Science.gov

Sample records for study polar arcs

  1. Semicircular Rashba arc spin polarizer

    SciTech Connect

    Bin Siu, Zhuo; Jalil, Mansoor B. A.; Ghee Tan, Seng

    2014-05-07

    In this work, we study the generation of spin polarized currents using curved arcs of finite widths, in which the Rashba spin orbit interaction (RSOI) is present. Compared to the 1-dimensional RSOI arcs with zero widths studied previously, the finite width presents charge carriers with another degree of freedom along the transverse width of the arc, in addition to the longitudinal degree of freedom along the circumference of the arc. The asymmetry in the transverse direction due to the difference in the inner and outer radii of the arc breaks the antisymmetry of the longitudinal spin z current in a straight RSOI segment. This property can be exploited to generate spin z polarized current output from the RSOI arc by a spin unpolarized current input. The sign of the spin current can be manipulated by varying the arc dimensions.

  2. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  3. Convection and electrodynamic signatures in the vicinity of a Sun-aligned arc: Results from the Polar Acceleration Regions and Convection Study (Polar ARCS)

    NASA Technical Reports Server (NTRS)

    Weiss, L. A.; Weber, E. J.; Reiff, P. H.; Sharber, J. R.; Winningham, J. D.; Primdahl, F.; Mikkelsen, I. S.; Seifring, C.; Wescott, Eugene M.

    1994-01-01

    An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field

  4. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  5. Saturn's elusive nightside polar arc

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Gérard, J.-C.; Milan, S. E.; Fear, R. C.; Jackman, C. M.; Bonfond, B.; Pryor, W.

    2014-09-01

    Nightside polar arcs are some of the most puzzling auroral emissions at Earth. They are features which extend from the nightside auroral oval into the open magnetic field line region (polar cap), and they represent optical signatures of magnetotail dynamics. Here we report the first observation of an arc at Saturn, which is attached at the nightside main oval and extends into the polar cap region, resembling a terrestrial transpolar arc. We show that Earth-like polar arcs can exceptionally occur in a fast rotational and internally influenced magnetosphere such as Saturn's. Finally, we discuss the possibility that the polar arc at Saturn is related to tail reconnection and we address the role of solar wind in the magnetotail dynamics at Saturn.

  6. Parry arc: a polarization lidar, ray-tracing, and aircraft case study.

    PubMed

    Sassen, K; Takano, Y

    2000-12-20

    Using simple ray-tracing simulations, the cause of the rare Parry arc has been linked historically to horizontally oriented columns that display the peculiar ability to fall with a pair of prism faces closely parallel to the ground. Although we understand the aerodynamic forces that orient the long-column axis in the horizontal plane, which gives rise to the relatively common tangent arcs of the 22 degrees halo, the mechanism leading to the Parry crystal orientation has never been resolved adequately. On 16 November 1998, at the University of Utah Facility for Atmospheric Remote Sensing, we studied a cirrus cloud producing a classic upper Parry arc using polarization lidar and an aircraft with a new high-resolution ice crystal imaging probe. Scanning lidar data, which reveal extremely high linear depolarization ratios delta a few degrees off the zenith direction, are simulated with ray-tracing theory to determine the ice crystal properties that reproduce this previously unknown behavior. It is found that a limited range of thick-plate crystal axis (length-to-diameter) ratios from approximately 0.75 to 0.93 generates a maximum delta approximately 2.0-5.0 for vertically polarized 0.532-microm light when the lidar is tilted 1 degrees -2 degrees off the zenith. Halo simulations based on these crystal properties also generate a Parry arc. However, although such particles are abundant in the in situ data in the height interval indicated by the lidar, one still has to invoke an aerodynamic stabilization force to produce properly oriented particles. Although we speculate on a possible mechanism, further research is needed into this new explanation for the Parry arc. PMID:18354687

  7. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  8. The statistical difference between bending arcs and regular polar arcs

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Fear, R. C.; Milan, S. E.; Carter, J. A.; Karlsson, T.

    2015-12-01

    In this work, the Polar UVI data set by Kullen et al. (2002) of 74 polar arcs is reinvestigated, focusing on bending arcs. Bending arcs are typically faint and form (depending on interplanetary magnetic field (IMF) By direction) on the dawnside or duskside oval with the tip of the arc splitting off the dayside oval. The tip subsequently moves into the polar cap in the antisunward direction, while the arc's nightside end remains attached to the oval, eventually becoming hook-shaped. Our investigation shows that bending arcs appear on the opposite oval side from and farther sunward than most regular polar arcs. They form during By-dominated IMF conditions: typically, the IMF clock angle increases from 60 to 90° about 20 min before the arc forms. Antisunward plasma flows from the oval into the polar cap just poleward of bending arcs are seen in Super Dual Auroral Radar Network data, indicating dayside reconnection. For regular polar arcs, recently reported characteristics are confirmed in contrast to bending arcs. This includes plasma flows along the nightside oval that originate close to the initial arc location and a significant delay in the correlation between IMF By and initial arc location. In our data set, the highest correlations are found with IMF By appearing at least 1-2 h before arc formation. In summary, bending arcs are distinctly different from regular arcs and cannot be explained by existing polar arc models. Instead, these results are consistent with the formation mechanism described in Carter et al. (2015), suggesting that bending arcs are caused by dayside reconnection.

  9. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  10. F-layer polar-cap arcs. Master's thesis

    SciTech Connect

    Fite, D.D.

    1987-09-01

    Two types of ionospheric anomalies were discovered recently in the polar cap: patches and arcs. Polar-cap arcs are the focus of this study, which seeks correlation between arcs and total election content (TEC) enhancements and amplitude scintillation effects. Simultaneous optical and radio-frequency measurements were taken at Thule AFB and Qanaaq, Greenland, using the All-Sky Imaging Photometer (ASIP) and a specially equipped Global Positioning System (GPS) receiver. Arcs were discovered to produce significant, rapidly varying TEC increases, and small but measurable amplitude scintillation.

  11. Polar cap auroral arcs: Observations, theories, and a numerical model

    SciTech Connect

    Berg, G.A.

    1993-12-31

    This thesis reports the results of probably the most completely documented study of auroras near the polar cap boundary performed to date. Three fully instrumented rockets flew into the morning sector of the polar cap, complemented on the ground by a digital all-sky camera and incoherent scatter radar. Additionally, DMSP satellite passes over the polar cap bracketed the launches. We use these data to address two main issues: (1) the relationship between the state of the magnetosphere and the formation of polar cap arcs, and (2) the character of the current systems associated with polar cap arcs. The data indicate that in a decaying magnetosphere sun-aligned arcs erupt into the polar cap at high velocity from regions of enhanced brightness in the auroral oval. Two bright polar cap arcs formed in this manner in the region sampled by the rockets. The most equatorward of the arcs, sampled by two of the rockets during its lifetime, erupted into a region already characterized by strong sunward convection. The most poleward, however, which formed after the rockets had passed, pushed into a region where anti-sunward convection pertained less than two minutes earlier. It is likely that the boundary between sunward and anti-sunward convection shifted poleward so that sunward convection pertained at this arc as well. One of the payloads measured, with high resolution, both E and {delta}B as well as energetic particle flux. This permitted an in-depth study of the current systems flown through. The correlation between {delta}E and {delta}B is classic, both fields indicating upward field-aligned currents in virtually every region of enhanced electron precipitation. However, the currents deduced from the electrons do not agree in magnitude with those deduced from the fields. The conclusion is that for arcs embedded in a region of low {Sigma}{sub P} a current composed of upward thermal electrons flows concurrently with the precipitating electrons.

  12. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  13. Automated Variable-Polarity Plasma-Arc Welding

    NASA Technical Reports Server (NTRS)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  14. Cathodic cleaning and heat input in variable polarity plasma arc welding of aluminum

    SciTech Connect

    Fuerschbach, P.W.

    1998-02-01

    For variable polarity plasma arc welding (VPPAW) of 1,100 Al, it was found that the net heat input to the aluminum workpiece did not decrease as independent changes in polarity balance enabled the tungsten electrode to become the predominant anode in the alternating current arc. For the thin sheet edge welds made in this study, the independent parameters used to vary the arc current polarity balance were very effective in delivering a wide range of actual arc power polarity balance. The ratio of electrode positive polarity arc energy to the total arc energy ranged from as little as 0.03 to as high as 0.99. Despite this pronounced difference in arc polarity, no significant variation in the average arc efficiency (net heat input/arc energy) of 0.51 was found. Substantial heating of the workpiece during electrode positive polarity was attributed to field type emission of electrons from the low boiling point aluminum cathode. Unlike thermionic emission at the tungsten, field emission electrons do not cool the cathode. While the actual arc efficiency were relatively constant, there were significant differences in the measured heat input, the weld size, and the effectiveness of the cathodic cleaning.

  15. Physics Of Variable-Polarity Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1990-01-01

    Report describes experimental study of some of the physical and chemical effects that occur during variable-polarity plasma arc (VPPA) keyhole welding of 2219 aluminum alloy. Comprised three major programs: (1) determination of effects of chemical additions (i.e., impurities) on structure and shape of bead and keyhole; (2) determination of flow in regions surrounding keyhole; (3) development of analog used easily to study flow in keyhole region.

  16. High altitude chemical release systems for project BIME (Brazilian Ionospheric Modification Experiments) project IMS (Ionospheric Modification Studies) project PIIE (Polar Ionospheric Irregularities Experiment) project polar arcs

    NASA Astrophysics Data System (ADS)

    Stokes, Charles S.; Murphy, William J.

    1987-07-01

    Project BIME, a Spread F observation program involved the launching of two Nike-Black Brant rockets each containing a payload of Ammonium Nitrate Fuel Oil (ANFO). The rockets were launched from Barriera Do Inferno Launch Site in Natal, Brazil in August of 1982. Project IMS, an F-layer modification experiment involved three launch vehicles, a Nike-Tomahawk and two Sonda III rockets. The Nike-Tomahawk carried a sulfur hexafluoride (SF6) payload. One of the Sonda III rockets carried a payload that consisted of an SF6 canister and a samarium/strontium thermite canister. The remaining Sonda III carried a trifluorobromo methane (CF3Br) canister and a samarium thermite canister. The rockets were launched from Wallops Island Launch Facility, Virginia in November of 1984. Project PIIE and Polar Arcs, a program to investigate polar ionospheric irregularities, involved a Nike-Black Brant rocket carrying one samarium thermite canister and six barium canisters. An attempted launch failed when launch criteria could not be met. The rocket was launched successfully from Sondrestrom Air Base, Greenland in March 1987.

  17. Robotic Variable Polarity Plasma Arc (VPPA) Welding

    NASA Technical Reports Server (NTRS)

    Jaffery, Waris S.

    1993-01-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  18. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  19. The variable polarity plasma arc welding process: Its application to the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Bayless, O. E., Jr.; Jones, C. S., III; Munafo, A. P.; Wilson, W. A.

    1983-01-01

    The technical history of the variable polarity plasma arc (VPPA) welding process being introduced as a partial replacement for the gas shielded tungsten arc process in assembly welding of the space shuttle external tank is described. Interim results of the weld strength qualification studies, and plans for further work on the implementation of the VPPA process are included.

  20. Mathematical Model Of Variable-Polarity Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1996-01-01

    Mathematical model of variable-polarity plasma arc (VPPA) welding process developed for use in predicting characteristics of welds and thus serves as guide for selection of process parameters. Parameters include welding electric currents in, and durations of, straight and reverse polarities; rates of flow of plasma and shielding gases; and sizes and relative positions of welding electrode, welding orifice, and workpiece.

  1. Polar cap auroral arcs: Observations, theories, and a numerical model. Ph.D. Thesis

    SciTech Connect

    Berg, G.A.

    1993-01-01

    This thesis reports the results of probably the most completely documented study of auroras near the polar cap boundary performed to date. Three fully instrumented rockets flew into the morning sector of the polar cap, complemented on the ground by a digital all-sky camera and incoherent scatter radar. Additionally, DMSP satellite passes over the polar cap bracketed the launches. The authors use these data to address two main issues: (1) the relationship between the state of the magnetosphere and the formation of polar cap arcs, and (2) the character of the current systems associated with polar cap arcs. The data indicate that in a decaying magnetosphere sun-aligned arcs erupt into the polar cap at high velocity from regions of enhanced brightness in the auroral oval. Two bright polar cap arcs formed in this manner in the region sampled by the rockets. The most equatorward of the arcs, sampled by two of the rockets during its lifetime, erupted into a region already characterized by strong sunward convection. The most poleward, however, which formed after the rockets had passed, pushed into a region where anti-sunward convection pertained less than two minutes earlier. It is likely that the boundary between sunward and anti-sunward convection shifted poleward so that sunward convection pertained at this arc as well. The formation of polar cap arcs may be tied closely to the reconfiguration of the magnetosphere into a system characterized by a smaller polar cap. One of the payloads measured, with high resolution, both E and delta B as well as energetic particle flux. This permitted an in-depth study of the current systems flown through. The correlation between delta E and delta B is classic, both fields indicating upward field-aligned currents in virtually every region of enhanced electron precipitation. However, the currents deduced from the electrons do not agree in magnitude with those deduced from the fields.

  2. Scintillation and irregularities from the nightside part of a Sun-aligned polar cap arc

    NASA Astrophysics Data System (ADS)

    Meeren, Christer; Oksavik, Kjellmar; Lorentzen, Dag A.; Paxton, Larry J.; Clausen, Lasse B. N.

    2016-06-01

    In this paper we study the presence of irregularities and scintillation in relation to the nightside part of a long-lived, Sun-aligned transpolar arc on 15 January 2015. The arc was observed in DMSP UV and particle data and lasted at least 3 h between 1700 and 2000 UT. The arc was more intense than the main oval during this time. From all-sky imagers on Svalbard we were able to study the evolution of the arc, which drifted slowly westward toward the dusk cell. The intensity of the arc as observed from ground was 10-17 kR in 557.7 nm and 2-3.5 kR in 630.0 nm, i.e., significant emissions in both green and red emission lines. We have used high-resolution raw data from global navigation satellite systems (GNSS) receivers and backscatter from Super Dual Auroral Radar Network (SuperDARN) radars to study irregularities and scintillation in relation to the polar cap arc. Even though the literature has suggested that polar cap arcs are potential sources for irregularities, our results indicate only very weak irregularities. This may be due to the background density in the northward IMF polar cap being too low for significant irregularities to be created.

  3. Heat flow in variable polarity plasma arc welds

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1992-01-01

    The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.

  4. Heat sink effects in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  5. Unique variable polarity plasma arc welding for space shuttle

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1985-01-01

    Since the introduction of the Plasma Arc Torch in 1955 and subsequent to the work at Boeing in the 1960's, significant improvements crucial to success have been made in the Variable Polarity Plasma Arc (VPPA) Process at the Marshall Space Flight Center. Several very important advantages to this process are given, and the genesis of PA welding, the genesis of VPPA welding, special equiment requirements, weld property development, results with other aluminum alloys, and the eventual successful VPPA transition to production operations are discussed.

  6. Eddy intrustion of hot plasma into the polar cap and formation of polar-cap arcs

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.

    1983-01-01

    Under the simple postulate that multiple large scale detachable magnetospheric convection eddies can exist in the vicinity of the convection reversal boundary and in the polar cap, by Kelvin-Helmholtz instability or otherwise, it is shown that a number of seemingly disconnected plasma and electric field observations in the polar cap can be organized into a theory of magnetosheath and plasmasheet plasma intrusion into the polar cap. Current theory of inverted V structures then predicts existence of similar, but weaker, structures at the eddy convection reversal boundaries in the polar cap. A possible consequence is that the polar cap auroras are natural offshoots from discrete oval arcs and evidently are formed by similar processes. The two arc systems can occassionally produce an optical image in the form of the theta aurora.

  7. GPS scintillation effects associated with polar cap patches, auroral arcs and blobs in European Arctic sector

    NASA Astrophysics Data System (ADS)

    Jin, Yaqi; Moen, Jøran; Miloch, Wojciech

    2014-05-01

    Both polar cap patches and auroral arcs are associated with irregularities that can affect the propagation of radio waves and thus disrupt the navigation system in the high latitudes. But which is the worst case remains unanswered. This study focuses on the direct comparison of the relative scintillation effects associated with different phenomena in high latitudes. The All Sky Camera located at Ny-Alesund, Svalbard observed six polar cap patches on January 13, 2013. The patches exited into the nightside auroral region in response to the ongoing substorms and then they are termed blobs. The collocated GPS scintillation monitor is used to study the scintillations produced by these different phenomena which are frequently observed at high latitudes. The amplitude scintillation index (S_4) was very low during this period, while the phase scintillation index (sigma_phi) indicated a disturbed ionospheric condition but responded differently to these three types of phenomena. Comparisons of the associated scintillation effects indicate that the blobs are the most violent scintillation source. Moreover, polar cap patches produce scintillation more effectively than auroral arcs do. Five of the six polar cap patches were observed to produce significant scintillations either on the edges or on the center of the patches, which imply most of the polar cap patches are associated with strong small scale irregularities. All of the scintillations produced by the pure auroral arcs were below 0.2 rad in this period. This study highlights the compound effects of the particle precipitations (auroral arcs) and high density plasma islands (patches) in developing the small scale irregularities. From the space weather forecasting perspective, particular attention is to be paid to polar cap patches exiting the polar cap at night in the European sector.

  8. Intensification and fading of auroral arcs in the dusk-midnight sector of the polar cap

    SciTech Connect

    Wu, Q.; Rosenberg, T.J. ); Berkey, F.T. ); Eather, R.H. )

    1991-05-01

    Observations of the aurora from South Pole station (magnetic latitude = {minus}74.2{degree}) have been used to study the intensification and fading of polar arcs observed near the dusk meridian. Most of the cases examined have the following features in common: (1) a preexisting auroral form intensifies for about 10 min; (2) this activation is followed by a pronounced decrease of luminosity; (3) the auroral fade terminates after 30-60 min with the onset of intense aurora which sweeps rapidly overhead. The availability of all-sky camera, auroral electrojet (AE) index and interplanetary magnetic field (IMF) data for some of the cases enables the following additional characterizations of these events. The preexisting form is a Sun- or oval-aligned arc (or part of a multiple arc system) which disappears following the activation; equatorward drift of the arc (or system) accompanies the luminosity change. There is some evidence to suggest that the arc is poleward of the auroral oval. The brief intensification and/or the onset of fading occurs during the growth phase or near the start of the expansive phase of a substorm; termination of the fade is near the maximum in AE and is probably indicative of the beginning of the recovery phase of the substorm. For all three cases for which IMF data were available the onset of fading occurred 20-30 min after B{sub z} turned southward. Sun-aligned arcs are a common feature of the polar cap during northward B{sub z} but disappear during the increasingly disturbed conditions that accompany southward B{sub z}. The present results suggest that brief intensifications of southern hemisphere polar cap arcs near dusk may be linked in part to the sunward orientation of the IMF which favors enhanced electron fluxes in the southern lobe of the magnetotail.

  9. The variable polarity plasma arc welding process: Characteristics and performance

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  10. High-altitude chemical-release systems for Project BIME (Brazilian Ionospheric Modification Experiments) Project IMS (Ionospheric Modification Studies) Project PIIE (Polar Ionospheric Irregularities Experiment) Project Polar Arcs. Final report, 30 September 1981-30 June 1987

    SciTech Connect

    Stokes, C.S.; Murphy, W.J.

    1987-07-31

    Project BIME, a Spread-F observation program involved the launching of two Nike-Black Brant rockets each containing a payload containing Ammonium Nitrate Fuel Oil (ANFO). The rockets were launched from Barriera Do Inferno Launch Site in Natal, Brazil in August of 1982. Project IMS, an F-layer modification experiment involved three launch vehicles. A Nike-Tomahawk and two Sonda III rockets. The Nike-Tomahawk carried a sulfur hexafluoride (SF/sub 6/) payload. One of the Sonda III rockets carried a payload that consisted of an SF/sub 6/ canister and a samarium/strontium thermite canister. The remaining Sonda III carried a payload that consisted of a trifluorobromo methane (CF/sub 3/Br) canister and a samarium thermite canister. The rockets were launched from Wallops Island Launch Facility, Virginia in November of 1984. Project PIIE and Polar Arcs, a program to investigate polar ionospheric irregularities, involved the launch of a Nike-Black Brant rocket which housed one samarium thermite canister and six barium canisters. An attempted launch of the payload was returned in March of 1985, however, launch criteria could not be met and the payload was returned to FRC for storage and refurbishment for launch in 1987. The rocket was launched successfully from Sondrestrom Air Base, Greenland in March of 1987.

  11. Martian polar geological studies

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.

    1977-01-01

    Multiple arcs of rugged mountains and adjacent plains on the surface of Mars were examined. These features, located in the southern polar region were photographed by Mariner 9. Comparisons are made with characteristics of a lunar basin and mare; Mare imbrium in particular. The martian feature is interpreted to have originated in the same way as its lunar analog- by volcanic flooding of a large impact basin. Key data and methodology leading to this conclusion are cited.

  12. Parametric Study on Arc Behavior of Magnetically Diffused Arc

    NASA Astrophysics Data System (ADS)

    Chen, Tang; Li, Hui; Bai, Bing; Liao, Mengran; Xia, Weidong

    2016-01-01

    A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc. Four parametric studies are performed: on the external axial magnetic field (AMF), on the cathode shape, on the total current and on the inlet gas velocity. The numerical results show that: the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF; a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis; the maximum values of plasma temperature increase with the total current; the plasma column in front of the cathode tip expands more severely in the axial direction, with a higher inlet speed; the cathode arc attachment shrinks towards the tip as the inlet speed increases. The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow. supported by National Natural Science Foundation of China (Nos. 11475174, 11035005 and 50876101)

  13. Multi-instrument observations of multiple auroral arcs in the duskside polar cap region

    NASA Astrophysics Data System (ADS)

    Hosokawa, Keisuke; Maggiolo, Romain; Zhang, Yongliang; Fear, Rob; Fontaine, Dominique; Cumnock, Judy; Kullen, Anita; Milan, Steve; Kozlovsky, Alexander; Echim, Marius

    2014-05-01

    Polar cap auroral arcs (PCAs) are one of the outstanding phenomena in the polar cap region during periods of northward interplanetary magnetic field (IMF). Smaller scale PCAs tend to occur either in the duskside or dawnside of the polar cap and are known to drift in the dawn-dusk direction depending on the sign of the IMF By. Studies of PCAs are of particular importance because they represent dynamical characteristics of their source plasma in the magnetosphere, for example in the interaction region between the solar wind and magnetosphere or in the boundary between the plasma sheet and tail lobe. To date, however, very little has been known about the spatial structure and/or temporal evolution of the magnetospheric counterpart of PCAs. In order to gain more comprehensive understanding of the origin of PCAs, we have investigated an event of PCAs on November 10, 2005, during which multiple PCAs were detected by a ground-based all-sky camera at Resolute Bay, Canada. During this interval, several PCAs were detached from the duskside oval and moved poleward. The large-scale structure of these arcs was visualized by space-based imagers of TIMED/GUVI and DMSP/SSUSI. The images from these instruments indicate that the arcs were pointing towards the dayside cusp. In addition to these optical observations, we employ the Cluster satellites to reveal the particle signature corresponding to the small-scale PCAs. The ionospheric footprints of the 4 Cluster satellites encountered the PCAs sequentially and observed well correlated enhancements of electron fluxes at weak energies (< 1 keV). The Cluster satellites also detected signatures of upflowing ion beams exactly at the times of the satellite crossing of the PCAs. This implies that the ions were accelerated upward by a quasi-stationary electric field existing above the PCAs. Ionospheric convection measurement from one of the SuperDARN radars shows an existence of velocity shear across one of the PCAs. This signature is

  14. Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs.

    PubMed

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Chang, Guoqing; Yaji, Koichiro; Yuan, Zhujun; Zhang, Chenglong; Kuroda, Kenta; Bian, Guang; Guo, Cheng; Lu, Hong; Chang, Tay-Rong; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Komori, Fumio; Kondo, Takeshi; Shin, Shik; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2016-03-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications. PMID:26991191

  15. The effect of impurity gasses on variable polarity plasma arc welded 2219 aluminum

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Torres, Martin R.; Gurevitch, Alan C.; Newman, Robert A.

    1989-01-01

    Variable polarity plasma arc (VPPA) welding has been used with considerable success by NASA for the welds on the Space Shuttle External Tank as well as by others concerned with high quality welded structures. The effects of gaseous contaminants on the appearance of VPPA welds on 2219 aluminum are examined so that a welder can recognize that such contamination is present and take corrective measures. There are many possible sources of such contamination including, contaminated gas bottles, leaks in the gas plumbing, inadequate shield gas flow, condensed moisture in the gas lines or torch body, or excessive contaminants on the workpiece. The gasses chosen for study in the program were nitrogen, oxygen, methane, and hydrogen. Welds were made in a carefully controlled environment and comparisons were made between welds with various levels of these contaminants and welds made with research purity (99.9999 percent) gasses. Photographs of the weld front and backside as well as polished and etched cross sections are presented.

  16. The Variable Polarity Plasma Arc Welding Process: Its Application to the Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Bayless, E. O., Jr.; Wilson, W. A.

    1984-01-01

    This report describes progress in the implementation of the Variable Polarity Plasma Arc Welding (VPPAW) process at the External Tank (ET) assembly facility. Design allowable data has been developed for thicknesses up to 1.00 in. More than 24,000 in. of welding on liquid oxygen and liquid hydrogen cylinders has been made without an internal defect.

  17. UAH mathematical model of the variable polarity plasma ARC welding system calculation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    Significant advantages of Variable Polarity Plasma Arc (VPPA) welding process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. A mathematical model is presented to analyze the VPPA welding process. Results of the mathematical model were compared with the experimental observation accomplished by the GDI team.

  18. Electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap

    SciTech Connect

    Valladares, C.E.; Carlson, H.C.

    1991-02-01

    The electrodynamic, thermal and energetic character of stable Sun-aligned arcs in the polar cap can be meaningfully diagnosed by an incoherent scatter radar, provided a suitable observing scheme is selected. The authors report here such measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stomfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area maps of altitude profiles for observed electron and ion gas number densities, temperatures, and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities, horizontal and field-aligned currents, Joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc.

  19. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    NASA Technical Reports Server (NTRS)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  20. Formation of arc-shaped Alfvén waves and rotational discontinuities from oblique linearly polarized wave trains

    NASA Astrophysics Data System (ADS)

    Vasquez, Bernard J.; Hollweg, Joseph V.

    1996-06-01

    The forms of Alfvénic fluctuations in the solar wind sometimes possess nearly constant magnetic intensities but have an approximate arc rather than circular polarization. They are also associated with layers of abrupt field rotation called rotational discontinuities (RDs) where the field changes direction by <180°. Ion-sense and electron-sense rotations are observed in approximately equal numbers. To explore the origin of this form, we conduct a one-and-one-half-dimensional hybrid numerical simulation study of the evolution of obliquely propagating, low-frequency (<polarized wave train, an approximate arc polarization evolves rapidly where the magnetic field moves to and fro on a less than semicircular arc. Large-amplitude (|δB|/B~1) wave trains steepen and produce RDs which always rotate the field by <180° with no preference for ion or electron sense of rotation. These properties correspond to those of Alfvénic fluctuations in the solar wind, and our model is the first which offers an explanation of the observed arc-shaped waves and imbedded RDs. At early times, a large density signal is also generated. For large plasma β, the signal rapidly damps, and the waveform varies little with time. For small plasma β, the generated constant-B Alfvén wave is parametrically unstable and causes the density signal to grow further before the instability saturates. The wave train and density signal beat strongly giving a periodic time variation of the wave amplitude and waveform. Ion heating from steepening, RD formation, relaxation to constant B, and parametric processes occurs mainly parallel to the background magnetic field and cannot explain the perpendicular heating of ions observed in the solar wind.

  1. Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1987-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.

  2. Hybrid Arc Cell Studies: Status Report

    SciTech Connect

    Berg J. S.

    2012-09-28

    I report on the status, at the end of FY12, of the studies of an arc cell for a hybrid synchrotron accelerating from 375 GeV/c to 750 GeV/c in momentum. Garren produced a complete lattice that gives a good outline of the structure of a hybrid synchrotron lattice. It is, however, lacking in some details: it does not maintain a constant time of flight, it lacks chromaticity correction, its cell structure is not ideal for removing aberrations from chromaticity correction, and it probably needs more space between magnets. I have begun studying cell structures for the arc cells to optimize the lattice performance and cost. I present some preliminary results for two magnets per half cell. I then discuss difficulties encountered, some preliminary attempts at resolving them, and the future plans for this work.

  3. Variable polarity plasma arc welding on the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Bayless, E. O., Jr.; Jones, C. S., III; Munafo, P. M.; Biddle, A. P.; Wilson, W. A.

    1984-01-01

    Variable polarity plasma arc (VPPA) techniques used at NASA's Marshall Space Flight Center for the fabrication of the Space Shuttle External Tank are presentedd. The high plasma arc jet velocities of 300-2000 m/s are produced by heating the plasma gas as it passes through a constraining orifice, with the plasma arc torch becoming a miniature jet engine. As compared to the GTA jet, the VPPA has the following advantages: (1) less sensitive to contamination, (2) a more symmetrical fusion zone, and (3) greater joint penetration. The VPPA welding system is computerized, operating with a microprocessor, to set welding variables in accordance with set points inputs, including the manipulator and wire feeder, as well as torch control and power supply. Some other VPPA welding technique advantages are: reduction in weld repair costs by elimination of porosity; reduction of joint preparation costs through elimination of the need to scrape or file faying surfaces; reduction in depeaking costs; eventual reduction of the 100 percent-X-ray inspection requirements. The paper includes a series of schematic and block diagrams.

  4. A study of auroral activity in the nightside polar cap

    SciTech Connect

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74{degree}) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74{degree}) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N{sub 2}{sup +}) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude.

  5. Two Types of Transpolar Arc Development, Event Studies with Data Set of ASTRID-2, DMSP, FAST, and SuperDARN

    NASA Technical Reports Server (NTRS)

    Narita, Yasuhito; Maezawa, Kiyoshi; Toshinori, Mukai; Kullen, A.; Ivchenko, N.; Marklund, G.; Frederick, R.; Carlson, C. W.; Spann, J. F.; Parks, G. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Aurorae which appear in the polar cap are called transpolar arcs, polar cap arcs, sun-aligned arcs, or occasionally Theta-aurora because of its spatial distribution resembling Greek character 'Theta.' Morphology, IMF (Interplanetary Magnetic Field) relationship, and ionospheric convection patterns were studied in quest of mechanisms of transpolar arcs. Four events were analyzed: 1999/Jan/22/19:00 - 23/01:30 (1 event: a) 1999/Jan/24/06:00 - 10:00 (1 event: b) 1999/Feb/1 1/20:00 - 12/02:00 (2 events: c, d), with data set of ExB drift velocity data obtained by electric field measurements of ASTRID-2 and FAST, DMSP ion driftmeter data, and line-of-sight velocity data of SuperDARN. POLAR-UVI image data were used for spatial and temporal variations of transpolar arcs and ACE data set were used for investigation of IMF relationship. IMF-Bz was strongly positive (Bz from +8nT to +20 nT) during periods of all four transpolar arcs. In events (a),(b),(c), transpolar arcs appeared immediately after the direction of IMF turned northward, though IMF was fluctuating in event (b). A sudden increase of IMF-By, from +3nT to +18nT, was observed in event (d). Two different types of transpolar arc development were observed in POLAR-UVI: one which begins as a split from dawn or dusk sector of auroral oval and shifts poleward in event (a),(c),(d), and another which is initially a patch of auroral oval disturbed by substorm but develops as a transpolar arc, forming a growing finger-like shape from midnight sector (event b). Sunward flow, associated with positive IMF-Bz, were observed within newly-created polar caps in event (a),(c),(d). Not clear ionospheric convection pattern was seen across the polar cap arc in event (b) die to limitation of data set. In event (c), O+ with energy more than 1 keV were observed by FAST within a transpolar arc, suggesting that their origin be from plasma sheet. Transpolar arcs are thought to be projection of plasma sheet bifurcation into lobe regime. There

  6. Two Types of Transpolar Arc Development, Event Studies With Data Set of Astrid-2, Dmsp, Fast, and Superdarn

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Maezawa, K.; Kullen, A.; Ivchenko, N.; Marklund, G.; Carlson, C. W.; Spann, J. F.; Parks, G. K.; Superdarn Team

    Auroras which appear in the polar cap are called transpolar arcs, polar cap arcs, sun- aligned arcs, or occasionally Theta-aurora because of its spatial distribution resem- bling Greek character 'Theta.' Morphology, IMF(Interplanetary Magnetic Field) rela- tionship, and ionospheric convection patterns were studied in quest of mechanisms of transpolar arcs. Four events were analyzed: 1999/Jan/22/19:00 - 23/01:30 (1 event: a) 1999/Jan/24/06:00 - 10:00 (1 event: b) 1999/Feb/11/20:00 - 12/02:00 (2 events: c, d) , with data set of ExB drift velocity data obtained by electric field measurements of ASTRID-2 and FAST, DMSP ion driftmeter data, and line-of- sight velocity data of SuperDARN. POLAR-UVI image data were used for spatial and temporal variations of transpolar arcs and ACE data set were used for investigation of IMF relationship. IMF-Bz was strongly positive (Bz from +8nT to +20 nT) during periods of all four transpolar arcs. In events (a),(b),(c), transpolar arcs appeared immediately after the direction of IMF turned northward, though IMF was fluctuating in event (b). A sudden increase of IMF-By, from +3nT to +18nT, was observed in event (d). Two different types of transpolar arc development were observed by POLAR-UVI: one which begins as a split from dawn or dusk sector of auroral oval and shifts poleward in events (c),(d); another which is initially a patch of auroral oval disturbed by substorm but develops as a transpolar arc, forming a growing finger-like shape from midnight sector in event (b). Sunward flow, associated with positive IMF-Bz, were observed within newly-created polar caps in events (a),(c),(d). Not clear ionospheric convection pattern was seen across the transpolar arc in event (b) due to limitation of data set. Isotropic ions with energy more than 1 keV were observed within transpolar arcs. From these 1 observations it is concluded that the origin of transpolar arcs is from the plasma sheet. This is consistent with the view that transpolar

  7. A study of arc force, pool depression and weld penetration during gas tungsten arc welding

    SciTech Connect

    Rokhlin, S.I.; Guu, A.C. . Dept. of Welding Engineering)

    1993-08-01

    Weld pool depression, arc force, weld penetration, and their interrelations have been studied as a function of welding current. Pool depression and welding arc force have been measured simultaneously using a recently developed technique. The authors found quadratic dependence of arc force on current, confirming similar findings in previous studies. Pool depression is essentially zero below a threshold level of current (200 A in this experiment) and then increases quadratically with current. A perfectly linear relation between arc force and pool depression was found in the current range from 200 to 350 A, with pool depression onset at about 0.35 g force (0.34 [center dot] 10[sup [minus]2]N). The total surface tension and gravitational forces were calculated, from the measured surface topography, and found to be about five times that required to balance the arc force at 300 A. Thus electromagnetic and hydrodynamic forces must be taken into account to explain the measured levels of pool depression. The relation between weld penetration and pool depression for different welding currents has been established. Three distinct regimes of weld penetration on weld current were found.

  8. [Study on the arc spectral information for welding quality diagnosis].

    PubMed

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  9. Polarized-interferometer feasibility study

    NASA Technical Reports Server (NTRS)

    Raab, F. H.

    1983-01-01

    The feasibility of using a polarized-interferometer system as a rendezvous and docking sensor for two cooperating spacecraft was studied. The polarized interferometer is a radio frequency system for long range, real time determination of relative position and attitude. Range is determined by round trip signal timing. Direction is determined by radio interferometry. Relative roll is determined from signal polarization. Each spacecraft is equipped with a transponder and an antenna array. The antenna arrays consist of four crossed dipoles that can transmit or receive either circularly or linearly polarized signals. The active spacecraft is equipped with a sophisticated transponder and makes all measurements. The transponder on the passive spacecraft is a relatively simple repeater. An initialization algorithm is developed to estimate position and attitude without any a priori information. A tracking algorithm based upon minimum variance linear estimators is also developed. Techniques to simplify the transponder on the passive spacecraft are investigated and a suitable configuration is determined. A multiple carrier CW signal format is selected. The dependence of range accuracy and ambiguity resolution error probability are derived and used to design a candidate system. The validity of the design and the feasibility of the polarized interferometer concept are verified by simulation.

  10. A Detailed Geochemical Study of Island Arc Crust: The Talkeetna Arc Section, South-central Alaska

    NASA Astrophysics Data System (ADS)

    Greene, A. R.; Debari, S. M.; Kelemen, P. B.; Clift, P. D.; Blusztajn, J.

    2002-12-01

    The Talkeetna arc section in south-central Alaska is recognized as the exposed upper mantle and crust of an accreted, Late Triassic to Middle Jurassic island arc. Detailed geochemical studies of layered gabbronorite from the middle and lower crust of this arc and a diverse suite of volcanic and plutonic rocks from the middle and upper crust provide crucial data for understanding arc magma evolution. We also present new data on parental magma compositions for the arc. The deepest level of the arc section consists of residual mantle and ultramafic cumulates adjacent to garnet gabbro and basal gabbronorite interlayered with pyroxenite. The middle crust is primarily layered gabbronorite, ranging from anorthosite to pyroxenite in composition, and is the most widespread plutonic lithology. The upper mid crust is a heterogenous assemblage of dioritic to tonalitic rocks mixed with gabbro and intruded by abundant mafic dikes and chilled pillows. The upper crust of the arc is comprised of volcanic rocks of the Talkeetna Formation ranging from basalt to rhyolite. Most of these volcanic rocks have evolved compositions (<5% MgO, Mg# <60) and overlap the composition of intermediate to felsic plutonic rocks (<3.5% MgO, Mg# <45). However, several chilled mafic rocks and one basalt have primitive characteristics (>8% MgO, Mg# >60). Ion microprobe analyses of clinopyroxene in mid-crustal layered gabbronorites have parallel REE patterns with positive-sloping LREE segments (La/Sm(N)=0.05-0.17; mean 0.11) and flat HREE segments (5-25xchondrite; mean 10xchondrite). Liquids in REE equilibrium with the clinopyroxene in these gabbronorite cumulates were calculated in order to constrain parental magmas. These calculated liquids(La/Sm(N)=0.77-1.83; mean 1.26) all fall within the range of dike and volcanic rock(La/Sm(N)=0.78-2.12; mean 1.23) compositions. However, three lavas out of the 44 we have analyzed show strong HREE depletion, which is not observed in any of the liquid compositions

  11. Experimental studies of auroral arc generators

    SciTech Connect

    Suszcynsky, D.M.; Borovsky, J.E.; Thomsen, M.F.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). An all-sky video camera system was deployed in Eagle, Alaska at the foot of the magnetic field line that threads geosynchronous satellite 1989-046 as part of a campaign to study correlations of ground-based auroral activity with satellite-based plasma and energetic particle measurements. The overall intent of the project was to study magnetosphere-ionosphere coupling as it relates to the aurora, and, in particular, to look for signatures that may help to identify various auroral generator mechanism(s). During this study, our efforts were primarily directed towards identifying the generator mechanism(s) for pulsating aurora. Our data, though not conclusive, are found to support theories that propose a cyclotron resonance mechanism for the generation of auroral pulsations.

  12. Characteristics and performance of the variable polarity plasma arc welding process used in the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Liu, J. W.

    1990-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. Flow profiles and power distribution of argon plasma gas as a working fluid to produce plasma arc jet in the VPPA welding process was analyzed. Major loss of heat transfer for flow through the nozzle is convective heat transfer; for the plasma jet flow between the outlet of the nozzle and workpiece is radiative heat transfer; and for the flow through the keyhole of the workpiece is convective heat transfer. The majority of the power absorbed by the keyhole of the workpiece is used for melting the solid metal workpiece into a molten metallic puddle. The crown and root widths and the crown and root heights can be predicted. An algorithm for promoting automatic control of flow parameters and the dimensions of the final product of the welding specification to be used for the VPPA Welding System operated at MSFC are provided.

  13. Experimental Study of Arcing on High-voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  14. Experimental Study of Arcing on High-Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2003-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism suggests that such modifications can be done in the following directions: 1) To insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); 2) To change a coverglass geometry (overhang); 3) To increase a coverglass thickness; 4) To outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in a large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that stimulates the LEO operational temperature. The experimental setup is described below.

  15. Study on Seismic Zoning of Sino-Mongolia Arc Areas

    NASA Astrophysics Data System (ADS)

    Xu, G.

    2015-12-01

    According to the agreement of Cooperation on seismic zoning between Institute of Geophysics, China Earthquake Administration and Research Center of Astronomy and Geophysics, Mongolian Academy of Science, the data of geotectonics, active faults, seismicity and geophysical field were collected and analyzed, then field investigation proceeded for Bolnay Faults, Ar Hutul Faults and Gobi Altay Faults, and a uniform earthquake catalogue of Mongolia and North China were established for the seismic hazard study in Sino-Mongolia arc areas. Furthermore the active faults and epicenters were mapped and 2 seismic belts and their 54 potential seismic sources are determined. Based on the data and results above mentioned the seismicity parameters for the two seismic belts and their potential sources were studied. Finally, the seismic zoning with different probability in Sino-Mongolia arc areas was carried out using China probabilistic hazard analysis method. By analyzing the data and results, we draw the following main conclusions. Firstly, the origin of tectonic stress field in the study areas is the collision and pressure of the India Plate to Eurasian Plate, passing from the Qinghai-Tibet Plateau. This is the reason why the seismicity is higher in the west than in the east, and all of earthquakes with magnitude 8 or greater occurred in the west. Secondly, the determination of the 2 arc seismic belts, Altay seismic belt and Bolnay-Baikal seismic belt, are reasonable in terms of their geotectonic location, geodynamic origin and seismicity characteristics. Finally, there are some differences between our results and the Mongolia Intensity Zoning map published in 1985 in terms of shape of seismic zoning map, especially in the areas near Ulaanbaatar. We argue that our relsults are reasonable if we take into account the data use of recent study of active faults and their parameters, so it can be used as a reference for seismic design.

  16. Experimental Study of the Influence of Gassing Material on Blow Open Force and Arc Motion

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Chen, Degui; Liu, Hongwu; Shi, Zongqian; Wang, Jianhua

    2007-12-01

    The study of arc behavior is important to understand the dynamic phenomena concerning the interruption process in a variety of switching devices. This paper is devoted to investigate the influence of gassing material on blow open force and arc motion. To one double-breaker model, measuring the arc current, voltage and force acting on the moving conductor, the characteristics of the ratio of the emerging blow open force over arc power FB/(ui) could be obtained. With the help of a 2-D optical fiber measurement system, to one arc chamber model, arc motion behavior was measured, too. It is demonstrated that, with the action of gassing material, FB/(ui) will increase 2.5 times, and the arc will enter the splitter plates much easier.

  17. Immunotoxicology of arc welding fume: worker and experimental animal studies.

    PubMed

    Zeidler-Erdely, Patti C; Erdely, Aaron; Antonini, James M

    2012-01-01

    Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses. PMID:22734811

  18. Immunotoxicology of arc welding fume: worker and experimental animal studies.

    PubMed

    Zeidler-Erdely, Patti C; Erdely, Aaron; Antonini, James M

    2012-01-01

    Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses.

  19. Immunotoxicology of arc welding fume: Worker and experimental animal studies

    PubMed Central

    Zeidler-Erdely, Patti C.; Erdely, Aaron; Antonini, James M.

    2015-01-01

    Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses. PMID:22734811

  20. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  1. A Study of Wear and Corrosion Resistance of Arc-Sprayed Ni-Ti Composite Coatings

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Jeng, M. C.; Su, C. Y.; Huang, T. S.

    2011-12-01

    In this study, the corrosion and wear performance of Ni-Ti composite coatings with distinct parameters were investigated. The coatings were prepared by arc spraying with Ti and Ni wires fed synchronously. Structural, surface morphological, and compositional analyses of the Ni-Ti composite coatings were performed using microhardness, SEM/EDS, XRD, and DTA analysis. Electrochemical AC impedance and potentiodynamic polarization tests were carried out to examine the anticorrosion performance of the coating. Ball-on-disc dry wear tests based on the ASTM G99 standard were performed at room temperature to evaluate the antiwear properties. The DTA and XRD analysis results indicated that some intermetallic compounds such as TiNi3 and Ni-Ti alloy were present within the Ni-Ti coating. The wear resistance of the Ni-Ti composite coating is superior to that of the Ni-sprayed coating but slightly inferior to that of the Ti-sprayed coating. The corrosion resistance of the arc-sprayed Ni-Ti coating is superior to that of Ti but inferior to that of Ni. The corrosion and wear performance of the composite coating are greatly influenced by the coating microstructure and thickness.

  2. Polar aurora and F-layer dynamics studies at Eureka, Canada

    SciTech Connect

    McEwen, D.J.

    1994-12-31

    A polar observatory has been in operation at Eureka (89{degree} north magnetic latitude) since 1990, with two studies centering on the dynamics of polar arcs and F-layer patches. Instrumentation has included all-sky imagers and multichannel scanning photometers. A recent addition has been a turntable photometer mount which permits continuous scanning along the dawn-to-dusk meridian. This is optimum for high resolution studies of sun-aligned auroral arcs and other particle precipitation effects poleward of the auroral oval. F-layer patches (whose optical signatures are typically 100--300 R enhancements in 630 mn emission and lesser 558 nm enhancements) are frequently seen drifting across the pole in an antisunward direction, often in sequences and sometimes recurring through much of the 24-hr period. The instrumentation and results from these studies obtained over the 1993--94 winter are discussed.

  3. Westward prograding metamorphism in mantle peridotites from the Eastern Desert of Egypt: clues to the subduction polarity of the Arabian Nubian Shield intra-oceanic arc ophiolite

    NASA Astrophysics Data System (ADS)

    Salam Abu El-Ela, Abdel; Hamdy, Mohamed; Abu-Alam, Tamer; Hassan, Adel; Gamal El Dien, Hamed

    2013-04-01

    Neoproterozoic arc mantle beneath the Arabian Nubian Shield (ANS) in the Eastern Desert (ED) of Egypt exhumed due to intra-oceanic upthrusting are represented mainly by exposed ophiolitic peridotites serpentinized to different degree. Metamorphism is related to the Pan-African collision and the subduction of oceanic lithosphere. However, polarity of the Pan-African intra-oceanic subduction is still questionable. We here trace the variation of the degree of serpentinization and regional metamorphism of six serpentinite masses, widely distributed in the ED (from the east to the west: W (Wadi). Alam, W. Igla, W. Mubarak, G. El-Maiyit, W. Um El Saneyat and W. Atalla). This is based on their mineralogy, textures and mineral chemistry. The studied rocks have harzburgite composition and they all formed in oceanic mantle wedge in the fore-arc setting, except those from W. Atalla that formed in MOR-arc transition setting. Much difference in the degree of serpentinization is obvious among these rocks. They are mainly partly serpentinized containing primary olivine and orthopyroxene at W. Alam and W. Igla, while they are completely serpentinized in the other localities. With the increased degree of metamorphism, textures were transformed from the pseudomorphic to the non-pseudomorphic. The most common retrograde assemblage is composed of lizardite ± chrysotile± brucite± magnetite. The serpentine prograde textures can be viewed as a continuum from retrograde lizardite pseudomorphic textures, to very fine-grained transitional texture of lizardite and chrysotile, to chrysotile-antigorite interlocking texture and finally to antigorite interpenetrating texture. These textures appear to represent successive stages in a recrystallization event. In late subduction-related metamorphism and early collisional emplacement stage, mylonitic-antigorite serpentinites formed and antigorite became the major phase in G. El-Maiyit, Um El-Saneyat and W. Atalla. The polygonal units of the

  4. Numerical and experimental study of transferred arcs in argon

    NASA Astrophysics Data System (ADS)

    Bini, R.; Monno, M.; Boulos, M. I.

    2006-08-01

    The bidimensional model of the electric arc is enhanced with the plasma-electrodes interaction to predict the properties and the energy distribution of an argon arc operating with current intensities between 100 and 200 A and electrode gaps of 10 and 20 mm. An adaptive numerical insulation is applied to the cathode, to properly simulate its thermionic emission mechanism and overcome the dependence on empirical distributions of the current density at its tip. The numerical results are quantitatively compared with the data obtained from calorimetric and spectroscopical measurements, performed on a device which generates a transferred arc between a water cooled copper anode and a thoriated tungsten cathode enclosed in a stainless steel chamber. The calculation of the heat fluxes towards the electrodes permits to determine the amount of power delivered to each component of the arc system (the anode, the cathode assembly and the chamber) and to evaluate the overall efficiency of the process for different configurations. The agreement between theory and data, over the range of parameters investigated, is sensible both in the temperature profiles and in the energy distributions. In such configurations, the conduction from the hot gas is the most relevant term in the overall heat transferred to the anode, but it is the electron transfer which rules the heat transfer in the arc attachment zone. The arc attachment radius is also dependent on the process parameters and increases with the arc current (from approximately 5 mm at 100 A to 7 mm at 200 A) and the arc length. However the maximum heat flux reached on the axis decreases increasing the gap between the electrodes, although more power is delivered to the anode due to the radial spreading of the plasma. A 10 mm 200 A argon arc releases to the anode about 2.6 kW, which corresponds to 75% of the total arc power available. If the arc is extended to 20 mm the power transferred rises by nearly 350 W, but the overall

  5. Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon

    2016-07-01

    We test a new technique for studying magnetohydrodynamic turbulence suggested by Lazarian & Pogosyan, using synthetic observations of synchrotron polarization. This paper focuses on a one-point statistics, which is termed polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of the wavelength along a single line of sight. We adopt the ratio η of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is large (η \\gg 1), which characterizes a region dominated by turbulent field, or small (η ≲ 0.2), which characterizes a region dominated by the mean field, we obtain the polarization variance < {P}2> \\propto {λ }-2 or < {P}2> \\propto {λ }-2-2m, respectively. At small η, i.e., in the region dominated by the mean field, we successfully recover the turbulent spectral index from the polarization variance. We find that our simulations agree well with the theoretical prediction of Lazarian & Pogosyan. With existing and upcoming data cubes from the Low-Frequency Array for Radio Astronomy (LOFAR) and the Square Kilometer Array (SKA), this new technique can be applied to study the magnetic turbulence in the Milky Way and other galaxies.

  6. [Study on the fluctuation phenomena of arc plasma spraying jet].

    PubMed

    Zhao, Wen-hua; Liu, Di; Tian, Kuo

    2002-08-01

    The turbulence phenomenon is one of the most attractive characteristics of a DC arc plasma spraying jet. Most of the previous investigations believe that there is a laminar flow region in core of the jet. A spectrum diagnostic system has been built up in this paper to investigate these effects with the aid of high-speed digital camera. The FFT method has been applied to the analysis on the arc voltage and light signals. The influence of the arc behavior and the power supply on the jet is full-scale. It seems that there is not a laminar flow region in core of the jet. Moreover, from the light dynamic variation graph, the jet fluctuation due to the arc voltage behavior maybe is the dominant characteristic of the jet behavior.

  7. New Studies of Polar Spicules

    NASA Astrophysics Data System (ADS)

    Zirin, H.; Cameron, R.

    1998-05-01

    We have studied several hundred images of solar spicules obtained on June 18 and 19 and July 15 of 1997. The observations were made at BBSO with the 65cm telescope feeding a Zeiss 1/4 Angstroms filter and a 1536x1024 Kodak CCD. Overexposed observations were made above the limb as well as normal exposures on the limb. The filter was tuned to Hα -0.65A and a 30sec interval was used. We were limited to a single wavelength because new software was being installed in a new control computer. The images obtained were processed by high-pass digital filtering of the original FITS images and reregistered by an FFT technique. The image scale is 0.17 arcsec per pixel. The disk was observed on June 18, 1997 to detect the sources of macrospicules and the limb was observed by overexposure on June 19 to determine the height trajectory of the faintest Hα We found that: Many more spicules go up than come down. There are numerous double and multiple spicules. The macrospicules come from normal network elements and start with an "Eiffel tower" shape. There is evidence of magnetic changes underlying these features. Both long macrospicules and complex eruptions are important at the pole. There is some evidence for rotation in spicules.

  8. Validation study of Polar V800 accelerometer

    PubMed Central

    Hernández-Vicente, Adrián; De Cocker, Katrien; Garatachea, Nuria

    2016-01-01

    Background The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Methods Eighteen Caucasian active people (50% women) aged between 19–23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson’s correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. Results The devices significantly differed from each other on all outcomes (P<0.05), except for Polar V800’s alerts vs. ActiTrainer’s 1 hour sedentary bouts (P=0.595) and Polar V800’s walking time vs. ActiTrainer’s lifestyle time (P=0.484). Heteroscedasticity analyses were significant for all outcomes, except for Kcal and sitting time. The ROC-AUC value was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. Conclusions The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding “1 hour sedentary bouts” and “V800’s walking time vs. ActiTrainer’s lifestyle time” in young adults. PMID:27570772

  9. Study of the Polarization Deterioration During Physics Stores in RHIC Polarized Proton Runs

    NASA Astrophysics Data System (ADS)

    Duan, Z.; Qin, Q.; Bai, M.; Roser, T.

    2016-02-01

    As the only high energy polarized proton collider in the world, the Relativistic Heavy Ion Collider (RHIC) has achieved a great success in colliding polarized proton beams up to 255GeV per beam energy with over 50% average store polarizations for spin physics studies. With the help of Siberian snakes as well as outstanding beam control during the acceleration, polarization loss during acceleration up to 100 GeV is negligible. However, about 10% polarization loss was observed between acceleration from 100 GeV to 255 GeV. In addition, a mild polarization deterioration during long store for physics data taking was also observed. In this paper, studies in understanding the store depolarizing mechanism is reported, including the analysis of polarization deterioration data based on the past couple of RHIC polarized proton runs.

  10. Total dural irradiation: RapidArc versus static-field IMRT: A case study

    SciTech Connect

    Kelly, Paul J.

    2012-07-01

    The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45 Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, RapidArc

  11. Dynamic electron arc radiotherapy (DEAR): a feasibility study.

    PubMed

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-20

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm(2) and 3×10 cm(2) for a 15×15 cm(2) applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min(-1)). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  12. Polarized Drell-Yan studies at COMPASS

    NASA Astrophysics Data System (ADS)

    Quintans, Catarina

    2014-03-01

    The COMPASS experiment at CERN will soon start a new series of measurements using a pion beam and a transversely polarized target. The study of the polarized Drell-Yan process will provide an insight of the transverse momentum dependent parton distribution functions (TMDs), which is complementary to their extraction from semi-inclusive deep inelastic scattering (SIDIS), previously measured in COMPASS. The sign change of Sivers and Boer-Mulders TMDs, when accessed from SIDIS or Drell-Yan, is predicted by theory. Its experimental observation is considered an essential test of the TMD approach. The experimental aspects of the Drell-Yan measurement in COMPASS are discussed. The set-up optimization, driven by the results of several beam tests are presented, as well as the expected event rates and statistical errors of the azimuthal asymmetries.

  13. Controls on the location of arc volcanoes: an Andean study

    NASA Astrophysics Data System (ADS)

    Scott, Erin; Allen, Mark B.; McCaffrey, Kenneth J. W.; Macpherson, Colin G.; Davidson, Jon P.; Saville, Christopher

    2016-04-01

    Depth corrected data of earthquake hypocentres from South America are used to generate new models of depth to the subducting Nazca slab. This new slab model shows a general correlation between the 100 km depth to the slab, the western edge of the Altiplano-Puna Plateau (defined by the 3500 m elevation contour) and the frontal volcanic arc. Across the entire Altiplano-Puna Plateau, volcanic centres are found to be either at or above the 3500 m critical elevation contour, which also defines the cut off for seismogenic thrusting. Normal faults are only found above this critical elevation contour, suggesting that there may be a change in the stress regime associated with high elevations in the plateau. The Salar de Atacama basin (23-24oS) defines a major break in topography on the west side of the Puna Plateau. Here, the volcanism deviates around the eastern edge of the basin, approximately 80 km inland from the general trend of the arc, remaining above the 3500 m elevation contour. The volcanoes bordering the Salar de Atacama have a depth to slab approximately 30 km deeper than those in the adjacent arc segment 200 km to the north of the basin. Across this distance there is no significant difference in subduction parameters such as the slab dip, subduction rate and age of the oceanic plate entering the trench. It is likely, therefore, that melt forms at the same depth in both locations, as the factors affecting the melt source are constant. However, in the case of the Salar de Atacama region, magma is diverted to the east due to preferential emplacement under the higher elevations of the plateau. We suggest that although mantle and subduction processes have a primary control on the location of arc volcanoes, shaping the general trend of the arc, they cannot explain anomalies from the trend. Such anomalies, such as the arc deviation around the Atacama basin, can be explained by the influence of structures and stress regime within the overriding plate.

  14. A receiver function study of crustal properties in the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Arnaiz-Rodríguez, M. S.; Niu, F.; Schmitz, M.

    2014-12-01

    In the present study, we report the crustal thickness and mechanical properties along the Lesser Antilles Arc by employing receiver function technique. To do so, we collected teleseismic data, available in the IRIS online database, recorded by several broadband stations that have been deployed in the arc. The selected events have epicentral distances from 30° to 90°, and magnitudes of 5.7 or larger. Unfortunately, we were only able to apply the method to 9 of the 25 stations deployed in the arc, due to nosy data (possibly because of the effects of strong winds, waves and tides), recording problems, and short recording periods. We used the recordings from P-to-S conversion in order to estimate the crustal thickness by depth staking the computed receiver functions. We also analyzed crustal reverberations found in some stations to estimate the crustal thickness and the average crustal Vp/Vs ratio, as well as the Poisson's ratio, by applying H-k matrix-search methodology. We found large variations in the crustal thickness along the arc: the thinnest crust (~22 km) was found in Barbuda Island at the northern-exterior section of the arc, while the thickest crust (~36.8 km) was found in Anguilla Island at the northern-central section of the arc. In general, the northern sections of the arc have a thicker crust with a mean value of ~29 km, while the southern sections have a thinner crust with a mean value ~23 km, and this might be related to the general asymmetry of the arc (the northern part is much more active and complex than the southern part). Poisson's ratio estimated along the arc vary from 0.266 (Vp/Vs=1.777) to 0.3 (Vp/Vs=1.87) which are relatively consistent with mafic island arc origin, although the carbonatic cover of the island might influence the lower values in the range, while higher values could be associated to the old Cretaceous basement of some of the northern islands. We hope to be able collect more information from relatively new stations of the

  15. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  16. One more study of argon arc binding to pure tungsten cathode

    NASA Astrophysics Data System (ADS)

    Gadzhiev, M. Kh.; Sargsyan, M. A.; Tereshonok, D. V.; Tyuftyaev, A. S.

    2016-08-01

    Pyrometric and spectroscopic investigations of pure tungsten cathode in argon arc plasma discharge at atmospheric pressure are reported. The distribution of surface cathode temperature and the radial distribution of plasma temperature at different distance from the cathode tip were measured. We conducted a comparison between our work and other studies on arc discharges where cathodes from lanthanated (W-2% La2O3) and thoriated (W-2% ThO2) tungsten were used.

  17. Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa

    2016-10-01

    This paper describes an investigation on differences in interactions between laser and arc plasma during laser-gas tungsten arc (LT) welding and laser-gas metal arc (LM) welding. The characteristics of LT heat source and LM heat source, such as plasma behavior, heat penetration ability and spectral information were comparably studied. Based on the plasma discharge theory, the interactions during plasma discharge were modeled and analyzed. Results show that in both LT and LM welding, coupling discharge between the laser keyhole plasma and arc happens, which strongly enhance the arc. But, the enhancing effect in LT welding is much more sensitive than that in LM welding when parameters are adjusted.

  18. Black phosphorus edges: a polarized Raman study

    NASA Astrophysics Data System (ADS)

    Ribeiro, H.; Villegas, C.; Bahamon, D.; Castro Neto, A.; de Souza, E.; Rocha, A.; Pimenta, M.; de Matos, C.

    Black phosphorus (BP) has been recently exfoliated down to few-layer thicknesses revealing numerous interesting features such as a tunable direct bandgap. Ever since, demonstrations of BP electronic devices have bloomed, as well as studies of the electric, optical, mechanical and thermal properties of its bulk and few-layer forms. However, the edges of BP crystals have, so far, been poorly characterized, even though the terminations of layered crystals are known to possess a range of interesting properties. In this work, the edges of exfoliated BP flakes are characterized by polarized confocal Raman spectroscopy. We will present experimental Raman spectra at zigzag and armchair edges, as well as density functional theory calculations that explain the peculiarities of the experimental data. Fapesp, INCT/Nanocarbono, Fapemig, CNPq, MackPesquisa, Grid-Unesp, CENAPAD-SP, and NRF.

  19. Reconstructing subduction polarity through the geochemistry of mafic rocks in a Cambrian magmatic arc along the Gondwana margin (Órdenes Complex, NW Iberian Massif)

    NASA Astrophysics Data System (ADS)

    Andonaegui, P.; Sánchez-Martínez, S.; Castiñeiras, P.; Abati, J.; Arenas, R.

    2016-04-01

    In the allochthonous complexes of the NW Iberian Massif, the Upper Units have been interpreted as a section of a peri-Gondwanan magmatic arc active from Middle Cambrian to Early Ordovician times. The main plutonic bodies intruding the arc metasediments are the Monte Castelo gabbronorites and the Corredoiras orthogneisses, which include minor metagabbronorite bodies, both dated at ca 500 Ma. The geochemical features of Monte Castelo metagabbronorites indicate a tholeiitic affinity, with negative Nb anomaly; its 143Nd/144Nd ratios are high (0.5143119-0.513019), whereas initial 87Sr/86Sr ratios are low (0.702562-0.703174), with positive ɛNdi values (+7.8 to +5.4). The geochemistry of Corredoiras metagabbronorites indicates a calc-alkaline affinity, also with negative Nb anomaly, low 143Nd/144Nd (0.512575-0.512436) and high initial 87Sr/86Sr (0.705082-0.706684), ɛNdi values ranging between -0.65 and +1.83. In the ɛNd versus age diagram, Monte Castelo samples show compositions equivalent to the contemporaneous depleted mantle. Corredoiras metagabbros have much lower ɛNdi values compared with Monte Castelo samples, with older model ages ranging between 1165 and 1291 Ma, suggesting contamination of the original mafic mantle-derived magmas with an older continental crust. These geochemical features can be linked to the setting of a mature volcanic arc, in which Monte Castelo metagabbros were located close to the trench, while Corredoiras metagabbros would be in a relatively distant position from the trench, thus indicating subduction polarity.

  20. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    NASA Astrophysics Data System (ADS)

    Syuhada, Hananto, Nugroho D.; Puspito, Nanang T.; Anggono, Titi; Yudistira, Tedi

    2016-03-01

    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with the earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.

  1. Emission polarization study on quartz and calcite.

    PubMed

    Vincent, R K

    1972-09-01

    Spectral emission polarization of quartz and calcite polished plates for observation angles of 20 degrees and 70 degrees is calculated by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width (Deltalambda approximately 1.5 microm) spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band (Deltalambda approximately 6microm) for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected mediumwidth filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  2. Polarized IR studies of silica glasses exposed to polarized excimer radiation

    SciTech Connect

    Smith, Charlene M.; Borrelli, Nicholas F.; Tingley, James E.

    2006-12-15

    Silica glass exhibits a permanent anisotropic response, polarization-induced birefringence (PIB), when exposed to short-wavelength polarized light. This behavior has been correlated with the OH content of the glass. In this paper we describe polarized infrared studies of silica glasses of different OH content exposed with polarized 157 nm laser light. Changes in the fundamental OH band as a consequence of exposure are shown. We find differential bleaching of a particular OH band where OH species that are oriented parallel to the incident exposing polarization undergo greater bleaching than those oriented perpendicular. The preferential bleaching as a function of exposure time correlates strongly with the evolution of PIB, leading to a bleaching model of OH that is causally linked to PIB.

  3. Influence of Smile Arc and Buccal Corridors on Facial Attractiveness: A Cross-sectional Study

    PubMed Central

    Gaikwad, Shashank; Vaz, Anna C; Singh, Baldeep; Taneja, Lavina; Vinod, KS; Verma, Prateek

    2016-01-01

    Introduction Two aspects of the smile: the Smile Arc (SA) and Buccal Corridors (BC) have been the interest of the orthodontist in recent years. Aim The present study was undertaken to evaluate the influence of the smile arc and buccal corridors on facial attractiveness as evaluated by orthodontists, general dentists and laymen. Materials and Methods Two subjects (one male & one female) were selected from the regional population fulfilling the criteria of an ideal smile arc and ideal buccal corridors. Frontal smile view photographs of these subjects were taken and modified by using adobe photoshop 7.0 to create combination of three smile arc variance and three buccal corridors variations respectively which were shown to 25 orthodontists, 25 general dentists & 25 laymen, to rate the facial attractiveness of each image on a rating scale. Results All the three groups (laypersons, dentists and orthodontists) showed significant difference in ratings, indicating that they had different perceptions on the facial attractiveness. Conclusion Orthodontists were more precise in discerning the smile arc and buccal corridors compared to dentists and laypersons. PMID:27790573

  4. Polarization studies with NuSTAR

    NASA Astrophysics Data System (ADS)

    Lotti, Simone; Natalucci, Lorenzo; Giommi, Paolo; Grefenstette, B.; Harrison, Fiona A.; Madsen, Kristin K.; Perri, Matteo; Puccetti, Simonetta; Zoglauer, A.

    2012-09-01

    The capability of NuSTAR to detect polarization in the Compton scattering regime (>50 keV) has been investigated. The NuSTAR mission, flown on June 2012 a Low Earth Orbit (LEO), provides a unique possibility to confirm the findings of INTEGRAL on the polarization of cosmic sources in the hard X-rays. Each of the two focal plane detectors are high resolution pixellated CZT arrays, sensitive in the energy range ~ 3 - 80 keV. These units have intrinsic polarization capabilities when the proper information on the double events is transmitted on ground. In this case it will be possible to detect polarization from bright sources on timescales of the order of 105 s

  5. Back-arc rifting at a continental margin: A case study from the Okinawa trough

    NASA Astrophysics Data System (ADS)

    Arai, R.; Kaiho, Y.; Takahashi, T.; Nakanishi, A.; Fujie, G.; Kodaira, S.; Kaneda, Y.

    2014-12-01

    The Okinawa trough, a back-arc basin formed behind the Ryukyu arc-trench system, southwest Japan, represents an active rifting zone associated with extension of the continental lithosphere. The basin is located at the southeastern margin of the Eurasian plate and characterized by axial rift valleys with over 1.0 km depth and ~100 km width. Previous studies suggest that the early rifting phase started late Miocene and crustal extension is currently active at a full rate of 30 to 50 mm/yr. Within the basin, numerous active hydrothermal vents are observed, suggesting that the crustal rifting enhances melt/heat transfer from the deep mantle up to the seafloor. However, internal structure beneath the back-arc basin and its relation to the rifting system are little documented. Complex regional tectonic setting, such as active collision in Taiwan to the west, oblique subduction of the Philippine Sea slab, and changing spreading rate along the rift axis, may also have significant influences on the thermal structure and flow within the mantle wedge, but their relative roles in controlling the rifting mode and magmatic supply are still poorly understood. As a step toward filling this gap in knowledge, we started a new 7-year project that consists of four two-dimensional active-source seismic experiments and extensive passive-source seismic observations along the Ryukyu arc. In 2013, active-source seismic data were collected on the first line that crosses the southernmost part of the Ryukyu arc-trench and Okinawa trough at 124-125°E. For refraction/wide-angle reflection analyses, a total of 60 ocean bottom seismographs were deployed with approximately 6 km spacing on a ~390-km-long profile. On the same line, multichannel seismic (MCS) reflection profiling was also carried out. Seismic velocity models obtained by first arrival tomography show that beneath the volcanic arc a thick layer (~10 km) of the middle crust with Vp = 6.0-6.8 km/s is developed, a typical feature in the

  6. Study on a negative hydrogen ion source with hot cathode arc discharge

    SciTech Connect

    Lin, S. H. Fang, X.; Zhang, H. J.; Qian, C.; Ma, B. H.; Wang, H.; Li, X. X.; Zhang, X. Z.; Sun, L. T.; Zhang, Z. M.; Yuan, P.; Zhao, H. W.

    2014-02-15

    A negative hydrogen (H{sup −}) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H{sup −} beam with ε {sub N,} {sub RMS} = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I{sub e{sup −}}/I{sub H{sup −}} were experimentally studied. The discussion on the result, and opinions to improve the source were given.

  7. Feasibility study of a periodic arc compressor in the presence of coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.

    2016-01-01

    The advent of short electron bunches in high brightness linear accelerators has raised the awareness of the accelerator community to the degradation of the beam transverse emittance by coherent synchrotron radiation (CSR) emitted in magnetic bunch length compressors, transfer lines and turnaround arcs. Beam optics control has been proposed to mitigate that CSR effect. In this article, we enlarge on the existing literature by reviewing the validity of the linear optics approach in a periodic, achromatic arc compressor. We then study the dependence of the CSR-perturbed emittance to beam optics, mean energy, and bunch charge. The analytical findings are compared with particle tracking results. Practical considerations on CSR-induced energy loss and nonlinear particle dynamics are included. As a result, we identify the range of parameters that allows feasibility of an arc compressor for driving, for example, a free electron laser or a linear collider.

  8. [Study on the thermal radiation polarization characteristics of ice].

    PubMed

    Wang, Ting-Ting; Zhao, Yun-Sheng; Zhang, Hong-Yan; Zhang, Xia; Zhang, Li-Li

    2014-03-01

    As an important parameter of the global energy balance, climate, hydrological and ecological model, ice directly affects the energy balance of the earth-atmosphere system, weather and climate. It is of great significance to use the thermal infrared polarization technology to study ice thermal radiation. For the ice monitoring and the impact of global climate change on the ice, studies on ice thermal radiation polarization characteristics were conducted based on the wavelength, detection angle and azimuth angle. The results show that the wavelength has an obvious impact on the ice thermal radiation polarization properties. The polarized radiance of four bands shows that L(CH1) > L(CH3) > L(CH4) > L(CH2) while the polarization brightness temperature shows that T(CH4) > T(CH1) > TCH2 > TCH3. It's better to use the brightness temperature of the third channel than the radiance to study the thermal radiation polarization. The detection angle affects the ice thermal radiation polarization characteristics greatly and there are some differences between the polarization angles. The brightness temperature of ice is the lowest in the detection angle of 10 degrees and the polarization angle of 30 degrees, which are non-accidental factors. These was closely related to ice physical and chemical properties. The degree of ice polarization performance shows that P0 < P40 polarization angles. The degree of polarization changes with the azimuth angles and plays an important role in ice physical and chemical characteristics monitoring. The impact of azimuth angle on the ice thermal radiation polarization characteristics was not significant. And it is affected by the roughness of the surface, organizational structure and other factors which are direct results of ice emitted radiation at different azimuth angles.

  9. Welding arc and plasma studies using real time, multipass holographic interferometry

    NASA Technical Reports Server (NTRS)

    Deason, Vance

    1987-01-01

    Flow visualization of the plasma process in a welding arc is being studied with a multipass Argon ion interferometer. High speed movies at 10,000 frames per/sec are taken. The multipass interferometer and several interferograms of the plasma near the electrode of the welding are given. Digitization of the fringes is currently done by hand.

  10. Study on Surface Depression of Ti-6Al-4V with Ultrahigh-Frequency Pulsed Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Mingxuan, Yang; Zhou, Yang; Bojin, Qi

    2015-08-01

    Molten pool surface depression was observed with the arc welding process that was caused by arc pressure. It was supposed to have a significant effect on fluid in the molten pool that was important for the microstructure and joint properties. The impact of arc force was recognized as the reason for the surface depression during arc welding. The mathematical distribution of arc force was produced with the exponent and parabola models. Different models showed different concentrations and attenuations. The comparison between them was discussed with the simulation results. The volume of fluid method was picked up with the arc force distribution model. The surface depression was caused by the arc force. The geometry of the surface depression was discussed with liquid metal properties. The welding process was carried out with different pulsed frequencies. The results indicated the forced depression exists in molten pool and the geometry of depression was hugely due to the arc force distribution. The previous work calculated the depression in the center with force balance at one point. The other area of gas shielding was resistant by the reverse gravity from the feedback of liquid metal that was squeezed out. The article discusses the pressure effect with free deformation that allowed resistance of liquid and was easy to compare with different distributions. The curve profiles were studied with the arc force distributions, and exponent model was supposed to be more accurate to the as-weld condition.

  11. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  12. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  13. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing and implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.

  14. Polar nephelometer for atmospheric particulate studies.

    PubMed

    Hansen, M Z; Evans, W H

    1980-10-01

    A unique polar nephelometer was designed and constructed for the measurement of atmospheric particulate characteristics. The nephelometer produces visible light from a self-contained laser to irradiate an air sample drawn into the instrument. The light scattered from the particulates and molecules in the sample is detected as a function of scattering angle for each of four different incident light polarizations. These measurements are used to determine the particulate scattering matrix which is a function of the size, shape, and index of refraction of the particles. The region of sensitivity for the measurements corresponds to the size range of particles that strongly affects visible radiative transfer in the atmosphere, which is the primary application for the derived information. PMID:20234624

  15. Studies of polar stratospheric cloud formation.

    PubMed

    Prenni, A J; Tolbert, M A

    2001-07-01

    Stratospheric ozone depletion was first reported in 1985. Early on, researchers identified polar stratospheric clouds (PSCs) as being important in chemistry related to ozone depletion. PSCs exist as crystalline water-ice particles (type II), and as crystalline (type Ia) or liquid (type Ib) particles stable above the water-ice frost point. Uncertainty remains concerning the composition and formation mechanism of the most common PSC, type Ia. Here, we consider likely formation mechanisms for type Ia PSCs.

  16. Ionospheric flow shear associated with the preexisting auroral arc: A statistical study from the FAST spacecraft data

    NASA Astrophysics Data System (ADS)

    Jiang, Feifei; Kivelson, Margaret G.; Strangeway, Robert J.; Khurana, Krishan K.; Walker, Raymond

    2015-06-01

    An auroral substorm is a disturbance in the magnetosphere that releases energy stored in the magnetotail into the high-latitude ionosphere. By definition, an auroral substorm commences when a discrete auroral arc brightens and subsequently expands poleward and azimuthally. The arc that brightens is usually the most equatorward of several auroral arcs that remain quiescent for ~5 to ~60 min before the breakup commences. This arc is often referred to as the "preexisting auroral arc (PAA)" or the "growth-phase arc." In this study, we use FAST measurements to establish the statistics of flow patterns near PAAs in the ionosphere. We find that flow shear is present in the vicinity of a preexisting arc. When a PAA appears in the evening sector, enhanced westward flow develops equatorward of the arc, whereas when a PAA appears in the morning sector, enhanced eastward flow develops poleward of the arc. We benchmark locations of the PAAs relative to large-scale field-aligned currents (FACs) and convective flows in the ionosphere, finding that the arc forms in the upward current region within ~1° of the Region 1/Region 2 boundary in all local time sectors from 20 MLT to 03 MLT. We also find that near midnight in the Harang region, most of the PAAs lie within 0.5° poleward of the low-latitude Region 1/Region 2 currents boundary and sit between the westward and eastward flow peak but equatorward of the flow reversal point. Finally, we examine arc-associated electrodynamics and find that the FAC of the PAA is mainly closed by the north-south Pedersen current in the ionosphere.

  17. Arc-Plasma Wire Spraying: An Optical Study of Process Phenomenology

    NASA Astrophysics Data System (ADS)

    Gulyaev, I. P.; Dolmatov, A. V.; Kharlamov, M. Yu.; Gulyaev, P. Yu.; Jordan, V. I.; Krivtsun, I. V.; Korzhyk, V. M.; Demyanov, O. I.

    2015-12-01

    In the present paper, we report on the results of an experimental study of heat- and mass-transfer processes in a Plazer 30-PL-W plasma-jet facility used for arc-plasma wire spraying. Using an original optical diagnostic system, we have studied melting behavior of the metal wire, break up and atomization of liquid metal. For the first time, experimental data on the in-flight velocity and temperature of spray particles in arc-plasma wire spraying were obtained. In spite of moderate particle velocities (about 50 m/s), the obtained steel coatings proved to have a low porosity of 1.5%. While studying the spraying process of tungsten wire, we observed the occurrence of anomalous high-velocity (over 4000 m/s) outbursts ejected from the surface of liquid metal droplets. The nature of such outbursts calls for further study.

  18. Ionization and electric field properties of auroral arcs during magnetic quiescence

    SciTech Connect

    Robinson, R.M.; Mende, S.B. )

    1990-12-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm{sup 2}s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern.

  19. Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Yiu, I.; Anderson, C.; Tsuda, T.; Ogawa, Y.; Nozawa, S.; Aruliah, A.; Howells, V.; Baddeley, L. J.; McCrea, I. W.; Wild, J. A.

    2011-05-01

    We report on the first mesoscale combined ionospheric and thermospheric observations, partly in the vicinity of an auroral arc, from Svalbard in the polar cap on 2 February 2010. The EISCAT Svalbard radar employed a novel scanning mode in order to obtain F and E region ion flows over an annular region centered on the radar. Simultaneously, a colocated Scanning Doppler Imager observed the E region neutral winds and temperatures around 110 km altitude using the 557.7 nm auroral optical emission. Combining the ion and neutral data permits the E region Joule heating to be estimated with an azimuthal spatial resolution of ˜64 km at a radius of ˜163 km from the radar. The spatial distribution of Joule heating shows significant mesoscale variation. The ion-neutral collision frequency is measured in the E region by combining all the data over the entire field of view with only weak aurora present. The estimated ion-neutral collision frequency at ˜113 km altitude is in good agreement with the MSIS atmospheric model.

  20. Polarization in Thermal Emission from Hot Jupiters: Preliminary Studies

    NASA Astrophysics Data System (ADS)

    Kopparla, Pushkar; Natraj, Vijay; Yung, Yuk; Spurr, Robert

    2016-10-01

    Scattering of thermal emission from a deep, hot region by high altitude atmospheric particles induces polarization in the scattered light. However, symmetries on a spherical planet with a uniform spatial distribution of scattering particles usually result in zero net polarization. If the symmetry is broken, either by rotation induced oblateness or by spatially inhomogeneous cloud or haze particle distributions, polarization may become observable. Additionally, variation of temperatures across the planetary disc could also contribute to asymmetries, giving us a new way to measure the day-night temperature contrast on hot exoplanets. We perform modeling studies using a multiple scattering, radiative transfer model for polarized light to understand how to distinguish between various symmetry breaking phenomena and map an observed polarization to a specific atmospheric state. The models can be used to predict the most suitable candidates for observation, and once observations are available, to retrieve various parameters of interest.

  1. Polarization Tracking Study of Earth Station in Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ma, Lihua; Hu, Chao; Pei, Jun

    2016-01-01

    Satellite communications, in telecommunications, the use of satellite can provide communications links between various points on the earth. Typical satellite communication is composed of a communication satellite, a signal transmitter and a signal receiver. As the signal transmitter or the signal receiver, an earth station plays a vital role in the satellite communications. Accurately adjustment of antenna azimuth, elevation and polarization angles on the earth station is the key to satellite communications. In the present paper, a study of polarization tracking of earth station is presented, and a detailed adjustment procession of the polarization angle is given. Combing with observation series of MEASAT-2 satellite in geostationary orbit, the polarization tracking accuracy is verified. The method can be embeded into computer program of antenna polarization adjustment in earth station.

  2. Polarization and studies of evolved star mass loss

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Riebel, David; Meixner, Margaret

    2012-05-01

    Polarization studies of astronomical dust have proven very useful in constraining its properties. Such studies are used to constrain the spatial arrangement, shape, composition, and optical properties of astronomical dust grains. Here we explore possible connections between astronomical polarization observations to our studies of mass loss from evolved stars. We are studying evolved star mass loss in the Large Magellanic Cloud (LMC) by using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We use the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS), in order to model this mass loss. To model emission of polarized light from evolved stars, however, we appeal to other radiative transfer codes. We probe how polarization observations might be used to constrain the dust shell and dust grain properties of the samples of evolved stars we are studying.

  3. Polarization-correlation study of biotissue multifractal structure

    NASA Astrophysics Data System (ADS)

    Olar, O. I.; Ushenko, A. G.

    2003-09-01

    This paper presents the results of polarization-correlation study of multifractal collagen structure of physiologically normal and pathologically changed tissues of women"s reproductive sphere and skin. The technique of polarization selection of coherent images of biotissues with further determination of their autocorrelation functions and spectral densities is suggested. The correlation-optical criteria of early diagnostics of appearance of pathological changes in the cases of myometry (forming the germ of fibromyoma) and skin (psoriasis) are determined. This study is directed to investigate the possibilities of recognition of pathological changes of biotissue morphological structure by determining the polarization-dependent autocorrelation functions (ACF) and corresponding spectral densities of tissue coherent images.

  4. Contribution to the study of the electric arc: Erosion of metallic electrodes. Thesis

    NASA Technical Reports Server (NTRS)

    Castro, A.

    1986-01-01

    A procedure is described for determining the extent of arc electrode erosion (excluding erosion due to transfer of material) from measurements of emitted spectral beam intensity. The relation between emission intensity and plasma temperature is ascertained. Experimental study of several combinations of monometallic electrodes shows that the method is suitable for determining cathode erosion, although the anode metal affects the extent of erosion. Combinations of electrodes which lead to low erosion of silver are reported.

  5. Study on Seismicity of Sino-Mongolia Arc Areas

    NASA Astrophysics Data System (ADS)

    Xu, Guangyin; Wang, Suyun

    2016-04-01

    Using the earthquake catalogue from China, Mongolia and the global catalogue, the uniform catalogue of North China, Mongolia and adjacent areas, which is within the region 80-130°E, 40-55°N, has been established by Institute of Geophysics, China Earthquake Administration and Research Center of Astronomy and Geophysics, Mongolian Academy of Science for the seismic hazard analysis and seismic zoning map of Mongolia according to the following principles. 1) Earthquakes, which just exist in one catalogue, need to be verified further. If the earthquakes occurred in the country where the catalog comes from, then they will be adopted. If not, it should be checked with other more data. 2) The events that come from the three data sources have be checked and verified as followings. (1) The parameters of earthquakes that occurred in China will be taken from China catalog. (2)The parameters of earthquakes that occurred in Mongolia will be taken from Mongolia catalog. (3) The parameters of earthquakes that occurred in the adjacent areas will be taken from the global catalog by Song et al. According to the uniform catalogue, the seismicity of the North China, Mongolia and adjacent areas is analyzed, and the conclusions as followings are made. 1) The epicenter map can be roughly divided into two parts, bounded by the longitude line 105°E , in accordance with the "North-South Seismic Belt" of China. The seismicity is in a high level with many strong earthquakes in the west and is in a low level with little strong events in the east. 2) Most earthquakes are shallow-focus events, but there are also several middle or deep-focus events in the study area. 3) Earthquakes with magnitude greater than 5 are basically complete since 1450 A.D., and the seismicity of the study areas is in a high level since 1700 A. 4) Two seismic belts, Altay seismic belt and Bolnay-Baikal seismic belt, are determined according to the epicenters and tectonics. 5) The b-values of magnitude - frequency

  6. Studies of interactive plasma processes in the polar cusp

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter, Jr.

    1992-01-01

    Progress during the reporting period is presented. Several distinctly different areas of research are presently being pursued: (1) studies of the thermal structure of polar outflows; (2) Prognoz data analysis; and (3) Ulysses Jupiter encounter.

  7. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    SciTech Connect

    Ruzic, David N.

    2013-04-29

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o -normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas.

  8. Application and study of land-reclaim based on Arc/Info

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Zhang, Ruiju; Wang, Zhian; Li, Shiyong

    2005-10-01

    This paper firstly puts forward the evaluation models of land-reclaim, which is derived from the thoery of Fuzzy associative memory nerve network and corresponding supplemental CASE tools, based on the model the mode of land reclaim can determined, and then the elements of land-reclaim are displayed and synthesized visually and virtually by virtue of Arc/Info software. In the process of land reclaim, it is particularly important to build the model of land-reclaim and to map the distribution of soil elements. In this way rational and feasible schemes are adopted in order to instruct the project of land reclaim. This thesis mainly takes the fourth mining area of East Beach as an example and puts this model into practice. Based on Arc/Info software the application of land-reclaim is studied and good results are achieved.

  9. Imaging skin pathologies with polarized light: Empirical and theoretical studies

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica C.

    The use of polarized light imaging can facilitate the determination of skin cancer borders before a Mohs surgery procedure. Linearly polarized light that illuminates the skin is backscattered by superficial layers where cancer often arises and is randomized by the collagen fibers. The superficially backscattered light can be distinguished from the diffused reflected light using a detector analyzer that is sequentially oriented parallel and perpendicular to the source polarization. A polarized image pol = parallel - perpendicular / parallel + perpendicular is generated. This image has a higher contrast to the superficial skin layers than simple total reflectance images. Pilot clinical trials were conducted with a small hand-held device for the accumulation of a library of lesions to establish the efficacy of polarized light imaging in vivo. It was found that melanoma exhibits a high contrast to polarized light imaging as well as basal and sclerosing cell carcinoma. Mechanisms of polarized light scattering from different tissues and tissue phantoms were studied in vitro. Parameters such as depth of depolarization (DOD), retardance, and birefringence were studied in theory and experimentally. Polarized light traveling through different tissues (skin, muscle, and liver) depolarized after a few hundred microns. Highly birefringent materials such as skin (DOD = 300 mum 696nm) and muscle (DOD = 370 mum 696nm) depolarized light faster than less birefringent materials such as liver (DOD = 700 mum 696nm). Light depolarization can also be attributed to scattering. Three Monte Carlo programs for modeling polarized light transfer into scattering media were implemented to evaluate these mechanisms. Simulations conducted with the Monte Carlo programs showed that small diameter spheres have different mechanisms of depolarization than larger ones. The models also showed that the anisotropy parameter g strongly influences the depolarization mechanism. (Abstract shortened by UMI.)

  10. An in vivo study to compare a plasma arc light and a conventional quartz halogen curing light in orthodontic bonding.

    PubMed

    Pettemerides, A P; Sherriff, M; Ireland, A J

    2004-12-01

    The purpose of this study was to compare the effectiveness of a plasma arc lamp with a conventional tungsten quartz halogen lamp in orthodontic bonding. Twenty consecutive patients had their brackets bonded either with Transbond XT (n = 10) or Fuji Ortho LC (n = 10). In total, 352 teeth were bonded, 176 in each group. Using a randomized cross-mouth control study design, where diagonally opposite quadrants were assigned a particular treatment, the bonds were then either cured with the control light, namely a halogen lamp, or a plasma arc lamp. The halogen light was used for 20 seconds per tooth and the plasma arc lamp for 3 seconds per tooth. The measurement parameter used was bond failure and the patients were monitored for a period of 6 months following initial bond placement. In the Transbond XT group, the proportion of bond failures was 3.41 per cent for both the halogen and the plasma arc lamp. For the Fuji Ortho LC group, the proportions were 11.4 and 10.2 per cent, respectively. No difference was observed with respect to in-service bond failure proportions between bonds cured with the plasma arc or the conventional halogen lamp, irrespective of the bonding agent. Use of the plasma arc lamp could therefore lead to considerable savings in clinical time. However, this must be weighed against the increased purchase price of the plasma arc lamp. PMID:15650065

  11. Astronomical polarization studies at radio and infrared wavelengths. Part 2: Far infrared polarization of dust clouds

    NASA Technical Reports Server (NTRS)

    Dennison, B. K.

    1976-01-01

    Far infrared polarization of dust clouds is examined. The recently observed 10 micron polarization of the Orion Nebula and the Galactic Center suggests that far infrared polarization may be found in these objects. Estimates are made of the degree of far infrared polarization that may exist in the Orion Nebula. An attempt to observe far infrared polarization from the Orion Nebula was carried out.

  12. Experimentally Study of Micro-Cathode Arc Thruster (μCAT)

    NASA Astrophysics Data System (ADS)

    Zhuang, Taisen; Shashurin, Alexey; Chiu, Dereck; Teel, George; Beilis, Isak; Keidar, Michael

    2012-10-01

    A micro-Newton level cathode arc thruster (μCAT) with magnetically enhanced system has been proposed to address the long-time operation of micro-thruster for the nano-satellite propulsion. One important parameter governing the thrust force is velocity of the ions. In this work, we present the methodology of the Ti ion velocities measurement produced by μCAT and especially address the influence of magnetic field on the ion motion. The ion velocities are studied by means of time-of-flight (TOF) method equipped with enhanced ion detection system (EIDS). The EIDS method consists of perturbations (spikes) on arc discharge current waveform to generate denser plasma bunches and following detection of moments of time when perturbations arrives at the detectors. The novel double probes ion detection system could overcome the problem of noise generation simultaneously with the arc current perturbation associated with utilization of conventional single probe detector. When plasma bunch crosses each of the double probes, the spike on the probe current is detected following variation of plasma density. By measuring the delay times between the neighbor probes the average ion velocity can be determined. The Ni ion velocities are measured to compare with Ti ion velocities.

  13. A paradigm study for assessment of phenylalanine’s damage under arc-discharge irradiation

    NASA Astrophysics Data System (ADS)

    Ke, Zhigang; Huang, Qing; Su, Xi; Jiang, Jiang; Wang, Xiangqin; Yu, Zengliang

    2010-05-01

    Energetic ions induce important biological effects and the research into radiolysis of amino acids can help to clarify radiolysis of proteins. For this purpose, arc-discharge induced radiolysis of the benzyl-containing aromatic amino acid phenylalanine in aqueous solution was studied and the damage was assessed quantitatively. The energetic ions were produced by arc-discharge in nitrogen and argon atmosphere. The arc-discharge induced chemical reactions of the biomolecule in aqueous solution were detected and analyzed by means of UV-Vis absorption, fluorescence, Fourier transformation infrared (FTIR) spectroscopy and high performance liquid chromatography (HPLC). Based on the multiple spectroscopic approach, the damage can be evaluated in a more reliable and convenient way. The fluorescence analysis in this case appears to be a more direct indicator for the assessment of damage, where it reveals that the damage increases with the irradiation time exponentially. On the contrary, the 'plateau region' or 'saddle-shape' apparently shown both in our rough absorption analysis and ninhydrin reaction test, similar to the previously reported feature of the dose effect for low-energy-ion induced damage, may be just a consequence with varied reactions and processes involved at different stages. This work thus demonstrated that application of appropriate combination of spectroscopic tools can effectively dissect the diversity of the radiolysis reaction system and assess the biomolecular damage properly.

  14. Polar continental margins: Studies off East Greenland

    NASA Astrophysics Data System (ADS)

    Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.

    The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.

  15. Saturn's elusive transpolar arc

    NASA Astrophysics Data System (ADS)

    Radioti, Aikaterini; Grodent, Denis; Gérard, Jean-Claude; Milan, Steve; Fear, Robert; Jackman, Caitriona; Bonfond, Bertrand; Pryor, Wayne

    2014-05-01

    Variations of the polar auroral emissions in response to magnetic reconnection provide evidence of the mechanisms which couple solar wind mass, energy and momentum into the magnetosphere. A signature of magnetosphere-ionosphere coupling related to tail reconnection and one of the most spectacular auroral emissions at Earth is the transpolar arc or 'theta aurora'. It represents the optical emission associated with closed field lines embedded within a region of open magnetic field lines (polar cap). Here we report the discovery of a transpolar arc at Saturn from UVIS Cassini spacecraft observations. We discuss the possibility the transpolar arc at Saturn is related to tail reconnection similar to Earth and we address the role of solar wind in the magnetotail dynamics at Saturn.

  16. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    USGS Publications Warehouse

    ten Brink, U.S.; Marshak, S.; Granja, Bruna J. L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  17. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    SciTech Connect

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu

    2011-01-17

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  18. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu

    2011-01-01

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey—Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  19. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    SciTech Connect

    Forde, Elizabeth; Kneebone, Andrew; Bromley, Regina; Guo, Linxin; Hunt, Peter; Eade, Thomas

    2013-10-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.

  20. Sci—Thur AM: YIS - 04: Gold Nanoparticle Enhanced Arc Radiotherapy: A Monte Carlo Feasibility Study

    SciTech Connect

    Koger, B; Kirkby, C

    2014-08-15

    Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360° arc-therapy with monoenergetic photon energies 50 – 1000 keV and several clinical spectra used to treat a spherical tumour containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.

  1. Study of Arc-Related RF Faults in the CEBAF Cryomodules

    SciTech Connect

    Douglas Curry; Ganapati Myneni; Ganapati Rao Myneni; John Musson; Thomas Powers; Timothy Whitlatch; Isidoro Campisi; Haipeng Wang

    2004-07-01

    A series of measurements has been conducted on two superconducting radio-frequency (RF) cavity pairs, installed in cryomodules and routinely operated in the Continuous Electron Beam Accelerator Facility, in order to study the RF-vacuum interaction during an RF fault. These arc-related fault rates increase with increasing machine energy, contribute to system downtime, and directly affect the accelerator's availability. For this study, the fundamental power coupler waveguides have been instrumented with vacuum gauges, additional arc detectors, additional infrared sensors, and temperature sensors in order to measure the system response during both steady-state operations and RF fault conditions. Residual gas analyzers have been installed on the waveguide vacuum manifolds to monitor the gas species present during cooldown, RF processing, and operation. Measurements of the signals are presented, a comparison with analysis is shown and results are discussed. The goal of this study is to characterize the RF-vacuum interaction during normal operations. With a better understanding of the installed system response, methods for reducing the fault rate may be devised, ultimately leading to improvements in availability.

  2. Noise Studies of Polarimetry Systems for Polarized 3 He Targets

    NASA Astrophysics Data System (ADS)

    Katugampola, Sumudu K.; Matyas, Daniel J.; Nelyubin, Vladimir; Wang, Yunxiao; Cates, Gordon D.

    2015-04-01

    The NMR technique of adiabatic fast passage (AFP) plays an important role in 3 He targets polarized using spin-exchange optical pumping. Since AFP signals before amplification are generally small, identifying these signals amidst noise caused by external electromagnetic interference and micro-phonics can be challenging. When using thermally polarized water samples for absolute calibration of AFP signals, electromagnetic and micro-phonic noise can easily dominate. Although both types of interference have often been cited as the predominant sources of noise during AFP, few studies of these effects have been done under the conditions that are typical for a polarized 3 He target. This talk will describe studies of electromagnetic and micro-phonic noise using a small-scale prototype NMR system similar to those we use to study polarized 3 He targets. We will describe the effect of using aluminum metal shielding and other methods to minimize noise. We are using these studies to inform the design of a full-scale set up that will be used to test next-generation targets for use at Jefferson Lab, and measure atomic parameters relevant to polarimetry.

  3. Studies of interactive plasma processes in the polar cusp

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter, Jr.

    1992-01-01

    The final report for NAGW-1657 (SwRI Project 15-2783) is presented. Several distinctly different areas of research are discussed: (1) studies of the thermal structure of polar outflows; (2) Prognoz-8 data analysis; and (3) the Ulysses Jupiter encounter.

  4. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  5. Study on backscattering spectral polarization characteristics of turbid medium

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Wang, Qinghua; Lai, Jiancheng; Li, Zhenhua

    2015-10-01

    Noninvasive monitoring of blood glucose is the current international academic research focus. Near-infrared (NIR) spectroscopy is the most prospective method of the present study, however, with the flaw of insufficient specificity to glucose. Tissue polarimetry has recently received considerable attention due to its specificity to glucose. Thus the glucose predicting accuracy would be improved by combining spectral intensity and polarization characteristics. However the backscattering spectral polarization characteristics of turbid media have not been reported within the wavelength range from visible to near-infrared light. In this paper, we simulated the backscattering spectral Mueller matrix of turbid medium by vector Monte Carlo. And the polarization characteristics, which are linear/circular degree of polarization (DOP) and linear/circular diattenuation, can be extracted from the simulated Mueller matrix by polar decomposition. Circular diattenuation is not discussed because it remains almost zero on the backscattering plane. While reduced scattering coefficient increases linearly with increasing wavelength, the spectral curves show distinct wavelength dependencies. Interestingly, the wavelength dependencies at center position are different from those at off-center position for linear/circular DOP and linear diattenuation. As expected, it is shown that both linear DOP and linear diattenuation increase with the increasing wavelength. However it is not the case for linear DOP in the central area around the incident point. In this area linear DOP decays approximately exponentially with increasing wavelength. As for circular DOP, it varies with wavelength non-monotonically. These results should be meaningful when spectral polarization characteristics are used to combine with spectral intensity to extract glucose concentration by chemometrics.

  6. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  7. A Taguchi experimental design study of twin-wire electric arc sprayed aluminum coatings

    SciTech Connect

    Steeper, T.J. ); Varacalle, D.J. Jr.; Wilson, G.C.; Johnson, R.W. ); Irons, G.; Kratochvil, W.R. ); Riggs, W.L. II )

    1992-01-01

    An experimental study was conducted on the twin-wire electric arc spraying of aluminum coatings. This aluminum wire system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic experiments. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical process parameters in a systematic design of experiments in order to display the range of processing conditions and their effect on the resultant coating. The coatings were characterized by hardness tests, optical metallography, and image analysis. The paper discusses coating qualities with respect to hardness, roughness, deposition efficiency, and microstructure. The study attempts to correlate the features of the coatings with the changes in operating parameters. A numerical model of the process is presented including gas, droplet, and coating dynamics.

  8. A Taguchi experimental design study of twin-wire electric arc sprayed aluminum coatings

    SciTech Connect

    Steeper, T.J.; Varacalle, D.J. Jr.; Wilson, G.C.; Johnson, R.W.; Irons, G.; Kratochvil, W.R.; Riggs, W.L. II

    1992-08-01

    An experimental study was conducted on the twin-wire electric arc spraying of aluminum coatings. This aluminum wire system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic experiments. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical process parameters in a systematic design of experiments in order to display the range of processing conditions and their effect on the resultant coating. The coatings were characterized by hardness tests, optical metallography, and image analysis. The paper discusses coating qualities with respect to hardness, roughness, deposition efficiency, and microstructure. The study attempts to correlate the features of the coatings with the changes in operating parameters. A numerical model of the process is presented including gas, droplet, and coating dynamics.

  9. Astronomical polarization studies at radio and infrared wavelengths. Part 1: Gravitational deflection of polarized radiation

    NASA Technical Reports Server (NTRS)

    Dennison, B. K.

    1976-01-01

    The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.

  10. [Study of hyperspectral polarized reflectance of vegetation canopy at nadir viewing direction].

    PubMed

    Lŭ, Yun-Feng

    2013-04-01

    In the present study, corn canopy is the objective. Firstly the polarization of corn canopy was analyzed based on polarization reflection mechanism; then, the polarization of canopy was measured in different growth period at nadir before heading. The result proved the theoretical derivation that the light reflected from corn canopy is polarized, and found that in the total reflection the polarization light accounts for up to 10%. This shows that polarization measurement provides auxiliary information for remote sensing, but also illustrates that the use of the polarization information retrieval of atmospheric parameters should be considered when the surface polarization affects on it.

  11. Observational study of the candidate polar-ring galaxies NGC 304 and NGC 7625

    NASA Astrophysics Data System (ADS)

    Karataeva, G. M.; Kuznetsov, A. N.

    2008-09-01

    We present the results of our photometric ( BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = -20m.81 for NGC 304 and M B = -19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s-1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 mathcal{M}_ odot . The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices ( B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors ( B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.

  12. Study on forest landscape diversity based on ArcGIS and GS +

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Qu, Jianguang; Liu, Dandan; Yang, Jinling; Li, Dan

    2015-12-01

    This paper analyses the forest landscape diversity of the study area with the help of ArcGIS10 and GS+ software. The forest landscape diversity and spatial interpolation and spatial differentiation are also carried out. The result shows that the maximum value of SHDI in 1997is 2.0463 and the minimum value is 0.2544 , which are 1.9722 and 0.2418 in the year of 2009. The advantage religion of SHDI mainly distributes in the middle of the study region , showing a band region from southwest to northeast . The forest landscape diversity and the space location have a moderate spatial correlation and a obvious structural under a forest level.

  13. An SDE study of twin-wire electric arc sprayed nickel-aluminum coatings

    SciTech Connect

    Varacalle, D.J. Jr.; Wilson, G.C.; Lundberg, L.B.; Hale, D.L.; Zanchuck, V.; Kratochvil, W.; Irons, G.; Hodum, A.

    1995-11-01

    An analytical and experimental study of the twin-wire electric arc spraying of nickel-aluminum coatings has been performed to demonstrate the suitability of the wire system as a bond coat material for ceramic overcoats in thermal barrier applications, and for spraying a single coat for part refurbishment. Experiments were conducted using a Box-type full-factorial design parametric study. Operating parameters were varied around the typical process parameters (i.e., current, primary and secondary pressure, spray distance) in a systematic design of experiments (SDE) in order to display the range of processing conditions and their effect on the resultant coating. The coatings were characterized by hardness tests and optical metallography. Coating properties were quantified for hardness, porosity, deposition efficiency, and microstructure. The features of the coatings are correlated with the changes in operating parameters. Analytical calculations of the gas and droplet dynamics are presented, which includes molten metal entrainment and droplet breakup models.

  14. Simulation studies of nucleation of ferroelectric polarization reversal.

    SciTech Connect

    Brennecka, Geoffrey L.; Winchester, Benjamin Michael

    2014-08-01

    Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but also ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.

  15. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1.

    PubMed

    Lassak, Jürgen; Henche, Anna-Lena; Binnenkade, Lucas; Thormann, Kai M

    2010-05-01

    The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.

  16. Polarization as a tool for studying particle properties

    SciTech Connect

    Grosse-Wiesmann, P.

    1988-05-01

    The use of polarized beams in e/sup /plus//e/sup /minus// collisions at the Z/sup 0/pole provides a powerful tool for the separation of the charge and spin of the produced fermions. Such a separation is essential for many investigations of particle properties. It is shown that this technique can be used to substantially improve studies of CP violation in neutral B mesons and the charged structure of /tau/ decays.

  17. Numerical study of carbon nanotubes under circularly polarized irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Nakajima, Yudai; Wakabayashi, Katsunori

    2016-08-01

    We numerically study the energy band structures and the corresponding wavefunctions of carbon nanotubes under circularly polarized irradiation perpendicular to the tube axis on the basis of the Floquet-Bloch theory. We focus on two typical irradiation frequencies, ħΩ ≪ γ and ħΩ ˜ γ, where γ ≈ 3 eV is the hopping energy of graphene. Circularly polarized irradiation is found to open gaps for metallic zigzag nanotubes near the Fermi energy and shift the degenerate points of armchair nanotubes in the energy spectra away from the K and K‧ points. Furthermore, high-frequency irradiation localizes the wavefunctions on either side of the nanotubes; in particular, the localized wavefunctions have different valley indices on each side of the nanotubes.

  18. Studies of 3He polarization losses during NMR and EPR measurment and Polarized 3He target cell lifetime

    NASA Astrophysics Data System (ADS)

    An, Peibo

    2014-09-01

    The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but three other kinds of losses are inevitable: losses during Adiabatic Fast Passage (AFP) sweep, losses due to flux change caused by different cell orientation with respect to RF fields and physical losses. Fortunately there is only flux change in NMR measurements. The second part of my work presents the study of cell lifetime improvement. The polarization decreases in a process called relaxation exponentially. The lifetime of a cell is how long it can keep its polarization. The typical lifetime of cells produced in our lab is about 22 hours. With a newly designed vacuum system. The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but

  19. Hybrid em wave - polar semiconductor interaction: A polaronic study

    SciTech Connect

    Paliwal, Ayushi Dubey, Swati; Ghosh, S.

    2015-07-31

    Present paper considers incidence of a most realistic hybrid pump wave on a weakly polar semiconductor having a very small coupling constant. Possibility of optical parametric interaction has been explored in the presence of an external transverse magnetic field. The effect of doping concentrations and transverse magnetostatic field on threshold characteristics of optical parametric interaction in polar semiconductor plasma has been studied, using hydrodynamic model of semiconductors, in the far infrared regime. Numerical estimations have been carried out by using data of weakly polar III-V GaAs semiconductor and influence of control parameters on electron-LO phonon interaction has been analyzed. A particular range of physical parameters is found to be suitable for minimum threshold. The choice of nonlinear medium and favorable range of operating parameters are crucial aspects in design and fabrication of parametric amplifiers and oscillators. The hybrid mode of the pump is found to be favorable for the onset of the said process and realization of a low cost amplifier.

  20. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  1. Spin polarized photoemission studies of interfacial and thin film magnetism

    SciTech Connect

    Johnson, P.D.; Brookes, N.B.; Chang, Y.; Garrison, K.

    1993-01-01

    Spin polarized photoemission is used to study the electronic structure of noble metals deposited on ferromagnetic substrates. Studies of Ag deposited on an Fe(001) substrate reveal a series of minority spin interface or quantum well states with binding energies dependent on the thickness of the silver. Similar behavior is observed for Cu films deposited on a fct Co(001) substrate. Tight-binding modeling reproduces many of the observations and shows that hybridization of the sp-bands with the noble metal d-bands cannot be ignored.

  2. Spin polarized photoemission studies of interfacial and thin film magnetism

    SciTech Connect

    Johnson, P.D.; Brookes, N.B.; Chang, Y.; Garrison, K.

    1993-06-01

    Spin polarized photoemission is used to study the electronic structure of noble metals deposited on ferromagnetic substrates. Studies of Ag deposited on an Fe(001) substrate reveal a series of minority spin interface or quantum well states with binding energies dependent on the thickness of the silver. Similar behavior is observed for Cu films deposited on a fct Co(001) substrate. Tight-binding modeling reproduces many of the observations and shows that hybridization of the sp-bands with the noble metal d-bands cannot be ignored.

  3. Cirrus and Polar Stratospheric Cloud Studies using CLAES Data

    NASA Technical Reports Server (NTRS)

    Mergenthaler, John L.; Douglass, A. (Technical Monitor)

    2001-01-01

    We've concluded a 3 year (Period of Performance- January 21, 1998 to February 28, 2001) study of cirrus and polar stratospheric clouds using CLAES (Cryogenic Limb Array Etalon Spectrometer) data. We have described the progress of this study in monthly reports, UARS (Upper Atmosphere Research Satellite) science team meetings, American Geophysical Society Meetings, refereed publications and collaborative publications. Work undertaken includes the establishment of CLAES cloud detection criteria, the refinement of CLAES temperature retrieval techniques, compare the findings of CLAES with those of other instruments, and present findings to the larger community. This report describes the progress made in these areas.

  4. Statistical study of the polar X-ray jets

    NASA Astrophysics Data System (ADS)

    Sako, Nobuharu; Shimojo, Masumi; Kitabayashi, Teruyuki

    The X-Ray Telescope(XRT) abroad Hinode had revealed that X-ray jets in the polar region occur at the high frequency. Savcheva et al. (2007) studied 104 X-ray jets occurred around the south pole and reported the parameters of the jets. However, their study included only the X-ray jets that occurred in the coronal hole. In order to reveal the properties of the polar X-ray jets in not only the coronal hole but also the quiet region, we detected 870 polar X-ray jets occurred around the north pole, and investigated the jets statistically. The 470 jets in the 848 events occurred in the coronal hole. The occurrence rate of the jets in the coronal hole and the quiet sun is 5.04×10-12 jets/hr/km2 and 7.66×10-12 jets/hr/km2 , respectively. It shows that the quiet region is more productive of X-ray jets than the coronal hole. We derived five parameters of the polar X-ray jets, and the average of the parameters are 2.91×104 km for the maximum length, 4.42×103 km for the width, and 180 km/sec for the apparent velocity. The lifetime and length scale of the jets in this result is smaller than that in Savcheva et al. (2007). The reason for these differences is that we could detect smaller jets than the previous work because we used not only X-ray intensity images but also the running difference images for detecting the jets. We derived also the frequency distributions of the parameters and found thatthe frequency distributions of the lifetime and the X-ray intensity of the footpoint flare show the power-raw distribution. The power-law index of the lifetime is -4.22±0.36, and it is smaller than the index(-1.2) derived from the jets that occurred near the active regions(Shimojo et al. 1996). The difference indicates that the occurrence rate of the polar X-ray jets with short lifetime is larger than that of the X-ray jets that occurred near active regions.On the other hand, the power-raw index of the X-ray intensity of the footpoint flare is -2.04±0.27. The index is smaller

  5. Multiparametric study of polar ionosphere on both hemispheres

    NASA Astrophysics Data System (ADS)

    D'Angelo, Giulia; Alfonsi, Lucilla; Spogli, Luca; Cesaroni, Claudio; Sgrigna, Vittorio

    2016-04-01

    The polar ionosphere is a complex system in which several actors concur to establish the observed medium. Indeed the coupling between the interplanetary magnetic field and the earth magnetic field determines a high degree of complexity of the polar ionosphere, which is directly exposed to the variations of the solar wind. This configuration results in a strong sensitivity of the polar ionosphere to the perturbation phenomena caused by solar events which may result in a wide variety of spatial and temporal dimensions of the plasma electron density irregularities. Polar ionospheric irregularities may seriously jeopardize performance and reliability level of the navigation and positioning technological systems, such as GPS or the nascent Galileo. Therefore, knowledge of the physical state of the upper atmosphere ionized layers becomes essential to predict and mitigate events that may affect the use of modern technology, causing economic damage and, in severe cases, even jeopardizing the safety of human beings. In this context, a careful and thorough investigation that covers a wide range of geospatial different disturbances, observed in circumterrestrial space and on the ground, can provide the necessary basis for a real advance of the current knowledge. In this frame, the aim of this work is to contribute to the study of the effects of perturbation induced by the Sun on the polar ionosphere of both the hemispheres, through the analysis and interpretation of the measures available before, during and after the occurrence of an event of disturbance. We propose a multiparametric approach, that combines the information derived from measurements acquired by ground-based and space-based stations, to have a broad spectrum of information necessary to characterize the ionospheric disturbances on different time scales (from milliseconds to days) and spatial scales (from millimetres to hundreds meters/kilometres). The period chosen for this study is the entire month of March

  6. Study of simulating dynamic polarization laser echo signal

    NASA Astrophysics Data System (ADS)

    Yang, Di; Liu, Qing; Zhan, Yong-hong; Zeng, Chang-e.

    2014-12-01

    In the test for the laser seeker in the hardware-in-loop simulation, acquiring the effect of polarization laser echo wave to optical stress polarization of the seeker and to the polarization guidance performance was not considered. A new method to generating the dynamic polarization laser echo signal was provided based on the scene model; furthermore, the method to adding the polarization characters to the energy scene was introduced. At last, the insufficient of the method to generating and simulating the dynamic polarization signal was analyzed.

  7. The Lesser Antilles: a case study for melt-dehydration processes in arcs

    NASA Astrophysics Data System (ADS)

    Chauvel, C.; Labanieh, S.; Carpentier, M.

    2011-12-01

    The nature and the proportion of subducted material involved in the genesis of island arcs depends on the amount and type of subducted sediments, the input from basaltic crust, the mechanism of chemical transfer and the speed and angle of the subducting plate. Here we present a compilation of geochemical features along the Lesser Antilles arc which is famous for having the most "continental crust-like" geochemical characteristics of all island arcs. We show that beneath the southern part of the Lesser Antilles arc, where vast amounts of sedimentary material are subducted, sediments melt to produce island arc magmas with elevated La/Yb and low Ba/Th, U/Th, Sr/Th and Pb/Th. Associated with these trace element characteristics are typically crustal isotopic signatures: low 143Nd/144Nd and 176Hf/177Hf and high 87Sr/86Sr and Pb isotopic ratios. In contrast, in the northern part of the arc, where far less sediment enters the trench, La/Yb is low and associated to high Ba/Th, U/Th, Sr/Th and Pb/Th in all lavas, and radiogenic isotope ratios are near those of MORB. In this part of the island arc, dehydration of altered basalt is responsible for the enrichment in fluid-mobile elements (Ba, U, Sr, Pb etc..) and the subducted sediments are barely involved. On Martinique in the middle of the arc, both types of lavas exist but not in the same place. On the west side of the island, sediment melting dominates while dehydration of basalt controls the volcanism closer to the trench. This dichotomy between sediment melting and slab dehydration appears a worldwide feature: in Sunda, Luzon and Banda arcs, subducted sediment melts to produce lavas with high La/Yb, low Ba/Th, U/Th, Sr/Th and Pb/Th and "crust-like" radiogenic isotopic characteristics. In contrast, in Izu-Bonin-Mariana, Tonga and Kermadec arcs, fluid migration leading to high mobile/immobile trace element ratios and "mantle-like" isotopes controls element transport from the subducted slab. The only arcs similar to the

  8. A comparative study of silver nanoparticles synthesized by arc discharge and femtosecond laser ablation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqiang; Zou, Guisheng; Liu, Lei; Li, Yong; Tong, Hao; Sun, Zhenguo; Zhou, Y. Norman

    2016-10-01

    Silver nanoparticles have been synthesized by arc discharge and femtosecond laser ablation in polyvinylpyrrolidone (PVP) aqueous solution. Both methods are the simple, cost-effective and environment-friendly way to obtain the purity silver nanoparticles. In this study, the structure, composition, morphology, size and distribution, stability, production rate and sintering properties of silver nanoparticles synthesized by both methods were compared. The spherical or pseudo-spherical silver nanoparticles were synthesized by both methods, and the diameters were below 50 nm. The arc discharge-synthesized particle distribution varied with the breakdown voltage, and laser-synthesized particle size mainly depended on the laser energy. PVP solution could cap and stabilize the silver nanoparticles by Ag-O bond, while arc discharge and laser ablation resulted in some level of PVP degradation during processing. Sliver nanoparticle colloids synthesized by both methods had the high negative values of zeta potential and exhibited the good stability. The maximum production rates of the silver nanoparticles synthesized by arc discharge and femtosecond laser ablation were 6.0 and 3.0 mg/min, respectively. In addition, the sintering properties of silver nanoparticles synthesized by both methods were also discussed.

  9. Polar solvation dynamics of lysozyme from molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy

    2012-05-01

    The solvation dynamics of a protein are believed to be sensitive to its secondary structures. We have explored such sensitivity in this article by performing room temperature molecular dynamics simulation of an aqueous solution of lysozyme. Nonuniform long-time relaxation patterns of the solvation time correlation function for different segments of the protein have been observed. It is found that relatively slower long-time solvation components of the α-helices and β-sheets of the protein are correlated with lower exposure of their polar probe residues to bulk solvent and hence stronger interactions with the dynamically restricted surface water molecules. These findings can be verified by appropriate experimental studies.

  10. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    PubMed

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  11. Experimental and numerical study of shock wave propagation in water generated by pulsed arc electrohydraulic discharges

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Maurel, Olivier; La Borderie, Christian; Reess, Thierry; De Ferron, Antoine; Matallah, Mohammed; Pijaudier-Cabot, Gilles; Jacques, Antoine; Rey-Bethbeder, Frank

    2014-05-01

    The objective of this study is to simulate the propagation of the shock wave in water due to an explosion. The study is part of a global research program on the development of an alternative stimulation technique to conventional hydraulic fracturing in tight gas reservoirs aimed at inducing a distributed state of microcracking of rocks instead of localized fracture. We consider the possibility of increasing the permeability of rocks with dynamic blasts. The blast is a shock wave generated in water by pulsed arc electrohydraulic discharges. The amplitude of these shock waves is prescribed by the electrohydraulic discharges which generate high pressures of several kilobars within microseconds. A simplified method has been used to simulate the injected electrical energy as augmentation of enthalpy in water locally. The finite element code EUROPLEXUS is used to perform fluid fast dynamic computation. The predicted pressure is consistent with the experimental results. In addition, shock wave propagation characteristics predicted with simulation can be valuable reference for design of underwater structural elements and engineering of underwater explosion.

  12. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    PubMed

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films. PMID:24245257

  13. Methods of studying polarization of variable star radiation

    NASA Technical Reports Server (NTRS)

    Shakhovskoy, N. M.

    1973-01-01

    Polarized light from variable stars can be used to determine radiation intensity and wavelength. Various types of polarization analyzers are discussed (single-beam and double-beam) as well as their modes of use (continuous and discrete). Modulation of polarizers and determination of measurement accuracy are also covered.

  14. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  15. A study of vacuum arc ion velocities using a linear set of probes

    SciTech Connect

    Hohenbild, Stefan; Grubel, Christoph; Yushkov, Georgy Yu.; Oks, Efim M.; Anders, Andre

    2008-07-15

    The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change of the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are not only determined by the plasma production but by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The ion velocity was measured to be slightly reduced with increasing distance from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was increased when the arc current was increased, which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced when the plasma was produced in a non-uniform magnetic field.

  16. A pilot study of volumetric-modulated arc therapy for malignant pleural mesothelioma.

    PubMed

    Runxiao, Li; Yankun, Cao; Lan, Wang

    2016-01-01

    Malignant pleural mesothelioma (MPM) is an extremely difficult disease to treat. This pilot study investigates the feasibility of using volumetric-modulated arc therapy (VMAT) for malignant pleural mesothelioma (MPM), and compares VMAT to static field intensity-modulated radiotherapy (IMRT) for five patients. To identify the best treatment technique for MPM, in five patients, we made a representative comparative analysis of two kinds of techniques for radiation therapy planning: IMRT and VMAT. The plans were created for an Elekta Synergy linear accelerator with 6 MV photons using Oncentra version 4.3 treatment planning system. Dose prescription was 50 Gy to the average of the planning target volume (PTV). PTV coverage and homogeneity, dose of organs at risk, numbers of segments, MUs, and delivery time were evaluated for all techniques. VMAT allowed better homogeneous and conformity indices compared with IMRT (HI = 0.17 vs. 0.12, CI = 0.64 vs. 0.77, respectively, p < 0.05). VMAT plan had a significantly shorter delivery time (326 s) compared with in IMRT plans (510 s), (p < 0.05). In the dose verification, an average of 93.16% of the detector points passed the 3%/3 mmγ criterion for VMAT plans, while in IMRT plans the dose verification was 95.12%.(p > 0.05). PMID:27074478

  17. Study of X-Ray Polarization Due to Comptonization of Photons inside Thick Disks

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arka; Chakrabarti, Sandip Kumar; Ghosh, Himadri

    2016-07-01

    We study the Comptonization of Photons inside generalized relativistic thick disks. Relativistic and non- relativistic effect of Photon paths on the spectrum are computed. We include the polarization of photons induced by the Compton scattering. The degree of polarization for initially unpolarized and linearly polarized photons are calculated separately. Variation of X-ray polarization with number of scattering is presented. Finally, the polarimetric images of thick disk for different energy bands are shown. We compare our simulated results with outbursting black hole candidates. We are also adding effects of spin of the black hole on the degree of polarization. These results are useful for future missions which could measure polarization very accurately.

  18. Modeling Arcs

    SciTech Connect

    Insepov, Z.; Norem, J.; Vetizer, S.; Mahalingam, S.

    2011-12-23

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gradient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  19. The global relevance of the Scotia Arc: An introduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Andrés; Dalziel, Ian W. D.; Leat, Philip T.

    2015-02-01

    The Scotia Arc, situated between South America and Antarctica, is one of the Earth's most important ocean gateways and former land bridges. Understanding its structure and development is critical for the knowledge of tectonic, paleoenvironmental and biological processes in the southern oceans and Antarctica. It extends from the Drake Passage in the west, where the Shackleton Fracture Zone forms a prominent, but discontinuous, bathymetric ridge between the southern South American continent and the northern tip of the Antarctic Peninsula to the active intra-oceanic volcanic arc forming the South Sandwich Island in the east. The tectonic arc comprises the NSR to the north and to the south the South Scotia Ridge, both transcurrent plate margins that respectively include the South Georgia and South Orkney microcontinents. The Scotia and Sandwich tectonic plates form the major basin within these margins. As the basins opened, formation of first shallow sea ways and then deep ocean connections controlled the initiation and development of the Antarctic Circumpolar Current, which is widely thought to have been important in providing the climatic conditions for formation of the polar ice-sheets. The evolution of the Scotia Arc is therefore of global palaeoclimatic significance. The Scotia Arc has been the focus of increasing international research interest. Many recent studies have stressed the links and interactions between the solid Earth, oceanographic, paleoenvironmental and biological processes in the area. This special issue presents new works that summarize significant recent research results and synthesize the current state of knowledge for the Scotia Arc.

  20. Multihole Arc-Welding Orifice

    NASA Technical Reports Server (NTRS)

    Swaim, Benji D.

    1989-01-01

    Modified orifice for variable-polarity plasma-arc welding directs welding plume so it creates clean, even welds on both Inconel(R) and aluminum alloys. Includes eight holes to relieve back pressure in plasma. Quality of welds on ferrous and nonferrous alloys improved as result.

  1. Monochromatic imaging studies of sustained metal vapor arcs burning on 150 mm diameter molten iron electrodes

    SciTech Connect

    Williamson, R.L.; Schlienger, M.E.

    1996-07-01

    Monochromatic imaging was used to investigate the excited-state density distributions of Fe and Fe{sup +} in the inter-electrode gap region of a 3,100 A dc metal vapor arc burning between molten iron surfaces in a vacuum arc furnace. Multiple images were acquired at four wavelengths. The images were corrected and Abel inverted to yield the absolute radial intensity distributions for Fe and Fe{sup +} in the inter-electrode gap region. The results show a structured, axisymmetric plasma consisting of a high density `core` of Fe{sup +} emitters centered between the electrode surfaces situated against a relatively broad, flat excited-state Fe distribution.

  2. Optical polarization study towards the open cluster NGC 6249

    NASA Astrophysics Data System (ADS)

    Vergne, M. M.; Orsatti, A. M.; Feinstein, C.; Vega, E. I.; Martínez, R. E.

    2016-04-01

    We present multicolor linear polarimetric data (UBVRI) of 30 of the brightest stars in the region of the open cluster NGC 6249. The cluster members were found to be part of two subgroups with average polarization and orientation of the electric vector of P_{V}=1.7% ± 0.13, θ_{V}=39.7° ± 2.2; and P_{V}=2.34% ± 0.07, θ_{V}=41.0° ± 1.2, respectively. This difference in polarization may be a consequence of the presence of a dark, U-shaped absorbing zone seen on the central region, and probably located in front of, or inside, the cluster. From the study of the evolution of the A_v with the distance,we found evidence of the existence of two layers of dust at distances of ≈ 250 pc and ≈ 600 pc. The comparison between the polarimetric parameters of NGC 6249 and those of the nearby cluster NGC 6250 showed some coincidences.

  3. Alignment and Polarization Sensitivity Study on the Cassini: CIRS FIR Interferometer

    NASA Technical Reports Server (NTRS)

    Crooke, Julie; Hagopian, John

    1998-01-01

    The Composite InfraRed Spectrometer (CIRS) instrument flying on the Cassini spacecraft to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared (MIR) channels. The CIRS FIR channel is a polarizing interferometer that contains three polarizing grid components. These components are an input polarizer, a polarizing beamsplitter, and an output polarizer/analyzer. They consist of a 1.5 micron thick mylar substrate with 2 microns wide copper wires, with 2 microns spacing (4 microns pitch) photolithographically deposited on the substrate. This paper details the alignment sensitivity studies performed on the polarizing beamsplitter, and the polarization sensitivity studies performed on all three polarizing components in the FIR interferometer.

  4. Volumetric modulated arc therapy for synchronous bilateral whole breast irradiation – A case study

    PubMed Central

    Seppälä, Jan; Heikkilä, Janne; Myllyoja, Kimmo; Koskela, Kristiina

    2015-01-01

    Purpose The treatment planning of bilateral breast irradiation (BBI) is a challenging task. The overlapping of tangential fields is usually unavoidable without compromising the target coverage. The purpose of this study was to investigate the technical feasibility and benefits of a single isocentre volumetric modulated arc therapy (VMAT) in BBI. Methods and materials Two women with bilateral breast cancer were included in this case study. The first patient (Pat#1) underwent a bilateral breast-conserving surgery and sentinel lymph node biopsy. The second patient (Pat#2) underwent a bilateral ablation and axillary lymph node dissection. Planning target volumes (PTV) and organs at risk were delineated on CT images. VMAT plans were created with four (two for both sides, Pat#1) or two (one for each breast, Pat#2) separate VMAT fields. Subsequently, traditional tangential field plans were generated for each patient and the dosimetric parameters were compared. Results The treatment times of the patients with VMAT were less than 15 min with daily CBCT imaging. When compared to the standard tangential field technique, the VMAT plans improved the PTV dose coverage and dose homogeneity with improved sparing of lungs and heart. With traditional field arrangement, the overlapping of the tangential fields was inevitable without significantly compromising the target coverage, whereas with VMAT the hotspots were avoided. The patients were treated with the VMAT technique and no acute skin toxicity was observed with either of the patients. Conclusions A single isocentre VMAT technique has been implemented clinically for BBI. With the VMAT techniques, the dose delivery was quick and the hotspots in the field overlapping areas were avoided. The PTV dose coverage was superior in VMAT plans when compared with conventional tangential technique plans. PMID:26549999

  5. Unpolarized nucleon structure studies utilizing polarized electromagnetic probes.

    SciTech Connect

    Arrington, J.; Physics

    2009-08-15

    By the mid-1980s, measurements of the nucleon form factors had reached a stage where only slow, incremental progress was possible using unpolarized electron scattering. The development of high quality polarized beams, polarized targets, and recoil polarimeters led to a renaissance in the experimental program. I provide an overview of the changes in the field in the last ten years, which were driven by the dramatically improved data made possible by a new family of tools to measure polarization observables.

  6. Parametric Study of Plasma Torch Operation Using a MHD Model Coupling the Arc and Electrodes

    NASA Astrophysics Data System (ADS)

    Alaya, M.; Chazelas, C.; Vardelle, A.

    2016-01-01

    Coupling of the electromagnetic and heat transfer phenomena in a non-transferred arc plasma torch is generally based on a current density profile and a temperature imposed on the cathode surface. However, it is not possible to observe the current density profile experimentally and so the computations are grounded on an estimation of current distribution at cathode tip. To eliminate this boundary condition and be able to predict the arc dynamics in the plasma torch, the cathode was included in the computational domain, the arc current was imposed on the rear surface of the cathode, and the electromagnetism and energy conservation equations for the fluid and the electrode were coupled and solved. The solution of this system of equations was implemented in a CFD computer code to model various plasma torch operating conditions. The model predictions for various arc currents were consistent and indicated that such a model could be applied with confidence to plasma torches of different geometries, such as cascaded-anode plasma torches.

  7. Lung function and clinical findings in a cross-sectional study of arc welders. An epidemiological study.

    PubMed

    Mur, J M; Teculescu, D; Pham, Q T; Gaertner, M; Massin, N; Meyer-Bisch, C; Moulin, J J; Diebold, F; Pierre, F; Meurou-Poncelet, B

    1985-01-01

    An epidemiological, cross-sectional study was conducted in order to assess non-neoplasic effects on the lung due to chronic exposure to arc welding fumes and gases. The study involved 346 arc welders and 214 control workers from a factory producing industrial vehicles. These workers (welders and controls) had never been exposed to asbestos. Respiratory impairments were evaluated by using a standardized questionnaire, a clinical examination, chest radiophotography and several lung function tests (spirometry, bronchial challenge test to acetylcholine, CO transfer tests according to the breath-holding and the steady-state methods, N2 washout test). The only significant differences between the welders overall compared to the controls were a slightly higher bronchial hyper-reactivity to acetylcholine and a lower lung diffusing capacity for CO in the welders. However, non-specific, radiologic abnormalities (reticulation, micronodulation) and obstructive signs were more frequent in the most exposed welders (welding inside tanks) than in welders working in well ventilated workplaces. The nature of the metal welded (mild-steel, stainless steel, aluminium) did not seem to have an influence on respiratory impairments. In the mild-steel welders, respiratory symptoms (dyspnoea, recurrent bronchitis) and obstructive signs were more frequent in the welders using a manual process than in the welders involved with the semi-automatic process (MIG). For all the workers (welders and controls), smoking had a markedly adverse effect on respiratory symptoms and lung function. Moreover, smoking seemed to interact with welding since CO lung transfer was more impaired in smoking welders than in smoking controls.

  8. Mineralogical and Fluid Inclusion Studies on Seafloor Hydrothermal Vents at TA25 Caldera, Tonga Arc

    NASA Astrophysics Data System (ADS)

    Choi, S. K.; Pak, S. J.; Choi, S. H.; Lee, K. Y.; Kim, H. S.; Lee, I. K.

    2015-12-01

    The extensive hydrothermal vent field was discovered at TA25("V18s-HR" in the SO-167 cruise) caldera in the Tonga arc, southwest Pacific. The TA25 caldera is a submarine volcano of dacitic composition and hosts the NE- and NW-trending hydrothermal vent on the western caldera wall. These active hydrothermal crusters are mostly small (chimney: <0.5m in tall; sulfide mound: <3m in diameter) and immature, and emit the transparent fluids of which temperature range from 150℃ to 242℃ (average = 203℃). The hydrothermal sulfide ores, recovered by ROV and/or TV-grab, are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. It is observed that three distinct mineralogical zonation from exterior to interior of the chimneys: (1) barite-gypsum/anhydrite-pyrite-sphalerite; (2) sphalerite-pyrite-galena±chalcopyrite; (3) sphaleirte-pyrite-chalcopyrite-enargite-tennantite±galena±covellite. FeS content in sphalerite increases from chimney exterior to interior. Chalcopyrite is more abundant in the mound than in the chimney, implying fluid temperatures in mound are greater than in the chimney. The enargite assemblage (pyrite-chalcopyrite-enargite-tennantite) is indicative of high-sulfidation epithermal deposits. Fluid inclusions on barite crystals from mound samples show mono-type inclusion (two-phase liquid-rich inclusions) which is less than 20㎛ in diameter. Homogenization temperatures and salinities from fluid inclusion study range from 148℃ to 341℃ (average = 213℃) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. The main mineralization temperature in mound might be greater than 200℃ since barite on fluid inclusion is early stage mineral.

  9. Polarized Raman study of random copolymers of propylene with olefins

    NASA Astrophysics Data System (ADS)

    Gen, D. E.; Chernyshov, K. B.; Prokhorov, K. A.; Nikolaeva, G. Yu.; Sagitova, E. A.; Pashinin, P. P.; Kovalchuk, A. A.; Klyamkina, A. N.; Nedorezova, P. M.; Optov, V. A.; Shklyaruk, B. F.

    2010-06-01

    The polarized Raman spectroscopy is employed in the study of structural modifications in the films of isotactic polypropylene (PP) whose chain contains ethylene, 1-butene, 1-hexene, 1-octene, and 4-metyl-pentene-1, which represents an isomer of 1-hexene. It is demonstrated that the phase and conformational compositions of copolymer molecules depend on the comonomer content and the side-chain length of the second monomer. The content of the PP molecules in the helical conformation in the crystalline and amorphous phases of the copolymers monotonically decreases with increasing content of the second monomer. The decrease in the content of helical macromolecules in the crystalline phase is faster than the decrease in the amorphous phase. At a certain content of comonomers, the total content of the helical fragments decreases with increasing length of the side chain of the second monomer. The structures and Raman spectra of the copolymers of propylene with 1-hexene and 4-methyl-1-pentene are similar.

  10. Feasibility studies for the follow-on EUMETSAT polar system

    NASA Astrophysics Data System (ADS)

    Banfi, S.; Schlüssel, P.; Diebel, D.; Clarke, P.; Betto, M.; Lin, Chung-Chi; Kangas, V.; Kraft, S.; Bensi, P.; Zerfowski, I.; Saccoccio, M.; Maciaszek, T.

    2010-10-01

    replace the current satellite system in the 2020 timeframe and contribute to the Joint Polar System to be set up with NOAA. Through consultation with users and application experts, requirements have been defined for a range of candidate missions mainly in support of operational meteorology and climate monitoring. A number of on-board instruments, satellite platforms and ground support infrastructure are under study in coordination with ESA, NOAA, DLR and CNES. The satellites will fly in a sun synchronous, low earth orbit at 817 km altitude and 09:30 descending equatorial crossing time, providing observations with global coverage every 12 to 24 hours depending on instrument. The instruments exploit a range of techniques including multi spectral imaging, atmospheric sounding in the optical and microwave spectral domains, radio occultation sounding, scatterometry and microwave imaging. The raw instrument data will be broadcast directly by the satellites, as well as being stored on board for their transmission, in sets spanning up to a full orbit, to polar ground stations. These data will be collected at EUMETSAT facilities and processed to obtain calibrated and geo-located measurements, and records of well defined geophysical variables. The data will be distributed to the users in near real time and archived together with the data of other EUMETSAT satellite systems, making available long term records also suitable for climate monitoring. Feasibility studies for the space and ground systems will be done until early 2012 with the main objective to select the baseline configuration for preliminary definition, development and operation programmes to be proposed and coordinated within the involved organisations.

  11. Carbon nanotubes for mode-locking: polarization study

    NASA Astrophysics Data System (ADS)

    Afkhamiardakani, Hanieh; Kamer, Brian; Diels, Jean-Claude; Arissian, Ladan

    2016-03-01

    Mode-locked fiber lasers are the most promising lasers for intracavity phase interferometry,1 because they offer the possibility to have two orthogonally polarized pulses circulating independently in the cavity. The saturable absorbers based on polarization maintaining tapered fiber coated with carbon nanotubes are developed and analyzed for minimum coupling between the slow and fast axis of the fiber.

  12. Study of deep inelastic scattering of polarized electrons off polarized deuterons

    SciTech Connect

    Kuriki, M.

    1996-03-01

    This thesis describes a 29GeV electron - nucleon scattering experiment carried out at Stanford Linear Accelerator Center (SLAC). Highly polarized electrons are scattered off a polarized ND{sub 3} target. Scattered electrons are detected by two spectrometers located in End Station A (ESA) at angles of 4.5{degrees} and 7{degrees} with respect to the beam axis. We have measured the spin structure function g{sub 1} of deuteron over the range of 0.029 < x < 0.8 and 1. 0 < Q{sup 2} < 12.0(GeV/c){sup 2}. This integral indicates a discrepancy of more than three standard deviations from the prediction of the Ellis-Jaffe sum rule, 0.068{+-}0.005 at Q{sup 2} = 3.0(GeV/c){sup 2} while our result of g{sub 1}{sup d} in good agreement with SMC results. Combined with g{sub 1} of the proton, the measurement of {integral}{sub 0}{sup 1}(g{sub 1}{sup d}-g{sub 1}{sup n}) is 0.169{+-}0.008. We also obtained the strong coupling constant at Q{sup 2} = 3.0(GeV/c){sup 2} to be 0.417{sub -0.110}{sup +0.086}, using the power correction for the sum rule up to third order of {alpha}{sub s}. This result is in agreement with the strong coupling constant {alpha}{sub s}(Q{sup 2}) = 3.0(GeV/c{sup 2}) obtained from various experiments. Using our deuteron results and the axial vector couplings of hyperon decays, the total quark polarization along the nucleon spin is found to be 0.286{+-}.055, implying that quarks carry only 30% of the nucleon spin. The strange sea quark polarization is also determined to be -0.101 {+-} .023. These measurements are in agreement with other experiments and provide the world`s most precise measurement of these quark polarizations. 80 refs., 151 figs., 23 tabs.

  13. SU-E-T-187: Feasibility Study of Stereotactic Liver Radiation Therapy Using Multiple Divided Partial Arcs in Volumetric Modulated Arc Therapy

    SciTech Connect

    Lin, Y; Ozawa, S; Tsegmed, U; Nakashima, T; Shintaro, T; Ochi, Y; Kawahara, D; Kimura, T; Nagata, Y

    2014-06-01

    Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantry rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.

  14. Study on full-polarization hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Wei, Xiangyu; Zhou, Qiang; Zhong, Tenghui; Li, Yubo

    2014-02-01

    Since full-polarization parameter measurement can not be well combined with hyperspectral imaging technology yet , a new full-polarization hyperspectral imaging measurement structure using a dual optical path system was investigated. We utilized the hyperspectral1 interference imaging technology and polarization modulation technology based on electro-optic effect in our research. The polarization information, spectral information and spatial image information were acquired at the same time, which means the simultaneous measurement of hyperspectral information and full-polarization parameter was achieved. In this artical, the principle of the full-polarization parameter measurement was introduced at first. Then the experiment setup was shown and the optical elements were illustrated. Also,the detailed formula derivation steps of the full-Stokes vector was given. At last, some computer simulation data and experimental results were given. Through the combination of spectral imaging and full-polarization parameter measurement, the detecting information of the object is greatly enriched. This work will definitely be helpful to many optical remote sensing technology areas such as resources survey, environmental monitoring and military reconnaissan.

  15. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  16. Rock magnetic studies on marine volcaniclastic sediments off Martinique, Lesser Antilles volcanic arc, IODP Expedition 340

    NASA Astrophysics Data System (ADS)

    Saito, T.; Kataoka, K.

    2013-12-01

    Large numbers of marine volcaniclastic sediments with various origins were recovered from the sites U1397 and U1398 during IODP Expedition 340. They were most likely derived from volcanoes on Martinique and possibly from Dominica, Lesser Antilles volcanic arc. Some volcaniclastic units were transported and deposited as turbidites, some were as thin tephra fall deposits and others show both characteristics. They contain various amounts of bioclastic component, pumice and lithic fragments and hemipelagic mud clasts. Therefore, these volcaniclastic sediments are suitable for investigating transport and emplacement mechanisms of volcanic materials and the resultant sedimentary and petro-facies in marine settings. In this study, we focused on magnetic minerals in the marine volcaniclastic sediments and carried out rock magnetic measurements. Thermomagnetic measurements showed almost reversible curves and induced magnetization decayed to almost zero below 580 °C, suggesting little contribution of maghemite or hematite. Two Curie temperatures (Tc) with 350-400 °C and 500-550°C indicate that the main magnetic carriers are Ti-rich titanomagnetite and Ti-poor titanomagnetite. The proportion of low-Tc titanomagnetite in central and bottom part of turbidite units was larger than that in hemipelagic sediments and in the topmost part of turbidite units, suggesting Ti-rich titanomagnetite is derived from volcanic events. Magnetic susceptibility and hysteresis measurements showed that heavy and large magnetic minerals in most turbidite units were concentrated at the lower part of the unit. Samples from the topmost and bottom part of turbidites showed higher degrees of anisotropy than those from the central part, indicating strong influence of suspension settling at the topmost part and shearing at the bottom part. However, in some turbidite units such features cannot be observed and hysteresis parameters and susceptibility values were almost concentrated. Probably the units

  17. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma

    SciTech Connect

    Devereux, Thomas; Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Supple, Jeremy; Siva, Shankar

    2015-04-01

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm{sup 3} of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm{sup 3} of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.

  18. The first Shinkai dive study of the southwestern Mariana arc system

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Martinez, F.; Brounce, M. N.; Pujana, I.; Ishii, T.; Stern, R. J.; Ribeiro, J.; Michibayashi, K.; Kelley, K. A.; Reagan, M. K.; Watanabe, H.; Okumura, T.; Oya, S.; Mizuno, T.

    2014-12-01

    The 3000 km long Izu-Bonin-Mariana (IBM) arc system is an outstanding example of an intraoceanic convergent plate margin. The IBM forearc is a typical nonaccretionary convergent plate margin; the inner trench slope exposes lithologies found in many ophiolites. To more clearly delineate the geology of the forearc, we have been investigating a ~500 km long region of the Mariana forearc south of ~13°N using the DSV Shinkai 6500 and deep-tow camera since 2006. Discoveries includes the presence of MORB-like basalts that formed during subduction initiation (~51 Ma) [Reagan et al., 2010, G3], a region of forearc rifting unusually close to the trench axis, the Southeast Mariana Forearc Rift [Ribeiro et al., 2013, G3], and a serpentinite-hosted ecosystem near the Challenger Deep, the Shinkai Seep Field [Ohara et al., 2012, PNAS]. However, there have been no studies on the southern Mariana area west of the Challenger Deep except one [Hawkins and Batiza, 1977, EPSL], hindering our understanding of the IBM system. To advance our biogeoscientific understanding of this region, a Shinkai 6500 diving cruise (YK14-13) was conducted in July 2014 on two major sites: the inner trench slope west of the Challenger Deep (Site A), and the southwesternmost tip of the Mariana Trough (Site B). Dives at Site A recovered very fresh mantle peridotite associated with troctolite and limestone. The limestone preserves the remnants of corals, clearly indicating that the limestone is an accreted material originating from the incoming (colliding) Caroline Ridge. The freshness of the peridotites also indicates that the collision is an ongoing event, resulting in a protruding peridotite ridge along the inner trench slope west of the Challenger Deep. Dives at Site B recovered basalt and gabbro, which is either new backarc basin crust or rifted West Mariana Ridge crust. This cruise allowed for continued sampling of the inner trench slope of the Mariana Trench, from south of Guam to the Yap Trench

  19. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma.

    PubMed

    Devereux, Thomas; Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Supple, Jeremy; Siva, Shankar

    2015-01-01

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30cm(3) of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30cm(3) of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.

  20. Toward the climatological study of polar lows over the Japan Sea

    NASA Astrophysics Data System (ADS)

    Yanase, Wataru

    2014-05-01

    Satellite imagery shows that meso-alpha-scale polar lows develop over the Japan Sea during cold air outbreaks in winter, which usually occur to the west of synoptic-scale extratropical cyclones. To understand the climatology of polar lows over the Japan Sea, we use satellite imagery and a reanalysis dataset. We used nephanalysis charts of the Japan Meteorological Agency, which shows 3-hourly locations of lower-tropospheric meso-scale vortices. For 6 winter seasons (Dec. 1997 - Feb. 2003), 81 polar low candidates are detected over the Japan Sea. We will show the geographical distribution and some remarkable polar low cases. We also examine whether the Japanese 55-year reanalysis (JRA-55) is useful for the climatological study of polar lows. The sea level pressure field of JRA-55 represents signals of intense polar lows. The spatial filter for meso-scale cyclones and tracking algorithm of Hodges (1995) successfully detected intense polar lows over the Japan Sea.

  1. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    SciTech Connect

    Kolmogorov, A. Stupishin, N.; Atoian, G.; Ritter, J.; Zelenski, A.; Davydenko, V.; Ivanov, A.

    2014-02-15

    The RHIC polarized H{sup −} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  2. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade.

    PubMed

    Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A

    2014-02-01

    The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  3. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    NASA Astrophysics Data System (ADS)

    Kolmogorov, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Ritter, J.; Stupishin, N.; Zelenski, A.

    2014-02-01

    The RHIC polarized H- ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ˜0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  4. Detecting VMAT delivery errors: A study on the sensitivity of the ArcCHECK-3D electronic dosimeter

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Xing, A.; Goozee, G.; Holloway, L.

    2013-06-01

    The sensitivity of the ArcCHECK 3D dosimeter in detecting VMAT delivery errors has been investigated. Dose and leaf positional errors of different magnitudes were introduced to whole arc and individual control points (CPs) of a simple open arc VMAT plan. The error introduced and error free plans were delivered and measured using the ArcCHECK device. The measured doses were compared against the treatment planning system calculated doses using gamma (γ) criteria with 2%/2mm and 3%/3mm tolerance levels. ArcCHECK effectively detected the dose errors resulting from MLC leaf positioning errors in limited CPs and Whole arc. For errors introduced to MU, ArcCHECK effectively detected the MU delivery errors in whole arc but not the MU errors introduced to CPs in integrated dose comparison.

  5. The Need for System Scale Studies in Polar Regions

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.; Newman, D.

    2010-12-01

    The understanding of polar regions has advanced tremendously in the past two decades and much of the improved insight into our knowledge of environmental dynamics is due to multidisciplinary and interdisciplinary studies conducted by coordinated and collaborative research programs supported by national funding agencies. Although much remains to be learned with respect to component processes, many of the most urgent scientific, engineering and social questions can only be addressed through the broader perspective of studies on system scales in which these components are coupled to each other. Questions such as quantifying feedbacks, understanding the implications of sea ice loss to adjacent land areas or society, resolving future predictions of ecosystem evolution or population dynamics all require consideration of complex interactions and interdependent linkages among system components. Research that has identified physical controls on biological processes, or quantified impact/response relationships in physical and biological systems is critically important, and must be continued; however we are approaching a limitation in our ability to accurately project how the Arctic and the Antarctic will respond to a continued warming climate. Complex issues, such as developing accurate model algorithms of feedback processes require higher level synthesis of multiple component interactions. Several examples of important questions that may only be addressed through coupled complex systems analyses will be addressed.

  6. Comparative study of two- and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes

    SciTech Connect

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-02-15

    A comparative study between two- and three-dimensional (2D and 3D) modeling is carried out on arc discharge phenomena inside a thermal plasma torch with hollow electrodes, in order to evaluate the effects of arc root configuration characterized by either 2D annular or 3D highly localized attachment on the electrode surface. For this purpose, a more precise 3D transient model has been developed by taking account of 3D arc current distribution and arc root rotation. The 3D simulation results apparently reveal that the 3D arc root attachment brings about the inherent 3D and turbulence nature of plasma fields inside the torch. It is also found that the constricted arc column near the vortex chamber plays an important role in heating and acceleration of injected arc gases by concentrating arc currents on the axis of the hollow electrodes. The inherent 3D nature of arc discharge is well preserved inside the cathode region, while these 3D features slowly diminish behind the vortex chamber where the turbulent flow begins to be developed in the anode region. Based on the present simulation results, it is noted that the mixing effects of the strong turbulent flow on the heat and mass transfer are mainly responsible for the gradual relaxation of the 3D structures of plasma fields into the 2D axisymmetric ones that eventually appear in the anode region near the torch exit. From a detailed comparison of the 3D results with the 2D ones, the arc root configuration seems to have a significant effect on the heat transfer to the electrode surfaces interacting with the turbulent plasma flow. That is, in the 2D simulation based on an axisymmetric stationary model, the turbulence phenomena are fairly underestimated and the amount of heat transferred to the cold anode wall is calculated to be smaller than that obtained in the 3D simulation. For the validation of the numerical simulations, calculated plasma temperatures and axial velocities are compared with experimentally measured ones

  7. Satellite Observation Systems for Polar Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  8. Feasibility of single-isocenter, multi-arc non-coplanar volumetric modulated arc therapy for multiple brain tumors using a linear accelerator with a 160-leaf multileaf collimator: a phantom study

    PubMed Central

    Iwai, Yoshio; Ozawa, Shuichi; Ageishi, Tatsuya; Pellegrini, Roberto; Yoda, Kiyoshi

    2014-01-01

    The feasibility of single isocenter, multi-arc non-coplanar volumetric modulated arc therapy (VMAT) for multiple brain tumors was studied using an Elekta Synergy linear accelerator with an Agility multileaf collimator and a Monaco treatment planning system. Two VMAT radiosurgery plans consisting of a full arc and three half arcs were created with a prescribed dose of 20 Gy in a single fraction. After dose delivery to a phantom, ionization chambers and radiochromic films were used for dose measurement. The first VMAT radiosurgery plan had nine targets inside the phantom, and the doses were measured by the chambers at two different points and by the films on three sagittal and three coronal planes. The differences between the calculated dose and the dose measured by a Farmer ionization chamber and a pinpoint ionization chamber were <1.00% and <2.30%, respectively, and the average pass rates of gamma indices among the six planes under each of 3%/3 mm and 2%/2 mm criteria were 98.6% and 92.6%, respectively. The second VMAT radiosurgery plan was based on a clinical 14 brain metastases. Differences between calculated and film-measured doses were evaluated on two sagittal planes. The average pass rates of the gamma indices on the planes under each of 3%/3 mm and 2%/2 mm criteria were 97.8% and 88.8%, respectively. It was confirmed that single-isocenter, non-coplanar multi-arc VMAT radiosurgery for multiple brain metastases was feasible using Elekta Synergy with Agility and Monaco treatment planning systems. It was further shown that film dosimetry was accurately performed for a dose of up to nearly 25 Gy. PMID:24944266

  9. Feasibility of single-isocenter, multi-arc non-coplanar volumetric modulated arc therapy for multiple brain tumors using a linear accelerator with a 160-leaf multileaf collimator: a phantom study.

    PubMed

    Iwai, Yoshio; Ozawa, Shuichi; Ageishi, Tatsuya; Pellegrini, Roberto; Yoda, Kiyoshi

    2014-09-01

    The feasibility of single isocenter, multi-arc non-coplanar volumetric modulated arc therapy (VMAT) for multiple brain tumors was studied using an Elekta Synergy linear accelerator with an Agility multileaf collimator and a Monaco treatment planning system. Two VMAT radiosurgery plans consisting of a full arc and three half arcs were created with a prescribed dose of 20 Gy in a single fraction. After dose delivery to a phantom, ionization chambers and radiochromic films were used for dose measurement. The first VMAT radiosurgery plan had nine targets inside the phantom, and the doses were measured by the chambers at two different points and by the films on three sagittal and three coronal planes. The differences between the calculated dose and the dose measured by a Farmer ionization chamber and a pinpoint ionization chamber were <1.00% and <2.30%, respectively, and the average pass rates of gamma indices among the six planes under each of 3%/3 mm and 2%/2 mm criteria were 98.6% and 92.6%, respectively. The second VMAT radiosurgery plan was based on a clinical 14 brain metastases. Differences between calculated and film-measured doses were evaluated on two sagittal planes. The average pass rates of the gamma indices on the planes under each of 3%/3 mm and 2%/2 mm criteria were 97.8% and 88.8%, respectively. It was confirmed that single-isocenter, non-coplanar multi-arc VMAT radiosurgery for multiple brain metastases was feasible using Elekta Synergy with Agility and Monaco treatment planning systems. It was further shown that film dosimetry was accurately performed for a dose of up to nearly 25 Gy.

  10. Rifting process of the Izu-Ogasawara-Mariana arc-backarc system inferred from active source seismic studies

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.

    2008-12-01

    The Izu-Ogasawara-Mariana (IBM) arc-backarc system has continued the crustal growth through crustal thickening by magmatic activities and crustal thinning by backarc opening. Tatsumi et al (2008) proposed petrological crustal growth model started from basaltic magmas rising from the slab, and showed the consistency with the seismic velocity model. Although crustal growth by the crustal thickening are modeled, crustal structural change by the backarc opening are not still unknown yet. The Shikoku Basin and Parece Vela Basin were formed by the backarc opening during approximately 15-30 Ma. Since 6 Ma, the Mariana Trough has opened and the stage already moved to spreading process from rifting process. In the northern Izu-Ogasawara arc, the Sumisu rift is in the initial rifting stage. Therefore, understanding of the crustal change by the backarc opening from rifting to spreading is indispensable to know the crustal growth of whole Izu-Ogasawara-Mariana island arc. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic studies using a multichannel reflection survey system and ocean bottom seismographs (OBSs) around the IBM arc since 2003 (Takahashi et al., 2007; Kodaira et al., 2007; Takahashi et al., 2008; Kodaira et al., 2008). We already obtained eight P-wave velocity models across the IBM arc and these structures record the crustal structural change during the backarc opening process from the rifting stage to the spreading stage. As the results, we identified characteristics of the crustal structural change accompanied with backarc opening as follows. (1) Beneath the initial rifting stage without normal faults, for example, in the northern tip of the Mariana Trough, crustal thickening are identified. (2) Beneath the initial rifting stage with normal faults, for example, in the Sumisu Rift, the crustal thickness is almost similar to that beneath the volcanic front. Although an existence of the crust-mantle transition layer with

  11. Study of erosion rate, erosion products, and arc velocity under transverse magnetic field in vacuum

    NASA Astrophysics Data System (ADS)

    Chang, Rongfeng

    1993-01-01

    The advantages of the cathodic arc-coating method include high energy efficiency, high film deposition rates, and good film-to-substrate adhesion. The principal shortcoming of the arc-coating method is that macroparticles are deposited on the substrate as part of the film. The presence of the macroparticles in the coated film degrades film quality which is particularly severe when the deposition process relies on a reaction to form a compound material as the coating. In this case, the macroparticles contain unreacted metal cores which represent impurities in the coated film. This research attempts to identify methods to eliminate or reduce the formation of macroparticles in the coated film by reaching an understanding of the behavior of macroparticles and the angular distribution of erosion products. A transverse magnetic field has been applied to control the arc motion. This reduces the cathode erosion rate and also the formation of macroparticles. The angular distributions of erosion products, i.e. metal ions and macroparticles, are measured to determine the optimum position for the specimens to be coated, and to better understand the cathode spot characteristics. The arc velocity is also measured to determine the effect of the transverse magnetic field on the cathode erosion rate. The variation of the solid angle which the probe represents with respect to the cathode spot when it moves spirally over the cathode surface has been calculated, and it has been shown that the macroscopic measurements can be used to correlate with the microscopic phenomena of the cathode spot. The cooling of macroparticles during the time of flight from the cathode spot to the substrate has been calculated taking into account evaporation and radiation. In general, the low melting point materials produce large macroparticles and high melting point materials produce small ones. It is easier to reduce the number of macroparticles coated on the substrate for low melting point materials

  12. Study of Erosion Rate, Erosion Products, and Arc Velocity Under Transverse Magnetic Field in Vacuum

    NASA Astrophysics Data System (ADS)

    Chang, Rongfeng

    The advantages of the cathodic arc-coating method include high energy efficiency, high film deposition rates, and good film-to-substrate adhesion. The principal shortcoming of the arc-coating method is that macroparticles are deposited on the substrate as part of the film. The presence of the macroparticles in the coated film degrades film quality which is particularly severe when the deposition process relies on a reaction to form a compound material as the coating. In this case, the macroparticles contain unreacted metal cores which represent impurities in the coated film. This research attempts to identify methods to eliminate or reduce the formation of macroparticles in the coated film by reaching an understanding of the behavior of macroparticles and the angular distribution of erosion products. A transverse magnetic field has been applied to control the arc motion. This reduces the cathode erosion rate and also the formation of macroparticles. The angular distributions of erosion products, i.e. metal ions and macroparticles, are measured to determine the optimum position for the specimens to be coated, and to better understand the cathode spot characteristics. The arc velocity is also measured to determine the effect of the transverse magnetic field on the cathode erosion rate. The variation of the solid angle which the probe represents with respect to the cathode spot when it moves spirally over the cathode surface has been calculated, and it has been shown that the macroscopic measurements can be used to correlate with the microscopic phenomena of the cathode spot. The cooling of macroparticles during the time of flight from the cathode spot to the substrate has been calculated taking into account evaporation and radiation. In general, the low melting point materials produce large macroparticles and high melting point materials produce small ones. It is easier to reduce the number of macroparticles coated on the substrate for low melting point materials

  13. High-density plasma-arc heating studies of FePt thin films

    NASA Astrophysics Data System (ADS)

    Cole, Amanda; Thompson, Gregory B.; Harrell, J. W.; Weston, J.; Ott, Ronald

    2006-06-01

    The effect of pulsed-thermal-processing with high-density plasma arc heating is discussed for 20 nm thick nanocrystalline FePt thin films. The dependence of the A1→L10 phase transformation on pulsed time and radiant energy of the pulse is quantified through x-ray diffraction and alternating gradient magnetometry. For 100 ms and 250 ms pulse widths, the phase transformation was observed. Higher radiant energy densities resulted in a larger measured coercivity associated with the L10 phase.

  14. A case-study of the evolution of polar-cap currents and auroral electrojets during polar geomagnetic disturbances with IMS magnetometer data

    NASA Technical Reports Server (NTRS)

    Iijima, T.; Kim, J. S.; Sugiura, M.

    1984-01-01

    The development of the polar cap current and the relationship of that development to the evolution of auroral electrojets during individual polar geomagnetic disturbances is studied using 1 min average data from US-Canada IMS network stations and standard magnetograms from sites on the polar cap and in the auroral zone. It is found that even when the auroral electrojet activity is weak, polar cap currents producing fields of magnitude approximately 100-200 nT almost always exist. A normal convection current system exists quasi-persistently in the polar cap during extended quiet or weakly disturbed periods of auroral electrojet activity. After one such period, some drastic changes occur in the polar cap currents, which are followed by phases of growth, expansion, and recovery. Polar cap currents cannot all be completely ascribed to a single source mechanism.

  15. Spectromicroscopy Study of the Organic Molecules Utilizing Polarized Radiation

    SciTech Connect

    Hsu, Y.J.; Wei, D.H.; Yin, G.C.; Chung, S.C.; Hu, W.S.; Tao, Y.T.

    2004-05-12

    Spectromicroscopy combined with polarized synchrotron radiation is a powerful tool for imaging and characterizing the molecular properties on surface. In this work we utilized the photoemission electron microscopy (PEEM) with linear polarized radiation provided by an elliptically polarized undulator to investigate the molecular orientations of pentacene on self-assembled monolayer (SAMs) modified gold surface and to observe the cluster domain of mixed monolayers after reorganization on silver. Varying the electric vector parallel or perpendicular to the surface, the relative intensity of {pi}* and {sigma}* transition in carbon K-edge can be used to determine the orientation of the planar-shaped pentacene molecule or long carbon chain of carboxylic acids which are important for organic semiconductor.

  16. Magnetotransport study of valley-polarized electrons in synthetic diamond

    NASA Astrophysics Data System (ADS)

    Suntornwipat, Nattakarn; Gabrysch, Markus; Majdi, Saman; Twitchen, Daniel J.; Isberg, Jan

    2016-07-01

    We demonstrate that the highly stable valley-polarized electron states in ultrapure single-crystalline diamond allow for investigation of charge transport, magnetoresistivity, and determination of the dominant scattering mechanism. The Hall effect gives rise to nonisotropic contributions in the mobility tensor that were measured at a temperature of 70 K in a time-of-flight setup with an added magnetic field. The observations of the magnetotransport of valley-polarized electrons in diamond are compared with both Monte Carlo simulations and an analytical model based on the Boltzmann transport equation. We establish that acoustic phonon scattering is the dominant electron scattering mechanism at 70 K for each of the valley polarizations in the investigated samples.

  17. Traceability study of optical fiber degree of polarization (DOP) measurement

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Li, Jianwei; Li, Jian; Zhang, Zhixin

    2013-09-01

    Degree of polarization (DOP) is an important physical quantity for describing the optical polarization effect and is widely applied in optical fiber communication, optical fiber gyro and the related technologies. Currently, the optical polarization degree tester for the purpose of communication uses mainly two kinds of measurement methods: Stokes vector method and extremum method. At present, there isn't a standard to measure the accuracy and consistency of DOP parameter measurement by the devices listed above, affecting seriously the application of DOP parameter measurement in the fields of optical fiber gyro and optical fiber communication. So, it is urgent to table the accurate guarantees to trace the source of quantitative values of the DOP measuring devices and testers. In this paper, the polarization beam combination method is raised to research and manufacture the standard optical fiber light source device with the variable DOP, and an indicated error measurement has been conducted for a DOP meter. A kind of standard optical fiber light source device that uses a single light source to realize the variable DOP is put forward. It is used to provide the accurate and variable optical fiber polarization degree light with a scope of 0~100%. It is used to calibrate the DOP meters and widely applied in the field of national defense and optical communication fields. By using the standard optical power meter, DOP value by which the optical power meter calculates the optical signal can be measured, which will be used ultimately for calibration of the DOP meter. A measurement uncertainty of 0.5% is obtained using the polarization beam combination method.

  18. Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Gorelik, Olga; Proft, William J.

    2000-01-01

    Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.

  19. Thermal efficiency of arc welding processes

    SciTech Connect

    DuPont, J.N.; Marder, A.R.

    1995-12-01

    A study was conducted on the arc and melting efficiency of the plasma arc, gas tungsten arc, gas metal arc, and submerged arc welding processes. The results of this work are extended to develop a quantitative method for estimating weld metal dilution in a companion paper. Arc efficiency was determined as a function of current for each process using A36 steel base metal. Melting efficiency was evaluated with variations in arc power and travel speed during deposition of austenitic stainless steel filler metal onto A36 steel substrates. The arc efficiency did not vary significantly within a given process over the range of currents investigated. A semi-empirical relation was developed for the melting efficiency as a function of net arc power and travel speed, which described the experimental data well. An interaction was observed between the arc and melting efficiency. A low arc efficiency factor limits the power delivered to the substrate which, in turn, limits the maximum travel speed for a given set of conditions. High melting efficiency is favored by high arc powers and travel speeds. As a result, a low arc efficiency can limit the maximum obtainable melting efficiency.

  20. Study of the mesosphere using wide-field twilight polarization measurements: Early results beyond the polar circle

    NASA Astrophysics Data System (ADS)

    Ugolnikov, O. S.; Kozelov, B. V.

    2016-07-01

    This paper discusses the results of early measurements of temperature and dust in the mesosphere on the basis of wide-field twilight sky polarimetry, which began in 2015 in Apatity (North of Russia, 67.6° N, 33.4° E) using the original entire-sky camera. These measurements have been performed for the first time beyond the Polar Circle in the winter and early spring period. The general polarization properties of the twilight sky and the procedure for identifying single scattering are described. The key results of the study include the Boltzmann temperature values at altitudes higher than 70 km and the conclusion on a weak effect of dust on scattering properties of the mesosphere during this period.

  1. Exploring Links Between Global Climate and Explosive Arc Volcanism in Tephra-Rich Quaternary Sediments: A Pilot Study from IODP Expedition 350 Site 1437B, Izu Bonin Rear-Arc Region

    NASA Astrophysics Data System (ADS)

    Corry-Saavedra, K.; Straub, S. M.; Bolge, L.; Schindlbeck, J. C.; Kutterolf, S.; Woodhead, J. D.

    2015-12-01

    Fallout tephra in marine sediment provide an excellent archive of explosive arc volcanism that can be directly related to the other parameters of climate change, such as ice volume data, IRD (ice-rafted debris) input, etc. Current studies are based on 'discrete' tephra beds, which are produced by major eruptions and visible with the naked eye. Yet the more common, but less explosive arc eruptions that are more continuous through time produce 'disperse' tephra, which is concealed by the non-volcanic host sediment and invisible to the eye. The proportion of disperse tephra in marine sediments is known to be significant and may be critical in elucidating potential synchronicity between arc volcanism and glacial cycles. We conducted a pilot study in young sediments of IODP Hole 1437B drilled at 31°47.3911'N and 139°01.5788'E at the rear-arc of the Izu Bonin volcanic arc. By means of δ18O (Vautravers, in revision), eleven climatic cycles are recorded in uppermost 120 meter of carbonate mud that is interspersed by cm-thick tephra fallout layers. We selected six tephra layers, ranging from 0.2 to 1.16 million years in age, and sampled those vertically, starting from carbonate mud below the basal contact throughout the typical gradational top into the carbonate mud above. From each tephra bed, volcanic particles (>125 micrometer) were handpicked. All other samples were powdered and leached in buffered acetic acid and hydroxylamine hydrochloride to remove the carbonate and authigenous fraction, respectively. Major and trace element abundances (except for SiO2) from all samples were determined by ICP-MS and ICP-OES methods. Strong binary mixing trends are revealed between the pure tephra end member, and detrital sediment component. The tephra is derived from the Izu Bonin volcanic front and rear-arc, while the sediment component is presumably transported by ocean surface currents from the East China Sea. Our data show that mixing proportions change systematically with

  2. Comprehensive study of the seismotectonics of the eastern Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Jacob, K.H.; Davies, J.N.; House, L.

    1981-01-01

    Refined hypocenter locations beneath the Shumagin Islands seismic network of the eastern Aleutian arc, Alaska, provide for the first time conclusive evidence for a double-sheeted dipping seismic (Benioff) zone in this arc. This refined seismicity structure was obtained in the arc section centered on the Shumagin seismic gap. A thorough review of three seismic gaps in the eastern Aleutian arc shows a high potential for great earthquakes within the next one to two decades in the Shumagin and Yakataga seismic gaps, and a less certain potential for a large or great earthquake in the possible Unalaska gap. A tilt reversal was geodetically observed to have occurred in 1978/79 in the forearc region of the Shumagin gap and could indicate the onset of a precursory strain relief episode prior to a great quake. A comparative study of the Pavlof volcano seismicity with that of other recently active volcanoes (i.e., Mt. St. Helens) indicates that island-arc (explosive-type) volcanoes respond to small ambient, periodic stress changes (i.e., tides). Stress drop measurements from earthquakes on the main thrust zone indicate high stress drops within the seismic gap regions of the Aleutian arc and low stress drops outside the gap region.

  3. POLARIZED RADIO SOURCES: A STUDY OF LUMINOSITY, REDSHIFT, AND INFRARED COLORS

    SciTech Connect

    Banfield, Julie K.; George, Samuel J.; Taylor, A. Russ; Stil, Jeroen M.; Kothes, Roland; Scott, Douglas

    2011-05-20

    The Dominion Radio Astrophysical Observatory Deep Field polarization study has been matched with the Spitzer Wide-Area Infrared Extragalactic Survey of the European Large Area Infrared Space Observatory Survey North 1 field. We have used Very Large Array observations with a total intensity rms of 87 {mu}Jy beam{sup -1} to match SWIRE counterparts to the radio sources. Infrared color analysis of our radio sample shows that the majority of polarized sources are elliptical galaxies with an embedded active galactic nucleus. Using available redshift catalogs, we found 429 radio sources of which 69 are polarized with redshifts in the range of 0.04 < z < 3.2. We find no correlation between redshift and percentage polarization for our sample. However, for polarized radio sources, we find a weak correlation between increasing percentage polarization and decreasing luminosity.

  4. [Study on the response to the soil moisture polarized spectrum under visible-near infrared band].

    PubMed

    Han, Yang; Zhao, Yun-Sheng; Wang, Ye-Qiao

    2013-08-01

    Moisture is one of the important parameters in soil polarized spectrum. It has great significance in soil remote sensing band selection and image interpretation; it also provides the information for soil investigation and analysis on physical and chemical properties. In the present paper we tested and analyzed the soil polarized spectrum with different moisture in 350-2 500 nm wavelength range to study on the relationship between soil polarized spectral data and moisture, to determine the spectral response and changes in soil moisture, to establish models between spectral data and soil moisture and select the best forecast model. The results show that the accuracy of the polarized derivative spectra model is higher than the polarized spectral model and absorbance model. All the models showed a water content threshold, and found that it is a certain regularity that critical value of soil moisture in different polarization is near 30%.

  5. The evolution of polarization inside ultrathin PbTiO3 films: a theoretical study

    NASA Astrophysics Data System (ADS)

    Xue, Y. B.; Chen, D.; Wang, Y. J.; Tang, Y. L.; Zhu, Y. L.; Ma, X. L.

    2015-07-01

    How to control the material properties by manipulating the unitcell thickness is crucial for applications of ferroelectric ultrathin films. To understand the polarization behaviour of ultrathin PbTiO3 (PTO) films grown on SrTiO3 (STO) substrate, we have systematically explored the strength and direction of polarization in each unitcell layer, using density functional theory combined with Born effective charge method. Strikingly, we find that the polar state of ultrathin PTO films is a composite result depending not only on thickness but also on boundary condition, initial polarization direction, etc. Besides, we also studied the surface effect on the polarization in the thicker PTO films for comparison with the ultrathin ones, which suggests that the surface effect is basically confined in a small range (3-5 unitcells thick at surface region) no matter what kinds of surface terminations and polarization directions.

  6. Study on preparation and polarization process of PVDF thin film

    NASA Astrophysics Data System (ADS)

    Guo, Xiaopei; Wang, Jun; Ding, Jie; Jiang, Yadong

    2014-09-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer, which indicates four different crystalline forms. In this paper, the preparation of nanoscale PVDF thin film was introduced in detail. Initially PVDF was dissolved in the N,N-dimethyl Formamide and acetone mixed solution (volume ratio 1:1). The PVDF films were prepared by spin coating method with different solution concentration, then were characterized by SEM, XRD and FTIR after annealed at different annealing temperatures (60 centigrade to 120 centigrade). Due to the formation of polarized β crystal phase in the annealing process, the pyroelectric coefficient p would be affected by different annealing temperatures. The thermal poling technique of PVDF was also shown in this paper. We investigated the polarization behavior of PVDF when they were subjected to different poling electric fields (from 50 V/μm to 80 V/μm) and poling temperatures (from 90 centigrade to 120 centigrade). For a long enough poling time, the polarization is only related to poling electric filed, while poling temperature affects the poling rate merely. Under the condition of PVDF thin film beforet breakdown, the strongger the poling electric filed intensity, the higher the pyroelectric coefficient is. The pyroelectric coefficient of fibricated PVDF film is 9.0×10-10C/cm2K after 80v/μm electric field intensity polarization from experiment result.

  7. Annular (HSURIA) resonators: some experimental studies including polarization effects.

    PubMed

    Chodzko, R A; Mason, S B; Turner, E B; Plummer, W W

    1980-03-01

    A repetitively pulsed CO(2) laser facility was developed for testing annular resonators. The large-aperture device exhibits generally uniform gain over an annular region of 18-cm o.d. and 10-cm i.d. The half-symmetric unstable resonator with internal axicon (HSURIA) was tested at equivalent Fresnel numbers up to 4.5. This resonator design incorporates a W-axicon mirror beam compactor that transforms a cylindricalmode region into an annular-mode region. Two HSURIA configurations were evaluated: (a) with a conical end mirror and (b) with a flat end mirror in the annular leg. With the conical end mirror, the aligned resonator produced a predominantly higher-order azimuthal mode with an on-axis null in the far field. The output was strongly linearly polarized with the electric-field vector tangential to the optic axis in both the near and far fields. The higher-order tangentially polarized mode appears to be the result of a geometric polarization scrambling effect caused by the conical end mirror. The boundary conitions for the conical or W-axicon mirrors imply that the radial electric field has a 180 degrees phase shift on reflection, whereas the tangential component is unchanged. Thus, a tangentially polarized mode is self-reproducing, but a linearly polarized mode is not. To eliminate the polarization scrambling effect in the HSURIA, the conical end mirror was replaced with a flat end mirror. The HSURIA with a flat end mirror produced a central spot in the far field that indicated an l = 0 mode with no spatial variations in polarization. Beam quality was measured in terms of the ratio n(2) of the theoretical (geometric-mode) power transmitted through an aperture of the central lobe diameter to the observed power; n(2) values as low as 1.2 were obtained. The variation of beam quality with tilt of the flat end mirror indicated a factor of 2 degradation in n(2) for a 20-microrad tilt, which is in good agreement with theory. PMID:20220932

  8. Dielectric studies of the solvent polarity effect on conformational equilibrium in 3-nitroacetophenone

    NASA Astrophysics Data System (ADS)

    Małecki, Jerzy; Nowak, Jadwiga

    1991-08-01

    The conformational equilibria in 3-nitroacetophenone have been studied as a function of solvent polarity and temperature. The dipole moment and non-linear dielectric effect methods have been applied. The measurements were performed in four solvents of different polarity within the temperature range 288-323 K. The dipole moment of the synperiplanar conformer and changes in the free enthalpy, enthalpy and entropy of the assumed antiperiplanar—synperiplanar equilibrium have been determined from the experimental data. The results reveal an enhanced stability of the polar, synperiplanar conformer in more polar solutions.

  9. Scientists study deep geological structure between New Hebrides Arc and Eastern Australian Margin

    NASA Astrophysics Data System (ADS)

    Lafoy, Y.; Van de Beuque, S.; Bernardel, G.; Missegue, F.; Nercessian, A.; Auzende, J. M.; Symonds, P. A.; Exon, N. F.

    French and Australian scientists hope that deep seismic profiling performed earlier this year in the southwest Pacific will improve understanding of the geological framework, crustal characteristics, and evolution of basins and ridges between the eastern Australian margin and the New Hebrides Trench system. The data already have indicated that the basements of several basins are thinned and oceanic, that the basements of several ridges are continental, and that, contrary to previous thinking, the Loyalty Basin was formed in late Cretaceous time.Submerged continental fragments separated by deep ocean basins dominate the region in the west, and the Australian Plate is subducting beneath the New Hebrides Arc in the east. Subduction started in Late Miocene time [MacFarlane et al., 1988] at a rate of 12 cm/ year with a convergence direction of WSW-ENE [Dubois et al., 1977].

  10. Study of the formation process of titanium oxides containing micro arc oxidation film on Mg alloys

    NASA Astrophysics Data System (ADS)

    Song, Yingwei; Dong, Kaihui; Shan, Dayong; Han, En-Hou

    2014-09-01

    A novel micro arc oxidation (MAO) film is developed to protect Mg alloys from corrosion. This film contains plenty of titanium oxides, which exhibits higher chemical stability than traditional MAO films. Especially, the micropores on the surface of the film are in situ sealed during the film formation process instead of the sealing pores post treatment. The film formation process is investigated by the observation of surface and cross-section morphologies and analysis of chemical composition. It is found that the sizes of micropores increase but the quantities decrease with increasing oxidation voltages. The micropores are open in the initial stage of oxidation and then they are sealed gradually. The growth direction of the film takes place change at different oxidation voltages. The elements of F and Ti play a significant role in the film growth process.

  11. Tsunami hazard studies in the eastern Hellenic Arc and Balearic Islands

    NASA Astrophysics Data System (ADS)

    Løvholt, F.; de Blasio, F.; Harbitz, C. B.; Urgeles, R.; Canals, M.; Vanneste, M.; Iglesias, O.; Lastias, G.; Glimsdal, S.; Pedersen, G. K.

    2009-04-01

    Tsunami hazard assessment from earthquakes along the western Hellenic Arc as well as from simulation of paleo-submarine landslides in the Ebro Margin (BIG'95) are presented within the framework of the EU project TRANSFER (Tsunami Risk and Strategies for the European Region). Modelling of the tsunami propagation using a dispersive model, nested with the inundation model ComMIT is performed. Presentation of possible regional effects as well as site specific investigation at the TRANSFER test site locations of Rhodes and Fethiye are presented. Emphasis is also put on numerical modelling of the submarine BIG'95 landslide on the Ebro margin. The results from the numerical slide modelling are used as input for a simulation of the tsunami generated by the BIG'95 landslide.

  12. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    SciTech Connect

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L.

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  13. Ground-Sensing Circuit For Arc Welders

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1989-01-01

    Ground-sensing circuit for arc-welding power supply prevents arc burns at loose ground connections on workpiece. Used with ac supply or dc supply of either polarity. Includes oscillator/detector pairs normally shorted out by ground connections to workpiece. When one or more of these four connections broken, one or more oscillator signals applied across power diodes and detected. Detected oscillator signal trips shutoff relay.

  14. Aligning Plasma-Arc Welding Oscillations

    NASA Technical Reports Server (NTRS)

    Norris, Jeff; Fairley, Mike

    1989-01-01

    Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.

  15. A radial velocity study of the intermediate polar EX Hydrae

    NASA Astrophysics Data System (ADS)

    Echevarría, J.; Ramírez-Torres, A.; Michel, R.; Hernández Santisteban, J. V.

    2016-09-01

    A study on the intermediate polar EX Hya is presented, based on simultaneous photometry and high-dispersion spectroscopic observations, during four consecutive nights. The strong photometric modulation related to the 67-min spin period of the primary star is clearly present, as well as the narrow eclipses associated with the orbital modulation. Since our eclipse timings have been obtained almost 91 000 cycles since the last reported observations, we present new linear ephemeris, although we cannot rule out a sinusoidal variation suggested by previous authors. The system shows double-peaked H α, H β and He I λ5876 Å emission lines, with almost no other lines present. As H α is the only line with enough S/N ratio in our observations, we have concentrated our efforts in its study, in order to obtain a reliable radial velocity semi-amplitude. From the profile of this line, we find two important components; one with a steep rise and velocities not larger than ˜1000 km s-1 and another broader component extending up to ˜2000 km s-1, which we interpret as coming mainly from the inner disc. A strong and variable hotspot is found and a stream-like structure is seen at times. We show that the best solution correspond to K1 = 58 ± 5 km s-1 from H α, from the two emission components, which are both in phase with the orbital modulation. We remark on a peculiar effect in the radial velocity curve around phase zero, which could be interpreted as a Rositter-MacLaughlin-like effect, which has been taken into account before deriving K1. This value is compatible with the values found in high resolution both in the ultraviolet and X-ray. Using the published inclination angle of i =78° ± 1° and semi-amplitude K2 = 432 ± 5 km s-1, we find: M1 = 0.78 ± 0.03 M⊙, M2 = 0.10 ± 0.02 M⊙ and a = 0.67 ± 0.01 R⊙. Doppler Tomography has been applied, to construct six Doppler tomograms for single orbital cycles spanning the four days of observations to support our conclusions

  16. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber.

    PubMed

    Zhu, Zhaoming; Brown, Thomas

    2004-03-01

    Besides coherence degradations, supercontinuum spectra generated in birefringent photonic crystal fibers also suffer from polarization fluctuations because of noise in the input pump pulse. This paper describes an experimental study of polarization properties of supercontinuum spectra generated in a birefringent photonic crystal fiber, validating previous numerical simulations. PMID:19474887

  17. Experimental study of the cross-polarization characteristics of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Huynh, T.; Lee, K. F.

    1989-01-01

    The cross polarization characteristics of rectantular patch antennas are studied experimentally. Data are presented showing the dependence of the copolarization to cross-polarization ratio on the aspect ratio in both the E and H planes. Three substrate thicknesses are included and the variation with resonant frequency is examined.

  18. Modelization of nanospace interaction involving a ferromagnetic atom: a spin polarization effect study by thermogravimetric analysis.

    PubMed

    Santhanam, K S V; Chen, Xu; Gupta, S

    2014-04-01

    Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy. PMID:24734699

  19. Studies of Martian polar regions. [using CO2 flow

    NASA Technical Reports Server (NTRS)

    Smith, C. I.; Clark, B. R.; Eschman, D. F.

    1974-01-01

    The flow law determined experimentally for solid CO2 establishes that an hypothesis of glacial flow of CO2 at the Martian poles is not physically unrealistic. Compression experiments carried out under 1 atmosphere pressure and constant strain rate conditions demonstrate that the strength of CO2 near its sublimation point is considerably less than the strength of water ice near its melting point. A plausible glacial model for the Martian polar caps was constructed. The CO2 deposited near the pole would have flowed outward laterally to relieve high internal shear stresses. The topography of the polar caps, and the uniform layering and general extent of the layered deposits were explained using this model.

  20. Study of electronic structure and spin polarization of dysprosium

    SciTech Connect

    Mund, H. S.

    2015-06-24

    In this paper, I have presented the spin-dependent momentum density of ferromagnetic dysprosium using spin polarized relativistic Korringa-Kohn-Rostoker method. A fully relativistic approach has been used to determine the magnetic Compton profile. The density of state in term of majority-spin and minority-spin of Dy also calculated using SPR-KKR. The magnetic Compton profile discussed in term of 4f and diffused electrons.

  1. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  2. Melting Efficiency During Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  3. Study of Earth and Jupiter-like plasmas for atmospheric entries using a non-transferred arc torch

    NASA Astrophysics Data System (ADS)

    Menecier, S.; Gouy, P. A.; Duffour, E.; Perisse, F.; Vacher, D.; Cerqueira, N.; Dudeck, M.; Reynier, Ph; Marraffa, L.

    2015-08-01

    This paper presents the results obtained by a 100 kW non-transferred arc plasma torch dedicated to the studies of plasmas characteristics of atmospheric entries of spatial probes, especially Earth and Jupiter entries. Spectra acquisition of the produced plasmas is achieved using optical emission spectroscopy. For Earth entry conditions, air plasma was obtained with a maximal temperature around 6800 K with a good agreement using atomic lines of oxygen and nitrogen (and also copper coming from electrode’s ablation) and molecular bands of N2, CN and \\text{N}2+ , testifying to a good thermal equilibrium. As the first step in the study of Jupiter atmospheric entry, pure helium plasma was produced with the same maximal temperature of about 7500 K. Helium plasma was achieved for the first time using the plasma torch. Recorded spectra show a continuum, He I lines as well as copper. He II lines are not detected.

  4. Polarization and charge limit studies of strained GaAs photocathodes

    SciTech Connect

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of {approximately} 2.5 A/cm{sup 2} at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don`t have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes.

  5. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    SciTech Connect

    Yang, Ruijie; Wang, Junjie; Xu, Feng; Li, Hua; Zhang, Xile

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  6. Determination of the partial pressure of thallium in high-pressure lamp arcs: A comparative study

    SciTech Connect

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.; Aubes, M.

    1986-08-01

    The partial pressure of thallium in high-pressure Hg-TlI discharges with different mercury, thallium, and electron pressures has been measured by using the optically thin line Tl 655 nm and the self-reversed line Tl 535 nm. The partial pressure of the arc axis has been measured from the line Tl 655nm. The effective partial pressure has been measured from the self-reversed line Tl 535 nm on the basis of the multiparameter method, and it has been calculated from the known axis pressure of thallium and the calculation of its radial variation by taking into account the chemical reactions. The experimental results confirm the dispersion character of the blue wing of the line Tl 535 nm. The systematic difference obtained between the measured and calculated effective pressure, particularly at the moment of minimum electron density, may be interpreted by deviations from the local thermodynamic equilibrium (LTE) caused by overpopulation of the upper level of the line Tl 535 nm.

  7. Study on visual image information detection of external angle weld based on arc welding robot

    NASA Astrophysics Data System (ADS)

    Liu, Xiaorui; Liu, Nansheng; Sheng, Wei; Hu, Xian; Ai, Xiaopu; Wei, Yiqing

    2009-11-01

    Nowadays, the chief development trend in modern welding technology is welding automation and welding intelligence. External angle weld has a certain proportion in mechanical manufacture industries. In the real-time welding process, due to hot deformation and the fixture of workpieces used frequently, torch will detach welding orbit causes deviation, which will affect welding quality. Therefore, elimination weld deviation is the key to the weld automatic tracking system. In this paper, the authors use the self-developed structured light vision sensor system which has significant advantage compared with arc sensors to capture real-time weld images. In the project of VC++6.0 real-time weld image processing, after binaryzation with threshold value seventy, 3*1 median filter, thinning, obtain weld main stripe. Then, using the extraction algorithm this paper proposed to obtain weld feature points, and compute position of weld. Experiment result verified that the extraction algorithm can locate feature points rapidly and compute the weld deviation accurately.

  8. Fatigue Crack Growth Rate Test Results for Al-Li 2195 Parent Metal, Variable Polarity Plasma Arc Welds and Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Wagner, John A.; Domack, Marcia S.

    2000-01-01

    The fatigue crack growth rate of aluminum-lithium (Al-Li) alloy 2195 plate and weldments was determined at 200-F, ambient temperature and -320-F. The effects of stress ratio (R), welding process, orientation and thickness were studied. Results are compared with plate data from the Space Shuttle Super Lightweight Tank (SLWT) allowables program. Data from the current series of tests, both plate and weldment, falls within the range of data generated during the SLWT allowables program.

  9. Laboratory studies of heterogeneous chemistry relevant to the polar atmosphere

    SciTech Connect

    Sodeau, J.R.

    1996-10-01

    The heterogeneous interactions of the stratospheric reservoir species HCl, ClONO{sub 2} and N{sub 2}O{sub 5} with water-rich, polar stratospheric particle mimics represent key, initial steps in the chemistry associated with Antarctic ozone depletion. Using both FTIR spectroscopic and mass spectrometric techniques, we have demonstrated the crucial role of solvated ionic species in the process and shown that the mechanisms can procede by an S{sub N}2-type nucleophilic attack of the oxygen atom from the surface water molecule upon the most accessible electrophilic site of the adsorbing reactant. In contrast to the ozone {open_quotes}hole{close_quotes}, the detailed chemical mechanisms of other polar phenomena, such as {open_quotes}sudden{close_quotes} tropospheric ozone loss over the Arctic and the OH radical {open_quotes}morning burst{close_quotes} measured in the lower Antarctic stratosphere, are little understood. However, cold, condensed matter from a variety of origins is known to exist in both regions. Therefore we shall also report our recent photochemical results pertinent to low-temperature heterogeneous aspects of both issues.

  10. Experimental research on electric propulsion. Note 5: Experimental study of a magnetic field stabilized arc-jet

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1984-01-01

    The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.

  11. A polarization study of dwarf novae and nova-like objects

    NASA Astrophysics Data System (ADS)

    Szkody, P.; Michalsky, J. J.; Stokes, G. M.

    1982-02-01

    Linear polarization measurements for four dwarf novae (SS Cyg, RX And, U Gem, and AH Her) and six nova-like variables (AE Aqr, V426 Oph, UX UMa, CI Cyg, EZ Peg, and TT Ari) are obtained to study variability associated with the outburst cycle. No polarization changes are apparent for SS Cyg or RX And throughout their outburst cycles, but an appreciable difference is noted for AE Aqr. RX And reveals evidence for variability on orbital time scales. All four systems studied at various wavelengths show an unusual wavelength dependence of the polarization.

  12. Study of Radiographic Linear Indications and Subsequent Microstructural Features in Gas Tungsten Arc Welds of Inconel 718

    NASA Technical Reports Server (NTRS)

    Walley, J. L.; Nunes, A. C.; Clounch, J. L.; Russell, C. K.

    2007-01-01

    This study presents examples and considerations for differentiating linear radiographic indications produced by gas tungsten arc welds in a 0.05-in-thick sheet of Inconel 718. A series of welds with different structural features, including the enigma indications and other defect indications such as lack of fusion and penetration, were produced, radiographed, and examined metallographically. The enigma indications were produced by a large columnar grain running along the center of the weld nugget occurring when the weld speed was reduced sufficiently below nominal. Examples of respective indications, including the effect of changing the x-ray source location, are presented as an aid to differentiation. Enigma, nominal, and hot-weld specimens were tensile tested to demonstrate the harmlessness of the enigma indication. Statistical analysis showed that there is no difference between the strengths of these three weld conditions.

  13. Volumetric Modulation Arc Radiotherapy Compared With Static Gantry Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma Tumor: A Feasibility Study

    SciTech Connect

    Scorsetti, Marta; Bignardi, Mario; Clivio, Alessandro

    2010-07-01

    Purpose: A planning study was performed to evaluate RapidArc (RA), a volumetric modulated arc technique, on malignant pleural mesothelioma. The benchmark was conventional fixed-field intensity-modulated radiotherapy (IMRT). Methods and materials: The computed tomography data sets of 6 patients were included. The plans for IMRT with nine fixed beams were compared against double-modulated arcs with a single isocenter. All plans were optimized for 15-MV photon beams. The dose prescription was 54 Gy to the planning target volume. The planning objectives for the planning target volume were a minimal dose of >95% and maximal dose of <107%. For the organs at risk, the parameters were as follows: contralateral lung, percentage of volume receiving 5 Gy (V{sub 5Gy}) <60%, V{sub 20Gy} < 10%, mean <10.0 Gy; liver, V{sub 30Gy} <33%, mean <31 Gy; heart, V{sub 45Gy} <30%, V{sub 50Gy} <20%, dose received by 1% of the volume (D{sub 1%}) <60 Gy; contralateral kidney, V{sub 15Gy} <20%; spine, D{sub 1%} <45 Gy; esophagus, V{sub 55Gy} <30%; and spleen, V{sub 40Gy} <50%. The monitor units (MUs) and delivery time were scored to measure the treatment efficiency. The pretreatment portal dosimetry scored delivery to the calculation agreement with the Gamma Agreement Index. Results: RA and IMRT provided equivalent coverage and homogeneity. Both techniques fulfilled objectives on organs at risk with a tendency of RA to improve sparing. The conformity index was 1.9 {+-} 0.1 for RA and IMRT. The number of MU/2Gy was 734 {+-} 82 for RA and 2,195 {+-} 317 for IMRT. The planning vs. delivery agreement revealed a Gamma Agreement Index for IMRT of 96.0% {+-} 2.6% and for RA of 95.7% {+-} 1.5%. The treatment time was 3.7 {+-} 0.3min for RA and 13.4 {+-} 0.1min for IMRT. Conclusion: RA demonstrated compared with conventional IMRT, similar target coverage and better dose sparing to the organs at risks. The number of MUs and the time required to deliver a 2-Gy fraction were much lower for RA, allowing

  14. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    SciTech Connect

    Sun Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang Deshan; Li, H. Harold

    2010-12-15

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  15. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  16. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    NASA Astrophysics Data System (ADS)

    Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang

    2016-04-01

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  17. A Comparative Study of the Dispersion of Multi-Wall Carbon Nanotubes Made by Arc-Discharge and Chemical Vapour Deposition.

    PubMed

    Frømyr, Tomas-Roll; Bourgeaux-Goget, Marie; Hansen, Finn Knut

    2015-05-01

    A method has been developed to characterize the dispersion of multi-wall carbon nanotubes in water using a disc centrifuge for the detection of individual carbon nanotubes, residual aggregates, and contaminants. Carbon nanotubes produced by arc-discharge have been measured and compared with carbon nanotubes produced by chemical vapour deposition. Studies performed on both pristine (see text) arc-discharge nanotubes is rather strong and that high ultra-sound intensity is required to achieve complete dispersion of carbon nanotube bundles. The logarithm of the mode of the particle size distribution of the arc-discharge carbon nanotubes was found to be a linear function of the logarithm of the total ultrasonic energy input in the dispersion process. PMID:26504969

  18. A Comparative Study of the Dispersion of Multi-Wall Carbon Nanotubes Made by Arc-Discharge and Chemical Vapour Deposition.

    PubMed

    Frømyr, Tomas-Roll; Bourgeaux-Goget, Marie; Hansen, Finn Knut

    2015-05-01

    A method has been developed to characterize the dispersion of multi-wall carbon nanotubes in water using a disc centrifuge for the detection of individual carbon nanotubes, residual aggregates, and contaminants. Carbon nanotubes produced by arc-discharge have been measured and compared with carbon nanotubes produced by chemical vapour deposition. Studies performed on both pristine (see text) arc-discharge nanotubes is rather strong and that high ultra-sound intensity is required to achieve complete dispersion of carbon nanotube bundles. The logarithm of the mode of the particle size distribution of the arc-discharge carbon nanotubes was found to be a linear function of the logarithm of the total ultrasonic energy input in the dispersion process.

  19. Transient arc self-inductance and simmer effects in linear flashlamps for laser pumping

    SciTech Connect

    Fang, C.T.; Lee, J.F.

    1986-01-01

    The physical processes influencing lamp stability and efficiency are studied in this paper. Experimental evidence demonstrates that undesirable lamp output energy variation is believed to be caused by the random nature of the triggering process. The random effect can be decreased by the induced back emf of the transient arc self-inductance under the preferred trigger polarity and the simmer mode operation of the lamp. Simmering a lamp results in a uniform current and plasma density, hence higher optical efficiency is obtained. The best simmer action is provided by the full simmer mode; it allows the arc to grow uniformly from the axis of the lamp.

  20. Characteristics of Arc Voltage of High-Current Air Arc in Sealed Chamber

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinya; Kokura, Kentaro; Minoda, Kyohei; Sato, Shinji

    Effect of arc voltage on different factor of design and control was investigated for high current in order to develop design guide of circuit breaker. In this study, dependences on these factors which are current, arc length, surface area on electrode and internal pressure of arc voltage were evaluated quantitatively. As a result of the evaluations, it was estimated that arc voltage near electrode surface rise linearly with arc current and the area on the surface to the power -0.8, and the voltage in arc column rise pressure increase to the power 0.3. We confirmed the validity of the characteristics of the estimated voltage by comparison with the generated voltage in an actual arc extinguishing chamber. The characteristics of the estimated voltage would be provided as effective guidelines to design arc extinguishing chambers.

  1. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  2. Spontaneous spin polarization in rubrene studied by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Ren, J. F.; Zhang, Y. R.; Zhang, L.; Yuan, X. B.; Hu, G. C.

    2015-02-01

    We theoretically studied the spontaneous spin polarization properties of organic molecule rubrene by using density functional theory calculations. Our investigations show that normally nonmagnetic molecule rubrene could be spin polarized by spinless-hole injection. Magnetic moment of the molecule increases linearly with the extra hole charge amount only when the injected hole charges reach a certain value. The spin density resides predominantly on the carbon atoms in the tetracene backbone of rubrene molecule and also the bond lengths change differently due to the injected charge. Spontaneous spin polarization can be explained as the preferably filling of the spin-splitted carbon pz orbitals near the Fermi energy for the injected charge.

  3. SU-E-T-185: Feasibility Study of Dose Rate Modulated Arc Therapy (DrMAT) for Lung SBRT

    SciTech Connect

    KO, Y; Cho, B; Yi, B; Kwak, J; Song, S; Je, H; Ahn, S; Noh, Y

    2014-06-01

    Purpose: To show the feasibility of clinical application of DrMAT for SBRT in lung cancer patients. DrMAT is a form of dynamic conformal arc therapy where MLC segments and dose rates are controlled through simple field weight optimization. Methods: To show feasibility a new treatment plan was created based on the CT of SBRT lung cancer patients. Static plans with 33 fields are made, which have 11deg in between each field and are acquired rotating gantry angle from 180deg to 188deg in CCW direction, total 352deg is rotated. MLC maintained static aperture for each field. To optimize 33 individual fields, field weight was adjusted accordingly using weight optimization algorithm. Keeping weights and MU of static plan, static MLC aperture was converted to multiple arc segments. Arc plan could be created with the fields in the intervals of 11deg. Static MLC should be converted to arc segment MLC. Dynamic conformal arc therapy plan consists of 33 arc fields, is converted to one dose rate modulated arc therapy (DrMAT) plan. DrMAT plan consists of 166 control points which becomes a single arc plan that changes the shape of MLC for every 2.2deg. The resulting DrMAT plan is not an inverse plan it is a simple form of dynamic conformal arc plan using field weight obtained from static plan. This is compared and evaluated with the VMAT plan. Results: DrMAT and VMAT plans have been compared based on the RTOG1021. Both DrMAT and VMAT plans satisfy 100% irradiation to 95% of PTV and critical organs did not exceed dose limit suggested in RTOG1021. DrMAT plan is almost similar with VMAT plan in Result. Conclusion: Field weight optimization method did not show better Resultcompared to VMAT optimization. However, considering simplicity, DrMAT satisfies the condition in RTOG1021. Therefore clinical application of DrMAT is feasible.

  4. Increasing the arc efficiency by the removal of arc electromagnetic blowing in electric arc furnaces: I. Effect of electromagnetic blowing and the slag height on the arc efficiency in an electric arc furnace

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.; Sokolov, A. Yu.; Lugovoi, Yu. A.

    2012-06-01

    The effect of electromagnetic blowing and the slag layer height on the arc efficiency is analytically studied. An arc is blown from under an electrode toward the furnace walls under an electromagnetic force. The arc efficiency of a 100-t high-power electric arc furnace changes from 0.47 to 0.76 when the slag height increases from 0 to 550 mm.

  5. Origin of anorthite and olivine megacrysts in island-arc tholeiites: petrological study of 1940 and 1962 ejecta from Miyake-jima volcano, Izu-Mariana arc

    NASA Astrophysics Data System (ADS)

    Amma-Miyasaka, Mizuho; Nakagawa, Mitsuhiro

    2002-10-01

    other hand, the 1962 ejecta contain only A-type crystal-clots, indicating that only shallower andesitic magma was discharged. Although anorthite megacrysts are often recognized in island-arc tholeiites, calcic plagioclase could crystallize not from nearly dry tholeiites but from H 2O-saturated conditions. This could be achieved by closed system differentiation and/or addition of H 2O from the crust, such as plutonic conditions.

  6. Electron-spin-polarized He^+ ion source for studying ion-surface interaction dynamics

    NASA Astrophysics Data System (ADS)

    Bixler, D. L.; Lancaster, J. C.; Popple, R. A.; Dunning, F. B.; Walters, G. K.

    1997-03-01

    An electron-spin-polarized He^+ ion source has been developed to study the dynamics of ion-surface interactions. The He^+ ions are produced by Penning ionization in collisions between helium metastable atoms contained in a weak rf-excited discharge. The 2^3S metastable atoms in the discharge are polarized by optical pumping using a 300 mW Ti:sapphire laser tuned to the 2^3S_1-2^3P1 (D_1) transition at 1.083μm. Spin conservation during Penning ionization results in the production of polarized He^+ ions which are extracted from the discharge through a small canal and focused on the target surface using a series of electrostatic lenses, which reduce the energy spread in the beam to ~ 3 eV through chromatic abberation. Currents of ~ 10-9 A are achieved at ion energies of >= 10 eV. The ion beam polarization is determined by allowing the beam to strike a clean Au(100) surface and observing the polarization of the ejected secondary electrons. He^+ ion polarizations of ~ 10 % are routinely obtained, and work is underway to further improve this polarization. ^*Research supported by the U.S. Department of Energy and the Robert A. Welch Foundation. DLB is the recipient of a Texaco Fellowship.

  7. Electron-spin-polarized He^+ ion source for studying ion-surface interaction dynamics

    NASA Astrophysics Data System (ADS)

    Bixler, D. L.; Lancaster, J. C.; Popple, R. A.; Dunning, F. B.; Walters, G. K.

    1997-04-01

    An electron-spin-polarized He^+ ion source has been developed to study the dynamics of ion-surface interactions. The He^+ ions are produced by Penning ionization in collisions between helium metastable atoms contained in a weak rf-excited discharge. The 2^3S metastable atoms in the discharge are polarized by optical pumping using a 300 mW Ti:sapphire laser tuned to the 2^3S_1-2^3P1 (D_1) transition at 1.083μm. Spin conservation during Penning ionization results in the production of polarized He^+ ions which are extracted from the discharge through a small canal and focused on the target surface using a series of electrostatic lenses, which reduce the energy spread in the beam to ~ 3 eV through chromatic abberation. Currents of ~ 10-9 A are achieved at ion energies of >= 10 eV. The ion beam polarization is determined by allowing the beam to strike a clean Au(100) surface and observing the polarization of the ejected secondary electrons. He^+ ion polarizations of ~ 10 % are routinely obtained, and work is underway to further improve this polarization. ^*Research supported by the U.S. Department of Energy and the Robert A. Welch Foundation.

  8. Study on the orientation of pigment in thylakoid based on polarization technique

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Han, Caiqin; Ni, Xiaowu; Luo, Xiaosen

    2011-12-01

    The absorption spectrum and fluorescence spectrum of thylakoid(sample I) and chlorophyll (sample II) extracted from brassica chinensis were studied based on polarization technique. As a result, the absorption peak positions of sample I red shift by more than ten nanometers comparing sample II and the absorption intensities of sample I declined when the polarizer went round from 0° to 90°. It gave detailed explanation why the two absorption spectra feel so different. On the other side, the polarization fluorescence spectra of the two samples excited by 437nm were investigated respectively and the calculation of the fluorescence polarization degree which is determined by the environment of the pigment, the bound state, the effectual energy transfer and the ordered arrangement of the pigment in the two samples showed that the pigment in sample I arrayed regularily. The results of the study would provide powerful reference to the research of the energy transfer and transformation during photosynthesis.

  9. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  10. Cluster observations of the plasma sheet at very high latitudes: The in situ signature of a transpolar arc

    NASA Astrophysics Data System (ADS)

    Fear, R. C.; Milan, S. E.; Maggiolo, R.

    2013-12-01

    Transpolar arcs are auroral features which extend into the polar cap, which is the dim region poleward of the main auroral oval. Several case and statistical studies have shown that they are formed by the closure of lobe magnetic flux by magnetotail reconnection, and that the transpolar arc forms at the footprints of the newly-closed field lines which are embedded within the open flux of the polar cap. Therefore, when transpolar arcs occur, the magnetotail should contain closed magnetic field lines even at high latitudes (but in a localised sector), embedded within the open lobe flux. We present in situ observations of this phenomenon, taken by the Cluster spacecraft on 15th September 2005. Cluster was located at high latitudes in the southern hemisphere lobe (far from the typical location of the plasma sheet), and a transpolar arc was observed by the FUV cameras on the IMAGE satellite. An initial analysis reveals that Cluster periodically observed plasma similar to a typical plasma sheet distribution, but at much higher latitudes - indicative of closed flux embedded within the high latitude lobe. Each time that this plasma distribution was observed, the footprint of the spacecraft mapped to the transpolar arc (significantly poleward of the main auroral oval). These observations are consistent with closed flux being trapped in the magnetotail and embedded within the lobe, and provide further evidence for transpolar arcs being formed by magnetotail reconnection.

  11. A polarized photoluminescence study of strained layer GaAs photocathodes

    SciTech Connect

    Mair, R.A.

    1996-07-01

    Photoluminescence measurements have been made on a set of epitaxially grown strained GaAs photocathode structures. The photocathodes are designed to exhibit a strain-induced enhancement of the electron spin polarization obtainable by optical pumping with circularly polarized radiation of near band gap energy. For the case of non-strained GaAs, the degree of spin polarization is limited to 50% by crystal symmetry. Under an appropriate uniaxial compression or tension, however, the valence band structure near the gap minimum is modified such that a spin polarization of 100% is theoretically possible. A total of nine samples with biaxial compressive strains ranging from zero to {approximately}0.8% are studied. X-ray diffraction analysis, utilizing Bragg reflections, is used to determine the crystal lattice structure of the samples. Luminescence spectra and luminescence circular polarization data are obtained at room temperature, {approx}78 K and {approx}12 K. The degree of luminescence circular polarization is used as a relative measure of the photo-excited electron spin polarization. The room temperature luminescence circular polarization data is compared with the measured electron spin polarization when the samples are used as electron photo-emitters with a negative electron affinity surface preparation. The luminescence data is also analyzed in conjunction with the crystal structure data with the goal of understanding the strain dependent valence band structure, optical pumping characteristics and spin depolarization mechanisms of the photocathode structures. A simple model is used to describe the luminescence data, obtained for the set of samples. Within the assumptions of the model, the deformation potentials a, b and d for GaAs are determined. The measured values are a = -10.16{+-}.21 eV, b = -2.00{+-}.05 eV and d = -4.87{+-}.29 eV. Good agreement with published values of the deformation potentials provides support for the model used to describe the data.

  12. A study of Type I polar stratospheric cloud formation

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Turco, R. P.; Drdla, K.; Jacobson, M. Z.; Toon, O. B.

    1994-01-01

    Mechanisms for the formation of Type I (nitric acid-based) polar stratospheric clouds (PSCs) are discussed. If the pre-existing sulfate aerosols are liquid prior to PSC formation, then nitric acid particles (Type Ib) form by HNO3 dissolution in aqueous H2SO4 solution droplets. This process does not require a nucleation step for the formation of HNO3 aerosols, so most pre-existing aerosols grow to become relatively small HNO3-containing particles. At significantly lower temperatures, the resulting supercooled solutions (Type Ib) may freeze to form HNO3 ice particles (Type Ia). If the pre-existing sulfate aerosols are initially solid before PSC formation, then HNO3 vapor can be deposited directly on the frozen sulfate particles. However, because an energy barrier to the condensation exists a nucleation mechanism is involved. Here, we suggest a unique nucleation mechanism that involves formation of HNO3/H20 solutions on the sulfate ice particles. These nucleation processes may be highly selective, resulting in the formation of relatively small number of large particles.

  13. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-12-01

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  14. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    SciTech Connect

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A. Yartsev, I. M.

    2015-12-15

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  15. mARC Treatment of Hypopharynx Carcinoma with Flat and Flattening-Filter-Free Beam Energies – A Planning Study

    PubMed Central

    Bell, Katharina; Fleckenstein, Jochen; Nuesken, Frank; Licht, Norbert; Rübe, Christian; Dzierma, Yvonne

    2016-01-01

    Background The recently implemented mARC-rotation-technique is capable to deliver high dose rate bursts. For the case of hypopharynx cancer plans we evaluate whether the mARC can achieve an advantage in treatment time in comparison to IMRT. These plans consider two arcs with flat and flattening filter free (FFF) beam energies. Materials and Methods For 8 hypopharynx-cancer patients step-and-shoot-IMRT and mARC plans were created retrospectively using flat and FFF beam energy. The comparison of the plan scenarios considered measures of quality for PTV coverage and sparing of organs at risk. All plans were irradiated on an anthromorphic phantom equipped with thermoluminescent dosimeters to measure scattered dose and treatment times. Results A visual comparison of the dose distribution did not show a marked preference for either technique or energy. The statistical evaluation yielded significant differences in favor of the mARC technique and the FFF energy. Scattered dose could be decreased markedly by the use of the mARC technique. Treatment times could be reduced up to 3 minutes with the use of mARC in comparison to IMRT. The high dose rate energy results in another time advantage of about 1 minute. Conclusions All four plan scenarios yielded equally good quality plans. A combination of the mARC technique with FFF 7 MV high dose rate resulted in a decrease of treatment times from about 9 minutes to 5–6 minutes in comparison to 6 MV IMRT. PMID:27741272

  16. Initial development of the Banda Volcanic Arc

    SciTech Connect

    Hartono, H.M.S. )

    1990-06-01

    The initial development of the Banda Volcanic Arc can be determined by obtaining absolute ages of granites or volcanics, stratigraphy of the Eocene Metan Volcanics of Timor as the oldest formation containing Banda Volcanic Arc extrusives, and tectonic analysis. Banda Arc volcanism is the result of subduction of oceanic crust under the volcanic arc. The time of initial subduction is related to initial seafloor spreading between Australia and Antarctica, which is identical to geomagnetic polarity time 34 (82 mybp). Therefore, 82 mybp can be used as one of the criteria to determine the birth of the Banda Volcanic Arc. With present available time data for determining the birth of the Banda Volcanic Arc, the minimum age coincides with the age of the Metan Volcanics (Eocene, 39-56 mybp) and the maximum age coincides with initial seafloor spreading between Australia and Antarctica (82 mybp). This time span is too long. With the assumption that it needs some time to develop from transcurrent faulting to subduction and volcanism, it is proposed that the initial development of Banda Arc volcanism was during early Tertiary.

  17. Study of Polarized Sea Quark Distributions in Polarized Proton-Proton Collisions at sq root(s) = 500 GeV with PHENIX

    SciTech Connect

    Mibe, Tsutomu

    2009-08-04

    The PHENIX spin program studies the flavor structure of the polarized sea quark distributions in polarized proton-proton collisions. Starting from 2009 run, the quark and antiquark polarization, sorted by flavor, will be investigated with the parity-violating single-spin asymmetry of W-boson production at the collision energy of sq root(s) = 500 GeV. High momentum muons from W-boson decay are detected in the PHENIX muon arms. The muon trigger is being upgraded to allow one to select high momentum muons.

  18. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  19. Stability measurements of PPL atmospheric pressure arc

    SciTech Connect

    Roquemore, L.; Zweben, S.J.; Wurden, G.A.

    1997-12-31

    Experiments on the stability of atmospheric pressure arcs have been started at PPL to understand and improve the performance of arc furnaces used for processing applications in metallurgy and hazardous waste treatment. Previous studies have suggested that the violent instabilities in such arcs may be due to kink modes. A 30 kW, 500 Amp CW DC experimental arc furnace was constructed with a graphite cathode and a molten steel anode. The arc plasma is diagnosed with 4000 frames/sec digital camera, Hall probes, and voltage and current monitors. Under certain conditions, the arc exhibits an intermittent helical instability, with the helix rotating at {approx}600 Hz. The nature of the instability is investigated. A possible instability mechanism is the self-magnetic field of the arc, with saturation occurring due to inhomogeneous heating in a helical arc. The effect of external DC and AC magnetic fields on the instability is investigated. Additionally, arc deflection due to external transverse magnetic field is investigated. The deflection angle is found to be proportional to the applied field, and is in good agreement with a simple model of the {rvec J} x {rvec b} force on the arc jet.

  20. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  1. Spin coherence time studies of a horizontally polarized deuteron beam at COSY

    NASA Astrophysics Data System (ADS)

    G Guidoboni JEDI Collaboration

    2015-11-01

    The measurement of a non-zero electric dipole moment (EDM) aligned along the spin of sub-atomic particles would probe new physics beyond the standard model. It has been proposed to search for the EDM of charged particles using a storage ring and a longitudinally polarized beam. The EDM signal would be a rotation of the polarization from the horizontal plane toward the vertical direction as a consequence of the radial electric field always present in the particle frame. This experiment requires ring conditions that can ensure a lifetime of the in-plane polarization (spin coherence time, SCT) up to 1000 s. A study has begun at the COoler SYnchrotron (COSY) located at the Forschungszentrum Jülich to examine the effects of emittance and momentum spread on the SCT of a polarized deuteron beam at 0.97 GeV c-1. A special Data AcQuisition has been developed in order to provide a direct measurement of a rapidly rotating horizontal polarization as a function of time. The set of data presented here shows how second-order effects from emittance and momentum spread of the beam affect the lifetime of the horizontal polarization of a bunched beam. It has been demonstrated that sextupole fields can be used to correct for these depolarizing sources and increase the SCT up to hundreds of seconds.

  2. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  3. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  4. Thermo-optical and polarized light studies of MWCNT doped PDLCs

    NASA Astrophysics Data System (ADS)

    Mahajan, Jyoti; Gupta, Sureshchandra J.; Saxena, S.; Swati, K.

    2016-05-01

    Optical properties of liquid crystals (LCs) are very essential in an understanding of the technological applications of the LCs. Polymer Dispersed Liquid Crystals (PDLCs) are prepared by dispersing the liquid crystal droplets in polymer matrix. Experiments to study thermo-optical properties and polarized light studies are considered in the present work. PDLCs used in the present work are composed of poly (methyl methacrylate) and cholestric liquid crystal namely cholesteryl propionate. These are further doped with Multi-walled carbon Nanotubes (MWCNTs). Thermo-optical study reveals that there is decrease in the nematic-isotropic phase transition temperature (Clearing point temperature i.e. CPT) with increase in the concentration of MWCNTs. The effect of polarized light is studied by means of change in polarization which is characteristic of the material properties. The optical constants graphs obtained from ellipsometry provides the possibility of the use of composite material for optical switching systems.

  5. Depolarization in the SLC Collider Arcs

    SciTech Connect

    Emma, P.; Limberg, T.; Rossmanith, R.

    1994-06-01

    In the 1993 running cycle of the Stanford Linear Collider, electron spin polarization measurements with a Moller polarimeter at the end of the linac and a Compton polarimeter near the interaction point (IP) indicated a relative polarization loss of up to 20% across the arc. The authors present calculations of the depolarizing effects where variations in energy, energy spread and transverse emittance as well as changes in orbit and initial spin orientation are taken into account. They compare their results with measurements and conclude that, in standard operating conditions, the relative polarization loss is only 3{+-}2%.

  6. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    SciTech Connect

    Xu, Z; Wang, I; Yao, R; Podgorsak, M

    2015-06-15

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans and then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance

  7. Dilution in single pass arc welds

    SciTech Connect

    DuPont, J.N.; Marder, A.R.

    1996-06-01

    A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiency can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.

  8. Three-dimensional modeling of the plasma arc in arc welding

    SciTech Connect

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  9. Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: a biomonitoring study.

    PubMed

    Persoons, Renaud; Arnoux, Damien; Monssu, Théodora; Culié, Olivier; Roche, Gaëlle; Duffaud, Béatrice; Chalaye, Denis; Maitre, Anne

    2014-12-01

    Welding fumes contain various toxic metals including chromium (Cr), nickel (Ni) and manganese (Mn). An assessment of the risk to health of local and systemic exposure to welding fumes requires the assessment of both external and internal doses. The aims of this study were to test the relevance in small and medium sized enterprises of a biomonitoring strategy based on urine spot-samples, to characterize the factors influencing the internal doses of metals in gas metal arc welders and to recommend effective risk management measures. 137 welders were recruited and urinary levels of metals were measured by ICP-MS on post-shift samples collected at the end of the working week. Cr, Ni and Mn mean concentrations (respectively 0.43, 1.69 and 0.27 μg/g creatinine) were well below occupational health guidance values, but still higher than background levels observed in the general population, confirming the absorption of metals generated in welding fumes. Both welding parameters (nature of base metal, welding technique) and working conditions (confinement, welding and grinding durations, mechanical ventilation and welding experience) were predictive of occupational exposure. Our results confirm the interest of biomonitoring for assessing health risks and recommending risk management measures for welders. PMID:25223250

  10. Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: a biomonitoring study.

    PubMed

    Persoons, Renaud; Arnoux, Damien; Monssu, Théodora; Culié, Olivier; Roche, Gaëlle; Duffaud, Béatrice; Chalaye, Denis; Maitre, Anne

    2014-12-01

    Welding fumes contain various toxic metals including chromium (Cr), nickel (Ni) and manganese (Mn). An assessment of the risk to health of local and systemic exposure to welding fumes requires the assessment of both external and internal doses. The aims of this study were to test the relevance in small and medium sized enterprises of a biomonitoring strategy based on urine spot-samples, to characterize the factors influencing the internal doses of metals in gas metal arc welders and to recommend effective risk management measures. 137 welders were recruited and urinary levels of metals were measured by ICP-MS on post-shift samples collected at the end of the working week. Cr, Ni and Mn mean concentrations (respectively 0.43, 1.69 and 0.27 μg/g creatinine) were well below occupational health guidance values, but still higher than background levels observed in the general population, confirming the absorption of metals generated in welding fumes. Both welding parameters (nature of base metal, welding technique) and working conditions (confinement, welding and grinding durations, mechanical ventilation and welding experience) were predictive of occupational exposure. Our results confirm the interest of biomonitoring for assessing health risks and recommending risk management measures for welders.

  11. Effect of high-latitude ionospheric convection on Sun-aligned polar caps

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.

    1994-01-01

    A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore

  12. POLARIZATION STUDIES OF CdZnTe DETECTORS USING SYNCHROTRON X-RAY RADIATION.

    SciTech Connect

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; JAMES, R.B.

    2007-07-01

    New results on the effects of small-scale defects on the charge-carrier transport in single-crystal CdZnTe (CZT) material were produced. We conducted detailed studies of the role of Te inclusions in CZT by employing a highly collimated synchrotron x-ray radiation source available at Brookhaven's National Synchrotron Light Source (NSLS). We were able to induce polarization effects by irradiating specific areas with the detector. These measurements allowed the first quantitative comparison between areas that are free of Te inclusions and those with a relatively high concentration of inclusions. The results of these polaration studies will be reported.

  13. Studies of Polar Mesospheric Clouds from Observations by the Student Nitric Oxide Explorer

    NASA Technical Reports Server (NTRS)

    Bailey, Scott M.

    2005-01-01

    The Geospace Sciences SR&T award NAG5-12648 "Studies of polar mesospheric clouds from observations by the Student Nitric Oxide Explorer" has been completed. The project was very successful in completing the proposed objectives and brought forth unexpected results in the study of Polar Mesospheric Clouds (PMCs). This work has provided key results to the community, provided valuable experience to two students, and inspired new research and collaborations with other research groups. Here we briefly summarize the progress and the scientific results.

  14. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Wasson, Andrew J; Fairchild, Doug P; Wang, Yanli; Feng, Zhili

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  15. Circulatory polarized luminescence studies of lanthanide aminopolycarboxylate complexes

    SciTech Connect

    Spaulding, L.A.L.

    1985-01-01

    The intermolecular energy transfer studies were conducted for the investigation of complexation phenomena among the Ln/APC complexes. The data indicated that these potentially hexadentate ligands formed monomeric complexes until pH 10.0. Luminescence and spectral studies have provided data concerning the structural nature of the Ln/APC complexes. Polymerization and steric requirements of the complex are presented in detail.

  16. Personality Strengths that Influence Teachers Pursuit of Leadership Roles: A Comparative Bi/Polar Study.

    ERIC Educational Resources Information Center

    Collins, Peggy Hooten; Toppins, Anne Davis

    This study examined personality differences between teachers who performed additional leadership tasks and teachers who, though equally qualified and eligible for such tasks, chose not to apply for leadership roles. Subjects of the study were 60 teachers in the leader's group and 80 in the non-leaders group. The Bi/Polar Inventory of Core…

  17. On the evolution of developmental mechanisms: Divergent polarities in leaf growth as a case study

    PubMed Central

    Gupta, Mainak Das; Nath, Utpal

    2016-01-01

    ABSTRACT Most model plants used to study leaf growth share a common developmental mechanism, namely basipetal growth polarity, wherein the distal end differentiates first with progressively more proliferative cells toward the base. Therefore, this base-to-tip growth pattern has served as a paradigm to explain leaf growth and also formed the basis for several computational models. However, our recent report in The Plant Cell on the investigation of leaf growth in 75 eudicot species covering a wide range of eudicot families showed that leaves grow with divergent polarities in the proximo-distal axis or without any obvious polarity. This divergence in growth polarity is linked to the expression divergence of a conserved microRNA-transcription factor module. This study raises several questions on the evolutionary origin of leaf growth pattern, such as ‘when and why in evolution did the divergent growth polarities arise?’ and ‘what were the molecular changes that led to this divergence?’. Here, we discuss a few of these questions in some detail. PMID:26817939

  18. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses

    PubMed Central

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth. PMID:26300564

  19. Intra-arc basins

    SciTech Connect

    Smith, G.A.

    1988-01-01

    Convergent-margin tectonic models feature forearc and back-arc basins and generally portray the arc itself as structurally static. However, intra-arc tectonics not only control distribution and petrology of extrusives and plutons, but also generate basins along the magmatic axis. Magma withdrawal and crustal loading by volcanic edifices contribute to subsidence, but most intra-arc basins are grabens or half-grabens indicative of extension. Grabens are isolated or continuous along long segments of the arc. Basin development may alternate with periods of arc uplife. No unique set of conditions causes intra-arc extension; numerous scenarios may initiate extension and subsidence of thermally weakened arc crust. Transtension related to oblique convergence contributed to the formation of most modern intra-arc basins. Andean basins may result from gravitational spreading of an unusually highstanding arc. Intra-arc basin sediment traps may starve arc-adjacent basins from coarse volcaniclastic detritus. Terrestrial intra-arc basins accommodate thick volcanic and volcaniclastic sediment sections, including lacustrine sequences. Marine intra-arc basins include bounding carbonate shelves, marginal and local intrabasinal submarine fans and aprons, and basin plains receiving pelagic and hemipelagic sediments. Structural patterns are appropriate for trapping hydrocarbons, source rocks are commonly present, and high heat flow favors early maturation. Reservoir quality is typically poor because of volcaniclastic diagenesis, but secondary porosity from dissolution of framework feldspars and carbonate or laumontite cements, and the known productivity of some volcanic reservoirs, suggest the potential for hydrocarbon accumulations. Geothermal resources and modest coal potential have also been recognized.

  20. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When Mma Welding

    NASA Astrophysics Data System (ADS)

    Sapozhkov, S. B.; Burakova, E. M.

    2016-08-01

    Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.

  1. [Study on the Relationship between Hyperspectral Polarized Information of Soil Salinization and Soil Line].

    PubMed

    Xu, Wen-ru; Han, Yang; Qin, Yan; Jin, Lun

    2015-10-01

    It has important significance to assess soil salinization correctly for agricultural production and ecological environment. Soil line can indicate soil salinization in a certain extent. But the soil spectral characteristics obtained at different angles will change with the changing of the soil line parameters. Base on polarized hyper-spectral reflectivity obtained in the laboratory, the study analyzes the relationship between the soil salinization and soil line parameters, explores preliminarily the best way to obtain soil line. The results show: (1) Soil spectral reflectance gradually increased slowly with increasing band. With the enhanced level of salinization, soil spectral reflectance of the first to be gradually reduced to a critical value and then gradually increased. (2) Soil salinization has a linear correlation with the soil slope and intercept. With the enhanced level of salinization, soil slope becomes smaller, and intercept becomes larger. (3) Viewing zenith angle affects the relationship between the polarization state and soil line parameters. When viewing zenith angle is fixed, there is a regularity between the polarization state and soil line parameters. When the viewing zenith angle is between 0 degrees-50 degrees, with the angle becoming larger, soil slope becomes larger, and intercept becomes smaller. (4) Polarization states affects degree of correlation between soil salinization and soil line parameters. When polarization angle is 90 degrees and viewing zenith angle is 25 degrees, the relationship model between soil salinization and soil line parameters is better. The research results can be used to evaluate the degree of salinization soil.

  2. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  3. Shape evolution of arc volcanoes, a case study of Concepción and Maderas (Nicaragua)

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, B.; Grosse, P.; Mathieu, L.; Cecchi, E.

    2009-12-01

    Volcanoes change shape as they grow due to the interplay of several processes such as eruption style, intrusion, vent migration, erosion, and through the effects of tectonic and gravitational deformation. Their shapes can thus hold clues as to their volcano-tectonic state and their structural evolution. We have recently carried out a study on volcano shape evolution by the morphometric analyses of 115 volcanoes from Central America and the southern Central Andes using Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) (Grosse et al., 2009, Geology). The study allowed us to obtain a classification of volcanic edifices (cones, sub-cones, and massifs) and to recognize several evolutionary trends, which seem to be mainly related to magma flux, edifice strength and structural / tectonic conditions. In order to test some of the hypotheses on specific cases, we here explore the morphometric evolution of the two volcanoes that make up the island of Ometepe (Nicaragua), Concepción and Maderas. From basic geological mapping we have a detailed knowledge of the stratigraphy, lithology and architecture of these two volcanoes. Both volcanoes have experienced or are experiencing gravitational spreading, but they differ in that Concepción is a rapidly growing active cone, whereas Maderas is a squat and dormant sub-cone. In addition to the SRTM DEM, we use a higher resolution 30-meter DEM from the Instituto Nicaragüense de Estudios Territoriales (INETER) and combine the morphometric analysis with our field data. We find clear differences in the morphology of the two volcanoes and more subtle variations within discrete sectors of each volcano that are associated with local lava/tephra ratios, the prevailing winds, eruption and erosion rates, and gravitational spreading. The effects of gravitational spreading on the morphometry of the volcanoes are further investigated by comparing with 3-D analogue experiments. This specific case study shows how detailed

  4. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  5. Monitoring ARC services with GangliARC

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Karpenko, D.

    2012-12-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  6. MITHRAS studies of the auroral oval and polar cap

    NASA Astrophysics Data System (ADS)

    Delabeaujardiere, Odile; Watermann, Juergen; Johnson, Robert M.

    1991-01-01

    MITHRAS is a program of coordinated experiments dedicated to studying the coupling between the magnetosphere, the ionosphere, and the thermosphere. MITHRAS observations mostly involve the Sondrestrom radar in Greenland, but other incoherent scatter radars around the world were also used. Contract highlights include the following items. (1) The most extensive comparisons ever made between incoherent scatter radar data and numerical simulation models were performed. These comparisons were based on both individual case studies and averaged data, and included observations from all the incoherent scatter radars. The comparisons showed general agreement between observations and model calculations but they also showed significant differences. (2) During solar maximum conditions, the contribution to the height integrated Pederson conductivity from solar produced F-region ionization can be as large as 60 pct. of the total. (3) Under certain geophysical conditions it appears possible to identify the low altitude cusp and distinguish it from the cleft. The cusp proper appears to be characterized by enhanced F region plasma density collocated with elevated F region electron temperature; it does not appear to be associated with a particular plasma flow pattern signature. (4) A new mechanism was proposed to explain how auroral surges might be formed. It was suggested that the surge was associated with a distortion of the poleward boundary of the aurora, and that this distortion was caused by the field aligned current.

  7. A Study on Cavitation Erosion and Corrosion Behavior of Al-, Zn-, Cu-, and Fe-Based Coatings Prepared by Arc Spraying

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hong; Lee, Myeong-Hoon

    2010-12-01

    Investigation to find a suitable coating material for a rudder application has been carried out in this study. Ten different coatings were prepared by arc spraying with Al-, Zn-, Cu-, and Fe-based wire feedstock. Both the cavitation erosion and marine corrosion behavior of the arc-sprayed coatings were evaluated, and compared with the conventional anti-corrosion paint. In terms of marine corrosion resistance, aluminum coating was the best among the tested coating systems while stainless steel coating showed the highest resistance against cavitation erosion. In addition, the effects of both the Si composition in Al-based coatings and the Ni composition in Cu- and Fe- based coatings were discussed in this study.

  8. A retrospective study of end-stage renal disease in captive polar bears (Ursus maritimus).

    PubMed

    LaDouceur, Elise E B; Davis, Barbara; Tseng, Flo

    2014-03-01

    This retrospective study summarizes 11 cases of end-stage renal disease (ESRD) in captive polar bears (Ursus maritimus) from eight zoologic institutions across the United States and Canada. Ten bears were female, one was male, and the mean age at the time of death was 24 yr old. The most common clinical signs were lethargy, inappetence, and polyuria-polydipsia. Biochemical findings included azotemia, anemia, hyperphosphatemia, and isosthenuria. Histologic examination commonly showed glomerulonephropathies and interstitial fibrosis. Based on submissions to a private diagnostic institution over a 16-yr period, ESRD was the most commonly diagnosed cause of death or euthanasia in captive polar bears in the United States, with an estimated prevalence of over 20%. Further research is needed to discern the etiology of this apparently common disease of captive polar bears. PMID:24712164

  9. Results of a study on polarization mix selection for the NSCAT scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Dunbar, R. Scott; Shaffer, Scott; Freilich, Michael H.; Hsiao, S. Vincent

    1989-01-01

    The NASA scatterometer (NSCAT) is an instrument designed to measure the radar backscatter of the ocean's surface for estimating the near-surface wind velocity. A given resolution element is observed from several different azimuth angles. From these measurements the near-surface vector wind over the ocean may be inferred using a geophysical model function relating the normalized radar backscatter coefficient (sigma0) to the near-surface wind. The results of a study to select a polarization mix for NSCAT using an end-to-end simulation of the NSCAT scatterometer and ground processing of the sigma0 measurements into unambiguous wind fields using a median-filter-based ambiguity-removal algorithm are presented. The system simulation was used to compare the wind measurement accuracy and ambiguity removal skill over a set of realistic mesoscale wind fields for various polarization mixes. Considerations in the analysis and simulation are discussed, and a recommended polarization mix is given.

  10. Are Stamina and Fatigue Polar Opposites? A Case Study

    PubMed Central

    So, Suzanna; Evans, Meredyth; Jason, Leonard A.; Brown, Abigail

    2014-01-01

    Most individuals with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS) (Carruthers et al., 2003), Myalgic Encephalomyelitis (ME) (Carruthers et al., 2011), and chronic fatigue syndrome (CFS) (Fukuda et al., 1994) indicate that they experience fatigue and sharp decreases in energy levels, which hinder the ability to engage in physical activities (Friedberg & Jason, 1998). However, there are some individuals who reduce activity engagement in order to avoid a worsening of symptoms; thus these individuals may endorse lower levels of fatigue. Accordingly, those with low levels of fatigue but low endurance/stamina might be inadvertently excluded from some criteria based on the fatigue requirement. The current study serves as an exploration of the relationship between fatigue and stamina and the effects of these constructs on illness symptomology and their implications for assessment and diagnosis. PMID:25584526

  11. Linear polarization study of microwave-radiation-induced magnetoresistance oscillations: Comparison of power dependence to theory

    NASA Astrophysics Data System (ADS)

    Ye, Tianyu; Iñarrea, Jesús; Wegscheider, W.; Mani, R. G.

    2016-07-01

    We present an experimental study of the microwave power and the linear polarization angle dependence of the microwave-induced magnetoresistance oscillations in the high-mobility GaAs/AlGaAs two-dimensional electron system. Experimental results show the sinusoidal dependence of the oscillatory magnetoresistance extrema as a function of the polarization angle. Yet, as the microwave power increases, the angular dependence includes additional harmonic content, and it begins to resemble the absolute value of the cosine function. We present a theory to explain such peculiar behavior.

  12. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. PMID:26235550

  13. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  14. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  15. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    ERIC Educational Resources Information Center

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  16. Resolving arc processes through detrital zircon U-Pb geochronology and geochemistry: a case study from the southern California Mesozoic convergent margin

    NASA Astrophysics Data System (ADS)

    Johnston, S. M.; Kylander-Clark, A. R.

    2015-12-01

    Detrital zircon geochronology has been widely exploited to establish temporal characteristics in sedimentary source terranes. Detrital zircon geochemistry, however, has been largely overlooked given results from continentally derived igneous zircon that show subtle intersample variation in trace-element concentrations, and which make correlation between detrital zircon and their host terrane difficult. Nevertheless, recent studies suggest systematically variable geochemistry in McCoy Mountain detrital zircons derived from the southern California Mesozoic arc, and our preliminary data from the Peninsular Ranges batholith indicates strong correlations between whole-rock and zircon geochemistry. Here, we present coupled U-Pb geochronology and geochemistry measured by laser ablation split stream ICPMS on detrital zircons from Nacimiento block forearc sediments in Central California to characterize temporal and geochemical trends in the adjacent Mesozoic arc terrane. 1098 grains of Mesozoic age analyzed from 22 samples in the Nacimiento block define three periods of high magmatic flux in the Permian (270-250 Ma), Jurassic (170-140 Ma), and late Cretaceous (115-90 Ma). Zircon from the Permian arc is the least abundant of the three magmatic pulses, although they consistently display elevated Yb/Gd and U/Yb. Jurassic zircons display consistently low U/Yb, variably elevated Yb/Gd, abruptly higher Th/U and LREE from 155-145, and abruptly lower REE concentrations from 145-140 Ma. Zircon from the Cretaceous arc displays gradually increasing U/Yb, Th/U and LREE, with abruptly decreasing Yb/Gd at 95 Ma. The geochemical trends observed in the Nacimiento block detrital zircons of Cretaceous age are strikingly similar to temporal changes in geochemistry known from Cretaceous arc rocks of the Mojave and Peninsular Ranges, and strongly suggest a southern California provenance for Nacimiento block sediments. Furthermore, the similarity of geochemical trends between Cretaceous detrital

  17. Study of The Maximum Uptake Capacity on Various Sizes of Electric Arc Furnace Slag in Phosphorus Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Afnizan, W. M. W.; Hamdan, R.; Othman, N.

    2016-07-01

    The high content of uncontrolled phosphorus concentration in wastewater has emerged as a major problem recently. The excessive amount of phosphorus that is originated from domestic waste, unproper treated waste from septic tanks, as well as agricultural activities have led to the eutrophication problem. Therefore, a laboratory experiment was initiated to evaluate the potential of the Electric Arc Furnace Slag (EAFS), a by-product waste from steel making industry in removing phosphorus concentrations in aqueous solutions. In this work several particle sizes ranging from (9.5-12.4 mm, 12.5-15.9 mm, 16.0-19.9 mm, 20.0-24.9 mm, 25-37.4 mm) with a known weight (20±0.28 g, 40±0.27 g, 60±0.30 g, 80±0.29 g and 100±0.38 g) were used to study the effect of different particle sizes towards phosphorus removal. Each particle size of EAFS was shaken in synthetic phosphorus solutions (10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l) at a contact time of 2 hours. Final concentrations of phosphorus were sampled and the measurement was made using WESTCO Discrete Analyzer equipment. Results showed that the highest of the maximum uptake capacity of each EAFS particle size distribution achieved at 0.287, 0.313, 0.266, 0.241 and 0.25 mg/g as particle size range was varied from 9.5-12.4 mm to 25-37.4 mm. In conclusion, the maximum uptake capacity of each EAFS mostly was determined to occur at adsorbent weight of 20 to 40 g in most conditions.

  18. Studying the Inter-Hemispheric Coupling During Polar Summer Mesosphere Warming in 2002

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem; Pesnell, William; Kutepov, Alexander A.

    2010-01-01

    It has been found that the northern summer polar mesopause region in 2002 was warmer than normal and of shorter duration than for other years analyzed. Theoretical studies have implied that the abnormal characteristics of this polar summer were generated by unusual dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA TIMED Satellite to study these processes for polar summer periods of 2002-2009. For background, SABER is a broadband limb scanning radiometer that measures a large number of minor atmospheric constituents as well as pressure and temperature in the 13-110 km altitude range over most of the globe.We will use SABER temperature data to illustrate the correlated heating seen between the southern and northern hemispheres during June and July 2002. We will then describe the approach to study the wave characteristics of the atmospheric temperature profiles and demonstrate the features that were unique for 2002 compared to the other years.

  19. On the global polarity reversal of the induced magnetosphere of Venus: a statistical study

    NASA Astrophysics Data System (ADS)

    Vech, Daniel; Stenberg, Gabriella; Nilsson, Hans; Edberg, Niklas; Opitz, Andrea; Szego, Karoly; Zhang, Tielong; Futaana, Yoshifumi

    2016-04-01

    In this study we present the first statistical analysis on the effects of Interplanetary Magnetic Field (IMF) sector boundary crossings on the induced magnetosphere of Venus. These events are of particular interest because they lead to the reconfiguration of the induced magnetosphere with opposite polarity. IMF sector boundary crossings can occur after Heliospheric Current Sheet (HCS) crossings and often after the passages of Interplanetary Coronal Mass Ejections (ICME) and Corotating Interaction Regions (CIR). The results show that the HCS crossings cause significant erosion of the dayside ionosphere and in this region the average heavy ion flux was reduced by a factor of 0.63 compared to the undisturbed cases. The heavy ion flux on the nightside changed by a factor of 0.81. On the nightside ion heating was observed and the average heavy ion temperature increased by the factor of 1.63 compared to the undisturbed cases. The ICME/CIR events were sorted into two groups depending on the polarity reversal of the induced magnetosphere. We found significant differences between them: the cases with polarity reversal showed significant ion heating and increased heavy ion flux upon arrival of the ICME/CIR event. We conclude that the observations are similar to the previous comet studies and the polarity reversal of the induced magnetosphere might be accompanied with dayside reconnection.

  20. Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4

    DOE R&D Accomplishments Database

    Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.

    1958-11-26

    The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.

  1. Clinical study of imaging skin cancer margins using polarized light imaging

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Lee, Ken; Jacques, Steven L.

    2012-02-01

    Skin cancer is most commons type of cancer in United States that occur on sun-exposed cosmetically sensitive areas like face, neck, and forearms. Surgical excision of skin cancer is challenging as more than one-third the actual margins extend beyond the clinically determined margins. Polarized light camera (polCAM) provides images of the superficial layers of the tissue with enhanced contrast which was used to image skin cancer margins. In a NIH-funded pilot study polCAM was used to image skin cancer in patients undergoing Mohs micrographic surgery for skin cancer. Polarized light imaging utilizes the polarization properties of light to create an image of a lesion comprised only of light scattering from the superficial layers of the skin which yields a characteristic "fabric pattern" of the putative lesion and the surrounding normal tissue. In several case studies conducted with a system developed for the clinic, we have found that skin cancer disrupts this fabric pattern, allowing the doctor a new means of identifying the margins of the lesion. Data is acquired before the patient underwent surgery. The clinically determined skin cancer margins were compared with margins determined by examination of the polCAM images. The true margins were provided by the dermatophathologist on examination of the frozen sections. Our initial data suggests that the contrast due to polarization changes associated with cancerous lesions can elucidate margins that were not recognized by the surgeon under normal conditions but were later confirmed by the pathologist.

  2. A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

    NASA Astrophysics Data System (ADS)

    Blechschmidt, Anne-Marlene; Richter, Andreas; Burrows, John P.; Kaleschke, Lars; Strong, Kimberly; Theys, Nicolas; Weber, Mark; Zhao, Xiaoyi; Zien, Achim; Hodges, Kevin I.

    2016-04-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by the UV-vis satellite instruments GOME-2/MetOp-A and SCIAMACHY/Envisat over Arctic and Antarctic sea ice in polar spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. This influences atmospheric chemistry as it affects the oxidising capacity of the troposphere through OH production and may also influence the local weather/temperature of the polar atmosphere, as ozone is a major greenhouse gas. Here, we make combined use of satellite retrievals and numerical model simulations to study individual BrO plume cases in the polar atmosphere. In agreement with previous studies, our analysis shows that the plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. Moreover, general characteristics of bromine explosion events linked to transport by polar weather systems, such as frequency, spatial distribution and favourable weather conditions are derived based on a new detection method. Our results show that BrO cyclone transport events are by far more common in the Antarctic than in the Arctic.

  3. Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy.

    PubMed

    Tuer, Adam E; Krouglov, Serguei; Prent, Nicole; Cisek, Richard; Sandkuijl, Daaf; Yasufuku, Kazuhiro; Wilson, Brian C; Barzda, Virginijus

    2011-11-10

    Collagen (type I) fibers are readily visualized with second harmonic generation (SHG) microscopy though the molecular origin of the signal has not yet been elucidated. In this study, the molecular origin of SHG from type I collagen is investigated using the time-dependent coupled perturbed Hartree-Fock calculations of the hyperpolarizibilities of glycine, proline, and hydroxyproline. Two effective nonlinear dipoles are found to orient in-the-plane of the amino acids, with one of the dipoles aligning close to the pitch orientation in the triple-helix, which provides the dominant contribution to the SHG polarization properties. The calculated hyperpolarizability tensor element ratios for the collagen triple-helix models: [(Gly3)n]3, [(Gly-Pro2)n]3, and [(Gly-Pro-Hyp)n]3, are used to predict the second-order nonlinear susceptibility ratios, χ(zzz)(2)/χ(iiz)(2) and χ(zii)(2)/χ(iiz)(2) of collagen fibers. From SHG microscopy polarization in, polarization out (PIPO) measurements of type I collagen in human lung tissue, a theoretical method is used to extract the triple-helix orientation angle with respect to the collagen fiber. The study shows the dominant role of amino acid orientation in the triple-helix for determining the polarization properties of SHG and provides a method for determining the triple-helix orientation angle in the collagen fibers. PMID:21970315

  4. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  5. A dosimetric comparative study: Volumetric modulated arc therapy vs intensity-modulated radiation therapy in the treatment of nasal cavity carcinomas

    SciTech Connect

    Nguyen, Kham; Cummings, David; Lanza, Vincent C.; Morris, Kathleen; Wang, Congjun; Sutton, Jordan; Garcia, John

    2013-10-01

    The purpose of this study was to evaluate the differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of nasal cavity carcinomas. The treatment of 10 patients, who had completed IMRT treatment for resected tumors of the nasal cavity, was replanned with the Philips Pinnacle{sup 3} Version 9 treatment-planning system. The IMRT plans used a 9-beam technique whereas the VMAT (known as SmartArc) plans used a 3-arc technique. Both types of plans were optimized using Philips Pinnacle{sup 3} Direct Machine Parameter Optimization algorithm. IMRT and VMAT plans' quality was compared by evaluating the maximum, minimum, and mean doses to the target volumes and organs at risk, monitor units (MUs), and the treatment delivery time. Our results indicate that VMAT is capable of greatly reducing treatment delivery time and MUs compared with IMRT. The reduction of treatment delivery time and MUs can decrease the effects of intrafractional uncertainties that can occur because of patient movement during treatment delivery. VMAT's plans further reduce doses to critical structures that are in close proximity to the target volume.

  6. Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation

    NASA Astrophysics Data System (ADS)

    Smietana, M.; Bock, W. J.; Mikulic, P.

    2010-02-01

    The paper presents for the first time a comparative study of long-period gratings (LPGs) written by point-by-point UV irradiation and by electrical arc discharges. These gratings were inscribed in a highly photosensitive boron co-doped fiber that can be considered as a suitable platform for LPG writing using either technology. The experimental transmission data for the manufactured LPG devices fit well when compared to the simulations we carried out in parallel. As a result of each of these writing processes, we were able to obtain a remarkably good quality of grating. Two reasons could explain the observed small differences between the spectra: a slight mismatch of the period of the gratings and an unintentional tapering of the fiber during the arc-based processes. We also found that the UV irradiation at λ = 248 nm can cause clearly visible damage to the fiber's surface. As a result of the UV writing, a coupling to the asymmetrical cladding modes can take place. Moreover, the gratings written using the two technologies show a very similar refractive index and temperature-sensing properties. The only differences between them can come from a physical deformation of the fiber induced by the electric arc discharges.

  7. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  8. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    NASA Astrophysics Data System (ADS)

    Cong, Haoxi; Li, Qingmin; Xing, Jinyuan; Li, Jinsong; Chen, Qiang

    2015-06-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. supported by National Natural Science Foundation of China (Nos. 51277061 and 51420105011)

  9. Study of the New Pulse NMR System for the Jefferson Lab Helium-3 Polarized Target

    NASA Astrophysics Data System (ADS)

    Newton, Joseph

    2013-10-01

    At Jefferson Lab, a polarized Helium-3 target is used to study the neutron. The Helium-3 target is undergoing an upgrade to improve its polarization. Measuring it involved a new technique known as pulse Nuclear Magnetic Resonance (NMR). The focus of this project was to find noise in the Pulse NMR signal and to compute the calibration constant to make the polarization easier to deduce. Pulse NMR calibration tests were performed by doing AFP NMR measurements followed by Pulse NMR measurements while varying certain conditions. These included the convection heater, the operation of the oven, and the operation of the laser. Data analysis was done by fitting the pulse NMR signal from the oscilloscope and utilizing the Fourier Transform. Noise was analyzed in the fitting and the Fourier Transform. The calibration constants were affected by the convection heater. The values deviated between the pumping and target chambers of the cell when there was no convection but the values were closer when convection was induced. As far as the noise, it was found to be significant. These results will enable the calculation of the polarization with pulse NMR. In addition, the signal analysis provided insight into the influence of background noise on the pulse NMR measurement. This research was done though the SULI program of the Department of Energy.

  10. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals

    NASA Astrophysics Data System (ADS)

    Guc, Maxim; Levcenko, Sergiu; Bodnar, Ivan V.; Izquierdo-Roca, Victor; Fontane, Xavier; Volkova, Larisa V.; Arushanov, Ernest; Pérez-Rodríguez, Alejandro

    2016-01-01

    A non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone-center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm-1 on an oriented single crystal. The phonon mode symmetry of 20 modes from the 27 possible vibrational modes of the kesterite structure is experimentally determined. From in-plane angular dependences of the phonon modes intensities Raman tensor elements are also derived. Whereas a strong intensity enhancement of the polar E and B symmetry modes is induced under resonance conditions, no mode intensity dependence on the incident and scattered light polarization configurations was found in these conditions. Finally, Lyddane-Sachs-Teller relations are applied to estimate the ratios of the static to high-frequency optic dielectric constants parallel and perpendicular to c-optical axis.

  11. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals

    PubMed Central

    Guc, Maxim; Levcenko, Sergiu; Bodnar, Ivan V.; Izquierdo-Roca, Victor; Fontane, Xavier; Volkova, Larisa V.; Arushanov, Ernest; Pérez-Rodríguez, Alejandro

    2016-01-01

    A non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone–center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm−1 on an oriented single crystal. The phonon mode symmetry of 20 modes from the 27 possible vibrational modes of the kesterite structure is experimentally determined. From in-plane angular dependences of the phonon modes intensities Raman tensor elements are also derived. Whereas a strong intensity enhancement of the polar E and B symmetry modes is induced under resonance conditions, no mode intensity dependence on the incident and scattered light polarization configurations was found in these conditions. Finally, Lyddane-Sachs-Teller relations are applied to estimate the ratios of the static to high-frequency optic dielectric constants parallel and perpendicular to c-optical axis. PMID:26776727

  12. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals.

    PubMed

    Guc, Maxim; Levcenko, Sergiu; Bodnar, Ivan V; Izquierdo-Roca, Victor; Fontane, Xavier; Volkova, Larisa V; Arushanov, Ernest; Pérez-Rodríguez, Alejandro

    2016-01-01

    A non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone-center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm(-1) on an oriented single crystal. The phonon mode symmetry of 20 modes from the 27 possible vibrational modes of the kesterite structure is experimentally determined. From in-plane angular dependences of the phonon modes intensities Raman tensor elements are also derived. Whereas a strong intensity enhancement of the polar E and B symmetry modes is induced under resonance conditions, no mode intensity dependence on the incident and scattered light polarization configurations was found in these conditions. Finally, Lyddane-Sachs-Teller relations are applied to estimate the ratios of the static to high-frequency optic dielectric constants parallel and perpendicular to c-optical axis. PMID:26776727

  13. Photoemission studies with barium and LaB6 photocathodes and polarized laser light

    NASA Astrophysics Data System (ADS)

    Conde, M. E.; Kwon, S. I.; Young, A. T.; Leung, K. N.; Kim, K.-J.

    1994-11-01

    In this paper, presented is a work on the optimization of the performance of barium photocathodes. Studies on the dependence of the quantum yield on the polarization and angle of incidence of the laser beam are conducted. Moreover, studies on single crystal LaB6 photocathodes are reported. This material possesses a lower quantum yield than barium, but chemically it is much less reactive and have a very good thermionic emission characteristics.

  14. The use of optimal polarizations for studying the microphysics of precipitation: Nonattenuating wavelengths

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, John M.; Kostinski, Alexander B.; Jameson, A. R.

    1995-01-01

    The objective of this work is to explore relationships between the microphysical properties of precipitation and optimal polarizations. The dependence of three optimal polarization parameters (asymmetry ratio A, optimal tilt tau(sub op), and optimal ellipticity epsilon(sub op) on the reflectivity-weighted mean drop shape, mean canting angle, and standard deviation of a Gaussian canting angle distribution is studied. This is accomplished by using computer simulations that provide the rms scattering matrix for an ensemble of canted drops with a prescribed two-parameter canting angle distribution. Also examined are the effects of propagation on the polarization parameters for nonattenuating wavelengths. The asymmetry ratio A is simply the ratio of the maximal to minimal total backscattered energy (ratio of the largest and smallest eigenvalue of the Graves power matrix G is identically equal to S dagger S). Similar to Z(sub DR), this ratio decreases with increasing mean axial ratio, but unlike Z(sub DR), it is not affected by canting (for a single drop). The dependence of A on the reflectivity-weighted mean drop shape is examined, and a power-law relationship similar to that which exists for Z(sub DR) is established. The asymmetry ratio A can be regarded as a generalization of Z(sub DR) because it requires only a measurement of linear depolarization ratio (in addition to Z(sub DR)), is independent of the propagation phase, and is less sensitive to canting. In a similar manner, the dependence of optimal ellipticity and tilt on the microphysical parameters is studied. In particular, it appears that the rms tilt of the optimal polarization ellipse is proportional to the variance of the canting angle distribution. Several other promising relationships between optimal polarizations and the microphysical variables of an ensemble of hydrometeors are also discussed.

  15. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  16. Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Wang, Yunfei; He, Honghui; Tuchin, Valery V; Ma, Hui

    2016-08-01

    We conducted Monte Carlo simulations based on anisotropic sclera-mimicking models to examine the polarization features in Mueller matrix polar decomposition (MMPD) parameters during the refractive index matching process, which is one of the major mechanisms of optical clearing. In a preliminary attempt, by changing the parameters of the models, wavelengths, and detection geometries, we demonstrate how the depolarization coefficient and retardance vary during the refractive index matching process and explain the polarization features using the average value and standard deviation of scattering numbers of the detected photons. We also study the depth-resolved polarization features during the gradual progression of the refractive index matching process. The results above indicate that the refractive index matching process increases the depth of polarization measurements and may lead to higher contrast between tissues of different anisotropies in deeper layers. MMPD-derived polarization parameters can characterize the refractive index matching process qualitatively. PMID:27240298

  17. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGESBeta

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  18. Tectonic evolution of the Notre Dame magmatic arc, Newfoundland Appalachians

    NASA Astrophysics Data System (ADS)

    van Staal, C.

    2003-12-01

    Notre Dame continental arc magmatism in Newfoundland had an overall lifespan of c. 60 Ma (489-429 Ma). Extensive age dating suggests that arc construction took place in 3 distinct stages, separated by gaps of magmatic quiescence (arc shut-off). The first phase of quiescence (c. 480-468 Ma) corresponds to the start of Taconic collision between the initially west-facing Notre Dame arc and Laurentia. The second phase of magmatic quiescence (455-445 Ma) corresponds to collision between the now east-facing Notre Dame arc and the west-facing, peri-Gondwanan Victoria arc built on a piece of Ganderian crust. Resurgence of arc magmatism followed stepping- back of the west-dipping subduction zone into the oceanic marginal basin that separated the Victoria arc from the Gander margin. A gradual transition (431-429 Ma) from arc-like to mainly juvenile, bimodal within plate-like magmatism coincides with suturing of the Notre Dame arc with the Gander margin along the Dog Bay line and probably reflects break off of the west-dipping Ganderian slab. Preservation of an unconformable and unmetamorphosed Silurian cover, consisting of red beds and bimodal volcanic rocks, over large tracts of the Notre Dame arc indicates that the arc was extinct and stabilized by the Late Silurian (c. 425 Ma) and did not experience any significant overprint during the Early Devonian Acadian orogeny, the effects of which were mainly localized further to the east due to accretion of Avalonia to Laurentia. The second, Mid-Ordovician phase of arc magmatism (c. 469-456 Ma) appears most voluminous and was mainly characterized by K-poor, calc-alkaline quartz diorite to tonalite and, to a lesser extent granodiorite, plutons. These calc-alkaline plutons intruded during deformation and significant thickening of the Notre Dame arc, presumably as a result of ongoing shortening following initial collision with Laurentia and an arc-polarity reversal. Such a tectonic scenario is consistent with the high metamorphic

  19. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  20. Plasma Arc Welding: How it Works

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur

    2004-01-01

    The physical principles of PAW from basic arcs to keyholing to variable polarity are outlined. A very brief account of the physics of PAW with an eye to the needs of a welder is presented. Understanding is usually (but not always) superior to handbooks and is required (unless dumb luck intervenes) for innovation. And, in any case, all welders by nature desire to know. A bit of history of the rise and fall of the Variable Polarity (VP) PA process in fabrication of the Space Shuttle External Tank is included.

  1. Neoproterozoic oceanic arc remnants in the Moroccan Anti-Atlas: reconstructing deep to shallow arc crustal sequence and tracking Pan-African subduction-accretion processes

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Spagna, Paul; Watlet, Arnaud; Vandycke, Sara

    2015-04-01

    established that they were recrystallized under garnet-granulites P-T conditions (up to ~1000°C at 12 kbar). Preliminary geochemical data of hornblende-gabbros and garnet-bearing granulites portray similar trace geochemical signatures ((La/Sm)N: 0.8-1.6 ; (Nb/La) < 0.46) as studied paleo-arc complexes. These P-T results and new geochemical data argue that Asmlil mafic complex could represent a deep arc root comparable to the deep section of exposed oceanic arcs (i.e. Kohistan, Talkeetna, Amalaoulaou). We propose that Iriri and Asmlil units depict the deep-to-shallow sequence of a single Cryogenian oceanic arc (760-740 Ma), as discrete exposures along the southern edge of Anti-Atlas ophiolitic assemblages. Nevertheless, this primary arc has been likely broke up and intruded by subsequent hydrous arc-related magmas under medium- to high-grade P-T conditions (700 to 650 Ma). We interpret this period as an oceanic pre-collision stage when subduction geometry is intensively perturbed (c.g. composite subductions, polarity inversion), doping production of typical hydrous arc magma that intrudes original arc. This complex arc melange has been lastly accreted and sealed on the West African Craton margin.

  2. Palaeomagnetic study of the Derbyshire lavas and intrusions, central England: definition of Carboniferous apparent polar wander

    NASA Astrophysics Data System (ADS)

    Piper, J. D. A.; Atkinson, D.; Norris, S.; Thomas, S.

    1991-11-01

    The remanence in extrusive volcanic rocks of Lower Carboniferous (Visean) age in the Pennines of central England has been reinvestigated, employing detailed thermal demagnetisation and incorporating new geological knowledge of field relationships. Indications of primary remanence identified by early studies are supported and four successive reversals in the Asbian-Brigantian succession (about 335 Ma) recognised. A mean (reversed) direction of D/ I = 203/36° (10 sites, R = 9.75) yields a pole position at 336°E 14°S ( dp/ dm = 6/10°). Grouping improves slightly when correction is made for mild intra-Carboniferous folding and widespread uniformity of polarity is recognised within individual units. Sporadic Variscan overprinting increases in importance to the southeast. Intrusive dolerite bodies yield two contrasting directions of magnetisation: in the central part of the Derbyshire pericline mixed polarity directions (mean D/ I = 211/37° (4 sites, R = 3.92)) comparable to the lavas imply a Lower Carboniferous age of emplacement; in the SE Upper Permian (?) directions of reversed polarity (mean D/ I = 221/-23°) define a later intrusive event or comprehensive overprinting. The primary Lower Carboniferous pole positions accord with contemporaneous poles from the Midland Valley of Scotland and demonstrate that Carboniferous and younger tectonic movements are palaeomagnetically undetectable, at least between these two areas. Apparent polar wander (APW) movement is confirmed between Lower and Upper Carboniferous times at about 335-320 Ma. The Lower Carboniferous limestones have a remanence entirely younger than depositional ages and are therefore unreliable indicators of Carboniferous magnetostratigraphy and tectonics. Silicified limestones prove to have remanences closer to the primary Lower Carboniferous field and appear to have been shielded from the effects of later overprinting. The APW swathe identified from North American Carboniferous rocks coincides in

  3. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  4. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  5. Character of the Jovian decametric arcs

    NASA Astrophysics Data System (ADS)

    Staelin, D. H.

    1981-09-01

    The planetary radio astronomy (PRA) experiment on the Voyager 1 and Voyager 2 spacecraft reveals strong radiation in the form of arcs when the data are displayed in time-frequency coordinates. The vertex frequencies of these arcs, i.e., the central frequencies at which the arcs are first or last observed, are correlated with the magnetic field strength at the foot of the L = 6 shell magnetic flux tubes that emitted the arcs, provided that the emission is conical with a cone angle that varies slightly in a prescribed way. This interpretation further supports the association of the left circularly polarized arcs with the southern hemisphere, where the relation between vertex frequency and magnetic field strength is preserved. One way to produce a frequency dependent cone angle is described; it is relevant to processes where the cyclotron emission originates directly from streaming electrons with apparent cyclotron frequencies that are both relativistically depressed and Doppler shifted. This process is qualitatively consistent with the cone angles inferred from the PRA data.

  6. Gas Contamination In Plasma-Arc-Welded Aluminum

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Torres, Martin R.; Gurevitch, Alan C.; Newman, Robert A.

    1992-01-01

    Document describes experimental investigation on visible and tactile effects of gaseous contaminants in variable-polarity plasma arc (VPPA) welding of 2219 T-87 aluminum alloy. Contaminant gases (nitrogen, methane, oxygen, and hydrogen) introduced in argon arc and in helium shield gas in various controlled concentrations. Report represents results of experiments in form of photographs of fronts, backs, polished cross sections, and etched cross sections of welds made with various contaminants at various concentrations. Provides detailed discussion of conditions under which welds made.

  7. Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings

    SciTech Connect

    Balandin, Vladimir; Golubeva, Nina

    1997-02-01

    The equations of classical spin-orbit motion can be extended to a Hamiltonian system in 9-dimensional phase space by introducing a coupled spin-orbit Poisson bracket and Hamiltonian function. After this extension it becomes possible to apply the methods of the theory of Hamiltonian systems to the study of polarized particles beam dynamics in circular accelerators and storage rings. Some of those methods have been implemented in the computer code FORGET-ME-NOT.

  8. The 2-8 GHz solar dynamic spectra and polarization measurement feasibility study

    NASA Technical Reports Server (NTRS)

    Haddock, F. T.

    1971-01-01

    The preliminary system design of a Solar Microwave Spectrograph (SMS) is presented. This design resulted from a study to determine the feasibility of measuring solar polarization and dynamic spectra over the range of two to eight GHz, using broadband radio frequency instrumentation and rapid recording equipment in conjunction with radio telescopes. The scientific value of the proposed SMS instrument is discussed, with remarks concerning data reduction and analysis and a presentation of the engineering plan to implement the SMS system.

  9. Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn): A Vision for Global Polar Studies and Education

    NASA Astrophysics Data System (ADS)

    Weatherwax, A. T.; Lanzerotti, L. J.; Rosenberg, T. J.; Detrick, D. L.; Clauer, C. R.; Ridley, A.; Mende, S. B.; Frey, H. U.; Ostgaard, N.; Sterling, R. W.; Inan, U. S.; Engebretson, M. J.; Petit, N.; Labelle, J.; Lynch, K.; Lessard, M.; Maclennan, C. G.; Doolittle, J. H.; Fukunishi, H.

    2003-12-01

    The several decades since the advent of space flight have witnessed the ever growing importance and relevance of the Earth's space environment for understanding the functioning of Earth within the solar system and for understanding the effects of the Sun's influence on technological systems deployed on Earth and in space. Achieving a comprehensive understanding of Earth's geospace environment requires knowledge of the ionosphere and magnetosphere in both polar regions. Outlined in this talk is a broad, multi-national plan to investigate in depth, from Antarctica and nominally conjugate regions in the Arctic, the electrodynamic system that comprises the space environment of Planet Earth. Specifics include (a) the phased development of a new and comprehensive upper atmosphere geophysical measurement program based upon distributed instruments operating in an extreme polar environments; (b) real time data collection via satellites; (c) a methodology to build synergistic data sets from a global distribution of southern and northern hemisphere instrument arrays; and (d) an integration with all levels of education including high school, undergraduate, graduate, and post-doctoral.

  10. The Ophiolite - Oceanic Fore-Arc Connection

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; Pearce, J. A.; Stern, R. J.; Ishizuka, O.; Petronotis, K. E.

    2014-12-01

    Miyashiro (1973, EPSL) put forward the hypothesis that many ophiolites are generated in subduction zone settings. More recently, ophiolitic sequences including MORB-like basalts underlying boninites or other subduction-related rock types have been linked to near-trench spreading during subduction infancy (e.g., Stern and Bloomer, 1992, GSA Bull.; Shervais, 2001, G-cubed; Stern et al., 2012, Lithos.). These contentions were given strong support by the results of Shinkai 6500 diving in the Izu-Bonin-Mariana (IBM) fore-arc (e.g., Reagan et al., 2010, G-cubed; Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL). Based on widely spaced dives and grab sampling at disbursed dive stops, these studies concluded that the most abundant and most submerged volcanic rocks in the IBM fore-arc are MORB-like basalts (fore-arc basalts or FAB), and that these basalts appear to be part of a crustal sequence of gabbro, dolerite, FAB, boninite, and normal arc lavas overlying depleted peridotite. This ophiolitic sequence was further postulated to make up most or all of the IBM fore-arc from Guam to Japan, with similar magmatic ages (52 Ma FAB to 45 Ma arc) north to south, reflecting a western-Pacific wide subduction initiation event. At the time of this writing, IODP Expedition 352 is about to set sail, with a principal goal of drilling the entire volcanic sequence in the Bonin fore-arc. This drilling will define the compositional gradients through the volcanic sequence associated with subduction initiation and arc infancy, and test the hypothesized oceanic fore-arc - ophiolite genetic relationship. A primary goal of this expedition is to illustrate how mantle compositions and melting processes evolved during decompression melting of asthenosphere during subduction initiation to later flux melting of depleted mantle. These insights will provide important empirical constraints for geodynamic models of subduction initiation and early arc development.

  11. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2002-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identity the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral SnapshoT (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data was used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and a long-system particle-in-cell simulation to model the magnetically connected region between the two satellites.

  12. First clinical pilot study with intravascular polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Villiger, Martin; Karanasos, Antonios; Ren, Jian; Lippok, Norman; Shishkov, Milen; Daemen, Joost; Van Mieghem, Nicolas; Diletti, Roberto; Valgimigli, Marco; van Geuns, Robert-Jan; de Jaegere, Peter; Zijlstra, Felix; van Soest, Gijs; Nadkarni, Seemantini; Regar, Evelyn; Bouma, Brett E.

    2016-02-01

    Polarization sensitive (PS) OCT measures the polarization states of the light backscattered by tissue and provides measures of tissue birefringence and depolarization in addition to the structural OCT signal. Ex vivo studies have demonstrated that birefringence is increased in tissue rich in collagen and with elevated smooth muscle cell content. Preliminary data further suggests that depolarization can identify regions of macrophage infiltration, lipid, and irregularly arranged collagen fibers. These are important aspects of the mechanical integrity and vulnerability of atherosclerotic plaques. To evaluate the potential of PS-OCT in the clinical setting, we combined our custom PS-OCT system with commercially available OCT catheters (Fastview, Terumo Corporation) and performed a pilot study in 30 patients, scheduled to undergo percutaneous coronary intervention (PCI) on the grounds of stable or unstable angina. A total of 82 pullbacks in 39 vessels were performed, either in the native coronary arteries or post procedure. Comparing consecutive pullbacks of the same coronary artery, we found excellent agreement between the polarization features in the repeat pullbacks, validating the repeatability and robustness of PS-OCT in the clinical in vivo setting. In addition we observed that the birefringence and depolarization features vary significantly across lesions with identical structural OCT appearance, suggesting morphological subtypes. This first human pilot study proved the feasibility and robustness of intravascular PS-OCT. PS-OCT achieves improved tissue characterization and may help in identifying high-risk plaques, with the potential to ultimately improve risk stratification and help guiding PCI.

  13. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect

    Woodside, Charles Rigel; King, Paul E.; Nordlund, Chris

    2013-01-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  14. Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Woodside, C. Rigel; King, Paul E.; Nordlund, Chris

    2013-02-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  15. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study.

    PubMed

    Pravdivtsev, Andrey N; Ivanov, Konstantin L; Yurkovskaya, Alexandra V; Petrov, Pavel A; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a (31)P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity.

  16. The role of ring current nose events in producing stable auroral red arc intensifications during the main phase - Observations during the September 19-24, 1984, equinox transition study

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Chandler, M. O.; Hamilton, D. C.; Peterson, W. K.; Klumpar, D. M.; Slater, D. W.; Buonsanto, M. J.; Carlson, H. C.

    1993-01-01

    A set of observations describing ionospheric conditions, magnetospheric populations, and 6300-A emission intensities on stable auroral red (SAR) arc field lines during the solar minimum 19-24 Sept. 1984 magnetic storm period prompted a study of solar cycle and magnetic storm phase variations in SAR arc emissions and their magnetospheric energy source. It was found that medium-energy H(+) was significantly enhanced during the main phase compared to the late recovery phase of the 19-20 Sept. 1984 storm. Enhanced heating of the thermal electron plasma caused by this population resulted in more than an order of magnitude greater SAR arc emissions in the main phase compared to the recovery phase. O(+) was found to be the dominant energy source for SAR arcs in the late recovery phases of storms in the 19-24 Sept. period.

  17. Study of wavefront error and polarization of a side mounted infrared window

    NASA Astrophysics Data System (ADS)

    Liu, Jiaguo; Li, Lin; Hu, Xinqi; Yu, Xin

    2008-03-01

    The wavefront error and polarization of a side mounted infrared window made of ZnS are studied. The Infrared windows suffer from temperature gradient and stress during their launch process. Generally, the gradient in temperature changes the refractive index of the material whereas stress produces deformation and birefringence. In this paper, a thermal finite element analysis (FEA) of an IR window is presented. For this purpose, we employed an FEA program Ansys to obtain the time-varying temperature field. The deformation and stress of the window are derived from a structural FEA with the aerodynamic force and the temperature field previously obtained as being the loads. The deformation, temperature field, stress field, ray tracing and Jones Calculus are used to calculate the wavefront error and the change of polarization state.

  18. Structure-Function Study of Tertiary Amines as Switchable Polarity Solvents

    SciTech Connect

    Aaron D. Wilson; Frederick F. Stewart

    2014-02-01

    A series of tertiary amines have been screened for their function as switchable polarity solvents (SPS). The relative ratios of tertiary amine and carbonate species as well as maximum possible concentration were determined through quantitative 1H and 13C NMR spectroscopy. The viscosities of the polar SPS solutions were measured and ranged from near water in dilute systems through to gel formation at high concentrations. The van't Hoff indices for SPS solutions were measured through freezing point depression studies as a proxy for osmotic pressures. A new form of SPS with an amine : carbonate ratio significantly greater than unity has been identified. Tertiary amines that function as SPS at ambient pressures appear to be limited to molecules with fewer than 12 carbons. The N,N-dimethyl-n-alkylamine structure has been identified as important to the function of an SPS.

  19. Chemical force microscopy study of adhesive properties of polypropylene films: influence of surface polarity and medium.

    PubMed

    Gourianova, Svetlana; Willenbacher, Norbert; Kutschera, Michael

    2005-06-01

    The adhesive properties of untreated and corona treated polypropylene (PP) films were studied in polar (water) and nonpolar (hexadecane) liquid medium by using chemical force microscopy. A gold-coated colloidal probe was sequentially modified with self-assembled monolayers (SAMs) of omega-functionalized alkanethiols. The same colloidal probe was used for the force measurements, to avoid influence of determination accuracy of the spring constant and sphere radius on the obtained results. The thermodynamic work of adhesion was determined from the measured pull-off force using the Johnson-Kendall-Roberts (JKR) adhesion theory. Rabinovich's model was applied for the consideration of an effect of roughness when calculating the work of adhesion. It was found that the work of adhesion correlates with the hydrophilic properties of the PP surface and SAMs as well as with the polarity of the liquid medium. The observed correlations agree well with those found for the work of adhesion calculated from contact angle measurement.

  20. The DROPPS Program: A Rocket/Lidar/Radar Study of the Polar Summer Mesosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Holzworth, R. H.; Schmidlin, F. J.; Voss, H. D.; Tuzzolino, A. J.; Croskey, C. L.; Mitchell, J. D.; vonZhan, U.; Singer, W.

    1999-01-01

    During July of 1999, two sequences of rockets were launched from the Norwegian rocket range in Andoya, Norway. The purpose of these studies was to investigate the properties of the polar summer mesosphere, particularly relating to polar mesospheric summer echoes (PMSE) and their possible relationship to noctilucent clouds (NLC). Each of two sequences was anchored with a DROPPS Black Brant payload, consisting of 20 instruments to measure the electrodynamic and optical structure of the mesosphere and lower thermosphere. These were provided by participants from five American and two European scientific laboratories. The DROPPS (Distribution and Role of Particles in the Polar Summer) payloads were each accompanied by a sequence of meteorological rockets, and by several European payloads designed to study electrodynamics structure of the same region. ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) Lidars, and MF (Medium Frequency) and MST (Mesosphere, Stratosphere, and Troposphere) Radars were used to continuously monitor the mesosphere for NLCs and PMSEs respectively. EISCAT VHF (European Incoherent Scatter Radar Very High Frequency) radar provided similar information about PMSEs downstream from the launch site. Sequence 1 was launched on the night of 5-6 July into a strong PMSE display coupled with a weak NLC at the low end of the PMSE. Sequence 2 was launched on the early morning of 14 July into a strong NLC with no PMSE evident. Here we describe the details of the program along with preliminary results.

  1. Computerized histomorphometric study of the splenic collagen polymorphism: A control-tissue for polarization microscopy.

    PubMed

    Alves, Antoine; Gritsch, Kerstin; Sirieix, Camille; Drevon-Gaillot, Elodie; Bayon, Yves; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte

    2015-10-01

    Previous articles have pointed out the presence of type III collagen within the extracellular structure of the parenchymatous organs. This study aimed to quantitatively characterize the collagen polymorphism at the capsule and parenchymal trabeculae of the largest lymphoid organ of the body i.e., the spleen, in mouse, rat, and rabbit models. Following a Picrosirius Red-Polarization procedure and computer assisted image analysis of paraffin sections, the results showed (1) a predominant and significantly higher amount of type III collagen in the trabeculae area compared to the capsule area in the three species, (2) no statistical difference among the three species concerning the parenchymal collagen polymorphism or the type I/type III collagen ratio, (3) a heterogeneous type I/type III collagen ratio varying from 0.86 (mouse) to 6.62 (rabbit) in the fibromuscular capsule region. A qualitative analysis corroborated these histomorphometric results. In conclusion, the spleen may be used as (1) a control tissue to qualitatively visualize type I and III collagen under polarization microscopy and to validate the quality of PSR staining (2) an aid to accurately calibrate the angle of polarization before quantitative measurements of type I and type III collagen. Among the studied species, the rabbit spleen appeared to be the most appropriate control tissue as it showed the highest amount of type I collagen in the capsule and a similarly high amount of type III collagen in the parenchymal trabeculae.

  2. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    SciTech Connect

    Mao, S. A.; Gaensler, B. M.; Stanimirovic, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 {+-} 0.06 {mu}G. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 {+-} 0.4 {mu}G oriented at a position angle 4deg {+-} 12deg , measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a 'pan-Magellanic' magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  3. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  4. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  5. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  6. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  7. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  8. Study the polarization and depolarization properties of atmospheric aerosol multiple scattering based on the successive order of scattering

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Sun, Bin; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Qie, Lili; Wang, Han

    2015-10-01

    With the polynomial fitting of source function in each order of scattering calculation and the effective process of aerosol forward scattering peak, a polarized radiative transfer (RT) model based on the improved successive order of scattering (SOS) method has been developed to solve the vector radiative transfer equation. By our RT model, not only the total Stokes parameters [I, Q, U] measured by the satellite (aircraft) and ground-based sensors with linear polarization could be approximately simulated, but also the results of parameters for each scattering order event could conveniently calculated, which are very helpful to study the polarization properties for the atmospheric aerosol multiple scattering. In this study, the synchronous measured aerosol results including aerosol optical depth, complex refractive index and particle size distribution from AERONET under different air conditions, are considered as the input parameters for the successive scattering simulations. With our polarized RT model and the Mie code combined, the Stokes parameters as well as the degree of polarization for each scattering order are simulated and presented; meanwhile, the polarization (depolarization) properties of multiply scattering are preliminary analyzed and compared with different air quality (clear and pollution). Those results could provide a significant support for the further research of polarized aerosol remote sensing and inversion. Polarization properties of aerosol, successive order of scattering, vector radiative transfer equation, polynomial fitting of source function , multiply scattering

  9. Orientation Dependent Polarized Micro-XAS Study of U, Th and Sr in Single Crystal Apatites

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Rakovan, J.; Wright, S.

    2009-05-01

    In order to evaluate apatite as a potential solid nuclear waste form and a contaminant sequestration agent, the complimentary use of single crystal X-ray diffraction and X-ray absorption spectroscopy (XAS) is applied to the study of U, Th, and Sr doped apatite single crystals to investigate the site preference, oxidation state, and structural distortions created by these substituents. Single crystal X-ray diffraction provides average information regarding the site occupancy of U and Th in apatites. Extended X-ray absorption fine-structure (EXAFS) yields quantitative information of the local structure of these substituents, which includes near-neighbor distances, coordination numbers and variations in bond distances; while X-ray absorption near edge structure (XANES) is used to determine the oxidation states of U. Restricted by the typical small size (20-100 μm) and volume of our synthetic samples, Micro-XAS is required. Different from studies which take full advantage of the polarization of synchrotron radiation, our Micro- XAS study on single crystal apatites was hampered by the polarization effects. In order to extract precise information of valence state and structural variation from XAS, it is necessary to know the crystallographic orientation of the sample with respect to the polarization direction of the incident X-ray beam during data collection. To do this we have designed and built a portable goniometer that duplicates the geometry of our laboratory standard Bruker Apex diffractometer goniometer. Crystal orientation is determined by X-ray diffraction at our home institution. The portable goniometer is then set up on the experimental table at synchrotron facilities and the crystal can be set in any specific known orientation. The lattice orientation determined by X-ray diffraction is applied to XAS data analysis, specifically calculation of scattering amplitudes and phase shifts, to account for polarization effects of synchrotron radiation. The goniometer

  10. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  11. A dosimetric phantom study of dose accuracy and build-up effects using IMRT and RapidArc in stereotactic irradiation of lung tumours

    PubMed Central

    2012-01-01

    Background and purpose Stereotactic lung radiotherapy (SLRT) has emerged as a curative treatment for medically inoperable patients with early-stage non-small cell lung cancer (NSCLC) and the use of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc treatments (VMAT) have been proposed as the best practical approaches for the delivery of SLRT. However, a large number of narrow field shapes are needed in the dose delivery of intensity-modulated techniques and the probability of underdosing the tumour periphery increases as the effective field size is decreased. The purpose of this study was to evaluate small lung tumour doses irradiated by intensity-modulated techniques to understand the risk for dose calculation errors in precision radiotherapy such as SLRT. Materials and methods The study was executed with two heterogeneous phantoms with targets of Ø1.5 and Ø4.0 cm. Dose distributions in the simulated tumours delivered by small sliding window apertures (SWAs), IMRT and RapidArc treatment plans were measured with radiochromic film. Calculation algorithms of pencil beam convolution (PBC) and anisotropic analytic algorithm (AAA) were used to calculate the corresponding dose distributions. Results Peripheral doses of the tumours were decreased as SWA decreased, which was not modelled by the calculation algorithms. The smallest SWA studied was 2 mm, which reduced the 90% isodose line width by 4.2 mm with the Ø4.0 cm tumour as compared to open field irradiation. PBC was not able to predict the dose accurately as the gamma evaluation failed to meet the criteria of ±3%/±1 mm on average in 61% of the defined volume with the smaller tumour. With AAA the corresponding value was 16%. The dosimetric inaccuracy of AAA was within ±3% with the optimized treatment plans of IMRT and RapidArc. The exception was the clinical RapidArc plan with dose overestimation of 4%. Conclusions Overall, the peripheral doses of the simulated lung tumours were

  12. Ferrielectric liquid crystal subphase studied by polarized fourier-transform infrared spectroscopy

    PubMed

    Sigarev; Vij; Panarin; Goodby

    2000-08-01

    IR dichroism and the structure of a homogeneously aligned cell of a chiral smectic antiferroelectric liquid crystal (R)-1-methylheptyl 4-(4(')-dodecyloxybiphenyl-4-ylcarbonyloxy)-3-fluorobenzoate [with acronym (R)-12OF1M7] in a ferrielectric subphase in the temperature range between the antiferroelectric phase (also referred to as Fi2) and the smectic-C*(SmC*) phase are studied using polarized Fourier transform IR spectroscopy. The polarization dependencies of the absorbance for several characteristic bands are quantitatively analyzed for different stages of the electrically induced structural transformations in the sample, including the helix unwinding and the phase transition from the ferriphase to the SmC* phase. A qualitative similarity of the voltage dependence of the normalized angular shift of the IR absorbance profile for the "chiral" carbonyl band to that of the normalized macroscopic polarization is found. The voltage dependent dichroic properties of the sample are analyzed in terms of the molecular structure and unwinding of the helical structure under an external electric field. The rotational orientational biasing of the carbonyl groups around the long molecular axis is confirmed by the spectral data. The analysis of IR dichroic data for the field induced SmC* phase is used to determine the rotational orientational distributions for the carbonyl groups.

  13. Polarized XAFS study of high-temperature phases of NaNbO3.

    PubMed

    Shuvaeva, V A; Azuma, Y; Yagi, K; Sakaue, K; Terauchi, H

    2001-03-01

    Temperature dependence of the Nb displacement relative to the center of oxygen octahedron in NaNbO3 has been studied by polarized Nb K XAFS. Spectra were measured at two orientations of a single crystalline sample. Room temperature EXAFS data are in a good agreement with earlier X-ray diffraction data: Nb antiferroelectric displacements were found to be orthogonal to the b axis. Analysis of the temperature dependent EXAFS data didn't reveal any abrupt changes of Nb-O distances in the phase transition points. In all high-temperature paraelectric phases Nb appeared to be displaced to the off-center positions. Displacements, orthogonal to b axis, remained almost constant, while displacement along b axis gradually increased with temperature, so that in the cubic phase the displacements along all axes became equal. This shows, that disorder plays an important role in the high temperature phases. The above results are supported also by the analysis of the pre-edge structure, - the integral intensity of the pre-edge peak was temperature-independent when the polarization vector of the X-rays was orthogonal to b axis and gradually increased with temperature when the polarization was parallel to b.

  14. Numerical simulation study of polar low in Kara sea: developing mechanisms evaluation

    NASA Astrophysics Data System (ADS)

    Verezemskaya, Polina; Stepanenko, Victor

    2016-04-01

    The study focuses on investigating the mechanisms of interaction between potential vorticity's anomalies and latent heat release as polar low development factors. The polar low observed in Kara sea 29th -30th September 2008 is analyzed using numerical modeling (WRF ARW model) and observational data (IR cloudiness and microwave water vapor and surface wind speeds from MODIS (Aqua)). Two numerical experiments with 5 km spatial resolution were conducted with microphisical scheme turned on and off to assess the role of latent heat on vortex intensification. The quality of modelling was estimated by comparing WRF output and the satellite data. Based on reference experiment (with microphysical parameterization turned on) and observational data PL developed in vertically stable, non-baroclinic atmosphere and characterized by very low surface heat fluxes. «Dry» experiment results suggests that without latent heat source in the middle troposphere polar low intensifies slower, than in reality. In order to divide low- and upper-level forcing within PL dynamics we used attribution concept based on the quasi-geostrophic omega-equation. To ensure that QG theory is applicable for this PL case, we estimate correlation between the modeled and QG vertical speed field obtained from omega-equation using finite-differences method.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP: THEORY STUDIES FOR POLARIZED PP SCATTERING (VOLUME 53)

    SciTech Connect

    KRETZER,S.VOGELSANG,W.

    2003-09-15

    In the past two runs of RHIC, the first measurements with polarized proton beams have been performed. For many years to come, the RHIC spin program will offer exciting physics, exploring QCD and the nucleon in new ways. The aim of this small workshop was to attract several spin theorists to the center for about two weeks, in order to collaborate with both experimentalists and theorists at RBRC, and to initiate and/or complete studies of relevance to RHIC spin. A major focus of polarized-pp measurements at RHIC is on measuring the spin-dependent gluon density, {Delta}g. A channel for accessing {Delta}g is high-p{sub T} pion production. The unpolarized cross section for this reaction has been measured by PHENIX and was found in good agreement with a perturbative-QCD based (NLO) calculation. It was a remarkable and exciting coincidence that PHENIX presented also the first results for the spin asymmetry for {rvec p}{rvec p} {yields} {pi}{sup 0}X during this workshop. This sparked a lot of additional activity and discussion. First steps toward the interpretation of the data were taken. Marco Stratmann and Barbara Jager (Regensburg University) presented recent work on the NLO calculation of the polarized cross section and the spin asymmetry, setting the stage for future full analysis of the data in terms of {Delta}g. Applications to {rvec e}{rvec p} scattering, very relevant to eRHIC, were also worked out and published during this workshop. Stratmann also discussed the procedure of NLO calculations for the case of transverse polarization in pp scattering.

  16. Study case - Induced Polarization response from a BTEX contaminated site in Brazil

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Elis, V.; Minozzo, M.

    2011-12-01

    A hydrocarbon contaminated site in Brazil was investigated using DC-resistivity and Induced Polarization (IP) methods. The study area is a chemical industry facility that manufactures paint for automobiles. The industrial process involves the use of many hydrocarbon derivative products, including BTEX (benzene, toluene, ethyl benzene and xylene) and organic chlorides. The area was contaminated by some (not documented) accidental spills of BTEX throughout many years. Monitoring wells revealed concentrations from a few ppm to hundreds ppm of BTEX around the area, as well as other compounds. Two soil samples were collected from an area where some spills where known to have happened. Soil analyses of these samples found the presence of microbes, and therefore biodegradation is believed to be occurring at the site. The objective of this study is to relate the IP response distribution to the presence of contamination and/or microbial activity. The geophysical survey consisted in a rectangular mesh composed of 15 parallel lines with 60 meters of extension, using dipole-dipole array. Lines were spaced by 3 meters. Metallic electrodes were used for current injection, and non-polarizing electrodes (Cu/CuSO4) for potential measurement. Current was injected in cycles of 2 seconds. IP measurements were recorded after 160 milliseconds delay of current shut off, and integration time windows were 120, 220, 420, and 820 milliseconds. All data were concatenated into a single data set and submitted to 3D inversion routine. A conductive zone (resistivity less than 100 ohm.m and chargeability less than 2mV/V) was observed where microbes were found. This feature was interpreted as possibly due to natural biodegradation process, that increases total dissolved salts as a result of mineral weathering by organic acids produced in the degradation process. Normalized chargeability (chargeability divided by resistivity) showed an enhanced polarization zone where microbes were detected. This

  17. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells.

    PubMed

    Žižka, Zdeněk; Gabriel, Jiří

    2015-11-01

    Polarization and positive phase contrast microscope were concomitantly used in the study of the internal structure of microbial cells. Positive phase contrast allowed us to view even the fine cell structure with a refractive index approaching that of the surrounding environment, e.g., the cytoplasm, and transferred the invisible phase image to a visible amplitude image. With polarization microscopy, crossed polarizing filters together with compensators and a rotary stage showed the birefringence of different cell structures. Material containing algae was collected in ponds in Sýkořice and Zbečno villages (Křivoklát region). The objects were studied in laboratory microscopes LOMO MIN-8 Sankt Petersburg and Polmi A Carl Zeiss Jena fitted with special optics for positive phase contrast, polarizers, analyzers, compensators, rotary stages, and digital SLR camera Nikon D 70 for image capture. Anisotropic granules were found in the cells of flagellates of the order Euglenales, in green algae of the orders Chlorococcales and Chlorellales, and in desmid algae of the order Desmidiales. The cell walls of filamentous algae of the orders Zygnematales and Ulotrichales were found to exhibit significant birefringence; in addition, relatively small amounts of small granules were found in the cytoplasm. A typical shape-related birefringence of the cylindrical walls and the septa between the cells differed in intensity, which was especially apparent when using a Zeiss compensator RI-c during its successive double setting. In conclusion, the anisotropic granules found in the investigated algae mostly showed strong birefringence and varied in number, size, and location of the cells. Representatives of the order Chlorococcales contained the highest number of granules per cell, and the size of these granules was almost double than that of the other monitored microorganisms. Very strong birefringence was exhibited by cell walls of filamentous algae; it differed in the intensity

  18. Dark polar ionosphere: Progress and future challenges

    SciTech Connect

    Carlson, H.C. Jr.

    1994-01-01

    Since the end of the 1970s, we have seen enormous progress in our understanding of the polar ionosphere and its structuring. With this benchmark issue of Radio Science it is appropriate to reflect briefly on that passage and some key questions that lie ahead. The discussion here will concentrate on the winter hemisphere, in keeping with the conditions under which most of the data studied to date have been gathered. The polar ionosphere alternates between two states, depending on whether the interplanetary magnetic field (IMF) is southward or northward. The former state is characterized by approximately 100-1000 km islands of enhanced F region plasma, originating in sunlit upper midlatitudes, entering and traversing the polar cap. They become highly structured and produce severe scintillation. Despite much progress on the source, evolution, and ultimate fate of this polar plasma, we remain challenged by the process(es) which chop entering plasma into such islands. For northward IMF we have learned much about the near-Earth processes determining the character of polar cap arcs, velocity structure and electrodynamics, and energetics. A remaining challenge is to relate these structures to the topology and driving physical processes in the magnetosphere and solar wind. Here we sketch the principles behind the progress and the context of several key problem areas ahead.

  19. Formation of the G-ring arc

    NASA Astrophysics Data System (ADS)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-09-01

    Since 2004, the images obtained by the Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves increasing the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario in which the excitation of Mimas's eccentricity could capture particles in a corotation resonance. This is a possible explanation for the origin of the arcs.

  20. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-06-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  1. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  2. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  3. Ultrasound in arc welding: a review.

    PubMed

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño

    2015-02-01

    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes.

  4. Ultrasound in arc welding: a review.

    PubMed

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño

    2015-02-01

    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes. PMID:25455190

  5. Electric arc discharge damage to ion thruster grids

    NASA Technical Reports Server (NTRS)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  6. Polarization sensitivity in Collembola: an experimental study of polarotaxis in the water-surface-inhabiting springtail Podura aquatica.

    PubMed

    Egri, Ádám; Farkas, Alexandra; Kriska, György; Horváth, Gábor

    2016-08-15

    The ventral eye of the water-surface-inhabiting springtail Podura aquatica has six ommatidia with horizontal and vertical microvilli and perceives light from the ventral, frontal and frontodorsal regions, whereas the dorsal eye possesses two upward-looking ommatidia with vertical microvilli. The ventral eye may detect water by its polarization sensitivity, even if the insect is resting with its head slightly tipped down on a raised surface. The polarization sensitivity and polarotaxis in springtails (Collembola) have not been investigated. Therefore, we performed behavioural choice experiments to study them in P. aquatica We found that the strength of phototaxis in P. aquatica depends on the polarization characteristics of stimulating light. Horizontally and vertically polarized light were the most and least attractive, respectively, while unpolarized stimulus elicited moderate attraction. We show that horizontally polarized light attracts more springtails than unpolarized, even if the polarized stimulus was 10 times dimmer. Thus, besides phototaxis, P. aquatica also performs polarotaxis with the ability to measure or at least estimate the degree of polarization. Our results indicate that the threshold d* of polarization sensitivity in P. aquatica is between 10.1 and 25.5%. PMID:27312471

  7. Studies of cosmogenic in situ produced carbon-14 in polar accumulation and ablation ice

    SciTech Connect

    Lal, D. ); Jull, A.J.T.; Donahue, D.J. )

    1993-01-01

    Polar ice contains a suite of extraneous substances that serve as direct and proxy links to the paleoenvironment. These substances - stable and radioactive isotopes, chemical compounds, and particles - are being studied to delineate different aspects of geophysical and environmental changes in the past. A relatively new addition to the useful tracers is carbon 14. This article summarizes the highlights of the work done thus far on the studies of the in situ produced carbon 14 accumulation and ablation ice and indicate the potential of the in situ carbon 14 as a tracer for ice dynamics. 13 refs.

  8. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  9. Multi-proxies study on the paleoceanography and terrigenous input in the polar Nodic Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Liu, Yanguang

    2016-04-01

    The polar Nodic Sea (NS) lies between the Arctic and Antlantic Oceans and the poleward-directed Atlantic heat and water transfer system plays a key role in affecting the ocean changes and sediments input. A suite of well-proven proxy methods for sediment core ARC5-BB03 (72°26.606'N, 7°35.890'E, water depth 2598 m) are used to address issues that are critical to the understanding of paleoceanographic conditions and sediments supplies over the Last Glacial Maximum (LGM) in this region. The methods include grain size analysis, AMS14C dating, color reflectance, high-resolution XRF scanning, oxygen isotope of planktic foraminifera and organic geochemistry measuring. The principal component analysis of the XRF data is applied for identification of sedimentary sources. Variations of grain size and elements' content indicate that the sedimentary sources of the polar NS have undergone dramatic changes over the past 26 ka BP. Changes of terrigenous input in the polar NS show close relationship with the variations of the North Atlantic Current (NAC), the melting of sea ice and ice sheet, the establishment of the Thermohaline Circulation (TC) and the forming of the North Atlantic Deep Water. The coarse grain size sediments before 21.5 ka BP implies different source from those in the later period because the terrigenous input is dominant in this period and occupied by an orderly layer of expandable minerals (OLEM). Strengthened sea ice extension is deemed to the main reason for the high terrigenous input in the polar NS before 21.5 ka BP. Between 21.5~16.5 cal. ka BP, biogenic materials increase accompanied with the decrease of terrigenous contribution indicates the impact of northward intrusion of NAC and the strenghthen of water ventilaiton in polar NS. The decrease of biogenic substance and the increase of terrigenous input during 16.5~10 cal. ka BP is consistent with the fluctuation in the melting of ice sheet and intensity of NAC during the last deglaciation. Compare

  10. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Gnanaraj, J. S.; Zinigrad, E.; Asraf, L.; Gottlieb, H. E.; Sprecher, M.; Aurbach, D.; Schmidt, M.

    The thermal stability of 1M LiPF 6, LiClO 4, LiN(SO 2CF 2CF 3) 2 (LiBETI) and LiPF 3(CF 2CF 3) 3 (LiFAP) solutions in mixtures of ethylene carbonate, diethyl carbonate and dimethyl carbonate in the temperature range 40-350 °C was studied by ARC and DSC. NMR was used to analyze the reaction products at different reaction stages. The least thermally stable are LiClO 4 solutions. LiPF 3(CF 2CF 3) 3 solutions showed higher thermal stability than LiPF 6 solutions. The highest thermal stability was found for LiN(SO 2CF 2CF 3) 2 solutions. Studies by DSC and pressure measurements during ARC experiments with LiPF 6 and LiFAP solutions detected an endothermic reaction, which occurs before a number of exothermic reactions as the temperature increases. Fluoride ions are formed and react with the alkyl carbonate molecules both as bases and as nucleophiles.

  11. Asymmetric mode coupling in arc-induced long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Martinez-Rios, A.; Torres-Gomez, I.; Anzueto-Sanchez, G.; Selvas-Aguilar, R.; Duran-Ramirez, V. M.; Guerrero-Viramontes, J. A.; Toral-Acosta, D.; Salceda Delgado, G.; Castillo-Guzman, A.

    2016-04-01

    An extensive experimental study of the transverse modal field characteristics of mircrobend arc-induced long-period fiber gratings is presented. A wavelength scanning of the near-field intensity pattern inside each loss band in the transmission spectrum, shows a clear asymmetry in the transverse intensity distribution resulting from the fabrication method. This asymmetry reflects as a 10.7 dB difference in the notch depths for two orthogonal polarizations. Though a one year study, it was found that that environmental conditions during fabrication strongly affects the gratings characteristics. The best performance was obtained during the autumn season, where microbend arc-induced long-period fiber gratings produce wavelength filters with short lengths (between 10 and 30 periods for depths in excess of 20 dB) and the insertion loss may be as low as 0.12 dB.

  12. Utilization of optical polarization microscopy in the study of sorption characteristics of wound dressing host materials.

    PubMed

    Devetak, Miha; Peršin, Zdenka; Stana-Kleinschek, Karin; Maver, Uroš

    2014-04-01

    Polarization microscopy was used for evaluation of kinetics of diclofenac sorption in three different wound dressing materials. The sorption kinetics can be evaluated by radii change and intensity of the light traveling through the fiber. The most frequently used host materials for drugs in wound dressings are alginate, polyesters such as polyethylene terephthalate, and viscose. We studied sorption of diclofenac as an example drug. Effective, but rather simple in vitro simulation of diclofenac sorption gives insight into the applicability of the mentioned materials for development of wound healing materials.

  13. Case study of polar cap scintillation modeling using DE 2 irregularity measurements at 800 km

    SciTech Connect

    Basu, S.; Basu, S.; Weber, E.J.; Coley, W.R.

    1988-08-01

    High-resolution in situ Dynamics Explorer 2 data on thermal plasma densities are used here to study the small-scale irregularity structure of the F layer patches. It is shown that spatially discrete density structures associated with polar cap patches can be detected fairly high in the topside by an in situ irregularity sensor and that they correspond to temporally discrete scintillation patches. It is also shown that it is possible to model phase and amplitude scintillation occurrence from a knowledge of irregularity amplitude at a satellite altitude of about 800 km provided that independent measurements of the peak density and scale height of the F region are available. 19 references.

  14. Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings

    SciTech Connect

    Balandin, V. |; Golubeva, N.

    1997-02-01

    The equations of classical spin-orbit motion can be extended to a {bold Hamiltonian system} in 9-dimensional phase space by introducing a coupled spin-orbit {bold Poisson bracket} (3) and {bold Hamiltonian function} (5). After this extension it becomes possible to apply the {bold methods of the theory of Hamiltonian systems} to the study of polarized particles beam dynamics in circular accelerators and storage rings. Some of those methods have been implemented in the computer code {bold FORGET-ME-NOT} [1], [2]. {copyright} {ital 1997 American Institute of Physics.}

  15. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    PubMed

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  16. A new way to study the stellar pulsation; First Polar mission PAIX

    NASA Astrophysics Data System (ADS)

    Chadid, M.

    2015-12-01

    In the context of long and continuous time-series photometry and after the MOST, CoRoT, KEPLER space missions and large geographic longitude ground--based networks, a new way is offered by the polar location helping to cope with the problem associated with the Earth day--night cycle. In this paper, we present the first long time-series photometry from the heart of Antarctica -Dome Charlie- and we discuss briefly our new results and perspectives on the pulsating stars from Antarctica, especially the connection between temporal hydrodynamic phenomena and cyclic modulations. Finally, we highlight the impact of PAIX -the robotic Antarctica photometer- on the stellar pulsation study.

  17. Study of a polarized hydrogen ion source with deuterium plasma ionizer

    SciTech Connect

    Belov, A.S.; Derevyankin, G.E.; Dudnikov, V.G.; Klenov, V.S.; Nechaeva, L.P.; Plohinsky, Y.V.; Vasil`ev, G.A.; Yakushev, V.P.

    1995-07-15

    A description of the atomic beam polarized hydrogen ion source developed at the INR in Moscow is given. It is capable of producing polarized 100 {mu}sec long H{sup +} beams with currents up to 6 {mu}A. The beam is 85% polarized and has a normal emittance of 2{pi} mm mrad. Additionally polarized H{sup {minus}} beams have currents up to 200 {mu}A and normalized emittance 2.2 {pi} mm mrad. (AIP)

  18. Molecular Signatures Identify a Candidate Target of Balancing Selection in an arcD-Like Gene of Staphylococcus epidermidis

    PubMed Central

    Zhang, Liangfen; Thomas, Jonathan C.; Didelot, Xavier

    2012-01-01

    A comparative population genetics study revealed high levels of nucleotide polymorphism and intermediate-frequency alleles in an arcC gene of Staphylococcus epidermidis, but not in a homologous gene of the more aggressive human pathogen, Staphylococcus aureus. Further investigation showed that the arcC genes used in the multilocus sequence typing schemes of these two species were paralogs. Phylogenetic analyses of arcC-containing loci, including the arginine catabolic mobile element, from both species, suggested that these loci had an eventful history involving gene duplications, rearrangements, deletions, and horizontal transfers. The peak signatures in the polymorphic S. epidermidis locus were traced to an arcD-like gene adjacent to arcC; these signatures consisted of unusually elevated Tajima’s D and π/K ratios, which were robust to assumptions about recombination and species divergence time and among the most elevated in the S. epidermidis genome. Amino acid polymorphisms, including one that differed in polarity and hydropathy, were located in the peak signatures and defined two allelic lineages. Recombination events were detected between these allelic lineages and potential donors and recipients of S. epidermidis were identified in each case. By comparison, the orthologous gene of S. aureus showed no unusual signatures. The ArcD-like protein belonged to the unknown ion transporter 3 family and appeared to be unrelated to ArcD from the arginine deiminase pathway. These studies report the first comparative population genetics results for staphylococci and the first statistical evidence for a candidate target of balancing selection in S. epidermidis. PMID:23053194

  19. Electrode polarization studies in hot corrosion systems. Progress report, 1 June 1979-31 April 1980

    SciTech Connect

    Devereux, O.F.

    1980-02-01

    Work on the following discrete tasks is reported: Electrode Polarization Studies in Molten Sodium Carbonate: A comprehensive set of tests has been performed on iron, nickel, and types 304 and 316 stainless steel in gas mixtures of controlled CO, CO/sub 2/, H/sub 2/, and H/sub 2/S pressures at a total pressure of one atmosphere and in a temperature range of 900 to 1000/sup 0/C. The polarization curves thus derived have been reduced to a set of empirical kinetic constants via computer modelling. Gas/Metal Reactions in Mixed Oxidants: Oxidation of iron in gas mixtures of controlled P/sub CO/, P/sub CO//sub 2/, P/sub H//sub 2/ and P/sub H//sub 2//sub S/ at a total pressure of one atmosphere and a temperature of 900/sup 0/C has been studied. In the P/sub S//sub 2/ and P/sub O//sub 2/ ranges employed sulfide scales were formed; P/sub O//sub 2/ influenced the short term sulfidation kinetics. Specimen geometry was seen as a significant factor influencing long term kinetics. Liquid Line Corrosion: A reproducible corrosive attack is seen at the metal/molten carbonate/gas phase junction. This attack can be quantitatively evaluated and explained in terms of a diffusion model. Evaluation of Reaction Kinetics from Polarization Data (addendum): previous modelling procedures have been expanded to include one or more anodic reactions displaying passive behavior.

  20. Importance of polarization effect in the study of metalloproteins: application of polarized protein specific charge scheme in predicting the reduction potential of azurin.

    PubMed

    Wei, Caiyi; Lazim, Raudah; Zhang, Dawei

    2014-09-01

    Molecular dynamics (MD) simulation is commonly used in the study of protein dynamics, and in recent years, the extension of MD simulation to the study of metalloproteins is gaining much interest. Choice of force field is crucial in MD studies, and the inclusion of metal centers complicates the process of accurately describing the electrostatic environment that surrounds the redox centre. Herein, we would like to explore the importance of including electrostatic contribution from both protein and solvent in the study of metalloproteins. MD simulations with the implementation of thermodynamic integration will be conducted to model the reduction process of azurin from Pseudomonas aeruginosa. Three charge schemes will be used to derive the partial charges of azurin. These charge schemes differ in terms of the amount of immediate environment, respective to copper, considered during charge fitting, which ranges from the inclusion of copper and residues in the first coordination sphere during density functional theory charge fitting to the comprehensive inclusion of protein and solvent effect surrounding the metal centre using polarized protein-specific charge scheme. From the simulations conducted, the relative reduction potential of the mutated azurins respective to that of wild-type azurin (ΔEcal) were calculated and compared with experimental values. The ΔEcal approached experimental value with increasing consideration of environmental effect hence substantiating the importance of polarization effect in the study of metalloproteins. This study also attests the practicality of polarized protein-specific charge as a computational tool capable of incorporating both protein environment and solvent effect into MD simulations.

  1. Improvement of Weld Characteristics by Laser-Arc Double-Sided Welding Compared to Single Arc Welding

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Zhang, Kezhao; Hu, Xue; Yang, Yuhe; Chen, Yanbin; Wu, Yichao

    2015-11-01

    The single arc welding and laser-arc double-sided welding (LADSW) processes are investigated by virtue of test welds. The impacts of the laser beam during the LADSW process on the weld characteristics are studied from weld geometry, crystal morphology, and the mechanical properties of the joints. Compared with the single arc welding, the LADSW process improves the energy density and reduces the range of arc action, which together leads to a doubling of weld penetration depth. When penetrated by the laser beam, the liquid metal of the arc welding pool experiences severe fluctuations, leading to a finer grain size in the range of 17-26 μm in the LADSW weld, a reduction of nearly 63% compared to the grains in the single arc weld. The tensile strength and elongation-to-failure of the LADSW weld were increased by nearly 10 and 100% over the single arc welding, respectively.

  2. From Back-Arc Drifting to Arc Accretion: the Late Jurassic-Early Cretaceous Evolution of the Guerrero Terrane in Central Mexico (Sierra de Guanajuato)

    NASA Astrophysics Data System (ADS)

    Martini, M.; Solari, L.; Centeno-García, E.; Mori, L.; Camprubi, A.

    2011-12-01

    Three paleogeographic scenarios have been proposed for the Mesozoic volcano-sedimentary successions that compose the Guerrero terrane, western Mexico. In the "type 1" scenario the Guerrero terrane is an exotic Pacific arc accreted to nuclear Mexico by the consumption of a pre-Cretaceous oceanic basin, named Arperos Basin. The "type 2" scenario considers the Guerrero terrane as a fringing multi-arc system, accreted by the closure of relatively small pre-Cretaceous oceanic basins at multiple subduction zones with varying polarities. Alternatively, in the "type 3" scenario the Guerrero terrane is interpreted as a North American west-facing para-autochthonous arc, which drifted into the paleo-Pacific domain by the opening of the Cretaceous back-arc oceanic Arperos Basin, and subsequently accreted back to the Mexican mainland. In order to test these reconstructions and understand the dynamics of the arc accretion, we present here a combined study that includes sandstone provenance, U-Pb geochronology, and structural data from the Arperos Basin in the Sierra de Guanajuato, central Mexico. Our data document that the Arperos Basin developed in a back-arc setting, and evolved from continental to oceanic conditions from the Late Jurassic to the Early Cretaceous. Sandstone provenance analysis shows an asymmetric distribution of the infill sources for the Arperos Basin: continent-recycled sedimentary rocks were deposited along its north-eastern side, whereas magmatic arc-recycled clastic rocks developed at its south-western side. Such an asymmetric distribution closely fits with sedimentological models proposed for present-day continent-influenced back-arc basins. Based on these evidences, we favor a "type 3" scenario for the Guerrero terrane, which is then considered to represent a detached slice of the Mexican leading-edge that drifted in the paleo-Pacific domain during Late Jurassic-lower Early Cretaceous back-arc extension, and subsequently accreted back to the Mexican

  3. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost. PMID:25638080

  4. Stretched arc discharge in produced water

    NASA Astrophysics Data System (ADS)

    Cho, Y. I.; Wright, K. C.; Kim, H. S.; Cho, D. J.; Rabinovich, A.; Fridman, A.

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  5. Arc tracks on nanostructured surfaces after microbreakdowns

    NASA Astrophysics Data System (ADS)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  6. Collision and subduction structure of the Izu-Bonin arc, central Japan: Recent studies from refraction/wide-angle reflection analysis and seismic tomography

    NASA Astrophysics Data System (ADS)

    Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.

    2009-12-01

    Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a

  7. Vacuum arc deposition devices

    NASA Astrophysics Data System (ADS)

    Boxman, R. L.; Zhitomirsky, V. N.

    2006-02-01

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  8. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  9. Laboratory studies of nitric acid hydrate and sulfuric acid aerosols: Implications for polar stratospheric cloud formation

    SciTech Connect

    Miller, R.E.

    1995-12-31

    The optical properties of atmospheric aerosols are important in a number of modeling and remote sensing applications. We have devised a new approach for determining the frequency dependent real and imaginary refractive indices directly from the observation of the infrared spectra of the aerosols. We have applied this method to the study of water ice aerosols and comparisons with previous measurements confirm that the method is sound and accurate. The temperature dependence of the refractive index of ice has also been measured over the range 130 K to 210 K, which includes the region of interest for the study of Polar Stratospheric Clouds (PSC`s). The method has also been applied to the study of nitric acid dehydrate (NAD) and nitric acid trihydrate (NAT). Sulfuric acid/nitric acid/water ternary systems are also being studied with the aim of determining the nature of the phases formed and the associated freezing points as a function of the concentrations of the acids.

  10. The Polar Regions and Martian Climate: Studies with a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Wilson, R. J.; Richardson, M. I.; Smith, M. D.

    2003-01-01

    Much of the interest in the polar regions centers on the fact that they likely contain the best record of Martian climate change on time scales from years to eons. This expectation is based upon the observed occurrence of weathering product deposits and volatile reservoirs that are coupled to the climate. Interpretation and understanding of these records requires understanding of the mechanisms that involve the exchange of dust, water, and carbon dioxide between the surface and atmosphere, and the atmospheric redistribution of these species. We will summarize our use of the GFDL Mars general circulation model (MGCM), to exploration aspects of the interaction between the global climate and the polar regions. For example, our studies have shown that while the northern polar cap is the dominant seasonal source for water, it can act as a net annual source or sink for water, depending upon the cap temperatures and the bulk humidity of the atmosphere. This behavior regulates the annual and global average humidity of the atmosphere, as the cap acts as a sink if the atmosphere is too wet and a source if it is too dry. We will then focus our presentation on the ability of the MGCM to simulate the observed diurnal variations of surface temperature. We are particularly interested in assessing the influence of dust aerosol and water ice clouds on simulated surface temperature and the comparison with observations. Surface thermal inertia and albedo are critical boundary inputs for MGCM simulations. Thermal inertia is also of intrinsic interest as it may be related to properties of the surface such as particle size and surface character.

  11. Control of arc length during gas metal arc welding

    SciTech Connect

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementing a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.

  12. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    PubMed

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  13. Frequency domain interferometry of polar mesosphere summer echoes with the EISCAT VHF radar - A case study

    NASA Astrophysics Data System (ADS)

    Franke, S. J.; Roettger, J.; Lahoz, C.; Liu, C. H.

    1992-06-01

    During the polar mesosphere summer echo (PMSE) campaign in 1988 the first multiple-frequency mesospheric measurements were carried out using EISCAT 224-MHz radar. A case study of nearly simultaneous measurements of coherent backscatter, collected on two closely spaced frequencies on July 3, 1988, is presented. The data are used to investigate the frequency coherence of the radar echoes and to perform frequency domain interferometry (FDI) analysis. The FDI techniques provides precise information about the thickness and relative position of isolated scattering layers. The results indicate that scattering layers with thicknesses in the range 85-120 m are sometimes present in the polar summer mesosphere. Such a layer is shown to exist for a period of approximately 10 min, and its position is tracked as it descends over more than 1 km in altitude and transits from one range gate to the next. In addition, the FDI technique is used to study a case where a sudden frequency jump is observed in the Doppler spectrum.

  14. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rupani, Asha; Bagnaninchi, Pierre; Wimpenny, Ian; Weightman, Alan

    2012-08-01

    The highly orientated collagen fibers in tendons play a critical role for transferring tensile stress, and they demonstrate birefringent optical properties. However, the influence that proteoglycans (PGs) have on the optical properties of tendons is yet to be fully elucidated. PGs are the essential components of the tendon extracellular matrix; the changes in their quantities and compositions have been associated with tendinopathies. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between PG content/location and birefringence properties of tendons. Fresh chicken tendons were imaged at regular intervals by PS-OCT and polarization light microscopy during the extraction of PGs, using guanidine hydrochloride (GuHCl). Complementary time-lapsed images taken from the two modalities mutually demonstrated that the extraction of PGs disturbed the local organization of collagen bundles. This corresponded with a decrease in birefringence and associated banding pattern observed by PS-OCT. Furthermore, this study revealed there was a higher concentration of PGs in the outer sheath region than in the fascicles, and therefore the change in birefringence was reduced when extraction was performed on unsheathed tendons. The results provide new insights of tendon structure and the role of PGs on the structural stability of tendons, which also demonstrates the great potential for using PS-OCT as a diagnostic tool to examine tendon pathology.

  15. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography.

    PubMed

    Yang, Ying; Rupani, Asha; Bagnaninchi, Pierre; Wimpenny, Ian; Weightman, Alan

    2012-08-01

    The highly orientated collagen fibers in tendons play a critical role for transferring tensile stress, and they demonstrate birefringent optical properties. However, the influence that proteoglycans (PGs) have on the optical properties of tendons is yet to be fully elucidated. PGs are the essential components of the tendon extracellular matrix; the changes in their quantities and compositions have been associated with tendinopathies. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between PG content/location and birefringence properties of tendons. Fresh chicken tendons were imaged at regular intervals by PS-OCT and polarization light microscopy during the extraction of PGs, using guanidine hydrochloride (GuHCl). Complementary time-lapsed images taken from the two modalities mutually demonstrated that the extraction of PGs disturbed the local organization of collagen bundles. This corresponded with a decrease in birefringence and associated banding pattern observed by PS-OCT. Furthermore, this study revealed there was a higher concentration of PGs in the outer sheath region than in the fascicles, and therefore the change in birefringence was reduced when extraction was performed on unsheathed tendons. The results provide new insights of tendon structure and the role of PGs on the structural stability of tendons, which also demonstrates the great potential for using PS-OCT as a diagnostic tool to examine tendon pathology.

  16. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    USGS Publications Warehouse

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  17. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; von Quadt, A.; Heinrich, C. A.; Peytcheva, I.; Marchev, P.

    2012-12-01

    Ca) parental melts, produced from partial remelting of amphibole clinopyroxenites upon interaction with subduction-modified mantle wedge melts, according to earlier petrological studies. This peak of dominantly extrusive activity in the Yambol-Burgas region extended into the Strandzha region further south, in the form of numerous tholeiitic, calc-alkaline and high-K intrusions emplaced in the same time period between 81 and 78 Ma. Granitic rocks from exposed basement of Eastern Srednogorie zone are dated as Permian/Carboniferous (~ 275-300 Ma). Zircons with similar ages occur in Upper Cretaceous rocks from the East Balkan and Strandzha regions, indicating local incorporation as xenocrysts. In contrast, magmatic rocks from the intermediate Yambol-Burgas region contain mostly Ordovician (~ 460 Ma) or older inherited zircons, suggesting a either a different basement history or, more likely, a different level of magma storage and crustal assimilation. Integrating these geochronological results with a synthesis of the regional geology, we propose a two-stage geodynamic evolution for the Eastern Srednogorie segment of the Tethyan arc. The earlier stage of normal arc magmatism was driven by a southward slab retreat, which formed the ~ 92 Ma calc-alkaline to high-K shallow intrusions and volcanics in the north (East Balkan), 87-86 Ma old tholeiitic and calc-alkaline intrusions in the south (Strandzha), and the voluminous 81-78 Ma old gabbroic to granitic intrusions with predominantly calc-alkaline to high-K composition throughout the Strandzha region. This stage continued westward into the Central Srednogorie zone, where the southward younging of calc-alkaline magmatism correlates well with an increased input of primitive mantle melts, indicating asthenospheric incursion into a widening mantle wedge as a result of slab roll-back. The second stage proceeded in the Eastern Srednogorie zone only, where more extreme extension associated with the opening of the Black Sea back-arc

  18. Characteristics of trough region auroral patches and detached arcs observed by Isis 2

    NASA Technical Reports Server (NTRS)

    Moshupi, M. C.; Anger, C. D.; Murphree, J. S.; Wallis, D. D.; Whitteker, J. H.; Brace, L. H.

    1979-01-01

    All of the data presented in this paper were obtained from the Isis 2 satellite, which was launched into a 1400-km near-circular polar orbit in April 1971. Instruments used in this study include the topside sounder for providing vertical profiles of the electron density, the Langmuir probe for measuring electron temperature and concentration, and the auroral scanning photometer for detecting optical emissions at 5577 A and 3914 A. Two distinct types of auroras (east-west-aligned oval-shaped 'patches', and isolated east-west 'detached arcs') are observed in the trough region (almost exclusively in the Northern Hemisphere) equatorward of the diffuse auroral boundary. Attention is given to comparison of patches and detached arcs, relation to magnetic indices, and relation to detached plasma and ELF hiss.

  19. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

    SciTech Connect

    Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

    2012-01-01

    The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

  20. Supercritical flow about a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.

    1979-01-01

    The supercritical flow about a biconvex circular-arc airfoil is being thoroughly documented at Ames Research Center in order to provide experimental test cases suitable for guiding and evaluating current and future computer codes. The effects of angle of attack, effects of leading and trailing-edge splitter plates, additional unsteady pressure fluctuation (buffeting) measurements and glow-field shadowgraphs, and application of an oil-film technique to display separated-wake streamlines were studied. Computed and measured pressure distributions for steady and unsteady flows, using a recent computer code representative of current methodology, are compared. It was found that the numerical solutions are often fundamentally incorrect in that only strong (shock-polar terminology) shocks are captured, whereas experimentally, both strong and weak shock waves appear.

  1. High Temperature Corrosion studies on Pulsed Current Gas Tungsten Arc Welded Alloy C-276 in Molten Salt Environment

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Arivarasu, M.; Arivazhagan, N.; Puneeth, T.; Sivakumar, N.; Murugan, B. Arul; Sathishkumar, M.; Sivalingam, S.

    2016-09-01

    Alloy C-276 is widely used in the power plant environment due to high strength and corrosion in highly aggressive environment. The investigation on high- temperature corrosion resistance of the alloy C-276 PCGTA weldment is necessary for prolonged service lifetime of the components used in corrosive environments. Investigation has been carried out on Pulsed Current Gas Tungsten Arc Welding by autogenous and different filler wires (ERNiCrMo-3 and ERNiCrMo-4) under molten state of K2SO4-60% NaCl environment at 675oC under cyclic condition. Thermogravimetric technique was used to establish the kinetics of corrosion. Weight gained in the molten salt reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. PCGTA ERNiCrMo-3 shows the higher parabolic constant compared to others. The scale formed on the weldment samples upon hot corrosion was characterized by using X-ray diffraction, SEM and EDAX analysis to understand the degradation mechanisms. From the results of the experiment the major phases are identified as Cr2O3, Fe2O3, and NiCr2O4. The result showed that weld fabricated by ERNiCrMo-3 found to be more prone to degradation than base metal and ERNiCrMo-4 filler wire due to higher segregation of alloying element of Mo and W in the weldment

  2. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  3. Polarization effects in polymer FBGs: study and use for transverse force sensing.

    PubMed

    Hu, Xuehao; Saez-Rodriguez, David; Marques, Carlos; Bang, Ole; Webb, David J; Mégret, Patrice; Caucheteur, Christophe

    2015-02-23

    Bragg gratings photo-inscribed in polymer optical fibers (POFs) are more sensitive to temperature and pressure than their silica counterparts, because of their larger thermo-optic coefficient and smaller Young's modulus. Polymer optical fiber Bragg gratings (POFBGs) are most often photo-written in poly(methylmethacrylate) (PMMA) based materials using a continuous-wave 325 nm HeCd laser. In this work, we present the first study about birefringence effects in POFBGs manufactured in different types of fiber. To achieve this, highly reflective (> 90%) gratings were produced with the phase mask technique. Their spectral response was then monitored in transmission with polarized light. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyzer. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. An inverse scattering technique applied to the experimental data provided an estimate of the photo-induced birefringence value arising from the side fabrication process. The response to lateral force was finally investigated for various incident directions using the PDL response of FBGs manufactured in step-index POFs. As the force induced birefringence adds to the photo-induced one, a force dependent evolution of the PDL maximum value was noticed, with a good temperature-insensitivity. PMID:25836495

  4. Laterally patterned spin-valve superlattice: Magnetometry and polarized neutron scattering study

    SciTech Connect

    Brüssing, F.; Devishvili, A.; Zabel, H.; Toperverg, B. P.; Badini Confalonieri, G. A.; Theis-Bröhl, K.

    2015-04-07

    The magnetization reversal of magnetic multilayers with spin-valve like characteristics, patterned into an array of parallel stripes, was structurally and magnetically analyzed, in detail, via x-ray scattering, magnetometry, and polarized neutron reflectivity. Each stripe contains a multiple repetition of the layer sequence [Fe/Cr/Co/Cr]. X-ray and neutron scattering maps of the patterned multilayer show rich details resulting from the superposition of Bragg peaks representing the lateral in-plane periodicity and the out-of-plane multilayer period. Detailed analysis of specular and off-specular polarized neutron intensity was used to ascertain the antiparallel alignment of the Co and Fe magnetization within the kink region of their combined hysteresis loop between the coercive fields of Fe and Co layers. This includes also an examination of domain formation and inter- as well as intra-stripe correlation effects upon magnetization reversal. Our combined study shows that the shape induced anisotropy via patterning is capable of overriding the four-fold crystal anisotropy but is unable to eliminate the ripple domain state of the Co layers, already present in the continuous multilayer.

  5. Polar Recognition Group Study of Keap1-Nrf2 Protein-Protein Interaction Inhibitors.

    PubMed

    Lu, Meng-Chen; Tan, Shi-Jie; Ji, Jian-Ai; Chen, Zhi-Yun; Yuan, Zhen-Wei; You, Qi-Dong; Jiang, Zheng-Yu

    2016-09-01

    Directly disrupting the Keap1-Nrf2 protein-protein interaction (PPI) has emerged as an attractive way to activate Nrf2, and Keap1-Nrf2 PPI inhibitors have been proposed as potential agents to relieve inflammatory and oxidative stress diseases. In this work, we investigated the diacetic moiety around the potent Keap1-Nrf2 PPI inhibitor DDO1018 (2), which was reported by our group previously. Exploration of bioisosteric replacements afforded the ditetrazole analog 7, which maintains the potent PPI inhibition activity (IC50 = 15.8 nM) in an in vitro fluorescence polarization assay. Physicochemical property determination demonstrated that ditetrazole replacement can improve the drug-like property, including elevation of pK a, log D, and transcellular permeability. Additionally, 7 is more efficacious than 2 on inducing the expression of Nrf2-dependent gene products in cells. This study provides an alternative way to replace the diacetic moiety and occupy the polar subpockets in Keap1, which can benefit the subsequent development of Keap1-Nrf2 PPI inhibitor. PMID:27660687

  6. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    PubMed

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance. PMID:26210028

  7. An experimental study of growth and phase change of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Teets, Edward

    1992-01-01

    This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.

  8. Laterally patterned spin-valve superlattice: Magnetometry and polarized neutron scattering study

    NASA Astrophysics Data System (ADS)

    Brüssing, F.; Toperverg, B. P.; Devishvili, A.; Badini Confalonieri, G. A.; Theis-Bröhl, K.; Zabel, H.

    2015-04-01

    The magnetization reversal of magnetic multilayers with spin-valve like characteristics, patterned into an array of parallel stripes, was structurally and magnetically analyzed, in detail, via x-ray scattering, magnetometry, and polarized neutron reflectivity. Each stripe contains a multiple repetition of the layer sequence [Fe/Cr/Co/Cr]. X-ray and neutron scattering maps of the patterned multilayer show rich details resulting from the superposition of Bragg peaks representing the lateral in-plane periodicity and the out-of-plane multilayer period. Detailed analysis of specular and off-specular polarized neutron intensity was used to ascertain the antiparallel alignment of the Co and Fe magnetization within the kink region of their combined hysteresis loop between the coercive fields of Fe and Co layers. This includes also an examination of domain formation and inter- as well as intra-stripe correlation effects upon magnetization reversal. Our combined study shows that the shape induced anisotropy via patterning is capable of overriding the four-fold crystal anisotropy but is unable to eliminate the ripple domain state of the Co layers, already present in the continuous multilayer.

  9. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    PubMed

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance.

  10. Fourier transform infrared studies of the interaction of HCl with model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Koehler, Birgit G.; Mcneill, Laurie S.; Middlebrook, Ann M.; Tolbert, Margaret A.

    1993-01-01

    Heterogeneous reactions involving hydrochloric acid adsorbed on the surfaces of polar stratospheric clouds (PSCs) are postulated to contribute to polar ozone loss. Using FTIR spectroscopy to probe the condensed phase, we have examined the interaction of HCl with ice and nitric acid trihydrate (NAT) films representative of types II and I PSCs, respectively. For HCl pressures in the range of 10 exp -7 to 10 exp -5 Torr, our FTIR studies show that a small amount of crystalline HCl-6H2O formed on or in ice at 155 K. However, for higher HCl pressures, we observed that the entire film of ice rapidly converted into an amorphous 4:1 H2O:HCl mixture. From HCl-uptake experiments with P(HCl) = 8 x 10 exp -7 Torr, we estimate roughly that the diffusion coefficient of HCl in ice is around 2 x 10 exp -12 sq cm/s at 158 K. For higher temperatures more closely approximating those found in the stratosphere, we were unable to detect bulk HCl uptake by ice. Indirect evidence suggests that HCl adsorption onto the surface of model PSC films inhibited the evaporation of both ice and NAT by 3-5 K.

  11. Estimated desert-dust ice nuclei profiles from polarization lidar: methodology and case studies

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-03-01

    A lidar method is presented that permits the estimation of height profiles of ice nuclei concentrations (INC) in desert dust layers. The polarization lidar technique is applied to separate dust and non-dust backscatter and extinction coefficients. The desert dust extinction coefficients σd are then converted to aerosol particle number concentrations APC280 which consider particles with radius > 280 nm only. By using profiles of APC280 and ambient temperature T along the laser beam, the profile of INC can be estimated within a factor of 3 by means of APC-T-INC parameterizations from the literature. The observed close relationship between σd at 500 nm and APC280 is of key importance for a successful INC retrieval. We studied this link by means of AERONET (Aerosol Robotic Network) sun/sky photometer observations at Morocco, Cabo Verde, Barbados, and Cyprus during desert dust outbreaks. The new INC retrieval method is applied to lidar observations of dust layers with the spaceborne lidar CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) during two overpasses over the EARLINET (European Aerosol Research Lidar Network) lidar site of the Cyprus University of Technology (CUT), Limassol (34.7° N, 33° E), Cyprus. The good agreement between the CALIOP and CUT lidar retrievals of σd, APC280, and INC profiles corroborates the potential of CALIOP to provide 3-D global desert dust APC280 and INC data sets.

  12. Micro-arcing in radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Bilek, M. M. M.; McKenzie, D. R.; Boswell, R. W.; Charles, C.

    2004-10-01

    Micro-arcing and breakdown of the wall plasma sheath in radio frequency (RF) plasmas is studied in a hollow cathode system, using a Langmuir probe to measure the floating potential. Micro-arcing was induced reproducibly by controlling the floating potential. By dc grounding the hollow cathode, a negative current can flow to ground resulting in a higher voltage sheath between the plasma and the earthed vacuum vessel. The wall arcing threshold of the plasma potential in this system is in the vicinity of 50 V. In the present system, the charging process to rebuild the plasma potential, which is about a few tens of milliseconds, is much slower than the microsecond discharge. The arcing frequency was found to depend strongly on the plasma potential and the pressure. We propose a mechanism for the dependence of the frequency of periodic micro-arcing based on the development of electron field emission sites. The measurement of floating potential is suggested as a useful parameter to monitor and prevent micro-arcing in RF plasmas.

  13. [Study on the polarized reflectance characteristics of single greenhouse tomato nutrient deficiency leaves].

    PubMed

    Zhu, Wen-Jing; Mao, Han-Ping; Liu, Hong-Yu; Zhang, Xiao-Dong; Ni, Ji-Heng

    2014-01-01

    In order to improve accuracy of quantitative analysis model for the greenhouse tomato nitrogen, phosphorus and potassium nutrient stress, and explore the advantages of polarization non-destructive detection in single-leaf plants scale, polarized reflectance characteristics of greenhouse nutrient deficiency tomato leaves in different growing seasons and different deficiency extents were both examined via means of polarized reflectance spectroscopy system, which was self-developed by the research group. The main factors with effects on the polarized reflectance characteristics of tomato leaves were discussed, such as incident zenith angle, azimuth angle, detection zenith angle, light source polarizer degree, and detector polarizer degree. Experiments were carried out to verify the optimum level of above five parameters by means of range analysis of orthogonal experiments, through that way we can know the best angle combination of five parameters. Based on the above analysis, the angle combination and sorting of detecting tomato nutrients deficiency leaves via means of polarization spectroscopy system were obtained as follows: incident zenith angle 60 degrees, light source polarizer degree 0 degrees, detection zenith angle 45 degrees, detector polarizer degree 45 degrees and azimuth angle 180 degrees. At the same time, both the spectra of nitrogen, phosphorus and potassium deficiency leaves in different growth stages and different deficiency extent leaves were compared with each other. Results show that there is a positive correlation between the greenhouse nutrient deficiency tomato leaves growth cycle and tomato leaves polarized reflectance spectra. Nutrient excess or nutrient deficiency can both lead to polarized reflectance decline and polarized reflectance decline extent of greenhouse tomato leaves is more obvious during the fruiting and harvest period. This paper has a certain theoretical and practical significance in the research on nutrition rapid detection on

  14. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  15. Alignment and Polarization Sensitivity Study for the Cassini-Composite InfraRed Spectrometer (CIRS) Far InfraRed (FIR) Interferometer

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.; Hagopian, John G.

    1998-01-01

    The Composite InfraRed Spectrometer (CIRS) instrument flying on the Cassini spacecraft to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared (MIR) channels. The CIRS FIR channel is a polarizing interferometer that contains three polarizing grid components. These components are an input polarizer, a polarizing beamsplitter, and an output polarizer/analyzer. They consist of a 1.5 micron thick mylar substrate with 2 gm wide copper wires, with 2 gm spacing (4 micron pitch) photolithographically deposited on the substrate. This paper details the polarization sensitivity studies performed on the output polarizer/analyzer, and the alignment sensitivity studies performed on the input polarizer and beamsplitter components in the FIR interferometer.

  16. Influence of quasi-spherical polarization on results of bioelectromagnetic studies.

    PubMed

    Dlugosz, Tomasz

    2015-01-01

    One of the most interesting questions in bioelectromagnetic and compatibility studies is differences between results of experiments performed in different labs in "identical" conditions, especially in bioelectromagnetics studies. A reason of these differences may be due to differences in investigated objects, particularly in in vivo experiments. However, the author, as engineer, would like to focus the readers' attention on the technical aspects of exposure systems namely: presence and role of mutual interaction between the object under test and the exposure system, interaction between exposure objects, the role of polarization and the similarity of real-life exposure to those applied in experiments, etc. All these factors may change the results of experiments and lead to false conclusions.

  17. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study.

    PubMed

    Domingo, Luis R; Chamorro, Eduardo; Pérez, Patricia

    2008-06-20

    The electrophilic/nucleophilic character of a series of captodative (CD) ethylenes involved in polar cycloaddition reactions has been studied using DFT methods at the B3LYP/6-31G(d) level of theory. The transition state structures for the electrophilic/nucleophilic interactions of two CD ethylenes toward a nucleophilically activated ethylene, 2-methylene-1,3-dioxolane, and an electrophilically activated ethylene, 1,1-dicyanoethyelene, have been studied, and their electronic structures have been characterized using both NBO and ELF methods. Analysis of the reactivity indexes of the CD ethylenes explains the reactivity of these species. While the electrophilicity of the molecules accounts for the reactivity toward nucleophiles, it is shown that a simple index chosen for the nucleophilicity, Nu, based on the HOMO energy is useful explaining the reactivity of these CD ethylenes toward electrophiles.

  18. Along-arc and inter-arc variations in volcanic gas CO2/S signature

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Robidoux, Philippe; Fischer, Tobias

    2015-04-01

    Improving the current estimates of the global volcanic arc CO2 output requires a more accurate knowledge of the volcanic gas CO2/S ratio signature of each individual arc segment. This, when multiplied by sulphur (S) productivity of each arc segment (derived by either studies on melt inclusions or UV-based gas measurements), could in principle yield the individual arc CO2 output and, by summation, the global arc CO2 output. Unfortunately, the process is complicated, among others, by the limited volcanic gas dataset we have available, particularly for poorly explored, but potentially highly productive arc segments (Indonesia, Papua New Guinea, etc). We here review the currently available dataset of CO2/S ratios in the volcanic gas literature, and combine this with novel gas observations (partially obtained using the currently expanding DCO-DECADE Multi-GAS network) to provide experimental evidence for the existence of substantial variations in volcanic gas chemistry along individual arc segments, and from one arc segment to another. In Central America [1], for instance, we identify distinct volcanic gas CO2/S (molar) ratio signatures for magmatic volatiles in Nicaragua (~3), Costa Rica (~0.5-1.0) and El Salvador (~1.0), which we ascribe to variable extents of sedimentary carbon addition to a MORB-type (Costa Rica-like) mantle wedge. Globally, volcanic gas CO2/S ratios are typically found to be low (~1.0) in arc segments (e.g., Japan, Kuril-Kamchatka, Chile) where small amount of limestones enter the slab; whilst larger slab/crustal carbon contributions typically correspond to higher CO2/S ratio signatures for gases of other arcs, such as Indonesia (~4.0) or Italy (6 to 9). We find that CO2/S ratios of arc gases positively correlate with Ba/La and U/Th ratios in the corresponding magmas, these trace-element ratios being thought as petrological proxies for the addition slab-fluids to the magma generation zone. This relation implies a dominant slab-derivation of carbon

  19. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    NASA Technical Reports Server (NTRS)

    Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.

    1992-01-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.

  20. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    SciTech Connect

    Yang, R; Wang, J

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  1. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  2. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  3. Volumetric Arc Therapy and Intensity-Modulated Radiotherapy for Primary Prostate Radiotherapy With Simultaneous Integrated Boost to Intraprostatic Lesion With 6 and 18 MV: A Planning Comparison Study

    SciTech Connect

    Ost, Piet; Speleers, Bruno; De Meerleer, Gert; De Neve, Wilfried; Fonteyne, Valerie; Villeirs, Geert; De Gersem, Werner

    2011-03-01

    Purpose: The aim of the present study was to compare intensity-modulated radiotherapy (IMRT) with volumetric arc therapy (VMAT), in the treatment of prostate cancer with maximal dose escalation to the intraprostatic lesion (IPL), without violating the organ-at-risk constraints. Additionally, the use of 6-MV photons was compared with 18-MV photons for all techniques. Methods and Materials: A total of 12 consecutive prostate cancer patients with an IPL on magnetic resonance imaging were selected for the present study. Plans were made for three IMRT field setups (three, five, and seven fields) and one VMAT field setup (single arc). First, optimal plans were created for every technique using biologic and physical planning aims. Next, an additional escalation to the IPL was planned as high as possible without violating the planning aims of the first step. Results: No interaction between the technique and photon energy (p = .928) occurred. No differences were found between the 6- and 18-MV photon beams, except for a reduction in the number of monitor units needed for 18 MV (p < .05). All techniques, except for three-field IMRT, allowed for dose escalation to a median dose of {>=}93 {+-} 6 Gy (mean {+-} standard deviation) to the IPL. VMAT was superior to IMRT for rectal volumes receiving 20-50 Gy (p < .05). Conclusion: VMAT allowed for dose escalation to the IPL with better sparing of the rectum than static three-, five-, and seven-field IMRT setups. High-energy photons had no advantage over low-energy photons.

  4. Insights on the Quaternary Tectonic Evolution of the SE Indonesia Arc-Continent Collision from the Study of Uplifted Coral Terraces on Sumba Island.

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Rigaud, S.; Chiang, H. W.; Djamil, Y. S.; Herdiyanti, T.; Johnny, J.; Ildefonso, S.; Meilano, I.; Bijaksana, S.; Abidin, H. Z.; Tapponnier, P.; Wang, X.

    2015-12-01

    Sumba Island is uniquely positioned within the Sunda-Banda forearc, at the transition between oceanic subduction and arc-continent collision. There, the convergence between the Sunda and Australian plates is accommodated along at least three major structures: the megathrust, the Savu backthrust located south of Sumba and the Flores backthrust located north of the volcanic arc. The incipient collision in the vicinity of Sumba is responsible for coastal vertical movements. Quaternary reefal deposits form spectacular uplifted flights of terraces, which directly overlie Mid Miocene - Early Pliocene deep carbonate and volcaniclastic rocks at elevations exceeding 500m. Although aerial fossil reefs extensively rim the northern and eastern coasts of Sumba, studies have been limited to Cape Laundi where an uplift rate of 0.2-0.5 m/kyr is estimated for the last 400 kyr, partly on the basis of alpha-spectrometric U/Th dating. At the island scale, the relief morphology and the hydrographic network point to a N-S asymmetry, indicating a general tilt toward the north. A subducting seafloor asperity and south-dipping normal faults have been postulated to generate this asymmetry. However as the pattern and kinematics of the deformation remain partially determined, structures and processes capable of driving such deformation and accommodating the nascent collision may be undisclosed. New topographic data coupled with field observations and coral mass-spectrometric U/Th dating allow investigating the morphology, stratigraphy and age of the fossil reef terraces at the island scale. Tectonic structures disrupting the topography are identified and their activities are relatively dated with respect to fossil reef terraces. The deformation pattern of Sumba is characterized, especially in Cape Laundi where the uplift rate is re-evaluated. Through a multi-disciplinary study, we intend to reconstruct the tectonic evolution of Sumba island and, at a larger scale, of the collision in SE

  5. A comparative study of two rear-arc plutons and implications for the Fuegian Andes tectonic evolution: Mount Kranck Pluton and Jeu-Jepén Monzonite, Argentina

    NASA Astrophysics Data System (ADS)

    González-Guillot, M.; Prezzi, C.; Acevedo, R. D.; Escayola, M.

    2012-10-01

    A petrologic, geochemical and geophysical study of two Late Cretaceous plutons of the Fuegian Andes is carried out: the Jeu-Jepén Monzonite (JJM) and the Mt. Kranck Pluton (MKP). The plutons show a wide lithological spectrum from ultramafic lithologies (clinopyroxenites and hornblendites), gabbros, diorites to late stage K-feldspar syenite veins. They represent the top of magmatic chambers exposed at or close to the roof level. Mode and chemistry indicate a monzonitic-mildly alkaline trend with high K2O content, equivalent to shoshonitic series. Trace element composition is typical of arc magmas. These features plus their high LILE content (Ba 320-1600 ppm, Sr 475-1560 ppm), high LILE/HFSE ratio (Rb/Zr 0.6-1.6) and age confirm they belong to a rear-arc, monzonitic to mildly alkaline suite (the Fuegian Potassic Magmatism). Therefore, they represent the farthest-from-the-trench plutons in the suite. The petrographical and chemical characteristics of the plutons suggest the lithological spectrum is the result of magmatic differentiation. The process involved crystal accumulation and magma mingling at the early stages, favored either by injections of fresh magma from deeper reservoirs and/or the action of convective currents within the chamber. Country rock assimilation also took part simultaneously with crystallization. The JJM and MKP lie along the trace of a Cenozoic left-lateral strike-slip fault (Magallanes-Fagnano fault system), on opposite blocks. However, lithological, chemical and geophysical subtle differences between these two plutons suggest they evolved in individual magmatic chambers and therefore the distance between them cannot be used as an estimation of total offset along the fault, as was indicated in previous studies.

  6. Application of the Quanta image sensor concept to linear polarization imaging-a theoretical study.

    PubMed

    Anzagira, Leo; Fossum, Eric R

    2016-06-01

    Research efforts in linear polarization imaging have largely targeted the development of novel polarizing filters with improved performance and the monolithic integration of image sensors and polarization filter arrays. However, as pixel sizes in CMOS image sensors continue to decrease, the same limitations that have an impact on color and monochrome CMOS image sensors will undoubtedly affect polarization imagers. Issues of low signal capacity and dynamic range in small pixels will severely limit the useful polarization information that can be obtained. In this paper, we propose to leverage the benefits of the relatively new Quanta image sensor (QIS) concept to mitigate the anticipated limitations of linear polarization imaging as pixel sizes decrease. We address, by theoretical calculation and simulation, implementation issues such as alignment of polarization filters over extremely small pixels used in the QIS concept and polarization image formation from single-bit output of such pixels. We also present design innovations aimed at exploiting the benefits of this new imaging concept for simultaneous color and linear polarization imaging. PMID:27409443

  7. Polarization-degree imaging contrast in turbid media: a quantitative study.

    PubMed

    Shao, Hanrong; He, Yonghong; Li, Wei; Ma, Hui

    2006-06-20

    Scattering in biological tissue can degrade imaging contrast and reduce the probe depth. Polarization-based measurement has shown its advantages in overcoming such drawbacks. Here, linear and circular polarization degree imaging is applied to a comblike metal target submerged in Intralipid solutions. Contrasts of the metal bars are measured quantitatively as functions of the Intralipid concentration and the submersion depths. Different behaviors in contrast for linear and circular polarizations are compared. Contributions to the background of circular polarization degree images by backscattering, snake, and diffusive photons are examined carefully.

  8. Tight-binding model study of substrate induced pseudo-spin polarization and magnetism in mono-layer graphene

    NASA Astrophysics Data System (ADS)

    Sahu, Sivabrata; Rout, G. C.

    2016-06-01

    We present here a tight-binding model study of generation of magnetism and pseudo-spin polarization in monolayer graphene arising due to substrate, impurity and Coulomb correlation effects. The model Hamiltonian contains the first-, second- and third-nearest-neighbor hopping integrals for π electrons of graphene besides substrate induced gap, impurity interactions and Coulomb correlation of electrons. The Hubbard type Coulomb interactions present in both the sub-lattices A and B are treated within the mean-field approximation. The electronic Green's functions are calculated by using Zubarev's technique and hence the electron occupancies of both sub-lattices are calculated for up and down spins separately. These four temperature dependent occupancies are calculated numerically and self-consistently. Then we have calculated the temperature dependent pseudo-spin polarization, ferromagnetic and anti-ferromagnetic magnetizations. We observe that there exists pseudo-spin polarization for lower Coulomb energy, u < 2.2t1 and pseudo-spin polarization is enhanced with substrate induced gap and impurity effect. For larger Coulomb energy u > 2.5t1, there exists pseudo-spin polarization (p); while ferromagnetic (m) and antiferromagnetic (pm) magnetizations exhibit oscillatory behavior. With increase of the substrate induced gap, the ferromagnetic and antiferromagnetic transition temperatures are enhanced with increase of the substrate induced gap; while polarization (p) is enhanced in magnitude only.

  9. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    NASA Astrophysics Data System (ADS)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  10. Study of pion photo-production using a TPC detector to determine beam asymmetries from polarized HD

    NASA Astrophysics Data System (ADS)

    Kizilgul, Serdar A.

    The Laser Electron Gamma Source facility (LEGS) provides intense, polarized, tagged gamma-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the NSLS at BNL, Upton, NY. A series of double-polarization experiments (beam and target) has been completed to study the helicity structure of the nucleon. Neutral-pion measurements were completed in 2005 by using the Spin ASYmmetry detector system (SASY) which covers a large solid angle and allows for detection of a large range of neutral pions. Charged-pion experiments were completed in 2006. This new experiment yields data on the beam asymmetry Sigma for a polarized Hydrogen Deuterium (HD) target from the 2006 data. A Time Projection Chamber (TPC), surrounded by two-Tesla magnet, was built and incorporated into SASY to identify the pion charge and so separate neutron and proton reactions. The TPC provides snap-shots of ionizing tracks of particles produced by 300-422 MeV polarized photons on a polarized HD target. A polarized HD target was developed and used in these experiments.

  11. Polarization at SLAC

    SciTech Connect

    Woods, M.

    1995-01-01

    A highly polarized electron beam is a key feature. for the Current physics program at SLAC. An electron beam polarization of 80% can now be routinely achieved for typically 5000 hours of machine operation per year. Two main Physics programs utilize the polarized beam. Fixed target experiments in End Station A study the collision of polarized electrons with polarized nuclear targets to elucidate the spin structure of the nucleon and to provide an important test of QCD. Using the SLAC Linear Collider, collisions of polarized electrons with unpolarized positrons allow precise measurements of parity violation in the Z-fermion couplings and provide a very precise measurement of tile weak mixing angle. This paper discusses polarized beam operation at SLAC, and gives an overview of the polarized physics program.

  12. Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt

    2016-10-01

    Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.

  13. Italian all-sky imager tracks auroral red arcs over Europe

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-05-01

    During geomagnetic storms, stable auroral red (SAR) arcs reach down from polar latitudes, their faint glow stretching equatorward of the traditional auroral oval. Invisible to the naked eye, SAR arcs are an upper atmospheric occurrence produced by the emission of light from oxygen atoms in the thermosphere. The excitation of the ionospheric oxygen that produces SAR arcs is caused, in turn, by the conduction of heat from the magnetospheric ring current. Advances in camera optics, including more sensitive sensors and highly specific filters, have allowed researchers to track the occurrence of SAR arcs, opening a window into the dynamics of the inner magnetosphere.

  14. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu

  15. Study of gas-fluidization dynamics with laser-polarized 129Xe.

    PubMed

    Wang, Ruopeng; Rosen, Matthew Scott; Candela, Donald; Mair, Ross William; Walsworth, Ronald Lee

    2005-02-01

    We report initial NMR studies of gas dynamics in a particle bed fluidized by laser-polarized xenon (129Xe) gas. We have made preliminary measurements of two important characteristics: gas exchange between the bubble and emulsion phases and the gas velocity distribution in the bed. We used T2* contrast to differentiate the bubble and emulsion phases by choosing solid particles with large magnetic susceptibility. Experimental tests demonstrated that this method was successful in eliminating 129Xe magnetization in the emulsion phase, which enabled us to observe the time dependence of the bubble magnetization. By employing the pulsed field gradient method, we also measured the gas velocity distribution within the bed. These results clearly show the onset of bubbling and can be used to deduce information about gas and particle motion in the fluidized bed. PMID:15833613

  16. Single-Molecule Fluorescence Polarization Study of Conformational Change in Archaeal Group II Chaperonin

    PubMed Central

    Iizuka, Ryo; Ueno, Taro; Morone, Nobuhiro; Funatsu, Takashi

    2011-01-01

    Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion. PMID:21779405

  17. Geochemical differences between along-arc and across-arc volcanics in west-central Nicaragua

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Freundt, Armin; Wörner, Gerhard; Kutterolf, Steffen

    2012-04-01

    The La Paz Centro - Malpaisillo Lineament (LPML) in west-central Nicaragua is a north-south striking, 20 km long chain of maars and cinder cones, which intersects the northwest-southeast striking main volcanic front. A tectonic control of LPML volcanism is likely but only evident for the Malpaisillo fissure at the northern end of the LPML. Previous work demonstrated geochemical variations implying changes in mantle-source composition (i.e., added slab components) along the Central American Volcanic Arc at spatial scales of some 10's of kilometers. Our study of the LPML shows that minor but systematic changes also occur across the arc within 20 km distance. Variations in trace element ratios such as Zr/Nb, Ba/Th, Ba/La, Th/Zr, U/La and La/Yb along the LPML, i.e. across the volcanic front indicate little change in the degree of partial melting but an increase particularly in the hemipelagic sediment component in the mantle source from the fore arc towards the arc front, followed by a decrease behind the arc. Interestingly, the slab component is most prominent just in front of the arc. About 60 km southeast of the LPML, the Nejapa-Miraflores volcanic and tectonic lineament, which marks a 20 km north-south offset in the arc, differs substantially from the LPML. There is a wide scatter in incompatible trace element ratios indicating a heterogeneous mantle source at small spatial scales (c. 1 km). This mantle heterogeneity may represent vertical rather than across-arc variations and is probably related to the arc offset, because in the absence of such offset at the LPML mantle source conditions vary much less but more systematically.

  18. Study on the measurement system of the target polarization characteristics and test

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.

  19. Study of the effect of scattering from turbid water on the polarization of a laser beam

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Hovanlou, A. H.

    1978-01-01

    A Monte Carlo simulation method was used to determine the effect of scattering from turbid water on the polarization of a backscattered beam of laser light. The relationship between the polarization and the type and amount of suspended particulates in the water was investigated.

  20. Measurements of skylight polarization: a case study in urban region with high-loading aerosol.

    PubMed

    Wu, Lianghai; Gao, Jun; Fan, Zhiguo; Zhang, Jun

    2015-02-01

    We investigate skylight polarization patterns in an urban region using our developed full-Stokes imaging polarimeter. A detailed description of our imaging polarimeter and its calibration are given, then, we measure skylight polarization patterns at wavelength λ=488  nm and at solar elevation between -05°10' and +35°42' in the city of Hefei, China. We show that in an urban region with high-loading aerosols: (1) the measured degree of linear polarization reaches the maximum near sunset, and large areas of unpolarized sky exist in the forward sunlight direction close to the Sun; (2) the position of neural points shifts from the local meridian plane and, if compared with a clear sky, alters the symmetrical characteristics of celestial polarization pattern; and (3) the observed circular polarization component is negligible. PMID:25967834

  1. Polarization study of a supercontinuum light source for different wavelengths through a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-Garcia, J. C.; Lauterio-Cruz, J. P.; Jáuregui-Vázquez, D.; Ibarra-Escamilla, B.; Rojas-Laguna, R.; Pottiez, O.; Kuzin, E. A.

    2016-03-01

    In this work we show the changes of polarization at different wavelengths in the end of a photonic crystal fiber (PCF) by means bandpass filters in a supercontinuum light source. A linear and circular polarization was introduced in a piece of PCF, showing the changes of the polarization for each wavelength of each one of the filters from 450 to 700nm. We used a microchip laser as pumping source with wavelength of 532nm and short pulses of 650ps with repetition rate of 5kHz. We obtained a continuous spectrum in the visible spectral region, showing a comparison of the polarization state at the fiber input with respect to polarization state in the fiber output for different wavelengths by rotating the axes of the PCF.

  2. Polarized Fluorescence Microscopy to Study Cytoskeleton Assembly and Organization in live cells

    PubMed Central

    McQuilken, Molly; Mehta, Shalin B.; Verma, Amitabh; Harris, Grant; Oldenbourg, Rudolf; Gladfelter, Amy S.

    2015-01-01

    The measurement of not only the location but also the organization of molecules in live cells is crucial to understanding diverse biological processes. Polarized light microscopy provides a nondestructive means to evaluate order within subcellular domains. When combined with fluorescence microscopy and GFP-tagged proteins, the approach can reveal organization within specific populations of molecules. This unit describes a protocol for measuring the architectural dynamics of cytoskeletal components using polarized fluorescence microscopy and OpenPolScope open-access software (www.openpolscope.org). The protocol describes installation of linear polarizers or a liquid crystal (LC) universal compensator, calibration of the system, polarized fluorescence imaging, and analysis. The use of OpenPolScope software and hardware allows for reliable, user-friendly image acquisition to measure and analyze polarized fluorescence. PMID:26061244

  3. Effects of Pulse Shape and Polarity on Sensitivity to Cochlear Implant Stimulation: A Chronic Study in Guinea Pigs.

    PubMed

    Macherey, Olivier; Cazals, Yves

    2016-01-01

    Most cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic pulses consisting of two phases of opposite polarity. Animal and human studies have shown that both polarities can elicit neural responses. In human CI listeners, studies have shown that at suprathreshold levels, the anodic phase is more effective than the cathodic phase. In contrast, animal studies usually show the opposite trend. Although the reason for this discrepancy remains unclear, computational modelling results have proposed that the degeneration of the peripheral processes of the neurons could lead to a higher efficiency of anodic stimulation. We tested this hypothesis in ten guinea pigs who were deafened with an injection of sysomycin and implanted with a single ball electrode inserted in the first turn of the cochlea. Animals were tested at regular intervals between 1 week after deafening and up to 1 year for some of them. Our hypothesis was that if the effect of polarity is determined by the presence or absence of peripheral processes, the difference in polarity efficiency should change over time because of a progressive neural degeneration. Stimuli consisted of charge-balanced symmetric and asymmetric pulses allowing us to observe the response to each polarity individually. For all stimuli, the inferior colliculus evoked potential was measured. Results show that the cathodic phase was more effective than the anodic phase and that this remained so even several months after deafening. This suggests that neural degeneration cannot entirely account for the higher efficiency of anodic stimulation observed in human CI listeners.

  4. Effects of Pulse Shape and Polarity on Sensitivity to Cochlear Implant Stimulation: A Chronic Study in Guinea Pigs.

    PubMed

    Macherey, Olivier; Cazals, Yves

    2016-01-01

    Most cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic pulses consisting of two phases of opposite polarity. Animal and human studies have shown that both polarities can elicit neural responses. In human CI listeners, studies have shown that at suprathreshold levels, the anodic phase is more effective than the cathodic phase. In contrast, animal studies usually show the opposite trend. Although the reason for this discrepancy remains unclear, computational modelling results have proposed that the degeneration of the peripheral processes of the neurons could lead to a higher efficiency of anodic stimulation. We tested this hypothesis in ten guinea pigs who were deafened with an injection of sysomycin and implanted with a single ball electrode inserted in the first turn of the cochlea. Animals were tested at regular intervals between 1 week after deafening and up to 1 year for some of them. Our hypothesis was that if the effect of polarity is determined by the presence or absence of peripheral processes, the difference in polarity efficiency should change over time because of a progressive neural degeneration. Stimuli consisted of charge-balanced symmetric and asymmetric pulses allowing us to observe the response to each polarity individually. For all stimuli, the inferior colliculus evoked potential was measured. Results show that the cathodic phase was more effective than the anodic phase and that this remained so even several months after deafening. This suggests that neural degeneration cannot entirely account for the higher efficiency of anodic stimulation observed in human CI listeners. PMID:27080654

  5. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  6. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  7. Water versus acetonitrile coordination to uranyl. Density functional study of cooperative polarization effects in solution.

    PubMed

    Bühl, Michael; Sieffert, Nicolas; Chaumont, Alain; Wipff, Georges

    2011-01-01

    Optimizations at the BLYP and B3LYP levels are reported for mixed uranyl-water/acetonitrile complexes [UO(2)(H(2)O)(5-n)(MeCN)(n)](2+) (n = 0-5), in both the gas phase and a polarizable continuum modeling acetonitrile. Car-Parrinello molecular dynamics (CPMD) simulations have been performed for these complexes in the gas phase, and for selected species (n = 0, 1, 3, 5) in a periodic box of liquid acetonitrile. According to structural and energetic data, uranyl has a higher affinity for acetonitrile than for water in the gas phase, in keeping with the higher dipole moment and polarizability of acetonitrile. In acetonitrile solution, however, water is the better ligand because of specific solvation effects. Analysis of the dipole moment of the coordinated water molecule in [UO(2)(H(2)O)(MeCN)(4)](2+) reveals that the interaction with the second-shell solvent molecules (through fairly strong and persistent O-H···N hydrogen bonds) causes a significant increase of this dipole moment (by more than 1 D). This cooperative polarization of water reinforces the uranyl-water bond as well as the water solvation via strengthened (UO(2))OH(2)···NCMe hydrogen bonds. Such cooperativity is essentially absent in the acetonitrile ligands that make much weaker (UO(2))NCMe···NCMe hydrogen bonds. Beyond the uranyl case, this study points to the importance of cooperative polarization effects to enhance the M(n+) ion affinity for water in condensed phases involving M(n+)-OH(2)···A fragments, where A is a H-bond proton acceptor and M(n+) is a hard cation. PMID:21126026

  8. A comparative study of the optical pulsations in the intermediate polars

    NASA Astrophysics Data System (ADS)

    Welsh, William F.; Martell, Phillip J.

    1996-10-01

    An attempt is made to assemble all known published measurements of the optical spectrum of the pulsations in the intermediate polar stars, and to convert these measurements to an absolute flux scale for the purpose of examining similarities and correlations among this class of cataclysmic variables. By using only absolute amplitudes (not relative or fractional amplitudes), we may investigate the intrinsic nature of the pulsations. For all systems studied, a power law is able to provide a good fit to the pulse spectrum. With the exception of DQ Her itself, all the pulses are intrinsically blue, generally declining monotonically with wavelength. We find no universal features common to all systems, not do we find any strong correlations. For some systems a blackbody can adequately fit the data, and from these fits we derive estimates for the temperatures and areas of the pulse-emitting region. For the two cases where data are available, the sideband pulse spectra are flatter in their energy distribution than the spin pulse spectra, lending credibility to the belief that they are the result of reprocessing. Although not a sideband pulse, the pulse in DQ Her itself does come from reprocessing, and from our blackbody fit we estimate that between 6 and 23 per cent of the disc area is involved in the reprocessing. We speculate that in many of the intermediate polars, optically thin emission should be able to provide a good fit to the pulse spectrum; indeed, for those spectra whose slope is bluer than the Rayleigh-Jeans slope, this is the only simple and plausible emission mechanism.

  9. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    USGS Publications Warehouse

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  10. Plasma arc melting of zirconium

    SciTech Connect

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-12-31

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

  11. The role of stroma in the expansion of odontogenic cysts and adenomatoid odontogenic tumor: A polarized microscopy study

    PubMed Central

    Mahajan, Aarti M.; Mahajan, Mahendra C.; Ganvir, S. M.; Hazarey, V. K.

    2013-01-01

    Objectives: To compare the polarization colors of collagen fibers of odontogenic keratocyst (OKC), radicular cyst, dentigerous cyst, and adenomatoid odontogenic tumor (AOT) with reference to their biological behavior. Study Design: Twenty cases each of OKC, radicular cyst, dentigerous cyst, and AOT were stained with picrosirius red stain and studied under polarized light. Results: A predominance of green to greenish yellow thick fibers was noted in OKC and AOT as compared to dentigerous cyst and radicular cyst. There was no significant difference between the polarization colors of the thin fibers in all the three groups. Conclusion: The stroma of OKC and AOT consists of poorly packed or pathologic collagen and plays a role in its neoplastic behavior. PMID:24082724

  12. Untangling inconsistent magnetic polarity records through an integrated rock magnetic analysis: A case study on Neogene sections in East Timor

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Dekkers, M. J.; Bakker, R. R.; van Hinsbergen, D. J. J.; Zachariasse, W. J.; Tate, G. W.; McQuarrie, N.; Harris, R.; Duffy, B.

    2014-06-01

    polarity patterns in sediments are a common problem in magnetostratigraphic and paleomagnetic research. Multiple magnetic mineral generations result in such remanence "haystacks." Here we test whether end-member modeling of isothermal remanent magnetization acquisition curves as a basis for an integrated rock magnetic and microscopic analysis is capable of isolating original magnetic polarity patterns. Uppermost Miocene-Pliocene deep-marine siliciclastics and limestones in East Timor, originally sampled to constrain the uplift history of the young Timor orogeny, serve as case study. An apparently straightforward polarity record was obtained that, however, proved impossible to reconcile with the associated biostratigraphy. Our analysis distinguished two magnetic end-members for each section, which result from various greigite suites and a detrital magnetite suite. The latter yields largely viscous remanence signals and is deemed unsuited. The greigite suites are late diagenetic in the Cailaco River section and early diagenetic, thus reliable, in the Viqueque Type section. By selecting reliable sample levels based on a quality index, a revised polarity pattern of the latter section is obtained: consistent with the biostratigraphy and unequivocally correlatable to the Geomagnetic Polarity Time Scale. Although the Cailaco River section lacks a reliable magnetostratigraphy, it does record a significant postremagnetization tectonic rotation. Our results shows that the application of well-designed rock magnetic research, based on the end-member model and integrated with microscopy and paleomagnetic data, can unravel complex and seemingly inconsistent polarity patterns. We recommend this approach to assess the veracity of the polarity of strata with complex magnetic mineralogy.

  13. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  14. Artificial neural networks in predicting current in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Panoiu, C.; Iordan, A.; Ghiormez, L.

    2014-03-01

    The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania.

  15. Development of neutron polarization measurement system for studying the medium effect on NN interaction

    NASA Astrophysics Data System (ADS)

    Yasuda, Jumpei

    2014-09-01

    Modification of nucleon and meson properties in nuclear medium is one of the most interesting topics in nuclear physics. To investigate the medium effect on NN interaction, quasi-elastic reaction is one of the most powerful tool. Especially, the spin observables are very useful since it is insensitive to distortion effect. For the proton-proton interaction, the analyzing power and polarization transfer have been measured for exclusive (p,2p) reaction. On the other hand, for the proton-neutron interaction, the polarization transfer have been measured only for inclusive (p,n) reaction. Therefore, we plan to measure the polarization transfer for exclusive (p,np) reaction. To achieve the measurement, we developed the neutron polarization measurement system for (p,np) reaction, which has following two component; (1) neutron polarization measurement; (2) exclusive measurement. For the neutron polarization measurement, we have reconstructed the neutron polarimeter NPOL3. We have calibrated the new NPOL3 by using the polarized neutron from 2H(p,n) reaction and obtained the effective analyzing power Ayeff = 0 . 127 . For the exclusive measurement, we used the LAS spectrometer for recoil proton detection and achieved the energy resolution of 6 MeV.

  16. Arc Inception Mechanism on a Solar Array Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, B.; Galofaro, J.; Ferguson, D.

    2001-01-01

    In this report, results are presented of an experimental and theoretical study of arc phenomena and snapover for two samples of solar arrays immersed in argon plasma. The effects of arcing and snapover are investigated. I-V curves are measured, and arc and snapover inception voltages and arc rates are determined within the wide range of plasma parameters. A considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. It is shown that increasing gas pressure causes increasing ion current collection and, consequently, arc rate even though the effect of conditioning also takes place. Arc sites have been determined by employing a video-camera. It is confirmed that keeping sample under high vacuum for a long time results in shifting arc threshold voltage well below -300 V. The results obtained seem to be important for the understanding of arc inception mechanism.

  17. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    PubMed

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  18. Polarization studies of Zeeman affected spectral lines using the MSFC magnetograph

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, K. S.; West, E. A.

    1990-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph records polarization images of absorption lines that are sensitive to magnetic fields. A method is presented for analyzing the Stokes spectral-line profiles of a photospheric Fe I absorption line (5250.2 A) which is influenced by the Zeeman effect. Using nonlinear least-square optimization, the observed Stokes profiles are compared with those generated from the theoretical solution of the polarized radiative transfer equations. The optimization process accounts for the spectral convolution of the source and the MSFC vector magnetograph. The resulting physical properties of the active region producing the polarized light are discussed.

  19. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    PubMed

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants. PMID:25062173

  20. The guanidine and benzoic acid (1:1) complex. The polarized vibrational studies and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Drozd, M.; Dudzic, D.

    2015-03-01

    The structure of guanidinium benzoate was discovered by Silva et al. On the basis of these X-ray crystallographic studies the detailed DFT investigation are performed. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained. The energy difference between HOMO and LUMO was analyzed. According to theoretical calculations the direction of dipole moments (TDM) for bands observed in infrared spectra are analyzed. Verification of theoretical TDM behaviors is performed on the basis of experimental polarized specular reflection infrared spectra. The detailed assignments of observed bands is presented. Both theoretical and experimental spectra are compared. Crucial role of three different hydrogen bonds is studied in detail. Additionally, on the basis of differential scanning calorimetric study no phase transition was found in investigated crystal in the range 100-400 K.

  1. Enhanced diagnostic of skin conditions by polarized laser speckles: phantom studies and computer modeling

    NASA Astrophysics Data System (ADS)

    Tchvialeva, Lioudmila; Lee, Tim K.; Markhvida, Igor; Zeng, Haishan; Doronin, Alexander; Meglinski, Igor

    2014-03-01

    The incidence of the skin melanoma, the most commonly fatal form of skin cancer, is increasing faster than any other potentially preventable cancer. Clinical practice is currently hampered by the lack of the ability to rapidly screen the functional and morphological properties of tissues. In our previous study we show that the quantification of scattered laser light polarization provides a useful metrics for diagnostics of the malignant melanoma. In this study we exploit whether the image speckle could improve skin cancer diagnostic in comparison with the previously used free-space speckle. The study includes skin phantom measurements and computer modeling. To characterize the depolarization of light we measure the spatial distribution of speckle patterns and analyse their depolarization ratio taken into account radial symmetry. We examine the dependences of depolarization ratio vs. roughness for phantoms which optical properties are of the order of skin lesions. We demonstrate that the variation in bulk optical properties initiates the assessable changes in the depolarization ratio. We show that image speckle differentiates phantoms significantly better than free-space speckle. The results of experimental measurements are compared with the results of Monte Carlo simulation.

  2. Developmental DSP4 effects on cortical Arc expression.

    PubMed

    Sanders, Jeff

    2016-04-01

    Activity Regulated Cytoskeleton Associated Protein (Arc) is an immediate early gene that is critical to brain plasticity. In this study, norepinephrine's regulation of Arc expression was examined during different stages of postnatal development. Rats were injected with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a selective noradrenergic neurotoxin, during preadolescence (PND 0 or 13), adolescence (PND 23 or 48) or adulthood (PND 60). After each DSP4 treatment, brains were harvested later in development and Arc mRNA levels analyzed with in situ hybridization. Rats lesioned with DSP4 during preadolescence showed no differences in Arc level compared to saline treated controls. In contrast, adolescence was a time of changing Arc mRNA response to DSP4. Rats lesioned during early adolescence showed Arc expression increases, while rats lesioned during late adolescence showed dramatic Arc expression decreases. Decreases in Arc level caused by late adolescent DSP4 were similar to those found in lesioned adults. These findings highlight a qualitatively different regulation of Arc expression by norepinephrine according to developmental stage, and indicate that mature regulation is not intact until late adolescence. These data point to important developmental differences in norepinephrine's regulation of brain plasticity. These differences may underlie contrasting psychotropic responses in children and adolescents compared to adults. PMID:26946107

  3. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  4. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    NASA Astrophysics Data System (ADS)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  5. Multi-chroic Dual-Polarization Bolometric Focal Plane for Studies of the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Arnold, K.; Edwards, J.; Engargiola, G.; Ghribi, A.; Holzapfel, W.; Lee, A.; Meng, X.; Myers, M.; O'Brient, R.; Quealy, E.; Rebeiz, G.; Richards, P.

    2012-06-01

    We are developing multi-chroic antenna-coupled Transition Edge Sensor (TES) focal planes for Cosmic Microwave Background (CMB) polarimetry. In each pixel, a dual polarized sinuous antenna collects light over a two-octave frequency band. Each antenna couples to the telescope with a contacting silicon lens. The antenna couples the broadband RF signal to microstrip transmission lines, and then filter banks split the broadband signal into several frequency bands. A TES bolometer detects the power in each band and polarization. We will describe the design of this device and demonstrate its performance with optical data measured using prototype pixels. Our measurements show low ellipticity beams, low cross-polarization, and properly partitioned bands in banks of 2, 3, and 7 filters. Finally, we will describe how we will upgrade the Polarbear CMB experiment using the focal planes of these detectors to increase the experiment's mapping speed and its ability to discriminate between the CMB and polarized foregrounds.

  6. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.

  7. Comparative study of nuclear effects in polarized electron scattering from 3 He

    DOE PAGESBeta

    Ethier, J. J.; Melnitchouk, W.

    2013-11-01

    We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei for polarization asymmetries, structure functions and their moments, both in the nucleon resonance and deep-inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with the effective polarization ansatz often used in experimental data analyses, and explore the impact of Δ components in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized 3He, data onmore » which can be used to constrain the spin-dependent nuclear smearing functions in 3He.« less

  8. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility. PMID:25607157

  9. Molecular simulation study of polar order in orthogonal bent-core smectic liquid crystals.

    PubMed

    Peroukidis, Stavros D; Vanakaras, Alexandros G; Photinos, Demetri J

    2015-06-01

    We explore the phase behavior and structure of orthogonal smectic liquid crystals consisting of bent-core molecules (BCMs) by means of Monte Carlo molecular simulations. A simple athermal molecular model is introduced that describes the basic features of the BCMs. Phase transitions between uniaxial and biaxial (antiferroelectric) orthogonal smectics are obtained. The results indicate the presence of local in-plane polar correlations in the uniaxial smectic phase. The macroscopic uniaxial-biaxial transformation is rationalized in terms of local polar correlations giving rise to polar domains. The size of these polar domains grows larger under the action of an external vector field and their internal ordering is enhanced, leading to field-induced biaxial order-disorder transitions.

  10. Development of Neutron Polarization Measurement System for Studying NN interaction in Nuclear Medium

    NASA Astrophysics Data System (ADS)

    Yasuda, J.; Wakasa, T.; Dozono, M.; Fukunaga, T.; Gotanda, S.; Hatanaka, K.; Kanaya, Y.; Maeda, Y.; Maeda, Y.; Miki, K.; Nishio, Y.; Noro, T.; Ohnaka, K.; Sakaguchi, S.; Sakemi, Y.; Sekiguchi, K.; Tamii, A.; Taguchi, T.; Wada, Y.

    2016-02-01

    We have developed the neutron polarization measurement system to perform the first polarization-transfer measurement for the exclusive (p,np) reaction. For the neutron polarization measurement, we have reconstructed the neutron polarimeter NPOL3. The NPOL3 system has been calibrated by using the polarized neutron from the 2H(p→,n→) reaction, and the resulting effective analyzing power is Ay:eff = 0.127. For the exclusive measurement, the Large Acceptance Spectrometer (LAS) has been used for the recoil proton detection. The energy resolution of 6 MeV is achieved for separation energy, which is sufficient to separate the 1s and 1p orbits for light nuclei.

  11. Effect of Micro Arc Oxidation Coatings on Corrosion Resistance of 6061-Al Alloy

    NASA Astrophysics Data System (ADS)

    Wasekar, Nitin P.; Jyothirmayi, A.; Rama Krishna, L.; Sundararajan, G.

    2008-10-01

    In the present study, the corrosion behavior of micro arc oxidation (MAO) coatings deposited at two current densities on 6061-Al alloy has been investigated. Corrosion in particular, simple immersion, and potentiodynamic polarization tests have been carried out in 3.5% NaCl in order to evaluate the corrosion resistance of MAO coatings. The long duration (up to 600 h) immersion tests of coated samples illustrated negligible change in weight as compared to uncoated alloy. The anodic polarization curves were found to exhibit substantially lower corrosion current and more positive corrosion potential for MAO-coated specimens as compared to the uncoated alloy. The electrochemical response was also compared with SS-316 and the hard anodized coatings. The results indicate that the overall corrosion resistance of the MAO coatings is significantly superior as compared to SS316 and comparable to hard anodized coating deposited on 6061 Al alloy.

  12. Circuit model of surface arcing

    SciTech Connect

    Robiscoe, R.T.; Sui, Z.

    1988-11-01

    An electrical breakdown on a highly charged dielectric surface can result in a discharge along the surface, i.e., a flashover arc. We construct a simple circuit model for such an arc: the discharge of a capacitor C (related to the initial charged area) through a series inductor L and resistor R (related to the arc considered as a plasma). The arc current assumes a very simple form over most of its dynamic range, and such measured arc quantities as total charge transport, pulse width, peak current, and rise time are easily calculated. Moreover, straightforward a priori estimates of C, L, and R values give calculated arc quantities in good agreement with observation, for both typical magnitudes and areal scaling. We also analyze the effect on areal scaling of allowing the arc resistance R to ''switch'' during the evolution of the arc, from a small value characteristic of the arc plasma to a large value characteristic of the dielectric surface. Finally, we consider some aspects of the electromagnetic radiation generated by the arc.

  13. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  14. Alignment of CH3F in para-H2 crystal studied by IR quantum cascade laser polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    2016-05-01

    In order to investigate the alignment of CH3F in para-H2 crystals, high resolution polarization spectroscopy of the ν3 vibrational band is studied using a quantum cascade laser at 1040 cm-1. It is found that the main and satellite series of peaks in the ν3 vibrational band of CH3F have the same polarization dependence. This result supports the previously proposed cluster model with ortho-H2 in first and second nearest neighbor sites. The observed polarization dependence function is well described by a simple six-axis void model in which CH3F is not aligned along the c-axis of the crystal but tilted to 64.9(3)° from it.

  15. Alignment of CH3F in para-H2 crystal studied by IR quantum cascade laser polarization spectroscopy.

    PubMed

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    2016-05-14

    In order to investigate the alignment of CH3F in para-H2 crystals, high resolution polarization spectroscopy of the ν3 vibrational band is studied using a quantum cascade laser at 1040 cm(-1). It is found that the main and satellite series of peaks in the ν3 vibrational band of CH3F have the same polarization dependence. This result supports the previously proposed cluster model with ortho-H2 in first and second nearest neighbor sites. The observed polarization dependence function is well described by a simple six-axis void model in which CH3F is not aligned along the c-axis of the crystal but tilted to 64.9(3)° from it.

  16. Communication: Hydration structure and polarization of heavy alkali ions: A first principles molecular dynamics study of Rb+ and Cs+

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi; Boero, Mauro

    2012-07-01

    Hydration structure and polarization of Rb+ and Cs+ in liquid water at ambient conditions were studied by first principles molecular dynamics. Our systematic analysis of the relevant electronic structures, based on maximally localized Wannier functions, revealed that the dipole moment of H2O molecules in the first solvation shell of the ions slightly increases with increasing the atomic number. We also found that the polarization of heavy alkali ions, particularly Cs+, tends to stabilize a peculiar asymmetric hydration structure with relevant consequences in the extraction of the harmful 137Cs resulting from nuclear wastes.

  17. Solvent electronic polarization effects on a charge transfer excitation studied by the mean-field QM/MM method

    SciTech Connect

    Nakano, Hiroshi

    2015-12-31

    Electronic polarization effects of a medium can have a significant impact on a chemical reaction in condensed phases. We discuss the effects on the charge transfer excitation of a chromophore, N,N-dimethyl-4-nitroaniline, in various solvents using the mean-field QM/MM method with a polarizable force field. The results show that the explicit consideration of the solvent electronic polarization effects is important especially for a solvent with a low dielectric constant when we study the solvatochromism of the chromophore.

  18. Effects of thermospheric motions on the polar wind: A time-dependent numerical study

    SciTech Connect

    Gombosi, T.I.; Killeen, T.L. )

    1987-05-01

    This paper presents the results of a numerical study investigating the effects of low-altitude short-duration plasma heating episodes (such as horizontal frictional heating) on transient heavy ion outflows from the polar ionosphere using a time-dependent model. In a previous set of calculations, where the effects of high-altitude transient heat sources were investigated, the low-altitude neutral atmosphere (z < 800 km) acted as a very efficient heat sink, absorbing most of the energy conducted to this region and thus preventing large differences between the ion and neutral temperatures. On purpose of the present study was to investigate whether realistic, specified low-altitude frictional heating rates, based on published experimental data, can result in elevated ion temperatures and lift a part of the heavy ion population over the gravitational barrier before the extra energy is lost to the neutral atmosphere. In the model calculations the specified heating generated an upflowing O{sup +} disturbance (with a normalized peak flux of {approximately}10{sup 8} cm{sup {minus}2} s{sup {minus}1}) moving upward along the open magnetic field line with a velocity of {approximately}2 km/s. The spatial extent of the disturbance was approximately equal to the disturbance velocity times the duration of the heat source. The model results provide a possible mechanism to explain recent European Incoherent Scatter observations of high-latitude O{sup +} upwellings.

  19. Sleep and circadian rhythms of an airline pilot operating on the polar route: a case study.

    PubMed

    Samel, A; Wegmann, H M

    1988-05-01

    This study was planned and performed as a first step to assess sleep behaviour and circadian rhythmicity in aircrews operating on regular passenger flights between Germany and Japan via Anchorage, AK. Sleep patterns as well as continuous recordings of ECG and temperature were obtained from a B747 captain during a period of 13 d, including a preceding control day, 8 d on duty and 4 d at home base after return. Sleep behaviour and circadian rhythms changed dramatically due to adverse effects from the duty roster on the polar route. Sleep periods became fragmented into several sleep periods per day in a very irregular manner. Total sleep duration was shortened and sleep deficits occurred between flights. After return to the home base, sleep distribution remained divided into two intervals per day. The circadian system was considerably disrupted on route. Effects associated with irregular duty and sleep patterns intensified desynchronization. Readjustment was extremely slow resulting in a phase-displacement of at least 10 h even after being home for 4 d. Altogether, the results give reason for serious concerns and for the conclusion to strongly recommend more extensive studies on this route.

  20. Effects of thermospheric motions on the polar wind - A time-dependent numerical study

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Killeen, T. L.

    1987-01-01

    This paper presents the results of a numerical study investigating the effects of low-altitude short-duration plasma heating episodes (such as horizontal frictional heating) on transient heavy ion outflows from the polar ionosphere using a time-dependent model. In a previous set of calculations, where the effects of high-altitude transient heat sources were investigated, the low-altitude neutral atmosphere (z less than 800 km) acted as a very efficient heat sink, absorbing most of the energy conducted to this region and thus preventing large differences between the ion and neutral temperatures. One purpose of the present study was to investigate whether realistic, specified low-altitude frictional heating rates, based on published experimental data, can result in elevated ion temperatures and lift a part of the heavy ion population over the gravitational barrier before the extra energy is lost to the neutral atmosphere. In these model calculations the specified heating generated an upflowing O(+) disturbance (with a normalized peak flux of about 100 million/sq cm per sec) moving upward along the open magnetic field line with a velocity of about 2 km/s. The spatial extent of the disturbance was approximately equal to the disturbance velocity times the duration of the heat source. The model results provide a possible mechanism to explain recent European Incoherent Scatter observations of high-latitude O(+) upwellings.

  1. Cereal grass pulvini: agronomically significant models for studying gravitropism signaling and tissue polarity.

    PubMed

    Clore, Amy M

    2013-01-01

    Cereal grass pulvini have emerged as model systems that are not only valuable for the study of gravitropism, but are also of agricultural and economic significance. The pulvini are regions of tissue that are apical to each node and collectively return a reoriented stem to a more vertical position. They have proven to be useful for the study of gravisensing and response and are also providing clues about the establishment of polarity across tissues. This review will first highlight the agronomic significance of these stem regions and their benefits for use as model systems and provide a brief historical overview. A detailed discussion of the literature focusing on cell signaling and early changes in gene expression will follow, culminating in a temporal framework outlining events in the signaling and early growth phases of gravitropism in this tissue. Changes in cell wall composition and gene expression that occur well into the growth phase will be touched upon briefly. Finally, some ongoing research involving both maize and wheat pulvini will be introduced along with prospects for future investigations. PMID:23125431

  2. Dynamic voltage-current characteristics for a water jet plasma arc

    SciTech Connect

    Yang Jiaxiang; Lan Sheng; Xu Zuoming

    2008-05-05

    A virtual instrument technology is used to measure arc current, arc voltage, dynamic V-I characteristics, and nonlinear conductance for a cone-shaped water jet plasma arc under ac voltage. Experimental results show that ac arc discharge mainly happens in water vapor evaporated from water when heated. However, due to water's cooling effect and its conductance, arc conductance, reignition voltage, extinguish voltage, and current zero time are very different from those for ac arc discharge in gas work fluid. These can be valuable to further studies on mechanism and characteristics of plasma ac discharge in water, and even in gas work fluid.

  3. Darkfield orthogonal polarized spectral imaging for studying endovascular laser-tissue interactions in vivo a preliminary study

    NASA Astrophysics Data System (ADS)

    Heger, Michal; Beek, Johan F.; Stenback, Karin; Faber, Dirk J.; van Gemert, Martin J. C.; Ince, Can

    2005-02-01

    Due to the limited number of suitable intravital microscopy techniques, relatively little is known about the opto-thermal (endo)vascular responses to selective photothermolysis, used as a default treatment modality for superficial vascular anomalies such as port wine stains, telangiectasias, and hemangiomas. In this preliminary study we present a novel microscopy technique for studying (endo)vascular laser-tissue interactions in vivo, in which conventional orthogonal polarized spectral (OPS) imaging is combined with darkfield (DF) illumination. DFOPS imaging of rat mesenteric vasculature irradiated at increasing powers revealed the following (tissular) responses: formation of translucent aggregates, retrograde flow, gradual and immediate hemostasis, reinstatement of flow, vessel disappearance, and perivascular collagen damage. DFOPS imaging therefore constitutes a useful tool for examining (endo)vascular events following selective photothermolysis.

  4. Numerical analysis of a hollow electrode plasma torch with a reversed polarity discharge for radioactive waste treatment

    NASA Astrophysics Data System (ADS)

    Park, Seung-Chul; Kim, Dong-Uk; Kim, Min-Ho; Seo, Jun-Ho; Yang, O.-Bong

    2013-11-01

    In this study, a numerical analysis is carried out in order to investigate the effects of the electrode configuration and the operation conditions on the arc flow structure and the performance of a hollow electrode plasma torch with a reversed polarity discharge. From the numerical results, a swirl injection of plasma gas and a hollowed cathode with a convergent entrance are found to help control the recirculation directions of backflows and the attachment position of the anode spot in the rear electrode. For example, the anode spot is observed to be moved to the central point of the blocked side in the rear electrode (the anode) when the plasma-forming gases are injected with a swirl. This attachment point is predicted to act as a stable anode spot for the transferred operation of the hollow electrode plasma torch with a reversed polarity discharge. In addition, the torch performance is analyzed for operation variables, such as the arc current and the gas flow rates. Similar to that of a conventional hollow electrode plasma torch, the scale-up of input power is accompanied by increases in the arc current and the gas flow rate while increasing the arc current brings about a deterioration in the torch efficiency, which is defined as the ratio of the exit enthalpy to the input power. On the other hand, the temperature profiles at the torch's exit plane show relatively negligible differences for various arc currents and gas flow rates due to the cathode spot being close to the torch exit. Based on these features, we expect the hollow electrode plasma torch with a reversed polarity discharge to be a promising tool for treating radioactive wastes in a single step, both as a non-transferred-type plasma incinerator for combustibles and as a transferred-type arc-melter for non-combustibles.

  5. A New Spectropolarimeter to Study the Polarization of Earth's Auroral Emission Lines

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Lilensten, J.; Johnsen, M. G.

    2015-12-01

    In the last few years, a lot of efforts were made in order to measure and model the polarization of the auroral red line emission (λ 630nm). This polarization arises due to impact of thermospheric oxygen atoms with precipitating electrons collimated along the geomagnetic field but is diluted by many competing production mechanisms that do not produce polarization, and other loss mechanisms as well. Observations show that the red line emission is polarized at a level of a few percent. In order to continue investigating this field, we are building a spectropolarimeter able to measure the polarization of the full auroral spectrum between 400 and 700 nm. In particular the blue emission band due to N2+ 1NG (λ 428nm) is a very interesting candidate for polarization as it is produced by impact with precipitating electrons only. A test campaign with a first version of the spectropolarimeter was carried out in Skibotn, Norway, in December 2014 aiming at validating the experimental concept and estimating the integration times needed to obtain adequate S/N ratios. In the coming months, we will work on improving the design and make some twilight sky observations in Brussels as a calibration test. This presentation will review the principle of the instrument, the observations carried out in Skibotn as well as the recent work and tests made on the instrument.

  6. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  7. Multiple Collision and Subduction Structure of the Izu-Bonin Arc: Tectonics of the Arc-arc Collision in Central Japan

    NASA Astrophysics Data System (ADS)

    Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.

    2011-12-01

    The Izu collision zone in central Japan provides a great research field for studying crustal evolution of island arcs associated with collision and subduction processes. Since the middle Miocene, an intraoceanic volcanic arc named the Izu-Bonin arc has been colliding from south with the Honshu arc along with the subduction of the Philippine Sea plate. Intensive geological studies in the last few decades revealed that several crustal blocks derived from the Izu-Bonin arc, such as Koma Mountains, Misaka Mountains, Tanzawa Mountains and Izu Peninsula, were accreted onto the Honshu arc in the course of the multiple collision (e.g. Amano, 1991). In order to understand the whole crustal structure dominated by the active arc-arc collision, we carried out several seismic experiments using controlled sources (Sato et al., 2005, 2006; Arai et al., 2009). Structural models obtained by reflection and refraction/wide-angle reflection analyses show extremely complex collision styles characterized by obduction in the northernmost part (Misaka) and crustal stacking in the middle part (Tanzawa). Delamination structure is recognized at a mid-crustal level for these two blocks. On the other hand, a subduction style is dominant in the southern part (Izu). These differences may be attributed to the along-arc structural variation of the Izu-Bonin arc (Kodaira et al., 2007). It is also indicated that some portions of the Izu-Bonin middle crust were accreted at the bottom of the Honshu crust. Consideration of mass balance, however, suggests that the most Izu-Bonin crust has been subducting deep into the mantle without being accreted. So we can say that the dynamic process of this intraoceanic volcanic arc is essentially controlled by subduction rather than collision/accretion. A northwestward dipping reflector was found at depths of 25-35 km beneath the accreted crustal blocks of Misaka and Tanzawa, which is interpreted to be the upper surface of the subducting lower crust of the Izu

  8. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  9. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Paterson, Scott; Saleeby, Jason; Zalunardo, Sean

    2016-03-01

    Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2-13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in "escape channels" in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.

  10. In-Beam Studies of High-Spin States in Mercury -184 and MERCURY-193 and Polarization Studies

    NASA Astrophysics Data System (ADS)

    Deng, Jingkang

    The high-spin states in ^{184 }Hg and ^{193}Hg were studied by using the reactions ^{156 }Gd(^{32}S, 4n)^{184}Hg, in the spin spectrometer and ^{150}Nd( ^{48}Ca, 5n)^ {193}Hg, in the gamma -ray spectrometer, respectively, with the beams provided by the 25 MV tandem accelerator at the Holifield Heavy Ion Research Facility. Seven new rotational bands were observed for the first time in ^{184}Hg based on gamma-gamma coincidences with the use of a multiplicity filter. Spin assignments were based on the measured directional correlations for oriented nuclei (DCO ratios). The well-deformed prolate band was tentatively extended to 26^+ state. One new band in ^{184} Hg has a moment of inertia very similar to that of the s-band in ^{186}Hg which is assigned a (651, 1/2) otimes (770, 1/2) neutron configuration. However, it starts with a spin state of 5hbar, while the s-band in the ^{186}Hg starts with a I^pi = 11 ^- state. Some other bands were found in ^{184}Hg which are similar to ones in ^{186}Hg. However a pair of signature partner bands without signature splitting not seen in ^{186}Hg is observed. It shows the same alignment pattern below the band crossing with the bands in ^{182 }Pt and ^{180}Os lying in the N = 104 chain which consist of a nu(i_{13/2}h_{9/2} ) or nu(i_{13/2}f _{7/2}) configuration. A decay sequence above the 47/2, 5.4 MeV level in ^{193}Hg was established through discrete gamma-ray spectroscopy. This sequence was shown to feed several previously known levels in ^{193}Hg. The new energy levels exhibit non-collective single-particle character implying the dominant role of particle alignment mode at the moderate spin. This is in contrast to the collective bands observed in nearby lead isotope. The polarization detection efficiency of a symmetrical four Ge detector Compton polarimeter with the four detectors housed in one cryostat was measured by using the UNISOR low temperature nuclear orientation facility at HHIRF. It was shown that this Compton

  11. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    SciTech Connect

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. )

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  12. Monte Carlo study of the transition region in the polar wind: An improved collision model

    NASA Astrophysics Data System (ADS)

    Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.

    1993-10-01

    A Monte Carlo simulation was used to study the steady state flow of the polar wind protons through a background of O+ ions. The simulation region included a collision-dominated region (barosphere), a collisionless region (exosphere), and the transition layer embedded between these two regions. Special attention was given to using an accurate collision model, i.e., the Fokker-Planck expression was used to represent H+-O+ collisions. The model also included the effects of gravity, the polarization electric field, and the divergence of the geomagnetic field. For each simulation, 105 particles were monitored, and the collected data were used to calculate the H+ velocity distribution function fH+, density, drift velocity, parallel and perpendicular temperatures, and heat fluxes for parallel and perpendicular energies at different altitudes. The transition region plays a pivotal role in the behavior of the H+ flow. First, the shape of the distribution function is very close to a slowly drifting Maxwellian in the barosphere, while a ``kidney bean'' shape prevails in the exosphere. In the transition region, the shape of fH+ changes in a complicated and rapid manner from Maxwellian to kidney bean. Second, the flow changes from subsonic (in the barosphere) to supersonic (in the exosphere) within the transition region. Third, the H+ parallel and perpendicular temperatures increase with altitude in the barosphere due to frictional heating, while they decrease with altitude in the exosphere due to adiabatic cooling. Both temperatures reach their maximum values in the transition region. Fourth, the heat fluxes of the parallel and perpendicular energies are positive and increase with altitude in the barosphere, and they change rapidly from their maximum (positive) values to their minimum (negative) values within the transition region. The results of this simulation were compared with those found in previous work in which a simple (Maxwell-molecule) collision model was adopted. It

  13. Numerical simulation study of polar lows in Russian Arctic: dynamical characteristics

    NASA Astrophysics Data System (ADS)

    Verezemskaya, Polina; Baranyuk, Anastasia; Stepanenko, Victor

    2015-04-01

    Polar Lows (hereafter PL) are intensive mesoscale cyclones, appearing above the sea surface, usually behind the arctic front and characterized by severe weather conditions [1]. All in consequence of the global warming PLs started to emerge in the arctic water area as well - in summer and autumn. The research goal is to examine PLs by considering multisensory data and the resulting numerical mesoscale model. The main purpose was to realize which conditions induce PL development in such thermodynamically unusual season and region as Kara sea. In order to conduct the analysis we used visible and infrared images from MODIS (Aqua). Atmospheric water vapor V, cloud liquid water Q content and surface wind fields W were resampled by examining AMSR-E microwave radiometer data (Aqua)[2], the last one was additionally extracted from QuickSCAT scatterometer. We have selected some PL cases in Kara sea, appeared in autumn of 2007-2008. Life span of the PL was between 24 to 36 hours. Vortexes' characteristics were: W from 15m/s, Q and V values: 0.08-0.11 kg/m2 and 8-15 kg/m2 relatively. Numerical experiments were carried out with Weather Research and Forecasting model (WRF), which was installed on supercomputer "Lomonosov" of Research Computing Center of Moscow State University [3]. As initial conditions was used reanalysis data ERA-Interim from European Centre for Medium-Range Weather Forecasts. Numerical experiments were made with 5 km spatial resolution, with Goddard center microphysical parameterization and explicit convection simulation. Modeling fields were compared with satellite observations and shown good accordance. Than dynamic characteristics were analyzed: evolution of potential and absolute vorticity [4], surface heat and momentum fluxes, and CAPE and WISHE mechanisms realization. 1. Polar lows, J. Turner, E.A. Rasmussen, 612, Cambridge University press, Cambridge, 2003. 2. Zabolotskikh, E. V., Mitnik, L. M., & Chapron, B. (2013). New approach for severe marine

  14. The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study

    NASA Astrophysics Data System (ADS)

    Bellatreccia, Fabio; della Ventura, Giancarlo; Ottolini, Luisa; Libowitzky, Eugen; Beran, Anton

    2005-05-01

    A well-characterized suite of vesuvianite samples from the volcanic ejecta (skarn or syenites) from Latium (Italy) was studied by single-crystal, polarized radiation, Fourier-transform infrared (FTIR) spectroscopy and secondary-ion mass-spectrometry (SIMS). OH-stretching FTIR spectra consist of a rather well-defined triplet of broad bands at higher-frequency (3,700 3,300 cm-1) and a very broad composite absorption below 3,300 cm-1. Measurements with E//c or E⊥c show that all bands are strongly polarized with maximum absorption for E//c. They are in agreement with previous band assignments (Groat et al. Can Mineral 33:609, 1995) to the two O(11) H(1) and O(10) H(2) groups in the structure. Pleochroic measurements with changing direction of the E vector of the incident radiation show that the orientation of the O(11) H(1) dipole is OH∧c~35°, in excellent agreement with the neutron data of Lager et al. (Can Mineral 37:763, 1999). A SIMS-based calibration curve at ~10% rel. accuracy has been worked out and used as reference for the quantitative analysis of H2O in vesuvianite by FTIR. Based on previous SIMS results for silicate minerals (Ottolini and Hawthorne in J Anal At Spectrom 16:1266, 2001; Ottolini et al. in Am Mineral 87:1477, 2002) the SiO2 and FeO content of the matrix were assumed as the major factors to be considered at a first approximation in the selection of the standards for H. The lack of vesuvianite standards for quantitative SIMS analysis of H2O has been here overcome by selecting low-silica elbaite crystals (Ottolini et al. in Am Mineral 87:1477, 2002). The resulting integrated molar absorption FTIR coefficient for vesuvianite is ɛi=100.000±2.000 l mol-1 cm-2. SIMS data for Li, B, F, Sr, Y, Be, Ba REE, U and Th are also provided in the paper.

  15. PETROLEUM RESIDUA SOLUBILITY PARAMETER/POLARITY MAP: STABILITY STUDIES OF RESIDUA PYROLYSIS

    SciTech Connect

    John F. Schabron; A. Troy Pauli; Joseph F. Rovani, Jr.

    1999-04-30

    A new molecular weight/polarity map based on the Scatchard-Hildebrand solubility equation has been developed for petroleum residua. A series of extractions are performed with solvents of increasing solubility parameter, and the fractions are analyzed by vapor pressure osmometry for number average molecular weight and by analytical-scale size exclusion chromatography for molecular weight spread. Work was performed for a heavy oil material subjected to three increasing severities of thermal treatment prior to and through the onset of coke formation. The results are diagnostic of the layers of solvations by resin-type molecules around a central asphaltene core. Two additional stability diagnostic methods were also used. These were the Heithaus titration ''P-index'' and Gaestel ''G'' index, which have been applied to paving asphalts for decades. The Heithaus titration involves the titration of three toluene solutions of a residuum at three concentrations with a poor solvent, such as isooctane, to the point of asphaltene flocculation. In the present work, the significance of the data are developed in terms of the Hildebrand solubility parameter. The Heithaus results are combined with data from the new molecular weight/polarity map. The solubility parameters for the toluene-soluble asphaltene components are measured, and the solubility parameters of the maltenes can be calculated. As thermal treatment progresses, the solubility parameters of asphaltene materials increase and the molecular weights decrease. A new coking index is proposed based on Heithaus titration data. Preliminary results suggest that an alternative, simpler coking index may be developed by measuring the weight percent of cyclohexane solubles in heptane asphaltenes. Coking onset appears to coincide with the depletion of these resin-type asphaltene solubilizing components of residua. The objective of the present study was to develop a mapping tool that will enhance understanding of the changes that occur

  16. Solid state NMR studies of photoinduced polarization in photosynthetic reaction centers: mechanism and simulations.

    PubMed

    McDermott, A; Zysmilich, M G; Polenova, T

    1998-03-01

    We simulate Photo-Chemically Induced Dynamic Nuclear Polarization in the 15N-solid-state NMR of 15N-labeled photosynthetic reaction centers using a Radical Pair Mechanism (RPM). According to the experimental data, the directly polarized nuclei include all eight nitrogens in the ground state of the bacteriochlorophyll special pair (P), and N-II in the bacteriopheophytin acceptor (H) [M.G. Zysmilich, A.E. McDermott, J. Am. Chem. Soc., 116 (1994) 8362-8363.] [M.G. Zysmilich, A. McDermott, J. Am. Chem. Soc., 118 (1996) 5867-5873.] [M.G. Zysmilich, A. McDermott, Proc. Natl. Acad. Sci. U.S.A., 93 (1996) 6857-6860.]; other signals are polarized in nonspecifically labeled samples, but the polarization apparently results from magnetization exchange with neighboring polarized nitrogens, and these are not treated in this work. Two quantitative models for the polarization associated with the RPM are presented and are used to test the validity of the proposal that this mechanism is cooperative in the reaction centers. The kinetic models can treat the steady state polarizations as well as the approach to steady state, and in principle could be expanded to include anisotropic effects, or pulse-probe experiments. Several features of the detailed simulations of the steady-state amplitudes and the kinetics of the approach to steady-state are compared with our data, including the signs and approximate absolute magnitudes of the polarization on the nitrogen nuclei in P and H(L), and the changes in the relative amplitudes with the change in the lifetime of the molecular triplet, photoaccumulation time, nuclear relaxation rate and illumination intensity. The simulations demonstrate that the polarization intensities are in qualitative agreement with those predicted for the RPM, including the curious observation of strong polariza-tion on the pheophytin acceptor for certain experimental conditions. However, this agreement requires efficient relaxation of the nitrogens on H(L) by 3P, due

  17. The Geometry of HD 165763: A Polarization Study of a WC Star

    NASA Astrophysics Data System (ADS)

    Kurosawa, R.; Hillier, D. J.; Schulte-Ladbeck, R. E.

    1999-07-01

    We have obtained spectropolarimetric data of HD 165763 (WR 111, WC 5) with a spectral resolution of 1.24 Å, covering the wavelength range from 4950 to 6200 Å. The continuum is polarized at a level of 0.39% at 5805 Å, but there is no polarization variation across the emission lines. The latter indicates that most of the polarization arises from the interstellar medium. It further suggests that any global deviation of the atmosphere from spherical symmetry, if it exists, is small. Radiative transfer calculations of axisymmetric stellar wind models are used to predict polarization changes across the very strong C IV (lambda5805) emission line. We fitted the observational data with the models by using the continuum polarization as a constraint and by treating the interstellar polarization as a free parameter instead of using unreliable values of interstellar polarization estimated from analysis of field stars. The results from the chi^2 testing of the model suggest that the global deviation from spherical symmetry of this object is no larger than 20%, and it is probably less than 10%. In our formulation, the ratio of the equatorial density and the polar density (rho_eq/rho_pole) corresponding to the 20% upper limit is about 1.25. A similar conclusion is obtained from comparison of ``continuum-minus-line'' polarization of the observations with that of our models. None of the single WC stars (except for WR 103) with spectropolarimetric data show a variation in polarization across emission lines. Therefore, global deviations from spherical symmetry of WC stars are expected to be small in general. The relatively low value of the upper limit for WR 111 indicates that mass-loss enhancement due to rotation is unlikely to explain the difference between the observed and the predicted WC mass-loss rates. It also suggests that a significant amount of angular momentum is removed by mass loss during the pre-WC star stage of stellar evolution. A low value for the upper limit of

  18. On the distribution and bonding environment of Zn and Fe in glasses containing electric arc furnace dust: a mu-XAFS and mu-XRF study.

    PubMed

    Pinakidou, F; Katsikini, M; Paloura, E C; Kavouras, P; Kehagias, Th; Komninou, Ph; Karakostas, Th; Erko, A

    2007-04-01

    We apply synchrotron radiation assisted X-ray fluorescence (SR-XRF), SR-XRF mapping as well as micro- and conventional X-ray absorption fine structure (mu-XAFS and XAFS) spectroscopies in order to study the bonding environment of Fe and Zn in vitrified samples that contain electric arc furnace dust from metal processing industries. The samples are studied in the as-cast state as well as after annealing at 900 degrees C. The SR-XRF results demonstrate that annealing does not induce any significant changes in the distribution of either Fe or Zn, in both the as-cast and annealed glasses. The mu-XAFS spectra recorded at the Fe-K and Zn-K edges reveal that the structural role of both Fe and Zn remains unaffected by the annealing procedure. More specifically, Fe forms both FeO(6) and FeO(4) polyhedra, i.e. acts as an intermediate oxide while Zn occupies tetrahedral sites.

  19. Electric-arc steam plasma generator

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  20. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.