The structural and Raman spectral studies on Ni0.5Cu0.5Fe2O4 ferrite
NASA Astrophysics Data System (ADS)
Somani, M.; Saleem, M.
2018-05-01
Spinel ferrite Ni0.5Cu0.5Fe2O4 has been successfully prepared via solid state reaction. The crystal structure studies using XRD technique revealed cubic structure of the sample. The XRD spectra was further refined via Retvield Refinement and all the parameters regarding structure were obtained which confirmed cubic structure. The assigned space group was found to be Fd-3m. Particle size was calculated to be 56 nm. The Raman Spectra revealed five active Raman modes which confirmed spinel structure.
Fahrutdinova, Liliya Raifovna; Nugmanova, Dzhamilia Renatovna
2015-01-01
Dynamics of experience as such and its corporeal, emotional and cognitive elements in the situation of psychological consulting provisioning is covered. The aim of research was to study psychological crisis experience dynamics in the situation when psychological consulting by gestalt therapy methods is provided. Theoretical analysis of the problem of crisis situations, phenomenon and structural, and dynamic organization of experience of the subject of consulting have been carried out. To fulfill research project test subjects experience crisis situation have been selected, studied in the situation when they provided psychological consulting by methods of gestalt therapy, and methodology of study of crisis situations experience has been prepared. Specifics of psychological crisis experience have been revealed and its elements in different stages of psychological consulting by gestalt therapy methods. Dynamics of experience of psychological crisis and its structural elements have been revealed and reliable changes in it have been revealed. Dynamics of psychological crisis experience and its structural elements have been revealed and reliable changes in it have been revealed. "Desiccation" of experience is being observed, releasing its substantiality of negative impression to the end of consulting and development of the new experience of control over crisis situation. Interrelations of structural elements of experience in the process of psychological consulting have been shown. Effecting one structure causes reliable changes in all others structural elements of experience. Giving actual psychological help to clients in crisis situation by methods of gestalt therapy is possible as it was shown in psychological consulting sessions. Structure of client's request has been revealed - problems of personal sense are fixed as the most frequent cause of clients' applications, as well as absence of choices, obtrusiveness of negative thoughts, tend to getting stuck on events took place in the past, drawing into oneself, etc.
ERIC Educational Resources Information Center
Yildirir, Hasene Esra; Demirkol, Hatice
2018-01-01
The current study aimed at examining the utility of a word association test in revealing students' cognitive structure in a specific chemistry topic through a word association test. The participants were 153 6th graders in a western Turkish city. The results revealed that the word association test serves a useful purpose in exploring the students'…
CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins
Ekambaram, Rajasekaran; Kannaiyan, Akila; Marimuthu, Vijayasarathy; Swaminathan, Vinobha Chinnaiah; Renganathan, Senthil; Perumal, Ananda Gopu
2014-01-01
Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function. PMID:24748753
Discrimination of tonal and atonal music in congenital amusia: The advantage of implicit tasks.
Tillmann, Barbara; Lalitte, Philippe; Albouy, Philippe; Caclin, Anne; Bigand, Emmanuel
2016-05-01
Congenital amusia is a neurodevelopmental disorder of music perception and production, which has been attributed to a major deficit in pitch processing. While most studies and diagnosis tests have used explicit investigation methods, recent studies using implicit investigation approaches have revealed some unimpaired pitch structure processing in congenital amusia. The present study investigated amusic individuals' processing of tonal structures (e.g., musical structures respecting the Western tonal system) via three different questions. Amusic participants and their matched controls judged tonal versions (original musical excerpts) and atonal versions (with manipulated pitch content to remove tonal structures) of 12 musical pieces. For each piece, participants answered three questions that required judgments from different perspectives: an explicit structural one, a personal, emotional one and a more social one (judging the perception of others). Results revealed that amusic individuals' judgments differed between tonal and atonal versions. However, the question type influenced the extent of the revealed structure processing: while amusic individuals were impaired for the question requiring explicit structural judgments, they performed as well as their matched controls for the two other questions. Together with other recent studies, these findings suggest that congenital amusia might be related to a disorder of the conscious access to music processing rather than music processing per se. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regnerus, Mark
2017-09-01
The study of stigma's influence on health has surged in recent years. Hatzenbuehler et al.'s (2014) study of structural stigma's effect on mortality revealed an average of 12 years' shorter life expectancy for sexual minorities who resided in communities thought to exhibit high levels of anti-gay prejudice, using data from the 1988-2002 administrations of the US General Social Survey linked to mortality outcome data in the 2008 National Death Index. In the original study, the key predictor variable (structural stigma) led to results suggesting the profound negative influence of structural stigma on the mortality of sexual minorities. Attempts to replicate the study, in order to explore alternative hypotheses, repeatedly failed to generate the original study's key finding on structural stigma. Efforts to discern the source of the disparity in results revealed complications in the multiple imputation process for missing values of the components of structural stigma. This prompted efforts at replication using 10 different imputation approaches. Efforts to replicate Hatzenbuehler et al.'s (2014) key finding on structural stigma's notable influence on the premature mortality of sexual minorities, including a more refined imputation strategy than described in the original study, failed. No data imputation approach yielded parameters that supported the original study's conclusions. Alternative hypotheses, which originally motivated the present study, revealed little new information. Ten different approaches to multiple imputation of missing data yielded none in which the effect of structural stigma on the mortality of sexual minorities was statistically significant. Minimally, the original study's structural stigma variable (and hence its key result) is so sensitive to subjective measurement decisions as to be rendered unreliable. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Global structure of forked DNA in solution revealed by high-resolution single-molecule FRET.
Sabir, Tara; Schröder, Gunnar F; Toulmin, Anita; McGlynn, Peter; Magennis, Steven W
2011-02-09
Branched DNA structures play critical roles in DNA replication, repair, and recombination in addition to being key building blocks for DNA nanotechnology. Here we combine single-molecule multiparameter fluorescence detection and molecular dynamics simulations to give a general approach to global structure determination of branched DNA in solution. We reveal an open, planar structure of a forked DNA molecule with three duplex arms and demonstrate an ion-induced conformational change. This structure will serve as a benchmark for DNA-protein interaction studies.
Effect of titanium on the structural and optical property of NiO nano powders
NASA Astrophysics Data System (ADS)
Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya
2018-05-01
Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.
Wong, Edmond; Vaaje-Kolstad, Gustav; Ghosh, Avishek; Hurtado-Guerrero, Ramon; Konarev, Peter V.; Ibrahim, Adel F. M.; Svergun, Dmitri I.; Eijsink, Vincent G. H.; Chatterjee, Nabendu S.; van Aalten, Daan M. F.
2012-01-01
Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons. PMID:22253590
NASA Astrophysics Data System (ADS)
Xu, Ningning; Liu, Jianxin; Yu, Peiqiang
2018-04-01
Advanced vibrational molecular spectroscopy has been developed as a rapid and non-destructive tool to reveal intrinsic molecular structure conformation of biological tissues. However, this technique has not been used to systematically study flaking induced structure changes at a molecular level. The objective of this study was to use vibrational molecular spectroscopy to reveal association between steam flaking induced CHO molecular structural changes in relation to grain CHO fractionation, predicted CHO biodegradation and biodigestion in ruminant system. The Attenuate Total Reflectance Fourier-transform Vibrational Molecular Spectroscopy (ATR-Ft/VMS) at SRP Key Lab of Molecular Structure and Molecular Nutrition, Ministry of Agriculture Strategic Research Chair Program (SRP, University of Saskatchewan) was applied in this study. The fractionation, predicted biodegradation and biodigestion were evaluated using the Cornell Net Carbohydrate Protein System. The results show that: (1) The steam flaking induced significant changes in CHO subfractions, CHO biodegradation and biodigestion in ruminant system. There were significant differences between non-processed (raw) and steam flaked grain corn (P < .01); (2) The ATR-Ft/VMS molecular technique was able to detect the processing induced CHO molecular structure changes; (3) Induced CHO molecular structure spectral features are significantly correlated (P < .05) to CHO subfractions, CHO biodegradation and biodigestion and could be applied to potentially predict CHO biodegradation (R2 = 0.87, RSD = 0.74, P < .01) and intestinal digestible undegraded CHO (R2 = 0.87, RSD = 0.24, P < .01). In summary, the processing induced molecular CHO structure changes in grain corn could be revealed by the ATR-Ft/VMS vibrational molecular spectroscopy. These molecular structure changes in grain were potentially associated with CHO biodegradation and biodigestion.
Eye Movements Reveal the Influence of Event Structure on Reading Behavior
ERIC Educational Resources Information Center
Swets, Benjamin; Kurby, Christopher A.
2016-01-01
When we read narrative texts such as novels and newspaper articles, we segment information presented in such texts into discrete events, with distinct boundaries between those events. But do our eyes reflect this event structure while reading? This study examines whether eye movements during the reading of discourse reveal how readers respond…
Cosco, Theodore D; Doyle, Frank; Watson, Roger; Ward, Mark; McGee, Hannah
2012-01-01
The Hospital Anxiety and Depression Scale (HADS) is a prolifically used scale of anxiety and depression. The original bidimensional anxiety-depression latent structure of the HADS has come under significant scrutiny, with previous studies revealing one-, two-, three- and four-dimensional structures. The current study examines the latent structure of the HADS using a non-parametric item response theory method. Using data conglomerated from four independent studies of cardiovascular disease employing the HADS (n=893), Mokken scaling procedure was conducted to assess the latent structure of the HADS. A single scale consisting of 12 of 14 HADS items was revealed, indicating a unidimensional latent HADS structure. The HADS was initially intended to measure mutually exclusive levels of anxiety and depression; however, the current study indicates that a single dimension of general psychological distress is captured. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet
2016-05-06
Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46more » to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less
Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd
2017-09-25
Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-09-02
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Controlling the intermediate structure of an ionic liquid for f-block element separations
Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...
2017-04-19
Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less
Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite
NASA Astrophysics Data System (ADS)
Kumar, Ashwini; Shen, Jingdong; Zhao, Huihui; Zhengjian, Qi; Li, Qi
2018-05-01
In this article, we present the structural and magnetic studies of pristine SmFeO3 nanocrystalline ceramic samples as sintered at temperature 850 °C and 1000 °C. X-ray powder diffraction data confirm the existence of single-phase nature with orthorhombic (Pbnm) structure of the samples. The SEM image reveals spherical particles with a size range of 60-130 nm for SFO-850 and SFO-1000 samples. X-ray absorption spectroscopy studies on Fe L3,2 and O K-edges of SmFeO3 sample revealed the homo-valence state of Fe in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and antiferromagnetic (canted spin structure) sub-lattices, which results strong magnetic anisotropy in the system.
Wei, Dengguo; Parkinson, Gary N; Reszka, Anthony P; Neidle, Stephen
2012-05-01
We report here the 1.62 Å crystal structure of an intramolecular quadruplex DNA formed from a sequence in the promoter region of the c-kit gene. This is the first reported crystal structure of a promoter quadruplex and the first observation of localized magnesium ions in a quadruplex structure. The structure reveals that potassium and magnesium ions have an unexpected yet significant structural role in stabilizing particular quadruplex loops and grooves that is distinct from but in addition to the role of potassium ions in the ion channel at the centre of all quadruplex structures. The analysis also shows how ions cluster together with structured water molecules to stabilize the quadruplex arrangement. This particular quadruplex has been previously studied by NMR methods, and the present X-ray structure is in accord with the earlier topology assignment. However, as well as the observations of potassium and magnesium ions, the crystal structure has revealed a highly significant difference in the dimensions of the large cleft in the structure, which is a plausible target for small molecules. This difference can be understood by the stabilizing role of structured water networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prates, Luciana Louzada; Yu, Peiqiang
Avena sativa oat is a cereal widely used as human food and livestock feed. However, the low metabolized energy and the rapid rumen degradations of protein and starch have limited the use of A. sativa oat grains. To overcome this disadvantage, new A. sativa oat varieties have been developed. Additionally, heat-related processing has been performed to decrease the degradation rate and improve the absorption of amino acids in the small intestine. The nutritive value is reflected by both chemical composition and inherent molecular structure conformation. However, the traditional wet chemical analysis is not able to detect the inherent molecular structuresmore » within an intact tissue. The advanced synchrotron-radiation and globar-based molecular microspectroscopy have been developed recently and applied to study internal molecular structures and the processing induced structure changes in A. sativa oats and reveal how molecular structure changes in relation to nutrient availability. This review aimed to obtain the recent information regarding physiochemical properties, molecular structures, metabolic characteristics of protein, and the heat-induced changes in new A. sativa oat varieties. The use of the advanced vibrational molecular spectroscopy was emphasized, synchrotron- and globar-based (micro)spectroscopy, to reveal the inherent structure of A. sativa oats at cellular and molecular levels and to reveal the heat processing effect on the degradation characteristics and the protein molecular structure in A. sativa oats. The relationship between nutrient availability and protein molecular inherent structure was also presented. Information described in this review gives better insight in the physiochemical properties, molecular structure, and the heat-induced changes in A. sativa oat detected with advanced molecular spectroscopic techniques in combinination with conventional nutrition study techniques.« less
NASA Astrophysics Data System (ADS)
Espinosa Duran, John Michael
The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising applications in drug delivery and has been extensively studied experimentally. Sub-microsecond multiscale simulations at 310 K on the vault revealed the opening and closing of fractures near the shoulder while preserving the overall structure. This fracture mechanism could explain the uptake and release of small drugs while maintaining the overall structure. Higher temperature simulations show the generation of large fractures near the waist, which enables interaction of the external medium with the inner vault residues. Simulation results agreed with microscopy and spectroscopy measurements, and revealed new structures and mechanisms.
Structural and optical properties of ZnO nanorods synthesized via template free approach
NASA Astrophysics Data System (ADS)
Kajal, Priyanka; D, Pooja; Jaggi, Neena
2016-06-01
In this paper, we report a novel method for synthesis of semiconducting ZnO nanorods using Zinc acetate dehydrate precursor in a methanol—de-ionized (1:5) mixture via template free approach. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images of as synthesized nanorods revealed hexagonal symmetry of rods, whereas x-ray diffraction (XRD) analysis for structure and phase has shown high crystallinity with wurtzite crystal structure. The structural characterization by FT-IR analysis revealed presence of various groups on as synthesized ZnO nanorods, whereas the UV-Vis analysis has shown a blue shift in the absorption spectra as compared to bulk ZnO due to quantum confinement of charge carriers. Photoluminescence (PL) spectroscopy study has also been performed revealing a good degree of phosphorescence in the ZnO nanorods. Further, thermo gravimetric analysis (TGA) revealed that as synthesized nanorods by present method are highly stable at high temperature (1000 °C). This study provides an alternative, less expensive and a very simple method for the fabrication of ZnO nanorods in abundance, which can be further used for various sensing applications, in particular, gas sensing.
Ero, Rya; Kumar, Veerendra; Chen, Yun; Gao, Yong-Gui
2016-12-01
EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.
Functional Properties at Domain Walls in BiFeO3: Electrical, Magnetic, and Structural investigations
NASA Astrophysics Data System (ADS)
He, Qing; Yang, C.-H.; Yu, P.; Gajek, M.; Seidel, J.; Ramesh, R.; Wang, F.; Chu, Y.-H.; Martin, L. W.; Spaldin, N.; Rother, A.
2009-03-01
BiFeO3 (BFO) is a widely studied robust ferroelectric, antiferromagnetic multiferroic. Conducting-atomic force microscopy studies reveal the presence of enhanced conductivity at certain types of domain walls in BFO. We have completed detailed TEM studies of the physical structure at these domain walls as well as in-depth DFT calculations of the evolution of electronic structure at these domain walls. These studies reveal two major contributions to the observed conduction: the formation of an electrostatic potential at the domain walls as well as a structurally-driven change in the electronic structure (i.e., a lower band gap locally) at the domain walls. We will discuss the use of optical characterization techniques as a way of probing this change in electronic structure at domain walls as well as detailed IV characterization both in atmospheric and UHV environments. Finally, the evolution of magnetism at these domain walls has been studied through the use of photoemission measurements. Initial findings point to a significant change in the magnetic order at these domain walls in BFO.
Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics
NASA Astrophysics Data System (ADS)
Jheng, Yu-Sheng; Lee, Yeeu-Chang
2016-10-01
Biomimicry refers to the imitation of mechanisms and features found in living creatures using artificial methods. This study used optical lithography, colloidal lithography, and dry etching to mimic the micro/nano hierarchical structures covering the soles of gecko feet. We measured the static contact angle and contact angle hysteresis to reveal the behavior of liquid drops on the hierarchical structures. Pulling tests were also performed to measure the resistance of movement between the hierarchical structures and a testing plate. Our results reveal that hierarchical structures at the micro-/nano-scale are considerably hydrophobic, they provide good flow characteristics, and they generate more contact force than do surfaces with micro-scale cylindrical structures.
Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO
NASA Astrophysics Data System (ADS)
Pantzas, K.; Rogers, D. J.; Bove, P.; Sandana, V. E.; Teherani, F. H.; El Gmili, Y.; Molinari, M.; Patriarche, G.; Largeau, L.; Mauguin, O.; Suresh, S.; Voss, P. L.; Razeghi, M.; Ougazzaden, A.
2016-02-01
p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5 at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscoy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process.
Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju
2016-01-01
Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management. PMID:27782155
Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju
2016-10-26
Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management.
Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures
NASA Astrophysics Data System (ADS)
Vij, Ankush; Kumar, Ravi
2016-05-01
We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.
Structural properties of prokaryotic promoter regions correlate with functional features.
Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris
2014-01-01
The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.
Governance Structures for Open Innovation: A Preliminary Framework
NASA Astrophysics Data System (ADS)
Feller, Joseph; Finnegan, Patrick; Hayes, Jeremy; O'Reilly, Philip
This research-in-progress paper presents a preliminary framework of four open innovation governance structures. The study seeks to describe four distinct ways in which firms utilize hierarchical relationships, organizational intermediaries, and the market system to supply and acquire intellectual property and/or innovation capabilities from sources external to the firm. This paper reports on phase one of the study, which involved an analysis of six open innovation exemplars based on public data. This phase of the study reveals that governance structures for open innovation can be categorized based on whether they (1) are mediated or direct or (2) seek to acquire intellectual property or innovation capability. We analyze the differences in four governance structures along seven dimensions, and reveal the importance of knowledge dispersion and uncertainty to the use of open innovation hierarchies, brokerages, and markets. The paper concludes by examining the implications of the findings and outlining the next phase of the study.
Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post,J.; Bish, D.; Heaney, P.
2007-01-01
Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less
Teacher argumentation in the secondary science classroom: Images of two modes of scientific inquiry
NASA Astrophysics Data System (ADS)
Gray, Ron E.
The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally and historically based topics? In addition, what factors mediate these differences? Four highly experienced high school science teachers were observed daily during instructional units for both experimental and historical science topics. Data sources include classroom observations, field notes, reflective memos, classroom artifacts, a nature of science survey, and teacher interviews. The arguments were analyzed for structure and content using Toulmin's argumentation pattern and Walton's schemes for presumptive reasoning revealing specific patterns of use between the two modes of inquiry. Interview data was analyzed to determine possible factors mediating these patterns. The results of this study reveal that highly experienced teachers present arguments to their students that, while simple in structure, reveal authentic images of science based on experimental and historical modes of inquiry. Structural analysis of the data revealed a common trend toward a greater amount of scientific data used to evidence knowledge claims in the historical science units. The presumptive reasoning analysis revealed that, while some presumptive reasoning schemes remained stable across the two units (e.g. 'causal inferences' and 'sign' schemes), others revealed different patterns of use including the 'analogy', 'evidence to hypothesis', 'example', and 'expert opinion' schemes. Finally, examination of the interview and survey data revealed five specific factors mediating the arguments constructed by the teachers: view of the nature of science, nature of the topic, teacher personal factors, view of students, and pedagogical decisions. These factors influenced both the structure and use of presumptive reasoning in the arguments. The results have implications for classroom practice, teacher education, and further research.
Pressure-induced structural transformations of the Zintl phase sodium silicide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabrera, Raul Quesada; Salamat, Ashkan; Barkalov, Oleg I.
The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. - Abstract: The high-pressuremore » behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. Display Omitted« less
School Administrator Grapevine Structure.
ERIC Educational Resources Information Center
Licata, Joseph W.; Hack, Walter G.
1980-01-01
A study reveals that principals' grapevine structure shows both "guild-like" and "clan-like" grouping and reflects the patterns of occupational socialization of school principals and informal boundary spanning processes. (Author/JM)
Localization of wood floor structure by infrared thermography
NASA Astrophysics Data System (ADS)
Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.
2008-03-01
One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.
Microscopies optique et electronique du bioxyde d'uranium fritte (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porneuf, A.
1961-07-01
Methods of preparing surfaces of UO₂ by mechanical or electrolytic polishing, and of revealing the structure by anodic or chemical attack, by bombardment or by oxidation, are described and their respective limitations are analyzed. These various techniques were applied to the study of the influence of preparation conditions on the pore distribution, on the micro-profile of the external surfaces of compacts or of the internal surface of pores, on the surface structure of intergranular boundaries revealed by microfractography, etc. The sensitivity of the various quoted techniques allows patterns to be revealed which are similar to those revealed in metals andmore » which are undoubtedly related to the interaction of dislocations« less
Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study
NASA Astrophysics Data System (ADS)
Mansuri, Amantulla; Mishra, Ashutosh
2016-10-01
In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porebski, Przemyslaw J.; Klimecka, Maria; Chruszcz, Maksymilian
2012-07-11
Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminalmore » region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS-ATP and hpDTBS-GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway.« less
Huang, Yili; Feng, Hao; Lu, Hang; Zeng, Yanhua
2017-07-01
It is believed that sphingomonads are ubiquitously distributed in environments. However detailed information about their community structure and their co-relationship with environmental parameters remain unclear. In this study, novel sphingomonads-specific primers based on the 16S rRNA gene were designed to investigate the distribution of sphingomonads in 10 different niches. Both in silico and in-practice tests on pure cultures and environmental samples showed that Sph384f/Sph701r was an efficient primer set. Illumina MiSeq sequencing revealed that community structures of sphingomonads were significantly different among the 10 samples, although 12 sphingomonad genera were present in all samples. Based on RDA analysis and Monte Carlo permutation test, sphingomonad community structure was significantly correlated with limnetic and marine habitat types. Among these niches, the genus Sphingomicrobium showed strong positive correlation with marine habitats, whereas genera Sphingobium, Novosphingobium, Sphingopyxis, and Sphingorhabdus showed strong positive correlation with limnetic habitats. Our study provided direct evidence that sphingomonads are ubiquitously distributed in environments, and revealed for the first time that their community structure can be correlated with habitats.
Determinants of cation transport selectivity: Equilibrium binding and transport kinetics
2015-01-01
The crystal structures of channels and transporters reveal the chemical nature of ion-binding sites and, thereby, constrain mechanistic models for their transport processes. However, these structures, in and of themselves, do not reveal equilibrium selectivity or transport preferences, which can be discerned only from various functional assays. In this Review, I explore the relationship between cation transport protein structures, equilibrium binding measurements, and ion transport selectivity. The primary focus is on K+-selective channels and nonselective cation channels because they have been extensively studied both functionally and structurally, but the principles discussed are relevant to other transport proteins and molecules. PMID:26078056
Structural and spectroscopic study of mechanically synthesized SnO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vij, Ankush, E-mail: vij-anx@yahoo.com; Kumar, Ravi; Presently at Beant College of Engineering and Technology, Gurdaspur-143521
2016-05-23
We report the single step synthesis of SnO{sub 2} nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO{sub 2} nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A{sub 1g} Raman mode towards lower wave number, which is correlated with the nanostructure formation.
Factor Structure and Psychometric Properties of the Injection Phobia Scale-Anxiety
ERIC Educational Resources Information Center
Olatunji, Bunmi O.; Sawchuk, Craig N.; Moretz, Melanie W.; David, Bieke; Armstrong, Thomas; Ciesielski, Bethany G.
2010-01-01
The present investigation examined the factor structure and psychometric properties of the Injection Phobia Scale-Anxiety (IPS-Anx). Principal components analysis of IPS-Anx items in Study 1 (n = 498) revealed a 2-factor structure consisting of Distal Fear and Contact Fear. However, CFA results in Study 2 (n = 567) suggest that a 1-factor…
Computational analysis of human and mouse CREB3L4 Protein
Velpula, Kiran Kumar; Rehman, Azeem Abdul; Chigurupati, Soumya; Sanam, Ramadevi; Inampudi, Krishna Kishore; Akila, Chandra Sekhar
2012-01-01
CREB3L4 is a member of the CREB/ATF transcription factor family, characterized by their regulation of gene expression through the cAMP-responsive element. Previous studies identified this protein in mice and humans. Whereas CREB3L4 in mice (referred to as Tisp40) is found in the testes and functions in spermatogenesis, human CREB3L4 is primarily detected in the prostate and has been implicated in cancer. We conducted computational analyses to compare the structural homology between murine Tisp40α human CREB3L4. Our results reveal that the primary and secondary structures of the two proteins contain high similarity. Additionally, predicted helical transmembrane structure reveals that the proteins likely have similar structure and function. This study offers preliminary findings that support the translation of mouse Tisp40α findings into human models, based on structural homology. PMID:22829733
Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C G; Benavente, Ricardo
2012-10-09
The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans.
Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo
2012-01-01
The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415
Eye Movements Reveal the Influence of Event Structure on Reading Behavior.
Swets, Benjamin; Kurby, Christopher A
2016-03-01
When we read narrative texts such as novels and newspaper articles, we segment information presented in such texts into discrete events, with distinct boundaries between those events. But do our eyes reflect this event structure while reading? This study examines whether eye movements during the reading of discourse reveal how readers respond online to event structure. Participants read narrative passages as we monitored their eye movements. Several measures revealed that event structure predicted eye movements. In two experiments, we found that both early and overall reading times were longer for event boundaries. We also found that regressive saccades were more likely to land on event boundaries, but that readers were less likely to regress out of an event boundary. Experiment 2 also demonstrated that tracking event structure carries a working memory load. Eye movements provide a rich set of online data to test the cognitive reality of event segmentation during reading. Copyright © 2015 Cognitive Science Society, Inc.
In silico local structure approach: a case study on outer membrane proteins.
Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude
2008-04-01
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.
Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T.
2014-01-01
With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity. PMID:24598752
Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T
2014-03-01
With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity.
High-pressure structural study of MnF 2
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...
2015-02-01
In this study, manganese fluoride (MnF 2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI 2 type (3 GPa)→ α–PbCl 2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF 2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phasemore » transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF 2 as a model compound to reveal the HP structural behavior of rutile-type SiO 2 (Stishovite).« less
Structure and Composition of the Bacillus anthracis Capsule
Avakyan, A. A.; Katz, L. N.; Levina, K. N.; Pavlova, I. B.
1965-01-01
Avakyan, A. A. (Academy of Medical Sciences, Moscow, USSR), L. N. Katz, K. N. Levina, and I. B. Pavlova. Structure and composition of the Bacillus anthracis capsule. J. Bacteriol. 90:1082–1095. 1965.—Observations by various methods of light microscopy (phase contrast, dark-field, and fluorescence) revealed the complex structure of the Bacillus anthracis capsule, which changes regularly during the growth cycle of the culture. Special cytological methods of staining the capsule made it possible to study its fine structure, which is not revealed by negative staining with India ink. For example, the capsule shows a membranelike outline, fine transverse lines, and interruptions and transverse septa traversing the entire capsule. By using cytochemical methods, it was found that the capsule has a stratified structure and that the various layers of the capsule differ as to the value of the isoelectric point, metachromatic ability, sensitivity to various enzymes, and, consequently, chemical composition. It was thus shown that the membranelike outline of the capsule consists of peptides and neutral mucopolysaccharides. The middle part of the capsule consists of a complex of substances of both polysaccharide and protein nature, and the inner part consists of acid mucopolysaccharides. Observation of the capsular forms of B. anthracis by means of an electron microscope revealed differences in the osmiophilia and submicroscopic structure of the membranelike outline and the middle and inner parts of the capsule. Immunochemical studies conducted by the fluorescent-antibody method revealed localization of antigens in different parts of the capsule, and made it possible to differentiate the capsular antigens according to their serum-staining ability and according of their relations to enzymes, i.e., their chemical composition. This paper concerns the possibility of studying the fine structure of bacterial capsules in fixed preparations, and the differences and similarities of the antigens of the capsule and cell wall of B. anthracis and of the related species, B. megaterium. Images PMID:4954516
A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds
USDA-ARS?s Scientific Manuscript database
The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...
Fluid transport and coherent structures of translating and flapping wings.
Eldredge, Jeff D; Chong, Kwitae
2010-03-01
The Lagrangian coherent structures (LCSs) of simple wing cross sections in various low Reynolds number motions are extracted from high-fidelity numerical simulation data and examined in detail. The entrainment process in the wake of a translating ellipse is revealed by studying the relationship between attracting structures in the wake and upstream repelling structures, with the help of blocks of tracer particles. It is shown that a series of slender lobes in the repelling LCS project upstream from the front of the ellipse and "pull" fluid into the wake. Each lobe is paired with a corresponding wake vortex, into which the constituent fluid particles are folded. Flexible and rigid foils in flapping motion are studied, and the resulting differences in coherent structures are used to elucidate their differences in force generation. The clarity with which these flow structures are revealed, compared to the vorticity or velocity fields, provides new insight into the vortex shedding mechanisms that play an important role in unsteady aerodynamics.
NASA Astrophysics Data System (ADS)
Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N. L.; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.
2017-01-01
We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni1-xCrxFe2O4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties.
Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
NASA Astrophysics Data System (ADS)
Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; Berntsen, Peter; Bielecki, Johan; Daurer, Benedikt J.; DeMirci, Hasan; Fromme, Petra; Hantke, Max Felix; Maia, Filipe R. N. C.; Munke, Anna; Nettelblad, Carl; Pande, Kanupriya; Reddy, Hemanth K. N.; Sellberg, Jonas A.; Sierra, Raymond G.; Svenda, Martin; van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu; Aquila, Andrew; Zwart, Peter H.; Mancuso, Adrian P.
2017-10-01
We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.
Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM.
Rawson, Shaun; Bisson, Claudine; Hurdiss, Daniel L; Fazal, Asif; McPhillie, Martin J; Sedelnikova, Svetlana E; Baker, Patrick J; Rice, David W; Muench, Stephen P
2018-02-20
Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae ( Sc_ IGPD) and Arabidopsis thaliana ( At_ IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure-activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_ IGPD than At_ IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_ IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Å are sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_ IGPD/C348 complex. The structure of Sc _IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding. Copyright © 2018 the Author(s). Published by PNAS.
Wrench tectonics in Abu Dhabi, United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M.; Mohamed, A.S.
1995-08-01
Recent studies of the geodynamics and tectonic history of the Arabian plate throughout geologic time have revealed that Wrench forces played an important role in the structural generation and deformation of Petroleum basins and reservoirs of the United Arab Emirates. The tectonic analysis of Abu Dhabi revealed that basin facies evolution were controlled by wrench tectonics, examples are the Pre-Cambrian salt basin, the Permo-Triassic and Jurassic basins. In addition, several sedimentary patterns were strongly influenced by wrench tectonics, the Lower Cretaceous Shuaiba platform margin and associated reservoirs is a good example. Wrench faults, difficult to identify by conventional methods, weremore » examined from a regional perspective and through careful observation and assessment of many factors. Subsurface structural mapping and geoseismic cross-sections supported by outcrop studies and geomorphological features revealed a network of strike slip faults in Abu Dhabi. Structural modelling of these wench forces including the use of strain ellipses was applied both on regional and local scales. This effort has helped in reinterpreting some structural settings, some oil fields were interpreted as En Echelon buckle folds associated with NE/SW dextral wrench faults. Several flower structures were interpreted along NW/SE sinistral wrench faults which have significant hydrocarbon potential. Synthetic and Antithetic strike slip faults and associated fracture systems have played a significant role in field development and reservoir management studies. Four field examples were discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn; Chen Wulin; Zheng Jun
2012-08-15
A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Signmore » 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.« less
Electronic structure of p-type transparent conducting oxide CuAlO2
NASA Astrophysics Data System (ADS)
Mo, Sung-Kwan; Yoon, Joonseok; Liu, Xiaosong; Yang, Wanli; Mun, Bongjin; Ju, Honglyoul
2014-03-01
CuAlO2 is a prototypical p-type transparent conducting oxide. Despite its importance for potential applications and number of studies on its band structure and gap characteristics, experimental study on the momentum-resolved electronic structure has been lacking. We present angle-resolved photoemission data on single crystalline CuAlO2 using synchrotron light source to reveal complete band structure. Complemented by the x-ray absorption and emission spectra, we also study band gap characteristics and compare them with theory.
Revealing the planar chemistry of two-dimensional heterostructures at the atomic level.
Chou, Harry; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney S; Dolocan, Andrei
2015-06-23
Two-dimensional (2D) atomic crystals and their heterostructures are an intense area of study owing to their unique properties that result from structural planar confinement. Intrinsically, the performance of a planar vertical device is linked to the quality of its 2D components and their interfaces, therefore requiring characterization tools that can reveal both its planar chemistry and morphology. Here, we propose a characterization methodology combining (micro-) Raman spectroscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to provide structural information, morphology and planar chemical composition at virtually the atomic level, aimed specifically at studying 2D vertical heterostructures. As an example system, a graphene-on-h-BN heterostructure is analysed to reveal, with an unprecedented level of detail, the subtle chemistry and interactions within its layer structure that can be assigned to specific fabrication steps. Such detailed chemical information is of crucial importance for the complete integration of 2D heterostructures into functional devices.
Experimental study of modification mechanism at a wear-resistant surfacing
NASA Astrophysics Data System (ADS)
Dema, R. R.; Amirov, R. N.; Kalugina, O. B.
2018-01-01
In the study, a simulation of the crystallization process was carried out for the deposition of the near-eutectic structure alloys with inoculants presence in order to reveal the regularities of the inoculant effect and parameters of the process mode simulating surfacing on the structure of the crystallization front and on the nucleation rate and kinetics of growth of equiaxed crystallites of primary phases occurring in the volume of the melt. The simulation technique of primary crystallization of alloys similar to eutectic alloys in the presence of modifiers is offered. The possibility of fully eutectic structure during surfacing of nominal hypereutectic alloys of type white cast irons in wide range of deviations from the nominal composition is revealed.
1982-12-31
interfaces which are of importance in such semi- conductor devices as MOSFETS, CCD devices, photovoltaic devices, DD I jAN 73 1473 EDITION OF INOV 66 if...interfaces is interesting for the study of electrolytic cells . Our photoemission study reveals for the first time how the electronic structure of water
ERIC Educational Resources Information Center
Hawley, Todd S.; Pifel, A. Robert; Jordan, Adam W.
2012-01-01
This article details an interpretive, qualitative interview study that explored rationales developed by seven social studies graduate students, all experienced teachers, at a large Midwestern university. Interviews revealed three common themes regarding the influence of the rationale development process. The three themes were: providing structure,…
Structural Priming in Spanish as Evidence of Implicit Learning
ERIC Educational Resources Information Center
Gámez, Perla B.; Shimpi, Priya M.
2016-01-01
This study uses a structural priming technique with young Spanish speakers to test whether exposure to a rare syntactic form in Spanish ("fue"-passive) would increase the production and comprehension of that form. In Study 1, 14 six-year-old Spanish speakers described pictures of transitive scenes. This baseline study revealed that…
Durability performance of submerged concrete structures - phase 2.
DOT National Transportation Integrated Search
2015-09-01
This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...
Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing
2017-10-01
Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.
Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.
2013-01-01
Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
Robach, J S; Stock, S R; Veis, A
2009-12-01
Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates, prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies.
Robach, J. S.; Stock, S. R.; Veis, A.
2009-01-01
Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates; prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies. PMID:19616101
career at NREL in 1995 by conducting scanning tunneling microscope (STM) studies of the atomic structure revealed a new strain-induced step structure and contributed to the development of world-record-efficiency NREL's Computational Materials Science team, probing the atomic structure of dislocations in III-V
A bioinspired study on the compressive resistance of helicoidal fibre structures
NASA Astrophysics Data System (ADS)
Tan, Ting; Ribbans, Brian
2017-10-01
Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.
Gupta, Payal; Dash, Prasanta K
2017-09-11
Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.
Biology Student Teachers' Cognitive Structure about "Living Thing"
ERIC Educational Resources Information Center
Kurt, Hakan
2013-01-01
The current study aims to determine biology student teachers' cognitive structure on the concept of "living thing" through revealing their conceptual framework. Qualitative research method was applied in this study. The data were collected from 44 biology student teachers. A free word association test was used as a data collection…
Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; ...
2017-10-12
We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates frommore » the expected perfect icosahedral symmetry. Lastly, our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.« less
Siwek, M; Finocchiaro, R; Curik, I; Portolano, B
2011-02-01
Genetic structure and relationship amongst the main goat populations in Sicily (Girgentana, Derivata di Siria, Maltese and Messinese) were analysed using information from 19 microsatellite markers genotyped on 173 individuals. A posterior Bayesian approach implemented in the program STRUCTURE revealed a hierarchical structure with two clusters at the first level (Girgentana vs. Messinese, Derivata di Siria and Maltese), explaining 4.8% of variation (amovaФ(ST) estimate). Seven clusters nested within these first two clusters (further differentiations of Girgentana, Derivata di Siria and Maltese), explaining 8.5% of variation (amovaФ(SC) estimate). The analyses and methods applied in this study indicate their power to detect subtle population structure. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.
NASA Astrophysics Data System (ADS)
Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra
2017-12-01
Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.
Liang, Xiaobo; Liu, Bing; Zhu, Fan; Scannapieco, Frank A.; Haase, Elaine M.; Matthews, Steve; Wu, Hui
2016-01-01
Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase. PMID:27492581
Structural, XPS and magnetic studies of pulsed laser deposited Fe doped Eu{sub 2}O{sub 3} thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep; Prakash, Ram, E-mail: rpgiuc@gmail.com; Choudhary, R.J.
2015-10-15
Highlights: • Growth of Fe doped Eu{sub 2}O{sub 3} thin films by PLD. • XRD and Raman’s spectroscopy used for structure confirmation. • The electronic states of Eu and Fe are confirmed by XPS. • Magnetic properties reveals room temperature magnetic ordering in deposited film. - Abstract: Fe (4 at.%) doped europium (III) oxide thin film was deposited on silicon (1 0 0) substrate by pulsed laser deposition technique. Structural, spectral and magnetic properties were studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and magnetization measurements. XRD and Raman spectroscopy reveal that the grown film is singlemore » phased and belongs to the cubic structure of Eu{sub 2}O{sub 3}. XPS study of the Eu{sub 1.92}Fe{sub 0.08}O{sub 3} film shows that Fe exists in Fe{sup 3+} ionic state in the film. The film exhibits magnetic ordering at room temperature.« less
Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography.
Englmeier, Robert; Pfeffer, Stefan; Förster, Friedrich
2017-10-03
Mitochondria maintain their own genome and its corresponding protein synthesis machine, the mitochondrial ribosome (mitoribosome). Mitoribosomes primarily synthesize highly hydrophobic proteins of the inner mitochondrial membrane. Recent studies revealed the complete structure of the isolated mammalian mitoribosome, but its mode of membrane association remained hypothetical. In this study, we used cryoelectron tomography to visualize human mitoribosomes in isolated mitochondria. The subtomogram average of the membrane-associated human mitoribosome reveals a single major contact site with the inner membrane, mediated by the mitochondria-specific protein mL45. A second rRNA-mediated contact site that is present in yeast is absent in humans, resulting in a more variable association of the human mitoribosome with the inner membrane. Despite extensive structural differences of mammalian and fungal mitoribosomal structure, the principal organization of peptide exit tunnel and the mL45 homolog remains invariant, presumably to align the mitoribosome with the membrane-embedded insertion machinery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure, function, and engineering of enzymes in isoflavonoid biosynthesis.
Wang, Xiaoqiang
2011-03-01
Isoflavonoids are a large group of plant natural products and play important roles in plant defense. They also possess valuable health-promoting activities with significant health benefits for animals and humans. The isoflavonoids are identified primarily in leguminous plants and are synthesized through the central phenylpropanoid pathway and the specific isoflavonoid branch pathways in legumes. Structural studies of some key enzymes in the central phenylpropanoid pathway shed light on the early stages of the (iso)flavonoid biosynthetic process. Significant impact has also been made on structural studies of enzymes in the isoflavonoid branch pathways. Structures of isoflavonoid-specific NADPH-dependent reductases revealed how the (iso)flavonoid backbones are modified by reduction reactions and how enzymes specifically recognize isoflavonoids and catalyze stereo-specific reductions. Structural studies of isoflavonoid methyltransferases and glycosyltransferases revealed how isoflavonoids are further decorated with methyl group and sugars in different methylation and glycosylation patterns that determine their bioactivities and functions. In combination with mutagenesis and biochemical studies, the detailed structural information of these enzymes provides a basis for understanding the complex biosynthetic process, enzyme catalytic mechanisms, and substrate specificities. Structure-based homology modeling facilitates the functional characterization of these large groups of biosynthetic enzymes and their homologs. Structure-based enzyme engineering is becoming a new strategy for synthesis of bioactive isoflavonoids and also facilitates plant metabolic engineering towards improvement of quality and production of crop plants.
ERIC Educational Resources Information Center
Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret
2016-01-01
The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…
ERIC Educational Resources Information Center
Karakus, Memet; Karakus, Fatma
2017-01-01
The study aims to determine education faculty students' cognitive structures regarding professional concepts, and to reveal the views of the students and faculty members about conceptual teaching. The participants of the study, which was designed as a case study, were determined using the criterion sampling method. In the study, which was carried…
Activator Protein-1: redox switch controlling structure and DNA-binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhou; Machius, Mischa; Nestler, Eric J.
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less
Interfacial assembly structures and nanotribological properties of saccharic acids.
Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun
2017-01-04
Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.
NASA Astrophysics Data System (ADS)
Wang, W.; Olovsson, W.; Uhrberg, R. I. G.
2015-11-01
Silicene, the two-dimensional (2D) allotrope of silicon, has very recently attracted a lot of attention. It has a structure that is similar to graphene and it is theoretically predicted to show the same kind of electronic properties which have put graphene into the focus of large research and development projects worldwide. In particular, a 2D structure made from Si is of high interest because of the application potential in Si-based electronic devices. However, so far there is not much known about the silicene band structure from experimental studies. A comprehensive study is here presented of the atomic and electronic structure of the silicene phase on Ag(111) denoted as (2 √ 3 ×2 √ 3 )R30° in the literature. Low energy electron diffraction (LEED) shows an unconventional rotated ("2 √ 3 ×2 √ 3 ") pattern with a complicated set of split diffraction spots. Scanning tunneling microscopy (STM) results reveal a Ag(111) surface that is homogeneously covered by the ("2 √ 3 ×2 √ 3 ") silicene which exhibits an additional quasiperiodic long-range ordered superstructure. The complex structure, revealed by STM, has been investigated in detail and we present a consistent picture of the silicene structure based on both STM and LEED. The homogeneous coverage by the ("2 √ 3 ×2 √ 3 ") silicene facilitated an angle-resolved photoelectron spectroscopy study which reveals a silicene band structure of unprecedented detail. Here we report four silicene bands which are compared to calculated dispersions based on a relaxed (2 √ 3 ×2 √ 3 ) model. We find good qualitative agreement between the experimentally observed bands and calculated silicene bands of σ character.
Simultaneous optimisation of earwig hindwings for flight and folding
Deiters, Julia; Kowalczyk, Wojciech; Seidl, Tobias
2016-01-01
ABSTRACT Earwig wings are highly foldable structures that lack internal muscles. The behaviour and shape changes of the wings during flight are yet unknown. We assume that they meet a great structural challenge to control the occurring deformations and prevent the wing from collapsing. At the folding structures especially, the wing could easily yield to the pressure. Detailed microscopy studies reveal adaptions in the structure and material which are not relevant for folding purposes. The wing is parted into two structurally different areas with, for example, a different trend or stiffness of the wing veins. The storage of stiff or more flexible material shows critical areas which undergo great changes or stress during flight. We verified this with high-speed video recordings. These reveal the extent of the occurring deformations and their locations, and support our assumptions. The video recordings reveal a dynamical change of a concave flexion line. In the static unfolded state, this flexion line blocks a folding line, so that the wing stays unfolded. However, during flight it extends and blocks a second critical folding line and prevents the wing from collapsing. With these results, more insight in passive wing control, especially within high foldable structures, is gained. PMID:27113958
Network structure, topology, and dynamics in generalized models of synchronization
NASA Astrophysics Data System (ADS)
Lerman, Kristina; Ghosh, Rumi
2012-08-01
Network structure is a product of both its topology and interactions between its nodes. We explore this claim using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, nodes synchronize in stages, revealing the network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process similar to diffusion. However, social and biological processes are often nonconservative. We propose a model of synchronization in a network of oscillators coupled via nonconservative processes. We study the dynamics of synchronization of a synthetic and real-world networks and show that the traditional and nonconservative models of synchronization reveal different structures within the same network.
NASA Astrophysics Data System (ADS)
Pandey, M.; Banerjee, D.; Sudarsan, V.; Kshirsagar, R. J.
2018-04-01
Effect of TiO2 addition in Cs containing Sodium-borosilicate glasses is studied using Raman and infrared spectroscopic techniques. As revealed from infrared and Raman studies, TiO2 does not form segregated phase, but instead enters into the borosilicate network. It is further observed that TiO2 addition results in modifications of the borate and silicate structural units by transforming into tetraborates and metasilicate structural units. These structural modifications are responsible for Cs immobilization, leach rate and chemical durability of these glasses.
Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals
NASA Astrophysics Data System (ADS)
Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.
2009-07-01
High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.
Life in the "old bag" yet: structure of peptidoglycan L,D-carboxypeptidases.
Cadby, Ian T; Lovering, Andrew L
2014-07-08
In this issue of Structure, Hoyland and colleagues describe the structure of a peptidoglycan L,D-carboxypeptidase in both substrate-bound and apoenzyme forms. These studies reveal the basis for enzyme specificity and assist greatly in a field where form and function overlap. Copyright © 2014 Elsevier Ltd. All rights reserved.
Horizontal Structure: A Neo-Piagetian Analysis of Structural Parallels across Domains.
ERIC Educational Resources Information Center
McKeough, Anne M.
An analysis of children's narrative composition and art revealed concurrent development at both a general structural level and at a fine-grained detail level. A three-part study investigated whether this general cognitive pattern would be maintained across a different range of tasks: literary composition, scientific reasoning, and working memory.…
Conductivity and local structure in LaNiO3
NASA Astrophysics Data System (ADS)
Fowlie, Jennifer; Gibert, Marta; Tieri, Giulio; Gloter, Alexandre; à+/-Iguez, Jorge; Filippetti, Alessio; Catalano, Sara; Gariglio, Stefano; StéPhan, Odile; Triscone, Jean-Marc
In this study we approach the thickness-dependence of the properties of LaNiO3 films along multiple, complementary avenues: sophisticated ab initio calculations, scanning transmission electron microscopy and electronic transport. Specifically, we find an unexpected maximum in conductivity in films of thickness 6 - 10 unit cells (3 nm) for several series of LaNiO3 films. Ab initio transport based on the detailed crystal structure also reveals a maximum in conductivity at the same thickness. In agreement with the structure obtained from scanning transmission electron microscopy (STEM), our simulated structures reveal that the substrate- and surface-induced distortions lead to three types of local structure (heterointerface, interior-layer, surface). Based on this observation, a 3-element parallel conductor model neatly reproduces the trend of conductivity with thickness. This study addresses the question of how structural distortions at the atomic scale evolve in a thin film under the influence of the substrate and the surface. This topic is key to the understanding of the physics of heterostructures and the design of functional oxides.
Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A
2016-05-01
Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.
Structural basis of cargo recognitions for class V myosins
Wei, Zhiyi; Liu, Xiaotian; Yu, Cong; Zhang, Mingjie
2013-01-01
Class V myosins (MyoV), the most studied unconventional myosins, recognize numerous cargos mainly via the motor’s globular tail domain (GTD). Little is known regarding how MyoV-GTD recognizes such a diverse array of cargos specifically. Here, we solved the crystal structures of MyoVa-GTD in its apo-form and in complex with two distinct cargos, melanophilin and Rab interacting lysosomal protein-like 2. The apo-MyoVa-GTD structure indicates that most mutations found in patients with Griscelli syndrome, microvillus inclusion disease, or cancers or in “dilute” rodents likely impair the folding of GTD. The MyoVa-GTD/cargo complex structure reveals two distinct cargo-binding surfaces, one primarily via charge–charge interaction and the other mainly via hydrophobic interactions. Structural and biochemical analysis reveal the specific cargo-binding specificities of various isoforms of mammalian MyoV as well as very different cargo recognition mechanisms of MyoV between yeast and higher eukaryotes. The MyoVa-GTD structures resolved here provide a framework for future functional studies of vertebrate class V myosins. PMID:23798443
Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho
2017-03-01
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT. Coordinate and structural factor were deposited in the Protein Data Bank under PDB ID code 5H10. © 2017 Federation of European Biochemical Societies.
Shukla, R.; Patwe, S. J.; Deshpande, S. K.; Achary, S. N.; Krishna, P. S. R.; Shinde, A. B.; Gopalakrishnan, J.; Tyagi, A. K.
2016-01-01
We report composition dependent structure evolution from SrTiO3 to SrFe0.5Ta0.5O3 by powder X-ray and neutron diffraction studies of SrTi1−2xFexTaxO3 (0.00 ≤ × ≤ 0.50) compositions. Structural studies reveal cubic (Pm3m) perovskite-type structure of the parent SrTiO3 for x up to 0.075 and cation disordered orthorhombic (Pbnm) perovskite-type structure for x ≥ 0.33. A biphasic region consisting of a mixture of cubic and orthorhombic structures is found in the range for 0.10 ≤ × ≤ 0.25. Dielectric studies reveal transformation from a normal dielectric to relaxor like properties with increasing Fe3+ and Ta5+ concentration. Dielectric response is maximum at x = 0.33 in the series. The results establish a protocol for designing new lead-free relaxor materials based on the co-substitution of Fe3+ and Ta5+ for Ti4+ in SrTiO3. A complex interplay of strain effects arising from distribution of cations at the octahedral sites of the perovskite structure controls the dielectric properties. PMID:27514668
Schlebusch, Carina M; Soodyall, Himlya
2012-12-01
The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Genetic studies [mitochondrial deoxyribonucleic acid (DNA) and Y-chromosome] conducted on San and Khoe groups revealed that they harbor some of the most divergent lineages found in living peoples throughout the world. Recently, high-density, autosomal, single-nucleotide polymorphism (SNP)-array studies confirmed the early divergence of Khoe-San population groups from all other human populations. The present study made use of 220 autosomal SNP markers (in the format of both haplotypes and genotypes) to examine the population structure of various San and Khoe groups and their relationship to other neighboring groups. Whereas analyses based on the genotypic SNP data only supported the division of the included populations into three main groups-Khoe-San, Bantu-speakers, and non-African populations-haplotype analyses revealed finer structure within Khoe-San populations. By the use of only 44 short SNP haplotypes (compiled from a total of 220 SNPs), most of the Khoe-San groups could be resolved as separate groups by applying STRUCTURE analyses. Therefore, by carefully selecting a few SNPs and combining them into haplotypes, we were able to achieve the same level of population distinction that was achieved previously in high-density SNP studies on the same population groups. Using haplotypes proved to be a very efficient and cost-effective way to study population structure. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.
Caveolae structure and function
Thomas, Candice M; Smart, Eric J
2008-01-01
Abstract Studies on the structure and function of caveolae have revealed how this versatile subcellular organelle can influence numerous signalling pathways. This brief review will discuss a few of the key features of caveolae as it relates to signalling and disease processes. PMID:18315571
Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick
2015-01-01
Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP marker set will be useful for systematic estimation of admixture structure of citrus germplasm and for diverse genetic studies. PMID:25973611
Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick
2015-01-01
Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP marker set will be useful for systematic estimation of admixture structure of citrus germplasm and for diverse genetic studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.
The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observedmore » increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.« less
Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L
2014-01-23
Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.
Single-crystal growth, structure refinement and the properties of Bis(glycine) Strontium Chloride
NASA Astrophysics Data System (ADS)
Balaji, S. R.; Balu, T.; Rajasekaran, T. R.
2018-02-01
Single crystals of Bis (glycine) Strontium Chloride (BGSC) were grown by means of slow evaporation process by using analar grade Glycine and Strontium Chloride Hexahydrate as a parent compound from its aqueous solution at room temperature. The final chemical composition, [{{Sr}}{({{{C}}}2{{{H}}}5{{{NO}}}2)}2{{{Cl}}}2].{{{H}}}4{{{O}}}3+{{{H}}}8{{{O}}}3, formed were metallic light colorless block, about the size of 28 mm × 9 mm × 8 mm. A single-crystal x-ray diffraction study revealed an ordered superstructure with orthorhombic symmetry that could be assigned to the space group Pbcn. The structure in BGSC, revealed in the electron density distribution was analyzed by the direct methods (SHELXS-2014) and refined by least squares full matrix method (SHELXL-2014). The crystal structure, including anisotropic atomic displacement parameters for each atom and isotropic atomic displacement parameters for hydrogen atom, was refined to R1 = 0.0395, wR2 = 0.0776 using 1097 independent reflections. The FTIR spectrum of BGSC confirms the protonation of amino groups and the different molecular groups present in BGSC vibrate in different modes. Reverse Indentation Size Effect (RISE) was revealed in BGSC in the micro-hardness analysis using Vicker’s micro-hardness analysis. DTA and DSC results ruled out the possibility of structural change independent of mass change. The AFM studies shows fine nano size fiber like structure of the grown crystals.
Structural genomics reveals EVE as a new ASCH/PUA-related domain
Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Forouhar, Farhad; Zhou, Weihong; Kuzin, Alexander P.; Seetharaman, Jayaraman; Abashidze, Mariam; Ramelot, Theresa A.; Kennedy, Michael A.; Cort, John R.; Belachew, Adam; Hunt, John F.; Tong, Liang; Montelione, Gaetano T.; Rost, Burkhard
2014-01-01
Summary We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links. PMID:19191354
Structural Genomics Reveals EVE as a New ASCH/PUA-Related Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertonati, C.; Punta, M; Fischer, M
2008-01-01
We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE.more » Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.« less
Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K
2011-01-01
The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC
Revealing the Complexity of Community-Campus Interactions
ERIC Educational Resources Information Center
Nichols, Naomi Elizabeth; Phipps, David; Gaetz, Stephen; Fisher, Alison L.; Tanguay, Nancy
2014-01-01
In this paper, four qualitative case studies capture the complex interplay between the social and structural relations that shape community - academic partnerships. Collaborations begin as relationships among people. They are sustained by institutional structures that recognize and support these relationships. Productive collaborations centralize…
Possibilities of Using Combined Optical and AFM Investigations of Albumin
NASA Astrophysics Data System (ADS)
Buzoverya, M. E.; Shishpor, I. V.; Shcherbak, Yu. P.
2018-02-01
The results of a complex study of 10% aqueous solution of human serum albumin using methods of optical and atomic force microscopy have been presented. The fine structure of main structures of albumin facies (vitreous matrix and concretions) has been revealed and some observed structural effects have been interpreted from the viewpoint of polymer materials science.
Coulomb double helical structure
NASA Astrophysics Data System (ADS)
Kamimura, Tetsuo; Ishihara, Osamu
2012-01-01
Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.
Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu
2012-05-09
Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.
ERIC Educational Resources Information Center
Yilmaz, Ismail
2014-01-01
This paper is a qualitative case study designed to identify prospective science teachers' mathematical-logical structures on the basis of their knowledge and achievement levels in magnetism. The study also made an attempt to reveal the effects of knowledge-level variables and procedural variables, which were considered to be potential…
Americium alloys with gold and copper
NASA Astrophysics Data System (ADS)
Radchenko, V. M.; Ryabinin, M. A.; Chernakova, T. A.; Tomilin, S. V.
2010-03-01
Presented are results of the production and X-ray examination of micro-samples of americium-241 compounds with gold and copper produced by high-temperature condensation of metal americium vapor onto corresponding substrates. No mutual solubility of the investigated system components was revealed at room temperature. The following three intermetallic compounds were revealed in the Am-Au system: Au6Am with tetragonal lattice of the Au6Sm structural type, AuAm with orthorhombic lattice of the CuCe structural type and AuAm with cubic lattice. The Am-Cu system showed the intermetallic compound Cu5Am (Cu7Am) with a hexagonal lattice of the Cu5Ca(Cu7Tb) structure type. An effect of the 241Am nuclide alpha-activity on the crystal structure of the produced intermetallide was studied.
Synthesis of nanocrystalline CdS thin film by SILAR and their characterization
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.
2015-01-01
Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.
Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; ...
2017-07-13
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the a CTD may play a role in Mtb transcription regulation. Here, our results reveal the structure of an Actinobacteria-unique insert ofmore » the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σ A, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less
Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R; Beuning, Penny J
2014-04-08
The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAPmore » β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the a CTD may play a role in Mtb transcription regulation. Here, our results reveal the structure of an Actinobacteria-unique insert ofmore » the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σ A, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less
Mechanical Unfolding Studies on Single-Domain SUMO and Multi-Domain Periplasmic Binding Proteins
NASA Astrophysics Data System (ADS)
Kotamarthi, Hema Chandra; Ainavarapu, Sri Rama Koti
Protein mechanics is a key component of many cellular and sub-cellular processes. The current review focuses on recent studies from our laboratory that probe the effect of sequence on the mechanical stability of structurally similar proteins and the unfolding mechanisms of multi-domain periplasmic binding proteins. Ubiquitin and small ubiquitin-related modifiers (SUMOs) are structurally similar and possess different mechanical stabilities, ubiquitin being stronger than SUMOs as revealed from their unfolding forces. These differences are plausibly due to the variation in number of inter-residue contacts. The unfolding potential widths determined from the pulling speed-dependent studies revealed that SUMOs are mechanically more flexible than ubiquitin. This flexibility of SUMOs plays a role in ligand binding and our single-molecule studies on SUMO interaction with SUMO binding motifs (SBMs) have shown that ligand binding decreases the SUMO flexibility and increases its mechanical stability. Studies on multi-domain periplasmic binding proteins have revealed that the unfolding energy landscape of these proteins is complex and they follow kinetic partitioning between two-state and multiple three-state pathways.
Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng
2015-09-25
Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in Cucumis species. Besides, the significant correlation was found between gene density along chromosome and GISH band intensity in C. sativus and C. melo. In summary, comparative cytogenetic mapping of major satellites and GISH revealed the distinct differentiation of chromosome structure during species formation. The evolution of repetitive sequences was the main force for the divergence of Cucumis species from common ancestor.
Effect of chromium doping on the structural and vibrational properties of Mn-Zn ferrites
NASA Astrophysics Data System (ADS)
Saleem, M.; Varshney, Dinesh
2018-05-01
The synthesis of Mn0.5Zn0.5-xCrxFe2O4 (x = 0.0, 0.1, 0.2 and 0.5) via sol-gel Auto-combustion technique is reported. The x-ray diffraction spectra analysis revealed the cubic spinel structure for all the prepared spinel ferrite samples with the space group Fd3m. The structural studies identify the decrease of lattice parameter however the crystallite size decreases on increasing the Cr concentration. The Raman spectrum reveals five active phonon modes at room temperature and shifting of modes toward the higher frequency side on moving from Mn-ZnFe2O4 to Mn-CrFe2O4.
Su, Chinh Tran-To; Kwoh, Chee-Keong; Verma, Chandra Shekhar; Gan, Samuel Ken-En
2017-12-27
HIV polyprotein Gag is increasingly found to contribute to protease inhibitor resistance. Despite its role in viral maturation and in developing drug resistance, there remain gaps in the knowledge of the role of certain Gag subunits (e.g. p6), and that of non-cleavage mutations in drug resistance. As p6 is flexible, it poses a problem for structural experiments, and is hence often omitted in experimental Gag structural studies. Nonetheless, as p6 is an indispensable component for viral assembly and maturation, we have modeled the full length Gag structure based on several experimentally determined constraints and studied its structural dynamics. Our findings suggest that p6 can mechanistically modulate Gag conformations. In addition, the full length Gag model reveals that allosteric communication between the non-cleavage site mutations and the first Gag cleavage site could possibly result in protease drug resistance, particularly in the absence of mutations in Gag cleavage sites. Our study provides a mechanistic understanding to the structural dynamics of HIV-1 Gag, and also proposes p6 as a possible drug target in anti-HIV therapy.
Atomic-scale structural signature of dynamic heterogeneities in metallic liquids
NASA Astrophysics Data System (ADS)
Pasturel, Alain; Jakse, Noel
2017-08-01
With sufficiently high cooling rates, liquids will cross their equilibrium melting temperatures and can be maintained in a metastable undercooled state before solidifying. Studies of undercooled liquids reveal several intriguing dynamic phenomena and because explicit connections between liquid structure and liquids dynamics are difficult to identify, it remains a major challenge to capture the underlying structural link to these phenomena. Ab initio molecular dynamics (AIMD) simulations are yet especially powerful in providing atomic-scale details otherwise not accessible in experiments. Through the AIMD-based study of Cr additions in Al-based liquids, we evidence for the first time a close relationship between the decoupling of component diffusion and the emergence of dynamic heterogeneities in the undercooling regime. In addition, we demonstrate that the origin of both phenomena is related to a structural heterogeneity caused by a strong interplay between chemical short-range order (CSRO) and local fivefold topology (ISRO) at the short-range scale in the liquid phase that develops into an icosahedral-based medium-range order (IMRO) upon undercooling. Finally, our findings reveal that this structural signature is also captured in the temperature dependence of partial pair-distribution functions which opens up the route to more elaborated experimental studies.
Social capital calculations in economic systems: Experimental study
NASA Astrophysics Data System (ADS)
Chepurov, E. G.; Berg, D. B.; Zvereva, O. M.; Nazarova, Yu. Yu.; Chekmarev, I. V.
2017-11-01
The paper describes the social capital study for a system where actors are engaged in an economic activity. The focus is on the analysis of communications structural parameters (transactions) between the actors. Comparison between transaction network graph structure and the structure of a random Bernoulli graph of the same dimension and density allows revealing specific structural features of the economic system under study. Structural analysis is based on SNA-methodology (SNA - Social Network Analysis). It is shown that structural parameter values of the graph formed by agent relationship links may well characterize different aspects of the social capital structure. The research advocates that it is useful to distinguish the difference between each agent social capital and the whole system social capital.
Pressure-induced structural transformations of the Zintl phase sodium silicide
NASA Astrophysics Data System (ADS)
Cabrera, Raúl Quesada; Salamat, Ashkan; Barkalov, Oleg I.; Leynaud, Olivier; Hutchins, Peter; Daisenberger, Dominik; Machon, Denis; Sella, Andrea; Lewis, Dewi W.; McMillan, Paul F.
2009-09-01
The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si - species and reduction of Na + to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure.
Müllertz, Anette; Fatouros, Dimitrios G; Smith, James R; Vertzoni, Maria; Reppas, Christos
2012-02-06
The current work aims to study at the ultrastructural level the morphological development of colloidal intermediate phases of human intestinal fluids (HIFs) produced during lipid digestion. HIFs were aspirated near the ligament of Treitz early (30 min), Aspirate(early), and 1 h, Aspirate(1h)(ave,comp), after the administration of a heterogeneous liquid meal into the antrum. The composition of the sample aspirated 1 h after meal administration was similar to the average lumenal composition 1 h after meal administration (Aspirate(1h)(ave,comp)). The colloidal structures of individual aspirates and supernatants of aspirates after ultracentrifugation (micellar phase) were characterized by means of atomic force microscopy (AFM) and cryogenic transmission electron microscopy (Cryo-TEM). AFM revealed domain-like structures in Aspirate(early) and both vesicles and large aggregates Aspirate(1h)(ave,comp). Rough surfaces and domains varying in size were frequently present in the micellar phase of both Aspirate(early) and Aspirate(1h)(ave,comp). Cryo-TEM revealed an abundance of spherical micelles and occasionally presented worm-like micelles coexisting with faceted and less defined vesicles in Aspirate(early) and Aspirate(1h)(ave,comp). In Aspirate(1h)(ave,comp) oil droplets were visualized with bilayers closely located to their surface suggesting lipolytic product phases accumulated on the surface of the oil droplet. In the micellar phase of Aspirate(early), Cryo-TEM revealed the presence of spherical micelles, small vesicles, membrane fragments, oil droplets and plate-like structures. In the micellar phase of Aspirate(1h)(ave,comp) the only difference was the absence of oil droplets. Visualization studies previously performed with biorelevant media revealed structural features with many similarities as presented in the current investigation. The impression of the complexity and diversion of these phases has been reinforced with the excessive variation of structural features visualized ex vivo in the current study offering insights at the ultrastuctural level of intermediate phases which impact drug solubilization.
Gupta, Manoj Kumar; Vadde, Ramakrishna; Donde, Ravindra; Gouda, Gayatri; Kumar, Jitendra; Nayak, Subhashree; Jena, Mayabini; Behera, Lambodar
2018-05-02
Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.
2014-01-01
Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon’s horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits. PMID:24612906
In silico studies on tryparedoxin peroxidase of Leishmania infantum: structural aspects.
Singh, Bishal Kumar; Dubey, Vikash Kumar
2009-09-01
Tryparedoxin peroxidase (TryP) is a key enzyme of the trypanothione-dependent metabolism for removal of oxidative stress in leishmania. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. Inhibitors of this enzyme are presumed to be antilesihmania drugs and structural studies are prerequisite of rational drug design. We have constructed three dimensional structure of TryP of Leishmania infantum using comparative modeling. Structural analysis reveals several interesting features. Moreover, it shows remarkable structural difference with human host glutathione peroxidase, an enzyme involved in similar function and TryP from Leishmania major.
NASA Astrophysics Data System (ADS)
Winiarski, Michal; Wiendlocha, Bartlomiej; Sternik, Malgorzata; Wisniewski, Piotr; Kaczorowski, Dariusz; Klimczuk, Tomasz
Polycrystalline samples of four ternary intermetallics RV2Al20 (R = Sc, Y, La, and Lu) were synthesized. Structural studies carried out using powder x-ray diffraction and Rietveld analysis show that all compounds crystallize in CeCr2Al20-type structure composed of icosahedral Al-R cages. Results of physical properties measurements reveal that ScV2Al20, YV2Al20, and LuV2Al20 are weakly-coupled BCS superconductors with critical temperatures Tc = 1.0, 0.57, and 0.60 K, respectively. Electronic and phonon structure calculations reveal the key role of low-frequency anharmonic vibrations of R atoms (rattling effect) for the appearance of superconductivity. A correlation between phonon and crystal structures was observed, allowing to search for new RV2Al20 superconductors. Project was financially supported by the National Science Centre (Poland) Grant (DEC-2012/07/E/ST3/00584).
Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.
Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc
2018-09-15
Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Current state of macrobenthic communities in Baydaratskaya Bay (Kara Sea)
NASA Astrophysics Data System (ADS)
Kokarev, V. N.; Kozlovsky, V. V.; Azovsky, A. I.
2015-09-01
Macrobenthic communities in Baydaratskaya Bay were studied before and after the seafloor pipeline was begun to be laid out in the year 2011. Materials were collected during three surveys in 2007, 2012, and 2013. Ordination of the data based on community structure and composition revealed a clear depthrelated zonality of the communities. Stations deeper than 10 meters were dominated by bivalves, while shallower stations were dominated by nephtyid polychaetes. This structure persisted though the whole period studied, without any pronounced temporal trends. However, several deep-water stations near the pipeline path in the year 2013 revealed a distinct shift in the structure of macrofauna, with large bivalves disappearing, an increased abundance of small polychaetes, and a decrease in total biodiversity. Moreover, macrofauna were absent at one of these stations. We conclude that the structure and distribution of communities are relatively stable and mainly driven by depth. However, there are some local but evident disturbance effects, probably caused by recent human activity (dumping of dredged sediments).
Rheological properties in relation to molecular structure of quinoa starch.
Li, Guantian; Zhu, Fan
2018-07-15
Quinoa starch granules are small (~0.5 - 3μm) with potentials for some food and other applications. To better exploit it as a new starch resource, this study investigates the steady shear and dynamic oscillatory properties of 9 quinoa starches varying in composition and structure. Steady shear analysis shows that the flow curves could be well described by 4 selected mathematic models. Temperature sweep analysis reveals that the quinoa starch encounters a 4-stage process including 2 phase transitions. Structure-function relationship analysis showed that composition as well as unit and internal chain length distribution of amylopectin have significant impact on the rheological properties (e.g., G' at 90°C) of quinoa starch. The roles of some individual unit chains and super-long unit chains of amylopectin in determining the rheological properties of quinoa starch were revealed. This study may stimulate further interest in understanding the structural basis of starch rheology. Copyright © 2018 Elsevier B.V. All rights reserved.
Reeve, Stephanie M; Scocchera, Eric; Ferreira, Jacob J; G-Dayanandan, Narendran; Keshipeddy, Santosh; Wright, Dennis L; Anderson, Amy C
2016-07-14
Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.
NASA Astrophysics Data System (ADS)
Liu, Yangzhen; Xing, Jiandong; Fu, Hanguang; Li, Yefei; Sun, Liang; Lv, Zheng
2017-08-01
The properties of sulfides are important in the design of new iron-steel materials. In this study, first-principles calculations were used to estimate the structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. The results reveal that these XS binary compounds are thermodynamically stable, because their formation enthalpy is negative. The elastic constants, Cij, and moduli (B, G, E) were investigated using stress-strain and Voigt-Reuss-Hill approximation, respectively. The sulfide anisotropy was discussed from an anisotropic index and three-dimensional surface contours. The electronic structures reveal that the bonding characteristics of the XS compounds are a mixture of metallic and covalent bonds. Using a quasi-harmonic Debye approximation, the heat capacity at constant pressure and constant volume was estimated. NiS possesses the largest CP and CV of the sulfides.
Activator Protein-1: redox switch controlling structure and DNA-binding.
Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby
2017-11-02
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
O'Toole, Eileen T; Giddings, Thomas H; Porter, Mary E; Ostrowski, Lawrence E
2012-08-01
In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD. Copyright © 2012 Wiley Periodicals, Inc.
Li, Ming; Cheng, Hongbo; Guo, Ping; Zhang, Chun; Tang, Song; Wang, Shusheng
2016-04-26
Iris plays important roles in ocular physiology and disease pathogenesis. Currently it is technically challenging to noninvasively examine the human iris ultrastructure in vivo. The purpose of the current study is to reveal human iris ultrastructure in patients with synechiae by using noninvasive in vivo laser scanning confocal microscopy (LSCM). The ultrastructure of iris in thirty one patients, each with synechiae but transparent cornea, was examined by in vivo LSCM. Five characteristic iris ultrastructures was revealed in patients with synechiae by in vivo LSCM, which include: 1. tree trunk-like structure; 2. tree branch/bush-like structure; 3. Fruit-like structure; 4. Epithelioid-like structure; 5. deep structure. Pigment granules can be observed as a loose structure on the top of the arborization structure. In iris-associated diseases with Tyndall's Phenomenon and keratic precipitates, the pigment particles are more likely to fall off from the arborization structure. The ultrastructure of iris in patients with synechiae has been visualized using in vivo LSCM. Five iris ultrastructures can be clearly observed, with some of the structures maybe disease-associated. The fall-off of the pigment particles may cause the Tyndall's Phenomenon positive. In vivo LSCM provides a non-invasive approach to observe the human iris ultrastructure under certain eye disease conditions, which sets up a foundation to visualize certain iris-associated diseases in the future.
Structural landscape of base pairs containing post-transcriptional modifications in RNA
Seelam, Preethi P.; Sharma, Purshotam
2017-01-01
Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704
Molecular and cellular aspects of rhabdovirus entry.
Albertini, Aurélie A V; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves
2012-01-01
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell.
Molecular and Cellular Aspects of Rhabdovirus Entry
Albertini, Aurélie A. V.; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves
2012-01-01
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell. PMID:22355455
Cottee, Matthew A; Muschalik, Nadine; Wong, Yao Liang; Johnson, Christopher M; Johnson, Steven; Andreeva, Antonina; Oegema, Karen; Lea, Susan M; Raff, Jordan W; van Breugel, Mark
2013-01-01
Centrioles organise centrosomes and template cilia and flagella. Several centriole and centrosome proteins have been linked to microcephaly (MCPH), a neuro-developmental disease associated with small brain size. CPAP (MCPH6) and STIL (MCPH7) are required for centriole assembly, but it is unclear how mutations in them lead to microcephaly. We show that the TCP domain of CPAP constitutes a novel proline recognition domain that forms a 1:1 complex with a short, highly conserved target motif in STIL. Crystal structures of this complex reveal an unusual, all-β structure adopted by the TCP domain and explain how a microcephaly mutation in CPAP compromises complex formation. Through point mutations, we demonstrate that complex formation is essential for centriole duplication in vivo. Our studies provide the first structural insight into how the malfunction of centriole proteins results in human disease and also reveal that the CPAP–STIL interaction constitutes a conserved key step in centriole biogenesis. DOI: http://dx.doi.org/10.7554/eLife.01071.001 PMID:24052813
1945-12-07
really under- stood. It was learned, then that pearlitic and bainitic microstructures imparted poor impact toughness to steels , pearlitic structures...having a more detrimental effect than bainitic structures, and that a steel could show little or no free ferrite and still pofssess poor shock resistance...arsenal for metallurgical study. The studies at the arsenal revealed that presence of bainitic structures in the core of low alloy NS type steels
Imaging study on acupuncture points
NASA Astrophysics Data System (ADS)
Yan, X. H.; Zhang, X. Y.; Liu, C. L.; Dang, R. S.; Ando, M.; Sugiyama, H.; Chen, H. S.; Ding, G. H.
2009-09-01
The topographic structures of acupuncture points were investigated by using the synchrotron radiation based Dark Field Image (DFI) method. Four following acupuncture points were studied: Sanyinjiao, Neiguan, Zusanli and Tianshu. We have found that at acupuncture point regions there exists the accumulation of micro-vessels. The images taken in the surrounding tissue out of the acupuncture points do not show such kind of structure. It is the first time to reveal directly the specific structure of acupuncture points by X-ray imaging.
Revealing a Child's Pathology: Physicians' Experiences
ERIC Educational Resources Information Center
Scelles, Regine; Aubert-Godard, Anne; Gargiulo, Marcela; Avant, Monique; Gortais, Jean
2010-01-01
In this study, 12 physicians and 12 care-givers were interviewed using semi-structured interviews. We explored physicians' experiences when they revealed a diagnosis. We also tried to understand which family members the physician was thinking of, with whom they identified themselves, and their first choice of the person to whom they prefer to…
ERIC Educational Resources Information Center
Propper, Ruthe E.; O'Donnell, Lauren J.; Whalen, Stephen; Tie, Yanmei; Norton, Isaiah H.; Suarez, Ralph O.; Zollei, Lilla; Radmanesh, Alireza; Golby, Alexandra J.
2010-01-01
The present study examined the relationship between hand preference degree and direction, functional language lateralization in Broca's and Wernicke's areas, and structural measures of the arcuate fasciculus. Results revealed an effect of degree of hand preference on arcuate fasciculus structure, such that consistently-handed individuals,…
FT-IR Study Reveals Intrinsically Disordered Nature of Heat Shock Protein 90
NASA Astrophysics Data System (ADS)
Xie, Aihua; Neto, David; Balch, Maurie; Hendriks, Johnny; Causey, Oliver; Deng, Junpeng; Matts, Robert
Heat shock protein 90 (Hsp90) is a highly conserved chaperone protein that enables the proper folding of a large number of structurally diverse proteins (a.k.a., clients) in the crowded cytosolic environment and plays a key role in regulating the heat shock response. A long standing open question is how Hsp90 accommodates the structural diversity of a large cohort of client proteins? We report ATR FTIR study on structural properties of Hsp90 C-terminal domain (CTD) and their temperature dependences. Effects of temperature on Hsp90 structure are dissected into the C-terminal domain (CTD) and the N-terminal/middle domain (NTMD). One of our major findings reveals that within a narrow temperature window across the physiological temperatures (35 to 45 C), Hsp90CTD exhibits significant increases in protein aggregation and increases in unordered structures. Despite the intrinsically disordered nature of Hsp90CTD, it retains a protected hydrophobic core at 40 C. Implications of these results will be discussed in the light of the structural dynamics and client diversity of Hsp90. AX is grateful for Grant supports from OCAST HR10-078 and NSF MRI DBI1338097.
Wang, Zhiming; Qiao, Zhu; Ye, Sheng; Zhang, Rongguang
2015-04-01
Tandem duplications and fusions of single genes have led to magnificent expansions in the divergence of protein structures and functions over evolutionary timescales. One of the possible results is polydomain enzymes with interdomain cooperativities, few examples of which have been structurally characterized at the full-length level to explore their innate synergistic mechanisms. This work reports the crystal structures of a double-domain phosphagen kinase in both apo and ligand-bound states, revealing a novel asymmetric L-shaped arrangement of the two domains. Unexpectedly, the interdomain connections are not based on a flexible hinge linker but on a rigid secondary-structure element: a long α-helix that tethers the tandem domains in relatively fixed positions. Besides the connective helix, the two domains also contact each other directly and form an interdomain interface in which hydrogen bonds and hydrophobic interactions further stabilize the L-shaped domain arrangement. Molecular-dynamics simulations show that the interface is generally stable, suggesting that the asymmetric domain arrangement crystallographically observed in the present study is not a conformational state simply restrained by crystal-packing forces. It is possible that the asymmetrically arranged tandem domains could provide a structural basis for further studies of the interdomain synergy.
Machado, Paulo P P; Grilo, Carlos M; Crosby, Ross D
2018-01-01
Psychometric investigations of the Eating Disorder Examination-Questionnaire (EDE-Q) have generally not supported the original scale structure. The present study tested an alternative brief factor structure in two large Portuguese samples: (1) a non-clinical sample of N = 4117 female students and (2) a treatment-seeking sample of N = 609 patients diagnosed with eating disorders. Confirmatory factor analysis revealed a poor fit for the original EDE-Q structure in both the non-clinical and the clinical samples but revealed a good fit for the alternative 7-item 3-factor structure (dietary restraint, shape/weight overvaluation and body dissatisfaction). Factor loadings were invariant across samples and across the different specific eating disorder diagnoses in the clinical sample. These confirmatory factor analysis findings, which replicate findings from studies with diverse predominately overweight/obese samples, supported a modified 7-item, 3-factor structure for the EDE-Q. The reliable findings across different non-clinical and clinical eating disorder groups provide confidence regarding the potential utility of this brief version. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
Pseudogynecomastia due to neurofibromatosis--a light microscopic and ultrastructural study.
Lipper, S; Willson, C F; Copeland, K C
1981-08-01
A six year old boy with bilateral breast enlargement was found to have a normal endocrine status. Resected tissue revealed the features of pseudogynecomastia due to a proliferation of fibrous tissue traversed by neuroid structures. Multinucleated giant cells were present within the fibrous tissue. Ultrastructural study revealed organized nerve elements in a collagenous stroma. The multinucleated giant cells appeared to be variants of the predominant stromal fibroblasts.
Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.
1999-01-01
Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.
ERIC Educational Resources Information Center
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…
ERIC Educational Resources Information Center
Sadi, Özlem; Dagyar, Miray
2015-01-01
The current work reveals the data of the study which examines the relationships among epistemological beliefs, conceptions of learning, and self-efficacy for biology learning with the help of the Structural Equation Modeling. Three questionnaires, the Epistemological Beliefs, the Conceptions of Learning Biology and the Self-efficacy for Learning…
Montana: Filling A Gap In The GeoSwath
NASA Astrophysics Data System (ADS)
Jensen, B.; Keller, G. R.
2010-12-01
The proposed Geoswath transect crosses southern Montana, and the swath of MT stations deployed as part of EarthScope cover all but a small portion of eastern Montana. USArray broadband stations of course cover the entire region. However, modern controlled-source seismic data are very sparse in this large state, and most of it dates from the 1960’s. In this study, we have taken an integrated approach to analyzing lithospheric structure by compiling and analyzing all the public domain geophysical results and data we could locate and combining them with industry seismic reflection data that were released for our study. This information was employed to interpret a suite of filtered regional maps gravity and magnetic data and to construct integrated gravity models of long profiles that reflect crustal structure and deeper features within the upper mantle of the region. Our analysis included previous seismic refraction/reflection results, EarthScope Automated Array receiver functions, new 2D seismic reflection data, seismic tomography, potential field data, and previous geological studies in order to investigate structural and compositional variations within the crust and upper mantle. Our targets included Precambrian structure and tectonics, Sevier and Laramide features, and Late Cenozoic extension. Our main conclusions are: 1) Receiver function and seismic refraction/reflection crustal thickness estimates show a W-E crustal thickening with thicknesses greater than 50 km in the central and eastern Montana; 2) Seismic reflection data reveal Laramide basement-involved structures as far east as central Montana. These structures also show that the western edge of the North American craton was affected by late Mesozoic to Cenozoic deformation and has thus been decratonized; 3) Potential field filtering methods revealed regional trends and tectonic province outlines. The tilt derivative of the reduced-to-pole magnetic data enhances crystalline basement patterns that reflect tectonic province boundary locations. The upward continuation of the complete Bouguer anomaly grid revealed a gravity high in the northeast portion of the region, which is interpreted to be associated with density variations in the upper mantle. This interpretation is consistent with seismic tomography that reveals a “wedge-like” zone fast material beneath the craton in this region.
Chromosome structure inside the nucleus.
Swedlow, J R; Agard, D A; Sedat, J W
1993-06-01
Recent in situ three-dimensional structural studies have provided a new model for the 30 nm chromatin fiber. In addition, research during the past year has revealed some of the molecular complexity of non-histone chromosomal proteins. Still to come is the unification of molecular insights with chromosomal architecture.
Delta sleep-inducing peptide (DSIP): a still unresolved riddle.
Kovalzon, Vladimir M; Strekalova, Tatyana V
2006-04-01
Delta sleep-inducing peptide (DSIP) was isolated from rabbit cerebral venous blood by Schoenenberger-Monnier group from Basel in 1977 and initially regarded as a candidate sleep-promoting factor. However, the link between DSIP and sleep has never been further characterized, in part because of the lack of isolation of the DSIP gene, protein and possible related receptor. Thus the hypothesis regarding DSIP as a sleep factor is extremely poorly documented and still weak. Although DSIP itself presented a focus of study for a number of researchers, its natural occurrence and biological activity still remains obscure. DSIP structure is different from any other known representative of the various peptide families. In this mini-review we hypothesize the existence of a DSIP-like peptide(s) that is responsible (at least partly) for DSIP-like immunoreactivity and DSIP biological activity. This assumption is based on: (i) a highly specific distribution of DSIP-like immunoreactivity in the neurosecretory hypothalamic nuclei of various vertebrate species that are not particularly relevant for sleep regulation, as revealed by the histochemical studies of the Geneva group (Charnay et al.); (ii) a large spectrum of DSIP biological activity revealed by biochemical and physiological studies in vitro; (iii) significant slow-wave sleep (SWS) promoting activity of certain artificial DSIP structural analogues (but not DSIP itself!) in rabbits and rats revealed by our early studies; and (iv) significant SWS-promoting activity of a naturally occurring dermorphin-decapeptide that is structurally similar to DSIP (in five of the nine positions) and the sleep-suppressing effect of its optical isomer, as revealed in rabbits. Potential future studies are outlined, including natural synthesis and release of this DSIP-like peptide and its role in neuroendocrine regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muench, Stephen P.; Prigge, Sean T.; McLeod, Rima
2007-03-01
The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have beenmore » solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials.« less
Multivariate analysis of fears in dental phobic patients according to a reduced FSS-II scale.
Hakeberg, M; Gustafsson, J E; Berggren, U; Carlsson, S G
1995-10-01
This study analyzed and assessed dimensions of a questionnaire developed to measure general fears and phobias. A previous factor analysis among 109 dental phobics had revealed a five-factor structure with 22 items and an explained total variance of 54%. The present study analyzed the same material using a multivariate statistical procedure (LISREL) to reveal structural latent variables. The LISREL analysis, based on the correlation matrix, yielded a chi-square of 216.6 with 195 degrees of freedom (P = 0.138) and showed a model with seven latent variables. One was a general fear factor correlated to all 22 items. The other six factors concerned "Illness & Death" (5 items), "Failures & Embarrassment" (5 items), "Social situations" (5 items), "Physical injuries" (4 items), "Animals & Natural phenomena" (4 items). One item (opposite sex) was included in both "Failures & Embarrassment" and "Social situations". The last factor, "Social interaction", combined all the items in "Failures & Embarrassment" and "Social situations" (9 items). In conclusion, this multivariate statistical analysis (LISREL) revealed and confirmed a factor structure similar to our previous study, but added two important dimensions not shown with a traditional factor analysis. This reduced FSS-II version measures general fears and phobias and may be used on a routine clinical basis as well as in dental phobia research.
Ultrastructural studies on the boundary tissue of the seminiferous tubules of different mammals.
Cieciura, L; Jaszczuk-Jarosz, B; Pietrzkowska, K
1988-01-01
The aims of our studies were to compare the ultrastructure of the boundary tissue of seminiferous tubules of various mammals (rat, mouse, hamster, guinea pig, rabbit, ram, bull and man). Visual analysis of electron micrographs revealed the similarity of structure of all layers at investigated animals. The boundary tissue consists of 4 layers: 1) amorphous inner lamina, 2) cellular inner lamina, 3) amorphous outer lamina, 4) cellular outer lamina. The outer lamina of boundary tissue of rat, mouse and hamster revealed in histochemical reactions meshes resembling honey-combs. The wall of seminiferous canalicules of bull and ram consists of more bigger and different structure than one at the other laboratory animals. The most different structure of boundary tissue in man was observed. The capillary vessels penetrate in the myofibroblastic layer, when comparted to that found in other mammals on the surface of the wall.
Syn- and anti-conformations of 5'-deoxy- and 5'-O-methyl-uridine 2',3'-cyclic monophosphate.
Grabarkiewicz, Tomasz; Hoffmann, Marcin
2006-01-01
Two uridine 2',3'-cyclic monophosphate (cUMP) derivatives, 5'-deoxy (DcUMP) and 5'-O-methyl (McUMP), were studied by means of quantum chemical methods. Aqueous solvent effects were estimated based on the isodensity-surface polarized-continuum model (IPCM). Gas phase calculations revealed only slight energy differences between the syn- and anti-conformers of both compounds: the relative energies of the syn-structure are -0.9 and 0.2 kcal mol(-1) for DcUMP and McUMP, respectively. According to the results from the IPCM calculations, however, both syn-conformers become about 14 kcal mol(-1) more stable in aqueous solution than their corresponding anti-structures. Additionally, the effects of a countercation and protonation on DcUMP were studied, revealing that the syn-structure is also favored over the anti-one for these systems.
Chowdhury, S Roy; Cao, Jin; He, Yufan; Lu, H Peter
2018-03-27
Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.
Functional dynamics of cell surface membrane proteins
NASA Astrophysics Data System (ADS)
Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio
2014-04-01
Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.
Functional dynamics of cell surface membrane proteins.
Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio
2014-04-01
Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.
Composition and structure of whey protein/gum arabic coacervates.
Weinbreck, F; Tromp, R H; de Kruif, C G
2004-01-01
Complex coacervation in whey protein/gum arabic (WP/GA) mixtures was studied as a function of three main key parameters: pH, initial protein to polysaccharide mixing ratio (Pr:Ps)(ini), and ionic strength. Previous studies had already revealed under which conditions a coacervate phase was obtained. This study is aimed at understanding how these parameters influence the phase separation kinetics, the coacervate composition, and the internal coacervate structure. At a defined (Pr:Ps)(ini), an optimum pH of complex coacervation was found (pH(opt)), at which the strength of electrostatic interaction was maximum. For (Pr:Ps)(ini) = 2:1, the phase separation occurred the fastest and the final coacervate volume was the largest at pH(opt) = 4.0. The composition of the coacervate phase was determined after 48 h of phase separation and revealed that, at pH(opt), the coacervate phase was the most concentrated. Varying the (Pr:Ps)(ini) shifted the pH(opt) to higher values when (Pr:Ps)(ini) was increased and to lower values when (Pr:Ps)(ini) was decreased. This phenomenon was due to the level of charge compensation of the WP/GA complexes. Finally, the structure of the coacervate phase was studied with small-angle X-ray scattering (SAXS). SAXS data confirmed that at pH(opt) the coacervate phase was dense and structured. Model calculations revealed that the structure factor of WP induced a peak at Q = 0.7 nm(-1), illustrating that the coacervate phase was more structured, inducing the stronger correlation length of WP molecules. When the pH was changed to more acidic values, the correlation peak faded away, due to a more open structure of the coacervate. A shoulder in the scattering pattern of the coacervates was visible at small Q. This peak was attributed to the presence of residual charges on the GA. The peak intensity was reduced when the strength of interaction was increased, highlighting a greater charge compensation of the polyelectrolyte. Finally, increasing the ionic strength led to a less concentrated, a more heterogeneous, and a less structured coacervate phase, induced by the screening of the electrostatic interactions.
Asymmetric structure of five and six membered DNA hairpin loops
NASA Technical Reports Server (NTRS)
Baumann, U.; Chang, S.
1995-01-01
The tertiary structure of nucleic acid hairpins was elucidated by means of the accessibility of the single-strand-specific nuclease from mung bean. This molecular probe has proven especially useful in determining details of the structural arrangement of the nucleotides within a loop. In this study 3'-labeling is introduced to complement previously used 5'-labeling in order to assess and to exclude possible artifacts of the method. Both labeling procedures result in mutually consistent cleavage patterns. Therefore, methodological artifacts can be excluded and the potential of the nuclease as structural probe is increased. DNA hairpins with five and six membered loops reveal an asymmetric loop structure with a sharp bend of the phosphate-ribose backbone between the second and third nucleotide on the 3'-side of a loop. These hairpin structures differ from smaller loops with 3 or 4 members, which reveal this type of bend between the first and second 3' nucleotide, and resemble with respect to the asymmetry anticodon loops of tRNA.
NASA Astrophysics Data System (ADS)
Najeh, I.; Ben Mansour, N.; Mbarki, M.; Houas, A.; Nogier, J. Ph.; El Mir, L.
2009-10-01
Electrical conducting carbon (ECC) porous structures were explored by changing the pyrolysis temperature of organic xerogel compounds prepared by sol-gel method from resorcinol-formaldehyde (RF) mixtures in acetone using picric acid as catalyst. The effect of this preparation parameter on the structural and electrical properties of the obtained ECCs was studied. The analysis of the obtained results revealed that the polymeric insulating xerogel phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers to move inside the structure with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity of the obtained ECC structures shows a semi-conducting behaviour and the I( V) characteristics present a negative differential resistance. The results obtained from STM micrographs revealed that the obtained ECC structures consist of porous electrical conducting carbon materials.
Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.
Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben
2015-10-13
Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.
Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases
Lohman, Jeremy R.; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben
2015-01-01
Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs. PMID:26420866
Pinotsis, Nikos; Waksman, Gabriel
2017-06-02
Legionnaires' disease is a severe form of pneumonia caused by the bacterium Legionella pneumophila. L. pneumophila pathogenicity relies on secretion of more than 300 effector proteins by a type IVb secretion system. Among these Legionella effectors, WipA has been primarily studied because of its dependence on a chaperone complex, IcmSW, for translocation through the secretion system, but its role in pathogenicity has remained unknown. In this study, we present the crystal structure of a large fragment of WipA, WipA435. Surprisingly, this structure revealed a serine/threonine phosphatase fold that unexpectedly targets tyrosine-phosphorylated peptides. The structure also revealed a sequence insertion that folds into an α-helical hairpin, the tip of which adopts a canonical coiled-coil structure. The purified protein was a dimer whose dimer interface involves interactions between the coiled coil of one WipA molecule and the phosphatase domain of another. Given the ubiquity of protein-protein interaction mediated by interactions between coiled-coils, we hypothesize that WipA can thereby transition from a homodimeric state to a heterodimeric state in which the coiled-coil region of WipA is engaged in a protein-protein interaction with a tyrosine-phosphorylated host target. In conclusion, these findings help advance our understanding of the molecular mechanisms of an effector involved in Legionella virulence and may inform approaches to elucidate the function of other effectors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Sortase Transpeptidases: Structural Biology and Catalytic Mechanism
Jacobitz, Alex W.; Kattke, Michele D.; Wereszczynski, Jeff; Clubb, Robert T.
2017-01-01
Gram-positive bacteria use sortase cysteine transpeptidase enzymes to covalently attach proteins to their cell wall and to assemble pili. In pathogenic bacteria sortases are potential drug targets, as many of the proteins that they display on the microbial surface play key roles in the infection process. Moreover, the Staphylococcus aureus Sortase A (SaSrtA) enzyme has been developed into a valuable biochemical reagent because of its ability to ligate biomolecules together in vitro via a covalent peptide bond. Here we review what is known about the structures and catalytic mechanism of sortase enzymes. Based on their primary sequences, most sortase homologs can be classified into six distinct subfamilies, called class A–F enzymes. Atomic structures reveal unique, class-specific variations that support alternate substrate specificities, while structures of sortase enzymes bound to sorting signal mimics shed light onto the molecular basis of substrate recognition. The results of computational studies are reviewed that provide insight into how key reaction intermediates are stabilized during catalysis, as well as the mechanism and dynamics of substrate recognition. Lastly, the reported in vitro activities of sortases are compared, revealing that the transpeptidation activity of SaSrtA is at least 20-fold faster than other sortases that have thus far been characterized. Together, the results of the structural, computational, and biochemical studies discussed in this review begin to reveal how sortases decorate the microbial surface with proteins and pili, and may facilitate ongoing efforts to discover therapeutically useful small molecule inhibitors. PMID:28683919
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; ...
2015-03-01
In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein inToxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops.more » The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated n vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Lastly, enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Miyanaga, Akimasa
2017-12-01
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.
Structural Network Disorganization in Subjects at Clinical High Risk for Psychosis.
Schmidt, André; Crossley, Nicolas A; Harrisberger, Fabienne; Smieskova, Renata; Lenz, Claudia; Riecher-Rössler, Anita; Lang, Undine E; McGuire, Philip; Fusar-Poli, Paolo; Borgwardt, Stefan
2017-05-01
Previous network studies in chronic schizophrenia patients revealed impaired structural organization of the brain's rich-club members, a set of highly interconnected hub regions that play an important integrative role for global brain communication. Moreover, impaired rich-club connectivity has also been found in unaffected siblings of schizophrenia patients, suggesting that abnormal rich-club connectivity is related to familiar, possibly reflecting genetic, vulnerability for schizophrenia. However, no study has yet investigated whether structural rich-club organization is also impaired in individuals with a clinical risk syndrome for psychosis. Diffusion tensor imaging and probabilistic tractography was used to construct structural whole-brain networks in 24 healthy controls and 24 subjects with an at-risk mental state (ARMS). Graph theory was applied to quantify the structural rich-club organization and global network properties. ARMS subjects revealed a significantly altered structural rich-club organization compared with the control group. The disruption of rich-club organization was associated with the severity of negative psychotic symptoms and led to an elevated level of modularity in ARMS subjects. This study shows that abnormal structural rich-club organization is already evident in clinical high-risk subjects for psychosis and further demonstrates the impact of rich-club disorganization on global network communication. Together with previous evidence in chronic schizophrenia patients and unaffected siblings, our findings suggest that abnormal structural rich-club organization may reflect an endophenotypic marker of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne
2015-02-10
Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.
Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Fujita, Fumitaka; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Okada, Fumihiro
2017-01-01
Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion. PMID:28636607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira
The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of themore » Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.« less
Ethnicity and Anxiety: A Psychometric Evaluation of the STICSA
ERIC Educational Resources Information Center
Lancaster, Steven L.; Melka, Stephen E.; Klein, Keith P.; Rodriguez, Benjamin F.
2015-01-01
The current study examined the convergent validity and factor structure of the State-Trait Inventory of Cognitive and Somatic Anxiety in a sample of African Americans and European Americans. Validity analyses revealed similar associations; however, the factor analysis failed to support the original factor structure and factorial variance was…
USDA-ARS?s Scientific Manuscript database
Much processing of cotton fibrous materials accompanies heat treatments. Despite their critical influence on the properties of the material, the structural responses of cotton fiber to elevated temperatures remain uncertain. This study demonstrated that modeling the temperature dependence of the fib...
USDA-ARS?s Scientific Manuscript database
Studies describing the population genetic structure and breeding system of basal lineages of termite species remain rare. Such species, however, may reveal ancestral life history attributes potentially influential in the evolution of eusociality within the Order Isoptera. Through the development and...
A New History, Macrohistory, and Structure in History.
ERIC Educational Resources Information Center
Emerson, Mark F.
Toward the improvement of teaching history and to provide student insights into the study of history, a course involving structure, relevancy, an interdisciplinary approach, and innovation is suggested which advocates analyzing what has happened in the past as a whole, as revealed by the various sciences of archaeology, anthropology, paleontology,…
NASA Astrophysics Data System (ADS)
Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Kazak, N. V.; Bezmaternykh, L. N.; Vasiliev, A. D.
2013-06-01
A concentration series of single crystals of iron-cobalt ludwigites Co3 - x Fe x O2BO3 ( x = 0.0125, 0.025, 0.050, 0.10, 1.0) has been synthesized. The structure has been studied using X-ray diffraction and Mössbauer effect. A preferred occupation of nonequivalent crystallographic positions by iron in the ludwigite structure has been revealed. It has been found that the valence of substituting iron ions is three. It has been revealed that the structure of the γ-resonance spectrum of Co2FeO2BO3 is complicated due to a composition disorder in the system.
Revealing the Structure of a Granular Medium through Ballistic Sound Propagation
NASA Astrophysics Data System (ADS)
Lherminier, S.; Planet, R.; Simon, G.; Vanel, L.; Ramos, O.
2014-08-01
We study the propagation of sound through a bidimensional granular medium consisting of photoelastic disks, which are packed into different crystalline and disordered structures. Acoustic sensors placed at the boundaries of the system capture the acoustic signal produced by a local and well-controlled mechanical excitation. By compressing the system, we find that the speed of the ballistic part of the acoustic wave behaves as a power law of the applied force with both exponent and prefactor sensitive to the internal geometry of the contact network. This information, which we are able to link to the force-deformation relation of single grains under different contact geometries, provides enough information to reveal the structure of the granular medium.
Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.
Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan
2008-01-01
The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.
Study of diffusion and local structure of sodium-silicate liquid: the molecular dynamic simulation
NASA Astrophysics Data System (ADS)
Hung, Pham Khac; Noritake, Fumiya; San, Luyen Thi; Van, To Ba; Vinh, Le The
2017-10-01
A systematic analysis on sodium-silicate melt with various silica contents was carried out. The simulation revealed two diffusion mechanisms occurred in the melt: the bond-breaking and hopping between sites. The local structure was analyzed through T-simplexes. It was revealed that T-clusters have a non-spherical shape and represent the diffusion channel, in which Na atoms are dominant, but no any O atoms are located. The SiO2-poor melt acquires a long channel. In contrast, the SiO2-rich melt consists of unconnected short channels. The simulation also revealed the immobile and mobile regions which differ in local structure and constituent composition. We propose a new CL-function to characterizing the spatial distribution of different atom component. The spatial distribution of mobile and immobile atoms is found quite different. In particular, the immobile atoms are concentrated in high-density regions possessing very large density of immobile atoms. The spatial distribution of mobile atoms in contrast is more homogeneous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu,P.
2007-01-01
Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present studymore » were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the percentage of {beta}-sheets (from 37.2% to 49.8%: S-FTIR absorption intensity) and reduced the {alpha}-helix to {beta}-sheet ratio (from 0.3 to 0.7) in the golden flaxseeds, which indicated a negative effect of the roasting on protein values, utilisation and bioavailability. These results were proved by the Cornell Net Carbohydrate Protein System in situ animal trial, which also revealed that roasting increased the amount of protein bound to lignin, and well as of the Maillard reaction protein (both of which are poorly used by ruminants), and increased the level of indigestible and undegradable protein in ruminants. The present results demonstrate the potential of highly spatially resolved synchrotron-based infrared microspectroscopy to locate 'pure' protein in feed tissues, and reveal protein secondary structures and digestive behaviour, making a significant step forward in and an important contribution to protein nutritional research. Further study is needed to determine the sensitivities of protein secondary structures to various heat-processing conditions, and to quantify the relationship between protein secondary structures and the nutrient availability and digestive behaviour of various protein sources. Information from the present study arising from the synchrotron-based IR probing of the protein secondary structures of protein sources at the cellular level will be valuable as a guide to maintaining protein quality and predicting digestive behaviours.« less
NASA Astrophysics Data System (ADS)
Chouikri, Ibtissam; el Mandour, Abdennabi; Jaffal, Mohammed; Baudron, Paul; García-Aróstegui, José-Luis; Manar, Ahmed; Casas, Albert
2016-03-01
This study provides new elements that illustrate the benefits of combining gravity, structural, stratigraphic and piezometric data for hydrogeological purposes. A combined methodology was applied to the western Haouz aquifer (Morocco), one of the main sources of water for irrigation and human consumption in the Marrakech region. First, a residual anomaly map was calculated from the Bouguer anomaly data. The computed map provided information on the ground density variation, revealing a strong control by a regional gradient. We then used various filtering techniques to delineate the major geological structures such as faults and basins: vertical and horizontal derivatives and upward continuation. This technique highlighted news structures and provided information on their dip. The gravity anomalies perfectly delineated the basement uplifts and the sedimentary thickening in depressions and grabens. The interpretation of gravimetric filtering, geological and hydrogeological data then highlighted two types of groundwater reservoirs, an unconfined aquifer hosted in conglomeratic mio-pliocene and quaternary rocks, covering the entire western Haouz and a deep confined aquifer contained in cenomanian-turonian limestone and eocene dolomitic formations in the south. Combining piezometric and residual anomaly maps revealed that groundwater flow and storage was in perfect agreement with the structures showing a negative anomaly, while structures with positive anomalies corresponded to groundwater divides. The study of gravity gradient zones by contact analysis enhanced the existing structural pattern of the study area and highlighted new structures, mainly oriented N70 and N130. The results of this study present a common framework and provide a notable step forward in the knowledge of the geometry and the groundwater flow pattern of the western Haouz aquifer, and will serve as a solid basis for a better water resource management.
Statistical physics approaches to Alzheimer's disease
NASA Astrophysics Data System (ADS)
Peng, Shouyong
Alzheimer's disease (AD) is the most common cause of late life dementia. In the brain of an AD patient, neurons are lost and spatial neuronal organizations (microcolumns) are disrupted. An adequate quantitative analysis of microcolumns requires that we automate the neuron recognition stage in the analysis of microscopic images of human brain tissue. We propose a recognition method based on statistical physics. Specifically, Monte Carlo simulations of an inhomogeneous Potts model are applied for image segmentation. Unlike most traditional methods, this method improves the recognition of overlapped neurons, and thus improves the overall recognition percentage. Although the exact causes of AD are unknown, as experimental advances have revealed the molecular origin of AD, they have continued to support the amyloid cascade hypothesis, which states that early stages of aggregation of amyloid beta (Abeta) peptides lead to neurodegeneration and death. X-ray diffraction studies reveal the common cross-beta structural features of the final stable aggregates-amyloid fibrils. Solid-state NMR studies also reveal structural features for some well-ordered fibrils. But currently there is no feasible experimental technique that can reveal the exact structure or the precise dynamics of assembly and thus help us understand the aggregation mechanism. Computer simulation offers a way to understand the aggregation mechanism on the molecular level. Because traditional all-atom continuous molecular dynamics simulations are not fast enough to investigate the whole aggregation process, we apply coarse-grained models and discrete molecular dynamics methods to increase the simulation speed. First we use a coarse-grained two-bead (two beads per amino acid) model. Simulations show that peptides can aggregate into multilayer beta-sheet structures, which agree with X-ray diffraction experiments. To better represent the secondary structure transition happening during aggregation, we refine the model to four beads per amino acid. Typical essential interactions, such as backbone hydrogen bond, hydrophobic and electrostatic interactions, are incorporated into our model. We study the aggregation of Abeta16-22, a peptide that can aggregate into a well-ordered fibrillar structure in experiments. Our results show that randomly-oriented monomers can aggregate into fibrillar subunits, which agree not only with X-ray diffraction experiments but also with solid-state NMR studies. Our findings demonstrate that coarse-grained models and discrete molecular dynamics simulations can help researchers understand the aggregation mechanism of amyloid peptides.
ERIC Educational Resources Information Center
Araujo, Katy B.; Medic, Sanja; Yasnovsky, Jessica; Steiner, Hans
2006-01-01
This study used the Response Evaluation Measure-Youth (REM-Y-71), a self-report measure of 21 defense reactions, among school-age children. Participants were elementary and middle school students (n=290; grades 3-8; age range: 8-15; mean=11.73). Factor analysis revealed a 2-factor defense structure consistent with structure among high school and…
Photoelectron spectra and biological activity of cinnamic acid derivatives revisited
NASA Astrophysics Data System (ADS)
Novak, Igor; Klasinc, Leo; McGlynn, Sean P.
2018-01-01
The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).
The Relationship between Charge Nurse Leadership Style and Staff Nurse Job Satisfaction
1985-12-01
8217 Leadership Styles and Number of Each Style ............................................ 43 13. Staff Nurse Job Satisfaction Information and Charge -a Nurse... leadership styles , were possible: 1. high consideration-high structure 2. high consideration-moderate structure 3. high consideration-low structure. 4...exhibit particular leadership styles . The study also revealed other factors relating to job satisfaction among staff nurses, which can be used by nurses
Kanagarajadurai, Karuppiah; Malini, Manoharan; Bhattacharya, Aditi; Panicker, Mitradas M; Sowdhamini, Ramanathan
2009-12-01
The serotonergic system has been implicated in emotional and cognitive function. In particular, 5-HT(2A) (5-hydroxytrytamine receptor 2A) is attributed to a number of disorders like schizophrenia, depression, eating disorders and anxiety. 5-HT(2A), being a GPCR (G-protein coupled receptor), is important in the pharmaceutical industry as a proven target for these disorders. Despite their extensive clinical importance, the structural studies of this protein is lacking due to difficulties in determining its crystal structure. We have performed sequence analysis and molecular modeling of 5-HT(2A) that has revealed a set of conserved residues and motifs considered to play an important role in maintaining structural integrity and function of the receptor. The analysis also revealed a set of residues specific to the receptor which distinguishes them from other members of the subclass and their orthologs. Further, starting from the model structure of human 5-HT(2A) receptor, docking studies were attempted to envisage how it might interact with eight of its ligands (such as serotonin, dopamine, DOI, LSD, haloperidol, ketanserin, risperidone and clozapine). The binding studies of dopamine to 5-HT(2A) receptor can bring up better understanding in the etiology of a number of neurological disorders involving both these two receptors. Our sequence analysis and study of interactions of this receptor with other ligands reveal additional residue hotspots such as Asn 363 and Tyr 370. The function of these residues can be further analyzed by rational design of site-directed mutagenesis. Two distinct binding sites are identified which could play important roles in ligand binding and signaling.
Revealing structure within the coronae of Seyfert galaxies
NASA Astrophysics Data System (ADS)
Wilkins, D.
2017-10-01
Detailed analysis of the reflection and reverberation of X-rays from the innermost regions of AGN accretion discs reveals the structure and processes that produce the intense continuum emission and the extreme variability we see, right down to the innermost stable orbit and event horizon of the black hole. Observations of Seyfert galaxies spanning more than a decade have enabled measurement of the geometry of the corona and how it evolves, leading to orders of magnitude of variability. They reveal processes the corona undergoes during transient events, notably the collimation and ejection of the corona during X-ray flares, reminiscent of the aborted launching of a jet. Recent reverberation studies, including those of the Seyfert galaxy I Zwicky 1 with XMM-Newton, are revealing structures within the corona for the first time. A persistent collimated core is found, akin to the base of a jet embedded in the innermost regions. The evolution of both the collimated and extended portions point to the mechanisms powering the X-ray emission and variability. This gives us important constraints on the processes by which energy is liberated from black hole accretion flows and by which jets are launched, allowing us to understand how these extreme objects are powered.
Structural behavior of ZnCr 2S 4 spinel under pressure
Efthimiopoulos, I.; Lochbiler, T.; Tsurkan, V.; ...
2016-12-15
Here, the series of Cr-chalcogenide spinels ACr 2X 4 (A = Zn, Cd, Hg; X = S, Se) exhibits a rich phase diagram upon compression, as revealed by our recent investigations. There exist, however, some open questions regarding the role of cations in the observed structural transitions. In order to address these queries, we have performed X-ray diffraction and Raman spectroscopic studies on the ZnCr 2S 4 spinel up to 42 GPa, chosen mainly due to the similarity of the Zn 2+ and Cr 3+ cationic radii. Two reversible structural transitions were identified at 22 and 33 GPa, into a I4 1/ amd and an orthorhombic phase, respectively. Close comparison with the behavior of relevant Cr-spinels revealed that the structural transitions are mainly governed by the competition of the magnetic exchange interactions present in these systems, and not by steric effects. In addition, careful inspection of the starting Fdmore » $$\\bar{3}$$m phase revealed a previously unnoticed isostructural transition. The latter is intimately related to changes in the electronic properties of these systems, as evidenced by our Raman studies. Our results provide insights for tuning the physical and chemical properties of these materials, even under moderate compression, as well as promoting the understanding of similar pressure-induced effects in relevant systems.« less
Insular Celtic population structure and genomic footprints of migration
Hellenthal, Garrett
2018-01-01
Previous studies of the genetic landscape of Ireland have suggested homogeneity, with population substructure undetectable using single-marker methods. Here we have harnessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP dataset, identifying 23 discrete genetic clusters which segregate with geographical provenance. Cluster diversity is pronounced in the west of Ireland but reduced in the east where older structure has been eroded by historical migrations. Accordingly, when populations from the neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is revealed along with a particularly striking correlation between haplotypes and geography across both islands. A strong relationship is revealed between subsets of Northern Irish and Scottish populations, where discordant genetic and geographic affinities reflect major migrations in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely reflects older strata of communication across the narrowest inter-island crossing. Using GLOBETROTTER we detected Irish admixture signals from Britain and Europe and estimated dates for events consistent with the historical migrations of the Norse-Vikings, the Anglo-Normans and the British Plantations. The influence of the former is greater than previously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic landscape of Ireland, revealing structure which should be considered in the design of studies examining rare genetic variation and its association with traits. PMID:29370172
Studying the Consistency between and within the Student Mental Models for Atomic Structure
ERIC Educational Resources Information Center
Zarkadis, Nikolaos; Papageorgiou, George; Stamovlasis, Dimitrios
2017-01-01
Science education research has revealed a number of student mental models for atomic structure, among which, the one based on Bohr's model seems to be the most dominant. The aim of the current study is to investigate the coherence of these models when students apply them for the explanation of a variety of situations. For this purpose, a set of…
Properties of the carbon-palladium nanocomposites studied by Raman spectroscopy method
NASA Astrophysics Data System (ADS)
Belka, Radosław; Suchańska, Małgorzata
2013-10-01
In this paper, the results for thin carbon-palladium (C-Pd) nanocomposites obtained by PVD (Physical Vapour Deposition) and PVD/CVD (Chemical Vapour Deposition) method, carried out using Raman spectroscopy method are presented. Studies reveal the dominance of fullerene-like structure for PVD samples and graphite-like structures for CVD samples. The type of substrate and metal content have great impact on spectra shapes.
Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan
2013-01-01
Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.
Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji
2017-09-20
Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.
Tang, Yuchun; Zhao, Lu; Lou, Yunxia; Shi, Yonggang; Fang, Rui; Lin, Xiangtao; Liu, Shuwei; Toga, Arthur
2018-05-01
Numerous behavioral observations and brain function studies have demonstrated that neurological differences exist between East Asians and Westerners. However, the extent to which these factors relate to differences in brain structure is still not clear. As the basis of brain functions, the anatomical differences in brain structure play a primary and critical role in the origination of functional and behavior differences. To investigate the underlying differences in brain structure between the two cultural/ethnic groups, we conducted a comparative study on education-matched right-handed young male adults (age = 22-29 years) from two cohorts, Han Chinese (n = 45) and Caucasians (n = 45), using high-dimensional structural magnetic resonance imaging (MRI) data. Using two well-validated imaging analysis techniques, surface-based morphometry (SBM) and voxel-based morphometry (VBM), we performed a comprehensive vertex-wise morphometric analysis of the brain structures between Chinese and Caucasian cohorts. We identified consistent significant between-group differences in cortical thickness, volume, and surface area in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices. The SBM analyses revealed that compared with Caucasians, the Chinese population showed larger cortical structures in the temporal and cingulate regions, and smaller structural measures in the frontal and parietal cortices. The VBM data of the same sample was well-aligned with the SBM findings. Our findings systematically revealed comprehensive brain structural differences between young male Chinese and Caucasians, and provided new neuroanatomical insights to the behavioral and functional distinctions in the two cultural/ethnic populations. © 2018 Wiley Periodicals, Inc.
Gioannini, Theresa L; Teghanemt, Athmane; Zhang, DeSheng; Esparza, Gregory; Yu, Liping; Weiss, Jerrold
2014-08-01
A major focus of work in our laboratory concerns the molecular mechanisms and structural bases of Gram-negative bacterial endotoxin recognition by host (e.g., human) endotoxin-recognition proteins that mediate and/or regulate activation of Toll-like receptor (TLR) 4. Here, we review studies of wild-type and variant monomeric endotoxin.MD-2 complexes first produced and characterized in our laboratories. These purified complexes have provided unique experimental reagents, revealing both quantitative and qualitative determinants of TLR4 activation and antagonism. This review is dedicated to the memory of Dr. Theresa L. Gioannini (1949-2014) who played a central role in many of the studies and discoveries that are reviewed.
NASA Astrophysics Data System (ADS)
Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge
2008-10-01
Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himanen, J.; Goldgur, Y; Miao, H
2009-01-01
Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B-class receptors. Here, we present the crystal structures of an A-class complex between EphA2 and ephrin-A1 and of unbound EphA2. Although these structures are similar overall to their B-class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A-class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a 'lock-and-key'-type binding mechanism, in contrast to the 'induced fit' mechanism defining the B-class molecules.more » This model is supported by structure-based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell-based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2-specific homotypic cell adhesion interactions.« less
EEG resolutions in detecting and decoding finger movements from spectral analysis
Xiao, Ran; Ding, Lei
2015-01-01
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720
Finnegan, Michaela L.; Bowler, Bruce E.
2010-01-01
Histidine-heme loop formation in the denatured state of a protein is a sensitive means to probe for residual structure under unfolding conditions. In this study, we use a host-guest approach to investigate the relative tendencies of different amino acids to promote residual structure under denaturing conditions. The host for this work is a 6 amino acid insert of five alanines followed by a lysine engineered immediately following a unique histidine near the N-terminus of yeast iso-1-cytochrome c. We substitute the 4th alanine in this sequence, HAAAXAK, with X = Trp, Phe, Tyr and Leu. The effects of proline are tested with substitutions at positions 1 and 5 in the insert, HPAAAAK and HAAAAPK, respectively. Thermodynamic studies on His-heme loop formation in 3 M guanidine hydrochloride reveal significant stabilization of residual structure by aromatic amino acids, particularly, Trp and Phe, and minimal stabilization of residual structure by Leu. Prolines disfavor His-heme loop formation slightly, presumably due to enhanced chain stiffness. Kinetic studies reveal that much of the change in His-heme loop stability for the aromatic amino acids is caused by a slowing of the rate of His-heme loop breakage, indicating that residual structure is preferentially stabilized in the closed-loop form of the denatured state. PMID:20850458
Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.
Manya, Hiroshi; Endo, Tamao
2017-10-01
O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.
Epitope mapping of the domains of human angiotensin converting enzyme.
Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E
2006-06-01
Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.
Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley
2015-06-01
Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.
2015-01-01
Numerous kinetic, structural, and theoretical studies have established that DNA polymerases adjust their domain structures to enclose nucleotides in their active sites and then rearrange critical active site residues and substrates for catalysis, with the latter conformational change acting to kinetically limit the correct nucleotide incorporation rate. Additionally, structural studies have revealed a large conformational change between the apoprotein and the DNA–protein binary state for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell, B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance energy transfer (FRET) method was developed to monitor the global conformational transitions of DNA polymerase IV from Sulfolobus solfataricus (Dpo4), a prototype Y-family enzyme, during nucleotide binding and incorporation by measuring changes in distance between locations on the enzyme and the DNA substrate. To elucidate further details of the conformational transitions of Dpo4 during substrate binding and catalysis, in this study, the real-time FRET technique was used to monitor changes in distance between various pairs of locations in the protein itself. In addition to providing new insight into the conformational changes as revealed in previous studies, the results here show that the previously described conformational change between the apo and DNA-bound states of Dpo4 occurs in a mechanistic step distinct from initial formation or dissociation of the binary complex of Dpo4 and DNA. PMID:24568554
NASA Astrophysics Data System (ADS)
Sreeparvathy, P. C.; Kanchana, V.
2017-12-01
A systematic study which reveals the low thermal conductivity and high thermopower on a series of natural superlattice structures in the form BaXFCh (X: Cu, Ag, Ch: S, Se, Te), LaXSO (X: Cu, Ag) and SrCuTeF are presented. Low thermal conductivity is predicted by combining elastic constants and few well established models. The electronic properties reveal the highly two dimensional nature of band structure in the valence band, and this is confirmed through effective mass calculations. The huge difference in effective mass along different crystallographic directions in valence band introduces anisotropy in the transport properties for hole doping, and 'a' axis is found to be more favourable. In addition to these, the parameter A (S2σ/τT/κe /τ), which can decouple the relaxation time is also calculated, and it reveals the possibility of good thermoelectric properties in these compounds. Our results are comparable with prototype thermoelectric materials, and show better values than traditional TE materials.
NASA Astrophysics Data System (ADS)
Ravikumar, M.; Valanarasu, S.; Chandramohan, R.; Jacob, S. Santhosh Kumar; Kathalingam, A.
2015-08-01
CdO thin films were deposited on glass and silicon substrates by simple perfume atomizer at 350°C using cadmium acetate and trisodium citrate (TSC). The effect of the TSC concentration on the structural, morphological, optical, and photoconductive properties of the prepared CdO thin films was investigated. X-Ray diffraction (XRD) studies of the deposited films revealed improvement in crystalline nature with increase of TSC concentration. Films prepared without TSC showed porous nature, not fully covering the substrate, whereas films prepared using TSC exhibited full coverage of the substrate with uniform particles. Optical transmittance study of the films showed high transmittance (50% to 60%), and the absorption edge was found to shift towards the red region depending on the TSC concentration. The films exhibited a direct band-to-band transition with bandgap varying between 2.31 eV and 2.12 eV. Photoconductivity studies of the n-CdO/ p-Si structure for various TSC concentrations were also carried out. I- V characteristics of this n-CdO/ p-Si structure revealed the formation of rectifying junctions, and its photoconductivity was found to increase with the TSC concentration.
Personality of Wild Male Crested Macaques (Macaca nigra)
Neumann, Christof; Agil, Muhammad; Widdig, Anja; Engelhardt, Antje
2013-01-01
Animal personalities, i.e. consistent differences in behavior across time and/or context, have received increased attention of behavioral biologists over the last years. Recent research shows that personalities represent traits on which natural and sexual selection work and which can have substantial fitness consequences. The aim of this study is to establish the personality structure of crested macaque (Macaca nigra) males as foundation for future studies on its adaptive value. We collected behavioral data through focal animal sampling and additionally conducted two sets of playback experiments. Results of a factor analysis on the behavioral data revealed a four factor structure with components we labeled Anxiety, Sociability, Connectedness and Aggressiveness. Results from the experiments revealed an additional and independent Boldness factor but the absence of Neophilia. Overall, this structure resembles other macaque and animal species with the exception of Connectedness, which might be a consequence of the species' tolerant social style. Our results thus not only form the basis for future studies on the adaptive value of personality in crested macaques but also contribute an important data point for investigating the evolution of personality structure from a comparative perspective by refining, for example, which personality factors characterized the last common ancestor of hominids and macaques. PMID:23940517
Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C
2001-11-09
The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.
2015-03-01
The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2)more » in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Li, Lei; Wang, Jin; Jia, Zhihui; Shaw, Neil
2018-04-01
Recent studies suggest a link between infection by Zika virus (ZIKV) and the development of neurological complications. The lack of ZIKV-specific therapeutics has alarmed healthcare professionals worldwide. Here, crystal structures of apo and AMPPNP- and Mn 2+ -bound forms of the essential helicase of ZIKV refined to 1.78 and 1.3 Å resolution, respectively, are reported. The structures reveal a conserved trimodular topology of the helicase. ATP and Mn 2+ are tethered between two RecA-like domains by conserved hydrogen-bonding interactions. The binding of ligands induces the movement of backbone Cα and side-chain atoms. Numerous solvent molecules are observed in the vicinity of the AMPPNP, suggesting a role in catalysis. These high-resolution structures could be useful for the design of inhibitors targeting the helicase of ZIKV for the treatment of infections caused by ZIKV.
Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.
Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae
2013-11-26
Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.
Microwave assisted growth of nanorods vanadium dioxide VO2 (R): structural and electrical properties
NASA Astrophysics Data System (ADS)
Derkaoui, I.; Khenfouch, M.; Mothudi, B. M.; Moloi, S. J.; Zorkani, I.; Jorio, A.; Maaza, M.
2018-03-01
Nanostructured metal oxides have attracted a lot of attention recently owning to their unique structural advantages and demonstrated promising chemical and physical properties for various applications. In this study, we report the structural and electrical properties of vanadium dioxide VO2 (R) prepared via a single reaction microwave (SRC) synthesis. Our results are revealing that the components of VO2 (R) films have a rod-like shape with a uniform size distribution. The nanorods with very smooth and flat surfaces have a typical length of up to 2μm and a width of about several nanometers. The structural investigations reveal the high crystallinity of VO2 (R) ensuring good electrical contact and showing a high conductivity as a function of temperature. This synthesis method provides a new simple route to fabricate one-dimensional nanostructured metal oxides which is suitable for a large field of applications especially for smart windows.
Li, Hongbin; Fernandez, Julio M
2003-11-14
The elastic I-band part of muscle protein titin contains two tandem immunoglobulin (Ig) domain regions of distinct mechanical properties. Until recently, the only known structure was that of the I27 module of the distal region, whose mechanical properties have been reported in detail. Recently, the structure of the first proximal domain, I1, has been resolved at 2.1A. In addition to the characteristic beta-sandwich structure of all titin Ig domains, the crystal structure of I1 showed an internal disulfide bridge that was proposed to modulate its mechanical extensibility in vivo. Here, we use single molecule force spectroscopy and protein engineering to examine the mechanical architecture of this domain. In contrast to the predictions made from the X-ray crystal structure, we find that the formation of a disulfide bridge in I1 is a relatively rare event in solution, even under oxidative conditions. Furthermore, our studies of the mechanical stability of I1 modules engineered with point mutations reveal significant differences between the mechanical unfolding of the I1 and I27 modules. Our study illustrates the varying mechanical architectures of the titin Ig modules.
NASA Astrophysics Data System (ADS)
Jatav, Bheem Singh
2018-06-01
In the present paper, the numerical simulation of Inertial Alfven wave (IAW) in low-β plasma applicable to the auroral region at 1700 km was studied. It leads to the formation of localized structures when the nonlinearity arises due to ponderomotive effect and Joule heating. The effect of perturbation and magnitude of pump IAW, formed the localized structures of magnetic field, has been studied. The formed localized structures at different times and average spectral index scaling of power spectrum have been observed. Results obtained from simulation reveal that spectrum steepens with power law index ˜ -3.5 for shorter wavelength. These localized structures could be a source of particle acceleration and heating by pump IAW in low- β plasma.
Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel
2014-01-01
Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.
Asymmetric hindwing foldings in rove beetles.
Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji
2014-11-18
Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.
NASA Astrophysics Data System (ADS)
Saravanan, K.; Jayalakshmi, G.; Suresh, K.; Sundaravel, B.; Panigrahi, B. K.; Phase, D. M.
2018-03-01
We report the structural evolution of reduced graphene oxide (rGO) in graphene oxide (GO) flakes during 1 MeV Si+ ion irradiation. In-situ electrical resistivity measurements facilitate monitoring the sheet resistance with the increase in the fluence. The electrical sheet resistance of the GO flake shows the exponential decay behaviour with the increasing ion fluence. Raman spectra of the GO flake reveal the increase in the ID/IG ratio, indicating restoration of the sp2 network upon irradiation. The C/O ratio estimated from resonant Rutherford backscattering spectrometry analysis directly evidenced the reduction of oxygen moieties upon irradiation. C K-edge X-ray absorption near edge structure spectra reveal the restoration of C=C sp2-hybridized carbon atoms and the removal of oxygen-containing functional groups in the GO flake. STM data reveal the higher conductance in the rGO regime in comparison with the regime, where the oxygen functional groups are present. The experimental investigation demonstrates that the ion irradiation can be employed for efficient reduction of GO with tunable electrical and structural properties.
NASA Astrophysics Data System (ADS)
Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.
2018-02-01
We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.
Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite
NASA Astrophysics Data System (ADS)
Post, J. E.; Bish, D. L.; Heaney, P. J.
2006-05-01
Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.
Iranian Validation of the Identity Style Inventory
ERIC Educational Resources Information Center
Crocetti, Elisabetta; Shokri, Omid
2010-01-01
The purpose of this study was to validate the Iranian version of the Identity Style Inventory (ISI). Participants were 376 (42% males) university students. Confirmatory factor analyses revealed a clear three-factor structure of identity style and a mono-factor structure of commitment in the overall sample as well as in gender subgroups. Convergent…
The School Counselor Leadership Survey: Instrument Development and Exploratory Factor Analysis
ERIC Educational Resources Information Center
Young, Anita; Bryan, Julia
2015-01-01
This study examined the factor structure of the School Counselor Leadership Survey (SCLS). Survey development was a threefold process that resulted in a 39-item survey of 801 school counselors and school counselor supervisors. The exploratory factor analysis indicated a five-factor structure that revealed five key dimensions of school counselor…
Shared Teaching Culture in Different Forms: A Comparison of Expert and Novice Teachers' Practices
ERIC Educational Resources Information Center
Arani, Mohammad Reza Sarkar
2017-01-01
This study aims to reveal the teaching script and structure of lesson practice of two seventh-grade Japanese mathematics teachers--a "novice" and "expert"--through comparative analysis of mathematics lessons. Specifically, it aims to clarify how the teachers' views of teaching as tacit knowledge determine lesson structure and…
Legislative Provisions Underlying Trade Unions' Right to Define Their Organizational Structure
ERIC Educational Resources Information Center
Korobchenko, Victoria V.; Penov, Yury V.; Safonov, Valery A.
2016-01-01
The article contains a comparative analysis of constitutional and other legislative provisions that ensure a trade union's right to define its own administrative structure in European states. The aim of the study is to reveal the management's problems of European trade unions, declarative and empirical mass-character legislative provisions, which…
The Essence and Structure of Masters' of Public Administration Core Competencies in the USA
ERIC Educational Resources Information Center
Shevchenko, Alina
2016-01-01
The article deals with revealing the essence and structure of Masters' of Public Administration professional training in the USA. It has been concluded that Public Administration studies the realization of government policies and trains future public administrators for professional activity; is guided by political science and administrative law;…
ERIC Educational Resources Information Center
Morris, Theodore
2001-01-01
Term co-occurrence analysis of INSPEC classification codes and thesaurus terms used to index Medical Informatics literature reveals an information science and technology perspective on the field, to accompany the biomedical perspective previously reported. This study continues the search for a better understanding of the structure of Medical…
Postpartum Patient Teaching Success: Implications from Nursing and Patient Perspectives
ERIC Educational Resources Information Center
Day, Dawn
2014-01-01
A recent examination of postpartum patient satisfaction scores in an inner-city hospital revealed decreased satisfaction of discharge teaching practices. Guided by Knowles' model of andragogy and Donabedian's model of structure-process-outcome, the purpose of this study was to gain an understanding of how the structure and process of discharge…
A Comparative Study of the Grammatical Structures of Crucian Creole and West African Languages
ERIC Educational Resources Information Center
Vergne Vargas, Aida M.
2017-01-01
This thesis examines the role of the African substrate languages in the emergence of Atlantic Creole grammatical structures. Alleyne (1980) and Faraclas (1990) have convincingly demonstrated that a survey of the grammatical features that typify the Colonial Era English-Lexifier Creoles of the Atlantic reveals remarkable similarities with those…
Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy
2015-10-13
Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representationmore » of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.« less
Endophilin-A1 BAR domain interaction with arachidonyl CoA.
Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I
2014-01-01
Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.
Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada
2015-01-01
The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589
The crystal structure of the Hsp90 co-chaperone Cpr7 from Saccharomyces cerevisiae.
Qiu, Yu; Ge, Qiangqiang; Wang, Mingxing; Lv, Hui; Ebrahimi, Mohammad; Niu, Liwen; Teng, Maikun; Li, Xu
2017-03-01
The versatility of Hsp90 can be attributed to the variety of co-chaperone proteins that modulate the role of Hsp90 in many cellular processes. As a co-chaperone of Hsp90, Cpr7 is essential for accelerating the cell growth in an Hsp90-containing trimeric complex. Here, we report the crystal structure of Cpr7 at a resolution of 1.8Å. It consists of an N-terminal PPI domain and a C-terminal TPR domain, and exhibits a U-shape conformation. Our studies revealed the aggregation state of Cpr7 in solution and the interaction properties between Cpr7 and the MEEVD sequence from the C-terminus of Hsp90. In addition, the structure and sequence analysis between Cpr7 and homologues revealed the structure basis both for the function differences between Cpr6 and Cpr7 and the functional complements between Cns1 and Cpr7. Our studies facilitate the understanding of Cpr7 and provide decent insights into the molecular mechanisms of the Hsp90 co-chaperone pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuchi, Zhiguang; Yuen, Siobhan M. Wong King; Lau, Kelvin; Underhill, Ainsley Q.; Cornea, Razvan L.; Fessenden, James D.; van Petegem, Filip
2015-08-01
Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2-1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding.
Electron-phonon coupling in graphene placed between magnetic Li and Si layers on cobalt
NASA Astrophysics Data System (ADS)
Usachov, Dmitry Yu.; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Ogorodnikov, Ilya I.; Kuznetsov, Mikhail V.; Grüneis, Alexander; Laubschat, Clemens; Vyalikh, Denis V.
2018-02-01
Using angle-resolved photoemission spectroscopy (ARPES), we study the electronic structure and electron-phonon coupling in a Li-doped graphene monolayer decoupled from the Co(0001) substrate by intercalation of silicon. Based on the photoelectron diffraction measurements, we disclose the structural properties of the Si/Co interface. Our density functional theory calculations demonstrate that in the studied Li/graphene/Si/Co system the magnetism of Co substrate induces notable magnetic moments on Li and Si atoms. At the same time graphene remains almost nonmagnetic and clamped between two magnetically active atomic layers with antiparallel magnetizations. ARPES maps of the graphene Fermi surface reveal strong electron doping, which may lead to superconductivity mediated by electron-phonon coupling (EPC). Analysis of the spectral function of photoelectrons reveals apparent anisotropy of EPC in the k space. These properties make the studied system tempting for studying the relation between superconductivity and magnetism in two-dimensional materials.
NASA Astrophysics Data System (ADS)
Ponnuswamy, S.; Kayalvizhi, R.; Sethuvasan, S.; Sugumar, P.; Ponnuswamy, M. N.
2018-03-01
Two new N-benzylpiperidin-4-ones 3 and 4 have been synthesized and characterized using IR, 1D and 2D NMR spectral studies. The NMR data of N-benzylpiperidin-4-ones 3 and 4 reveal that the compounds prefer to exist in chair conformation with equatorial orientation of the bulky substituents and the single crystal X-ray structure of compound 4 also reveals a similar conformation in solid state. Furthermore, the antimicrobial studies carried out for the compounds 1-4 indicate moderate activities with the selected strains. The antioxidant potency of 3 is superior whereas 4 exhibits moderate activity when compared to that of standard drug. The results of molecular docking studies with the AmpC β-lactamase enzyme indicate that compound 3 shows better docking score and binding energy than the co-crystal ligand.
Can a bird brain do phonology?
Samuels, Bridget D.
2015-01-01
A number of recent studies have revealed correspondences between song- and language-related neural structures, pathways, and gene expression in humans and songbirds. Analyses of vocal learning, song structure, and the distribution of song elements have similarly revealed a remarkable number of shared characteristics with human speech. This article reviews recent developments in the understanding of these issues with reference to the phonological phenomena observed in human language. This investigation suggests that birds possess a host of abilities necessary for human phonological computation, as evidenced by behavioral, neuroanatomical, and molecular genetic studies. Vocal-learning birds therefore present an excellent model for studying some areas of human phonology, though differences in the primitives of song and language as well as the absence of a human-like morphosyntax make human phonology differ from birdsong phonology in crucial ways. PMID:26284006
NASA Astrophysics Data System (ADS)
Imaeva, Lyudmila; Gusev, Georgy; Imaev, Valerii; Mel'nikova, Valentina
2017-10-01
The Arctic-Asian and Okhotsk-Chukotka seismic belts bordering the Kolyma-Chukotka crustal plate are the subject of our study aimed at reconstructing the stress-strain state of the crust and defining the types of seismotectonic deformation (STD) in the region. Based on the degrees of activity of geodynamic processes, the regional principles for ranking neotectonic structures were constrained, and the corresponding classes of the discussed neotectonic structures were substantiated. We analyzed the structural tectonic positions of the modern structures, their deep structure parameters, and the systems of active faults in the Laptev, Kharaulakh, Koryak, and Chukotka segments and Chersky seismotectonic zone, as well as the tectonic stress fields revealed by tectonophysical analysis of the Late Cenozoic faults and folds. From the earthquake focal mechanisms, the average seismotectonic strain tensors were estimated. Using the geological, geostructural, geophysical and GPS data, and corresponding average tensors, the directions of the principal stress axes were determined. A regularity in the changes of tectonic settings in the Northeast Arctic was revealed.
Yang, Yuting; Gourinath, S; Kovács, Mihály; Nyitray, László; Reutzel, Robbie; Himmel, Daniel M; O'Neall-Hennessey, Elizabeth; Reshetnikova, Ludmilla; Szent-Györgyi, Andrew G; Brown, Jerry H; Cohen, Carolyn
2007-05-01
Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a "rigor-like" conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.
Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang
2016-06-01
Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
Jiang, Jiansen; Chan, Henry; Cash, Darian D.; ...
2015-10-15
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiansen; Chan, Henry; Cash, Darian D.
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
Haataja, Tatu J K; Koski, M Kristian; Hiltunen, J Kalervo; Glumoff, Tuomo
2011-05-01
All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.
New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants.
Yang, Xiaofei; Yang, Minglei; Deng, Hongjing; Ding, Yiliang
2018-01-01
The dynamic structure of RNA plays a central role in post-transcriptional regulation of gene expression such as RNA maturation, degradation, and translation. With the rise of next-generation sequencing, the study of RNA structure has been transformed from in vitro low-throughput RNA structure probing methods to in vivo high-throughput RNA structure profiling. The development of these methods enables incremental studies on the function of RNA structure to be performed, revealing new insights of novel regulatory mechanisms of RNA structure in plants. Genome-wide scale RNA structure profiling allows us to investigate general RNA structural features over 10s of 1000s of mRNAs and to compare RNA structuromes between plant species. Here, we provide a comprehensive and up-to-date overview of: (i) RNA structure probing methods; (ii) the biological functions of RNA structure; (iii) genome-wide RNA structural features corresponding to their regulatory mechanisms; and (iv) RNA structurome evolution in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neiman, Aleksei A., E-mail: nasa@ispms.tsc.ru; Lotkov, Aleksandr I.; Gudimova, Ekaterina Y.
The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.
A Large-Scale Super-Structure at z=0.65 in the UKIDSS Ultra-Deep Survey Field
NASA Astrophysics Data System (ADS)
Galametz, Audrey; Candels Clustering Working Group
2017-07-01
In hierarchical structure formation scenarios, galaxies accrete along high density filaments. Superclusters represent the largest density enhancements in the cosmic web with scales of 100 to 200 Mpc. As they represent the largest components of LSS, they are very powerful tools to constrain cosmological models. Since they also offer a wide range of density, from infalling group to high density cluster core, they are also the perfect laboratory to study the influence of environment on galaxy evolution. I will present a newly discovered large scale structure at z=0.65 in the UKIDSS UDS field. Although statistically predicted, the presence of such structure in UKIDSS, one of the most extensively covered and studied extragalactic field, remains a serendipity. Our follow-up confirmed more than 15 group members including at least three galaxy clusters with M200 10^14Msol . Deep spectroscopy of the quiescent core galaxies reveals that the most massive structure knots are at very different formation stage with a range of red sequence properties. Statistics allow us to map formation age across the structure denser knots and identify where quenching is most probably occurring across the LSS. Spectral diagnostics analysis also reveals an interesting population of transition galaxies we suspect are transforming from star-forming to quiescent galaxies.
Structure of Greyhound hemoglobin: origin of high oxygen affinity.
Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F
2011-05-01
This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.
AFM Structural Characterization of Drinking Water Biofilm ...
Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo
Kelley, Stacy L.; Lukk, Tiit; Nair, Satish K.; Tapping, Richard I.
2012-01-01
Human monocyte differentiation antigen CD14 is a pattern recognition receptor that enhances innate immune responses to infection by sensitizing host cells to bacterial lipopolysaccharide (LPS; endotoxin), lipoproteins, lipoteichoic acid and other acylated microbial products. CD14 physically delivers these lipidated microbial products to various Toll-like receptor signaling complexes that subsequently induce intracellular proinflammatory signaling cascades upon ligand binding. The ensuing cellular responses are usually protective to the host, but can also result in host fatality through sepsis. In this work, we have determined the X-ray crystal structure of human CD14. The structure reveals a bent solenoid typical of leucine rich repeat proteins with an amino terminal pocket that presumably binds acylated ligands including LPS. Comparison of human and mouse CD14 structures show great similarity in overall protein fold. However, compared to mouse CD14, human CD14 contains an expanded pocket and alternative rim residues that are likely to be important for LPS binding and cell activation. The X-ray crystal structure of human CD14 presented herein may foster additional ligand bound structural studies, virtual docking studies, and drug design efforts to mitigate LPS induced sepsis and other inflammatory diseases. PMID:23264655
ERIC Educational Resources Information Center
Boie, Ioana; Lopez, Anna L.; Sass, Daniel A.
2013-01-01
This study evaluated a model linking internalization and dieting behaviors in a sample ("n" = 499) of Latina/o and White college students. Analyses revealed that the scales were invariant across ethnic and gender groups and generally supported the invariance of the proposed model across these groups. Analyses also revealed no ethnic mean…
Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S
2014-01-01
Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines, with some individuals having more associates than observed from group sizes alone.
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.
2017-05-01
We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.
Image Analysis of DNA Fiber and Nucleus in Plants.
Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi
2016-01-01
Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.
Optical study of phase transitions in single-crystalline RuP
NASA Astrophysics Data System (ADS)
Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.
2015-03-01
RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.
Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy
Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin
2016-01-01
ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment. PMID:27060115
Fall, Veronica M; Cao, Qing; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.
Fall, Veronica M.; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424
Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin
2016-01-01
To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass ( Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r 2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 ( P < 0.01). The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.
Steiger, V R; Brühl, A B; Weidt, S; Delsignore, A; Rufer, M; Jäncke, L; Herwig, U; Hänggi, J
2017-08-01
Social anxiety disorder (SAD) is characterized by fears of social and performance situations. Cognitive behavioral group therapy (CBGT) has in general positive effects on symptoms, distress and avoidance in SAD. Prior studies found increased cortical volumes and decreased fractional anisotropy (FA) in SAD compared with healthy controls (HCs). Thirty-three participants diagnosed with SAD attended in a 10-week CBGT and were scanned before and after therapy. We applied three neuroimaging methods-surface-based morphometry, diffusion tensor imaging and network-based statistics-each with specific longitudinal processing protocols, to investigate CBGT-induced structural brain alterations of the gray and white matter (WM). Surface-based morphometry revealed a significant cortical volume reduction (pre- to post-treatment) in the left inferior parietal cortex, as well as a positive partial correlation between treatment success (indexed by reductions in Liebowitz Social Anxiety Scale) and reductions in cortical volume in bilateral dorsomedial prefrontal cortex. Diffusion tensor imaging analysis revealed a significant increase in FA in bilateral uncinate fasciculus and right inferior longitudinal fasciculus. Network-based statistics revealed a significant increase of structural connectivity in a frontolimbic network. No partial correlations with treatment success have been found in WM analyses. For, we believe, the first time, we present a distinctive pattern of longitudinal structural brain changes after CBGT measured with three established magnetic resonance imaging analyzing techniques. Our findings are in line with previous cross-sectional, unimodal SAD studies and extent them by highlighting anatomical brain alterations that point toward the level of HCs in parallel with a reduction in SAD symptomatology.
Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data
NASA Astrophysics Data System (ADS)
Alrefaee, H. A.
2017-05-01
The Bouguer anomaly map of the central part of the Northern Western Desert, Egypt was used to construct six 2D gravity models to investigate the nature, physical properties and structures of the crust and upper mantle. The crustal models were constrained and constructed by integrating results from different geophysical techniques and available geological information. The depth to the basement surface, from eight wells existed across the study area, and the depth to the Conrad and Moho interfaces as well as physical properties of sediments, basement, crust and upper mantle from previous petrophysical and crustal studies were used to establish the gravity models. Euler deconvolution technique was carried on the Bouguer anomaly map to detect the subsurface fault trends. Edge detection techniques were calculated to outlines the boundaries of subsurface structural features. Basement structural map was interpreted to reveal the subsurface structural setting of the area. The crustal models reveals increasing of gravity field from the south to the north due to northward thinning of the crust. The models reveals also deformed and rugged basement surface with northward depth increasing from 1.6 km to 6 km. In contrast to the basement, the Conrad and Moho interfaces are nearly flat and get shallower northward where the depth to the Conrad or the thickness of the upper crust ranges from 18 km to 21 km while the depth to the Moho (crustal thickness) ranges from 31.5 km to 34 km. The crust beneath the study area is normal continental crust with obvious thinning toward the continental margin at the Mediterranean coast.
Zanoletti, Miriam; Marti, Alessandra; Marengo, Mauro; Iametti, Stefania; Pagani, M Ambrogina; Renzetti, Stefano
2017-12-01
A molecular and material science approach is used to describe the influence of coarse and fine buckwheat bran on wheat dough properties and bread textural quality. Focus is given on (i) gluten solvation and structural arrangements in presence of bran as studied by front-face fluorescence; (ii) thermo-mechanical behavior of dough during heating studied by dynamic mechanical thermal analysis and (iii) texture of bread crumb analyzed in terms of a cellular solid. The thermo-mechanical behavior of dough was found to be largely related to starch phase transitions during heating. The use of thermodynamic approaches to biopolymer melting revealed that key transitions such as the onset of starch gelatinization were function of the interplay of water and bran volume fractions in the dough. Front-face fluorescence studies in wheat dough revealed that gluten solvation and structural arrangements were delayed by increasing bran addition level and reduction in particle size, as indicated by the drastic decrease in the protein surface hydrophobicity index. Variations in gluten structure could be strongly related to dough baking performance, i.e. specific volume. With regards to texture, the approach revealed that crumb texture was controlled by variations in density, moisture and bran volume fractions. Overall, this study elucidates a number of physical mechanisms describing the influence of buckwheat bran addition to dough and bread quality. These mechanisms strongly pointed at the influence of bran on water partitioning among the main polymeric components. In the future, these mechanisms should be investigated with bran material of varying source, composition and structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andrews, Kimberly R; Moriwake, Virginia N; Wilcox, Christie; Grau, E Gordon; Kelley, Christopher; Pyle, Richard L; Bowen, Brian W
2014-01-01
The Hawaiian Archipelago has become a natural laboratory for understanding genetic connectivity in marine organisms as a result of the large number of population genetics studies that have been conducted across this island chain for a wide taxonomic range of organisms. However, population genetic studies have been conducted for only two species occurring in the mesophotic or submesophotic zones (30+m) in this archipelago. To gain a greater understanding of genetic connectivity in these deepwater habitats, we investigated the genetic structure of two submesophotic fish species (occurring ∼200-360 m) in this archipelago. We surveyed 16 locations across the archipelago for submesophotic snappers Etelis coruscans (N = 787) and E. "marshi" (formerly E. carbunculus; N = 770) with 436-490 bp of mtDNA cytochrome b and 10-11 microsatellite loci. Phylogeographic analyses reveal no geographic structuring of mtDNA lineages and recent coalescence times that are typical of shallow reef fauna. Population genetic analyses reveal no overall structure across most of the archipelago, a pattern also typical of dispersive shallow fishes. However some sites in the mid-archipelago (Raita Bank to French Frigate Shoals) had significant population differentiation. This pattern of no structure between ends of the Hawaiian range, and significant structure in the middle, was previously observed in a submesophotic snapper (Pristipomoides filamentosus) and a submesophotic grouper (Hyporthodus quernus). Three of these four species also have elevated genetic diversity in the mid-archipelago. Biophysical larval dispersal models from previous studies indicate that this elevated diversity may result from larval supplement from Johnston Atoll, ∼800 km southwest of Hawaii. In this case the boundaries of stocks for fishery management cannot be defined simply in terms of geography, and fishery management in Hawaii may need to incorporate external larval supply into management plans.
Andrews, Kimberly R.; Moriwake, Virginia N.; Wilcox, Christie; Grau, E. Gordon; Kelley, Christopher; Pyle, Richard L.; Bowen, Brian W.
2014-01-01
The Hawaiian Archipelago has become a natural laboratory for understanding genetic connectivity in marine organisms as a result of the large number of population genetics studies that have been conducted across this island chain for a wide taxonomic range of organisms. However, population genetic studies have been conducted for only two species occurring in the mesophotic or submesophotic zones (30+m) in this archipelago. To gain a greater understanding of genetic connectivity in these deepwater habitats, we investigated the genetic structure of two submesophotic fish species (occurring ∼200–360 m) in this archipelago. We surveyed 16 locations across the archipelago for submesophotic snappers Etelis coruscans (N = 787) and E. “marshi” (formerly E. carbunculus; N = 770) with 436–490 bp of mtDNA cytochrome b and 10–11 microsatellite loci. Phylogeographic analyses reveal no geographic structuring of mtDNA lineages and recent coalescence times that are typical of shallow reef fauna. Population genetic analyses reveal no overall structure across most of the archipelago, a pattern also typical of dispersive shallow fishes. However some sites in the mid-archipelago (Raita Bank to French Frigate Shoals) had significant population differentiation. This pattern of no structure between ends of the Hawaiian range, and significant structure in the middle, was previously observed in a submesophotic snapper (Pristipomoides filamentosus) and a submesophotic grouper (Hyporthodus quernus). Three of these four species also have elevated genetic diversity in the mid-archipelago. Biophysical larval dispersal models from previous studies indicate that this elevated diversity may result from larval supplement from Johnston Atoll, ∼800 km southwest of Hawaii. In this case the boundaries of stocks for fishery management cannot be defined simply in terms of geography, and fishery management in Hawaii may need to incorporate external larval supply into management plans. PMID:24722193
Kleckner, Ian R.; McElroy, Craig A.; Kuzmic, Petr; Gollnick, Paul; Foster, Mark P.
2014-01-01
The trp RNA-binding Attenuation Protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both μs-ms rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of eleven bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and we observed well-separated kinetic steps. These data were analyzed using non-linear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that Trp dissociation from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation, and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery. PMID:24224873
Study of defect structures in 6H-SiC a/m-plane pseudofiber crystals grown by hot-wall CVD epitaxy
Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; ...
2015-11-25
Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match themore » polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed–epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g·b and g·b×l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed–homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Lastly, the implication of these results for improving the LTC growth process is addressed.« less
Kumar Varma, Chekuri Ashok; Jayaram Kumar, K
2017-11-01
Plant polysaccharides, generally regarded as safe (GRAS), are gaining importance as excipients in drug delivery. Therefore, the current paper presents the studies on structural, functional and drug release study of water soluble polysaccharide (ALPS) from seeds of Albizia lebbeck L. High swelling, water holding capacity, foam stability and lower moisture content suggests its use as additive in food preparations. The apparent molecular weight of polysaccharide was found to be 1.98×10 2 kDa. Monosaccharide composition analysis indicated that ALPS consists of mannose (4.06%), rhamnose (22.79%), glucose (38.9%), galactose (17.84%) and xylose (16.42%). Micromeritic properties revealed that the polysaccharide possess potential for pharmaceutical applications. From the surface charge analysis, ALPS was found to be non-ionic polysaccharide. Morphological study reveals the polysaccharide with irregular particle shape and rough surface. Fourier transformed infrared spectroscopy (FTIR) study confirms the carbohydrate nature of polysaccharide. From the thermogravimetric analysis (TGA) data, the second mass loss (243-340°C) attributed to polysaccharide degradation. The drug release profile reveals the use of polysaccharide for the preparation of pH sensitive pharmaceutical dosage forms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Changqing; Kandemir, Irfan; Walsh, Douglas B; Zalom, Frank G; Lavine, Laura Corley
2012-01-01
The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st) and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years) migration of the western tarnished plant bug into agricultural habitats across the western United States. This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.
Wigner flow reveals topological order in quantum phase space dynamics.
Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg
2013-01-18
The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.
Revisiting the NMR structure of the ultrafast downhill folding protein gpW from bacteriophage λ.
Sborgi, Lorenzo; Verma, Abhinav; Muñoz, Victor; de Alba, Eva
2011-01-01
GpW is a 68-residue protein from bacteriophage λ that participates in virus head morphogenesis. Previous NMR studies revealed a novel α+β fold for this protein. Recent experiments have shown that gpW folds in microseconds by crossing a marginal free energy barrier (i.e., downhill folding). These features make gpW a highly desirable target for further experimental and computational folding studies. As a step in that direction, we have re-determined the high-resolution structure of gpW by multidimensional NMR on a construct that eliminates the purification tags and unstructured C-terminal tail present in the prior study. In contrast to the previous work, we have obtained a full manual assignment and calculated the structure using only unambiguous distance restraints. This new structure confirms the α+β topology, but reveals important differences in tertiary packing. Namely, the two α-helices are rotated along their main axis to form a leucine zipper. The β-hairpin is orthogonal to the helical interface rather than parallel, displaying most tertiary contacts through strand 1. There also are differences in secondary structure: longer and less curved helices and a hairpin that now shows the typical right-hand twist. Molecular dynamics simulations starting from both gpW structures, and calculations with CS-Rosetta, all converge to our gpW structure. This confirms that the original structure has strange tertiary packing and strained secondary structure. A comparison of NMR datasets suggests that the problems were mainly caused by incomplete chemical shift assignments, mistakes in NOE assignment and the inclusion of ambiguous distance restraints during the automated procedure used in the original study. The new gpW corrects these problems, providing the appropriate structural reference for future work. Furthermore, our results are a cautionary tale against the inclusion of ambiguous experimental information in the determination of protein structures.
Structural basis of gene regulation by the Grainyhead/CP2 transcription factor family
Ming, Qianqian; Roske, Yvette; Schuetz, Anja; Walentin, Katharina; Ibraimi, Ibraim; Schmidt-Ott, Kai M
2018-01-01
Abstract Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications. PMID:29309642
High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3
NASA Astrophysics Data System (ADS)
Raghavendra Reddy, V.; Meneghini, Carlo; Kothari, Deepti; Gupta, Ajay; Aquilanti, Giuliana
2012-08-01
Local atomic structure modifications around Fe atoms in polycrystalline multiferroic BiFeO3 are studied by Fe K edge x-ray absorption spectroscopy as a function of temperature across the Néel temperature (TN = 643 K) in order to reveal local structure modifications related to the magnetic transition. This work demonstrates that on crossing TN the local structure around Fe shows peculiar changes: the Fe-O bond lengths get shorter, the ligand symmetry increases and the Fe-O bond length disorder (σ2) deviates from Debye behaviour. These results suggest that the structural transition at the ferroelectric Curie temperature (TC = 1103 K) is anticipated by early local rearrangement of the structure starting already at TN.
Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Miyauchi, Yumiko; Hatano, Ken-ichi
2013-01-01
STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode. PMID:23836863
NASA Astrophysics Data System (ADS)
Guo, Zhi; Gao, Xing; Li, Tong; Wang, Wei
2018-05-01
We use P-wave receiver function H-k stacking and joint inversion of receiver functions and Rayleigh wave dispersions to investigate crustal and uppermost mantle structure beneath the South China. The obtained results reveal prominent crustal structure variations in the study area, Moho depth increases from ∼30 km in the Cathaysia Block to more than ∼60 km in the eastern Tibetan Plateau. A Moho undulation and Vp/Vs ratio variations can be observed from the Cathaysia Block to Yangtze Craton. These observations consistent with the crustal structures predict by the flat slab subduction model. We interpret these lateral crustal structure variations reflect the tectonic evolution of the Yangtze Craton and Cathaysia Block prior the Mesozoic and the post-orogenic magmatism due to the breaking up of the subducted flat slab and subsequent slab rollback in the South China. The observed variations of the crustal structures not only reveal the lateral crustal inhomogeneity, but also provide constraints on the geodynamic evolution of the South China.
Rethink outpatient surgery strategy? Study finds hospitals lose money on 56 procedures.
1998-01-01
A new study reveals hospitals are losing an average of $268 on each Medicare patient who has outpatient surgery. Losses depend on procedures, ownership structure, and how often the particular type of surgery is performed.
Using operational and defined fractions to assess soil organic matter stabilization and structure
NASA Astrophysics Data System (ADS)
Horwath, W. R.
2015-12-01
Studies on soil organic matter (SOM) began with alkaline solvents revealing a dark colored substance that could be isolated under low pH. Further studies revealed fulvic and humic acids and humin fractions leading to theories on functional groups and metal-clay bridging mechanisms. The fate of isotopes in these fractions revealed soil carbon pools with varying turnover rates with half the soil carbon (C) in humin and acid hydrolyzed fractions over 1000 years old. These results are the basis of the three pool conceptual framework used in many biogeochemical models. Theories on the role of functional groups and compound classes further elaborated concepts on physical (aggregates) and chemical mechanisms of C stabilization. With the advance of analytical instrumentation, the operational fractions were further defined to the compound and molecular levels. These studies confirmed the majority of soil C is microbially derived. Our observation that all microbial groups contributed nonselectively to soil C maintenance independent of mineralogy suggests that compound characteristics within integrated structures are more important than the source of individual compounds for stabilizing soil C. In dissolved organic C floccing studies using Near Edge X-ray Fine Structure analysis, we found that aromatic compounds interacted first with Fe, however, the majority of direct bonds to Fe were polysaccharides, reinforcing that an integrative chemical structure rather than direct bonds imparted stability in organo-metal interactions. Using a novel differential scanning calorimeter coupled to an isotope ratio mass spectrometer setup, we confirmed that the presence of clays (independent of clay type) increased the microbial utilization of calcium stabilized high versus low temperature compounds, asserting that higher temperature compounds (i.e., phenolics) are likely less tightly bound by clay minerals. The integration of operational and defined fractions of SOM remains a legitimate approach to examine SOM structure and stabilization across scales of soil development and management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.M.; Pampa, K.J.; Manjula, M.
2014-06-20
Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{supmore » +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.« less
NASA Astrophysics Data System (ADS)
Sadeghi, S.; Emami, M. R.
2018-04-01
This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.
NASA Astrophysics Data System (ADS)
Zhuang, Gui-lin; Chen, Wu-lin; Zheng, Jun; Yu, Hui-you; Wang, Jian-guo
2012-08-01
A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H3SIDA) and Ln(NO3)3 (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd3+ ions for anti-anti and syn-anti carboxylate bridges are -1.0×10-3 and -5.0×10-3 cm-1, respectively, which reveals weak antiferromagnetic interaction in 4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Subhash, E-mail: rk.dwivedi@jiit.ac.in; Singh, Vikash, E-mail: rk.dwivedi@jiit.ac.in; Dwivedi, R. K., E-mail: rk.dwivedi@jiit.ac.in
2014-04-24
(0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics with x=0.51, 0.53 and 0.55 were synthesized by sol-gel route. Rietveld refined X-ray powder diffraction pattern of the samples confirm the single phase formation of compounds with tetragonal structure (P4mm). FT-IR studies revealed that slight shift of phonon modes towards the lower wave number and increase in the bond length with increasing Zr{sup 4+} concentration. Room temperature dielectric properties of system revealed that relaxor characteristics of these samples. Ferroelectric hysteresis curve shows the decrease in polarization values with Zr concentration.
Avramova, Marta; Cibrario, Alice; Peltier, Emilien; Coton, Monika; Coton, Emmanuel; Schacherer, Joseph; Spano, Giuseppe; Capozzi, Vittorio; Blaiotta, Giuseppe; Salin, Franck; Dols-Lafargue, Marguerite; Grbin, Paul; Curtin, Chris; Albertin, Warren; Masneuf-Pomarede, Isabelle
2018-03-07
Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO 2 ). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.
Bergsmann, Evelyn M; Van De Schoot, Rens; Schober, Barbara; Finsterwald, Monika; Spiel, Christiane
2013-04-01
Teachers promote student learning and well-being in school by establishing a supportive classroom structure. The term classroom structure refers to how teachers design tasks, maintain authority, and evaluate student achievement. Although empirical studies have shown the relation of classroom structure to student motivation, achievement, and well-being, no prior investigations have examined the influence of classroom structure on aggression among peers. The present study examined whether a supportive classroom structure has an impact on verbal and physical aggression. At two points in time, data were collected from 1680 students in Grades 5 to 7 using self-report questionnaires. The results of structural equation modeling revealed that a supportive classroom structure at Time 1 was associated with less perpetrated verbal aggression at Time 2, 9months later. This finding has practical relevance for teacher training as well as for aggression prevention and intervention among children. Copyright © 2012 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Yan, Shan; Wei, Peng-Cheng; Chen, Qiao; Chen, Xin; Wang, Shi-Cheng; Li, Jia-Ru; Gao, Chuan
2018-02-19
Saponins are natural glycosides widely used in medicine and the food industry. Although saponin metabolism in human is dependent on intestinal microbes, few involving bacteria enzymes have been identified. We cloned BlBG3, a GH3 β-glucosidase from Bifidobacterium longum, from human stool. We found that BlBG3 catalyzes the hydrolysis of glycoside furostanol and ginsenoside Rb1 at higher efficiency than other microbial β-glucosidases. Structural analysis of BlBG3 in complex with d-glucose revealed its three unique loops, which form a deep pocket and participate in substrate binding. To understand how substrate is bound to the pocket, molecular docking was performed and the binding interactions of protobioside with BlBG3 were revealed. Mutational study suggested that R484 and H642 are critical for enzymatic activity. Our study presents the first structural and functional analysis of a saponin-processing enzyme from human microbiota. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure and function of complex brain networks
Sporns, Olaf
2013-01-01
An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898
Geophysical studies of the Syncline Ridge area, Nevada Test Site, Nye County, Nevada
Hoover, D.B.; Hanna, W.F.; Anderson, L.A.; Flanigan, V.J.; Pankratz, L.W.
1982-01-01
A wide variety of geophysical methods were employed to study a proposed nuclear waste site at Syncline Ridge on the Nevada Test Site, Nev. The proposed site was believed to be a relatively undisturbed synclinal structure containing a thick argillite unit of Misslsslppian age, the Eleana Formation unit J, which would be the emplacement medium. Data acquisition for the geophysical studies was constrained because of rugged topography in a block of Tipplpah Limestone overlying the central part of the proposed site. This study employed gravity, magnetic, seismic refraction and reflection, and four distinct electrical methods to try and define the structural integrity and shape of the proposed repository medium. Detailed and regional gravity work revealed complex structure at the site. Magnetics helped only in identifying small areas of Tertiary volcanic rocks because of low magnetization of the rocks. Seismic refraction assisted in identifying near surface faulting and bedrock structure. Difficulty was experienced in obtaining good quality reflection data. This implied significant structural complexity but also revealed the principal features that were supported by other data. Electrical methods were used for fault identification and for mapping of a thick argillaceous unit of the Eleana Formation in which nuclear waste was to be emplaced. The geophysical studies indicate that major faults along the axis of Syncline Ridge and on both margins have large vertical offsets displacing units so as not only to make mining difficult, but also providing potential paths for waste migration to underlying carbonate aquifers. The Eleana Formation appeared heterogeneous, which was inferred to be due to structural complexity. Only a small region in the northwest part of the study area was found to contain a thick and relatively undisturbed volume of host rock.
Laboratory plant study on the melting process of asbestos waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi
The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown thatmore » melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.« less
NASA Astrophysics Data System (ADS)
OBeirne, M. D.; Werne, J. P.; Van Dongen, B.; Gilhooly, W., III
2017-12-01
Sulfurization of carbohydrates has been suggested as an important mechanism for the preservation of organic matter in anoxic/euxinic depositional environments. In this study, glucose was sulfurized under laboratory conditions at room temperature (24°C) using three commercially available sulfides - ammonium sulfide ([NH4]2S), sodium sulfide (Na2S), and sodium hydrosulfide (NaHS), each mixed with elemental sulfur to produce polysulfide solutions. The reaction products were analyzed using Fourier transform infrared spectroscopy (FTIR), which revealed structural differences among the products formed via the three sulfide reactants. Additionally, analysis of the bulk sulfur isotope compositions of reactants and products was used to determine the fractionation(s) associated with abiotic sulfur incorporation into organic matter. Samples from both modern (Mahoney Lake, British Colombia, Canada) and ancient (Jurassic aged Blackstone Band from the Kimmeridge Clay Formation, Dorset, United Kingdom) euxinic systems were also analyzed for comparison to laboratory samples. Results from this study provide experimental evidence for the structural and sulfur isotopic relationships of sulfurized organic matter in the geosphere.
NASA Astrophysics Data System (ADS)
Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.
2018-04-01
Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).
Computational predictions of zinc oxide hollow structures
NASA Astrophysics Data System (ADS)
Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi
2018-03-01
Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P.
2016-05-06
The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustratemore » the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.« less
NASA Astrophysics Data System (ADS)
Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang
2017-08-01
The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.
Photoelectron spectra and biological activity of cinnamic acid derivatives revisited.
Novak, Igor; Klasinc, Leo; McGlynn, Sean P
2018-01-15
The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR). Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wibawa, Kadek Adi; Nusantara, Toto; Subanji; Parta, I. Nengah
2017-01-01
This study aims to reveal the fragmentation of thinking structure's students in solving the problems of application definite integral in area. Fragmentation is a term on the computer (storage) that is highly relevant correlated with theoretical constructions that occur in the human brain (memory). Almost every student has a different way to…
ERIC Educational Resources Information Center
AlAfnan, Mohammad Awad
2015-01-01
This study explored the influences of relational elements and the background of communicators on the framing structure of email messages that were exchanged in an educational Institute in Malaysia. The investigation revealed that social distance played a more significant role than power relations as Malaysian respondents are, generally, more…
Structured-Exercise-Program (SEP): An Effective Training Approach to Key Healthcare Professionals
ERIC Educational Resources Information Center
Miazi, Mosharaf H.; Hossain, Taleb; Tiroyakgosi, C.
2014-01-01
Structured exercise program is an effective approach to technology dependent resource limited healthcare area for professional training. The result of a recently conducted data analysis revealed this. The aim of the study is to know the effectiveness of the applied approach that was designed to observe the level of adherence to newly adopted…
The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS
ERIC Educational Resources Information Center
Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.
2010-01-01
This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…
A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology.
Wang, Yibing; Chen, Xin; Cao, Hongliang; Deng, Chao; Cao, Xiaodan; Wang, Ping
2015-01-01
Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.
NASA Astrophysics Data System (ADS)
Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed
2015-01-01
A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 μM). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.
Murphy, Caitlin N; Dodsworth, Jeremy A; Babbitt, Aaron B; Hedlund, Brian P
2013-05-01
Microrespirometry showed that several organic and inorganic electron donors stimulated oxygen consumption in two ∼80°C springs. Sediment and planktonic communities were structurally and functionally distinct, and quantitative PCR revealed catabolically distinct subpopulations of Thermocrinis. This study suggests that a variety of chemolithotrophic metabolisms operate simultaneously in these springs.
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.
2015-01-01
SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000
Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition.
Emery, S B; Xin, Y; Ridge, C J; Buszek, R J; Boatz, J A; Boyle, J M; Little, B K; Lindsay, C M
2015-02-28
We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.
Sun, Ya-jun; Wang, Tie-yu; Peng, Xia-wei; Wang, Pei
2015-07-01
In order to reveal the relationship between Perfluoroalkyl substances (PFASs) contamination and the bacterial community composition, surface sediment samples were collected along the Xiaoqing River in Shandong Province in April and July 2014 (XQ1-XQ10), where many PFASs manufacturers were located. PFASs were quantified by HPLC/MS-MS, related environmental factors affecting the microbial community structure were measured, and the microbial community structure in surface sediments was measured by the second-generation sequencing technology Illumina MiSeq. The results not only revealed the degree of PFASs pollution in the sediments of Xiaoqing River, but also illustrated the relationship between PFASs pollution and the microbial community structure. Among the twelve kinds of PFASs detected in this study, PFOA was the predominant compound, and the highest PFOA concentrations were detected in the sample of XQ5 (April: 456. 2 ng. g-1; July: 748.7 ng . g-1) located at the downstream of Xiaoqing River with many fluoropolymer producing facilities. PFOA contamination was the main factor affecting the microbial community structure in April, accordingly community richness and evenness were significantly negatively correlated with PFOA levels. The abundance of Thiobacillus increased with the increasing PFOA concentration in the sediment PFOA. This suggested that Thiobacillus was sensitive to PFOA pollution and might be the potential indicator to reveal the degree of PFOA pollution in sediment. When the concentrations of PFOA were below 100 ng . g-1, no significant effects on the microbial community structure were observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jia; Yang, Yuting; Wan, Ke
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, ourmore » structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase {alpha} (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.« less
Synthesis, Structural and Antioxidant Studies of Some Novel N-Ethyl Phthalimide Esters
Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun
2015-01-01
A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity. PMID:25742494
Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters.
Chidan Kumar, C S; Loh, Wan-Sin; Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun
2015-01-01
A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.
Kataev, G V; Korotkov, A D; Kireev, M V; Medvedev, S V
2013-01-01
In the present article it was shown that the functional connectivity of brain structures, revealed by factor analysis of resting PET CBF and rCMRglu data, is an adequate tool to study the default mode of the human brain. The identification of neuroanatomic systems of default mode (default mode network) during routine clinical PET investigations is important for further studying the functional organization of the normal brain and its reorganizations in pathological conditions.
Sepúlveda, Pamela; Rubio, María A; Baltazar, Samuel E; Rojas-Nunez, J; Sánchez Llamazares, J L; Garcia, Alejandra García; Arancibia-Miranda, Nicolás
2018-08-15
In this study, bimetallic nanoparticles (BMNPs) with different mass ratios of Cu and Fe were evaluated. The influence of the morphology on the removal of pollutants was explored through theoretical and experimental studies, which revealed the best structure for removing arsenate (As(V)) in aqueous systems. To evidence the surface characteristics and differences among BMNPs with different mass proportions of Fe and Cu, several characterization techniques were used. Microscopy techniques and molecular dynamics simulations were applied to determine the differences in morphology and structure. In addition, X-ray diffraction (XRD) was used to determine the presence of various oxides. Finally, the magnetization response was evaluated, revealing differences among the materials. Our cumulative data show that BMNPs with low amounts of Cu (Fe 0.9 Cu 0.1 ) had a non-uniform core-shell structure with agglomerate-type chains of magnetite, whereas a Janus-like structure was observed in BMNPs with high amounts of Cu (Fe 0.5 Cu 0.5 ). However, a non-uniform core-shell structure (Fe 0.9 Cu 0.1 ) facilitated electron transfer among Fe, Cu and As, which increased the adsorption rate (k), capacity (q e ) and intensity (n). The mechanism of As removal was also explored in a comparative study of the phase and morphology of BMNPs pre- and post-sorption. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.
2016-12-01
The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.
NASA Astrophysics Data System (ADS)
Cisek, Richard
Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities were developed for quantitative structural investigations of nano and micro-sized architectures. Non-invasive extraction of crystallographic information in microscopic samples will have a number of potential benefits, for example, in clinical applications, allowing observations of disease states inside tissues without the need for biopsy. Industrial nanotechnology will benefit from fast determination of nanostructures with nonlinear microscopy that will improve quality of nanodevices.
NASA Astrophysics Data System (ADS)
Smyrl, Norman R.; Fuller, E. L.
1989-12-01
In situ low-temperature air oxidation studies of subbituminous coal have been performed at 77, 125, 200, 300, and 400°C by diffuse reflectance Fourier transform (DRIFT) spectroscopy. The oxidation reaction proceeds via oxygen insertion at aliphatic sites in the coal structure, which progressively produces aldo/keto groups, acid groups, and acid anhydride entities with the simultaneous consumption of hydrogen at these sites. The production of anhydrides occurs even at the lowest temperature (77?°C), but only above 200°C is there sufficient mobility of the acid functionalities for major quantities of the anhydride species to be formed. Above 400C, the anhydro groups predominate in the steady-state production of carbon dioxide and water vapor. In addition to the detailed information concerning the carbonyl species, the spectra of the oxidized coal reveal some new information regarding the aromatic C-H stretching bands, which can be studied in some detail unencumbered by interference from the aliphatic bands that have been removed in the oxidation process. Further details related to the aromatic bands are revealed by deuterium exchange of the remaining 0-H groups (primarily phenolic type 0-H) in the oxidized coal structure. This exchange removes these bands from overlap with the broad 0-H stretching band resulting from hydrogen bonding of the 0-H groups. The present study reveals further merits of in situ DRIFT analysis in extending the knowledge of coal structure and reactions. The study also indicates much potential for further work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligare, Marshall R.; Baker, Erin S.; Laskin, Julia
Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.
Analysis of foot structure in athletes sustaining proximal fifth metatarsal stress fracture.
Hetsroni, Iftach; Nyska, Meir; Ben-Sira, David; Mann, Gideon; Segal, Ofer; Maoz, Guy; Ayalon, Moshe
2010-03-01
In the past, several studies provided anecdotal descriptions of high-arched feet in individuals sustaining proximal fifth metatarsal stress fractures. This relationship has never been supported by scientific evidence. Our objective was to examine whether athletes who sustained this injury had an exceptional static foot structure or dynamic loading pattern. Ten injured professional soccer players who regained full professional activity following a unilateral proximal fifth metatarsal stress fracture and ten control soccer players were examined. Independent variables included static evaluation of foot and arch structure, followed by dynamic plantar foot pressure evaluation. Each variable was compared between injured, contra-lateral uninjured, and control feet. Static measurements of foot and arch structure did not reveal differences among the groups. However, plantar pressure evaluation revealed relative unloading of the fourth metatarsal in injured and uninjured limbs of injured athletes compared with control, while the fifth metatarsal revealed pressure reduction only in the injured limbs of injured athletes. Athletes who sustained proximal fifth metatarsal stress fracture were not characterized by an exceptional static foot structure. Dynamically, lateral metatarsal unloading during stance may either play a role in the pathogenesis of the injury, or alternately represent an adaptive process. Footwear fabrication for previously injured athletes should not categorically address cushioning properties designed for high-arch feet, but rather focus on individual dynamic evaluation of forefoot loading, with less attention applied to static foot and arch characteristics.
Wu, Daichao; Guo, Ming; Philips, Michael A; Qu, Lingzhi; Jiang, Longying; Li, Jun; Chen, Xiaojuan; Chen, Zhuchu; Chen, Lin; Chen, Yongheng
2016-01-01
Aberrant FGFR4 signaling has been documented abundantly in various human cancers. The majority of FGFR inhibitors display significantly reduced potency toward FGFR4 compared to FGFR1-3. However, LY2874455 has similar inhibition potency for FGFR1-4 with IC50 less than 6.4 nM. To date, there is no published crystal structure of LY2874455 in complex with any kinase. To better understand the pan-FGFR selectivity of LY2874455, we have determined the crystal structure of the FGFR4 kinase domain bound to LY2874455 at a resolution of 2.35 Å. LY2874455, a type I inhibitor for FGFR4, binds to the ATP-binding pocket of FGFR4 in a DFG-in active conformation with three hydrogen bonds and a number of van der Waals contacts. After alignment of the kinase domain sequence of 4 FGFRs, and superposition of the ATP binding pocket of 4 FGFRs, our structural analyses reveal that the interactions of LY2874455 to FGFR4 are largely conserved in 4 FGFRs, explaining at least partly, the broad inhibitory activity of LY2874455 toward 4 FGFRs. Consequently, our studies reveal new insights into the pan-FGFR selectivity of LY2874455 and provide a structural basis for developing novel FGFR inhibitors that target FGFR1-4 broadly.
Gutman, Boris A.; Jahanshad, Neda; Ching, Christopher R.K.; Wang, Yalin; Kochunov, Peter V.; Nichols, Thomas E.; Thompson, Paul M.
2015-01-01
We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens. Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies. PMID:26413211
Gutman, Boris A; Jahanshad, Neda; Ching, Christopher R K; Wang, Yalin; Kochunov, Peter V; Nichols, Thomas E; Thompson, Paul M
2015-04-01
We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens . Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies.
NASA Astrophysics Data System (ADS)
González-Montiel, Simplicio; Valdez-Calderón, Alejandro; Vásquez-Pérez, J. Manuel; Torres-Valencia, J. Martín; Martínez-Otero, Diego; López, Jorge A.; Cruz-Borbolla, Julián
2017-10-01
A new series of chrysin derivatives containing the di-(2-picolyl)amine (2a-d) moiety have been designed, synthesized, and treated with PdCl2·2CH3CN allowing the preparation of new cationic Palladium(II) complexes (3a-d). Solution-phase studies by 1H NMR spectroscopy of 3a-d revealed that the protons of the methylene groups of the di(2-picolyl)amine fragment are diasterotopic. GIAO/DFT studies were performed to predict the molecular structures of 3a-d by comparing the experimental and theoretical 1H-NMR chemical shifts. The molecular structure of 3c was determined by X-ray crystallographic analysis revealing that di-(2-picolyl)amine fragment is coordinated to the palladium center in a κ3-N,N,N-tridentate fashion in an overall square-planar geometry completed with a chloride atom.
Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive.
Tingirikari, Jagan Mohan Rao; Kothari, Damini; Shukla, Rishikesh; Goyal, Arun
2014-09-01
Dextran produced from Weissella cibaria JAG8 was purified and characterized. The molecular mass of dextran as determined by the gel filtration and copper bicinchoninate method was approximately, 800 kDa. Monosaccharide analysis revealed that the polysaccharide comprised only glucose units. Dynamic light scattering study confirmed the mono-disperse nature of dextran with hydrodynamic radius of 900 nm. Surface morphology study of dextran by scanning electron microscopy showed the porous web like structure. Cytotoxicity studies on human cervical cancer (HeLa) cell line showed non-toxic and biocompatible nature of dextran. The relative browning for dextran from W. cibaria JAG8 was similar to commercial prebiotic Nutraflora P-95 and 3-fold lower than Raftilose P-95. Synthesis of dextran by dextransucrase treated, sucrose-supplemented skimmed milk revealed the promising potential of dextran as a food additive.
NASA Astrophysics Data System (ADS)
Thumb, Werner; Graf, Christine; Parslow, Tristram; Schneider, Rainer; Auer, Manfred
1999-11-01
The interaction of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev with cellular cofactors is crucial for the viral life cycle. The HIV-1 Rev transactivation domain is functionally interchangeable with analog regions of Rev proteins of other retroviruses suggesting common folding patterns. In order to obtain experimental evidence for similar structural features mediating protein-protein contacts we investigated activation domain peptides from HIV-1, HIV-2, VISNA virus, feline immunodeficiency virus (FIV) and equine infectious anemia virus (EIAV) by CD spectroscopy, secondary structure prediction and sequence analysis. Although different in polarity and hydrophobicity, all peptides showed a similar behavior with respect to solution conformation, concentration dependence and variations in ionic strength and pH. Temperature studies revealed an unusual induction of β-structure with rising temperatures in all activation domain peptides. The high stability of β-structure in this region was demonstrated in three different peptides of the activation domain of HIV-1 Rev in solutions containing 40% hexafluoropropanol, a reagent usually known to induce α-helix into amino acid sequences. Sequence alignments revealed similarities between the polar effector domains from FIV and EIAV and the leucine rich (hydrophobic) effector domains found in HIV-1, HIV-2 and VISNA. Studies on activation domain peptides of two dominant negative HIV-1 Rev mutants, M10 and M32, pointed towards different reasons for the biological behavior. Whereas the peptide containing the M10 mutation (L 78E 79→D 78L 79) showed wild-type structure, the M32 mutant peptide (L 78L 81L 83→A 78A 81A 83) revealed a different protein fold to be the reason for the disturbed binding to cellular cofactors. From our data, we conclude, that the activation domain of Rev proteins from different viral origins adopt a similar fold and that a β-structural element is involved in binding to a cellular cofactor.
Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P
2018-06-01
Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.
Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra
2013-01-01
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117
NASA Astrophysics Data System (ADS)
Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy
2015-05-01
Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.
Structure of Gremlin-2 in Complex with GDF5 Gives Insight into DAN-Family-Mediated BMP Antagonism.
Nolan, Kristof; Kattamuri, Chandramohan; Rankin, Scott A; Read, Randy J; Zorn, Aaron M; Thompson, Thomas B
2016-08-23
The DAN family, including Gremlin-1 and Gremlin-2 (Grem1 and Grem2), represents a large family of secreted BMP (bone morphogenetic protein) antagonists. However, how DAN proteins specifically inhibit BMP signaling has remained elusive. Here, we report the structure of Grem2 bound to GDF5 at 2.9-Å resolution. The structure reveals two Grem2 dimers binding perpendicularly to each GDF5 monomer, resembling an H-like structure. Comparison to the unbound Grem2 structure reveals a dynamic N terminus that undergoes significant transition upon complex formation, leading to simultaneous interaction with the type I and type II receptor motifs on GDF5. Binding studies show that DAN-family members can interact with BMP-type I receptor complexes, whereas Noggin outcompetes the type I receptor for ligand binding. Interestingly, Grem2-GDF5 forms a stable aggregate-like structure in vitro that is not clearly observed for other antagonists, including Noggin and Follistatin. These findings exemplify the structural and functional diversity across the various BMP antagonist families. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Durrieu, Sylvie; Gosselin, Frédéric; Herpigny, Basile
2017-01-01
We explored the potential of airborne laser scanner (ALS) data to improve Bayesian models linking biodiversity indicators of the understory vegetation to environmental factors. Biodiversity was studied at plot level and models were built to investigate species abundance for the most abundant plants found on each study site, and for ecological group richness based on light preference. The usual abiotic explanatory factors related to climate, topography and soil properties were used in the models. ALS data, available for two contrasting study sites, were used to provide biotic factors related to forest structure, which was assumed to be a key driver of understory biodiversity. Several ALS variables were found to have significant effects on biodiversity indicators. However, the responses of biodiversity indicators to forest structure variables, as revealed by the Bayesian model outputs, were shown to be dependent on the abiotic environmental conditions characterizing the study areas. Lower responses were observed on the lowland site than on the mountainous site. In the latter, shade-tolerant and heliophilous species richness was impacted by vegetation structure indicators linked to light penetration through the canopy. However, to reveal the full effects of forest structure on biodiversity indicators, forest structure would need to be measured over much wider areas than the plot we assessed. It seems obvious that the forest structure surrounding the field plots can impact biodiversity indicators measured at plot level. Various scales were found to be relevant depending on: the biodiversity indicators that were modelled, and the ALS variable. Finally, our results underline the utility of lidar data in abundance and richness models to characterize forest structure with variables that are difficult to measure in the field, either due to their nature or to the size of the area they relate to. PMID:28902920
Caetano-Anollés, Gustavo; Caetano-Anollés, Derek
2015-01-01
Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules. PMID:27096056
Makina, Sithembile O.; Muchadeyi, Farai C.; van Marle-Köster, Este; MacNeil, Michael D.; Maiwashe, Azwihangwisi
2014-01-01
Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds. PMID:25295053
Barbosa, Alynne da Silva; Barbosa, Helene Santos; Souza, Sandra Maria de Oliveira; Dib, Laís Verdan; Uchôa, Claudia Maria Antunes; Bastos, Otilio Machado Pereira; Amendoeira, Maria Regina Reis
2018-06-26
Balantioides coli is a ciliated protozoon that inhabits the intestine of pigs, non-human primates and humans. Light microscopy studies have described over 50 species of the genus Balantioides but their validity is in doubt. Due to the limited information about this genus, this study is aimed to identify morphological characteristics of Balantioides coli isolated using fluorescence microscopy and both scanning (SEM) and transmission electron microscopy (TEM). Trophozoites isolated from the feces of pig and macaque were washed and subjected to centrifugation. These cells were fixed with paraformaldehyde for immunofluorescence. Other aliquots of these trophozoites were fixed with glutaraldehyde, post fixed with osmium tetroxide and processed for SEM and TEM. Immunofluorescence studies revealed microtubules with a longitudinal distribution to the main axis of the parasite and in the constitution of cilia. SEM demonstrated a high concentration of cilia covering the oral apparatus and a poor presence of such structures in cytopyge. TEM revealed in the plasma membrane, several associated structures were observed to delineate the cellular cortex and mucocysts. The cytoskeleton of the oral region was observed in detail and had an organization pattern consisting of microtubules, which formed files and nematodesmal networks. Organelles such as hydrogenosomes like and peroxisomes were observed close to the cortex. Macronuclei were observed, but structures that were consistent with micronuclei were not identified. Ultrastructural morphological analysis of isolates confirms its similarity to Balantioides coli. In this study were identified structures that had not yet been described, such as hydrogenosomes like and cytoskeletal structures.
Makina, Sithembile O; Muchadeyi, Farai C; van Marle-Köster, Este; MacNeil, Michael D; Maiwashe, Azwihangwisi
2014-01-01
Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds.
Zincblende to Wurtzite phase shift of CdSe thin films prepared by electrochemical deposition
NASA Astrophysics Data System (ADS)
Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.
2018-04-01
Cadmium selenide (CdSe) nanostructured thin films have been deposited on conducting glass substrates by potentiostatic electrochemical deposition (ECD) technique. The effect of electrolyte bath pH on the structural, morphological and optical properties of CdSe films has been investigated. Crystal structure of these films is characterized by X-ray diffraction and Raman spectroscopy which reveal polycrystalline nature of CdSe films exhibiting phase shift from zincblende to wurtzite structure with increase in bath pH. Optical studies reveal that the CdSe thin films have good absorbance in visible spectral region and they possess direct optical band gap which increases from 1.68 to 1.97 eV with increase in bath pH. The results suggest CdSe is an efficient absorber material for next generation solar cells.
[NUCLEAR STRUCTURE IN THE SECRETORY CELLS OF MAMMARY GLANDS IN LACTATING AND NON-LACTATING RATS].
Tyutina, K V; Skopichev, V G; Bogolyubov, D S; Bogolyubova, I O
2016-01-01
The features of structural and functional organization of the main nuclear compartments and distribution of their key molecular components (chromatin-remodeling protein ATRX, RNA polymerase I and II, and the splicing factor SC35) has been studied in the nuclei of mammary gland cells at different functional states. No significant differences between the nuclei of the cells in the lactating and non-lactating mammary glands have been revealed at the ultrastructural level. At the same time, photometric analysis has revealed higher intensity of nucleoplasmic immunofluorescent staining of mammary glands in the lactating animals when antibodies against the proteins ATRX and SC35 were used. Apparently, this observation reflects the changes of the structural and functional status of chromatin as well as the redistribution of splicing factors between the sites of their deposition and transcription.
NASA Astrophysics Data System (ADS)
Yao, Xiao-Qiang; Li, Dan-Yang; Xiao, Guo-Bin; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng
2018-04-01
A new compound, {[Co(BPFI)(NDC)]H2O·0.5DMF}n (1) has been synthesized under hydrothermal condition by the self-assembly of V-shaped N-containing rigid ligand BPFI with Co(II) ions in the presence of H2NDC acid, where BPFI = 2,8-di(1H-imidazole-1-yl)dibenzo[b,d]furan, H2NDC = naphthalene-1,4-dicarboxylic acid. Compound 1 was characterized by elemental analysis, single crystal X-ray diffraction, FT-IR spectroscopy and UV-visible spectra. Structural analysis reveals that compound 1 is a unique dinuclear Co-based 2D (4,4) layer structure decorated with parallel double chains. In addition, magnetic study reveals the existence of antiferromagnetic coupling interactions between the Co(II) ions within the dinuclear unit of 1.
The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif.
Williams, Leslie K; Zhang, Xiaohua; Caner, Sami; Tysoe, Christina; Nguyen, Nham T; Wicki, Jacqueline; Williams, David E; Coleman, John; McNeill, John H; Yuen, Violet; Andersen, Raymond J; Withers, Stephen G; Brayer, Gary D
2015-09-01
The complex plant flavonol glycoside montbretin A is a potent (Ki = 8 nM) and specific inhibitor of human pancreatic α-amylase with potential as a therapeutic for diabetes and obesity. Controlled degradation studies on montbretin A, coupled with inhibition analyses, identified an essential high-affinity core structure comprising the myricetin and caffeic acid moieties linked via a disaccharide. X-ray structural analyses of the montbretin A-human α-amylase complex confirmed the importance of this core structure and revealed a novel mode of glycosidase inhibition wherein internal π-stacking interactions between the myricetin and caffeic acid organize their ring hydroxyls for optimal hydrogen bonding to the α-amylase catalytic residues D197 and E233. This novel inhibitory motif can be reproduced in a greatly simplified analog, offering potential for new strategies for glycosidase inhibition and therapeutic development.
[Derivatives of lupinin and epilupinin as ligands of various cholinesterases].
Basova, N E; Kormilitsyn, B N; Rozengart, E V; Saakov, V S; Suvorov, A A
2012-01-01
Literature data have been summarized on interaction of cholinesterases of some mammals and arthropods with a group of isomer derivatives of alkaloid lupini and its epimer epilupinin. As substrates of cholinesterases of several mammals there are studied 8 acetates containing in their molecules the chinolysidin bicycle with different structure of N-alkyl radical, which showed certain elements of specificity of action. For 2 isomer esters that are derivatives of the protonated base of the lupinin and epilupinin structures, differences in their substrate characteristics were revealed. The polyenzyme analysis if anticholinesterase efficiency was performed for 30 organophosphorus inhibitors that are dialkoxyphosphorus derivatives of lupinin and epilupinin; as a result, quite a few peculiarities of their action depending on their structure were revealed. Several tested compounds turned out to act as specific inhibitors of cholinesterases of some mammals and arthropods.
Local Structure and Surface Properties of CoxZn1-xO Thin Films for Ozone Gas Sensing.
Catto, Ariadne C; Silva, Luís F da; Bernardi, Maria Inês B; Bernardini, Sandrine; Aguir, Khalifa; Longo, Elson; Mastelaro, Valmor R
2016-10-05
A detailed study of the structural, surface, and gas-sensing properties of nanostructured Co x Zn 1-x O films is presented. X-ray diffraction (XRD) analysis revealed a decrease in the crystallization degree with increasing Co content. The X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopies (XPS) revealed that the Co 2+ ions preferentially occupied the Zn 2+ sites and that the oxygen vacancy concentration increased as the amount of cobalt increased. Electrical measurements showed that the Co dopants not only enhanced the sensor response at low ozone levels (ca. 42 ppb) but also led to a decrease in the operating temperature and improved selectivity. The enhancement in the gas-sensing properties was attributed to the presence of oxygen vacancies, which facilitated ozone adsorption.
A study of tantalum pentoxide Ta 2O 5 structures up to 28 GPa
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...
2017-05-02
In this study, tantalum pentoxide Ta 2O 5 with the orthorhombic L-Ta 2O 5 structure has been experimentally studied up to 28.3 GPa (at ambient temperature) using synchrotron angle-dispersive powder X-ray diffraction (XRD). The ambient pressure phase remains stable up to 25 GPa where with increased pressure a crystalline to amorphous phase transition occurs. A detailed equation of state (EOS), including pressure dependent lattice parameters, is reported. The results of this study were compared with a previous high-pressure XRD study by Li et al. A clear discrepancy between the ambient-pressure crystal structures and, consequently, the reported EOSs between the twomore » studies was revealed. Finally, he origin of this discrepancy is attributed to two different crystal structures used to index the XRD patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somalinga, Vijayakumar; Buhrman, Greg; Arun, Ashikha
Bacterial α–carbonic anhydrases (α-CA) are zinc containing metalloenzymes that catalyze the rapid interconversion of CO2 to bicarbonate and a proton. We report the first crystal structure of a pyschrohalophilic α–CA from a deep-sea bacterium, Photobacterium profundum. Size exclusion chromatography of the purified P. profundum α–CA (PprCA) reveals that the protein is a heterogeneous mix of monomers and dimers. Furthermore, an “in-gel” carbonic anhydrase activity assay, also known as protonography, revealed two distinct bands corresponding to monomeric and dimeric forms of PprCA that are catalytically active. The crystal structure of PprCA was determined in its native form and reveals a highlymore » conserved “knot-topology” that is characteristic of α–CA’s. Similar to other bacterial α–CA’s, PprCA also crystallized as a dimer. Furthermore, dimer interface analysis revealed the presence of a chloride ion (Cl-) in the interface which is unique to PprCA and has not been observed in any other α–CA’s characterized so far. Molecular dynamics simulation and chloride ion occupancy analysis shows 100% occupancy for the Cl- ion in the dimer interface. Zinc coordinating triple histidine residues, substrate binding hydrophobic patch residues, and the hydrophilic proton wire residues are highly conserved in PprCA and are identical to other well-studied α–CA’s.« less
Henry, Laurence; Craig, Adrian J. F. K.; Lemasson, Alban; Hausberger, Martine
2015-01-01
Turn-taking in conversation appears to be a common feature in various human cultures and this universality raises questions about its biological basis and evolutionary trajectory. Functional convergence is a widespread phenomenon in evolution, revealing sometimes striking functional similarities between very distant species even though the mechanisms involved may be different. Studies on mammals (including non-human primates) and bird species with different levels of social coordination reveal that temporal and structural regularities in vocal interactions may depend on the species' social structure. Here we test the hypothesis that turn-taking and associated rules of conversations may be an adaptive response to the requirements of social life, by testing the applicability of turn-taking rules to an animal model, the European starling. Birdsong has for many decades been considered as one of the best models of human language and starling songs have been well described in terms of vocal production and perception. Starlings do have vocal interactions where alternating patterns predominate. Observational and experimental data on vocal interactions reveal that (1) there are indeed clear temporal and structural regularities, (2) the temporal and structural patterning is influenced by the immediate social context, the general social situation, the individual history, and the internal state of the emitter. Comparison of phylogenetically close species of Sturnids reveals that the alternating pattern of vocal interactions varies greatly according to the species' social structure, suggesting that interactional regularities may have evolved together with social systems. These findings lead to solid bases of discussion on the evolution of communication rules in relation to social evolution. They will be discussed also in terms of processes, at the light of recent neurobiological findings. PMID:26441787
Pala, Eva M; Dey, Sudip
2016-02-01
Conventional and highly sophisticated analytical methods (Cyria et al., 1989; Massar et al., 2012a) were used to analyze micro-structural and micro-analytical aspects of the blood of snake head fish, Channa gachua, exposed to municipal wastes and city garbage. Red (RBC) and white blood cell (WBC) counts and hemhemoglobin content were found to be higher in pollution affected fish as compared with control. Scanning electron microscopy revealed the occurrence of abnormal erythrocytes such as crenated cells, echinocytes, lobopodial projections, membrane internalization, spherocytes, ruptured cells, contracted cells, depression, and uneven elongation of erythrocyte membranes in fish inhabiting the polluted sites. Energy-dispersive X-ray spectroscopy (EDS) revealed the presence of silicon and lead in the RBCs of pollution affected fish. Significance of the study includes the highly sophisticated analytical approach, which revealed the aforementioned micro-structural abnormalities.
Tight-binding calculation studies of vacancy and adatom defects in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing
2016-02-19
Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less
Meshach Paul, D; Chadah, Tania; Senthilkumar, B; Sethumadhavan, Rao; Rajasekaran, R
2017-11-03
The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO 3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.
Beta-structures in fibrous proteins.
Kajava, Andrey V; Squire, John M; Parry, David A D
2006-01-01
The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.
Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti
Ropars, Jeanne; López-Villavicencio, Manuela; Snirc, Alodie; Lacoste, Sandrine; Giraud, Tatiana
2017-01-01
Background Penicillium roqueforti is a filamentous fungus used for making blue cheeses worldwide. It also occurs as a food spoiler and in silage and wood. Previous studies have revealed a strong population genetic structure, with specific traits associated with the different populations. Here, we used a large strain collection from worldwide cheeses published recently to investigate the genetic structure of P. roqueforti. Principal findings We found a genetic population structure in P. roqueforti that was consistent with previous studies, with two main genetic clusters (W+C+ and W-C-, i.e., with and without horizontal gene transferred regions CheesyTer and Wallaby). In addition, we detected a finer genetic subdivision that corresponded to the environment and to protected designation of origin (PDO), namely the Roquefort PDO. We indeed found evidence for eight genetic clusters, one of the cluster including only strains from other environments than cheeses, and another cluster encompassing only strains from the Roquefort PDO. The W-C- and W+C+ cheese clusters were not the most closely related ones, suggesting that there may have been two independent domestication events of P. roqueforti for making blue cheeses. Significance The additional population structure revealed here may be relevant for cheese-makers and for understanding the history of domestication in P. roqueforti. PMID:28248964
Chaiyasan, P; Pramual, P
2016-09-01
An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600-5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization. © 2016 The Royal Entomological Society.
Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti.
Ropars, Jeanne; López-Villavicencio, Manuela; Snirc, Alodie; Lacoste, Sandrine; Giraud, Tatiana
2017-01-01
Penicillium roqueforti is a filamentous fungus used for making blue cheeses worldwide. It also occurs as a food spoiler and in silage and wood. Previous studies have revealed a strong population genetic structure, with specific traits associated with the different populations. Here, we used a large strain collection from worldwide cheeses published recently to investigate the genetic structure of P. roqueforti. We found a genetic population structure in P. roqueforti that was consistent with previous studies, with two main genetic clusters (W+C+ and W-C-, i.e., with and without horizontal gene transferred regions CheesyTer and Wallaby). In addition, we detected a finer genetic subdivision that corresponded to the environment and to protected designation of origin (PDO), namely the Roquefort PDO. We indeed found evidence for eight genetic clusters, one of the cluster including only strains from other environments than cheeses, and another cluster encompassing only strains from the Roquefort PDO. The W-C- and W+C+ cheese clusters were not the most closely related ones, suggesting that there may have been two independent domestication events of P. roqueforti for making blue cheeses. The additional population structure revealed here may be relevant for cheese-makers and for understanding the history of domestication in P. roqueforti.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moffitt, Stephanie L.; Zhu, Qimin; Ma, Qing
This study explores the unique role of Ga in amorphous (a-) In[BOND]Ga[BOND]O oxide semiconductors through combined theory and experiment. It reveals substitutional effects that have not previously been attributed to Ga, and that are investigated by examining how Ga influences structure–property relationships in a series of pulsed laser deposited a-In[BOND]Ga[BOND]O thin films. Element-specific structural studies (X-ray absorption and anomalous scattering) show good agreement with the results of ab initio molecular dynamics simulations. This structural knowledge is used to understand the results of air-annealing and Hall effect electrical measurements. The crystallization temperature of a-IO is shown to increase by as muchmore » as 325 °C on substituting Ga for In. This increased thermal stability is understood on the basis of the large changes in local structure that Ga undergoes, as compared to In, during crystallization. Hall measurements reveal an initial sharp drop in both carrier concentration and mobility with increasing Ga incorporation, which moderates at >20 at% Ga content. This decline in both the carrier concentration and mobility with increasing Ga is attributed to dilution of the charge-carrying In[BOND]O matrix and to increased structural disorder. The latter effect saturates at high at% Ga.« less
Wen, Hongwei; Liu, Yue; Rekik, Islem; Wang, Shengpei; Zhang, Jishui; Zhang, Yue; Peng, Yun; He, Huiguang
2017-08-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. Although previous TS studies revealed structural abnormalities in distinct corticobasal ganglia circuits, the topological alterations of the whole-brain white matter (WM) structural networks remain poorly understood. Here, we used diffusion MRI probabilistic tractography and graph theoretical analysis to investigate the topological organization of WM networks in 44 drug-naive TS children and 41 age- and gender-matched healthy children. The WM networks were constructed by estimating inter-regional connectivity probability and the topological properties were characterized using graph theory. We found that both TS and control groups showed an efficient small-world organization in WM networks. However, compared to controls, TS children exhibited decreased global and local efficiency, increased shortest path length and small worldness, indicating a disrupted balance between local specialization and global integration in structural networks. Although both TS and control groups showed highly similar hub distributions, TS children exhibited significant decreased nodal efficiency, mainly distributed in the default mode, language, visual, and sensorimotor systems. Furthermore, two separate networks showing significantly decreased connectivity in TS group were identified using network-based statistical (NBS) analysis, primarily composed of the parieto-occipital cortex, precuneus, and paracentral lobule. Importantly, we combined support vector machine and multiple kernel learning frameworks to fuse multiple levels of network topological features for classification of individuals, achieving high accuracy of 86.47%. Together, our study revealed the disrupted topological organization of structural networks related to pathophysiology of TS, and the discriminative topological features for classification are potential quantitative neuroimaging biomarkers for clinical TS diagnosis. Hum Brain Mapp 38:3988-4008, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Akbali, B.; Topcu, G.; Guner, T.; Ozcan, M.; Demir, M. M.; Sahin, H.
2018-03-01
Recent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.
Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
2015-05-05
Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electronmore » donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.« less
Morphology evolution in strain-compensated multiple quantum well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledentsov, N. N., E-mail: nikolay.ledentsov@v-i-systems.com; Shchukin, V. A.; Rouvimov, S.
2014-01-20
Morphology evolution in (In,Ga)As-Ga(As,P) strain-compensated multilayer structures is studied. The effects of nanoscale interface corrugation and phase separation are evident after the third period of the multilayer structure and become more pronounced with each new stack until the sixth period. Then, the interface stabilizes pointing to the formation of strain-balanced equilibrium interface structure. The epitaxial structure remains defect-free up to the maximum number (twenty) of periods studied. In a structure with a high lattice mismatch between the neighboring layers, In{sub 0.40}Ga{sub 0.60}As/GaAs{sub 0.85}P{sub 0.15}, clusters of dislocations are revealed already in the third period. The observed phenomena are critical formore » proper engineering of optoelectronic devices.« less
NASA Astrophysics Data System (ADS)
Velásquez Moya, X. A.; Cardona, R.; Villa Hernández, J. I.; Landínez Téllez, D. A.; Roa-Rojas, J.
2018-03-01
Sr2HoRuO6 ceramic has been synthesized and its structural, morphological, magnetic, optical, and electronic properties studied. Rietveld refinement of x-ray diffraction patterns revealed that this oxide material crystallizes in monoclinic perovskite structure in space group P2 1 /n (no. 14). Scanning electron microscopy revealed polycrystalline surface morphology. x-Ray dispersive spectroscopy suggested that Sr2HoRuO6 was obtained with expected stoichiometry. Magnetic susceptibility curves as a function of temperature revealed ferrimagnetic feature of this material below the Néel temperature T N of 14 K. Evidence of magnetic disorder was provided by the irreversibility observed in the zero-field-cooled and field-cooled responses of the susceptibility below T irr = 169 K. Analysis of the diffuse reflectance spectrum suggested that this material behaves as a semiconductor with energy gap E g of 1.38 eV. Results of band structure and density-of-states calculations are in agreement with the interpretation of Sr2HoRuO6 as a semiconductor. The ferrimagnetic behavior is interpreted as due to exchange mechanisms of d-f (Ru-O-Ho) electrons. The effective magnetic moment calculated from density functional theory was 93.5% of the experimental value obtained from Curie-Weiss fitting of the susceptibility curve.
Anti-correlation and subsector structure in financial systems
NASA Astrophysics Data System (ADS)
Jiang, X. F.; Zheng, B.
2012-02-01
With the random matrix theory, we study the spatial structure of the Chinese stock market, the American stock market and global market indices. After taking into account the signs of the components in the eigenvectors of the cross-correlation matrix, we detect the subsector structure of the financial systems. The positive and negative subsectors are anti-correlated with respect to each other in the corresponding eigenmode. The subsector structure is strong in the Chinese stock market, while somewhat weaker in the American stock market and global market indices. Characteristics of the subsector structures in different markets are revealed.
In Situ Repair of Deteriorated Concrete in Hydraulic Structures: Feasibility Study
1987-05-01
because of its severe deterioration. Examination of the structure had revealed extensive cracking in the beams , columns , and walls as well as pockets of...used extensively in hydraulic structures, such as dams, spill- ways, lock chambers, and bridge support columns and piers. The Corps of Engineers...Figure 6. Repair of crack by post reinforcement. lli FORM KEY WITH PRECAST CONCRETE OR MORTAR PLUGS SET IN BITI.MEN, HoLE DRILLED IN STEM OF WALL
NASA Astrophysics Data System (ADS)
Tasolamprou, A. C.; Mitov, M.; Zografopoulos, D. C.; Kriezis, E. E.
2009-03-01
Single-layer cholesteric liquid crystals exhibit a reflection coefficient which is at most 50% for unpolarized incident light. We give theoretical and experimental evidence of single-layer polymer-stabilized cholesteric liquid-crystalline structures that demonstrate hyper-reflective properties. Such original features are derived by the concurrent and randomly interlaced presence of both helicities. The fundamental properties of such structures are revealed by detailed numerical simulations based on a stochastic approach.
Structure formation of 5083 alloy during friction stir welding
NASA Astrophysics Data System (ADS)
Zaikina, A. A.; Kolubaev, A. V.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.
2017-12-01
This paper provides a comparative study of structures obtained by friction stir welding and sliding friction of 5083 Al alloy. Optical and electron microscopy reveals identical fine-grained structures with a grain size of ˜5 µm both in the weld nugget zone and subsurface layer in friction independently of the initial grain size of the alloy. It has been suggested that the grain boundary sliding is responsible for the specific material flow pattern in both techniques considered.
Terrett, Richard; Petrie, Simon; Pace, Ron J; Stranger, Robert
2014-03-25
A density functional study of the Sr-substituted photosystem II water oxidising complex demonstrates that its recent X-ray crystal structure is consistent with a (Mn(III))4 oxidation state pattern, and with a Sr-bound hydroxide ion. The Sr-water-hydroxide interactions rationalize differences in the exchange rates of substrate water and kinetics of dioxygen bond formation relative to the Ca-containing structure.
Spellmon, Nicholas; Sun, Xiaonan; Sirinupong, Nualpun; Edwards, Brian; Li, Chunying; Yang, Zhe
2015-01-01
SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open-closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.
Electronic, optical, infrared, and elastic properties of KCdCO3F from first principles
NASA Astrophysics Data System (ADS)
Huang, Xue-Qian; Xue, Han-Yu; Zhang, Can; Pang, Dong-Dong; Lv, Zhen-Long; Duan, Man-Yi
2018-05-01
KCdCO3F is a newly synthesized promising ultraviolet nonlinear optical crystal, but its structure is disputed and its fundamental properties have not been well studied. Here our first-principles study indicates that the structure with the space group P 6 bar c2 is energetically more stable than the P 6 bar m2 phase. We systematically investigated its electronic, optical, vibrational, infrared, and elastic properties. The results reveal that KCdCO3F is a direct-band-gap insulator with rather flat bands below the Fermi level. Analyses of its partial density of states revealed that the top (bottom) of its valence (conduction) band is formed by the O 2p (Cd 5s) orbital. It is a negative uniaxial crystal with ionic-covalent nature. Both infrared-active and Raman-active modes exist at its Brillouin zone center, and ions contribute more to its static dielectric constants. Its optical spectra in the visual and infrared ranges were studied, and their origins were revealed. Calculations indicate that KCdCO3F is mechanically stable but anisotropic since it is more vulnerable to shear stress and is easy to cleave along the c axis.
Free classification of regional dialects of American English.
Clopper, Cynthia G; Pisoni, David B
2007-07-01
Recent studies have found that naïve listeners perform poorly in forced-choice dialect categorization tasks. However, the listeners' error patterns in these tasks reveal systematic confusions between phonologically similar dialects. In the present study, a free classification procedure was used to measure the perceptual similarity structure of regional dialect variation in the United States. In two experiments, participants listened to a set of short English sentences produced by male talkers only (Experiment 1) and by male and female talkers (Experiment 2). The listeners were instructed to group the talkers by regional dialect into as many groups as they wanted with as many talkers in each group as they wished. Multidimensional scaling analyses of the data revealed three primary dimensions of perceptual similarity (linguistic markedness, geography, and gender). In addition, a comparison of the results obtained from the free classification task to previous results using the same stimulus materials in six-alternative forced-choice categorization tasks revealed that response biases in the six-alternative task were reduced or eliminated in the free classification task. Thus, the results obtained with the free classification task in the current study provided further evidence that the underlying structure of perceptual dialect category representations reflects important linguistic and sociolinguistic factors.
G Protein-Coupled Receptor Rhodopsin: A Prospectus
Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof
2006-01-01
Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166
Structural and magnetic studies of Cr doped nickel ferrite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panwar, Kalpana, E-mail: kalpanapanwar99@gmail.com; Department of Physics, Govt. Women Engg. College, Ajmer-305002; Heda, N. L.
We have studied the structural and magnetic properties of Cr doped nickel ferrite thin films deposited on Si (100) and Si (111) using pulsed laser deposition technique. The films were deposited under vacuum and substrate temperature was kept at 700°C. X-ray diffraction analysis revealed that films on both substrates have single phase cubic spinel structure. However, the film grown on Si (111) shows better crystalline behavior. Fourier transform infrared spectroscopy suggests that films on both substrates have mixed spinel structure. These films show magnetic hysteresis behavior and magnetization value of film on Si (100) is larger than that on Simore » (111). It turns out that structural and magnetic properties of these two films are correlated.« less
Duan, Ming-Rui; Nan, Jie; Liang, Yu-He; Mao, Peng; Lu, Lu; Li, Lanfen; Wei, Chunhong; Lai, Luhua; Li, Yi; Su, Xiao-Dong
2007-01-01
WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 Å resolution has revealed that this domain is composed of a globular structure with five β strands, forming an antiparallel β-sheet. A novel zinc-binding site is situated at one end of the β-sheet, between strands β4 and β5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at β2 and β3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins. PMID:17264121
Huisman-van Dijk, Hilde M.; van de Schoot, Rens; Rijkeboer, Marleen M.; Mathews, Carol A; Cath, Dainelle C
2016-01-01
Gilles de la Tourette’s syndrome (GTS) is a disorder in which co-morbid obsessive-compulsive (OC), Attention Deficit Hyperactivity Disorder (ADHD) and autism symptoms occur in up to 60% of patients, suggesting shared etiology. We aimed to explore the phenotypic structure underlying GTS, taking tic, OC, ADHD, and autism symptoms into account as measured by various symptom scales (YGTSS, Y-BOCS, CAARS and AQ) in 225 GTS patients and 371 family members. First, Confirmatory Factor Analyses (CFA) were performed on the symptom structure of each separate symptom scale. Second, the symptom dimensions derived from each scale were combined in one model, and correlations between them were calculated. Using the correlation matrix, Exploratory Factor Analyses (EFA) were performed on the symptom dimensions across the scales. EFA revealed a five factor structure: tic/aggression/symmetry; OC symptoms/compulsive tics/numbers and patterns; ADHD symptoms; autism symptoms; and hoarding/inattention symptoms. The symptom factors found in this study are partly in line with the traditional categorical boundaries of the symptom scales used, and partly reveal a symptom structure that cuts through the diagnostic categories. This phenotypic structure might more closely reflect underlying etiologies than a structure that classically describes GTS patients according to absence or presence of comorbid OCD, ADHD and autism, and might inform both future genetic and treatment studies. PMID:26826899
Structure analysis of the global metabolic regulator Crc from Pseudomonas aeruginosa.
Wei, Yong; Zhang, Heng; Gao, Zeng-Qiang; Xu, Jian-Hua; Liu, Quan-Sheng; Dong, Yu-Hui
2013-01-01
The global metabolic regulator catabolite repression control (Crc) has recently been found to modulate the susceptibility to antibiotics and virulence in the opportunistic pathogen Pseudomonas aeruginosa and been suggested as a nonlethal target for novel antimicrobials. In P. aeruginosa, Crc couples with the CA motifs from the small RNA CrcZ to form a post-transcriptional regulator system and is removed from the 5'-end of the target mRNAs. In this study, we first reported the crystal structure of Crc from P. aeruginosa refined to 2.20 Å. The structure showed that it consists of two halves with similar overall topology and there are 11 β strands surrounded by 13 helices, forming a four-layered α/β-sandwich. The circular dichroism spectroscopy revealed that it is thermostable in solution and shares similar characteristics to that in crystal. Comprehensive structural analysis and comparison with the homologies of Crc showed high similarity with several known nucleases and consequently may be classified into a member exodeoxyribonuclease III. However, it shows distinct substrate specificity (RNA as the preferred substrate) compared to these DNA endonucleases. Structural comparisons also revealed potential RNA recognition and binding region mainly consisting of five flexible loops. Our structure study provided the basis for the future application of Crc as a target to develop new antibiotics. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Haussmann, Alexander; Gabrian, Martina; Ungar, Nadine; Jooß, Stefan; Wiskemann, Joachim; Sieverding, Monika; Steindorf, Karen
2018-05-09
Despite a large body of evidence showing that physical activity (PA) is beneficial to patients with cancer, healthcare professionals (HCPs) are promoting it too scarcely. Factors that hinder HCPs from promoting PA have remained understudied so far. Using a qualitative approach, this study aimed at a comprehensive description of influencing factors for HCPs' PA promotion behaviour and at identifying the reasons and mechanisms behind them. Semi-structured interviews with 30 HCPs were undertaken with a focus on concerns, patient characteristics and structural factors. Answers were analysed using thematic analysis. Results revealed that HCPs had concerns regarding a physical overexertion and psychological stress for patients with cancer. A patient's physical condition and the assumed interest in PA, often derived from former PA, turned out to be the most crucial patient characteristics influencing if PA is addressed. Structural factors relevant for PA promotion pertained to in-house structures, HCPs' workload, timing and coordination, information material for HCPs and patients and availability of exercise programs. In conclusion, this study revealed undetected concerns of HCPs and underlined the relevance of patient characteristics and structural conditions for HCPs' PA promotion towards patients with cancer. A broader perspective is needed to assess these factors in their influence on HCPs' PA promotion. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Xu, C.; Luo, Z.; Sun, R.; Li, Q.
2017-12-01
The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).
Hirano, Hirokazu; Masaki, Noritaka; Hayasaka, Takahiro; Watanabe, Yoshiko; Masumoto, Kazuma; Nagata, Tetsuji; Katou, Fuminori; Setou, Mitsutoshi
2014-02-01
Periodontal disease is a serious dental problem because it does not heal naturally and leads to tooth loss. In periodontal disease, inflammation at periodontal tissue is thought as predominant, and its effect against tooth itself remains unclear. In this study, we applied matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS) to teeth for the first time. By comparing anatomical structure of tooth affected with periodontal disease with normal ones, we analyzed traces of the disease on tooth. We found signals characteristic of enamel, dentin, and dental pulp, respectively, in mass spectra obtained from normal teeth. Ion images reconstructed using these signals showed anatomical structures of the tooth clearly. Next, we performed IMS upon teeth of periodontal disease. Overall characteristic of the mass spectrum appeared similar to normal ones. However, ion images reconstructed using signals from the tooth of periodontal disease revealed loss of periodontal ligament visualized together with dental pulp in normal teeth. Moreover, ion image clearly depicted an accumulation of signal at m/z 496.3 at root surface. Such an accumulation that cannot be examined only from mass spectrum was revealed by utilization of IMS. Recent studies about inflammation revealed that the signal at m/z 496.3 reflects lyso-phosphatidylcholine (LPC). Infiltration of the signal is statistically significant, and its intensity profile exhibited the influence has reached deeply into the tooth. This suggests that influence of periodontal disease is not only inflammation of periodontal tissue but also infiltration of LPC to root surface, and therefore, anti-inflammatory treatment is required besides conventional treatments.
Functional RNA structures throughout the Hepatitis C Virus genome.
Adams, Rebecca L; Pirakitikulr, Nathan; Pyle, Anna Marie
2017-06-01
The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
Intracardiac echocardiography to diagnose pannus formation after aortic valve replacement.
Yamamoto, Yoshiya; Ohara, Takahiro; Funada, Akira; Takahama, Hiroyuki; Amaki, Makoto; Hasegawa, Takuya; Sugano, Yasuo; Kanzaki, Hideaki; Anzai, Toshihisa
2016-03-01
A 66-year-old female, under regular follow-up for 20 years after aortic valve replacement (19-mm Carbomedics), presented dyspnea on effort and hypotension during hemodialysis. A transthoracic echocardiogram showed elevation of transvalvular velocity up to 4 m/s, but the structure around the aortic prosthesis was difficult to observe due to artifacts. Fluoroscopy revealed normal motion of the leaflets of the mechanical valve. Intracardiac echocardiography (ICE) revealed a pannus-like structure in the left ventricular outflow tract. Transesophageal echocardiogram also revealed this structure. ICE can visualize structural abnormalities around a prosthetic valve after cardiac surgery even in patients in whom conventional imaging modalities failed.
Jaremko, Matt J; Lee, D John; Patel, Ashay; Winslow, Victoria; Opella, Stanley J; McCammon, J Andrew; Burkart, Michael D
2017-10-10
In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana
2005-08-15
The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutantsmore » and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.« less
Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente
2005-08-15
The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.
Biophysics of cadherin adhesion.
Leckband, Deborah; Sivasankar, Sanjeevi
2012-01-01
Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.
Organizational Structure as a Determinant of Job Burnout.
Bilal, Atif; Ahmed, Hafiz Mushtaq
2017-03-01
This exploratory study determined the impact of organizational structure, particularly participation in decision making, instrumental communication, formalization, integration, and promotional opportunity, on burnout among Pakistani pediatric nurses. Data were collected from pediatric nurses working for Punjab's largest state-run hospital. The findings revealed that participation in decision making, instrumental communication, and promotional opportunity prevented burnout. Formalization contributed to burnout but integration was not related to burnout. Quite interestingly, except for supervisory status, most control variables for this study were not significantly related to emotional burnout. Hence, the hypothesis that organizational structure is a determinant of job burnout was accepted.
NASA Astrophysics Data System (ADS)
Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen
2015-10-01
Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.
Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; ...
2015-10-16
Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here in this study, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.
Disempowerment and Psychological Distress in the Lives of Young People in Eastern Cape, South Africa
ERIC Educational Resources Information Center
Nduna, Mzikazi; Jewkes, Rachel
2012-01-01
A qualitative study was conducted in Butterworth, in the rural Eastern Cape Province of South Africa, to explore sources of distress for young people. Semi-structured, individual in-depth interviews were conducted with 16 men and 24 women aged 16-22 years. The findings revealed interconnections between structural factors such as death, poverty,…
NASA Astrophysics Data System (ADS)
Altun, F.; Birdal, F.
2012-12-01
In this study, a 1:3 scaled, three-storey, FRP (Fiber Reinforced Polymer) retrofitted reinforced concrete model structure whose behaviour and crack development were identified experimentally in the laboratory was investigated analytically. Determination of structural behaviour under earthquake load is only possible in a laboratory environment with a specific scale, as carrying out structural experiments is difficult due to the evaluation of increased parameter numbers and because it requires an expensive laboratory setup. In an analytical study, structure was modelled using ANSYS Finite Element Package Program (2007), and its behaviour and crack development were revealed. When experimental difficulties are taken into consideration, analytical investigation of structure behaviour is more economic and much faster. At the end of the study, experimental results of structural behaviour and crack development were compared with analytical data. It was concluded that in a model structure retrofitted with FRP, the behaviour and cracking model can be determined without testing by determining the reasons for the points where analytical results are not converged with experimental data. Better understanding of structural behaviour is analytically enabled with the study.
Transformation of dwelling culture based on riverine community in Musi River Palembang
NASA Astrophysics Data System (ADS)
Wicaksono, Bambang; Siswanto, Ari; Kusdiwanggo, Susilo; Anwar, Widya Fransiska Febriati
2017-11-01
Palembang City development since the Palembang Darussalam Sultanate era to the reformation era has impact on the living culture community, less of the raft houses, houses on stilts transformed into a terraced house, and the house became the dominant land. Dwelling Culture oriented on transformation of river become land-oriented. The development has leaving identity, character, and potential of the riverine architecture and dwelling life of river. The goals of study are to describe a case and revealing the meaning of dwelling cultural transformation in Musi River society from the process of cultural acculturation and investigate the architectural aspect from the form of house and modes of dwelling through the structuralism approach. The data collection is conducted qualitatively by using data collection techniques such as observation, interview, literature study, whereas the method of analysis, is a method that is done through Levi-Strauss structuralism approach that identifies all the elements of community thought in a systematic procedure. The results showed the structure behind the orientation, position, shape, and layout of dwelling revealed through the meanings in it. It means, the change and development from cultural acculturation process which oriented in the land dwelling, based on structure thinking of Palembang society.
Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B
2013-07-14
Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
NASA Astrophysics Data System (ADS)
Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka
2018-03-01
The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.
Antibody adsorption on the surface of water studied by neutron reflection
Li, Zongyi; Holman, Robert; Pan, Fang; Campbell, Richard A.; Campana, Mario; Li, Peixun; Webster, John R. P.; Bishop, Steven; Narwal, Rojaramani; Uddin, Shahid
2017-01-01
ABSTRACT Surface and interfacial adsorption of antibody molecules could cause structural unfolding and desorbed molecules could trigger solution aggregation, resulting in the compromise of physical stability. Although antibody adsorption is important and its relevance to many mechanistic processes has been proposed, few techniques can offer direct structural information about antibody adsorption under different conditions. The main aim of this study was to demonstrate the power of neutron reflection to unravel the amount and structural conformation of the adsorbed antibody layers at the air/water interface with and without surfactant, using a monoclonal antibody ‘COE-3′ as the model. By selecting isotopic contrasts from different ratios of H2O and D2O, the adsorbed amount, thickness and extent of the immersion of the antibody layer could be determined unambiguously. Upon mixing with the commonly-used non-ionic surfactant Polysorbate 80 (Tween 80), the surfactant in the mixed layer could be distinguished from antibody by using both hydrogenated and deuterated surfactants. Neutron reflection measurements from the co-adsorbed layers in null reflecting water revealed that, although the surfactant started to remove antibody from the surface at 1/100 critical micelle concentration (CMC) of the surfactant, complete removal was not achieved until above 1/10 CMC. The neutron study also revealed that antibody molecules retained their globular structure when either adsorbed by themselves or co-adsorbed with the surfactant under the conditions studied. PMID:28353420
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.; ...
2017-08-31
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.
Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier
2016-09-01
Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
2018-05-01
We report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experiments and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Finally, the observed frequencies of the Nsbnd H and Osbnd H stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
Here, we report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experimentsmore » and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Lastly, the observed frequencies of the NH and OH stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.« less
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
2018-03-08
Here, we report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experimentsmore » and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Lastly, the observed frequencies of the NH and OH stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.« less
Su, Zhaoming; Wu, Chao; Shi, Liuqing; Luthra, Priya; Pintilie, Grigore D.; Johnson, Britney; Porter, Justin R.; Ge, Peng; Chen, Muyuan; Liu, Gai; Frederick, Thomas E.; Binning, Jennifer M.; Bowman, Gregory R.; Zhou, Z. Hong; Basler, Christopher F.; Gross, Michael L.; Leung, Daisy W.
2018-01-01
Summary Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22–α23. Biochemical, biophysical, and mutational analysis revealed inter-eNP contacts within α22–α23 are critical for viral NC-assembly and regulate viral RNA synthesis. These observations suggest that the N-terminus and α22–α23 of eNP function as context dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target. PMID:29474922
GdPtPb: A noncollinear antiferromagnet with distorted kagome lattice
Manni, S.; Bud'ko, Sergey L.; Canfield, Paul C.
2017-08-24
In the spirit of searching for Gd-based, frustrated, rare earth magnets, we have found antiferomagnetism (AF) in GdPtPb, which crystallizes in the ZrNiAl-type structure that has a distorted kagome lattice of Gd triangles. Single crystals were grown and investigated using structural, magnetic, transport, and thermodynamic measurements. GdPtPb orders antiferromagnetically at 15.5 K, arguably with a planar, noncollinear structure. The high temperature magnetic susceptibility data reveal an “anti-frustration” behavior having a frustration parameter, |f| = |Θ|/T N = 0.25, which can be explained by mean field theory within a two-sublattice model. Here, the study of the magnetic phase diagram down tomore » T = 1.8K reveals a change of magnetic structure through a metamagnetic transition at around 20 kOe and the disappearance of the AF ordering near 140 kOe. In total, our work indicates that GdPtPb can serve as an example of a planar, noncollinear AF with a distorted kagome magnetic sublattice.« less
Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.
2013-12-15
Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less
The parallel universe of RNA folding.
Batey, R T; Doudna, J A
1998-05-01
How do large RNA molecules find their active conformations among a universe of possible structures? Two recent studies reveal that RNA folding is a rapid and ordered process, with surprising similarities to protein folding mechanisms.
Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.
Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M
2017-09-16
Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.
NASA Astrophysics Data System (ADS)
Yuan, Ai-Hua; Liu, Wen-Yan; Zhou, Hu.; Chen, Ying-Ying; Shen, Xiao-Ping
2009-02-01
A new cyanide-bridged heterobimetallic assembly based on octacyanotungstate(V) as building block, {[Cu II(L)] 3[W V(CN) 8] 2}·[Cu II(L)·2H 2O]·(ClO 4) 2·4H 2O 1 (L = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane), has been prepared and characterized. X-ray single-crystal analysis reveals that 1 displays a two-dimensional structure with corrugated sheets, in which the 12-membered rings are the basic building units. Magnetic studies reveal that 1 displays a ferromagnetic interaction between Cu II and W V through cyano bridges.
NASA Astrophysics Data System (ADS)
Perna, Andrea; Jost, Christian; Couturier, Etienne; Valverde, Sergi; Douady, Stéphane; Theraulaz, Guy
2008-09-01
Recent studies have introduced computer tomography (CT) as a tool for the visualisation and characterisation of insect architectures. Here, we use CT to map the three-dimensional networks of galleries inside Cubitermes nests in order to analyse them with tools from graph theory. The structure of these networks indicates that connections inside the nest are rearranged during the whole nest life. The functional analysis reveals that the final network topology represents an excellent compromise between efficient connectivity inside the nest and defence against attacking predators. We further discuss and illustrate the usefulness of CT to disentangle environmental and specific influences on nest architecture.
Surface catalytic degradation study of two linear perfluoropolyalkylethers at 345 C
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1987-01-01
Thin-liquid-film degradation studies of two commercially available perfluoropolyalkylether fluids (PFAE) were performed at 345 C, in nitrogen and air atmospheres, on iron and 440 C stainless steel surfaces. It was found that one fluid degraded on both iron and 440 C stainless steel surfaces in an air atmosphere, whereas the other fluid did not degrade. Chemical analysis revealed that the test fluid degraded to lower molecular weight products and that the degradation was accompanied by the formation of a brownish deposit on both the iron and 440 C stainless steel surfaces. Surface analysis of the deposit revealed a susbstantial amount of iron oxide (Fe2O3). It was hypothesized that the fluid which degraded did so because of its acetal structure. The other fluid, lacking the acetal structure, did not degrade.
Kim, Kuglae; Cha, Jeong Seok; Cho, Yong-Soon; Kim, Hoyoung; Chang, Nienping; Kim, Hye-Jung; Cho, Hyun-Soo
2018-05-11
Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl
2013-08-01
The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar tomore » other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.« less
Hötger, Diana; Carro, Pilar; Gutzler, Rico; Wurster, Benjamin; Chandrasekar, Rajadurai; Klyatskaya, Svetlana; Ruben, Mario; Salvarezza, Roberto C; Kern, Klaus; Grumelli, Doris
2018-05-31
Metal-organic coordination networks self-assembled on surfaces have emerged as functional low-dimensional architectures with potential applications ranging from the fabrication of functional nanodevices to electrocatalysis. Among them, bis-pyridyl-bispyrimidine (PBP) and Fe-PBP on noble metal surfaces appear as interesting systems in revealing the details of the molecular self-assembly and the effect of metal incorporation on the organic network arrangement. Herein, we report a combined STM, XPS, and DFT study revealing polymorphism in bis-pyridyl-bispyrimidine adsorbed adlayers on the reconstructed Au(111) surface. The polymorphic structures are converted by the addition of Fe adatoms into one unique Fe-PBP surface structure. DFT calculations show that while all PBP phases exhibit a similar thermodynamic stability, metal incorporation selects the PBP structure that maximizes the number of metal-N close contacts. Charge transfer from the Fe adatoms to the Au substrate and N-Fe interactions stabilize the Fe-PBP adlayer. The increased thermodynamic stability of the metal-stabilized structure leads to its sole expression on the surface.
Spirocyclic character of ixazomib citrate revealed by comprehensive XRD, NMR and DFT study
NASA Astrophysics Data System (ADS)
Skorepova, Eliska; Čerňa, Igor; Vlasáková, Růžena; Zvoníček, Vít; Tkadlecová, Marcela; Dušek, Michal
2017-11-01
Ixazomib citrate is a very recently approved anti-cancer drug. Until now, to the best of our knowledge, no one has been able to solve any crystal structures of this compound. In this work, we present the crystal structures of two isostructural solvates of ixazomib citrate. In all currently available literature, the molecule is characterized as containing a single optically active carbon atom and a borate cycle formed when ixazomib is reacted with citric acid to form a stabilized ixazomib citrate that can be administered orally. However, the crystal structures revealed that none of the up-to-date presented structural formulas of ixazomib citrate are fully accurate. In addition to the citrate ring, another 5-membered ring is formed. These two rings are connected by the boron atom, making this compound a spirocyclic borate. By spirocyclization, the boron atom becomes tetrahedral and therefore optically active. In the crystal structures, ixazomib citrate was found to be in forms of two RR and RS stereoisomers. The results are supported by solid-state and solution NMR and DFT quantum mechanical calculations.
NASA Astrophysics Data System (ADS)
Kuroda, Daniel; Fufler, Kristen
Lithium-ion batteries have become ubiquitous to the portable energy storage industry, but efficiency issues still remain. Currently, most technological and scientific efforts are focused on the electrodes with little attention on the electrolyte. For example, simple fundamental questions about the lithium ion solvation shell composition in commercially used electrolytes have not been answered. Using a combination of linear and non-linear IR spectroscopies and theoretical calculations, we have carried out a thorough investigation of the solvation structure and dynamics of the lithium ion in various linear and cyclic carbonates at common battery electrolyte concentrations. Our studies show that carbonates coordinate the lithium ion tetrahedrally. They also reveal that linear and cyclic carbonates have contrasting dynamics in which cyclic carbonates present the most ordered structure. Finally, our experiments demonstrate that simple structural modifications in the linear carbonates impact significantly the microscopic interactions of the system. The stark differences in the solvation structure and dynamics among different carbonates reveal previously unknown details about the molecular level picture of these systems.
Sgourakis, Nikolaos G; Natarajan, Kannan; Ying, Jinfa; Vogeli, Beat; Boyd, Lisa F; Margulies, David H; Bax, Ad
2014-09-02
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module. Copyright © 2014 Elsevier Ltd. All rights reserved.
Performance Indicators in Indonesian Universities: The Perception of Academics
ERIC Educational Resources Information Center
Gaus, Nurdiana; Hall, David
2016-01-01
This study aimed to explore the perceptions of Indonesian academics towards the implementation of Performance Indicators (PIs) on teaching and research. The study was a case study using semi-structured interviews, conducted with 30 academics in three state universities in Indonesia. The results of the study revealed academics believed that outcome…
ERIC Educational Resources Information Center
Tagay, Özlem
2015-01-01
Problem Statement: A literature analysis revealed that contact disturbances, self-esteem and life satisfaction have been examined in different studies separately. In particular, the researchers observed that the studies conducted on Gestalt contact disturbances are limited in number. In this study, the variables of contact disturbances,…
Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G
2015-05-01
Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.
2010-08-18
Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{submore » 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.« less
Yeh, Chia-Nan; Chai, Jeng-Da
2016-01-01
We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024
Structural, electronic and thermal properties of super hard ternary boride, WAlB
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.
2018-04-01
A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.
Local and electronic structure around manganese in Cd0.98Mn0.02Te0.97Se0.03 studied by XAFS
NASA Astrophysics Data System (ADS)
Radisavljević, I.; Novaković, N.; Romčević, N.; Ivanović, N.
2013-04-01
X-ray Absorption Fine Structure (XAFS) technique was employed to study local electronic and structural features of Mn ions incorporated in Cd0.98Mn0.02Te0.97Se0.03. XAFS measurements performed at Mn K edge revealed that manganese Mn(II) ions are well incorporated into the host CdTe lattice (cubic zinc-blende structure type) and their immediate surrounding is found to be composed exclusively of Te atoms. The observed preference of Mn ions distribution around Te opposes earlier observations on the similar systems, where preferential Mn-Se over Mn-Te paring was found.
Internet Addiction: Stability and Change
ERIC Educational Resources Information Center
Huang, Chiungjung
2010-01-01
This longitudinal study examined five indices of stability and change in Internet addiction: structural stability, mean-level stability, differential stability, individual-level stability, and ipsative stability. The study sample was 351 undergraduate students from end of freshman year to end of junior year. Convergent findings revealed stability…
Thermal Evolution of a Failed Flux Rope Eruption Revealed by Temperature Maps
NASA Astrophysics Data System (ADS)
Song, H.; Zhang, J.; CHEN, Y.
2013-12-01
Flux rope is generally considered to be the fundamental magnetic configuration of a coronal mass ejection (CME). Recent observations suggest that hot channel or blob structures during the eruptions be the direct observational manifestation of flux ropes. In this study, we report our analysis of thermal evolution of a failed solar eruption with an apparent flux rope embedded. The thermal structure of the eruption is revealed through differential emission measure (DEM) analysis technique, which shows detailed temperature maps in both high spatial resolution and high temperature resolution based on SDO/AIA observations. Our results show that the flux rope exists in the corona before the eruption, and its temperature can quickly rise to over 10 MK within one minute of the eruption. The correlation study between the flux rope temperature and the soft x-ray flux suggests that the flux rope should be heated through the direct thermal energy release of magnetic reconnection. Further, we study the kinematic evolution process of the flux rope, in an effort to find the physical mechanism that prevents the magnetic rope eruption to become a full coronal mass ejection. This kind of study using temperature maps might reveal where and when magnetic reconnection takes place during solar eruptions.
Pascale, Lise; Azoulay, Stéphane; Di Giorgio, Audrey; Zenacker, Laura; Gaysinski, Marc; Clayette, Pascal; Patino, Nadia
2013-01-01
RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous ‘polyamide amino acids’ (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy–entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets. PMID:23605042
Pascale, Lise; Azoulay, Stéphane; Di Giorgio, Audrey; Zenacker, Laura; Gaysinski, Marc; Clayette, Pascal; Patino, Nadia
2013-06-01
RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous 'polyamide amino acids' (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy-entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets.
Joydas, T V; Qurban, Mohammad A; Al-Suwailem, Abdulaziz; Krishnakumar, P K; Nazeer, Zahid; Cali, N A
2012-02-01
The 1991 Gulf oil spill heavily impacted the coastal areas of the Saudi waters of the Arabian Gulf and recent studies have indicated that even 15 years after the incident, macrobenthos had not completely recovered in the sheltered bays in the affected region such as, Manifa Bay. This study investigates the community conditions of macrobenthos in the open waters in one of the impacted areas, Al-Khafji waters, about 14 years after the spill. Diversity measures and community structure analyses indicate a healthy status of polychaete communities. The BOPA index reveals that oil sensitive amphipods were recolonized in the study area. This confirms that the benthic communities of the oil spill impacted area had taken only <14 years to recover in the open waters of the impacted areas. The study also reveals the existence of three distinct polychaete communities along the depth and sediment gradients. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bem Sex Role Inventory Validation in the International Mobility in Aging Study.
Ahmed, Tamer; Vafaei, Afshin; Belanger, Emmanuelle; Phillips, Susan P; Zunzunegui, Maria-Victoria
2016-09-01
This study investigated the measurement structure of the Bem Sex Role Inventory (BSRI) with different factor analysis methods. Most previous studies on validity applied exploratory factor analysis (EFA) to examine the BSRI. We aimed to assess the psychometric properties and construct validity of the 12-item short-form BSRI in a sample administered to 1,995 older adults from wave 1 of the International Mobility in Aging Study (IMIAS). We used Cronbach's alpha to assess internal consistency reliability and confirmatory factor analysis (CFA) to assess psychometric properties. EFA revealed a three-factor model, further confirmed by CFA and compared with the original two-factor structure model. Results revealed that a two-factor solution (instrumentality-expressiveness) has satisfactory construct validity and superior fit to data compared to the three-factor solution. The two-factor solution confirms expected gender differences in older adults. The 12-item BSRI provides a brief, psychometrically sound, and reliable instrument in international samples of older adults.
Inherent flexibility of CLIC6 revealed by crystallographic and solution studies.
Ferofontov, Alisa; Strulovich, Roi; Marom, Milit; Giladi, Moshe; Haitin, Yoni
2018-05-02
Chloride intracellular channels (CLICs) are a family of unique proteins, that were suggested to adopt both soluble and membrane-associated forms. Moreover, following this unusual metamorphic change, CLICs were shown to incorporate into membranes and mediate ion conduction in vitro, suggesting multimerization upon membrane insertion. Here, we present a 1.8 Å resolution crystal structure of the CLIC domain of mouse CLIC6 (mCLIC6). The structure reveals a monomeric arrangement and shows a high degree of structural conservation with other CLICs. Small-angle X-ray scattering (SAXS) analysis of mCLIC6 demonstrated that the overall solution structure is similar to the crystallographic conformation. Strikingly, further analysis of the SAXS data using ensemble optimization method unveiled additional elongated conformations, elucidating high structural plasticity as an inherent property of the protein. Moreover, structure-guided perturbation of the inter-domain interface by mutagenesis resulted in a population shift towards elongated conformations of mCLIC6. Additionally, we demonstrate that oxidative conditions induce an increase in mCLIC6 hydrophobicity along with mild oligomerization, which was enhanced by the presence of membrane mimetics. Together, these results provide mechanistic insights into the metamorphic nature of mCLIC6.
Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S
2010-01-25
We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.
Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.
2015-01-01
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760
Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C
2015-11-15
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.
A Comparative Study of Iranian and Japanese English Teachers' Demotivational Factors
ERIC Educational Resources Information Center
Baniasad-Azad, Somayeh; Ketabi, Saeed
2013-01-01
This study examined demotivational factors among Iranian and Japanese college teachers of English. To achieve the purpose, the study used a 35-item questionnaire and semi-structured interviews. The results were compared with the similar study in Japan by Sugino (2010). The findings of the study revealed that Iranian and Japanese lecturers are much…
Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F
2013-01-01
Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.
Amith, Muhammad; Cunningham, Rachel; Savas, Lara S; Boom, Julie; Schvaneveldt, Roger; Tao, Cui; Cohen, Trevor
2017-10-01
This study demonstrates the use of distributed vector representations and Pathfinder Network Scaling (PFNETS) to represent online vaccine content created by health experts and by laypeople. By analyzing a target audience's conceptualization of a topic, domain experts can develop targeted interventions to improve the basic health knowledge of consumers. The underlying assumption is that the content created by different groups reflects the mental organization of their knowledge. Applying automated text analysis to this content may elucidate differences between the knowledge structures of laypeople (heath consumers) and professionals (health experts). This paper utilizes vaccine information generated by laypeople and health experts to investigate the utility of this approach. We used an established technique from cognitive psychology, Pathfinder Network Scaling to infer the structure of the associational networks between concepts learned from online content using methods of distributional semantics. In doing so, we extend the original application of PFNETS to infer knowledge structures from individual participants, to infer the prevailing knowledge structures within communities of content authors. The resulting graphs reveal opportunities for public health and vaccination education experts to improve communication and intervention efforts directed towards health consumers. Our efforts demonstrate the feasibility of using an automated procedure to examine the manifestation of conceptual models within large bodies of free text, revealing evidence of conflicting understanding of vaccine concepts among health consumers as compared with health experts. Additionally, this study provides insight into the differences between consumer and expert abstraction of domain knowledge, revealing vaccine-related knowledge gaps that suggest opportunities to improve provider-patient communication. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Divekar, Sandesh K.; Achary, S. Nagabhusan; Ajgaonkar, Vishnu R.
2018-06-01
A series of double selenates, as (CH3)4NLn(SeO4)2rad 4H2O (Ln = Rare earth ion like La, Pr, Nd, Sm, Gd, Tb, Dy) was crystallized from mixed solution and characterized in detail for their structure, vibrational and optical properties as well as thermal stabilities. The crystal structure of the praseodymium compound was obtained by single crystal X-ray diffraction (XRD) and revealed a monoclinic (C2/c) lattice with chains formed by PrO8 and SeO4 units. The chains with compositions [Pr(SeO4)4(H2O)4]- are stacked in three dimensions and the (CH3)4N+ ions located in between them provide charge neutrality to the structure. The characterization of other compounds were carried out from powder XRD data and revealed that they all are isostructural to Pr-compound. All the functional groups were identified by Raman and IR spectroscopic studies. Solid state 77Se NMR revealed noticeable changes in selenium environment in these compounds. The optical absorption studies on the compounds show strong band edge absorptions in UV region. Thermal stabilities of the compounds, as investigated by simultaneous TG-DTA techniques indicate their sequential decompositions due to loss of H2O, (CH3)4N+ group, SeO2 and finally leaving their corresponding rare earth oxides.
NASA Astrophysics Data System (ADS)
Camacho, K. I.; Pariona, N.; Martinez, A. I.; Baggio-Saitovitch, E.; Herrera-Trejo, M.; Perry, Dale L.
2017-05-01
The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research.
Shin, Dong-Yun; Kim, Sun Nam; Chae, Jung-Hyun; Hyun, Soon-Sil; Seo, Seung-Yong; Lee, Yong-Sil; Lee, Kwang-Ok; Kim, Seok-Ho; Lee, Yun-Sang; Jeong, Jae Min; Choi, Nam-Song; Suh, Young-Ger
2004-09-06
Syntheses and excellent anti-MRSA activities of the mansonone F analogs are reported. In addition, the minimal structural requirements for its anti-MRSA activities as well as its structure-activity relationship including the C3 substituents effects on anti-MRSA activity are also described. In particular, this study revealed that both ortho-quinone and tricyclic systems of mansonone F are essential for anti-MRSA activities.
Effect of abrasive water jet on the structure of the surface layer of Al-Mg alloy
NASA Astrophysics Data System (ADS)
Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Gudnev, N. Z.
2017-09-01
Optical, scanning, and transmission electron microscopy methods, and X-ray diffraction analysis have been used to study the changes in the structure and the microhardness in the surface layer of the Al-Mg (5.8-6.8 wt %) alloy after water jet cutting. The dislocation density, the sizes of coherent scattering regions, and microdistortions have been determined. The transformation of the fine structure has been revealed in the displacement from the alloy volume to the abrasive-waterjet cutting surface.
Lithiated imines: solvent-dependent aggregate structures and mechanisms of alkylation.
Zuend, Stephan J; Ramirez, Antonio; Lobkovsky, Emil; Collum, David B
2006-05-03
We describe efforts to understand the structure and reactivity of lithiated cyclohexanone N-cyclohexylimine. The lithioimine affords complex solvent-dependent distributions of monomers, dimers, and trimers in a number of ethereal solvents. Careful selection of solvent provides exclusively monosolvated dimers. Rate studies on the C-alkylations reveal chronic mixtures of monomer- and dimer-based pathways. We explore the factors influencing reactants and alkylation transition structures and the marked differences between lithioimines and isostructural lithium dialkylamides with the aid of density functional theory calculations.
Wang, Huizheng; Zhang, Kai; Zhu, Jie; Song, Weiwei; Zhao, Li; Zhang, Xiuguo
2013-01-01
Polyhydroxyalkanoates (PHAs) have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC), which belongs to (R)-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R)-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R)-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. The data in our study reveal the regulatory mechanism of an (R)-hydratase, providing information on enzyme engineering to produce low cost PHAs.
Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.
Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony
2007-03-01
DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.
Chao, Yuanqing; Ma, Liping; Yang, Ying; Ju, Feng; Zhang, Xu-Xiang; Wu, Wei-Min; Zhang, Tong
2013-12-19
The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in 'oxidative stress' and 'detoxification' subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.
Human structural variation: mechanisms of chromosome rearrangements
Weckselblatt, Brooke; Rudd, M. Katharine
2015-01-01
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074
Mandal, Anup; Mohindra, Vindhya; Singh, Rajeev Kumar; Punia, Peyush; Singh, Ajay Kumar; Lal, Kuldeep Kumar
2012-02-01
Genetic variation at mitochondrial cytochrome b (cyt b) and D-loop region reveals the evidence of population sub-structuring in Indian populations of highly endangered primitive feather-back fish Chitala chitala. Samples collected through commercial catches from eight riverine populations from different geographical locations of India were analyzed for cyt b region (307 bp) and D-loop region (636-716 bp). The sequences of the both the mitochondrial regions revealed high haplotype diversity and low nucleotide diversity. The patterns of genetic diversity, haplotypes networks clearly indicated two distinct mitochondrial lineages and mismatch distribution strongly suggest a historical influence on the genetic structure of C. chitala populations. The baseline information on genetic variation and the evidence of population sub-structuring generated from this study would be useful for planning effective strategies for conservation and rehabilitation of this highly endangered species.
Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides.
Wu, J W; Cocina, A E; Chai, J; Hay, B A; Shi, Y
2001-07-01
The inhibitor of apoptosis protein DIAP1 suppresses apoptosis in Drosophila, with the second BIR domain (BIR2) playing an important role. Three proteins, Hid, Grim, and Reaper, promote apoptosis, in part by binding to DIAP1 through their conserved N-terminal sequences. The crystal structures of DIAP1-BIR2 by itself and in complex with the N-terminal peptides from Hid and Grim reveal that these peptides bind a surface groove on DIAP1, with the first four amino acids mimicking the binding of the Smac tetrapeptide to XIAP. The next 3 residues also contribute to binding through hydrophobic interactions. Interestingly, peptide binding induces the formation of an additional alpha helix in DIAP1. Our study reveals the structural conservation and diversity necessary for the binding of IAPs by the Drosophila Hid/Grim/Reaper and the mammalian Smac proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehboob, Shahila; Hevener, Kirk E.; Truong, Kent
Because of structural and mechanistic differences between eukaryotic and prokaryotic fatty acid synthesis enzymes, the bacterial pathway, FAS-II, is an attractive target for the design of antimicrobial agents. We have previously reported the identification of a novel series of benzimidazole compounds with particularly good antibacterial effect against Francisella tularensis, a Category A biowarfare pathogen. Herein we report the crystal structure of the F. tularensis FabI enzyme in complex with our most active benzimidazole compound bound with NADH. The structure reveals that the benzimidazole compounds bind to the substrate site in a unique conformation that is distinct from the binding motifmore » of other known FabI inhibitors. Detailed inhibition kinetics have confirmed that the compounds possess a novel inhibitory mechanism that is unique among known FabI inhibitors. These studies could have a strong impact on future antimicrobial design efforts and may reveal new avenues for the design of FAS-II active antibacterial compounds.« less
Iwai, Ichiro; Kunizawa, Naomi; Yagi, Eiichiro; Hirao, Tetsuji; Hatta, Ichiro
2013-03-27
The stratum corneum dehydrates after exogenous hydration due to skincare or bathing. In this study, sheets of stratum corneum were isolated from reconstructed human epidermis and the barrier function and structure of these sheets were assessed during drying with the aim of improving our understanding of skincare. Water diffusion through the sheets of stratum corneum decreased with drying, accompanied by decreased thickness and increased visible light transmission through the sheets. Electron paramagnetic resonance revealed that the order parameter values of stratum corneum lipids increased with drying. X-ray diffraction analysis revealed increases in the diffraction intensity of lamellar structures, with an 11-12 nm periodicity and spacing of 0.42 nm for lattice structures with drying. These results suggest that the drying process improves the barrier function of the stratum corneum by organizing the intercellular lipids in a vertically compressed arrangement.
Chai, Wei-Ming; Chen, Chih-Min; Gao, Yu-Sen; Feng, Hui-Ling; Ding, Yu-Mei; Shi, Yan; Zhou, Han-Tao; Chen, Qing-Xi
2014-01-08
Proanthocyanidins were isolated from fruit stone of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.). Their structures were analyzed and elucidated by methods of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS). The results demonstrated that these compounds are complicated mixtures of homo- and heteropolymers consisting of procyanidin/procyanidin gallate and prodelphinidin. They possessed structural heterogeneity in monomer units, polymer length, and interflavan linkage (A-type and B-type). Their antityrosinase and antioxidant activity were then investigated. The results revealed that they can inhibit tyrosinase activities, including the monophenolase activity and the diphenolase activity. In addition, proanthocyanidins possessed potent antioxidant activity. Our studies revealed that proanthocyanidins isolated from fruit stone of Chinese hawthorn may be applied in food, agriculture, pharmaceutical, and cosmetic industries.
Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging
NASA Astrophysics Data System (ADS)
Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai
2017-10-01
Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.
NASA Astrophysics Data System (ADS)
Bashi, Abbas M.; Hussein, Mohd Zobir; Zainal, Zulkarnain; Tichit, Didier
2013-07-01
Direct reaction of ZnO with 2,4-dichlorophenoxyacetic acid (24D) solutions of different concentrations allows obtaining new organic-inorganic nanohybrid materials formed by intercalation of 24D into interlayers of zinc layered hydroxide (ZLH). XRD patterns show a progressive evolution of the structure as 24D concentration increases. The nanohybrid obtained at higher 24D concentration (24D-ZLH(0.4)) reveals a well ordered layered structure with two different basal spacings at 25.2 Å and 24 Å. The FTIR spectrum showing the vibrations bands of the functional groups of 24D and of the ZLH confirms the intercalation. SEM images are in agreement with the structural evolution observed by XRD and reveal the ribbon morphology of the nanohybrids. The release studies of 24D showed a rapid release of 94% for the first 100 min governed by the pseudo-second order kinetic model.
Yang, J; Chen, C S; Chen, S H; Ding, P; Fan, Z Y; Lu, Y W; Yu, L P; Lin, H D
2016-06-10
Amji's salamander (Hynobius amjiensis) is a critically endangered species (IUCN Red List), which is endemic to mainland China. In the present study, five haplotypes were genotyped for the mtDNA cyt b gene in 45 specimens from three populations. Relatively low levels of haplotype diversity (h = 0.524) and nucleotide diversity (π = 0.00532) were detected. Analyses of the phylogenic structure of H. amjiensis showed no evidence of major geographic partitions or substantial barriers to historical gene flow throughout the species' range. Two major phylogenetic haplotype groups were revealed, and were estimated to have diverged about 1.262 million years ago. Mismatch distribution analysis, neutrality tests, and Bayesian skyline plots revealed no evidence of dramatic changes in the effective population size. According to the SAMOVA and STRUCTURE analyses, H. amjiensis should be regarded as two different management units.
... the head may reveal a problem with the structure of the brain. The problem is called holoprosencephaly. It is the joining together of the 2 sides of the brain. Chromosome studies show trisomy 13, trisomy 13 mosaicism, or partial trisomy.
Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation
Chen, Jieming; Zheng, Houfeng; Bei, Jin-Xin; Sun, Liangdan; Jia, Wei-hua; Li, Tao; Zhang, Furen; Seielstad, Mark; Zeng, Yi-Xin; Zhang, Xuejun; Liu, Jianjun
2009-01-01
Population stratification is a potential problem for genome-wide association studies (GWAS), confounding results and causing spurious associations. Hence, understanding how allele frequencies vary across geographic regions or among subpopulations is an important prelude to analyzing GWAS data. Using over 350,000 genome-wide autosomal SNPs in over 6000 Han Chinese samples from ten provinces of China, our study revealed a one-dimensional “north-south” population structure and a close correlation between geography and the genetic structure of the Han Chinese. The north-south population structure is consistent with the historical migration pattern of the Han Chinese population. Metropolitan cities in China were, however, more diffused “outliers,” probably because of the impact of modern migration of peoples. At a very local scale within the Guangdong province, we observed evidence of population structure among dialect groups, probably on account of endogamy within these dialects. Via simulation, we show that empirical levels of population structure observed across modern China can cause spurious associations in GWAS if not properly handled. In the Han Chinese, geographic matching is a good proxy for genetic matching, particularly in validation and candidate-gene studies in which population stratification cannot be directly accessed and accounted for because of the lack of genome-wide data, with the exception of the metropolitan cities, where geographical location is no longer a good indicator of ancestral origin. Our findings are important for designing GWAS in the Chinese population, an activity that is expected to intensify greatly in the near future. PMID:19944401
Quaternary schematics for property engineering of CdSe thin films
NASA Astrophysics Data System (ADS)
Chavan, G. T.; Pawar, S. T.; Prakshale, V. M.; Sikora, A.; Pawar, S. M.; Chaure, N. B.; Kamble, S. S.; Maldar, N. N.; Deshmukh, L. P.
2017-12-01
The synthesis of quaternary Cd1-xZnxSySe1-y (0 ≤ x = y ≤ 0.35) thin films was done through indigenously developed chemical solution growth process. As-obtained thin films were subjected to the physical, chemical, structural and optical characterizations. The nearly hydrophobic nature of the as-deposited films except binary CdSe was observed through the wettability studies. The colorimetric studies supported a change in physical color attributes. The elemental analysis done confirmed the formation of Cd(Zn, S)Se and the chemical states of constituent elements as Cd2+, Zn2+, S2- and Se2-. Structural assessment suggested the formation of the polycrystalline quaternary phase of the hexagonal wurtzite structure. The Raman spectroscopy was also employed for the confirmation studies on Cd1-xZnxSySe1-y thin films. Morphological observations indicated microstructural transformation from an aggregated bunch of nano-sized globular grains into a rhomboid network of petal/flakes like crystallites. The atomic force micrographs (AFM) revealed the enhancement in the hillock structures. From advanced AFM characterizations, we observed that the CdSe thin film has leptokurtic (Sku = 3.23) surface, whereas, quaternary Cd(Zn, S)Se films have platykurtic (Sku < 3) surface. The orientation of the surface morphology was observed through the angular spectrum studies. The optical absorption studies revealed direct allowed transition for the films with a continuous modulation of the energy bandgap from 1.8 eV to 2.31 eV.
Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok
2018-03-01
The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p < .01) and the range of nucleotide substitution per site (Dxy) between the five Indian duck populations was 0.00034-0.00555, and the net divergence (Da) was 0-0.00355. The phylogenetic analysis in the present study unveiled three clades. The analysis revealed genetic continuity among ducks of coastal region of the country which formed a separate group from the ducks of the inland area. Both coastal as well as the land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.
Electronic, thermoelectric and transport properties of cesium cadmium trifluoride: A DFT study
NASA Astrophysics Data System (ADS)
Abraham, Jisha Annie; Pagare, G.; Sanyal, Sankar P.
2018-04-01
The full potential linearized augmented plane wave method based on density functional theory is employed to investigate the electronic structure of CsCdF3. The electronic properties of this compound have been studied from the band structure plot and density of states. The presence of indirect energy gap reveals its insulating nature. Using constant relaxation time, the electrical conductivity, electronic thermal conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory. We have also studied the temperature dependence of thermoelectric properties of this compound.
Asamitsu, Kaori; Hirokawa, Takatsugu; Okamoto, Takashi
2017-01-01
In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.
Reisch, Christoph; Schurm, Sophia; Poschlod, Peter
2007-01-01
Background and Aims Many alpine plant species combine clonal and sexual reproduction to minimize the risks of flowering and seed production in high mountain regions. The spatial genetic structure and diversity of these alpine species is strongly affected by different clonal strategies (phalanx or guerrilla) and the proportion of generative and vegetative reproduction. Methods The clonal structure of the alpine plant species Salix herbacea was investigated in a 3 × 3 m plot of an alpine meadow using microsatellite (simple sequence repeat; SSR) analysis. The data obtained were compared with the results of a random amplified polymorphic DNA (RAPD) analysis. Key Results SSR analysis, based on three loci and 16 alleles, revealed 24 different genotypes and a proportion of distinguishable genotypes of 0·18. Six SSR clones were found consisting of at least five samples, 17 clones consisting of more than two samples and seven single genotypes. Mean clone size comprising at least five samples was 0·96 m2, and spatial autocorrelation analysis showed strong similarity of samples up to 130 cm. RAPD analysis revealed a higher level of clonal diversity but a comparable number of larger clones and a similar spatial structure. Conclusions The spatial genetic structure as well as the occurrence of single genotypes revealed in this study suggests both clonal and sexual propagation and repeated seedling recruitment in established populations of S. herbacea and is thus suggestive of a relaxed phalanx strategy. PMID:17242040
Mondal, Rajarshi; Lozada, Issiah B; Davis, Rebecca L; Williams, J A Gareth; Herbert, David E
2018-05-07
Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu] 2 (μ-X) 2 . The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu 2 X 2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.
Sorin, Clément; Musse, Maja; Mariette, François; Bouchereau, Alain; Leport, Laurent
2015-02-01
Differential palisade and spongy parenchyma structural changes in oilseed rape leaf were demonstrated. These dismantling processes were linked to early senescence events and associated to remobilization processes. During leaf senescence, an ordered cell dismantling process allows efficient nutrient remobilization. However, in Brassica napus plants, an important amount of nitrogen (N) in fallen leaves is associated with low N remobilization efficiency (NRE). The leaf is a complex organ mainly constituted of palisade and spongy parenchyma characterized by different structures and functions concerning water relations and carbon fixation. The aim of the present study was to demonstrate a specific structural evolution of these parenchyma throughout natural senescence in B. napus, probably linked to differential nutrient remobilization processes. The study was performed on 340 leaves from 32 plants during an 8-week development period under controlled growing conditions. Water distribution and status at the cellular level were investigated by low-field proton nuclear magnetic resonance (NMR), while light and electron microscopy were used to observe cell and plast structure. Physiological parameters were determined on all leaves studied and used as indicators of leaf development and remobilization progress. The results revealed a process of hydration and cell enlargement of leaf tissues associated with senescence. Wide variations were observed in the palisade parenchyma while spongy cells changed only very slightly. The major new functional information revealed was the link between the early senescence events and specific tissue dismantling processes.
Guo, Kaiyu; Dong, Zhaoming; Zhang, Yan; Wang, Dandan; Tang, Muya; Zhang, Xiaolu; Xia, Qingyou; Zhao, Ping
2018-05-01
Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk. This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk. Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland. We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties. Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms. Copyright © 2018 Elsevier B.V. All rights reserved.
McLuskey, Karen; Grewal, Jaspreet S.; Das, Debanu; ...
2016-03-03
Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other familiesmore » in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys 147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys 147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca 2+ for activity. Altogether, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.« less
Experimental evidence for the lattice instability of Bi-based superconducting systems
NASA Astrophysics Data System (ADS)
Yusheng, He; Jiong, Xiang; Hsin, Wang; Aisheng, He; Jincang, Zhang; Fanggao, Chang
1989-11-01
Ultrasonic measurements, specific heat and thermal analysis experiments, X-ray diffraction study and infrared investigation revealed that there are anomalous structural changes or lattice instabilities near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O system. Detailed study showed that anomalous changes or lattice instabilities are isothermal-like processes and have the characteristics of a structural phase transition, accompanying with increases in lattice constants. Possible mechanism for this lattice instability is discussed.
Modelling of Surfaces. Part 2: Metallic Alloy Surfaces Using the BFS Method
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Kobistek, Robert J.
1994-01-01
Using BFS, a new semiempirical method for alloys, we study the surface structure of fcc ordered binary alloys. We concentrate on the calculation of surface energies and surface relaxations for the L1(sub 0) and L1(sub 2) ordered structures. Different terminations of the low-index faces are studied. Also, we present results for the interlayer relaxations for planes close to the surface, revealing different relaxations for atoms of different species producing a rippled surface layer.
Structural and morphological study of ZrO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder
2018-05-01
In this paper we discuss the fabrication of transparent thin films of Zirconium Oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Further these fabricated films were characterized for different annealing temperatures and withdrawal speed. X-ray diffraction is used to study the structural properties of deposited thin films and it reveals the change in crystallographic properties with the change in annealing temperature. Thickness of thin films is estimated by using scanning electron microscope.
Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd
2015-01-01
Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813
Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T
2013-08-01
The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.
Structure resonances due to space charge in periodic focusing channels
NASA Astrophysics Data System (ADS)
Li, Chao; Jameson, R. A.
2018-02-01
The Vlasov-Poisson model is one of the most effective methods to study the space charge dominated beam evolution self-consistently in a periodic focusing channel. Since the approach to get the solution with this model is not trivial, previous studies are limited in degenerated conditions, either in smoothed channel (constant focusing) [I. Hofmann, Phys. Rev. E 57, 4713 (1998)] or in alternating gradient focusing channel with equal initial beam emittance condition in the degrees of freedom [I. Hofmann et al., Part. Accel. 13, 145 (1983); Chao Li et al., THOBA02, IPAC2016]. To establish a basis, we intentionally limit this article to the study of the pure transverse periodic focusing lattice with arbitrary initial beam condition, and the same lattice structure in both degrees of freedom, but with possibility of different focusing strengths. This will show the extension of the existing work. The full Hamiltonian is invoked for a pure transverse focusing lattice in various initial beam conditions, revealing different mode structure and additional modes beyond those of the degenerated cases. Application of the extended method to realistic lattices (including longitudinal accelerating elements) and further details will then reveal many new insights, and will be presented in later work.
Shrestha, Aarajana; Jin Oh, Hye; Kim, Mi Jin; Pun, Nirmala Tilija; Magar, Til Bahadur Thapa; Bist, Ganesh; Choi, Hongseok; Park, Pil-Hoon; Lee, Eung-Seok
2017-06-16
As a continuous effort to discover new potential anti-inflammatory agents, we systematically designed and synthesized sixty-one 2-benzylidene-1-indanone derivatives with structural modification of chalcone, and evaluated their inhibitory activity on LPS-stimulated ROS production in RAW 264.7 macrophages. Systematic structure-activity relationship study revealed that hydroxyl group in C-5, C-6, or C-7 position of indanone moiety, and ortho-, meta-, or para-fluorine, trifluoromethyl, trifluoromethoxy, and bromine functionalities in phenyl ring are important for inhibition of ROS production in LPS-stimulated RAW 264.7 macrophages. Among all the tested compounds, 6-hydroxy-2-(2-(trifluoromethoxy) benzylidene)-2,3-dihydro-1H-inden-1-one (compound 44) showed the strongest inhibitory activity of ROS production. Further studies on the mode of action revealed that compound 44 potently suppressed LPS-stimulated ROS production via modulation of NADPH oxidase. The findings of this work could be useful to design 2-benzylidene-indanone based lead compounds as novel anti-inflammatory agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hydrogen Exchange Mass Spectrometry
Mayne, Leland
2018-01-01
Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986
ERIC Educational Resources Information Center
Dabbagh, Nada; Fake, Helen
2017-01-01
A review of the literature reveals there is a gap in the research regarding how students currently perceive PLEs and how they structure their PLEs to support their learning goals. The purpose of this study was to establish an understanding of college students' perceptions of PLEs and what digital tools are currently being used to structure PLEs in…
Ultramicroscopic Structure of Intrasporangium calvum (Actinomycetales)
Lechevalier, Hubert; Lechevalier, Mary P.
1969-01-01
The electron microscopic observation of vesicles formed by Intrasporangium calvum revealed that they do not contain spores. It thus seems that these vesicles should not be called sporangia. Isolation and study of three other strains of actinomycetes forming similar vesicles indicated that such structures can be formed by actinomycetes with very different properties. The taxonomic value of vesicle formation in actinomycetes is questioned. Images PMID:5344111
Synthesis and structural characterization of CZTS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydia, R.; Reddy, P. Sreedhara
2013-06-03
The CZTS nanoparticles were successfully synthesized by Chemical co-precipitation method with different pH values in the range of 6 to 8. The synthesized nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. XRD studies revealed that the CZTS nanoparticles exhibited Kesterite Structure with preferential orientation along the (112) direction. Sample at pH value of 7 reached the nearly stoichiometric ratio.
Transitional circuitry for studying the properties of DNA
NASA Astrophysics Data System (ADS)
Trubochkina, N.
2018-01-01
The article is devoted to a new view of the structure of DNA as an intellectual scheme possessing the properties of logic and memory. The theory of transient circuitry, developed by the author for optimal computer circuits, revealed an amazing structural similarity between mathematical models of transition silicon elements and logic and memory circuits of solid state transient circuitry and atomic models of parts of DNA.
2013-01-01
Background The so-called ventral organs are amongst the most enigmatic structures in Onychophora (velvet worms). They were described as segmental, ectodermal thickenings in the onychophoran embryo, but the same term has also been applied to mid-ventral, cuticular structures in adults, although the relationship between the embryonic and adult ventral organs is controversial. In the embryo, these structures have been regarded as anlagen of segmental ganglia, but recent studies suggest that they are not associated with neural development. Hence, their function remains obscure. Moreover, their relationship to the anteriorly located preventral organs, described from several onychophoran species, is also unclear. To clarify these issues, we studied the anatomy and development of the ventral and preventral organs in several species of Onychophora. Results Our anatomical data, based on histology, and light, confocal and scanning electron microscopy in five species of Peripatidae and three species of Peripatopsidae, revealed that the ventral and preventral organs are present in all species studied. These structures are covered externally with cuticle that forms an internal, longitudinal, apodeme-like ridge. Moreover, phalloidin-rhodamine labelling for f-actin revealed that the anterior and posterior limb depressor muscles in each trunk and the slime papilla segment attach to the preventral and ventral organs, respectively. During embryonic development, the ventral and preventral organs arise as large segmental, paired ectodermal thickenings that decrease in size and are subdivided into the smaller, anterior anlagen of the preventral organs and the larger, posterior anlagen of the ventral organs, both of which persist as paired, medially-fused structures in adults. Our expression data of the genes Delta and Notch from embryos of Euperipatoides rowelli revealed that these genes are expressed in two, paired domains in each body segment, corresponding in number, position and size with the anlagen of the ventral and preventral organs. Conclusions Our findings suggest that the ventral and preventral organs are a common feature of onychophorans that serve as attachment sites for segmental limb depressor muscles. The origin of these structures can be traced back in the embryo as latero-ventral segmental, ectodermal thickenings, previously suggested to be associated with the development of the nervous system. PMID:24308783
Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico
2011-03-07
Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.
NASA Astrophysics Data System (ADS)
Vaitheeswaran, G.; Kanchana, V.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Christensen, N. E.
2016-08-01
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent GW approximation. The GW calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E
2016-08-10
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
Young Children's Color Preferences in the Interior Environment
ERIC Educational Resources Information Center
Read, Marilyn A.; Upington, Deborah
2009-01-01
This study focuses on children's color preferences in the interior environment. Previous studies highlight young children's preferences for the colors red and blue. The methods of this study used a rank ordering technique and a semi-structured interview process with 3-, 4-, and 5-year-old children. Findings reveal that children prefer the color…
Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)
NASA Astrophysics Data System (ADS)
Denlinger, Jonathan David
The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.
Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.
2016-02-01
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia
2013-04-01
Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P < 0.01), while others showed a significant quantity correlation with soil microbe quantity (P < 0.05).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, S.; Grasty, K; Hernandez-Cuebas, L
2009-01-01
The covalent attachment of different types of poly-ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys-48-linked poly-ubiquitin chains is targeted for proteasomal degradation, whereas Lys-63-linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X-ray crystal structures of Lys-63-linked tri- and di-ubiquitin at resolutions of 2.3 and 1.9 {angstrom}, respectively. The tri- and di-ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left-handedmore » helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of {approx}110 {angstrom}. Interestingly, Lys-48 ubiquitin chains also adopt a left-handed helical structure with a similar repeat length. However, the Lys-63 architecture is much more open than that of Lys-48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys-63 chain conformation, and reveal the structural basis for differential recognition of Lys-63 versus Lys-48 chains.« less
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R; Kenniston, Jon A; Mendrola, Jeannine M; Ferguson, Kathryn M; Lemmon, Mark A
2015-02-03
F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...
2015-01-22
F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here in this paper, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound tomore » an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. In conclusion, our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.« less
Stepanova, I S; Bogoliubov, D S
2003-01-01
The nuclear distribution of pre-mRNA splicing factors (snRNPs and SR-protein SC35) and unphosphorylated from of RNA polymerase II (Pol II) was studied using fluorescent and immunoelectron cytochemistry in diplotene oocytes of the gastropod Achatina fulica. Association of Pol II and splicing factors with oocyte nuclear structures was analysed. The antibodies against splicing factors and Pol II were shown to label perichromatin fibrils at the periphery of condensed chromatin blocks as well as those in interchromatin regions of nucleoplasm. The revealed character of distribution of snRNPs, SC35 protein, and Pol II, together with the decondensed chromatin and absence of karyosphere, enable us to suggest that oocyte chromosomes maintain their transcriptional activity at the diplotene stage of oogenesis. In A. fulica oocytes, sparse nuclear bodies (NBs) of a complex morphological structure were revealed. These NBs contain snRNPs rather than SC35 protein. NBs are associated with a fibrogranular material (FGM), which contains SC35 protein. No snRNPs were revealed in this material. Homology of A. fulica oocyte nuclear structures to Cajal bodies and interchromatin granule clusters is discussed.
Investigation of Structure and Property of Indian Cocos nucifera L. Fibre
NASA Astrophysics Data System (ADS)
Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar
2017-12-01
Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.
Dowling, Daniel P; Gantt, Stephanie L; Gattis, Samuel G; Fierke, Carol A; Christianson, David W
2008-12-23
Metal-dependent histone deacetylases (HDACs) require Zn(2+) or Fe(2+) to regulate the acetylation of lysine residues in histones and other proteins in eukaryotic cells. Isozyme HDAC8 is perhaps the archetypical member of the class I HDAC family and serves as a paradigm for studying structure-function relationships. Here, we report the structures of HDAC8 complexes with trichostatin A and 3-(1-methyl-4-phenylacetyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide (APHA) in a new crystal form. The structure of the APHA complex reveals that the hydroxamate CO group accepts a hydrogen bond from Y306 but does not coordinate to Zn(2+) with favorable geometry, perhaps due to the constraints of its extended pi system. Additionally, since APHA binds to only two of the three protein molecules in the asymmetric unit of this complex, the structure of the third monomer represents the first structure of HDAC8 in the unliganded state. Comparison of unliganded and liganded structures illustrates ligand-induced conformational changes in the L2 loop that likely accompany substrate binding and catalysis. Furthermore, these structures, along with those of the D101N, D101E, D101A, and D101L variants, support the proposal that D101 is critical for the function of the L2 loop. However, amino acid substitutions for D101 can also trigger conformational changes of Y111 and W141 that perturb the substrate binding site. Finally, the structure of H143A HDAC8 complexed with an intact acetylated tetrapeptide substrate molecule confirms the importance of D101 for substrate binding and reveals how Y306 and the active site zinc ion together bind and activate the scissile amide linkage of acetyllysine.
Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.
Lv, Zongyang; Yuan, Lingmin; Atkison, James H; Aldana-Masangkay, Grace; Chen, Yuan; Olsen, Shaun K
2017-07-21
E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl s mall u biquitin-like mo difier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Coping with occupational stress: the role of optimism and coping flexibility.
Reed, Daniel J
2016-01-01
The current study aimed at measuring whether coping flexibility is a reliable and valid construct in a UK sample and subsequently investigating the association between coping flexibility, optimism, and psychological health - measured by perceived stress and life satisfaction. A UK university undergraduate student sample (N=95) completed an online questionnaire. The study is among the first to examine the validity and reliability of the English version of a scale measuring coping flexibility in a Western population and is also the first to investigate the association between optimism and coping flexibility. The results revealed that the scale had good reliability overall; however, factor analysis revealed no support for the existing two-factor structure of the scale. Coping flexibility and optimism were found to be strongly correlated, and hierarchical regression analyses revealed that the interaction between them predicted a large proportion of the variance in both perceived stress and life satisfaction. In addition, structural equation modeling revealed that optimism completely mediated the relationship between coping flexibility and both perceived stress and life satisfaction. The findings add to the occupational stress literature to further our understanding of how optimism is important in psychological health. Furthermore, given that optimism is a personality trait, and consequently relatively stable, the study also provides preliminary support for the potential of targeting coping flexibility to improve psychological health in Western populations. These findings must be replicated, and further analyses of the English version of the Coping Flexibility Scale are needed.
Transport properties of electrons in fractal magnetic-barrier structures
NASA Astrophysics Data System (ADS)
Sun, Lifeng; Fang, Chao; Guo, Yong
2010-09-01
Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.
Terzyan, Simon S; Burgett, Anthony W G; Heroux, Annie; Smith, Clyde A; Mooers, Blaine H M; Hanigan, Marie H
2015-07-10
γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Terzyan, Simon S.; Burgett, Anthony W. G.; Heroux, Annie; ...
2015-05-26
γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within themore » active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. Lastly,tThese data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terzyan, Simon S.; Burgett, Anthony W. G.; Heroux, Annie
γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within themore » active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. Lastly,tThese data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.« less
Marine Peptides and Their Anti-Infective Activities
Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung
2015-01-01
Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present. PMID:25603351
Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi
2018-05-09
Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.
Ovchinnikov, A A; Sultanova, A N; Sycheva, T Yu; Mamedov, T N
2018-01-01
To study the relationship between the family structure and characteristics of the response to stress in adolescent addicts. The study included 65 patients who used psychoactive substances and 42 healthy controls. A set of psychological methods was used. In the group of adolescent addicts, a low result was revealed on the scale 'family cohesion'. A high level of development of such mechanisms of psychological defense as denial, suppression, repression, compensation, substitution, intellectualization and reactive education was diagnosed in both groups. Significant differences were revealed only in repression. Such stress coping strategies as self-control, escape-avoidance and problem-solving were more often used in the main group while confrontational coping, distancing, seeking social support, accepting responsibility and positive reassessment were used in the control group. Lower indices of resilience in adolescent addicts compared to the control group.
Lien, Mei-Ching; Ruthruff, Eric
2004-05-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
NASA Technical Reports Server (NTRS)
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
Wang, Jinfeng; Qi, Ji; Zhao, Hui; He, Shu; Zhang, Yifei; Wei, Shicheng; Zhao, Fangqing
2013-01-01
Although attempts have been made to reveal the relationships between bacteria and human health, little is known about the species and function of the microbial community associated with oral diseases. In this study, we report the sequencing of 16 metagenomic samples collected from dental swabs and plaques representing four periodontal states. Insights into the microbial community structure and the metabolic variation associated with periodontal health and disease were obtained. We observed a strong correlation between community structure and disease status, and described a core disease-associated community. A number of functional genes and metabolic pathways including bacterial chemotaxis and glycan biosynthesis were over-represented in the microbiomes of periodontal disease. A significant amount of novel species and genes were identified in the metagenomic assemblies. Our study enriches the understanding of the oral microbiome and sheds light on the contribution of microorganisms to the formation and succession of dental plaques and oral diseases. PMID:23673380
Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhibitory Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Daisy W.; Shabman, Reed S.; Farahbakhsh, Mina
2010-09-21
Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address thismore » question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-{angstrom} crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 {angstrom}, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled with the multiple critical roles played by Ebola virus VP35 proteins, highlight the viability of VP35 as a potential target for therapeutic development.« less
Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.
Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A
2018-04-11
The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.
Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain.
Leung, Daisy W; Shabman, Reed S; Farahbakhsh, Mina; Prins, Kathleen C; Borek, Dominika M; Wang, Tianjiao; Mühlberger, Elke; Basler, Christopher F; Amarasinghe, Gaya K
2010-06-11
Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled with the multiple critical roles played by Ebola virus VP35 proteins, highlight the viability of VP35 as a potential target for therapeutic development. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Sung Hoon; Shan, Sicong; Košmrlj, Andrej; Noorduin, Wim L.; Shian, Samuel; Weaver, James C.; Clarke, David R.; Bertoldi, Katia
2014-03-01
Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.
High resolution imaging studies into the formation of laser-induced periodic surface structures.
Kerr, N C; Clark, S E; Emmony, D C
1989-09-01
We report the results of an investigation into the formation mechanism of laser-induced ripple structures based on obtaining direct images of a surface while the transient heating induced by a KrF excimer laser is still present. These images reveal transient but well-defined periodic heating patterns which, if enough subsequent excimer pulses are incident on the surface, become permanently induced ripple structures. It is evident from these transient images that the surface heating is confined to the induced structures, thus strongly supporting the idea that at low fluences the ripples are formed by localizing surface melting.
Chiral Organic Cages with a Triple-Stranded Helical Structure Derived from Helicene.
Malik, Abaid Ullah; Gan, Fuwei; Shen, Chengshuo; Yu, Na; Wang, Ruibin; Crassous, Jeanne; Shu, Mouhai; Qiu, Huibin
2018-02-28
We report the use of helicene with an intrinsic helical molecular structure to prepare covalent organic cages via imine condensation. The organic cages revealed a [3+2]-type architecture containing a triple-stranded helical structure with three helicene units arranged in a propeller-like fashion with the framework integrally twisted. Such structural chirality was retained upon dissolution in organic solvents, as indicated by a strong diastereotopy effect in proton NMR and unique Cotton effects in circular dichroism spectra. Further study on chiral adsorption showed that the chiral organic cages possess considerable enantioselectivity toward a series of aromatic racemates.
Ouzon-Shubeita, Hala; Lee, Seongmin
2014-01-01
N7-Methyl-2′-deoxyguanosine (m7dG) is the predominant lesion formed by methylating agents. A systematic investigation on the effect of m7dG on DNA replication has been difficult due to the chemical instability of m7dG. To gain insights into the m7dG effect, we employed a 2′-fluorine-mediated transition-state destabilzation strategy. Specifically, we determined kinetic parameters for dCTP insertion opposite a chemically stable m7dG analogue, 2′-fluoro-m7dG (Fm7dG), by human DNA polymerase β (polβ) and solved three X-ray structures of polβ in complex with the templating Fm7dG paired with incoming dCTP or dTTP analogues. The kinetic studies reveal that the templating Fm7dG slows polβ catalysis ∼300-fold, suggesting that m7dG in genomic DNA may impede replication by some DNA polymerases. The structural analysis reveals that Fm7dG forms a canonical Watson–Crick base pair with dCTP, but metal ion coordination is suboptimal for catalysis in the polβ-Fm7dG:dCTP complex, which partially explains the slow insertion of dCTP opposite Fm7dG by polβ. In addition, the polβ-Fm7dG:dTTP structure shows open protein conformations and staggered base pair conformations, indicating that N7-methylation of dG does not promote a promutagenic replication. Overall, the first systematic studies on the effect of m7dG on DNA replication reveal that polβ catalysis across m7dG is slow, yet highly accurate. PMID:24966350
IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts
NASA Astrophysics Data System (ADS)
Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne
2018-01-01
We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.