore, cyclopamine reduced tumor blood vessel permeability to FITC labeled dextran while having no effect on normal blood vessels. These studies suggest that Hedgehog signaling regulates melanoma related vascular formation and function.
Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.
Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan
2017-01-01
3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.
Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun
2015-01-01
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.
Parke, Adrian; Griffiths, Mark; Pattinson, Julie; Keatley, David
2018-03-01
Background To inform clinical treatment and preventative efforts, there is an important need to understand the pathways to late-life gambling disorder. Aims This study assesses the association between age-related physical health, social networks, and problem gambling in adults aged over 65 years and assesses the mediating role of affective disorders in this association. Methods The sample comprised 595 older adults (mean age: 74.4 years, range: 65-94 years; 77.1% female) who were interviewed using a structured questionnaire to assess physical frailty, geriatric pain, loneliness, geriatric depression, geriatric anxiety, and problem gambling. Results Pathway analysis demonstrated associations between these variables and gambling problems, providing a good fit for the data, but that critically these relationships were mediated by both anxiety and depression symptoms. Conclusions This study indicates that late-life problem gambling may develop as vulnerable individuals gamble to escape anxiety and depression consequent to deteriorating physical well-being and social support. When individuals develop late-life problem gambling, it is recommended that the treatment primarily focuses upon targeting and replacing avoidant coping approaches.
Miao, Ling-Hong; Lin, Yan; Pan, Wen-Jing; Huang, Xin; Ge, Xian-Ping; Ren, Ming-Chun; Zhou, Qun-Lan; Liu, Bo
2017-01-01
Blunt snout bream (Megalobrama amblycephala) is a widely favored herbivorous fish species and is a frequentlyused fish model for studying the metabolism physiology. This study aimed to provide a comprehensive illustration of the mechanisms of a high-starch diet (HSD) induced lipid metabolic disorder by identifying microRNAs (miRNAs) controlled pathways in glucose and lipid metabolism in fish using high-throughput sequencing technologies. Small RNA libraries derived from intestines, livers, and brains of HSD and normal-starch diet (NSD) treated M. amblycephala were sequenced and 79, 124 and 77 differentially expressed miRNAs (DEMs) in intestines, livers, and brains of HSD treated fish were identified, respectively. Bioinformatics analyses showed that these DEMs targeted hundreds of predicted genes were enriched into metabolic pathways and biosynthetic processes, including peroxisome proliferator-activated receptor (PPAR), glycolysis/gluconeogenesis, and insulin signaling pathway. These analyses confirmed that miRNAs play crucial roles in glucose and lipid metabolism related to high wheat starch treatment. These results provide information on further investigation of a DEM-related mechanism dysregulated by a high carbohydrate diet. PMID:28561770
Hughes, Michael; Ong, Voon H; Anderson, Marina E; Hall, Frances; Moinzadeh, Pia; Griffiths, Bridget; Baildam, Eileen; Denton, Christopher P; Herrick, Ariane L
2015-11-01
Digital vasculopathy (comprising RP, digital ulceration and critical digital ischaemia) is responsible for much of the pain and disability experienced by patients with SSc. However, there is a limited evidence base to guide clinicians in the management of SSc-related digital vasculopathy. Our aim was to produce recommendations that would be helpful for clinicians, especially for those managing patients outside specialist centres. The UK Scleroderma Study Group set up several working groups to develop a number of consensus best practice pathways for the management of SSc-specific complications, including digital vasculopathy. This overview presents the background and best practice consensus pathways for SSc-related RP, digital ulceration and critical ischaemia. Examples of drug therapies, including doses, are suggested in order to inform prescribing practice. A number of treatment algorithms are provided that are intended to provide the clinician with accessible reference tools for use in daily management. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A question of time: systemic corticosteroids in managing acute asthma in children.
Bhogal, Sanjit K
2013-01-01
The aim of this article is to examine the evidence for the effectiveness of systemic corticosteroids in managing acute asthma in children as it relates to the timing of its administration. Three themes relevant to the timing of systemic corticosteroid administration as it relates to managing acute asthma in children are addressed, namely the evidence for early administration of systemic corticosteroid; factors associated with the administration of systemic corticosteroids and evidence for nurse-initiated administration of systemic corticosteroid. There is a clear inverse relationship between time elapsed from the intake of systemic corticosteroids to disposition and the risk of admission. The variable timing of systemic corticosteroid may explain the variable success of clinical care pathways to manage acute asthma. Recent studies have documented a significant reduction hospital admission with early administration of systemic corticosteroid. For acute asthma pathways to succeed in improving hospital admission rates, implementation of such pathways must be linked to barriers to the administration of systemic corticosteroids. Findings from the studies cited provide guidance in the administration of systemic corticosteroids in children with asthma in the real life setting of an emergency department.
2010-01-01
Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors. PMID:20591134
Kogelman, Lisette J A; Cirera, Susanna; Zhernakova, Daria V; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N
2014-09-30
Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis.
Kerimov, B F
2002-01-01
The activities of key enzymes of pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G-6 PD) and 6-phosphogluconate dehydrogenase (6-PGD), were studied in cytoplasmatic fractions of brain cortical (limbic, orbital, sensorimotor cortex) and subcortical (myelencefalon, mesencefalon, hypothalamus) structures of rats subjected to starvation for 1, 2, 3, 5 and 7 days. Short-term starvation (1-3 days) caused activation of 6-GPD and 6-PGD both in cortical and subcortical structures. Long-term starvation for 5-7 days caused a decrease of activities of the pentose phosphate pathway enzymes in all studied structures. It is suggested that enzymes of pentose phosphate pathway in nervous tissues are functionally and metabolically related to glutathione system and during starvation they indirectly participate in the regulation lipid peroxidation processes.
Dissecting dysfunctional crosstalk pathways regulated by miRNAs during glioma progression
Li, Feng; Li, Xiang; Feng, Li; Shi, Xinrui; Wang, Lihua; Li, Xia
2016-01-01
Glioma is a malignant nervous system tumor with a high fatality rate and poor prognosis. MicroRNAs (miRNAs) are important post-transcriptional modulators of glioma initiation and progression. Tumor progression often results from dysfunctional co-operation between pathways regulated by miRNAs. We therefore constructed a glioma progression-related miRNA-pathway crosstalk network that not only revealed some key miRNA-pathway patterns, but also helped characterize the functional roles of miRNAs during glioma progression. Our data indicate that crosstalk between cell cycle and p53 pathways is associated with grade II to grade III progression, while cell communications-related pathways involving regulation of actin cytoskeleton and adherens junctions are associated with grade IV glioblastoma progression. Furthermore, miRNAs and their crosstalk pathways may be useful for stratifying glioma and glioblastoma patients into groups with short or long survival times. Our data indicate that a combination of miRNA and pathway crosstalk information can be used for survival prediction. PMID:27013589
Fructose metabolism in the cerebellum.
Funari, Vincent A; Crandall, James E; Tolan, Dean R
2007-01-01
Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.
Socioeconomic disparities and health: impacts and pathways.
Kondo, Naoki
2012-01-01
Growing socioeconomic disparity is a global concern, as it could affect population health. The author and colleagues have investigated the health impacts of socioeconomic disparities as well as the pathways that underlie those disparities. Our meta-analysis found that a large population has risks of mortality and poor self-rated health that are attributable to income inequality. The study results also suggested the existence of threshold effects (ie, a threshold of income inequality over which the adverse impacts on health increase), period effects (ie, the potential for larger impacts in later years, specifically after the 1990s), and lag effects between income inequality and health outcomes. Our other studies using Japanese national representative survey data and a large-scale cohort study of Japanese older adults (AGES cohort) support the relative deprivation hypothesis, namely, that invidious social comparisons arising from relative deprivation in an unequal society adversely affect health. A study with a natural experiment design found that the socioeconomic gradient in self-rated health might actually have become shallower after the 1997-98 economic crisis in Japan, due to smaller health improvements among middle-class white-collar workers and middle/upper-income workers. In conclusion, income inequality might have adverse impacts on individual health, and psychosocial stress due to relative deprivation may partially explain those impacts. Any study of the effects of macroeconomic fluctuations on health disparities should also consider multiple potential pathways, including expanding income inequality, changes in the labor market, and erosion of social capital. Further studies are needed to attain a better understanding of the social determinants of health in a rapidly changing society.
Audio-visual integration through the parallel visual pathways.
Kaposvári, Péter; Csete, Gergő; Bognár, Anna; Csibri, Péter; Tóth, Eszter; Szabó, Nikoletta; Vécsei, László; Sáry, Gyula; Tamás Kincses, Zsigmond
2015-10-22
Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction. Copyright © 2015. Published by Elsevier B.V.
The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life
Chen, Lei; Lu, Jing; Kong, XiangYin; Huang, Tao; Li, HaiPeng
2016-01-01
A drug’s biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO) terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347), monoamine transmembrane transporter activity (GO:0008504), negative regulation of synaptic transmission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives. PMID:27780226
Investigation of anti-cancer mechanisms by comparative analysis of naked mole rat and rat
2013-01-01
Background The naked mole rats (NMRs) are small-sized underground rodents with plenty of unusual traits. Their life expectancy can be up to thirty years, more than seven times longer than laboratory rat. Furthermore, they are resistant to both congenital and experimentally induced cancer genesis. These peculiar physiological and pathological characteristics allow them to become a suitable model for cancer and aging research. Results In this paper, we carried out a genome-wide comparative analysis of rat and NMR using the recently published genome sequence of NMR. First, we identified all the rat-NMR orthologous genes and specific genes within each of them. The expanded and contracted numbers of protein families in NMR were also analyzed when compared to rat. Seven cancer-related protein families appeared to be significantly expanded, whereas several receptor families were found to be contracted in NMR. We then chose those rat genes that were inexistent in NMR and adopted KEGG pathway database to investigate the metabolic processes in which their proteins may be involved. These genes were significantly enriched in two rat cancer pathways, "Pathway in cancer" and "Bladder cancer". In the rat "Pathway in cancer", 9 out of 14 paths leading to evading apoptosis appeared to be affected in NMR. In addition, a significant number of other NMR-missing genes enriched in several cancer-related pathways have been known to be related to a variety of cancers, implying that many of them may be also related to tumorigenesis in mammals. Finally, investigation of sequence variations among orthologous proteins between rat and NMR revealed that significant fragment insertions/deletions within important functional domains were present in some NMR proteins, which might lead to expressional and/or functional changes of these genes in different species. Conclusions Overall, this study provides insights into understanding the possible anti-cancer mechanisms of NMR as well as searching for new cancer-related candidate genes. PMID:24565050
Zhang, Jinfeng; Chen, Lei; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Cheng, Yuanzhi; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping
2017-01-01
Rice sheath blight, caused by Rhizoctonia solani , is one of the most devastating diseases for stable rice production in most rice-growing regions of the world. Currently, studies of the molecular mechanism of rice sheath blight resistance are scarce. Here, we used an RNA-seq approach to analyze the gene expression changes induced by the AG1 IA strain of R. solani in rice at 12, 24, 36, 48, and 72 h. By comparing the transcriptomes of TeQing (a moderately resistant cultivar) and Lemont (a susceptible cultivar) leaves, variable transcriptional responses under control and infection conditions were revealed. From these data, 4,802 differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses suggested that most DEGs and related metabolic pathways in both rice genotypes were common and spanned most biological activities after AG1 IA inoculation. The main difference between the resistant and susceptible plants was a difference in the timing of the response to AG1 IA infection. Photosynthesis, photorespiration, and jasmonic acid and phenylpropanoid metabolism play important roles in disease resistance, and the relative response of disease resistance-related pathways in TeQing leaves was more rapid than that of Lemont leaves at 12 h. Here, the transcription data include the most comprehensive list of genes and pathway candidates induced by AG1 IA that is available for rice and will serve as a resource for future studies into the molecular mechanisms of the responses of rice to AG1 IA.
Del-Saz, Néstor Fernández; Florez-Sarasa, Igor; Clemente-Moreno, María José; Mhadhbi, Haytem; Flexas, Jaume; Fernie, Alisdair R; Ribas-Carbó, Miquel
2016-11-01
Salt respiration is defined as the increase of respiration under early salt stress. However, the response of respiration varies depending on the degree of salt tolerance and salt stress. It has been hypothesized that the activity of the alternative pathway may increase preventing over-reduction of the ubiquinone pool in response to salinity, which in turn can increase respiration. Three genotypes of Medicago truncatula are reputed as differently responsive to salinity: TN1.11, A17 and TN6.18. We used the oxygen-isotope fractionation technique to study the in vivo respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) in leaves and roots of these genotypes treated with severe salt stress (300 mM) during 1 and 3 days. In parallel, AOX capacity, gas exchange measurements, relative water content and metabolomics were determined in control and treated plants. Our study shows for first time that salt respiration is induced by the triggered AOP in response to salinity. Moreover, this phenomenon coincides with increased levels of metabolites such as amino and organic acids, and is shown to be related with higher photosynthetic rate and water content in TN6.18. © 2016 John Wiley & Sons Ltd.
Xu, Yanjun; Li, Feng; Wu, Tan; Xu, Yingqi; Yang, Haixiu; Dong, Qun; Zheng, Meiyu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Li, Xia
2017-02-28
Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including the development of many diseases. Pathway analysis is a valuable aid for understanding the cellular functions of these transcripts. We have developed and characterized LncSubpathway, a novel method that integrates lncRNA and protein coding gene (PCG) expression with interactome data to identify disease risk subpathways that functionally associated with risk lncRNAs. LncSubpathway identifies the most relevance regions which are related with risk lncRNA set and implicated with study conditions through simultaneously considering the dysregulation extent of lncRNAs, PCGs and their correlations. Simulation studies demonstrated that the sensitivity and false positive rates of LncSubpathway were within acceptable ranges, and that LncSubpathway could accurately identify dysregulated regions that related with disease risk lncRNAs within pathways. When LncSubpathway was applied to colorectal carcinoma and breast cancer subtype datasets, it identified cancer type- and breast cancer subtype-related meaningful subpathways. Further, analysis of its robustness and reproducibility indicated that LncSubpathway was a reliable means of identifying subpathways that functionally associated with lncRNAs. LncSubpathway is freely available at http://www.bio-bigdata.com/lncSubpathway/.
Wu, Tan; Xu, Yingqi; Yang, Haixiu; Dong, Qun; Zheng, Meiyu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Li, Xia
2017-01-01
Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including the development of many diseases. Pathway analysis is a valuable aid for understanding the cellular functions of these transcripts. We have developed and characterized LncSubpathway, a novel method that integrates lncRNA and protein coding gene (PCG) expression with interactome data to identify disease risk subpathways that functionally associated with risk lncRNAs. LncSubpathway identifies the most relevance regions which are related with risk lncRNA set and implicated with study conditions through simultaneously considering the dysregulation extent of lncRNAs, PCGs and their correlations. Simulation studies demonstrated that the sensitivity and false positive rates of LncSubpathway were within acceptable ranges, and that LncSubpathway could accurately identify dysregulated regions that related with disease risk lncRNAs within pathways. When LncSubpathway was applied to colorectal carcinoma and breast cancer subtype datasets, it identified cancer type- and breast cancer subtype-related meaningful subpathways. Further, analysis of its robustness and reproducibility indicated that LncSubpathway was a reliable means of identifying subpathways that functionally associated with lncRNAs. LncSubpathway is freely available at http://www.bio-bigdata.com/lncSubpathway/. PMID:28152521
Buas, Matthew F; He, Qianchuan; Johnson, Lisa G; Onstad, Lynn; Levine, David M; Thrift, Aaron P; Gharahkhani, Puya; Palles, Claire; Lagergren, Jesper; Fitzgerald, Rebecca C; Ye, Weimin; Caldas, Carlos; Bird, Nigel C; Shaheen, Nicholas J; Bernstein, Leslie; Gammon, Marilie D; Wu, Anna H; Hardie, Laura J; Pharoah, Paul D; Liu, Geoffrey; Iyer, Prassad; Corley, Douglas A; Risch, Harvey A; Chow, Wong-Ho; Prenen, Hans; Chegwidden, Laura; Love, Sharon; Attwood, Stephen; Moayyedi, Paul; MacDonald, David; Harrison, Rebecca; Watson, Peter; Barr, Hugh; deCaestecker, John; Tomlinson, Ian; Jankowski, Janusz; Whiteman, David C; MacGregor, Stuart; Vaughan, Thomas L; Madeleine, Margaret M
2017-10-01
Oesophageal adenocarcinoma (OA) incidence has risen sharply in Western countries over recent decades. Local and systemic inflammation is considered an important contributor to OA pathogenesis. Established risk factors for OA and its precursor, Barrett's oesophagus (BE), include symptomatic reflux, obesity and smoking. The role of inherited genetic susceptibility remains an area of active investigation. Here, we explore whether germline variation related to inflammatory processes influences susceptibility to BE/OA. We used data from a genomewide association study of 2515 OA cases, 3295 BE cases and 3207 controls. Our analysis included 7863 single-nucleotide polymorphisms (SNPs) in 449 genes assigned to five pathways: cyclooxygenase (COX), cytokine signalling, oxidative stress, human leucocyte antigen and nuclear factor-κB. A principal components-based analytic framework was employed to evaluate pathway-level and gene-level associations with disease risk. We identified a significant signal for the COX pathway in relation to BE risk (p=0.0059, false discovery rate q=0.03), and in gene-level analyses found an association with microsomal glutathione-S-transferase 1 ( MGST1 ); (p=0.0005, q=0.005). Assessment of 36 MGST1 SNPs identified 14 variants associated with elevated BE risk (q<0.05). Four of these were subsequently confirmed (p<5.5×10 -5 ) in a meta-analysis encompassing an independent set of 1851 BE cases and 3496 controls, and are known strong expression quantitative trait loci for MGST1 . Three such variants were associated with similar elevations in OA risk. This study provides the most comprehensive evaluation of inflammation-related germline variation in relation to risk of BE/OA and suggests that variants in MGST1 influence disease susceptibility. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Hoverman, J Russell; Klein, Ira; Harrison, Debra W; Hayes, Jad E; Garey, Jody S; Harrell, Robyn; Sipala, Maria; Houldin, Scott; Jameson, Melissa D; Abdullahpour, Mitra; McQueen, Jessica; Nelson, Greg; Verrilli, Diana K; Neubauer, Marcus
2014-01-01
The Innovent Oncology Program aims to improve the value of cancer care delivered to patients. McKesson Specialty Health and Texas Oncology (TXO) collaborated with Aetna to launch a pilot program. The study objectives were to evaluate the impact of Innovent on Level I Pathway compliance, implement the Patient Support Services program, and measure the rate and costs associated with chemotherapy-related emergency room (ER) visits and hospital admissions. This was a prospective, nonrandomized evaluation of patients enrolled in Innovent from June 1, 2010, through May 31, 2012. Data from the iKnowMed electronic health record, the McKesson Specialty Health financial data warehouse, and Aetna claims data warehouse were analyzed. A total of 221 patients were included and stratified according to disease and age groups; 76% of ordered regimens were on pathway; 24% were off pathway. Pathway adherence improved from TXO baseline adherence of 63%. Of the 221 patients, 81% enrolled in PSS. Within the breast, colorectal, and lung cancer groups, 14% and 24% of patients had an ER visit and in-patient admission (IPA; baseline) versus 10% and 18% in Innovent, respectively; average in-patient days decreased from 2.1 to 1.2 days, respectively. Total savings combined for the program was $506,481. Implementation of Innovent positively affected patient care in several ways: Fewer ER visits and IPAs occurred, in-patient days decreased, cancer-related use costs were reduced, and on-pathway adherence increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Shumin; Hospital Affiliated to Shandong Traditional Chinese Medicine University, Jinan 250011; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021
Highlights: Black-Right-Pointing-Pointer Diosgenin induces apoptosis in IGF-1-treated thyrocytes through two caspase pathways. Black-Right-Pointing-Pointer Diosgenin inhibits FLIP and activates caspase-8 in FAS related-pathway. Black-Right-Pointing-Pointer Diosgenin increases ROS, regulates the ratio of Bax/Bcl-2 in mitochondrial pathway. -- Abstract: Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exceptionmore » of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24 h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.« less
Stirling, András; Iannuzzi, Marcella; Laio, Alessandro; Parrinello, Michele
2004-10-18
We studied the thermal intramolecular and radical rearrangement of azulene to naphthalene by employing a novel metadynamics method based on Car-Parrinello molecular dynamics. We demonstrate that relatively short simulations can provide us with several possible reaction mechanisms for the rearrangement. We show that different choices of the collective coordinates can steer the reaction along different pathways, thus offering the possibility of choosing the most probable mechanism. We consider herein three intramolecular mechanisms and two radical pathways. We found the norcaradiene pathway to be the preferable intramolecular mechanism, whereas the spiran mechanism is the favored radical route. We obtained high activation energies for all the intramolecular pathways (81.5-98.6 kcal mol(-1)), whereas the radical routes have activation energies of 24-39 kcal mol(-1). The calculations have also resulted in elementary steps and intermediates not yet considered. A few attractive features of the metadynamics method in studying chemical reactions are pointed out.
He, Yunqing; Xue, Ying
2010-09-02
The reaction mechanism of the cyanide-catalyzed benzoin condensation without protonic solvent assistance has been studied computationally for the first time employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d,p) basis set. Four possible pathways have been investigated. A new proposed pathway on the basis of the Lapworth mechanism is determined to be the dominant pathway in aprotic solvent, in which the formation of the Lapworth's cyanohydrin intermediate is a sequence including three steps assisted by benzaldehyde, clearly manifesting that the reaction can take place in aprotic solvents such as DMSO. In this favorable pathway with six possible transition states located along the potential energy surface, the reaction of the cyanide/benzaldehyde complex with another benzaldehyde to afford an alpha-hydroxy ether is the rate-determining dynamically with the activation free energy barrier of 26.9 kcal/mol, and the step to form cyanohydrin intermediate from alpha-hydroxy ether is partially rate-determining for its relatively significant barrier 20.0 kcal/mol.
Liu, Rui-Li; Xiong, Qiu-Ju; Shu, Qing; Wu, Wen-Ning; Cheng, Jin; Fu, Hui; Wang, Fang; Chen, Jian-Guo; Hu, Zhuang-Li
2012-08-21
Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. Our results demonstrated that hyperoside protected cultured cortical neurons from OGD-R injury, it also relieved glutamate-induced neuronal injury and NMDA-induced [Ca(2+)](i) elevation. As for the mechanisms, hyperoside firstly attenuated the phosphorylation of CaMKII caused by OGD-R lesions. Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-κB activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.
Davies, Patrick T.; Hentges, Rochelle F.; Coe, Jesse L.; Martin, Meredith J.; Sturge-Apple, Melissa L.; Cummings, E. Mark
2016-01-01
This multi-study paper examined the relative strength of mediational pathways involving hostile, disengaged, and uncooperative forms of interparental conflict, children’s emotional insecurity, and their externalizing problems across two longitudinal studies. Participants in Study 1 consisted of 243 preschool children (M age = 4.60 years) and their parents, whereas Study 2 consisted of 263 adolescents (M age = 12.62 years) and their parents. Both studies utilized multi-method, multi-informant assessment batteries within a longitudinal design with three measurement occasions. Across both studies, lagged, autoregressive tests of the mediational paths revealed that interparental hostility was a significantly stronger predictor of the prospective cascade of children’s insecurity and externalizing problems than interparental disengagement and low levels of interparental cooperation. Findings further indicated that interparental disengagement was a stronger predictor of the insecurity pathway than was low interparental cooperation for the sample of adolescents in Study 2. Results are discussed in relation to how they inform and advance developmental models of family risk. PMID:27175983
El-kereamy, Ashraf; El-sharkawy, Islam; Ramamoorthy, Rengasamy; Taheri, Ali; Errampalli, Deena; Kumar, Prakash; Jayasankar, Subramanian
2011-01-01
Pathogenesis-related protein-5 (PR-5) has been implicated in plant disease resistance and its antifungal activity has been demonstrated in some fruit species. However, their roles, especially their interactions with the other defense responses in plant cells, are still not fully understood. In this study, we have cloned and characterized a new PR-5 cDNA named PdPR5-1 from the European plum (Prunus domestica). Expression of PdPR5-1 was studied in different cultivars varying in resistance to the brown rot disease caused by the necrotrophic fungus Monilinia fructicola. In addition transgenic Arabidopsis, ectopically expressing PdPR5-1 was used to study its role in other plant defense responses after fungal infection. We show that the resistant cultivars exhibited much higher levels of transcripts than the susceptible cultivars during fruit ripening. However, significant rise in the transcript levels after infection with M. fructicola was observed in the susceptible cultivars too. Transgenic Arabidopsis plants exhibited more resistance to Alternaria brassicicola. Further, there was a significant increase in the transcripts of genes involved in the phenylpropanoid biosynthesis pathway such as phenylalanine ammonia-lyase (PAL) and phytoalexin (camalexin) pathway leading to an increase in camalexin content after fungal infection. Our results show that PdPR5-1 gene, in addition to its anti-fungal properties, has a possible role in activating other defense pathways, including phytoalexin production. PMID:21448276
Nishihara, Koki; Kato, Daichi; Suzuki, Yutaka; Kim, Dahye; Nakano, Misato; Yajima, Yu; Haga, Satoshi; Nakano, Miwa; Ishizaki, Hiroshi; Kawahara-Miki, Ryouka; Kono, Tomohiro; Katoh, Kazuo; Roh, Sang-Gun
2018-06-04
The length and density of rumen papillae starts to increase during weaning and growth of ruminants. This significant development increases the intraruminal surface area and the efficiency of VFA (acetate, propionate, butyrate, etc.) uptake. Thus, it is important to investigate the factors controlling the growth and development of rumen papillae during weaning. This study aimed to compare the transcriptomes of rumen papillae in suckling and weaned calves. Total RNA was extracted from the rumen papillae of 10 male Japanese Black calves (5 suckling calves, 5 wk old; 5 weaned calves, 15 wk old) and used in RNA-sequencing. Transcript abundance was estimated and differentially expressed genes were identified and these data were then used in Ingenuity Pathway Analysis (IPA) to predict the major canonical pathways and upstream regulators. Among the 871 differentially expressed genes screened by IPA, 466 genes were upregulated and 405 were downregulated in the weaned group. Canonical pathway analysis showed that "atherosclerosis" was the most significant pathway, and "tretinoin," a derivative of vitamin A, was predicted as the most active upstream regulator during weaning. Analyses also predicted IgG, lipopolysaccharides, and tumor-necrosis factor-α as regulators of the microbe-epithelium interaction that activates rumen-related immune responses. The functional category and the up-regulators found in this study provide a valuable resource for studying new candidate genes related to the proliferation and development of rumen papillae from suckling to weaning Japanese Black calves.
Neural and hormonal mechanisms of reproductive-related arousal in fishes
Forlano, Paul M.; Bass, Andrew H.
2010-01-01
The major classes of chemicals and brain pathways involved in sexual arousal in mammals are well studied and are thought to be of an ancient, evolutionarily conserved origin. Here we discuss what is known of these neurochemicals and brain circuits in fishes, the oldest and most species-rich group of vertebrates from which tetrapods arose over 200 million years ago. Highlighted are case studies in vocal species where well-delineated sensory and motor pathways underlying reproductive-related behaviors illustrate the diversity and evolution of brain mechanisms driving sexual motivation between (and within) sexes. Also discussed are evolutionary insights from the neurobiology and reproductive behavior of elasmobranch fishes, the most ancient lineage of jawed vertebrates, which are remarkably similar in their reproductive biology to terrestrial mammals. PMID:20950618
2012-01-01
Background Universal health coverage through the removal of financial and other barriers to access, particularly for people who are poor, is a global priority. This viewpoint describes the many pathways to catastrophic health expenditure (CHE) for patients with Acute Coronary Syndrome (ACS) based on two case studies and the thematic analysis of field notes regarding 210 patients and their households from a study based in Kerala, India. Discussion There is evidence of the severe financial impact of non-communicable diseases (NCDs), which is in contradiction to the widely acclaimed Kerala model: Good health at low cost. However, it is important to look beyond the out-of-pocket expenditure (OOPE) and CHE to the possible pathways and identify the triggers that make families vulnerable to CHE. The identified pathways include a primary and secondary loop. The primary pathway describes the direct path by which families experience CHE. These include: 1) factors related to the pre-event period that increase the likelihood of experiencing CHE, such as being from the lower socio-economic strata (SES), past financial losses or loans that leave families with no financial shock absorber at the time of illness; 2) factors related to the acute event, diagnosis, treatment and hospitalization and expenditures incurred for the same and; 3) factors related to the post-event period such as loss of gainful employment and means of financing both the acute period and the long-term management particularly through distress financing. The secondary pathway arises from the primary and includes: 1) the impact of distress financing and; 2) the long- and short- term consequences of CHE. These factors ultimately result in a vicious cycle of debt and poverty through non-compliance and repeat acute events. Summary This paper outlines the direct and indirect pathways by which patients with ACS and their families are trapped in a vicious cycle of debt and poverty. It also contradicts the prevailing impression that only low-income families are susceptible to CHE, distress financing and their aftermaths and underscores the need for a deeper understanding at the micro-level, if Kerala and India as a whole are to undertake the difficult exercise of achieving universal health coverage to successfully tackle its growing NCD burden. PMID:22537240
Jeena, Gajendra Singh; Fatima, Shahnoor; Tripathi, Pragya; Upadhyay, Swati; Shukla, Rakesh Kumar
2017-06-28
Bacopa monnieri commonly known as Brahmi is utilized in Ayurveda to improve memory and many other human health benefits. Bacosides enriched standardized extract of Bacopa monnieri is being marketed as a memory enhancing agent. In spite of its well known pharmacological properties it is not much studied in terms of transcripts involved in biosynthetic pathway and its regulation that controls the secondary metabolic pathway in this plant. The aim of this study was to identify the potential transcripts and provide a framework of identified transcripts involved in bacosides production through transcriptome assembly. We performed comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri in two independent biological replicate and obtained 22.48 million and 22.0 million high quality processed reads in shoot and root respectively. After de novo assembly and quantitative assessment total 26,412 genes got annotated in root and 18,500 genes annotated in shoot sample. Quality of raw reads was determined by using SeqQC-V2.2. Assembled sequences were annotated using BLASTX against public database such as NR or UniProt. Searching against the KEGG pathway database indicated that 37,918 unigenes from root and 35,130 unigenes from shoot were mapped to 133 KEGG pathways. Based on the DGE data we found that most of the transcript related to CYP450s and UDP-glucosyltransferases were specifically upregulated in shoot tissue as compared to root tissue. Finally, we have selected 43 transcripts related to secondary metabolism including transcription factor families which are differentially expressed in shoot and root tissues were validated by qRT-PCR and their expression level were monitored after MeJA treatment and wounding for 1, 3 and 5 h. This study not only represents the first de novo transcriptome analysis of Bacopa monnieri but also provides information about the identification, expression and differential tissues specific distribution of transcripts related to triterpenoid sapogenin which is one of the most important pharmacologically active secondary metabolite present in Bacopa monnieri. The identified transcripts in this study will establish a foundation for future studies related to carrying out the metabolic engineering for increasing the bacosides biosynthesis and its regulation for human health benefits.
miRPathDB: a new dictionary on microRNAs and target pathways.
Backes, Christina; Kehl, Tim; Stöckel, Daniel; Fehlmann, Tobias; Schneider, Lara; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas
2017-01-04
In the last decade, miRNAs and their regulatory mechanisms have been intensively studied and many tools for the analysis of miRNAs and their targets have been developed. We previously presented a dictionary on single miRNAs and their putative target pathways. Since then, the number of miRNAs has tripled and the knowledge on miRNAs and targets has grown substantially. This, along with changes in pathway resources such as KEGG, leads to an improved understanding of miRNAs, their target genes and related pathways. Here, we introduce the miRNA Pathway Dictionary Database (miRPathDB), freely accessible at https://mpd.bioinf.uni-sb.de/ With the database we aim to complement available target pathway web-servers by providing researchers easy access to the information which pathways are regulated by a miRNA, which miRNAs target a pathway and how specific these regulations are. The database contains a large number of miRNAs (2595 human miRNAs), different miRNA target sets (14 773 experimentally validated target genes as well as 19 281 predicted targets genes) and a broad selection of functional biochemical categories (KEGG-, WikiPathways-, BioCarta-, SMPDB-, PID-, Reactome pathways, functional categories from gene ontology (GO), protein families from Pfam and chromosomal locations totaling 12 875 categories). In addition to Homo sapiens, also Mus musculus data are stored and can be compared to human target pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Rundi; Chen, Ruilin; Cao, Yu
Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN inmore » a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.« less
Feng, Jun; Chen, Hua-Wen; Pi, Li-Juan; Wang, Jin; Zhan, Da-Qian
2017-01-01
The study aimed to investigate the protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats (SHRs) through the Cys-C/Wnt signaling pathway. Thirty SHRs were randomly divided into cardiac hypertrophy, low- and high-dose tanshinone IIA groups. Ten Wistar-Kyoto rats were selected as control group. The systolic blood pressure (SBP), heart weight (HW), left ventricular weight (LVW) and body weight (BW) of all rats were recorded. HE staining and qRT-PCR were applied to observe the morphology of myocardial tissue and mRNA expressions of COL1A1 and COL3A1. ELISA and Western blotting were used to measure the serum asymmetric dimethylarginine (ADMA), nitric oxide (NO) and cardiac troponin I (cTnI) levels, and the expressions of the Cys-C/Wnt signaling pathway-related proteins, eNOS and Nox4. Compared with the cardiac hypertrophy group, the SBP, HW/BW, LVW/BW, swelling degree of myocardial cells, COL1A1 and COL3A1 mRNA expressions, serum cTnI and ADMA levels, and the Cys-C/Wnt signaling pathway-related proteins and Nox4 expressions in the low- and high-dose tanshinone IIA groups were decreased, but the endothelial NO synthase (eNOS), phosphorylated eNOS (Ser1177) and NO expressions were increased. No significant difference was found between the low- and high-dose tanshinone IIA groups. Our study indicated a protective effect of tanshinone IIA against cardiac hypertrophy in SHRs through inhibiting the Cys-C/Wnt signaling pathway. PMID:28053285
"Which Pathway Am I?" Using a Game Approach to Teach Students about Biochemical Pathways
ERIC Educational Resources Information Center
Ooi, Beng Guat; Sanger, Michael J.
2009-01-01
This game was designed to provide students with an alternative way to learn biochemical pathways through an interactive approach. In this game, students worked in pairs to help each other identify pathways taped to each other's backs by asking simple "yes or no" questions related to these pathways. This exercise was conducted after the traditional…
Pianalto, Kaila M; Ost, Kyla S; Brown, Hannah E; Alspaugh, J Andrew
2018-05-16
Pathogenic microorganisms must adapt to changes in their immediate surroundings, including alterations in pH, to survive the shift from the external environment to that of the infected host. In the basidiomycete fungal pathogen Cryptococcus neoformans , these pH changes are primarily sensed by the fungal-specific, alkaline pH-sensing Rim/Pal pathway. The C. neoformans Rim pathway has diverged significantly from that described in ascomycete fungi. We recently identified the C. neoformans putative pH sensor Rra1, which activates the Rim pathway in response to elevated pH. In this study, we probed the function of Rra1 by analyzing its cellular localization and performing protein co-immunoprecipitation to identify potential Rra1 interactors. We found that Rra1 does not strongly colocalize or interact with immediate downstream Rim pathway components. However, these experiments identified a novel Rra1 interactor, the previously uncharacterized C. neoformans nucleosome assembly protein 1 (Nap1), which was required for Rim pathway activation. We observed that Nap1 specifically binds to the C-terminal tail of the Rra1 sensor, likely promoting Rra1 protein stability. This function of Nap1 is conserved in fungi closely related to C. neoformans that contain Rra1 orthologs, but not in the more distantly-related ascomycete fungus Saccharomyces cerevisiae In conclusion, our findings have revealed the sophisticated, yet distinct, molecular mechanisms by which closely and distantly related microbial phyla rapidly adapt to environmental signals and changes such as alterations in pH. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto
2017-04-01
We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.
Improving outcomes following penetrating colon wounds: application of a clinical pathway.
Miller, Preston R; Fabian, Timothy C; Croce, Martin A; Magnotti, Louis J; Elizabeth Pritchard, F; Minard, Gayle; Stewart, Ronald M
2002-06-01
During World War II, failure to treat penetrating colon injuries with diversion could result in court martial. Based on this wartime experience, colostomy for civilian colon wounds became the standard of care for the next 4 decades. Previous work from our institution demonstrated that primary repair was the optimal management for nondestructive colon wounds. Optimal management of destructive wounds requiring resection remains controversial. To address this issue, we performed a study that demonstrated risk factors (pre or intraoperative transfusion requirement of more than 6 units of packed red blood cells, significant comorbid diseases) that were associated with a suture line failure rate of 14%, and of whom 33% died. Based on these outcomes, a clinical pathway for management of destructive colon wounds was developed. The results of the implementation of this pathway are the focus of this report. Patients with penetrating colon injury were identified from the registry of a level I trauma center over a 5-year period. Records were reviewed for demographics, injury characteristics, and outcome. Patients with nondestructive injuries underwent primary repair. Patients with destructive wounds but no comorbidities or large transfusion requirement underwent resection and anastomosis, while patients with destructive wounds and significant medical illness or transfusion requirements of more than 6 units/blood received end colostomy. The current patients (CP) were compared to the previous study (PS) to determine the impact of the clinical pathway. Outcomes examined included colon related mortality and morbidity (suture line leak and abscess). Over a 5.5-year period, 231 patients had penetrating colon wounds. 209 survived more 24 hours and comprise the study population. Primary repair was performed on 153 (73%) patients, and 56 patients had destructive injuries (27%). Of these, 40 (71%) had resection and anastomosis and 16 (29%) had diversion. More destructive injuries were managed in the CP group (27% vs. 19%). Abscess rate was lower in the CP group (27% vs. 37%), as was suture line leak rate (7% vs. 14%). Colon related mortality in the CP group was 5% as compared with 12% in the PS group. The clinical pathway for destructive colon wound management has improved outcomes as measured by anastomotic leak rates and colon related mortality. The data demonstrated the need for colostomy in the face of shock and comorbidities. Institution of this pathway results in colostomy for only 7% of all colon wounds.
Communication of Career Pathways Through Associate Degree Program Web Sites: A Baseline Assessment.
Becker, Ellen A; Vargas, Jenny
2018-05-08
The American Association for Respiratory Care sponsored a series of conferences that addressed the competency of the future workforce of respiratory therapists (RTs). Based upon the findings from those conferences, several initiatives emerged that support RTs earning a baccalaureate (or bachelor's) degree. The objective of this study was to identify the ways that associate degree programs communicate career pathways toward a baccalaureate degree through their Web sites. This cross-sectional observational study used a random sample of 100 of the 362 associate degree programs approved by the Commission on Accreditation for Respiratory Care. Data were collected from 3 specific categories: demographic data, baccalaureate completion information, and the Web page location for the program. The presence of statements related to any pathway toward a bachelor's degree, transfer credits, articulation agreements, and links for baccalaureate completion were recorded. The descriptive statistics in this study were reported as total numbers and percentages. Of the 100 programs in the random sample, only 89 were included in the study. Only 39 (44%) programs had links on their program Web site that had any content related to bachelor's degrees, 16 (18%) identified college transfer courses toward a bachelor's degree, and 26 (29%) programs included baccalaureate articulation agreements on their Web site. A minority of associate degree programs communicated career pathway information to their prospective and current students through program Web sites. An informative Web site would make the path more transparent for entry-level students to meet their future educational needs as their careers progress. Copyright © 2018 by Daedalus Enterprises.
van Haastregt, Jolanda C. M.; Evers, Silvia M. A. A.; Kempen, Gertrudis I. J. M.; Schols, Jos M. G. A.
2018-01-01
Background Integrated care pathways which cover multiple care settings are increasingly used as a tool to structure care, enhance coordination and improve transitions between care settings. However, little is known about their economic impact. The objective of this study is to determine the cost-effectiveness and cost-utility of an integrated care pathway designed for patients with complex health problems transferring from the hospital, a geriatric rehabilitation facility and primary care. Methods This economic evaluation was performed from a societal perspective alongside a prospective cohort study with two cohorts of patients. The care as usual cohort was included before implementation of the pathway and the care pathway cohort after implementation of the pathway. Both cohorts were measured over nine months, during which intervention costs, healthcare costs, patient and family costs were identified. The outcome measures were dependence in activities of daily living (measured with the KATZ-15) and quality adjusted life years (EQ-5D-3L). Costs and effects were bootstrapped and various sensitivity analyses were performed to assess robustness of the results. Results After nine months, the average societal costs were significantly lower for patients in the care pathway cohort (€50,791) versus patients in the care as usual cohort (€62,170; CI = -22,090, -988). Patients in the care pathway cohort had better scores on the KATZ-15 (1.04), indicating cost-effectiveness. No significant differences were found between the two groups on QALY scores (0.01). Conclusions The results of this study indicate that the integrated care pathway is a cost-effective intervention. Therefore, dissemination of the integrated care pathway on a wider scale could be considered. This would provide us the opportunity to confirm the findings of our study in larger economic evaluations. When looking at QALYs, no effects were found. Therefore, it is also recommended to explore if therapy in geriatric rehabilitation could also pay attention to other quality of life-related domains, such as mood and social participation. PMID:29489820
Kim, Sangwon F.; Mollace, Vincenzo
2013-01-01
The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous “receptor” targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area. PMID:23389111
Tausch, Nicole; Becker, Julia C; Spears, Russell; Christ, Oliver; Saab, Rim; Singh, Purnima; Siddiqui, Roomana N
2011-07-01
A recent model of collective action distinguishes 2 distinct pathways: an emotional pathway whereby anger in response to injustice motivates action and an efficacy pathway where the belief that issues can be solved collectively increases the likelihood that group members take action (van Zomeren, Spears, Fischer, & Leach, 2004). Research supporting this model has, however, focused entirely on relatively normative actions such as participating in demonstrations. We argue that the relations between emotions, efficacy, and action differ for more extreme, nonnormative actions and propose (a) that nonnormative actions are often driven by a sense of low efficacy and (b) that contempt, which, unlike anger, entails psychological distancing and a lack of reconciliatory intentions, predicts nonnormative action. These ideas were tested in 3 survey studies examining student protests against tuition fees in Germany (N = 332), Indian Muslims' action support in relation to ingroup disadvantage (N = 156), and British Muslims' responses to British foreign policy (N = 466). Results were generally supportive of predictions and indicated that (a) anger was strongly related to normative action but overall unrelated or less strongly related to nonnormative action, (b) contempt was either unrelated or negatively related to normative action but significantly positively predicted nonnormative action, and (c) efficacy was positively related to normative action and negatively related to nonnormative action. The implications of these findings for understanding and dealing with extreme intergroup phenomena such as terrorism are discussed. PsycINFO Database Record (c) 2011 APA, all rights reserved
Otsuna, Hideo; Shinomiya, Kazunori; Ito, Kei
2014-01-01
Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior. PMID:24574974
Coordinating Principles and Examples through Analogy and Self-Explanation
ERIC Educational Resources Information Center
Nokes-Malach, Timothy J.; VanLehn, Kurt; Belenky, Daniel M.; Lichtenstein, Max; Cox, Gregory
2013-01-01
Research on expertise suggests that a critical aspect of expert understanding is knowledge of the relations between domain principles and problem features. We investigated two instructional pathways hypothesized to facilitate students' learning of these relations when studying worked examples. The first path is through self-explaining how…
Two speed factors of visual recognition independently correlated with fluid intelligence.
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2014-01-01
Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate expression changes at a pathway level. Although many statistical and computational methods have been proposed for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed. Among different related data sets collected for the same or similar study purposes, it is important to identify pathways or gene sets with concordant enrichment. We categorize the underlying true states of differential expression into three representative categories: no change, positive change and negative change. Due to data noise, what we observe from experiments may not indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and calculate its related probability based on a three-component multivariate normal mixture model. The related false discovery rate can be calculated and used to rank different gene sets. We used three published lung cancer microarray gene expression data sets to illustrate our proposed method. One analysis based on the first two data sets was conducted to compare our result with a previous published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates. A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway collection showed that a majority of these pathways could be identified by our proposed method. This study illustrates that we can improve detection power and discovery consistency through a concordant integrative analysis of multiple large-scale two-sample gene expression data sets.
Dixon, Monica; Woodrick, Jordan; Gupta, Suhani; Karmahapatra, Soumendra Krishna; Devito, Stephen; Vasudevan, Sona; Dakshanamurthy, Sivanesan; Adhikari, Sanjay; Yenugonda, Venkata M.; Roy, Rabindra
2015-01-01
Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50 = 2.6 µM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavanoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease. PMID:25650313
Transcriptomic Analysis of the Association Between Diabetes Mellitus and Myocardial Infarction.
Song, Lijuan; You, Wenjun; Wang, Peng; Li, Feng; Liu, Huakun
2018-06-11
Diabetes mellitus (DM) is a major risk factor for coronary artery disease (CAD), and the complications of CAD are the leading cause of deaths among people with DM. Herein, this study aims to identify the common genes and pathways between diabetes and myocardial infarction (MI) to provide more clues for the related mechanism studies. Differentially expressed genes (DEGs) were identified using the cutoff (|log2(fold change)|>0.45 and P value<0.05) by the analysis of online datasets (GSE9006 and GSE48060) related to DM and MI respectively. Moreover, the overlapped DEGs between DM and MI were identified, followed by enriched Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. And the independent patient RNA samples were collected for qRT-PCR validation of the mRNA expression of these overlapped genes. PI3, ACSL1, MMD and MMP were altered in both T1DM and MI, and they were highly related to "regulation of cellular protein metabolic process". Meanwhile, six genes were identified in both T2DM and MI, which are ADM, NFIL3, PI3, SLPI, ACSL1 and MMP9 and significantly related to "negative regulation of endopeptidase activity". And the expression of these genes were validated. In summary, we identified the common DEGs and pathways between T1DM or T2DM and MI, and further validated the changes of those DEGs, providing some clues for mechanism study and potentially therapeutic targets. © Georg Thieme Verlag KG Stuttgart · New York.
Martin, Christiana; Cho, Young-Eun; Kim, Hyungsuk; Yun, Sijung; Kanefsky, Rebekah; Lee, Hyunhwa; Mysliwiec, Vincent; Cashion, Ann; Gill, Jessica
2018-05-01
Military personnel experience posttraumatic stress disorder (PTSD), which is associated with differential DNA methylation across the whole genome. However, the relationship between these DNA methylation patterns and clinically relevant increases in PTSD severity is not yet clearly understood. The purpose of this study was to identify differences in DNA methylation associated with PTSD symptoms and investigate DNA methylation changes related to increases in the severity of PTSD in military personnel. In this pilot study, a cross-sectional comparison was made between military personnel with PTSD (n = 8) and combat-matched controls without PTSD (n = 6). Symptom measures were obtained, and genome-wide DNA methylation was measured using methylated DNA immunoprecipitation (MeDIP-seq) from whole blood samples at baseline and 3 months later. A longitudinal comparison measured DNA methylation changes in military personnel with clinically relevant increases in PTSD symptoms between time points (PTSD onset) and compared methylation patterns to controls with no clinical changes in PTSD. In military personnel with elevated PTSD symptoms 3 months following baseline, 119 genes exhibited reduced methylation and 8 genes exhibited increased methylation. Genes with reduced methylation in the PTSD-onset group relate to the canonical pathways of netrin signaling, Wnt/Ca + pathway, and axonal guidance signaling. These gene pathways relate to neurological disorders, and the current findings suggest that these epigenetic changes potentially relate to PTSD symptomology. This study provides some novel insights into the role of epigenetic changes in PTSD symptoms and the progression of PTSD symptoms in military personnel.
Tomeny, Theodore S
2017-10-01
The link between autism spectrum disorder symptoms and maternal stress has been well established, yet many mothers remain resilient to more severe psychopathology. For the current online study, 111 mothers of a child with autism spectrum disorder completed questionnaires about their child's symptoms, their own stress related to parenting, and any psychopathology symptoms they were experiencing. Autism spectrum disorder symptom severity was positively related to both parenting stress and maternal psychopathology symptoms. Furthermore, parenting stress mediated the relation between autism spectrum disorder symptom severity and maternal psychopathology symptoms. These results provide evidence for a pathway through which psychopathology may develop among mothers of children with autism spectrum disorder and a potential point of intervention for clinicians serving this population.
Wu, Jia-Ping; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Han, Chien-Kuo; Pai, Peiying; Yeh, Yu-Lan; Lin, Chien-Chung; Padma, V. Vijaya; Day, Cecilia Hsuan; Huang, Chih-Yang
2015-01-01
Background: Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. Methods: Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. Results: Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. Conclusions: Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke. PMID:26392808
Li, Hua-Xiang; Lu, Zhen-Ming; Zhu, Qing; Gong, Jin-Song; Geng, Yan; Shi, Jin-Song; Xu, Zheng-Hong; Ma, Yan-He
2017-09-01
Medicinal mushroom Antrodia camphorata sporulate large numbers of arthroconidia in submerged fermentation, which is rarely reported in basidiomycetous fungi. Nevertheless, the molecular mechanisms underlying this asexual sporulation (conidiation) remain unclear. Here, we used comparative transcriptomic and proteomic approaches to elucidate possible signaling pathway relating to the asexual sporulation of A. camphorata. First, 104 differentially expressed proteins and 2586 differential cDNA sequences during the culture process of A. camphorata were identified by 2DE and RNA-seq, respectively. By applying bioinformatics analysis, a total of 67 genes which might play roles in the sporulation were obtained, and 18 of these genes, including fluG, sfgA, SfaD, flbA, flbB, flbC, flbD, nsdD, brlA, abaA, wetA, ganB, fadA, PkaA, veA, velB, vosA, and stuA might be involved in a potential FluG-mediated signaling pathway. Furthermore, the mRNA expression levels of the 18 genes in the proposed FluG-mediated signaling pathway were analyzed by quantitative real-time PCR. In summary, our study helps elucidate the molecular mechanisms underlying the asexual sporulation of A. camphorata, and provides also useful transcripts and proteome for further bioinformatics study of this valuable medicinal mushroom. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tong, Luqing; Yi, Li; Liu, Peidong; Abeysekera, Iruni Roshanie; Hai, Long; Li, Tao; Tao, Zhennan; Ma, Haiwen; Xie, Yang; Huang, Yubao; Yu, Shengping; Li, Jiabo; Yuan, Feng; Yang, Xuejun
2018-07-01
Glioblastoma multiforme (GBM) is a fatal cancer with varying life expectancy, even for patients undergoing the same standard therapy. Identification of differentially expressed genes in GBM patients with different survival rates may benefit the development of effective therapeutic strategies. In the present study, key pathways and genes correlated with survival in GBM patients were screened with bioinformatic analysis. Included in the study were 136 eligible patients who had undertaken surgical resection of GBM followed by temozolomide (TMZ) chemoradiation and long-term therapy with TMZ. A total of 383 differentially expressed genes (DEGs) related to GBM survival were identified. Gene Ontology and pathway enrichment analysis as well as hub gene screening and module analysis were performed. As expected, angiogenesis and migration of GBM cells were closely correlated with a poor prognosis. Importantly, the results also indicated that cell dormancy was an essential contributor to the reduced survival of GBM patients. Given the lack of specific targeted genes and pathways known to be involved in tumour cell dormancy, we proposed enriched candidate genes related to the negative regulation of cell proliferation, signalling pathways regulating pluripotency of stem cells and neuroactive ligand-receptor interaction, and 3 hub genes (FTH1, GRM1 and DDIT3). Maintaining persistent cell dormancy or preventing tumour cells from entering dormancy during chemoradiation should be a promising therapeutic strategy.
Wei, Shizhang; Niu, Ming; Wang, Jian; Wang, Jiabo; Su, Haibin; Luo, Shengqiang; Zhang, Xiaomei; Guo, Yanlei; Liu, Liping; Liu, Fengqun; Zhao, Qingguo; Chen, Hongge; Xiao, Xiaohe; Zhao, Pan; Zhao, Yanling
2016-01-01
Ethnopharmacological relevance San-Cao Granule (SCG) has been used in patients with liver fibrosis for many years and has shown good effect. However, its mechanism of therapeutic action is not clear because of its complex chemical system. The purpose of our study is to establish a comprehensive and systemic method that can predict the mechanism of action of SCG in antihepatic fibrosis. Materials and methods In this study, a “compound–target–disease” network was constructed by combining the SCG-specific and liver fibrosis–specific target proteins with protein–protein interactions, and network pharmacology was used to screen out the underlying targets and mechanisms of SCG for treatment of liver fibrosis. Then, some key molecules of the enriched pathway were chosen to verify the effects of SCG on liver fibrosis induced by thioacetamide (TAA). Results This systematic approach had successfully revealed that 16 targets related to 11 SCG compounds were closely associated with liver fibrosis therapy. The pathway-enrichment analysis of them showed that the TGF-β1/Smad signaling pathway is relatively important. Animal experiments also proved that SCG could significantly ameliorate liver fibrosis by inhibiting the TGF-β1/Smad pathway. Conclusion SCG could alleviate liver fibrosis through the molecular mechanisms predicted by network pharmacology. Furthermore, network pharmacology could provide deep insight into the pharmacological mechanisms of Chinese herbal formulas. PMID:26929602
Wei, Shizhang; Niu, Ming; Wang, Jian; Wang, Jiabo; Su, Haibin; Luo, Shengqiang; Zhang, Xiaomei; Guo, Yanlei; Liu, Liping; Liu, Fengqun; Zhao, Qingguo; Chen, Hongge; Xiao, Xiaohe; Zhao, Pan; Zhao, Yanling
2016-01-01
San-Cao Granule (SCG) has been used in patients with liver fibrosis for many years and has shown good effect. However, its mechanism of therapeutic action is not clear because of its complex chemical system. The purpose of our study is to establish a comprehensive and systemic method that can predict the mechanism of action of SCG in antihepatic fibrosis. In this study, a "compound-target-disease" network was constructed by combining the SCG-specific and liver fibrosis-specific target proteins with protein-protein interactions, and network pharmacology was used to screen out the underlying targets and mechanisms of SCG for treatment of liver fibrosis. Then, some key molecules of the enriched pathway were chosen to verify the effects of SCG on liver fibrosis induced by thioacetamide (TAA). This systematic approach had successfully revealed that 16 targets related to 11 SCG compounds were closely associated with liver fibrosis therapy. The pathway-enrichment analysis of them showed that the TGF-β1/Smad signaling pathway is relatively important. Animal experiments also proved that SCG could significantly ameliorate liver fibrosis by inhibiting the TGF-β1/Smad pathway. SCG could alleviate liver fibrosis through the molecular mechanisms predicted by network pharmacology. Furthermore, network pharmacology could provide deep insight into the pharmacological mechanisms of Chinese herbal formulas.
Johnson Hamlet, M R; Perkins, L A
2001-11-01
The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.
Johnson Hamlet, M R; Perkins, L A
2001-01-01
The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154
2012-01-01
Background Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type. PMID:22280838
Age-related functional changes in domain-specific medial temporal lobe pathways.
Berron, David; Neumann, Katja; Maass, Anne; Schütze, Hartmut; Fliessbach, Klaus; Kiven, Verena; Jessen, Frank; Sauvage, Magdalena; Kumaran, Dharshan; Düzel, Emrah
2018-05-01
There is now converging evidence from studies in animals and humans that the medial temporal lobes (MTLs) harbor anatomically distinct processing pathways for object and scene information. Recent functional magnetic resonance imaging studies in humans suggest that this domain-specific organization may be associated with a functional preference of the anterior-lateral part of the entorhinal cortex (alErC) for objects and the posterior-medial entorhinal cortex (pmErC) for scenes. As MTL subregions are differentially affected by aging and neurodegenerative diseases, the question was raised whether aging may affect the 2 pathways differentially. To address this possibility, we developed a paradigm that allows the investigation of object memory and scene memory in a mnemonic discrimination task. A group of young (n = 43) and healthy older subjects (n = 44) underwent functional magnetic resonance imaging recordings during this novel task, while they were asked to discriminate exact repetitions of object and scene stimuli from novel stimuli that were similar but modified versions of the original stimuli ("lures"). We used structural magnetic resonance images to manually segment anatomical components of the MTL including alErC and pmErC and used these segmented regions to analyze domain specificity of functional activity. Across the entire sample, object processing was associated with activation of the perirhinal cortex (PrC) and alErC, whereas for scene processing, activation was more predominant in the parahippocampal cortex and pmErC. Functional activity related to mnemonic discrimination of object and scene lures from exact repetitions was found to overlap between processing pathways and suggests that while the PrC-alErC pathway was more involved in object discrimination, both pathways were involved in the discrimination of similar scenes. Older adults were behaviorally less accurate than young adults in discriminating similar lures from exact repetitions, but this reduction was equivalent in both domains. However, this was accompanied by significantly reduced domain-specific activity in PrC in older adults compared to what was observed in the young. Furthermore, this reduced domain-specific activity was associated to worse performance in object mnemonic discrimination in older adults. Taken together, we show the fine-grained functional organization of the MTL into domain-specific pathways for objects and scenes and their mnemonic discrimination and further provide evidence that aging might affect these pathways in a differential fashion. Future experiments will elucidate whether the 2 pathways are differentially affected in early stages of Alzheimer's disease in relation to amyloid or tau pathology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Jagtap, Pranav; Diwadkar, Vaibhav A.
2016-01-01
Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals (Dynamic Causal Modeling; DCM) to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian Model Selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: While positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. PMID:27145923
Handley, Elizabeth D.; Rogosch, Fred A.; Cicchetti, Dante
2015-01-01
The current study examined the prospective association between child maltreatment and the development of substance use disorder (SUD) in adolescence with the aim of investigating pathways underlying this relation, as well as genetic moderation of these developmental mechanisms. Specifically, we tested whether youth who experienced maltreatment prior to age 8 were at risk for the development of marijuana dependence in adolescence by way of a childhood externalizing pathway and a childhood internalizing pathway. Moreover, we tested whether variation in FKBP5 CATT haplotype moderated these pathways. The participants were 326 children (n=179 maltreated; n=147 nonmaltreated) assessed across two waves of data collection (childhood: ages 7–9 and adolescence: ages 15–18). Results indicated that higher levels of child externalizing symptoms significantly mediated the effect of child maltreatment on adolescent marijuana dependence symptoms for individuals with 1–2 copies of the FKBP5 CATT haplotype only. We did not find support for an internalizing pathway from child maltreatment to adolescent marijuana dependence, nor did we find evidence of moderation of the internalizing pathway by FKBP5 haplotype variation. Findings extend previous research by demonstrating that whether a maltreated child will traverse an externalizing pathway toward SUD in adolescence is dependent on FKBP5 genetic variation. PMID:26535939
Huang, Ruili; Wallqvist, Anders; Covell, David G
2006-03-01
We have analyzed the level of gene coregulation, using gene expression patterns measured across the National Cancer Institute's 60 tumor cell panels (NCI(60)), in the context of predefined pathways or functional categories annotated by KEGG (Kyoto Encyclopedia of Genes and Genomes), BioCarta, and GO (Gene Ontology). Statistical methods were used to evaluate the level of gene expression coherence (coordinated expression) by comparing intra- and interpathway gene-gene correlations. Our results show that gene expression in pathways, or groups of functionally related genes, has a significantly higher level of coherence than that of a randomly selected set of genes. Transcriptional-level gene regulation appears to be on a "need to be" basis, such that pathways comprising genes encoding closely interacting proteins and pathways responsible for vital cellular processes or processes that are related to growth or proliferation, specifically in cancer cells, such as those engaged in genetic information processing, cell cycle, energy metabolism, and nucleotide metabolism, tend to be more modular (lower degree of gene sharing) and to have genes significantly more coherently expressed than most signaling and regular metabolic pathways. Hierarchical clustering of pathways based on their differential gene expression in the NCI(60) further revealed interesting interpathway communications or interactions indicative of a higher level of pathway regulation. The knowledge of the nature of gene expression regulation and biological pathways can be applied to understanding the mechanism by which small drug molecules interfere with biological systems.
2010-01-01
Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089
Li, Wan; Chen, Lina; Li, Xia; Jia, Xu; Feng, Chenchen; Zhang, Liangcai; He, Weiming; Lv, Junjie; He, Yuehan; Li, Weiguo; Qu, Xiaoli; Zhou, Yanyan; Shi, Yuchen
2013-12-01
Network motifs in central positions are considered to not only have more in-coming and out-going connections but are also localized in an area where more paths reach the networks. These central motifs have been extensively investigated to determine their consistent functions or associations with specific function categories. However, their functional potentials in the maintenance of cross-talk between different functional communities are unclear. In this paper, we constructed an integrated human signaling network from the Pathway Interaction Database. We identified 39 essential cancer-related motifs in central roles, which we called cancer-related marketing centrality motifs, using combined centrality indices on the system level. Our results demonstrated that these cancer-related marketing centrality motifs were pivotal units in the signaling network, and could mediate cross-talk between 61 biological pathways (25 could be mediated by one motif on average), most of which were cancer-related pathways. Further analysis showed that molecules of most marketing centrality motifs were in the same or adjacent subcellular localizations, such as the motif containing PI3K, PDK1 and AKT1 in the plasma membrane, to mediate signal transduction between 32 cancer-related pathways. Finally, we analyzed the pivotal roles of cancer genes in these marketing centrality motifs in the pathogenesis of cancers, and found that non-cancer genes were potential cancer-related genes.
Chen, X Y; Chen, Y H; Zhang, L J; Wang, Y; Tong, Z C
2017-02-16
Osteosarcoma (OS) is the most common primary bone malignancy, but current therapies are far from effective for all patients. A better understanding of the pathological mechanism of OS may help to achieve new treatments for this tumor. Hence, the objective of this study was to investigate ego modules and pathways in OS utilizing EgoNet algorithm and pathway-related analysis, and reveal pathological mechanisms underlying OS. The EgoNet algorithm comprises four steps: constructing background protein-protein interaction (PPI) network (PPIN) based on gene expression data and PPI data; extracting differential expression network (DEN) from the background PPIN; identifying ego genes according to topological features of genes in reweighted DEN; and collecting ego modules using module search by ego gene expansion. Consequently, we obtained 5 ego modules (Modules 2, 3, 4, 5, and 6) in total. After applying the permutation test, all presented statistical significance between OS and normal controls. Finally, pathway enrichment analysis combined with Reactome pathway database was performed to investigate pathways, and Fisher's exact test was conducted to capture ego pathways for OS. The ego pathway for Module 2 was CLEC7A/inflammasome pathway, while for Module 3 a tetrasaccharide linker sequence was required for glycosaminoglycan (GAG) synthesis, and for Module 6 was the Rho GTPase cycle. Interestingly, genes in Modules 4 and 5 were enriched in the same pathway, the 2-LTR circle formation. In conclusion, the ego modules and pathways might be potential biomarkers for OS therapeutic index, and give great insight of the molecular mechanism underlying this tumor.
Chen, X.Y.; Chen, Y.H.; Zhang, L.J.; Wang, Y.; Tong, Z.C.
2017-01-01
Osteosarcoma (OS) is the most common primary bone malignancy, but current therapies are far from effective for all patients. A better understanding of the pathological mechanism of OS may help to achieve new treatments for this tumor. Hence, the objective of this study was to investigate ego modules and pathways in OS utilizing EgoNet algorithm and pathway-related analysis, and reveal pathological mechanisms underlying OS. The EgoNet algorithm comprises four steps: constructing background protein-protein interaction (PPI) network (PPIN) based on gene expression data and PPI data; extracting differential expression network (DEN) from the background PPIN; identifying ego genes according to topological features of genes in reweighted DEN; and collecting ego modules using module search by ego gene expansion. Consequently, we obtained 5 ego modules (Modules 2, 3, 4, 5, and 6) in total. After applying the permutation test, all presented statistical significance between OS and normal controls. Finally, pathway enrichment analysis combined with Reactome pathway database was performed to investigate pathways, and Fisher's exact test was conducted to capture ego pathways for OS. The ego pathway for Module 2 was CLEC7A/inflammasome pathway, while for Module 3 a tetrasaccharide linker sequence was required for glycosaminoglycan (GAG) synthesis, and for Module 6 was the Rho GTPase cycle. Interestingly, genes in Modules 4 and 5 were enriched in the same pathway, the 2-LTR circle formation. In conclusion, the ego modules and pathways might be potential biomarkers for OS therapeutic index, and give great insight of the molecular mechanism underlying this tumor. PMID:28225867
Monoclonal antibodies for chronic pain: A practical review of mechanisms and clinical applications
Yeh, Ju-Fen; Akinci, Aysen; Al Shaker, Mohammed; Chang, Ming Hong; Danilov, Andrei; Guillen, Rocio; Johnson, Kirk W; Kim, Yong-Chul; Skljarevski, Vladimir; Dueñas, Héctor J; Tassanawipas, Warat
2017-01-01
Context Monoclonal antibodies are being investigated for chronic pain to overcome the shortcomings of current treatment options. Objective To provide a practical overview of monoclonal antibodies in clinical development for use in chronic pain conditions, with a focus on mechanisms of action and relevance to specific classes. Methods Qualitative review using a systematic strategy to search for randomized controlled trials, systematic and nonsystematic (narrative) reviews, observational studies, nonclinical studies, and case reports for inclusion. Studies were identified via relevant search terms using an electronic search of MEDLINE via PubMed (1990 to June 2017) in addition to hand-searching reference lists of retrieved systematic and nonsystematic reviews. Results Monoclonal antibodies targeting nerve growth factor, calcitonin gene-related peptide pathways, various ion channels, tumor necrosis factor-α, and epidermal growth factor receptor are in different stages of development. Mechanisms of action are dependent on specific signaling pathways, which commonly involve those related to peripheral neurogenic inflammation. In clinical studies, there has been a mixed response to different monoclonal antibodies in several chronic pain conditions, including migraine, neuropathic pain conditions (e.g., diabetic peripheral neuropathy), osteoarthritis, chronic back pain, ankylosing spondylitis, and cancer. Adverse events observed to date have generally been mild, although further studies are needed to ensure safety of monoclonal antibodies in early stages of development, especially where there is an overlap with non-pain-related pathways. High acquisition cost remains another treatment limitation. Conclusion Monoclonal antibodies for chronic pain have the potential to overcome the limitations of current treatment options, but strategies to ensure their appropriate use need to be determined. PMID:29056066
García-Domene, M C; Luque, M J; Díez-Ajenjo, M A; Desco-Esteban, M C; Artigas, J M
2018-02-01
To analyse the relationship between the choroidal thickness and the visual perception of patients with high myopia but without retinal damage. All patients underwent ophthalmic evaluation including a slit lamp examination and dilated ophthalmoscopy, subjective refraction, best corrected visual acuity, axial length, optical coherence tomography, contrast sensitivity function and sensitivity of the visual pathways. We included eleven eyes of subjects with high myopia. There are statistical correlations between choroidal thickness and almost all the contrast sensitivity values. The sensitivity of magnocellular and koniocellular pathways is the most affected, and the homogeneity of the sensibility of the magnocellular pathway depends on the choroidal thickness; when the thickness decreases, the sensitivity impairment extends from the center to the periphery of the visual field. Patients with high myopia without any fundus changes have visual impairments. We have found that choroidal thickness correlates with perceptual parameters such as contrast sensitivity or mean defect and pattern standard deviation of the visual fields of some visual pathways. Our study shows that the magnocellular and koniocellular pathways are the most affected, so that these patients have impairment in motion perception and blue-yellow contrast perception. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The competition between the liquid-liquid dewetting and the liquid-solid dewetting.
Xu, Lin; Shi, Tongfei; An, Lijia
2009-05-14
We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation. The liquid-liquid interfacial tension, the film thickness of the polymer, and the viscosity of the polymer are important factors that influence the time of forming holes and the dewetting velocity. When the liquid-liquid dewetting pathway and the liquid-solid dewetting pathway compete in the dewetting process, the competing relation can be controlled by changing the molecular weight of the polymer, the film thickness, and the annealing temperature. In addition, it is also found that the rim growth on the solid substrate is by a rolling mechanism in the process of hole growth.
Gene–environment interaction in tobacco-related cancers
Taioli, Emanuela
2008-01-01
This review summarizes the carcinogenic effects of tobacco smoke and the basis for interaction between tobacco smoke and genetic factors. Examples of published papers on gene–tobacco interaction and cancer risk are presented. The assessment of gene–environment interaction in tobacco-related cancers has been more complex than originally expected for several reasons, including the multiplicity of genes involved in tobacco metabolism, the numerous substrates metabolized by the relevant genes and the interaction of smoking with other metabolic pathways. Future studies on gene–environment interaction and cancer risk should include biomarkers of smoking dose, along with markers of quantitative historical exposure to tobacco. Epigenetic studies should be added to classic genetic analyses, in order to better understand gene–environmental interaction and individual susceptibility. Other metabolic pathways in competition with tobacco genetic metabolism/repair should be incorporated in epidemiological studies to generate a more complete picture of individual cancer risk associated with environmental exposure to carcinogens. PMID:18550573
Pathway Distiller - multisource biological pathway consolidation
2012-01-01
Background One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. Methods After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. Results We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. Conclusions By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments. PMID:23134636
Pathway Distiller - multisource biological pathway consolidation.
Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong
2012-01-01
One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.
Chi, Wei; Gao, Yu; Hu, Qing; Guo, Wei; Li, Dapeng
2017-01-01
The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.
2013-01-01
Background Improving nutrient homeostasis is a major challenge of a sustainable maize cultivation, and cornerstone to ensure food supply for a growing world population. Although, iron constitutes an important nutrient, iron availability is limited. In this respect, iron deficiency associated chlorosis causes severe yield losses every year. Natural variation of the latter trait has yet not been addressed in maize and was therefore studied in the present analysis. Results In this study, we i) report about the contrasting chlorosis phenotypes of the inbreds B73 and Mo17 at 10 and 300 μM iron regime, ii) identified over 400 significantly regulated transcripts (FDR < 0.05) within both inbreds at these growth conditions by deep RNA-Sequencing, iii) linked the gained knowledge with QTL information about iron deficiency related traits within the maize intermated B73 by Mo17 (IBM) population, and iv) highlighted contributing molecular pathways. In this respect, several genes within methionine salvage pathway and phytosiderophore synthesis were found to present constitutively high expression in Mo17, even under sufficient iron supply. Moreover, the same expression pattern could be observed for two putative bHLH transcription factors. In addition, a number of differentially expressed genes showed a co-localisation with QTL confidence intervals for iron deficiency related traits within the IBM population. Conclusions Our study highlights differential iron deficiency associated chlorosis between B73 and Mo17 and represents a valuable resource for differentially expressed genes upon iron limitation and chlorosis response. Besides identifying two putative bHLH transcription factors, we propose that methionine salvage pathway and sterol metabolism amongst others; underlie the contrasting iron deficiency related chlorosis phenotype of both inbreds. Altogether, this study emphasizes a contribution of selected genes and pathways on natural trait variation within the IBM population. PMID:24330725
Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin
2018-02-01
This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.
Rooster feathering, androgenic alopecia, and hormone dependent tumor growth: What is in common?
Mayer, Julie Ann; Chuong, Cheng-Ming; Widelitz, Randall
2015-01-01
Different epithelial organs form as a result of epithelial - mesenchymal interactions and share a common theme modulated by variations (Chuong edit. In Molecular Basis of Epithelial Appendage Morphogenesis, 1998). One of the major modulators is the sex hormone pathway that acts on the prototype signaling pathway to alter organ phenotypes. Here we focus on how the sex hormone pathway interfaces with epithelia morphogenesis related signaling pathways. We first survey these sex hormone regulated morphogenetic processes in various epithelial organs. Sexual dimorphism of hairs and feathers has implications in sexual selection. Diseases of these pathways result in androgenic alopecia, hirsutism, henny feathering, etc. The growth and development of mammary glands, prostate glands and external genitalia essential for reproductive function are also dependent on sex hormones. Diseases affecting these organs include congenital anomalies and hormone dependent type of breast and prostate cancers. To study the role of sex hormones in new growth in the context of system biology / pathology, an in vivo model in which organ formation starts from stem cells is essential. With recent developments (Yu et al., The morphogenesis of feathers. Nature 420:308–312, 2002), the growth of tail feathers in roosters and hens has become a testable model in which experimental manipulations are possible. We show exemplary data of differences in their growth rate, proliferative cell population and signaling molecule expression. Working hypotheses are proposed on how the sex hormone pathways may interact with growth pathways. It is now possible to test these hypotheses using the chicken model to learn fundamental mechanisms on how sex hormones affect organogenesis, epithelial organ cycling, and growth related tumorigenesis. PMID:15617560
Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji
Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less
The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides.
Jiao, Rui; Liu, Yingxia; Gao, Hao; Xiao, Jia; So, Kwok Fai
2016-01-01
Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current problems and future directions for the application of those plant polysaccharides are also listed and discussed.
Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway.
Jang, Ju-Won; Kim, Min-Kyu; Bae, Suk-Chul
2018-04-20
Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) (YAP/TAZ) are transcriptional coactivators that regulate genes involved in proliferation and transformation by interacting with DNA-binding transcription factors. Remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, and metastasis. The oncogenic activity of YAP/TAZ is inhibited by the Hippo cascade, an evolutionarily conserved pathway that is governed by two kinases, mammalian Ste20-like kinases 1/2 (MST1/2) and Large tumor suppressor kinase 1/2 (LATS1/2), corresponding to Drosophila's Hippo (Hpo) and Warts (Wts), respectively. One of the most influential aspects of YAP/TAZ biology is that these factors are transducers of cell structural features, including polarity, shape, and cytoskeletal organization. In turn, these features are intimately related to the cell's ability to attach to other cells and to the surrounding extracellular matrix (ECM), and are also influenced by the cell's microenvironment. Thus, YAP/TAZ respond to changes that occur at the level of whole tissues. Notably, small GTPases act as master organizers of the actin cytoskeleton. Recent studies provided convincing genetic evidence that small GTPase signaling pathways activate YAP/TAZ, while the Hippo pathway inhibits them. Biochemical studies showed that small GTPases facilitate the YAP-Tea domain transcription factor (TEAD) interaction by inhibiting YAP phosphorylation in response to serum stimulation, while the Hippo pathway facilitates the YAP-RUNX3 interaction by increasing YAP phosphorylation. Therefore, small GTPase pathways activate YAP/TAZ by switching its DNA-binding transcription factors. In this review, we summarize the relationship between the Hippo pathway and small GTPase pathways in the regulation of YAP/TAZ.
Aminian, Farimah; Esmaeilzadeh, Maryam; Moladoust, Hassan; Maleki, Majid; Shahrzad, Soraya; Emkanjoo, Zahra; Sadeghpour, Anita
2014-08-01
The aim of this study was to determine the impact of manifest accessory pathway on left ventricle (LV) twist physiology in Wolff-Parkinson-White (WPW) patients. Although this issue was addressed in 1 study based on speckle tracking method, there was no comparative study with a different technique. We planned to use velocity vector imaging (VVI) to find out how much an accessory pathway can affect LV twist mechanics. Thirty patients were enrolled regarding inclusion and exclusion criteria. Two serial comprehensive transthoracic echocardiography evaluations were performed before and after radiofrequency catheter ablation (RFCA) within 24 hours. Stored cine loops were analyzed using VVI technique and LV twist and related parameters were extracted. Comparing pre- and post-RFCA data, no significant changes were observed in LV systolic and diastolic dimensions, LV ejection fraction (LVEF), and Doppler and tissue Doppler-related parameters. VVI study revealed remarkable rise in peak LV apical rotation (10.3º ± 3.0º to 13.8º ± 3.6º, P < 0.001) and basal rotation (-6.0 ± 1.8º to -7.7 ± 1.8º, P < 0.001) after RFCA. Subsequently LV twist showed a surge from 14.7º ± 3.9º to 20.2º ± 4.4º (P < 0.001). LV untwisting rate changed significantly from -96 ± 67 to -149.0 ± 47.5°/sec (P < 0.001) and apical-basal rotation delay showed a remarkable decline after RFCA (106 ± 81 vs. 42.8 ± 26.0 msec, P < 0.001). Accessory pathways have a major impact on LV twist mechanics. © 2013, Wiley Periodicals, Inc.
A pathway-based view of human diseases and disease relationships.
Li, Yong; Agarwal, Pankaj
2009-01-01
It is increasingly evident that human diseases are not isolated from each other. Understanding how different diseases are related to each other based on the underlying biology could provide new insights into disease etiology, classification, and shared biological mechanisms. We have taken a computational approach to studying disease relationships through 1) systematic identification of disease associated genes by literature mining, 2) associating diseases to biological pathways where disease genes are enriched, and 3) linking diseases together based on shared pathways. We identified 4,195 candidate disease associated genes for 1028 diseases. On average, about 50% of disease associated genes of a disease are statistically mapped to pathways. We generated a disease network which consists of 591 diseases and 6,931 disease relationships. We examined properties of this network and provided examples of novel disease relationships which cannot be readily captured through simple literature search or gene overlap analysis. Our results could potentially provide insights into the design of novel, pathway-guided therapeutic interventions for diseases.
Genetic dissection of cardiac growth control pathways
NASA Technical Reports Server (NTRS)
MacLellan, W. R.; Schneider, M. D.
2000-01-01
Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.
Inflammation, vitamin B6 and related pathways.
Ueland, Per Magne; McCann, Adrian; Midttun, Øivind; Ulvik, Arve
2017-02-01
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unraveling the Complex Relationship Triad between Lipids, Obesity, and Inflammation
Khan, Shahida A.; Khan, Sarah A.; Zahran, Solafa A.; Damanhouri, Ghazi
2014-01-01
Obesity today stands at the intersection between inflammation and metabolic disorders causing an aberration of immune activity, and resulting in increased risk for diabetes, atherosclerosis, fatty liver, and pulmonary inflammation to name a few. Increases in mortality and morbidity in obesity related inflammation have initiated studies to explore different lipid mediated molecular pathways of attempting resolution that uncover newer therapeutic opportunities of anti-inflammatory components. Majorly the thromboxanes, prostaglandins, leukotrienes, lipoxins, and so forth form the group of lipid mediators influencing inflammation. Of special mention are the omega-6 and omega-3 fatty acids that regulate inflammatory mediators of interest in hepatocytes and adipocytes via the cyclooxygenase and lipoxygenase pathways. They also exhibit profound effects on eicosanoid production. The inflammatory cyclooxygenase pathway arising from arachidonic acid is a critical step in the progression of inflammatory responses. New oxygenated products of omega-3 metabolism, namely, resolvins and protectins, behave as endogenous mediators exhibiting powerful anti-inflammatory and immune-regulatory actions via the peroxisome proliferator-activated receptors (PPARs) and G protein coupled receptors (GPCRs). In this review we attempt to discuss the complex pathways and links between obesity and inflammation particularly in relation to different lipid mediators. PMID:25258478
Pompa, Andrea; De Marchis, Francesca; Pallotta, Maria Teresa; Benitez-Alfonso, Yoselin; Jones, Alexandra; Schipper, Kerstin; Moreau, Kevin; Žárský, Viktor; Di Sansebastiano, Gian Pietro; Bellucci, Michele
2017-01-01
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes. PMID:28346345
Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Aram; George, Kevin W.; Wang, George
Branched C 5 alcohols are promising biofuels with excellent combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C 5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C 5 alcohols and initial precursor to longermore » chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete "decoupling" of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C 5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene.« less
Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production
Kang, Aram; George, Kevin W.; Wang, George; ...
2015-12-17
Branched C 5 alcohols are promising biofuels with excellent combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C 5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C 5 alcohols and initial precursor to longermore » chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete "decoupling" of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C 5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene.« less
Yang, Yujia; Wang, Xiaozhu; Liu, Yang; Fu, Qiang; Tian, Changxu; Wu, Chenglong; Shi, Huitong; Yuan, Zihao; Tan, Suxu; Liu, Shikai; Gao, Dongya; Dunham, Rex; Liu, Zhanjiang
2018-04-30
In aquatic organisms, hearing is an important sense for acoustic communications and detection of sound-emitting predators and prey. Channel catfish is a dominant aquaculture species in the United States. As channel catfish can hear sounds of relatively high frequency, it serves as a good model for study auditory mechanisms. In catfishes, Weberian ossicles connect the swimbladder to the inner ear to transfer the forced vibrations and improve hearing ability. In this study, we examined the transcriptional profiles of channel catfish swimbladder and other four tissues (gill, liver, skin, and intestine). We identified a total of 1777 genes that exhibited preferential expression pattern in swimbladder of channel catfish. Based on Gene Ontology enrichment analysis, many of swimbladder-enriched genes were categorized into sensory perception of sound, auditory behavior, response to auditory stimulus, or detection of mechanical stimulus involved in sensory perception of sound, such as coch, kcnq4, sptbn1, sptbn4, dnm1, ush2a, and col11a1. Six signaling pathways associated with hearing (Glutamatergic synapse, GABAergic synapse pathways, Axon guidance, cAMP signaling pathway, Ionotropic glutamate receptor pathway, and Metabotropic glutamate receptor group III pathway) were over-represented in KEGG and PANTHER databases. Protein interaction prediction revealed an interactive relationship among the swimbladder-enriched genes and genes involved in sensory perception of sound. This study identified a set of genes and signaling pathways associated with auditory system in the swimbladder of channel catfish and provide resources for further study on the biological and physiological roles in catfish swimbladder. Copyright © 2018 Elsevier Inc. All rights reserved.
Tang, Hongwei; Wei, Peng; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Holly, Elizabeth A; Petersen, Gloria; Bracci, Paige M; McWilliams, Robert R; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolph; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui
2014-05-01
Cigarette smoking is the best established modifiable risk factor for pancreatic cancer. Genetic factors that underlie smoking-related pancreatic cancer have previously not been examined at the genome-wide level. Taking advantage of the existing Genome-wide association study (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study in 2028 cases and 2109 controls to examine gene-smoking interactions at pathway/gene/single nucleotide polymorphism (SNP) level. Using the likelihood ratio test nested in logistic regression models and ingenuity pathway analysis (IPA), we examined 172 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 3 manually curated gene sets, 3 nicotine dependency gene ontology pathways, 17 912 genes and 468 114 SNPs. None of the individual pathway/gene/SNP showed significant interaction with smoking after adjusting for multiple comparisons. Six KEGG pathways showed nominal interactions (P < 0.05) with smoking, and the top two are the pancreatic secretion and salivary secretion pathways (major contributing genes: RAB8A, PLCB and CTRB1). Nine genes, i.e. ZBED2, EXO1, PSG2, SLC36A1, CLSTN1, MTHFSD, FAT2, IL10RB and ATXN2 had P interaction < 0.0005. Five intergenic region SNPs and two SNPs of the EVC and KCNIP4 genes had P interaction < 0.00003. In IPA analysis of genes with nominal interactions with smoking, axonal guidance signaling $$\\left(P=2.12\\times 1{0}^{-7}\\right)$$ and α-adrenergic signaling $$\\left(P=2.52\\times 1{0}^{-5}\\right)$$ genes were significantly overrepresented canonical pathways. Genes contributing to the axon guidance signaling pathway included the SLIT/ROBO signaling genes that were frequently altered in pancreatic cancer. These observations need to be confirmed in additional data set. Once confirmed, it will open a new avenue to unveiling the etiology of smoking-associated pancreatic cancer.
2011-01-01
Background Gene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli, and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific. Results Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including XBP1 and SREBF1. The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger host response. Conclusions This meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources. PMID:21569310
Does autophagy work in synaptic plasticity and memory?
Shehata, Mohammad; Inokuchi, Kaoru
2014-01-01
Many studies have reported the roles played by regulated proteolysis in neural plasticity and memory. Within this context, most of the research focused on the ubiquitin-proteasome system and the endosome-lysosome system while giving lesser consideration to another major protein degradation system, namely, autophagy. Although autophagy intersects with many of the pathways known to underlie synaptic plasticity and memory, only few reports related autophagy to synaptic remodeling. These pathways include PI3K-mTOR pathway and endosome-dependent proteolysis. In this review, we will discuss several lines of evidence supporting a physiological role of autophagy in memory processes, and the possible mechanistic scenarios for how autophagy could fulfill this function.
Xu, Xiang; Huang, Enping; Luo, Baoying; Cai, Dunpeng; Zhao, Xu; Luo, Qin; Jin, Yili; Chen, Ling; Wang, Qi; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun
2018-06-25
Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q., Liu, C., Lin, Z., Xie, W.-B., Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.
Mittelberger, Cecilia; Yalcinkaya, Hacer; Pichler, Christa; Gasser, Johanna; Scherzer, Gerhard; Erhart, Theresia; Schumacher, Sandra; Holzner, Barbara; Janik, Katrin; Robatscher, Peter; Müller, Thomas; Kräutler, Bernhard; Oberhuber, Michael
2017-04-05
Phytoplasmoses such as apple proliferation (AP) and European stone fruit yellows (ESFY) cause severe economic losses in fruit production. A common symptom of both phytoplasma diseases is early yellowing or leaf chlorosis. Even though chlorosis is a well-studied symptom of biotic and abiotic stresses, its biochemical pathways are hardly known. In particular, in this context, a potential role of the senescence-related pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway is elusive, which degrades chlorophyll (Chl) to phyllobilins (PBs), most notably to colorless nonfluorescent Chl catabolites (NCCs). In this work, we identified the Chl catabolites in extracts of healthy senescent apple and apricot leaves. In extracts of apple tree leaves, a total of 12 Chl catabolites were detected, and in extracts of leaves of the apricot tree 16 Chl catabolites were found. The seven major NCC fractions in the leaves of both fruit tree species were identical and displayed known structures. All of the major Chl catabolites were also found in leaf extracts from AP- or ESFY-infected trees, providing the first evidence that the PaO/PB pathway is relevant also for pathogen-induced chlorosis. This work supports the hypothesis that Chl breakdown in senescence and phytoplasma infection proceeds via a common pathway in some members of the Rosaceae family.
Rager, Julia E.; Yosim, Andrew; Fry, Rebecca C.
2014-01-01
There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans. PMID:25479081
Osman, Abdel-Hamid K; Caceci, Thomas; Shintani, Mitchiko
2018-05-01
Programmed cell death is a fundamental event that takes place during organ development and plays an important role in cellular homeostasis. Since various body organs of the camel are under high ecological and physiological stress during food and water deprivation, desiccation, and the long exposure to solar radiation in these desert nomads, we aimed to examine the immunohistochemical expression of apoptosis-related biomarkers in some of its normal body organs to illustrate a basic track for further pathological investigation. Regarding apoptosis, the present study has revealed that the higher expression of cleaved caspase-9 (CC9) [initiator of the intrinsic pathway] and CC3 (effector caspase), and the scanty expression of CC8 (initiator of the extrinsic pathway), highlight the role of the caspase-dependent, intrinsic apoptotic pathway particularly in the intestines and lymphoid organs. The apoptosis- inducing factor (AIF)-immunoexpression was completely missing in the cell nuclei of the examined tissues, indicating the absence of the caspase-independent pathway. The nuclear overexpression of the phospho-histone H2AX (γ H2AX) and the occasional expression of single-stranded DNA, particularly among the CNS neurons, suggest an efficient, protective DNA-repair mechanism in such cells. Thus, despite efficient anti-apoptotic mechanisms intrinsic apoptotic pathways exists in brain, intestine and lymph organs of adult desert camels. Copyright © 2018 Elsevier GmbH. All rights reserved.
The Hippo pathway in normal development and cancer.
Maugeri-Saccà, Marcello; De Maria, Ruggero
2018-06-01
The Hippo pathway is a central regulator of organ size and tissue homeostasis. Hippo kinases and adaptor proteins mediate the phosphorylation and inactivation of YAP and TAZ, two closely related transcription co-activators. The Hippo pathway responds to a variety of extracellular and intracellular signals, spanning from cell-cell contact and mechanical cues to ligands of G-protein-coupled receptors and metabolic avenues. In some instances, YAP/TAZ activation is tuned by forces that bypass the Hippo kinase module, adding further complexity to the biology of the pathway. Over the past two decades, the Hippo pathway has increasingly been connected with developmental processes and tissue repair, being intimately tied to the function of tissue-specific progenitor cells. Pervasive activation of YAP/TAZ has been recognized in a multitude of human tumors and connected with the acquisition of malignant traits, including resistance to anticancer therapies, distant dissemination and maintenance of cancer stem cells. On this ground, Hippo-related biomarkers are increasingly investigated in translational studies striving to identify prognostic and predictive factors. In addition, the dependency of many tumors on YAP/TAZ may be exploited for therapeutic purposes. Albeit no direct inhibitors are currently available, drug repositioning approaches provided hints that YAP/TAZ inhibition can be achieved with old drugs, such as cholesterol-lowering agents or compounds blocking bone resorption. Copyright © 2018 Elsevier Inc. All rights reserved.