Sample records for study sediment samples

  1. Suspended Sediment in the Indiana Harbor Canal and the Grand Calumet River, Northwestern Indiana, May 1996-June 1998

    USGS Publications Warehouse

    Renn, Danny E.

    2000-01-01

    Suspended-sediment samples and streamflow data were collected from May 1996 through June 1998 at three sites in the Grand Calumet River Basin - Indiana Harbor Canal at East Chicago, the east branch of the Grand Calumet River at Gary, and the west branch of the Grand Calumet River at Hammond. Sample analysis allowed for retention of sediments of 0.0015 millimeters or larger. At Indiana Harbor Canal at East Chicago, an automated sampler collected 2,005 suspended-sediment samples from the canal and, of these, 1,856 had associated streamflow values. To evaluate any bias between instream concentrations of suspended sediment and samples collected by the automated sampler, 27 sets of suspended-sediment samples were collected manually in the canal at the same time samples were collected by the automated sampler. There was no consistent bias between the samples collected manually instream and the samples collected by the automated sampler; therefore, no correction factor was applied to the concentrations of suspended sedment for the samples collected by the automated sampler. For the 2,005 and 1,856 samples, the mean suspended-sediment concentrations were the same, 15 milligrams per liter (mg/L), and the range in suspended-sediment concentrations were the same, from less than 1 mg/L to 97 mg/L. No apparent relation between the concentration of suspended sediment measured in samples from the Indiana Harbor Canal and streamflow was indicated, probably because of complex hydraulic conditions in the study area; most of the streamflow is from industrial and municipal discharges, and streamflow is affected by changes in water levels in Lake Michigan. There did appear to be a seasonal trend in the concentrations of suspended sediment, however, in that the largest concentrations generally were measured during the spring. During the study, four substantial rainfall events were recorded. Only for a rainfall event of 4.20 inches was there a substantial increase in the concentrations of suspended sediment and streamflow in the Indiana Harbor Canal. Six sets of samples were collected from the canal for determination of the percentage of organic material in the suspended sediment. Organic material in these samples averaged 26 percent. Bedload-sediment samples were collected three times in the canal with a bedload-sediment sampler; the collection-bag mesh size was 0.25 millimeter. No bedload sediments were collected in the sampler for any of the sample collections. Seven suspended-sediment samples were collected from the Grand Calumet River at Gary and at Hammond. The mean suspended sediment concentration measured in samples collected at Gary was 13 mg/L, and the mean suspended-sediment concentration measured in samples collected at Hammond was 6 mg/L. For both sites, there was no apparent relation between the concentration of suspended sediment and streamflow. Four suspended sediment samples were collected from the Grand Calumet River at Gary and at Hammond for determination of the percentage of organic material. The amount of organic material at Gary averaged 35 percent, and the amount of organic material at Hammond averaged 34 percent. The concentrations of suspended sediment determined for samples collected from the Indiana Harbor Canal and from the Grand Calumet River are less than concentrations of suspended sediment in samples collected from other streams in northwestern Indiana and in other parts of the State. Loads of suspended sediment were computed as the product of the weekly mean suspended-sediment concentration and the daily average streamflow for the Indiana Harbor Canal at East Chicago. The average suspended-sediment load computed for the canal was 29 tons per day for the first year of the study (June 1996 through May 1997) and 23 tons per day for the second year of the study (June 1997 through May 1998). Loads of suspended sediment for the Grand Calumet River at Gary and at Hammond were estimated by use of the ratin

  2. Sedimentation in mountain streams: A review of methods of measurement

    USGS Publications Warehouse

    Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin

    2013-01-01

    The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.

  3. The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems

    USGS Publications Warehouse

    Horowitz, Arthur J.; Clarke, Robin T.; Merten, Gustavo Henrique

    2015-01-01

    Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment-associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12 year−1) and sample scheduling (random-based, calendar-based and hydrology-based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900 km2 to nearly 2 million km2 and annual suspended sediment fluxes ranging from about 4 Kt year−1 to about 200 Mt year−1. The results appear to indicate that there is a scale effect for random-based and calendar-based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology-based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sediment-associated chemical concentrations, annual suspended sediment and annual suspended sediment-associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth-integrated and cross-sectionally representative data. 

  4. Toxicity of sediment cores collected from the Ashtabula River in northeastern Ohio, USA, to the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to sediment-dwelling organisms. ?? 2009 US Government.

  5. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; organic compounds and trace elements in bed sediment and fish tissue, 1992-93

    USGS Publications Warehouse

    Carter, L.F.; Anderholm, S.K.

    1997-01-01

    The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D

    Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriatemore » were analyzed for metals, pesticides, and PCBs.« less

  7. Procedures for Handling and Chemical Analysis of Sediment and Water Samples,

    DTIC Science & Technology

    1981-05-01

    silts. Particularly suitable for studies of the sediment/ water interface, for studies on depositonal sediment structures. Al pi ne- ravity Cores of 2 m...adverse water quality impacts would occur. Elemental partitioning or sedimentation fractionation studies are the most complex of the tests considered...8217 water %nd blend the core or dredge sample. Place a{js roximalel-i 00 cc of’ the blended sample in an oxygen-free, poly - ca rbor’~ [ ’-l centrifuge bottle

  8. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2003-01-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  9. A FIELD VALIDATION OF TWO SEDIMENT-AMPHIPOD TOXICITY TESTS

    EPA Science Inventory

    A field validation study of two sediment-amphipod toxicity tests was conducted using sediment samples collected subtidally in the vicinity of a polycyclic aromatic hydrocarbon (PAH)-contaminated Superfund site in Elliott Bay, WA, USA. Sediment samples were collected at 30 stati...

  10. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.; Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.

    2014-01-01

    The U.S. Environmental Protection Agency (USEPA) requested that as part of the remedial investigation for the Anniston, Alabama Polychlorinated Biphenyl (PCB) Site (Anniston PCB Site), that Pharmacia Corporation and Solutia Inc. (P/S) perform long-term reproduction toxicity tests with the amphipod, Hyalella azteca, and the midge, Chironomus dilutus, and bioaccumulation tests with the oligochaete, Lumbriculus variegatus, using sediment samples collected from reference locations and from Operable Unit 4 of the Anniston PCB Site. The sediment toxicity testing and sediment bioaccumulation results will be used by ARCADIS U.S., Inc. (ARCADIS) as part of a weight-of-evidence assessment to evaluate risks and establish sediment remediation goals for contaminants to sediment-dwelling organisms inhabiting the Anniston PCB Site. The goal of this study was to characterize relations between sediment chemistry and sediment toxicity and relations between sediment chemistry and sediment bioaccumulation in samples of sediments collected from the Anniston PCB Site. A total of 32 samples were evaluated from six test sites and one reference site to provide a wide range in concentrations of chemicals of potential concern (COPCs) including PCBs in samples of whole sediment. The goal of this study was not to determine the extent of sediment contamination across the Anniston PCB Site. Hence, the test sites or samples collected from within a test site were not selected to represent the spatial extent of sediment contamination across the Anniston PCB Site. Sediment chemistry, pore-water chemistry, and sediment toxicity data were generated for 26 sediment samples from the Anniston PCB Site. All of the samples were evaluated to determine if they qualified as reference sediment samples. Those samples that met the chemical selection criteria and biological selection criteria were identified as reference samples and used to develop the reference envelope for each toxicity test endpoint. Physical characterization of samples of whole sediment included analyses of grain size, TOC, and nutrients. Organic chemical characterization of samples of whole sediment included PCB homologs and select (13) PCB congeners, parent and alkylated polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, and polychlorinated dibenzo-p-dioxins; and dibenzofurans. The PCB aroclors analyzed included 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262 and 1268. Analyses of whole sediment also included total metals, simultaneously extracted metals, and acid volatile sulfide. Chemical characterization of samples of pore water isolated from samples of whole sediment at the start of the sediment toxicity exposures or at the start of the sediment bioaccumulation exposures included metals, major cations, major anions, dissolved organic carbon, and additional water-quality characteristics. Concentrations of metals or PCBs in pore water during the sediment toxicity exposures or during sediment bioaccumulation exposures also were determined using peeper samples (for metals) or solid-phase microextraction (SPME) samplers (for PCBs). The bioavailability and bioaccumulation of PCBs in 14 sediment samples were investigated using SPME passive samplers and the 28-d L. variegatus whole-sediment bioaccumulation exposures In general the accumulation of PCBs consistently was predicted through the use of organic carbon normalization and equilibrium partitioning. In these sediments, PCB homologs were accumulated differently based on bioavailability and potential to accumulate in oligochaetes. As part of this assessment homolog specific biota sediment accumulation factor values were developed that could be applied across the larger site to predict tissue levels of PCBs. The whole-sediment toxicity tests done with H. azteca and C. dilutus met the established ASTM and USEPA test acceptability criteria. The most responsive H. azteca endpoints were day 42 survival normalized young per female and day 28 biomass and that the most responsive C. dilutus endpoints were adult biomass and percent adult emergence. Overall, between the two species, the most responsive endpoint assessed for these two species was H. azteca survival-normalized young per female (67 percent of the samples classified as toxic). Concentration-response models (CRMs) and site-specific sediment toxicity thresholds (TTs) were generated with matching sediment chemistry and sediment toxicity data. Sediment chemistry, pore-water chemistry, and sediment toxicity data were evaluated for as many as 26 sediment samples from the Anniston PCB Site. The reference-envelope approach was used to identify the sediment samples that were toxic to benthic invertebrates. This procedure involved identification of reference sediment samples, normalizing the toxicity data to reflect control responses, developing a reference envelope for each toxicity test endpoint, and designating each sediment sample as toxic or not toxic for each toxicity test endpoint, for each species, and for all species combined. These results demonstrated percent emergence of adult C. dilutus, biomass of adult C. dilutus, and reproduction of H. azteca normalized to percent survival were among the most responsive endpoints that were evaluated. Therefore, these endpoints were selected for CRM development. The site-specific TTs for whole sediment provide a reliable basis for identifying toxic and not toxic sediment samples in the Anniston PCB Site (that is, for correctly classifying the sediment samples used to derive the TTs as toxic or not toxic, for the endpoint used to derive the TTs). Among the 69 TTs for sediment, the TTLRs for total PCB homologs [499 to 1,870 micrograms per kilogram dry weight (μg/kg DW)] and for lead [(9.48 to 10.3 milligrams per kilogram (mg/kg) DW] based on reproduction of H. azteca or based on emergence or biomass of adult C. dilutus, were the most reliable. Such TTs had low rates of false negative errors (that is, only 0 to 11 percent of the samples below the TT were toxic to benthic invertebrates), low rates of false positive errors (only 0 to 6 percent of the samples greater than the TT were not toxic to benthic invertebrates), and high rates of correct classification (that is, 92 to 96 percent). The site-specific TTs for PCBs and other COPCs derived in this study also were compared to empirically based sediment quality guidelines (SQGs), to equilibrium-partitioning based SQGs, and to the results of spiked-sediment toxicity tests. The results of this evaluation indicated that the site-specific sediment TTs for PCBs were comparable to the consensus-based SQGs that were derived for PCBs. In addition, the site-specific sediment TTs for PCBs are well within the range of SQGs derived using the equilibrium partitioning approach. The site-specific sediment TTs for PCBs also are consistent with the results of chronic TTs that have been estimated for benthic invertebrates using the results of spiked-sediment toxicity tests. As the site-specific sediment TTs for PCBs are consistent with empirically based SQGs, equilibrium-partitioning based SQGs, and results of sediment-spiking studies, these site- specific sediment TTs likely represent the concentrations of PCBs that are sufficient to cause toxicity to benthic invertebrates (as opposed to simply being correlated with adverse effects on the survival, weight, or reproduction of benthic invertebrates). Importantly, such site-specific sediment TTs have been demonstrated to accurately classify sediment samples as toxic or not toxic to benthic invertebrates at the Anniston PCB Site. In contrast, the TTs for metals, PAHs, and organochlorine pesticides were generally lower than consensus-based SQGs (that is, probable effect concentrations), and LC50s (median lethal effect concentrations) generated in spiked-sediment toxicity tests, indicating that these COPCs are likely not the main contributors to the observed toxicity of the site sediments evaluated in this study. The reproduction endpoint for H. azteca provided lower TTs compared to the day 28 biomass endpoint for H. azteca and the emergence or biomass endpoints for adult C. dilutus provided lower TTs compared to the day 13 biomass endpoint for C. dilutus.

  11. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation

    USGS Publications Warehouse

    Kemble, N.E.; Hardesty, D.G.; Ingersoll, C.G.; Johnson, B. Thomas; Dwyer, F.J.; MacDonald, D.D.

    2000-01-01

    Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox® were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site. Though the sediments were generally not lethal, there were still sublethal effects of contaminants in sediments at this site observed on amphipods in long-term exposures (associated with elevated concentrations of metals, PCBs, and PAHs).

  12. Wetland paleoecological study of southwest coastal Louisiana: sediment cores and diatom calibration dataset

    USGS Publications Warehouse

    Smith, Kathryn E. L.; Flocks, James G.; Steyer, Gregory D.; Piazza, Sarai C.

    2015-01-01

    Wetland sediment data were collected in 2009 and 2010 throughout the southwest Louisiana Chenier Plain as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits from tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh, intermediate, and brackish marsh and are located coincident with Coastwide Reference Monitoring System (CRMS) sites. The nine sediment cores were collected at the Rockefeller Wildlife Refuge (RWR) located in Grand Chenier, La.

  13. Organic compounds and trace elements in fish tissue and bed sediment from streams in the Yellowstone River basin, Montana and Wyoming, 1998

    USGS Publications Warehouse

    Peterson, David A.; Boughton, Gregory K.

    2000-01-01

    A comprehensive water-quality investigation of the Yellowstone River Basin began in 1997, under the National Water-Quality Assessment (NAWQA) Program. Twenty-four sampling sites were selected for sampling of fish tissue and bed sediment during 1998. Organic compounds analyzed included organochlorine insecticides and their metabolites and total polychlorinated biphenyls (PCBs) from fish-tissue and bed-sediment samples, and semivolatile organic compounds from bed-sediment samples. A broad suite of trace elements was analyzed from both fish-tissue and bed-sediment samples, and a special study related to mercury also was conducted. Of the 12 organochlorine insecticides and metabolites detected in the fish-tissue samples, the most compounds per site were detected in samples from integrator sites which represent a mixture of land uses. The presence of DDT, and its metabolites DDD and DDE, in fish collected in the Yellowstone Park area likely reflects long-term residual effects from historical DDT-spraying programs for spruce budworm. Dieldrin, chlordane, and other organic compounds also were detected in the fish-tissue samples. The compound p, p'-DDE was detected at 71 percent of the sampling sites, more than any other compound. The concentrations of total DDT in fish samples were low, however, compared to concentrations from historical data from the study area, other NAWQA studies in the Rocky Mountains, and national baseline concentrations. Only 2 of the 27 organochlorine insecticides and metabolites and total PCBs analyzed in bed sediment were detected. Given that 12 of the compounds were detected in fish-tissue samples, fish appeared to be more sensitive indicators of contamination than bed sediment.Concentrations of some trace elements in fish and bed sediment were higher at sites in mineralized areas than at other sites. Concentrations of selenium in fish tissue from some sites were above background levels. Concentrations of arsenic, chromium, copper, and lead in some of the bed-sediment samples potentially exceeded criteria for the protection of aquatic life.

  14. Streamflow and suspended-sediment transport in Garvin Brook, Winona County, southeastern Minnesota: Hydrologic data for 1982

    USGS Publications Warehouse

    Payne, G.A.

    1983-01-01

    Streamflow and suspended-sediment-transport data were collected in Garvin Brook watershed in Winona County, southeastern Minnesota, during 1982. The data collection was part of a study to determine the effectiveness of agricultural best-management practices designed to improve rural water quality. The study is part of a Rural Clean Water Program demonstration project undertaken by the U.S. Department of Agriculture. Continuous streamflow data were collected at three gaging stations during March through September 1982. Suspended-sediment samples were collected at two of the gaging stations. Samples were collected manually at weekly intervals. During periods of rapidly changing stage, samples were collected at 30-minute to 12-hour intervals by stage-activated automatic samplers. The samples were analyzed for suspendedsediment concentration and particle-size distribution. Particlesize distributions were also determined for one set of bedmaterial samples collected at each sediment-sampling site. The streamflow and suspended-sediment-concentration data were used to compute records of mean-daily flow, mean-daily suspended-sediment concentration, and daily suspended-sediment discharge. The daily records are documented and results of analyses for particle-size distribution and of vertical sampling in the stream cross sections are given.

  15. Distribution of mercury in molluscs, seawaters and coastal sediments of Tarut Island, Arabian Gulf, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed; El-Sorogy, Abdelbaset; Al-Kahtany, Khaled

    2016-12-01

    In order to assess the distribution of mercury along the Tarut coast, Arabian Gulf, Thirty eight (38) sediment samples, twenty six (26) seawater samples, and forty (40) Mollusca specimens were collected from the Tarut coast. The concentrations of Mercury in the sediments of the studied area (average = 0.55 μg/g) are generally high comparing to the reported values from the Gulf of Oman, Red Sea, and the Gulf of Finland. The concentrations of Hg exceeded the wet threshold safety values (median effect concentration (MEC), and probable effect concentration (PEC) indicating possible Hg contamination. According to the Swedish Environmental Protection Agency (SEPA), thirty four (34) samples occur in class 4 and four (4) samples occur in class 5, which means that the sediments of the Tarut Island are largely contaminated with Hg. Enrichment factor (EF) results (average = 1.76) suggested that, the coastal sediments of the Tarut Island are considered to entirely originate from the crustal materials or natural processes. The studied sediments show lower values (Igeo<0) indicating that the sediments are unpolluted. These sediments according to contamination factor (Cf) are considered contaminated with Hg (1 < CF < 3). The Hg concentration in water samples (average = 30 μg/g) considered high. Comparison with Hg contents in coastal sediments, seawaters and molluscs in the Red Sea, the Arabian Gulf suggested that the studied samples have higher concentrations of Hg. The suggested natural sources of Hg in the study area are the weathering and decomposition of neighboring deserts. The anthropogenic sources are the land reclamation, petrochemical industries, boat exhaust emissions, oil leakage, desalination plants and sewage effluents exceeded in the study area and in Al Jubail industrial city to the north.

  16. Organochlorine compounds in streambed sediment and in biological tissue from streams and their relations to land use, central Arizona

    USGS Publications Warehouse

    Gebler, Joseph B.

    2000-01-01

    Streambed-sediment samples from 13 sites and biological-tissue samples from 11 sites in the Gila River Basin in central Arizona were analyzed for 32 organochlorine compounds in streambed sediment and 28 compounds in biological tissue during 1996 as part of the U.S. Geological Survey's National Water-Quality Assessment program. The objectives of the study were to determine the occurrence and distribution of organochlorine compounds and their relation to land use. Sampling sites were categorized on the basis of major land uses in the basin or the source of water in the stream. Because land uses were mixed or had changed over time, some land-use categories were combined. Sites were categorized as forest/rangeland (6), forest/urban (1), urban (4), or agricultural/urban (2). Thirteen organochlorine compounds were detected in streambed-sediment samples, and 10 were detected in tissue samples. The number of compounds found in streambed-sediment samples from individual sites ranged from 0 to 10, and the range for individual tissue samples was 0 to 7. Comparison of the number of detections in streambed-sediment samples to the number of detections in tissue samples from particular sites where both were sampled yielded five instances where more compounds were detected in streambed sediment, six instances where more compounds were detected in tissue, and five instances where the number of detections in streambed sediment and tissue were equal. The frequency of detection of particular compounds for sites where both streambed sediment and tissue were sampled resulted in five compounds being detected more frequently in streambed sediment, five more frequently in tissue, and three compounds that were equally frequent in streambed sediment and in tissue. Few contaminants were detected in samples from the forest/rangeland sites; greater numbers of compounds were detected at the urban sites and at the forest/urban site. The greatest number of compounds and the highest concentrations of many contaminants were detected at agriculture/urban sites. The compound detected most frequently in streambed-sediment and tissue samples was p,p'-DDE. Streambed-sediment guideline values for the protection of aquatic life for p,p'-DDE and total DDT were exceeded at both agricultural/urban sites, The streambed-sediment guideline value for the protection of aquatic life for total chlordane was exceeded at one agricultural/urban site, one urban site, and the forest/urban site. The streambed-sediment guideline value for the protection of aquatic life for total PCB’s was exceeded at one agricultural/urban site. Guideline values for the protection of fish-eating wildlife for total DDT and for toxaphene were exceeded only in samples from the two agricultural/urban sites. The guideline value for the protection of fish-eating wildlife for total PCB’s was equaled or exceeded in samples from two sites—one urban and one agricultural/urban site. Screening values established by the U.S. Environmental Protection Agency for the protection of human health for edible portions of fish were exceeded by total DDT and by toxaphene in fish-tissue samples from both agricultural/urban sites. The human-health criterion for total PCB’s was exceeded in two fish-tissue samples from an agricultural site and from an urban site. Tissue samples analyzed in this study were for whole fish, and thus, concentration data are not entirely comparable to the screening values of the U.S. Environmental Protection Agency. Because these exceedences were an order of magnitude above the criteria, however, it is possible that concentrations in the edible portions of fish from these locations could present a human- health risk. Analyses of samples of edible portions of fish from these locations would be needed to adequately assess the presence or absence of a human-health risk. The similarity of the results of this study to the results of other studies of organochlorine compounds in the environment suggests that there is a correlation between contaminants in sediment and biological-tissue samples and land uses. As with other studies of the occurrence and distribution of organochlorine contaminants in streambed sediments and biological tissue, this study shows that many organochlorine compounds continue to persist in the environment and thus could pose a threat to aquatic life, fish-eating wildlife, and possibly to humans who consume contaminated fish.

  17. Fish stomach contents in benthic macroinvertebrate assemblage assessments.

    PubMed

    Tupinambás, T H; Pompeu, P S; Gandini, C V; Hughes, R M; Callisto, M

    2015-01-01

    The choice of sampling gears to assess benthic macroinvertebrate communities depends on environmental characteristics, study objectives, and cost effectiveness. Because of the high foraging capacity and diverse habitats and behaviors of benthophagous fishes, their stomach contents may offer a useful sampling tool in studies of benthic macroinvertebrates, especially in large, deep, fast rivers that are difficult to sample with traditional sediment sampling gear. Our objective was to compare the benthic macroinvertebrate communities sampled from sediments with those sampled from fish stomachs. We collected benthic macroinvertebrates and fish from three different habitat types (backwater, beach, riffle) in the wet season, drying season, and dry season along a single reach of the Grande River (Paraná River Basin, southeast Brazil). We sampled sediments through use of a Petersen dredge (total of 216 grabs) and used gill nets to sample fish (total of 36 samples). We analyzed the stomach contents of three commonly occurring benthophagous fish species (Eigenmannia virescens, Iheringichthys labrosus, Leporinus amblyrhynchus). Chironomids dominated in both sampling methods. Macroinvertebrate taxonomic composition and abundances from fish stomachs differed from those from sediment samples, but less so from riffles than from backwater and beach habitats. Macroinvertebrate taxa from E. virescens stomachs were more strongly correlated with sediment samples from all three habitats than were those from the other two species. The species accumulation curves and higher mean dispersion values, compared with with sediment samples suggest that E. virescens is more efficient than sediment samples and the other fish studied at collecting benthic taxa. We conclude that by analyzing the stomach contents of benthophagous fishes it is possible to assess important characteristics of benthic communities (dispersion, taxonomic composition and diversity). This is especially true for studies that only sample fish assemblages to evaluate aquatic ecosystem impacts. Therefore, this approach can be useful to amplify assessments of human impacts, and to incorporate additional bioindicators.

  18. Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, T.J.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1998-01-01

    Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR) and from one station in the Saint Croix River (SCR) as part of a study to assess the effects of the extensive flooding of 1993 on sediment contamination in the UMR system. Sediment contaminants of concern included both organic and inorganic compounds. Oligochaetes and chironomids constituted over 80% of the total abundance in samples from 14 of 23 pools in the UMR and SCR samples. Fingernail clams comprised a large portion of the community in three of 23 UMR pools and exceeded abundances of 1,000/m2 in five of 23 pools. Total abundance ranged from 250/m2 in samples from pool 1 to 22,389/m2 in samples from pool 19. Abundance values are comparable with levels previously reported in the literature for the UMR. Overall frequency of chironomid mouthpart deformities was 3% (range 0-13%), which is comparable to reported incidence of deformities in uncontaminated sediments previously evaluated. Sediment contamination was generally low in the UMR pools and the SCR site. Correlations between benthic measures and sediment chemistry and other abiotic parameters exhibited few significant or strong correlations. The sediment quality triad (Triad) approach was used to evaluate data from laboratory toxicity tests, sediment chemistry, and benthic community analyses; it showed that 88% of the samples were not scored as impacted based on sediment toxicity, chemistry, and benthic measures. Benthic invertebrate distributions and community structure within the UMR in the samples evaluated in the present study were most likely controlled by factors independent of contaminant concentrations in the sediments.

  19. Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington

    USGS Publications Warehouse

    Biedenbach, James M.

    2011-01-01

    The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS) in conjunction with each test. * Determine which samples caused a significant decrease in percent fertilization success relative to the negative control.

  20. Improving the monitoring of a dumping site in a dynamic environment. Example of the Octeville site (Bay of Seine, English Channel).

    PubMed

    Méar, Yann; Poizot, Emmanuel; Murat, Anne; Beryouni, Khadija; Baux, Noémie; Dauvin, Jean-Claude

    2018-04-01

    Dredged sediments have different physical and chemical characteristics compared with the sediments in place, which generates multiple effects on the environment. In this study, we show that the sampling strategy used to monitor the effects of dredge spoil deposition on the surrounding environment can lead to different interpretations. It appears that sediment sample replicates may or may not be necessary, depending on the studied area, the prevailing environmental forcings before sediment sampling and the combination of these two factors. The proposed modus operandi allows us to optimize both the confidence on the obtained results and the cost of the sediment studies (sampling and laboratory analyses). The results are based on the sediment fine fraction, which is considered as a key environmental component due, for example, to its strong association with the structure of benthic faunal communities as well as its role in the build-up of pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Synopsis of Technical Issues for Monitoring Sediment in Highway and Urban Runoff

    USGS Publications Warehouse

    Bent, Gardner C.; Gray, John R.; Smith, Kirk P.; Glysson, G. Douglas

    2000-01-01

    Accurate and representative sediment data are critical for assessing the potential effects of highway and urban runoff on receiving waters. The U.S. Environmental Protection Agency identified sediment as the most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. Representative sediment data are also necessary for quantifying and interpreting concentrations, loads, and effects of trace elements and organic constituents associated with highway and urban runoff. Many technical issues associated with the collecting, processing, and analyzing of samples must be addressed to produce valid (useful for intended purposes), current, complete, and technically defensible data for local, regional, and national information needs. All aspects of sediment data-collection programs need to be evaluated, and adequate quality-control data must be collected and documented so that the comparability and representativeness of data obtained for highway- and urban-runoff studies may be assessed. Collection of representative samples for the measurement of sediment in highway and urban runoff involves a number of interrelated issues. Temporal and spatial variability in runoff result from a combination of factors, including volume and intensity of precipitation, rate of snowmelt, and features of the drainage basin such as area, slope, infiltration capacity, channel roughness, and storage characteristics. In small drainage basins such as those found in many highway and urban settings, automatic samplers are often the most suitable method for collecting samples of runoff for a variety of reasons. Indirect sediment-measurement methods are also useful as supplementary and(or) surrogate means for monitoring sediment in runoff. All of these methods have limitations in addition to benefits, which must be identified and quantified to produce representative data. Methods for processing raw sediment samples (including homogenization and subsampling) for subsequent analysis for total suspended solids or suspended-sediment concentration often increase variance and may introduce bias. Processing artifacts can be substantial if the methods used are not appropriate for the concentrations and particle-size distributions present in the samples collected. Analytical methods for determining sediment concentrations include the suspended-sediment concentration and the total suspended solids methods. Although the terms suspended-sediment concentration and total suspended solids are often used interchangeably to describe the total concentration of suspended solid-phase material, the analytical methods differ and can produce substantially different results. The total suspended solids method, which commonly is used to produce highway- and urban-runoff sediment data, may not be valid for studies of runoff water quality. Studies of fluvial and highway-runoff sediment data indicate that analyses of samples by the total suspended solids method tends to under represent the true sediment concentration, and that relations between total suspended solids and suspended-sediment concentration are not transferable from site to site even when grain-size distribution information is available. Total suspended solids data used to calculate suspended-sediment loads in highways and urban runoff may be fundamentally unreliable. Consequently, use of total suspended solids data may have adverse consequences for the assessment, design, and maintenance of sediment-removal best management practices. Therefore, it may be necessary to analyze water samples using the suspended-sediment concentration method. Data quality, comparability, and utility are important considerations in collection, processing, and analysis of sediment samples and interpretation of sediment data for highway- and urban-runoff studies. Results from sediment studies must be comparable and readily transf

  2. Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea.

    PubMed

    Vosoogh, Ali; Saeedi, Mohsen; Lak, Raziyeh

    2016-11-01

    Some pollutants can qualitatively affect aquatic freshwater such as rivers, and heavy metals are one of the most important pollutants in aquatic fresh waters. Heavy metals can be found in the form of components dissolved in these waters or in compounds with suspended particles and surface sediments. It can be said that heavy metals are in equilibrium between water and sediment. In this study, the amount of heavy metals is determined in water and different sizes of sediment. To obtain the relationship between heavy metals in water and size-fractionated sediments, a canonical correlation analysis (CCA) was utilized in rivers of the southwestern Caspian Sea. In this research, a case study was carried out on 18 sampling stations in nine rivers. In the first step, the concentrations of heavy metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, and Cd) were determined in water and size-fractionated sediment samples. Water sampling sites were classified by hierarchical cluster analysis (HCA) utilizing squared Euclidean distance with Ward's method. In addition, for interpreting the obtained results and the relationships between the concentration of heavy metals in the tested river water and sample sediments, canonical correlation analysis (CCA) was utilized. The rivers were grouped into two classes (those having no pollution and those having low pollution) based on the HCA results obtained for river water samples. CCA results found numerous relationships between rivers in Iran's Guilan province and their size-fractionated sediments samples. The heavy metals of sediments with 0.038 to 0.125 mm size in diameter are slightly correlated with those of water samples.

  3. Chemical Characteristics of Seawater and Sediment in the Yap Trench

    NASA Astrophysics Data System (ADS)

    Ding, H.; Sun, C.; Yang, G.

    2017-12-01

    In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of chemical characteristics in the seawater and sediment of the Yap Trench.

  4. Presence of selected chemicals of emerging concern in water and bottom sediment from the St. Louis River, St. Louis Bay, and Superior Bay, Minnesota and Wisconsin, 2010

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; Kieta, Kristen A.; Elliott, Sarah M.

    2012-01-01

    The St. Louis Bay of Lake Superior receives substantial urban runoff, wastewater treatment plant effluent, and industrial effluent. In 1987, the International Joint Commission designated the St. Louis Bay portion of the lower St. Louis River as one of the Great Lakes Areas of Concern. Concerns exist about the potential effects of chemicals of emerging concern on aquatic biota because many of these chemicals, including endocrine active chemicals, have been shown to affect the endocrine systems of fish. To determine the occurrence of chemicals of emerging concern in the St. Louis River, the St. Louis Bay, and Superior Bay, the U.S. Geological Survey in cooperation with the Minnesota Pollution Control Agency and the Wisconsin Department of Natural Resources collected water and bottom-sediment samples from 40 sites from August through October 2010. The objectives of this study were to (1) identify the extent to which chemicals of emerging concern, including pharmaceuticals, hormones, and other organic chemicals, occur in the St. Louis River, St. Louis Bay, and Superior Bay, and (2) identify the extent to which the chemicals may have accumulated in bottom sediment of the study area. Samples were analyzed for selected wastewater indicators, hormones, sterols, bisphenol A, and human-health pharmaceuticals. During this study, 33 of 89 chemicals of emerging concern were detected among all water samples collected and 56 of 104 chemicals of emerging concern were detected in bottom-sediment samples. The chemical N,N-diethyl-meta-toluamide (DEET) was the most commonly detected chemical in water samples and 2,6-dimethylnaphthalene was the most commonly detected chemical in bottom-sediment samples. In general, chemicals of emerging concern were detected at a higher frequency in bottom-sediment samples than in water samples. Estrone (a steroid hormone) and hexahydrohexamethyl cyclopentabensopyran (a synthetic fragrance) were the most commonly detected endocrine active chemicals in water samples; beta-sitosterol (a plant sterol), estrone, and 4-tert-octylphenol (an alkylphenol) were the most commonly detected endocrine active chemicals in bottom-sediment samples. The greater detection frequency of chemicals in bottom-sediment samples compared to the detection frequency in water samples indicates that bottom sediment is an important sink for chemicals of emerging concern. At least one polycyclic aromatic hydrocarbon was detected in every sample; and in most samples, all nine polycyclic aromatic hydrocarbons included in analyses were detected. Bottom sediment collected from Superior Bay had the most polycyclic aromatic hydrocarbon detections of the sediment sampling locations.

  5. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment.

    PubMed

    Libralato, Giovanni; Losso, Chiara; Arizzi Novelli, Alessandra; Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele; Cepak, Franka; Volpi Ghirardini, Annamaria

    2008-12-01

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater.

  6. Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.

    1996-01-01

    Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.

  7. A new sampler design for measuring sedimentation in streams

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, S.A.; Hedrick, J.D.

    2005-01-01

    Sedimentation alters aquatic habitats and negatively affects fish and invertebrate communities but is difficult to quantify. To monitor bed load sedimentation, we designed a sampler with a 10.16-cm polyvinyl chloride coupling and removable sediment trap. We conducted a trial study of our samplers in riffle and pool habitats upstream and downstream of highway construction on a first-order Appalachian stream. Sediment samples were collected over three 6-week intervals, dried, and separated into five size-classes by means of nested sieves (U.S. standard sieve numbers 4, 8, 14, and 20). Downstream sediment accumulated in size-classes 1 and 2, and the total amount accumulated was significantly greater during all three sampling periods. Size-classes 3 and 4 had significantly greater amounts of sediment for the first two sampling periods at the downstream site. Differences between upstream and downstream sites narrowed during the 5-month sampling period. This probably reflects changes in site conditions, including the addition of more effective sediment control measures after the first 6-week period of the study. The sediment sampler design allowed for long-term placement of traps without continual disturbance of the streambed and was successful at providing repeat measures of sediment at paired sites. ?? Copyright by the American Fisheries Society 2005.

  8. Arsenic in stream sediments of northern Alabama

    USGS Publications Warehouse

    Goldhaber, M.B.; Irwin, Elise; Atkins, Brian; Lee, Lopaka; Black, D.D.; Zappia, Humbert; Hatch, Joe; Pashin, Jack; Barwick, L.H.; Cartwright, W.E.; Sanzolone, Rick; Rupert, Leslie; Kolker, Allan; Finkelman, Robert

    2001-01-01

    OVERVIEW OF ARSENIC IN STREAM SEDIMENTS The overall range of arsenic in the NURE stream sediments was from 0.3 to 44 mg/kg sediment (ppm) As in the sample data set. The mean value was 4.3 ppm with a standard deviation of 4.1 ppm. For comparison, the crustal abundance of arsenic is 1.8 ppm (Taylor, 1964). Shale is higher, with average values of 15 ppm. Coal samples from the entire USGS National Coal Resource Data System coal database (Finkelman, 1994) average 24 ppm arsenic. A study of stream sediments from throughout the U.S. by the USGS NAWQA program reported that the 75th percentile for arsenic in 541 stream sediments was 9.5 ppm (Rice, 1999). Given the relatively low crustal abundance of arsenic, a number of stream-sediment samples in this study may be considered geochemically anomalous in this element.

  9. Determining the sources of suspended sediment in a Mediterranean groundwater-dominated river: the Na Borges basin (Mallorca, Spain).

    NASA Astrophysics Data System (ADS)

    Estrany, Joan; Martinez-Carreras, Nuria

    2013-04-01

    Tracers have been acknowledged as a useful tool to identify sediment sources, based upon a variety of techniques and chemical and physical sediment properties. Sediment fingerprinting supports the notion that changes in sedimentation rates are not just related to increased/reduced erosion and transport in the same areas, but also to the establishment of different pathways increasing sediment connectivity. The Na Borges is a Mediterranean lowland agricultural river basin (319 km2) where traditional soil and water conservation practices have been applied over millennia to provide effective protection of cultivated land. During the twentieth century, industrialisation and pressure from tourism activities have increased urbanised surfaces, which have impacts on the processes that control streamflow. Within this context, source material sampling was focused in Na Borges on obtaining representative samples from potential sediment sources (comprised topsoil; i.e., 0-2 cm) susceptible to mobilisation by water and subsequent routing to the river channel network, while those representing channel bank sources were collected from actively eroding channel margins and ditches. Samples of road dust and of solids from sewage treatment plants were also collected. During two hydrological years (2004-2006), representative suspended sediment samples for use in source fingerprinting studies were collected at four flow gauging stations and at eight secondary sampling points using time-integrating sampling samplers. Likewise, representative bed-channel sediment samples were obtained using the resuspension approach at eight sampling points in the main stem of the Na Borges River. These deposits represent the fine sediment temporarily stored in the bed-channel and were also used for tracing source contributions. A total of 102 individual time-integrated sediment samples, 40 bulk samples and 48 bed-sediment samples were collected. Upon return to the laboratory, source material samples were oven-dried at 40° C, disaggregated using a pestle and mortar, and dry sieved to

  10. Nitrogen-assisted Three-phase Equilibrium in Hydrate Systems Composed of Water, Methane, Carbon Dioxide, and Nitrogen

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2016-12-01

    In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of chemical characteristics in the seawater and sediment of the Yap Trench.

  11. Sources and ages of fine-grained sediment to streams using fallout radionuclides in the Midwestern United States

    USGS Publications Warehouse

    Gellis, Allen; Fuller, Christopher C.; Van Metre, Peter C.

    2017-01-01

    Fallout radionuclides, 7Be and 210Pbex, sampled in bed sediment for 99 watersheds in the Midwestern region of the United States and in 15 samples of suspended sediment from 3 of these watersheds were used to partition upland from channel sources and to estimate the age or the time since the surface-derived portion of sediment was on the land surface (0–∼1 year). Channel sources dominate: 78 of the 99 bed material sites (79%) have >50% channel-derived sediment, and 9 of the 15 suspended-sediment samples (60%) have >50% channel-derived sediment. 7Be was detected in 82 bed sediment samples and all 15 suspended-sediment samples. The surface-derived portion of 54 of the 80 (68%) streams with detectable 7Be and 210Pbex were ≤ 100 days old and the surface-derived portion of all suspended-sediment samples were ≤ 100 days old, indicating that surface-derived fine-grained sediment moves rapidly though these systems. The concentrations of two hydrophobic pesticides–DDE and bifenthrin–are correlated with the proportion of surface-derived sediment, indicating a link between geomorphic processes and particle-associated contaminants in streams. Urban areas had the highest pesticide concentrations and the largest percentage of surface-derived sediment. Although the percentage of surface-derived sediment is less than channel sources at most of the study sites, the relatively young age of the surface-derived sediment might indicate that management actions to reduce sediment contamination where the land surface is an important source could have noticeable effects.

  12. Standard operating procedures for collection of soil and sediment samples for the Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy pilot study

    USGS Publications Warehouse

    Fisher, Shawn C.; Reilly, Timothy J.; Jones, Daniel K.; Benzel, William M.; Griffin, Dale W.; Loftin, Keith A.; Iwanowicz, Luke R.; Cohl, Jonathan A.

    2015-12-17

    An understanding of the effects on human and ecological health brought by major coastal storms or flooding events is typically limited because of a lack of regionally consistent baseline and trends data in locations proximal to potential contaminant sources and mitigation activities, sensitive ecosystems, and recreational facilities where exposures are probable. In an attempt to close this gap, the U.S. Geological Survey (USGS) has implemented the Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy pilot study to collect regional sediment-quality data prior to and in response to future coastal storms. The standard operating procedure (SOP) detailed in this document serves as the sample-collection protocol for the SCoRR strategy by providing step-by-step instructions for site preparation, sample collection and processing, and shipping of soil and surficial sediment (for example, bed sediment, marsh sediment, or beach material). The objectives of the SCoRR strategy pilot study are (1) to create a baseline of soil-, sand-, marsh sediment-, and bed-sediment-quality data from sites located in the coastal counties from Maine to Virginia based on their potential risk of being contaminated in the event of a major coastal storm or flooding (defined as Resiliency mode); and (2) respond to major coastal storms and flooding by reoccupying select baseline sites and sampling within days of the event (defined as Response mode). For both modes, samples are collected in a consistent manner to minimize bias and maximize quality control by ensuring that all sampling personnel across the region collect, document, and process soil and sediment samples following the procedures outlined in this SOP. Samples are analyzed using four USGS-developed screening methods—inorganic geochemistry, organic geochemistry, pathogens, and biological assays—which are also outlined in this SOP. Because the SCoRR strategy employs a multi-metric approach for sample analyses, this protocol expands upon and reconciles differences in the sample collection protocols outlined in the USGS “National Field Manual for the Collection of Water-Quality Data,” which should be used in conjunction with this SOP. A new data entry and sample tracking system also is presented to ensure all relevant data and metadata are gathered at the sample locations and in the laboratories.

  13. Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2007-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the laboratory for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  14. Underwater Microscope for Measuring Spatial and Temporal Changes in Bed-Sediment Grain Size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2006-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the lab for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in-situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  15. Geochemical results from stream-water and stream-sediment samples collected in Colorado and New Mexico

    USGS Publications Warehouse

    Hageman, Philip L.; Todd, Andrew S.; Smith, Kathleen S.; DeWitt, Ed; Zeigler, Mathew P.

    2013-01-01

    Scientists from the U.S. Geological Survey are studying the relationship between watershed lithology and stream-water chemistry. As part of this effort, 60 stream-water samples and 43 corresponding stream-sediment samples were collected in 2010 and 2011 from locations in Colorado and New Mexico. Sample sites were selected from small to midsize watersheds composed of a high percentage of one rock type or geologic unit. Stream-water and stream-sediment samples were collected, processed, preserved, and analyzed in a consistent manner. This report releases geochemical data for this phase of the study.

  16. Elevated in-home sediment contaminant concentrations - the consequence of a particle settling-winnowing process from Hurricane Katrina floodwaters.

    PubMed

    Ashley, Nicholas A; Valsaraj, Kalliat T; Thibodeaux, Louis J

    2008-01-01

    Sediment samples were collected from two homes which were flooded in the wake of Hurricane Katrina in August 2005. The samples were analyzed for trace metals and semi-volatile organic compounds using techniques based on established EPA methods. The data showed higher concentrations of some metals and semi-volatile organic pollutants than reported in previous outdoor sampling events of soils and sediments. The Lake Pontchartrain sediments became resuspended during the hurricane, and this material subsequently was found in the residential areas of New Orleans following levee breaches. The clay and silt particles appear to be selectively deposited inside homes, and sediment contaminant concentrations are usually greatest within this fraction. Re-entry advisories based on outdoor sample concentration results may have under-predicted the exposure levels to homeowners and first responders. All contaminants found in the sediment sampled in this study have their origin in the sediments of Lake Pontchartrain and other localized sources.

  17. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  18. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota.

    PubMed

    Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allué, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa

    2015-11-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course. © 2015 SETAC.

  19. The relationship between land management, fecal indicator bacteria, and the occurrence of Campylobacter and Listeria spp. in water and sediments during synoptic sampling in the S. Fork Broad River Watershed, N.E. Georgia, U.S.A

    NASA Astrophysics Data System (ADS)

    Bradshaw, J. K.; Molina, M.; Sidle, R. C.; Sullivan, K.; Oakley, B.; Berrang, M.; Meinersmann, R.

    2013-12-01

    Fecal indicator bacteria (FIB) and pathogens stored in the bed sediments of streams and rivers may be mobilized into the water column affecting overall water quality. Furthermore, land management may play an important role in the concentrations of FIB and the occurrence of pathogens in stream water and sediments. The purpose of this study was to determine the relationship between FIB and pathogens in stream water and sediment based on three land management-affected categories: agricultural, forest, and waters receiving treated municipal wastewater. Two synoptic sampling events were conducted under baseflow conditions (<0.64 cm of rain within 24h) between October-November, 2012 and May-June, 2013. Counts of the E. coli and E. faecalis and occurrences of the enteric pathogens Campylobacter and Listeria spp. were measured in stream water and sediment samples collected at 15 locations (six agricultural (AG); six forested (FORS); and three receiving discharge from water pollution control plants (WPCP)) in the S. Fork Broad River watershed located in northeast Georgia, USA. Mean E. coli and E. faecalis concentrations were highest in the AG stream water samples (3.08 log MPN 100 mL -1 for E. coli and 3.07 log CFU 100 mL -1 for E. faecalis ) and lowest in the FORS water samples for E. coli (2.37 log MPN 100 mL -1 ) and WPCP water samples for E. faecalis (2.53 log CFU 100 mL -1 ). E. coli concentrations (2.74 log MPN 100 mL -1 ) in the WPCP streams were intermediate. Similar to water samples, E. coli concentrations were highest in the AG sediments (4.31 log MPN g -1 ), intermediate in the WPCP sediments (4.06 log MPN g -1 ), and lowest in the FORS sediments (3.46 log MPN g -1 ). In contrast to E. coli, E. faecalis concentrations were lower (1.10 to 1.31 log CFU g -1 ) and relatively more constant than E. coli in sediments over the three land management categories. Campylobacter was detected in 27% of the water samples and 8% of the sediment samples. The highest occurrence of Campylobacter detection was in the AG streams (15% of the water samples; 5% of the sediment samples). Listeria was detected in 76% of the water samples and 65% of the sediment samples. The FORS and AG streams had the highest occurrence of Listeria in water and sediment (32% and 29% of the water samples, respectively; 24% and 29% of sediment samples, respectively) suggesting Listeria is fairly ubiquitous in these streams. Based on the high concentrations of E. faecalis in water and E. coli in water and sediment, and higher frequency of Campylobacter detection in the AG streams, this study indicates that E. coli and Campylobacter may occur in high concentrations in stream sediments in land management areas where fecal material is deposited directly by livestock into the stream or adjacent land in large doses.

  20. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia.

    PubMed

    Olley, Jon; Brooks, Andrew; Spencer, John; Pietsch, Timothy; Borombovits, Daniel

    2013-10-01

    The Laura-Normanby River (catchment area: 24,350 km(2)), which drains into Princess Charlotte Bay, has been identified in previous studies as the third largest contributor of sediment to the Great Barrier Reef World Heritage Area. These catchment scale modelling studies also identified surface soil erosion as supplying >80% of the sediment. Here we use activity concentrations of the fallout radionuclides (137)Cs and (210)Pbex to test the hypothesis that surface soil erosion dominates the supply of fine (<10 μm) sediment in the river systems draining into Princess Charlotte Bay. Our results contradict these previous studies, and are consistent with channel and gully erosion being the dominant source of fine sediment in this catchment. The hypothesis that surface soil erosion dominates the supply of fine sediment to Princess Charlotte Bay is rejected. River sediment samples were collected using both time-integrated samplers and sediment drape deposits. We show that there is no detectable difference in (137)Cs and (210)Pbex activity concentrations between samples collected using these two methods. Two methods were also used to collect samples to characterise (137)Cs and (210)Pbex concentrations in sediment derived from surface soil erosion; sampling of surface-wash deposits and deployment of surface runoff traps that collected samples during rain events. While there was no difference in the (137)Cs activity concentrations for samples collected using these two methods, (210)Pbex activity concentrations were significantly higher in the samples collected using the runoff traps. The higher (210)Pbex concentrations are shown to be correlated with loss-on-ignition (r(2) = 0.79) and therefore are likely to be related to higher organic concentrations in the runoff trap samples. As a result of these differences we use a three end member mixing model (channel/gully, hillslope surface-wash and hillslope runoff traps) to determine the relative contribution from surface soil erosion. Probability distributions for (137)Cs and (210)Pbex concentrations were determined for each of the end members, with these distributions then used to estimate the surface soil contribution to each of the collected river sediment samples. The mean estimate of contribution of surface derived sediment for all river samples (n = 70) is 16 ± 2%. This study reinforces the importance of testing model predictions before they are used to target investment in remedial action and adds to the body of evidence that the primary source of sediment delivered to tropical river systems is derived from subsoil erosion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Assessment of selected contaminants in streambed- and suspended-sediment samples collected in Bexar County, Texas, 2007-09

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2011-01-01

    Elevated concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. This report describes an assessment of selected sediment-associated contaminants in samples collected in Bexar County from sites on the following streams: Medio Creek, Medina River, Elm Creek, Martinez Creek, Chupaderas Creek, Leon Creek, Salado Creek, and San Antonio River. During 2007-09, the U.S. Geological Survey periodically collected surficial streambed-sediment samples during base flow and suspended-sediment (large-volume suspended-sediment) samples from selected streams during stormwater runoff. All sediment samples were analyzed for major and trace elements and for organic compounds including halogenated organic compounds and polycyclic aromatic hydrocarbons (PAHs). Selected contaminants in streambed and suspended sediments in watersheds of the eight major streams in Bexar County were assessed by using a variety of methods—observations of occurrence and distribution, comparison to sediment-quality guidelines and data from previous studies, statistical analyses, and source indicators. Trace elements concentrations were low compared to the consensus-based sediment-quality guidelines threshold effect concentration (TEC) and probable effect concentration (PEC). Trace element concentrations were greater than the TEC in 28 percent of the samples and greater than the PEC in 1.5 percent of the samples. Chromium concentrations exceeded sediment-quality guidelines more frequently than concentrations of any other constituents analyzed in this study (greater than the TEC in 69 percent of samples and greater than the PEC in 8 percent of samples). Mean trace element concentrations generally are lower in Bexar County samples compared to concentrations in samples collected during previous studies in the Austin and Fort Worth, Texas, areas, but considering the relatively large ranges and standard deviations associated with the concentrations measured in all three areas, the trace element concentrations are similar. On the basis of Mann-Whitney U test results, the presence of a military installation in a watershed was associated with statistically significant higher chromium, mercury, and zinc concentrations in streambed sediments compared to concentrations of the same elements in a watershed without a military installation. Halogenated organic compounds analyzed in sediment samples included pesticides (chlordane, dieldrin, DDT, DDD, and DDE), polychlorinated biphenyls (PCBs), and brominated flame retardants. Three or more halogenated organic compounds were detected in each sediment sample, and 66 percent of all concentrations were less than the respective interim reporting levels. Halogenated organic compound concentrations were mostly low compared to consensus-based sediment quality guidelines-;TECs were exceeded in 11 percent of the analyses and PECs were exceeded in 1 percent of the analyses. Chlordane compounds were the most frequently detected halogenated organic compounds with one or more detections of chlordane compounds in every watershed; concentrations were greater than the TEC in 6 percent of the samples. Dieldrin was detected in 50 percent of all samples, however all concentrations were much less than the TEC. The DDT compounds (p,p'-DDT, p,p'-DDD, and p,p'-DDE) were detected less frequently than some other halogenated organic compounds, however most detections exceeded the TECs. p,p'-DDT was detected in 13 percent of the samples (TEC exceeded in 67 percent); p,p'-DDD was detected in 19 percent of the samples (TEC exceeded in 78 percent); and p,p'-DDE was detected in 35 percent of the samples (TEC exceeded in 53 percent). p,p'-DDE concentrations in streambed-sediment samples correlate positively with population density and residential, commercial, and transportation land use. One or more PCB congeners were detected in

  3. Characteristic sediment and water column chlorophyll-a in the sea cucumber’s Paracaudina sp. habitat on the Kenjeran Water, Surabaya

    NASA Astrophysics Data System (ADS)

    Widianingsih, W.; Zaenuri, M.; Anggoro, S.; Kusumaningrum, H. P.; Hartati, R.

    2018-03-01

    The study of characteristic sediment and water column chlorophyll-a has an important role in the sea cucumber habitat. Sediment chlorophyll-a represents a productivity primer for the benthic community. This research has a purpose to investigate characteristic sediment and water column chlorophyll-a on the Kenjeran water, Surabaya. Sediment samples were collected by the ekman grab for analysis, grain size and nutrient. The sample for sediment chlorophyll-a was taken by core sampler. The water samples were taken with Nansen Bottles. According to the research result, the values of sediment chlorophyll-a at station 10, 11 and 12 were higher than the other stations. In contrast, the value of chlorophyll-a in the column water had almost the same value for each station. The sediment chlorophyll-a value on clay and silt sediment type was higher than the fine sand and coarse sediment type. The suitable habitat characteristic for Paracaudina sp. was clay and silt sediment with sediment chlorophyll concentration ranging from 347.82 mg·m-2 to 1135.52 mg·m-2.

  4. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities.

    PubMed

    de Oliveira, Diana Ciannella Martins; Correia, Raquel Rose Silva; Marinho, Claudio Cardoso; Guimarães, Jean Remy Davée

    2015-05-01

    The presence and formation of methylmercury (MMHg), a highly toxic form of Hg, in mangrove ecosystems is poorly studied. Therefore the aim of this study was to evaluate mercury methylation potentials in sediment, litter and root samples (Avicennia shaueriana and Spartina alterniflora) from different regions of a mangrove ecosystem, as well as the influence of salinity on methylation. Sediment was sampled under different depths and in mangrove regions with different plant covers and salinities. All samples were incubated with (203)Hg and MM(203)Hg was extracted and measured by liquid scintillation. MMHg was formed in all samples and sites tested including plant roots and litter. Higher Hg methylation was found in the superficial fraction of sediments (0.47-7.82%). Infralittoral sandy sediment had low MMHg formation (0.44-1.61%). Sediment under Rhizophora mangle had lower MMHg formation (0.018-2.23%) than under A. shaueriana (0.2-4.63%) and Laguncularia racemosa (0.08-7.82). MMHg formation in sediment tended to increase with salinity but the differences were not significant. Therefore, MMHg formation occurs in different sites of mangrove ecosystems and may be an important threat that requires further study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China.

    PubMed

    Lu, Sidan; Sun, Yujiao; Zhao, Xuan; Wang, Lei; Ding, Aizhong; Zhao, Xiaohui

    2016-07-01

    The connection between microbial community structure and spatial variation and pollution in river waters has been widely investigated. However, water and sediments together have rarely been explored. In this study, Illumina high-throughput sequencing was performed to analyze microbes in 24 water and sediment samples from natural to anthropogenic sources and from headstream to downstream areas. These data were used to assess variability in microbial community structure and diversity along in the Fenghe River, China. The relationship between bacterial diversity and environmental parameters was statistically analyzed. An average of 1682 operational taxonomic units was obtained. Microbial diversity increased from the headstream to downstream and tended to be greater in sediment compared with water. The water samples near the headstream endured relatively low Shannon and Chao1 indices. These diversity indices and the number of observed species in the water and sediment samples increase downstream. The parameters also differ in the two river tributaries. Community structures shift based on the extent of nitrogen pollution variation in the sediment and water samples. The four most dominant genera in the water community were Escherichia, Acinetobacter, Comamonadaceae, and Pseudomonas. In the sediments, the most dominant genera were Stramenopiles, Flavobacterium, Pseudomonas, and Comamonadaceae. The number of ammonia-oxidizing archaea in the headstream water slightly differed from that in the sediment but varied considerably in the downstream sediments. Statistical analysis showed that community variation is correlated with changes in ammonia nitrogen, total nitrogen, and nitrate nitrogen. This study identified different microbial community structures in river water and sediments. Overall this study emphasized the need to elucidate spatial variations in bacterial diversity in water and sediments associated with physicochemical gradients and to show the effects of such variation on waterborne microbial community structures.

  6. Spatial distribution of enteric viruses and somatic coliphages in a Lagoon used as drinking water source and recreation in Southern Brazil.

    PubMed

    Elmahdy, M E I; Fongaro, G; Magri, M E; Petruccio, M M; Barardi, C R M

    2016-10-01

    This study aimed to evaluate the contamination level of the Peri Lagoon, the main freshwater reservoir of Santa Catarina Island, Southern Brazil, for human adenovirus (HAdV), hepatitis A virus (HAV), rotavirus species A (RVA), and somatic coliphages (SOMCPH). Viruses were also investigated in sediments and their sensitivity against natural sunlight was analysed by studying their spatial distribution in different depths of the water column. A total of 84 water samples and 48 sediment samples were examined by qPCR or RT-qPCR. Infectivity of HAdV and SOMCPH was determined and quantified by plaque assay method. A sum of 64% and 48% of water and sediment samples were positive for HAdV, respectively. RVA was present in 33% and 18% of water and sediment samples, and 25% of water samples were positive for HAV. HAdV were infectious in 76% of water and 83% of sediment samples that were positive by qPCR. SOMCPH could be detected in 42% and 18% of water and sediment samples, respectively. The data pointed a variation of viruses' prevalence according to the different water column depths. These results demonstrated that water sources and sediments contaminated by human wastes could play an important role in the recontamination of water columns harvested for further treatment or used for recreational purposes. These data can be of great value for future risk assessment analysis. Copyright © 2016. Published by Elsevier GmbH.

  7. PAH Baselines for Amazonic Surficial Sediments: A Case of Study in Guajará Bay and Guamá River (Northern Brazil).

    PubMed

    Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins

    2018-06-01

    The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.

  8. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    NASA Astrophysics Data System (ADS)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed.

  9. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices.

    PubMed

    Williamson, Kelly S; Petty, Jimmie D; Huckins, James N; Lebo, Jon A; Kaiser, Edwin M

    2002-11-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri-Columbia, USA; Williamson et al., Chemosphere (This issue--PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  10. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri - Columbia, USA; Williamson et al., Chemosphere (This issue - PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  11. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    NASA Technical Reports Server (NTRS)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  12. Data on sediment quality and concentrations of polychlorinated biphenyls from the Lower Neponset River, Massachusetts, 2002-03

    USGS Publications Warehouse

    Breault, Robert F.; Cooke, Matthew G.; Merrill, Michael

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Executive Office of Environmental Affairs Department of Fish and Game Riverways Program, and the U.S. Environmental Protection Agency, studied sediment and water quality in the lower Neponset River, which is a tributary to Boston Harbor. Grab and core samples of sediment were tested for elements and organic compounds including polyaromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. Physical properties of sediment samples, including grain size, were also measured. Selected sediment-core samples were tested for reactive sulfides and metals by means of the toxicity characteristic leaching procedure, which are sediment-disposal-related tests. Water quality, with respect to polychlorinated biphenyl contamination, was determined by testing samples collected by PISCES passive-water-column samplers for polychlorinated biphenyl congeners. Total concentrations of polychlorinated biphenyls were calculated by congener and by Aroclor.

  13. Anodonta imbecillis QA Test 1, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21-30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment.« less

  14. Nearshore sediment monitoring for the Stormwater Action Monitoring (SAM) Program, Puget Sound, western Washington

    USGS Publications Warehouse

    Black, Robert W.; Barnes, Abby; Elliot, Colin; Lanksbury, Jennifer

    2018-06-26

    Chemicals such as metals and organics (polychlorinated biphenyl [PCBs], polybrominated diphenyl ethers [PBDEs], polycyclic aromatic hydrocarbons [PAHs], and phthalates) continue to enter Puget Sound, western Washington, from point sources (such as industrial and municipal outfalls) and combined sewer outfalls and non-point sources (such as stormwater runoff). Runoff during storm events has been identified as a major source of contamination entering Puget Sound and has been implicated in the degradation of nearshore habitats and biota. Metals, organic chemicals, and other pollutants are known to accumulate in sediments such as those present along the shoreline of Puget Sound. In addition to chemical contaminants, small plastic particles (known as microplastics), found in marine waters of Puget Sound and suspected of being in aquatic sediments, are a potential concern because they can be ingested by animals and are suspected of transporting sorbed chemicals such as PCBs and metals.The Stormwater Work Group of Puget Sound (SWG) (composed of State and municipal stormwater permittees, and other stakeholders) developed a strategy to address sediment conditions in the nearshore environment of Puget Sound. As part of this strategy, the SWG developed a regional stormwater monitoring strategy designed to inform monitoring requirements in National Pollutant Discharge Elimination System (NPDES) stormwater permits issued by the Washington State Department of Ecology (Ecology). The monitoring program is referred to as the Stormwater Action Monitoring (SAM).The overall focus of the work described in this report is to address one of the goals of SAM, which is to characterize the status, spatial extent, and quality of Puget Sound sediment chemicals in the nearshore urban areas. The nearshore urban areas are defined as areas parallel to established Urban Growth Areas (UGAs) using a spatially balanced probabilistic Generalized Random Tessellation Stratified (GRTS) sampling design. One of the benefits of the GRTS sampling design used for this study is that it allows one to efficiently extrapolate from a relatively small number of sampled nearshore sites to the entire nearshore shoreline within the 2011 defined UGA boundaries of Puget Sound. In addition to characterizing nearshore sediment chemical concentrations, this study also characterized the abundance of microplastics in the nearshore sediment.A total of 41 randomly selected sites were sampled throughout Puget Sound in summer and early autumn of 2016. All sampling sites were located at 6 feet below the Mean Lower Low Water line. The top 2–3 centimeters of sediment were collected using a boat-mounted, pre-cleaned stainless-steel box corer. All chemical samples were sieved to 2 millimeters and placed in appropriate containers for chemical analysis for PCBs, PBDEs, PAHs, phthalates, metals, total organic carbon, and grain size. Pre-sieved sediment samples were stored in glass containers for microplastic analysis. Nearshore sediment chemical concentrations were summarized using numerous statistical approaches to examine the minimum, mean, and maximum concentrations for each of the compounds analyzed and to compare the results to criteria and other nearshore and marine sediment studies. The GRTS sampling design also allowed the authors to assess the percentage of the UGA nearshore environment that did not meet established standards or criteria for each chemical analyzed. Additionally, regression and machine learning statistical analyses were used to examine relations between measured chemical concentrations, and land cover and geologic features at multiple scales within the watersheds adjacent to sampling sites. The influence of marine hydrodynamic factors on nearshore sediment chemical concentrations was statistically evaluated with nonparametric methods by assigning each sampling site to one of five nearshore drift cell types based on its location. The Puget Sound shoreline can be divided into segments, referred to as drift cells, based on the movement of sediment along the shore by waves. Each drift cell type has a unique influence on nearshore sediment transport.The nearshore sediment chemical concentrations for organics and metals generally were low, and in most cases less than Washington State criteria. The concentrations of some PAHs were greater than the criteria, but these exceedances were limited to one or two sites. The results of the probabilistic study design determined that, for the PAHs examined, 96 percent or more of the 1,344 km of shoreline represented by this study had concentrations less than any established criteria. For the remaining organics (PCBs and PBDEs), the probabilistic study design indicates that more than 98 percent of shoreline examined had concentrations less than criteria or proposed standards. For the metals, the results of the study indicate that 100 percent of the nearshore sediment had concentrations less than the criteria. The relations between sediment organic and metal concentrations, and adjacent watershed land cover and the particle size of the samples, were determined to be weakly related. Although weakly related, the particle size of the sediment in a sample typically explained more of the variation in metal concentrations than organics. While the measured watershed attributes adjacent to the sampling sites and sediment size of the samples were weakly related to chemical concentrations, they were significantly related to unique drift cells along the shoreline of Puget Sound known as drift cells. Each drift cell represents a long-term directional transport of sediment from its source to its depositional zone. Sediment chemical concentrations were significantly higher in drift cells with limited sediment movement compared to those with higher sediment transport energy.Microplastics in the nearshore sediment ranged from 0.02 to 0.65 pieces per gram of sediment, with a mean of 0.19 pieces per gram of sediment, and were dominated by small fibers (355–1,000 micrometers). Like chemical concentrations, microplastics concentrations in the nearshore sediment were poorly related to watershed land cover. Although not significantly different, microplastics concentrations generally were higher in the low energy drift cells compared to the high energy drift cells.The results of this study provide a statistically valid status assessment of current nearshore sediment chemical conditions throughout Puget Sound in those areas adjacent to defined UGAs. In addition to the study findings of relatively low concentrations of PCBs, PBDEs, PAHs, phthalates, and metals, the study design provides a statistically valid tool for evaluating changes in these compounds over time if future nearshore sediment assessments are done. Furthermore, the assessment of microplastic abundance represents the first study of its kind that can be used as a benchmark for future evaluations. The results of this study will help inform Ecology in the implementation of monitoring requirements as part of its NPDES stormwater permitting process.

  15. Trends in suspended-sediment concentration at selected stream sites in Kansas, 1970-2002

    USGS Publications Warehouse

    Putnam, James E.; Pope, Larry M.

    2003-01-01

    Knowledge of erosion, transport, and deposition of sediment relative to streams and impoundments is important to those involved directly or indirectly in the development and management of water resources. Monitoring the quantity of sediment in streams and impoundments is important because: (1) sediment may degrade the water quality of streams for such uses as municipal water supply, (2) sediment is detrimental to the health of some species of aquatic animals and plants, and (3) accumulation of sediment in water-supply impoundments decreases the amount of storage and, therefore, water available for users. One of the objectives of the Kansas Water Plan is to reduce the amount of sediment in Kansas streams by 2010. During the last 30 years, millions of dollars have been spent in Kansas watersheds to reduce sediment transport to streams. Because the last evaluation of trends in suspended-sediment concentrations in Kansas was completed in 1985, 14 sediment sampling sites that represent 10 of the 12 major river basins in Kansas were reestablished in 2000. The purpose of this report is to present the results of time-trend analyses at the reestablished sediment data-collection sites for the period of about 1970?2002 and to evaluate changes in the watersheds that may explain the trends. Time-trend tests for 13 of 14 sediment sampling sites in Kansas for the period from about 1970 to 2002 indicated that 3 of the 13 sites tested had statistically significant decreasing suspended-sediment concentrations; however, only 2 sites, Walnut River at Winfield and Elk River at Elk Falls, had trends that were statistically significant at the 0.05 probability level. Increasing suspended-sediment concentrations were indicated at three sites although none were statistically significant at the 0.05 probability level. Samples from five of the six sampling sites located upstream from reservoirs indicated decreasing suspended-sediment concentrations. Watershed impoundments located in the respective river basins may contribute to the decreasing suspended-sediment trends exhibited at most of the sampling sites because the impoundments are designed to trap sediment. Both sites that exhibited statistically significant decreasing suspended-sediment concentrations have a large number of watershed impoundments located in their respective drainage basins. The relation between percentage of the watershed affected by impoundments and trend in suspended-sediment concentration for 11 sites indicated that, as the number of impoundments in the watershed increases, suspended-sediment concentration decreases. Other conser-vation practices, such as terracing of farm fields and contour farming, also may contribute to the reduced suspended-sediment concentrations if their use has increased during the period of analysis. Regression models were developed for 13 of 14 sediment sampling sites in Kansas and can be used to estimate suspended-sediment concentration if the range in stream discharge for which they were developed is not exceeded and if time trends in suspended-sediment concentrations are not significant. For those sites that had a statistically significant trend in suspended-sediment concentration, a second regression model was developed using samples collected during 2000?02. Past and current studies by the U.S. Geological Survey have shown that regression models can be developed between in-stream measurements of turbidity and laboratory-analyzed sediment samples. Regression models were developed for the relations between discharge and suspended-sediment concentration and turbidity and suspended-sediment concentration for 10 sediment sampling sites using samples collected during 2000?02.

  16. Characterization of methane hydrate host sediments using synchrotron-computed microtomography (CMT)

    USGS Publications Warehouse

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Prodanovic, M.; Mahajan, D.

    2007-01-01

    The hydrate-sediment interaction is an important aspect of gas hydrate studies that needs further examination. We describe here the applicability of the computed microtomography (CMT) technique that utilizes an intense X-ray synchrotron source to characterize sediment samples, two at various depths from the Blake Ridge area (a well-known hydrate-prone region) and one from Georges Bank, that once contained methane trapped as hydrates. Detailed results of the tomographic analysis performed on the deepest sample (667??m) from Blake Ridge are presented as 2-D and 3-D images which show several mineral constituents, the internal grain/pore microstructure, and, following segmentation into pore and grain space, a visualization of the connecting pathways through the pore-space of the sediment. Various parameters obtained from the analysis of the CMT data are presented for all three sediment samples. The micro-scale porosity values showed decreasing trend with increasing depth for all three samples that is consistent with the previously reported bulk porosity data. The 3-D morphology, pore-space pathways, porosity, and permeability values are also reported for all three samples. The application of CMT is now being expanded to the laboratory-formed samples of hydrate in sediments as well as field samples of methane hydrate bearing sediments.

  17. A comparison of solids collected in sediment traps and automated water samplers

    USGS Publications Warehouse

    Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.

    1996-01-01

    Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.

  18. Human-associated fungi in deep subseafloor sediment?

    NASA Astrophysics Data System (ADS)

    Fulfer, V. M.; Kirkpatrick, J. B.; D'Hondt, S.

    2015-12-01

    Recent studies have reported fungi in marine sediment samples from depths as great as 1740 meters below seafloor (mbsf) (Rédou et al., 2014). Such studies have utilized a variety of techniques to identify fungi, including cultivation of isolates, amplicon sequencing, and metagenomics. Six recent studies of marine sediment collectively identify nearly 100 fungal taxa at the genus and species levels (Damare et al., 2006; Lai et al., 2007; Edgcomb et al., 2010; Singh et al., 2010; Orsi et al., 2013; Rédou et al., 2014). Known marine taxa are rarely identified by these studies. For individual studies with more than two taxa, between 16% and 57% of the fungal taxa are human microflora or associated with human environments (e.g., human skin or indoor air). For example, three of the six studies identified Malassezia species that are common skin inhabitants of humans and dogs. Although human-associated taxa have been identified in both shallow and deep sediment, they pose a particularly acute problem for deep subseafloor samples, where claims of a eukaryotic deep biosphere are most striking; depending on the study, 25% to 38% of species identified in sediment taken at depths greater than 40 meters are human-associated. Only one to three species have been reported from each of the four samples taken at depths greater than one km (eight species total; Rédou et al., 2014). Of these eight species, three are human-associated. This ubiquity of human-associated microflora is very problematic for interpretations of an indigenous deep subseafloor fungal community; either human-associated taxa comprise a large fraction of marine sedimentary fungi, or sample and analytical contamination is so widespread that the extent and ubiquity of a deep subseafloor fungal community remains uncertain. This highlights the need for stringent quality control measures throughout coring, sampling, and recovery of marine sediment, and when cultivating, extracting, and/or sequencing fungi from sediment samples.

  19. Anaerobic oxidation of methane in sediments of two boreal lakes

    NASA Astrophysics Data System (ADS)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Mpamah, Promise; Peura, Sari; Tiirola, Marja; Kankaala, Paula

    2014-05-01

    Anaerobic oxidation of methane (AOM) is a considerable sink for methane (CH4) in marine systems, but very little is known about the occurrence and importance of the process in freshwater systems. In addition, much about the microbial communities involved in AOM is unclear. AOM coupled with sulfate reduction is the dominant AOM process in marine systems but the scarce existing data suggest that, in freshwater systems, AOM coupled with reduction of alternative electron acceptors (nitrate/nitrite, manganese, iron) is more important. In this study, potential for AOM coupled with metal reduction was studied in boreal lake sediments. Slurries of sediment samples collected from two sites in southeastern Finland, i.e. from Lake Orivesi, Heposelkä, an vegetated littoral site, dominated by Phragmites australis (Sample Sa, sediment layer 0 - 25 cm) and from the profundal zone of a mesotrophic Lake Ätäskö (Aa, 0 - 10 cm; Ab, 10 - 30 cm; Ac, 90 - 130 cm), were incubated in laboratory in anaerobic conditions at in situ temperatures for up to 5 months. The samples were amended either 1) with 13CH4, 2) 13CH4 + manganese(II) oxide (MnO) or 3) 13CH4 + iron(III) hydroxide (Fe(OH)3), and the processes were measured by following the 13C transfer to the carbon dioxide (CO2) pool and by concentration measurements of CH4 and CO2. Changes in microbial communities were studied from DNA extracted from sediment samples before and after incubation period by next-generation sequencing (Ion Torrent) of polymerase chain reaction (PCR) - amplified bacterial and archaeal 16S rRNA and methyl coenzyme-M reductase gene (mcrA) amplicons. Increase in 13C of CO2 gas confirmed that AOM took place in sediments of both study lakes. In general, 13CO2 - production was significant both at the beginning (0 - 21 days) and at the end (84 - 151 days) of incubation period. Potential AOM rates (calculated based on 13CO2 - production) varied considerably and were much lower in deep sediment (Sample Ac), 0.1 - 0.2 nmol CH4 d-1gwetsediment-1, than in surface sediment samples (Samples Aa, Ab and Sa), 0.2 - 12.3 nmol CH4 d-1gwetsediment-1. AOM took place without metal additions in every sample type. Addition of MnO increased potential AOM rates in surface sediment samples but not in deep sediment samples. Addition of Fe(OH)3increased AOM significantly only in Aa samples. Molecular microbiological analyses are currently in progress and the results will be shown in the poster presentation.

  20. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    PubMed

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  1. Occurrence of pesticides in groundwater and sediments and mineralogy of sediments and grain coatings underlying the Rutgers Agricultural Research and Extension Center, Upper Deerfield, New Jersey, 2007

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Meyer, Michael T.; Sandstrom, Mark W.; Hladik, Michelle; Boehlke, Adam R.; Fishman, Neil S.; Battaglin, William A.; Kuivila, Kathryn

    2014-01-01

    Water and sediment samples were collected from June through October 2007 from seven plots at the Rutgers Agricultural Research and Extension Center in Upper Deerfield, New Jersey, and analyzed for a suite of pesticides (including fungicides) and other physical and chemical parameters (including sediment mineralogy) by the U.S. Geological Survey. Plots were selected for inclusion in this study on the basis of the crops grown and the pesticides used. Forty-one pesticides were detected in 14 water samples; these include 5 fungicides, 13 herbicides, 1 insecticide, and 22 pesticide degradates. The following pesticides and pesticide degradates were detected in 50 percent or more of the groundwater samples: 1-amide-4-hydroxy-chorothalonil, alachlor sulfonic acid, metolachlor oxanilic acid, metolachlor sulfonic acid, metalaxyl, and simazine. Dissolved-pesticide concentrations ranged from below their instrumental limit of detection to 36 micrograms per liter (for metolachlor sulfonic acid, a degradate of the herbicide metolachlor). The total number of pesticides found in groundwater samples ranged from 0 to 29. Fourteen pesticides were detected in sediment samples from continuous cores collected within each of the seven sampled plots; these include 4 fungicides, 2 herbicides, and 7 pesticide degradates. Pesticide concentrations in sediment samples ranged from below their instrumental limit of detection to 34.2 nanograms per gram (for azoxystrobin). The total number of pesticides found in sediment samples ranged from 0 to 8. Quantitative whole-rock and grain-coating mineralogy of sediment samples were determined by x-ray diffraction. Whole-rock analysis indicated that sediments were predominantly composed of quartz. The materials coating the quartz grains were removed to allow quantification of the trace mineral phases present.

  2. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.

    PubMed

    Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2016-09-01

    Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.

  3. Surface-sediment grain-size distribution and sediment transport in the subaqueous Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Stattegger, K.; Nittrouer, C.; Phung, P. V.; Liu, P.; DeMaster, D. J.; Bui, D. V.; Le, A. D.; Nguyen, T. N.

    2016-02-01

    Collected surface-sediment samples in coastal water around Mekong Delta (from distributary channels to Ca Mau Peninsula) were analyzed to determine surface-sediment grain-size distribution and sediment-transport trend in the subaqueous Mekong Delta. The grain-size data set of 238 samples was obtained by using the laser instrument Mastersizer 2000 and LS Particle Size Analyzer. Fourteen samples were selected for geochemical analysis (total-organic and carbonate content). These geochemical results were used to assist in interpreting variations of granulometricparamenters along the cross-shore transects. Nine transects were examined from CungHau river mouth to Ca Mau Peninsula and six thematic maps on the whole study area were made. The research results indicate that: (1) generally, the sediment becomes finer from the delta front downwards to prodelta and becomes coarser again and poorer sorted on the adjacent inner shelf due to different sources of sediment; (2) sediment-granulometry parameters vary among sedimentary sub-environments of the underwater part of Mekong Delta, the distance from sediment source and hydrodynamic regime controlling each region; (3) the net sediment transport is southwest toward the Ca Mau Peninsula.

  4. Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths

    PubMed Central

    Tenzer, R.; Gladkikh, V.

    2014-01-01

    We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686

  5. Bed-sediment grain-size and morphologic data from Suisun, Grizzly, and Honker Bays, CA, 1998-2002

    USGS Publications Warehouse

    Hampton, Margaret A.; Snyder, Noah P.; Chin, John L.; Allison, Dan W.; Rubin, David M.

    2003-01-01

    The USGS Place Based Studies Program for San Francisco Bay investigates this sensitive estuarine system to aid in resource management. As part of the inter-disciplinary research program, the USGS collected side-scan sonar data and bed-sediment samples from north San Francisco Bay to characterize bed-sediment texture and investigate temporal trends in sedimentation. The study area is located in central California and consists of Suisun Bay, and Grizzly and Honker Bays, sub-embayments of Suisun Bay. During the study (1998-2002), the USGS collected three side-scan sonar data sets and approximately 300 sediment samples. The side-scan data revealed predominantly fine-grained material on the bayfloor. We also mapped five different bottom types from the data set, categorized as featureless, furrows, sand waves, machine-made, and miscellaneous. We performed detailed grain-size and statistical analyses on the sediment samples. Overall, we found that grain size ranged from clay to fine sand, with the coarsest material in the channels and finer material located in the shallow bays. Grain-size analyses revealed high spatial variability in size distributions in the channel areas. In contrast, the shallow regions exhibited low spatial variability and consistent sediment size over time.

  6. 137Cs as a tracer of recent sedimentary processes in Lake Michigan

    USGS Publications Warehouse

    Cahill, R.A.; Steele, J.D.

    1986-01-01

    To determine recent sediment movement, we measured the levels of 137Cs (an artificial radionuclide produced during nuclear weapons testing) of 118 southern Lake Michigan samples and 27 in Green Bay. These samples, taken from 286 grab samples of the upper 3 cm of sediment, were collected in 1975 as part of a systematic study of Lake Michigan sediment. 137Cs levels correlated well with concentrations of organic carbon, lead, and other anthropogenic trace metals in the sediment. 137Cs had a higher correlation with silt-sized than with clay-sized sediment (0.55 and 0.46, respectively). Atmospherically derived 137Cs and trace metals are being redistributed by sedimentary processes in Lake Michigan after being incorporated in suspended sediment. We determined a distribution pattern of 137Cs that represents areas of southern Lake Michigan where sediment deposition is occurring. ?? 1986 Dr W. Junk Publishers.

  7. Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores.

    PubMed

    Jamshidi-Zanjani, Ahmad; Saeedi, Mohsen

    2017-07-01

    Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C 1 , C 2 , C 3 , and C 4 ) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.

  8. What can Subglacial Sediment Tell us About the Underlying Geology and the Dynamic of the West-Antarctic Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.

    2003-12-01

    The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to 1800 Ma; ENd between -4 to -12 and 87Sr/86Sr ~0.715 to ~0.735. Our preliminary geochemical results so far point to rocks from outcrops in the upstream areas of the individual ice streams as provenance for their sediment (Horlick Mountains and Whitmore Mountains) with a possibly small East-Antarctic component.

  9. Sediment quantity and quality in three impoundments in Massachusetts

    USGS Publications Warehouse

    Zimmerman, Marc James; Breault, Robert F.

    2003-01-01

    As part of a study with an overriding goal of providing information that would assist State and Federal agencies in developing screening protocols for managing sediments impounded behind dams that are potential candidates for removal, the U.S Geological Survey determined sediment quantity and quality at three locations: one on the French River and two on Yokum Brook, a tributary to the west branch of the Westfield River. Data collected with a global positioning system, a geographic information system, and sediment-thickness data aided in the creation of sediment maps and the calculation of sediment volumes at Perryville Pond on the French River in Webster, Massachusetts, and at the Silk Mill and Ballou Dams on Yokum Brook in Becket, Massachusetts. From these data the following sediment volumes were determined: Perryville Pond, 71,000 cubic yards, Silk Mill, 1,600 cubic yards, and Ballou, 800 cubic yards. Sediment characteristics were assessed in terms of grain size and concentrations of potentially hazardous organic compounds and metals. Assessment of the approaches and methods used at study sites indicated that ground-penetrating radar produced data that were extremely difficult and time-consuming to interpret for the three study sites. Because of these difficulties, a steel probe was ultimately used to determine sediment depth and extent for inclusion in the sediment maps. Use of these methods showed that, where sampling sites were accessible, a machine-driven coring device would be preferable to the physically exhausting, manual sediment-coring methods used in this investigation. Enzyme-linked immunosorbent assays were an effective tool for screening large numbers of samples for a range of organic contaminant compounds. An example calculation of the number of samples needed to characterize mean concentrations of contaminants indicated that the number of samples collected for most analytes was adequate; however, additional analyses for lead, copper, silver, arsenic, total petroleum hydrocarbons, and chlordane are needed to meet the criteria determined from the calculations. Particle-size analysis did not reveal a clear spatial distribution pattern at Perryville Pond. On average, less than 65 percent of each sample was greater in size than very fine sand. The sample with the highest percentage of clay-sized particles (24.3 percent) was collected just upstream from the dam and generally had the highest concentrations of contaminants determined here. In contrast, more than 90 percent of the sediment samples in the Becket impoundments had grain sizes larger than very fine sand; as determined by direct observation, rocks, cobbles, and boulders constituted a substantial amount of the material impounded at Becket. In general, the highest percentages of the finest particles, clays, occurred in association with the highest concentrations of contaminants. Enzyme-linked immunosorbent assays of the Perryville samples showed the widespread presence of petroleum hydrocarbons (16 out of 26 samples), polycyclic aromatic hydrocarbons (23 out of 26 samples), and chlordane (18 out of 26 samples); polychlorinated biphenyls were detected in five samples from four locations. Neither petroleum hydrocarbons nor polychlorinated biphenyls were detected at Becket, and chlordane was detected in only one sample. All 14 Becket samples contained polycyclic aromatic hydrocarbons. Replicate quality-control analyses revealed consistent results between paired samples. Samples from throughout Perryville Pond contained a number of metals at potentially toxic concentrations. These metals included arsenic, cadmium, copper, lead, nickel, and zinc. At Becket, no metals were found in elevated concentrations. In general, most of the concentrations of organic compounds and metals detected in Perryville Pond exceeded standards for benthic organisms, but only rarely exceeded standards for human contact. The most highly contaminated samples were

  10. Hydrogeochemical and stream sediment special reconnaissance report for the Deep Creek Mountains, Nevada and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.

    1979-04-01

    This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less

  11. Verifying Sediment Fingerprinting Results with Known Mixtures

    NASA Astrophysics Data System (ADS)

    Gellis, A.; Gorman-Sanisaca, L.; Cashman, M. J.

    2017-12-01

    Sediment fingerprinting is a widely used approach to determine the specific sources of fluvial sediment within a watershed. It relies on the principle that potential sediment sources can be identified using a set of chemical tracers (or fingerprints), and comparison of these source fingerprints with fluvial (target) sediment allows for source apportionment of the fluvial sediment. There are numerous source classifications, fingerprints, and statistical approaches used in the literature to apportion sources of sediment. However, few of these studies have sought to test the method by creating controls on the ratio of sources in the target sediment. Without a controlled environment for inputs and outputs, such verification of results is ambiguous. Here, we generated artificial mixtures of source sediment from an agricultural/forested watershed in Virginia, USA (Smith Creek, 246 km2) to verify the apportionment results. Target samples were established from known mixtures of the four major sediment sources in the watershed (forest, pasture, cropland, and streambanks). The target samples were sieved to less than 63 microns and analyzed for elemental and isotopic chemistry. The target samples and source samples were run through the Sediment Source Assessment Tool (Sed_SAT) to verify if the statistical operations provided the correct apportionment. Sed_SAT uses a multivariate parametric approach to identify the minimum suite of fingerprints that discriminate the source areas and applies these fingerprints through an unmixng model to apportion sediment. The results of this sediment fingerprinting verification experiment will be presented in this session.

  12. Impacts of heterogeneous organic matter on phenanthrene sorption--Different soil and sediment samples

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Childs, Jeffrey; Sabatini, David A.

    2001-01-01

    Organic petrography has been proposed as a tool for characterizing the heterogeneous organic matter present in soil and sediment samples. A new simplified method is proposed as a quantitative means of interpreting observed sorption behavior for phenanthrene and different soils and sediments based on their organic petrographical characterization. This method is tested under singe solute conditions and at phenanthrene concentration of 1 μg/L. Since the opaque organic matter fraction dominates the sorption process, we propose that by quantifying this fraction one can interpret organic content normalized sorption distribution coefficient (Koc) values for a sample. While this method was developed and tested for various samples within the same aquifer, in the current study the method is validated for soil and sediment samples from different sites that cover a wide range of organic matter origin, age, and organic content. All 10 soil and sediment samples studied had log Koc values for the opaque particles between 5.6 and 6.8. This range of Koc values illustrates the heterogeneity of opaque particles between sites and geological formations and thus the need to characterize the opaque fraction of materials on a site-by-site basis.

  13. Occurrence, distribution, and volume of metals-contaminated sediment of selected streams draining the Tri-State Mining District, Missouri, Oklahoma, and Kansas, 2011–12

    USGS Publications Warehouse

    Smith, D. Charlie

    2016-12-14

    Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek, Tar Creek, and Spring River in order to characterize the vertical extent of mine waste in select streams in the TSMD. The largest concentrations of lead, zinc, and cadmium in gravel bar-sediment samples generally were detected in Turkey Creek and Tar Creek and the smallest concentrations were detected in Shoal Creek followed by the Spring River. Gravel bar-sediment samples from Turkey Creek exceeded the CPEC for cadmium (minimum of 70 percent of samples), lead (94 percent), and zinc (99 percent) at a slightly higher frequency than similar samples from Tar Creek (69 percent, 88 percent, and 96 percent, respectively). Gravel bar-sediment samples from Turkey Creek also contained the largest concentrations of cadmium (174 milligrams per kilogram [mg/kg]) and lead (7,520 mg/kg) detected; however, the largest zinc concentration (46,600 mg/kg) was detected in a gravel bar-sediment sample from Tar Creek. In contrast, none of the 65 gravel bar-sediment samples from Shoal Creek contained cadmium above the x-ray fluorescence reporting level of 12 mg/kg, and lead and zinc exceeded the CPEC in only 12 percent and 74 percent of samples, respectively. In most cases, concentrations of lead and zinc above the CPEC or TPEC were present at the maximum depth of boring, which indicated that nearly the entire thickness of sediment in the stream has been contaminated by mine wastes. Approximately 284,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the CPEC and approximately 236,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the TPEC were estimated along 37.6 of the 55.1 miles of Center Creek, Turkey Creek, Shoal Creek, and Tar Creek examined in this study. Mine-waste contamination reported along additional reaches of these streams is beyond the scope of this study. Flood-plain cores collected in the TSMD generally only had exceedances of the CPEC and TPEC for lead and zinc in the top 1 or 2 feet of soil with a few exceptions, such as cores in low areas near the stream or cores in areas disturbed by past mining.

  14. A novel contact assay for testing aryl hydrocarbon receptor (AhR)-mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos.

    PubMed

    Schiwy, Sabrina; Bräunig, Jennifer; Alert, Henriette; Hollert, Henner; Keiter, Steffen H

    2015-11-01

    The European Water Framework Directive aims to achieve a good ecological and chemical status in surface waters until 2015. Sediment toxicology plays a major role in this intention as sediments can act as a secondary source of pollution. In order to fulfill this legal obligation, there is an urgent need to develop whole-sediment exposure protocols, since sediment contact assays represent the most realistic scenario to simulate in situ exposure conditions. Therefore, in the present study, a vertebrate sediment contact assay to determine aryl hydrocarbon receptor (AhR)-mediated activity of particle-bound pollutants was developed. Furthermore, the activity and the expression of the CYP1 family in early life stages of zebrafish after exposure to freeze-dried sediment samples were investigated. In order to validate the developed protocol, effects of β-naphthoflavone and three selected sediment on zebrafish embryos were investigated. Results documented clearly AhR-mediated toxicity after exposure to β-naphthoflavone (β-NF) and to the sediment from the Vering canal. Upregulation of mRNA levels was observed for all investigated sediment samples. The highest levels of all investigated cyp genes (cyp1a, cyp1b1, cyp1c1, and cyp1c2) were recorded after exposure to the sediment sample of the Vering canal. In conclusion, the newly developed sediment contact assay can be recommended for the investigation of dioxin-like activities of single substances and the bioavailable fraction of complex environmental samples. Moreover, the exposure of whole zebrafish embryos to native (freeze-dried) sediment samples represents a highly realistic and ecologically relevant exposure scenario.

  15. USGS environmental characterization of flood sediments left in the New Orleans area after Hurricanes Katrina and Rita, 2005--Progress Report

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Meeker, Gregory P.; Lovelace, John K.; Rosenbauer, Robert J.; Lamothe, Paul J.; Furlong, Edward T.; Demas, Charles R.

    2006-01-01

    Introduction: The flooding in the greater New Orleans area that resulted from Hurricanes Katrina and Rita in September, 2005, left behind accumulations of sediments up to many centimeters thick on streets, lawns, parking lots, and other flat surfaces. These flood sediment deposits have been the focus of extensive study by the US Environmental Protection Agency (EPA) and Louisiana Department of Environmental Quality (LDEQ) due to concerns that the sediments may contain elevated levels of heavy metals, organic contaminants, and microbes. The U.S. Geological Survey (USGS) is characterizing a limited number of flood sediment samples that were collected on September 15-16 and October 6-7, 2005, from the greater New Orleans area by personnel from the USGS Louisiana Water Science Center in Baton Rouge. Small samples (< 3 pints each) of wet to dry flood sediment were collected from 11 localities around downtown New Orleans on September 15, 2005, and two large samples (40 pints each) of wet flood sediment were collected from the Chalmette area on September 16. Twelve additional samples (8-10 pints each) were collected from New Orleans, Slidell, Rigolets, and Violet on October 6 and 7. The USGS characterization studies of these flood sediments are designed to produce data and interpretations regarding how the sediments and any contained contaminants may respond to environmental processes. This information will be of use to cleanup managers and DoI/USGS scientists assessing environmental impacts of the hurricanes and subsequent cleanup activities.

  16. Seismic wave velocity of hydrate-bearing fine-grained sediments sampled from the Ulleung basin in East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kwon, T.; Cho, G.

    2012-12-01

    Synthesizing gas hydrate in a fine-grained natural seabed sediment sample, mainly composed of silty-to-clayey soils, has been hardly attempted due to the low permeability. It has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in core-scale play a critical role in determining physical properties of hydrate-bearing sediments. In the presented study, we attempted to identify the effect of hydrate growth morphology on seismic velocities in natural fine-grained sediments sampled from the Ulleung Basin in East Sea. We synthesized CO2 hydrate in clayey silt sediments in an instrumented oedometric cell and measured seismic velocities during hydrate formation and loading processes. Herein, we present the experiment results on P-wave and S-wave velocities of gas hydrate-bearing fine-grained sediments. It is found that the geophysical properties of gas hydrate-bearing sediments are governed by hydrate saturation and effective stress as well as morphological feature of hydrate formation in sediments.

  17. Laboratory, Field, and Analytical Procedures for Using ...

    EPA Pesticide Factsheets

    Regardless of the remedial technology invoked to address contaminated sediments in the environment, there is a critical need to have tools for assessing the effectiveness of the remedy. In the past, these tools have included chemical and biomonitoring of the water column and sediments, toxicity testing and bioaccumulation studies performed on site sediments, and application of partitioning, transport and fate modeling. All of these tools served as lines of evidence for making informed environmental management decisions at contaminated sediment sites. In the last ten years, a new tool for assessing remedial effectiveness has gained a great deal of attention. Passive sampling offers a tool capable of measuring the freely dissolved concentration (Cfree) of legacy contaminants in water and sediments. In addition to assessing the effectiveness of the remedy, passive sampling can be applied for a variety of other contaminated sediments site purposes involved with performing the preliminary assessment and site inspection, conducting the remedial investigation and feasibility study, preparing the remedial design, and assessing the potential for contaminant bioaccumulation. While there is a distinct need for using passive sampling at contaminated sediments sites and several previous documents and research articles have discussed various aspects of passive sampling, there has not been definitive guidance on the laboratory, field and analytical procedures for using pas

  18. Particle-associated contaminants in street dust, parking lot dust, soil, lake-bottom sediment, and suspended and streambed sediment, Lake Como and Fosdic Lake watersheds, Fort Worth, Texas, 2004

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.; Werth, Charles J.; Yang, Yanning

    2006-01-01

    A previous study by the U.S. Geological Survey of impaired water bodies in Fort Worth, Texas, reported elevated but variable concentrations of particle-associated contaminants (PACs) comprising chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and trace elements in suspended and bed sediment of lakes and streams affected by urban land use. The U.S. Geological Survey, in cooperation with the City of Fort Worth, collected additional samples during October 2004 to investigate sources of PACs in the watersheds of two impaired lakes: Lake Como and Fosdic Lake. Source materials and aquatic sediment were sampled and analyzed for PACs. Source materials sampled consisted of street dust and soil from areas with residential and commercial land use and parking lot dust from sealed and unsealed parking lots. Aquatic sediment sampled consisted of bottom-sediment cores from the two lakes and suspended and streambed sediment from the influent stream of each lake. Samples were analyzed for chlorinated hydrocarbons (organochlorine pesticides and polychlorinated biphenyls), polycyclic aromatic hydrocarbons, major and trace elements, organic carbon, grain size, and radionuclides.

  19. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    PubMed

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.

    NASA Astrophysics Data System (ADS)

    Corrigan, A.; Silins, U.; Stone, M.

    2016-12-01

    Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.

  1. Sediment and water chemistry of the San Juan River and Escalante River deltas of Lake Powell, Utah, 2010-2011

    USGS Publications Warehouse

    Hornewer, Nancy J.

    2014-01-01

    Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited samples. Low-level organochlorine pesticides and polychlorinated biphenyls were not detected in any of the samples. Only one polycyclic aromatic hydrocarbon compound was detected at a concentration greater than the reporting level for one San Juan composited sample. Gross alpha and gross beta radionuclides were detected at concentrations greater than reporting levels for all samples. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for water samples.

  2. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    PubMed

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  3. Organic Compounds and Trace Elements in Fish Tissue and Bed Sediment in the Delaware River Basin, New Jersey, Pennsylvania, New York, and Delaware, 1998-2000

    USGS Publications Warehouse

    Romanok, Kristin M.; Fischer, Jeffrey M.; Riva-Murray, Karen; Brightbill, Robin; Bilger, Michael

    2006-01-01

    As part of the National Water-Quality Assessment (NAWQA) program activities in the Delaware River Basin (DELR), samples of fish tissue from 21 sites and samples of bed sediment from 35 sites were analyzed for a suite of organic compounds and trace elements. The sampling sites, within subbasins ranging in size from 11 to 600 square miles, were selected to represent 5 main land-use categories in the DELR -forest, low-agricultural, agricultural, urban, and mixed use. Samples of both fish tissue and bed sediment were also collected from 4 'large-river' sites that represented drainage areas ranging from 1,300 to 6,800 square miles, areas in which the land is used for a variety of purposes. One or more of the organochlorine compounds-DDT and chlordane metabolites, polychlorinated biphenyls (total PCBs), and dieldrin- were detected frequently in samples collected over a wide geographic area. One or more of these compounds were detected in fish-tissue samples from 92 percent of the sites and in bed-sediment samples from 82 percent of the sites. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in whole white suckers and in bed sediment were significantly related to urban/industrial basin characteristics, such as percentage of urban land use and population density. Semi-volatile organic compounds (SVOCs)-total polycyclic aromatic hydrocarbons (PAHs), total phthalates, and phenols- were detected frequently in bed-sediment samples. All three types of SVOCs were detected in samples from at least one site in each land-use category. The highest detection rates and concentrations typically were in samples from sites in the urban and mixed land-use categories, as well as from the large-river sites. Concentrations of total PAHs and total phthalates in bed-sediment samples were found to be statistically related to percentages of urban land use and to population density in the drainage areas represented by the sampling sites. The samples of fish tissue and bed sediment collected throughout the DELR were analyzed for a large suite of trace elements, but results of the analyses for eight elements-arsenic, cadmium, chromium, copper, lead, nickel, mercury, and zinc- that are considered contaminants of concern are described in this report. One or more of the eight trace elements were detected in samples from every fish tissue and bed-sediment sampling site, and all of the trace elements were detected in samples from 97 percent of the bed-sediment sites. The concentrations of organic compounds and trace elements in the DELR samples were compared to applicable guidelines for the protection of wildlife and other biological organisms. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in fish-tissue samples from 14 sites exceeded one or more of the Wildlife Protective Guidelines established by the New York State Department of Environmental Conservation. Concentrations of one or more organic compounds in samples from 16 bed-sediment sites exceeded the Threshold Effects Concentrations (TEC) of the Canadian Sediment Quality Guidelines, and concentrations of one or more of the eight trace elements in samples from 38 bed-sediment sites exceeded the TEC. (The TEC is the concentration below which adverse biological effects in freshwater ecosystems are expected to be rare.) Concentrations of organic compounds in samples from some bed-sediment sites exceeded the Canadian Probable Effects Concentrations (PEC), and concentrations of trace elements in samples from 18 sites exceeded the PEC. (The PEC is the concentration above which adverse effects to biological organisms are expected to occur frequently). Concentrations of organic compounds and trace elements in samples from the DELR were compared to similar data from other NAWQA study units in the northeastern United States and also data from the Mobile River (Alabama) Basin and the Northern Rockies Intermontane Basin study units. Median concentrations of to

  4. An Investigation into Heavy Metal Contamination and Mobilization in the Lower Rouge River, Michigan

    NASA Astrophysics Data System (ADS)

    Shihadeh, M.; Forrester, J.; Napieralski, J. A.

    2010-12-01

    Similar to many densely populated watersheds in the Great Lakes Basin, the Rouge River in Michigan drains a heavily urbanized watershed, which, over time, has accumulated a substantial amount of contamination due to decades of manufacturing and refining industries. Statistically significant levels of heavy metals have been found in the bed sediment of the Rouge; however, little is known about the mobilization of these contaminated bed sediments. The goal of this study was to ascertain the extent to which these potentially contaminated sediments are mobilized and transported downstream. Suspended sediment samples were collected at four sites along the lower Rouge River using composite depth integrated sediment samples three times per week, resulting in a total of twenty samples from each site. Turbidity was measured simultaneously using a YSI datalogger at all sampling locations. Sediment was also extracted from floodplain soil pits and silted vegetation, as well as river bed sediment cores along stream channel cross-sections. Heavy metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Zn) were analyzed using ICP-MS and compared against both background characteristics for Michigan soils and EPA Hazardous Criteria Limits. As expected, a positive correlation exists between turbidity and heavy metal concentrations. Even in the sampling sites furthest upstream, heavy metal concentrations exceeded background soil characteristics, with a few also exceeding hazardous criteria limits. The heavy metal concentrations found in the Lower Rouge affirm the elevated pollution classification of the river, depict the overall influence of industrialization on stream health, and verify that contaminated sediments are being deposited in aquatic and floodplain environments during variable flow or high discharge events. Results from this study emphasize the need to remediate bed sediments in the Rouge and suggest that there may be significant bioaccumulation potential for organisms inhabiting the floodplain corridor.

  5. Perylene dominates the organic contaminant profile in the Berau delta, East Kalimantan, Indonesia.

    PubMed

    Booij, Kees; Arifin, Zainal; Purbonegoro, Triyoni

    2012-05-01

    The geographical distributions of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorobenzene, and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (4,4'-DDE) were studied in the Berau delta (East Kalimantan, Indonesia), using sediment sampling and passive water sampling with semipermeable membrane devices. High concentrations of perylene were observed in sediments (54-580 ng g(-1) dry weight), and water (1-680 pg L(-1)). Perylene accounted for about 60% of the total concentrations of PAHs in the sediment. The relative abundance of the other PAHs was indicative of petrogenic sources. Concentrations of PCBs, hexachlorobenzene, and 4,4'-DDE in sediments were below or close to the detection limit (∼ 0.02 ng g(-1)). The analysis of a sediment core revealed no appreciable changes in the concentration of target compounds over the past three decades. We show that sediment sampling and passive water sampling are complementary techniques, and propose to bring the results of both methods to the same concentration scale, using locally derived sediment-water partition coefficients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 1, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21--30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less

  7. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses.

    PubMed

    De Lange, H J; Van Griethuysen, C; Koelmans, A A

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the disturbance of the sediment. AVS and Simultaneously Extracted Metal (SEM) concentrations were compared to bioassay responses with the freshwater benthic macroinvertebrate Asellus aquaticus. Storage conditions and sediment treatment affected AVS but not SEM levels. AVS can be used as a proxy for sediment disturbance. The best way to pretreat the sediment for use in a bioassay in order to maintain initial AVS conditions was to sample the sediment with an Ekman grab, immediately store it in a jar without headspace, and freeze it as soon as possible. In a survey using seven different sediments, bioassay responses of A. aquaticus were correlated with SEM and AVS characteristics.

  8. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    PubMed Central

    2018-01-01

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (

  9. Occurrence of pesticides in surface water and sediments from three central California coastal watersheds, 2008-2009

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.

    2011-01-01

    Water and sediment (bed and suspended) were collected from January 2008 through October 2009 from 12 sites in 3 of the largest watersheds along California's Central Coast (Pajaro, Salinas, and Santa Maria Rivers) and analyzed for a suite of pesticides by the U.S. Geological Survey. Water samples were collected in each watershed from the estuaries and major tributaries during 4 storm events and 11 dry season sampling events in 2008 and 2009. Bed sediments were collected from depositional zones at the tributary sampling sites three times over the course of the study. Suspended sediment samples were collected from the major tributaries during the four storm events and in the tributaries and estuaries during three dry season sampling events in 2009. Water samples were analyzed for 68 pesticides using gas chromatography/mass spectrometry. A total of 38 pesticides were detected in 144 water samples, and 13 pesticides were detected in more than half the samples collected over the course of the study. Dissolved pesticide concentrations ranged from below their method detection limits to 36,000 nanograms per liter (boscalid). The most frequently detected pesticides in water from all the watersheds were azoxystrobin, boscalid, chlorpyrifos, DCPA, diazinon, oxyfluorfen, prometryn, and propyzamide, which were found in more than 80 percent of the samples. On average, detection frequencies and concentrations were higher in samples collected during winter storm events compared to the summer dry season. With the exception of the fungicide, myclobutanil, the Santa Maria estuary watershed exhibited higher pesticide detection frequencies than the Pajaro and Salinas watersheds. Bed and suspended sediment samples were analyzed for 55 pesticides using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment samples, 17 pesticides were detected including pyrethroid and organophosphate (OP) insecticides, p,p'-DDT and its degradates, as well as several herbicides. The only pesticides detected more than half the time were p,p'-DDD, p,p'-DDE, and p,p'-DDT. Maximum pesticide concentrations ranged from less than their respective method detection limits to 234 micrograms per kilogram (p,p'-DDE). Four pyrethroids (bifenthrin, &# 955;-cyhalothrin, permethrin, and &# 964;-fluvalinate) were detected in bed sediment samples, though concentrations were relatively low (less than 10 microgram per kilogram). The greatest number of pesticides were detected in samples collected from Lower Orcutt Creek, the major tributary to the Santa Maria estuary. In suspended sediment samples, 19 pesticides were detected, and maximum concentrations ranged from less than the method detection limits to 549 micrograms per kilogram (chlorpyrifos). The most frequently detected pesticides were p,p'-DDE (49 percent), p,p'-DDT (38 percent), and chlorpyrifos (32 percent). During storm events, 19 pesticides were detected in suspended sediment samples compared to 10 detected during the dry season. Pesticide concentrations commonly were higher in suspended sediments during storm events than during the dry season, as well.

  10. Data on Mercury in Water, Bed Sediment, and Fish from Streams Across the United States, 1998-2005

    USGS Publications Warehouse

    Bauch, Nancy J.; Chasar, Lia C.; Scudder, Barbara C.; Moran, Patrick W.; Hitt, Kerie J.; Brigham, Mark E.; Lutz, Michelle A.; Wentz, Dennis A.

    2009-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Toxic Substances Hydrology Programs conducted the National Mercury Pilot Study in 1998 to examine relations of mercury (Hg) in water, bed sediment and fish in streams across the United States, including Alaska and Hawaii. Water and bed-sediment samples were analyzed for total Hg (THg), methylmercury (MeHg), and other constituents; fish were analyzed for THg. Similar sampling was conducted at additional streams across the country in 2002 and 2004-05. This report summarizes sample collection and processing protocols, analytical methods, environmental data, and quality-assurance data for stream water, bed sediment, and fish for these national studies. To extend the geographic coverage of the data, this report also includes four regional USGS Hg studies conducted during 1998-2001 and 2004. The environmental data for these national and regional Hg studies are provided in an electronic format.

  11. Sediment source fingerprinting to quantify fine sediment sources in forested catchments, Chile.

    NASA Astrophysics Data System (ADS)

    Schuller, P.; Walling, D. E.; Iroume, A.; Castillo, A.; Quilodran, C.

    2012-04-01

    A study to improve the understanding of the primary sediment sources and transfer pathways in catchments disturbed following forest plantation harvesting is being undertaken in South-Central Chile. The study focuses on two sets of paired experimental catchments (treatment and control), located about 400 km apart, with similar soil type but contrasting mean annual rainfall: Nacimiento (1,200 mm year-1) and Los Ulmos (2,500 mm year-1). Sediment source fingerprinting techniques are being used to document the primary fine sediment sources. In each catchment, three potential sediment sources were defined: clearcut slopes (Z1), forest roads (Z2) and the stream channel (Z3). In each catchment, multiple representative composite samples of the different potential source materials were collected before harvest operations from the upper 1 cm layer in Z1, Z2, and from the channel bank and bed for Z3. A time-integrating trap sampler installed in the discharge monitoring station constructed at the outlet of each catchment has been used to collect samples of the suspended sediment and these have been supplemented by sediment collected from the weir pools. Total suspended sediment load is been quantified in the monitoring stations using discharge records and integrated water sampling. Caesium-137 (137Cs), excess lead-210 (210Pbex) and other sediment properties are being used as fingerprints. After air-drying, oven-drying at 40°C and disaggregation, both the source material samples and the sediment samples collected in the discharge monitoring stations were sieved through a 63-μm sieve and the <63-μm fractions were used for subsequent analyses. For radionuclide assay, the samples were sealed in Petri dishes and after 4 weeks the mass activity density (activity concentration) of 137Cs and 210Pbex was determined by gamma analysis, using an ORTEC extended range Ge detector of 53% relative efficiency. The 137Cs and 210Pbex activity and organic carbon (Corg) concentration associated with potential source materials and the target sediment show that the two radionuclides used in combination with the Corg property provide effective source fingerprints. Additional work using a mixing model taking account of particle size effects is required to establish the relative contributions of the three sources to the fine sediment loads of the study catchments. This research is supported by the Chilean Government through FONDECYT Project 1090574 and by the IAEA through CRP D1.20.11 (Contract CHI-15531 and Technical Contract 15478) and the RLA 05/051 Project.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected September 8 from Poplar Creek Miles 6.0 and 1.0 was conducted September 13-22, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments.

  13. Physical properties of repressurized samples recovered during the 2006 National Gas Hydrate Program expedition offshore India

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.

    2008-01-01

    As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.

  14. Quantifying recent erosion and sediment delivery using probability sampling: A case study

    Treesearch

    Jack Lewis

    2002-01-01

    Abstract - Estimates of erosion and sediment delivery have often relied on measurements from locations that were selected to be representative of particular terrain types. Such judgement samples are likely to overestimate or underestimate the mean of the quantity of interest. Probability sampling can eliminate the bias due to sample selection, and it permits the...

  15. Characterization of selected bed-sediment-bound organic and inorganic contaminants and toxicity, Barnegat Bay and major tributaries, New Jersey, 2012

    USGS Publications Warehouse

    Romanok, Kristin M.; Reilly, Timothy J.; Lopez, Anthony R.; Trainor, John J.; Hladik, Michelle; Stanley, Jacob K.; Farrar, Daniel

    2014-01-01

    A study of bed-sediment toxicity and organic and inorganic contaminants was conducted by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). Bed-sediment samples were collected once from 22 sites in Barnegat Bay and selected major tributaries during August–September 2012 and analyzed for toxicity and a suite of organic and inorganic contaminants by the USGS and the U.S. Army Corps of Engineers. Sampling sites were selected to coincide with an existing water-quality monitoring network used by the NJDEP and others in order to evaluate water-quality conditions in Barnegat Bay and the surrounding watershed. Two of the 22 sites are reference sites and are within or adjacent to the study area; bed-sediment samples from reference sites allow for comparisons of results for the Barnegat Bay watershed to results from less affected settings within the region. Toxicity testing was conducted by exposing the estuarine amphipod Leptocheirus plumulosus and the freshwater amphipod Hyalella azteca to sediments for 28 days, and the percent survival, difference in biomass, and individual dry weights were measured. Reproductive effects also were evaluated for estuarine samples. Bed-sediment samples from four sites within Barnegat Bay were subjected to a toxicity identification evaluation to determine probable causes of toxicity. Samples were analyzed for a suite of 94 currently-used pesticides, 21 legacy pesticides, 24 trace elements, 40 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls (PCBs) as Arochlor mixtures, and 145 individual PCB congeners. Concentrations of detected compounds were compared to sediment-quality guidelines, where appropriate.

  16. A Novel Selective Deep Eutectic Solvent Extraction Method for Versatile Determination of Copper in Sediment Samples by ICP-OES.

    PubMed

    Bağda, Esra; Altundağ, Huseyin; Tüzen, Mustafa; Soylak, Mustafa

    2017-08-01

    In the present study, a simple, mono step deep eutectic solvent (DES) extraction was developed for selective extraction of copper from sediment samples. The optimization of all experimental parameters, e.g. DES type, sample/DES ratio, contact time and temperature were performed with using BCR-280 R (lake sediment certified reference material). The limit of detection (LOD) and the limit of quantification (LOQ) were found as 1.2 and 3.97 µg L -1 , respectively. The RSD of the procedure was 7.5%. The proposed extraction method was applied to river and lake sediments sampled from Serpincik, Çeltek, Kızılırmak (Fadl and Tecer region of the river), Sivas-Turkey.

  17. The role of large wood in retaining fine sediment, organic matter and plant propagules in a small, single-thread forest river

    NASA Astrophysics Data System (ADS)

    Osei, Nana A.; Gurnell, Angela M.; Harvey, Gemma L.

    2015-04-01

    This paper investigates associations among large wood accumulations, retained sediment, and organic matter and the establishment of a viable propagule bank within a forested reach of a lowland river, the Highland Water, UK. A wood survey within the 2-km study reach, illustrates that the quantity of wood retained within the channel is typical of relatively unmanaged river channels bordered by deciduous woodland and that the wood accumulations (jams) that are present are well developed, typically spanning the river channel and comprised of wood that is well decayed. Sediment samples were obtained in a stratified random design focusing on nine subreaches within which samples were aggregated from five different types of sampling location. Two of these locations were wood-associated (within and on bank faces immediately adjacent to wood jams), and the other three locations represented the broader river environment (gravel bars, bank faces, floodplain). The samples were analysed to establish their calibre, organic, and viable plant propagule content. The gravel bar sampling locations retained significantly coarser sediment containing a lower proportion of organic matter and viable propagules than the other four sampling locations. The two wood-related sampling locations retained sediment of intermediate calibre between the gravel bar and the bank-floodplain samples but they retained significantly more organic matter and viable propagules than were found in the other three sampling locations. In particular, the jam bank samples (areas of sediment accumulation against bank faces adjacent to wood jams) contained the highest number of propagules and the largest number of propagule species. These results suggest that retention of propagules, organic matter and relatively fine sediment in and around wood jams has the potential to support vegetation regeneration, further sediment retention, and as a consequence, landform development within woodland streams, although this process is arrested by grazing at the study site. These results also suggest that self-restoration using wood is a potentially cost-effective and far-reaching river restoration strategy but that its full effects develop gradually and require the establishment of a functioning wood budget coupled with grazing levels that are in balance with vegetation growth.

  18. Linking hysteresis patterns and variations in suspended sediment sources in a highly urbanized river: a case of the River Aire, UK

    NASA Astrophysics Data System (ADS)

    Vercruysse, Kim; Grabowski, Robert

    2017-04-01

    The natural sediment balance of rivers is often disturbed as a result of increased fine sediment influx from soil erosion and/or modifications to the river channel and floodplains, causing numerous problems related to ecology, water quality, flood risk and infrastructure. It is of great importance to understand fine sediment dynamics in rivers in order to manage the problems appropriately. However, despite decades of research, our understanding of fine sediment transport is not yet sufficient to fully explain the spatial and temporal variability in sediment concentrations in rivers. To this end, the study aims to investigate the importance of sediment source variations to explain hysteresis patterns in suspended sediment transport. A sediment fingerprinting technique based on infrared spectrometry was applied in the highly urbanized River Aire catchment in northern England to identify the dominant sources of suspended sediment. Three types of potential sediment source samples were collected: soil samples from pasture in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks and urban street dust. All source samples were analyzed with Diffuse Reflectance Infrared Fourier Transform spectrometry (DRIFTS). Discriminant analysis demonstrated that the source materials could be discriminated based on their respective infrared spectra. Infrared spectra of experimental mixtures were then used to develop statistical models to estimate relative source contributions from suspended sediment samples. Suspended sediment samples were collected during a set of high flow events between 2015 and 2016, showing different hysteresis patterns between suspended sediment concentration and discharge. The fingerprinting results suggest that pasture from the limestone area is the dominant source of fine sediment. However, significant variations in source contributions during and between events are present. Small events, in terms of discharge, are marked by relatively high contributions of urban street dust, while high stream flows correspond with higher sediment contributions from riverbanks and pasture. Seasonal variations in the dominant sources are also present. The results emphasize the importance of capturing sediment source variations to gain better insights into the drivers of fine sediment transport over various timescales.

  19. Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments

    USGS Publications Warehouse

    Camponelli, Kimberly M.; Lev, Steven M.; Snodgrass, Joel W.; Landa, Edward R.; Casey, Ryan E.

    2010-01-01

    This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92–98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39–62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.

  20. The Study of Heavy Metals on Sediment Quality of Kuala Perlis Coastal Area

    NASA Astrophysics Data System (ADS)

    Zubir, A. A. Ahmad; Saad, F. N. Mohd; Dahalan, F. A.

    2018-03-01

    The contamination of heavy metals gives bad implications to the aquatic environment. Thus, a study was conducted to assess the sediment quality by using different contamination indices such as Enrichment Factor (EF), Geo-accumulation Index (Igeo), and Pollution Load Index (PLI). Each sediment sample was collected at the surface (0-15cm) at 5 locations based on the land use activity; jetty port (A), seaside restaurant (B), roadside area (C), power plant (D) and residential area (E). All samples were undergoes acid digestion and analyzed with AAS. Four elements identified from the sediment samples which are Cr, Cu, Pb and Zn were used to calculate the respective indices. Results show that, the highest EF value of Pb which categorized as very severe enrichment was at point E. Meanwhile minor enrichment was detected at point B for Cu while Cr and Zn at point A. Based on Igeo value the sediment quality along Kuala Perlis was in the unpolluted-moderately polluted condition (class 1). As for PLI it shows that the sediment of the coastal area is unpolluted (PLI<1). Therefore, this study revealed that, the main contributor of heavy metals in this area is Pb while the sediment quality of Kuala Perlis was in minor pollution condition.

  1. Vergleich von hydraulischen und chemischen Sedimenteigenschaften aus Spül- und Kernbohrungen im Raum Peine (Norddeutschland)

    NASA Astrophysics Data System (ADS)

    Konrad, C.; Walther, W.; Reimann, T.; Rogge, A.; Stengel, P.; Well, R.

    2008-03-01

    Comparison of hydraulic and chemical properties of sediments from flush- and core drillings in the area of Peine (Germany). Because of financial constraints, investigations of nitrate metabolism are often based on disturbed borehole samples. It is arguable, however, whether disturbed samples are suitable for these types of investigations. Disadvantages of disturbed samples in comparison to undisturbed core samples are well known and include possible contamination of the sample by mud additives, destruction of the sediment formation and the insecurity concerning the correct depth allocation. In this study, boreholes were drilled at three locations to a maximum depth of 50 m. The extracted samples, as intact sediment cores and drill cuttings, were studied with regard to chemical and hydraulic parameters of the aquifer sediments. The results show: 1. hydraulic parameters are not affected by clay-based mud; 2. disturbed samples contain less fine grain material relative to the core samples, and the hydraulic conductivity can only be estimated from catch samples; 3. catch samples contain fewer reducing agents (sulphides, organic carbon) than core samples in hydraulically passive zones (defined as K < 10 6 m · s 1); 4. the results of analyses of disturbed and undisturbed core samples are in good agreement for hydraulically active zones (K ≥ 10 6 m · s 1).

  2. Automatic classification techniques for type of sediment map from multibeam sonar data

    NASA Astrophysics Data System (ADS)

    Zakariya, R.; Abdullah, M. A.; Che Hasan, R.; Khalil, I.

    2018-02-01

    Sediment map can be important information for various applications such as oil drilling, environmental and pollution study. A study on sediment mapping was conducted at a natural reef (rock) in Pulau Payar using Sound Navigation and Ranging (SONAR) technology which is Multibeam Echosounder R2-Sonic. This study aims to determine sediment type by obtaining backscatter and bathymetry data from multibeam echosounder. Ground truth data were used to verify the classification produced. The method used to analyze ground truth samples consists of particle size analysis (PSA) and dry sieving methods. Different analysis being carried out due to different sizes of sediment sample obtained. The smaller size was analyzed using PSA with the brand CILAS while bigger size sediment was analyzed using sieve. For multibeam, data acquisition includes backscatter strength and bathymetry data were processed using QINSy, Qimera, and ArcGIS. This study shows the capability of multibeam data to differentiate the four types of sediments which are i) very coarse sand, ii) coarse sand, iii) very coarse silt and coarse silt. The accuracy was reported as 92.31% overall accuracy and 0.88 kappa coefficient.

  3. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    PubMed

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  4. Hydrocarbon gases in Baikal bottom sediments: preliminary results of the Second international Class@Baikal cruise

    NASA Astrophysics Data System (ADS)

    Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina

    2016-04-01

    In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is -53‰. Overall bottom sediments of the Baikal Lake are very saturated in biogenic shallow methane. However, some evidences of thermogenic methane contribution can be recorded in the areas of focused fluid flows from deeper strata (e.g. mud volcanoes, seepage sites, etc.). Scrupulous examination of gas composition data results in understanding of scope of activity of individual structure and rough estimation of thermogenic gas flow input.

  5. Comparison of vacuum and non-vacuum urine tubes for urinary sediment analysis.

    PubMed

    Topcuoglu, Canan; Sezer, Sevilay; Kosem, Arzu; Ercan, Mujgan; Turhan, Turan

    2017-12-01

    Urine collection systems with aspiration system for vacuum tubes are becoming increasingly common for urinalysis, especially for microscopic examination of the urine. In this study, we aimed to examine whether vacuum aspiration of the urine sample has any adverse effect on sediment analysis by comparing results from vacuum and non-vacuum urine tubes. The study included totally 213 urine samples obtained from inpatients and outpatients in our hospital. Urine samples were collected to containers with aspiration system for vacuum tubes. Each sample was aliquoted to both vacuum and non-vacuum urine tubes. Urinary sediment analysis was performed using manual microscope. Results were evaluated using chi-square test. Comparison of the sediment analysis results from vacuum and non-vacuum urine tubes showed that results were highly concordant for erythrocyte, leukocyte and epithelial cells (gamma values 1, 0.997, and 0.994, respectively; p < .001). Results were also concordant for urinary casts, crystals and yeast (kappa values 0.815, 0.945 and 1, respectively; p < .001). The results show that in urinary sediment analysis, vacuum aspiration has no adverse effect on the cellular components except on casts.

  6. Relationship of sediment discharge to streamflow

    USGS Publications Warehouse

    Colby, B.R.

    1956-01-01

    The relationship between rate of sediment discharge and rate of water discharge at a cross section of a stream is frequently expressed by an average curve. This curve is the sediment rating curve. It has been widely used in the computation of average sediment discharge from water discharge for periods when sediment samples were not collected. This report discusses primarily the applications of sediment rating curves for periods during which at least occasional sediment samples were collected. Because sediment rating curves are of many kinds, the selection of the correct kind for each use is important. Each curve should be carefully prepared. In particular, the correct dependent variable must be used or the slope of the sediment rating curve may be incorrect for computing sediment discharges. Sediment rating curves and their applications were studied for the following gaging stations: 1. Niobrara River near Cody, Nebr. 2. Colorado River near Grand Canyon, Ariz. 3. Rio Grande at San Martial, N. Mex. 4. Rio Puerto near Bernardo, N. Mex. 5. White River near Kadoka, S. Dak. 6. Sandusky River near Fremont, Ohio Except for the Sandusky River and the Rio Puerco, which transport mostly fine sediment, one instantaneous sediment rating curve was prepared for the discharge of suspended sands, at each station, and another for the discharge of sediment finer than 0.082 millimeter. Each curve was studied separately, and by trial-end-error multiple correlation some of the factors that cause scatter from the sediment rating curves were determined. Average velocity at the cross section, Water temperature, and erratic fluctuations in concentration seemed to be the three major factors that caused departures from the sediment rating curves for suspended sands. The concentration of suspended sands varied with about the 2.8 power of the mean velocity for the four sediment, rating curves for suspended sands. The effect of water temperature was not so consistent as that of velocity and theoretically should vary considerably with differences in the size composition of the suspended sands. Scatter from the sediment rating curves for sediments finer than 0.082 millimeter seemed to be caused by changes in supply of these sediments. Some of the scatter could be explained by seasonal variations, by a pattern of change in concentration of fine sediment following a rise, or by source of the runoff as indicated by the measured relative flows of certain tributaries. Daily or instantaneous sediment rating curves adjusted for factors that account for some of the scatter from an average curve often can be used to compute approximate daily, monthly, and annual sediment discharges. Accuracy of the computed sediment discharges should be better than average for streams that transport mostly sands rather than fine sediments and for some ephemeral or intermittent streams, such as Rio Puerco, in semiarid regions. Accuracy of computed sediment discharges can be much improved for many streams by shifting the sediment rating curve on the basis of 2 or 4 measurements of sediment discharge per month. Of 26 annual sediment discharges that were computed by shifting sediment rating curves to either 2 or 4 measured sediment discharges per month, 18 were within I0 percent of the annual-sediment discharges that were computed on the basis of a daily sampling program. Monthly and daily sediment discharges computed from daily or instantaneous sediment rating curves, either shifted or unshifted, were less accurate than similarly computed annual sediment discharges. Even so, the difference in cost between occasional sediment samples and daily samples is so great that the added accuracy from daily sampling may not Justify the added cost. Monthly and annual sediment-rating curves can be applied simply, with adjustments if required, to compute monthly and annual sediment discharges with reasonably good accuracy for gaging stations like the Rio Puerco near Bernardo,

  7. Trace elements and organic compounds in sediment and fish tissue from the Great Salt Lake basins, Utah, Idaho, and Wyoming, 1998-99

    USGS Publications Warehouse

    Waddell, Kidd M.; Giddings, Elise M.

    2004-01-01

    A study to determine the occurrence and distribution of trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds in sediment and in fish tissue was conducted in the Great Salt Lake Basins study unit of the National Water-Quality Assessment (NAWQA) program during 1998-99. Streambed-sediment and fish-tissue samples were collected concurrently at 11 sites and analyzed for trace-element concentration. An additional four sites were sampled for streambed sediment only and one site for fish tissue only. Organic compounds were analyzed from streambed-sediment and fish-tissue samples at 15 sites concurrently.Bed-sediment cores from lakes, reservoirs, and Farmington Bay collected by the NAWQA program in 1998 and by other researchers in 1982 were used to examine historical trends in trace-element concentration and to determine anthropogenic sources of contaminants. Cores collected in 1982 from Mirror Lake, a high-mountain reference location, showed an enrichment of arsenic, cadmium, copper, lead, tin, and zinc in the surface sediments relative to the deeper sediments, indicating that enrichment likely began after about 1900. This enrichment was attributed to atmospheric deposition during the period of metal-ore mining and smelting. A core from Echo Reservoir, in the Weber River Basin, however, showed a different pattern of trace-element concentration that was attributed to a local source. This site is located downstream from the Park City mining district, which is the most likely historical source of trace elements. Cores collected in 1998 from Farmington Bay show that the concentration of lead began to increase after 1842 and peaked during the mid-1980s and has been in decline since. Recent sediments deposited during 1996-98 indicate a 41- to 62-percent reduction since the peak in the mid-1980s.The concentration of trace elements in streambed sediment was greatest at sites that have been affected by historic mining, including sites on Little Cottonwood Creek in the Jordan River basin, Silver Creek in the Weber River basin, and the Weber River below the confluence with Silver Creek. There was significant correlation of lead concentrations in streambed sediment and fish tissue, but other trace elements did not correlate well. Streambed sediment and fish tissue collected from sites in the Bear River basin, which is predominantly rangeland and agriculture, generally had low concentrations of most elements.Sediment-quality guidelines were used to assess the relative toxicity of streambed-sediment sites to aquatic communities. Sites affected by mining exceeded the Probable Effect Concentration (PEC), the concentration at which it is likely there will be a negative effect on the aquatic community, for arsenic, cadmium, copper, lead, silver, mercury, and zinc. Sites that were not affected by mining did not exceed these criteria. Concentrations of trace elements in samples collected from the Great Salt Lake Basins study unit (GRSL) are high compared to those of samples collected nationally with the NAWQA program. Nine of 15 streambed-sediment samples and 11 of 14 fish-tissue samples had concentrations of at least one trace element greater than the concentration of 90 percent of the samples collected nationally during 1993-2000.Organic compounds that were examined in streambed sediment and fish-tissue samples also were examined in bed-sediment cores. A bed-sediment core from Farmington Bay of Great Salt Lake showed an increase in total polycyclic aromatic hydrocarbon (PAH) concentrations coincident with the increase in population in Salt Lake Valley, which drains into this bay. Analysis of streambed-sediment samples showed that the highest concentrations of PAHs were detected at urban sites, including two sites in the lower Jordan River (the Jordan River flows into Farmington Bay), the Weber River at Ogden Bay, and the Provo River near Provo. Other organic compounds detected in streambed sediment in the lower Jordan River were PCBs, DDT compounds, and chlordane compounds.Organic compounds were detected more frequently in fish tissue than in streambed sediment. Chlordane compounds and PCBs were detected more frequently at urban sites. DDT compounds were detected at 13 of 15 sites including urban and agricultural sites. Concentrations of total DDT in fish tissue exceeded the guideline for protection of fish-eating wildlife at two urban sites. The concentration of organic compounds in the GRSL study unit is low compared with that of samples collected nationally.

  8. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella.

    PubMed

    Rosenkrantz, Rikke T; Pollino, Carmel A; Nugegoda, Dayanthi; Baun, Anders

    2008-12-01

    Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events.

  9. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  10. Stratigraphy of a proposed wind farm site southeast of Block Island: Utilization of borehole samples, downhole logging, and seismic profiles

    NASA Astrophysics Data System (ADS)

    Sheldon, Dane P. H.

    Seismic stratigraphy, sedimentology, lithostratigraphy, downhole geophysical logging, mineralogy, and palynology were used to study and interpret the upper 70 meters of the inner continental shelf sediments within a proposed wind farm site located approximately two to three nautical miles to the southeast of Block Island, Rhode Island. Core samples and downhole logging collected from borings drilled for geotechnical purposes at proposed wind turbine sites along with seismic surveys in the surrounding area provide the data for this study. Cretaceous coastal plain sediments that consist of non-marine to marine sand, silt, and clay are found overlying bedrock at a contact depth beyond the sampling depth of this study. The upper Cretaceous sediments sampled in borings are correlated with the Magothy/Matawan formations described regionally from New Jersey to Nantucket. An unconformity formed through sub-aerial, fluvial, marine, and glacial erosion marks the upper strata of the Cretaceous sediments separating them from the overlying deposits. The majority of Quaternary deposits overlying the unconformity represent the advance, pulsing, and retreat of the Laurentide ice sheet that reached its southern terminus in the area of Block Island approximately 25,000 to 21,000 years before present. The sequence consists of a basal glacial till overlain by sediments deposited by meltwater environments ranging from deltaic to proglacial lakefloor. A late Pleistocene to early Holocene unconformity marks the top of the glacial sequence and was formed after glacial retreat through fluvial and subaerial erosion/deposition. Overlying the glacial sequence are sediments deposited during the late Pleistocene and Holocene consisting of interbedded gravel, sand, silt, and clay. Sampling of these sediments was limited and surficial reflectors in seismic profiles were masked due to a hard bottom return. However, two depositional periods are interpreted as representing fluvial and estuarine/marine environments respectively. One sample recovered at five meters contained shell fragments within a gray fine to coarse sand possibly representing a shallow estuarine to marine environment. A coarse near surface deposit described but not recovered in all borings may represent a transgressive unconformity and resulting lag deposit however due to lack of sampling and seismic resolution in the upper 5 meters, the nature of this deposit is merely speculation. In areas where depth to the glacial surface increased, sediments ranging from sand to fine-grained silt and clay were encountered in borings. In summary, the upper 70 meters of the inner continental shelf section within the study site consists of unconsolidated sediments spanning three major depositional periods. Sediments derived from glacial activity represent the bulk of samples collected. The glacial sequences represent various depositional environments, although most samples are interpreted to be the product of glacial meltwater deposition with distribution determined by source as well as highs and lows present in the antecedent topography. Finely laminated (varved) sediment to the south of Block Island indicates the presence of proglacial lakes in the area during the time of glacial retreat. Overlying sediments represent environments ranging from fluvial to marine.

  11. Evaluating sediment transport in flood-driven ephemeral tributaries using direct and acoustic methods.

    NASA Astrophysics Data System (ADS)

    Stark, K.

    2017-12-01

    One common source of uncertainty in sediment transport modeling of large semi-arid rivers is sediment influx delivered by ephemeral, flood-driven tributaries. Large variations in sediment delivery are associated with these regimes due to the highly variable nature of flows within them. While there are many sediment transport equations, they are typically developed for perennial streams and can be inaccurate for ephemeral channels. Discrete, manual sampling is labor intensive and requires personnel to be on site during flooding. In addition, flooding within these tributaries typically last on the order of hours, making it difficult to be present during an event. To better understand these regimes, automated systems are needed to continuously sample bedload and suspended load. In preparation for the pending installation of an automated site on the Arroyo de los Piños in New Mexico, manual sediment and flow samples have been collected over the summer monsoon season of 2017, in spite of the logistical challenges. These data include suspended and bedload sediment samples at the basin outlet, and stage and precipitation data from throughout the basin. Data indicate a complex system; flow is generated primarily in areas of exposed bedrock in the center and higher elevations of the watershed. Bedload samples show a large coarse-grained fraction, with 50% >2 mm and 25% >6 mm, which is compatible with acoustic measuring techniques. These data will be used to inform future site operations, which will combine direct sediment measurement from Reid-type slot samplers and non-invasive acoustic measuring methods. Bedload will be indirectly monitored using pipe-style microphones, plate-style geophones, channel hydrophones, and seismometers. These instruments record vibrations and acoustic signals from bedload impacts and movement. Indirect methods for measuring of bedload have never been extensively evaluated in ephemeral channels in the southwest United States. Once calibrated these indirect methods of measuring sediment load can be readily and economically deployed elsewhere within the arid Southwest. Ultimately, this experiment will provide more accurate ephemeral channel sediment loads for stream restoration studies, sediment management actions, and reservoir sedimentation studies.

  12. Performance of a novel multiple-signal luminescence sediment tracing method

    NASA Astrophysics Data System (ADS)

    Reimann, Tony

    2014-05-01

    Optically Stimulated Luminescence (OSL) is commonly used for dating sediments. Luminescence signals build up due to exposure of mineral grains to natural ionizing radiation, and are reset when these grains are exposed to (sun)light during sediment transport and deposition. Generally, luminescence signals can be read in two ways, potentially providing information on the burial history (dating) or the transport history (sediment tracing) of mineral grains. In this study we use a novel luminescence measurement procedure (Reimann et al., submitted) that simultaneously monitors six different luminescence signals from the same sub-sample (aliquot) to infer the transport history of sand grains. Daylight exposure experiments reveal that each of these six signals resets (bleaches) at a different rate, thus allowing to trace the bleaching history of the sediment in six different observation windows. To test the feasibility of luminescence sediment tracing in shallow-marine coastal settings we took eight sediment samples from the pilot mega-nourishment Zandmotor in Kijkduin (South-Holland). This site provides relatively controlled conditions as the morphological evolution of this nourishment is densely monitored (Stive et al., 2013). After sampling the original nourishment source we took samples along the seaward facing contour of the spit that was formed from August 2011 (start of nourishment) to June 2012 (sampling). It is presumed that these samples originate from the source and were transported and deposited within the first year after construction. The measured luminescence of a sediment sample was interpolated onto the daylight bleaching curve of each signal to assign the Equivalent Exposure Time (EET) to a sample. The EET is a quantitative measure of the full daylight equivalent a sample was exposed to during sediment transport, i.e. the higher the EET the longer the sample has been transported or the more efficient it has been exposed to day-light during sediment transport. The EET increases with increasing distance from the nourishment source, indicating that our method is capable to quantify sediment transport distances. We furthermore observed that the EET of an aeolian analogue is orders of magnitudes higher than those of the water-lain transported Zandmotor samples, suggesting that our approach is also able to differentiate between different modes of coastal sediment transport. This new luminescence approach offers new possibilities to decipher the sedimentation history of palaeo-environmental archives e.g. in coastal, fluvial or aeolian settings. References: Reimann, T.et al. Quantifying the degreeof bleaching during sediment transport using a polymineral multiple-signalluminescence approach. Submitted. Stive, M.J.F. et al. 2013. A New Alternative to Saving Our Beaches from Sea-Level Rise: The SandEngine. Journal of Coastal research 29, 1001-1008.

  13. Organic Compounds, Trace Elements, Suspended Sediment, and Field Characteristics at the Heads-of-Tide of the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers, New Jersey, 2000-03

    USGS Publications Warehouse

    Bonin, Jennifer L.; Wilson, Timothy P.

    2006-01-01

    Concentrations of suspended sediment, particulate and dissolved organic carbon, trace elements, and organic compounds were measured in samples from the heads-of-tide of the five tributaries to the Newark and Raritan Bays during June 2000 to June 2003. The samples were collected as part of the New Jersey Department of Environmental Protection Toxics Reduction Workplan/Contaminant Assessment Reduction Program. Samples of streamwater were collected at water-quality sampling stations constructed near U.S. Geological Survey gaging stations on the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers. Sampling was conducted during base-flow conditions and storms. Constituent concentrations were measured to determine the water quality and to calculate the load of sediment and contaminants contributed to the bays from upstream sources. Water samples were analyzed for suspended sediment, dissolved organic carbon, particulate organic carbon, and specific conductance. Samples of suspended sediment and water were analyzed for 98 distinct polychlorinated biphenyl congeners, 7 dioxins, 10 furans, 27 pesticides, 26 polycyclic aromatic hydrocarbons, and the trace elements cadmium, lead, mercury, and methyl-mercury. Measurements of ultra-low concentrations of organic compounds in sediment and water were obtained by collecting 1 to 3 grams of suspended sediment on glass fiber filters and by passing at least 20 liters of filtered water through XAD-2 resin. The extracted sediment and XAD-2 resin were analyzed for organic compounds by high- and low-resolution gas chromatography mass-spectrometry that uses isotope dilution procedures. Trace elements in filtered and unfiltered samples were analyzed for cadmium, lead, mercury, and methyl-mercury by inductively coupled charged plasma and mass-spectrometry. All constituent concentrations are raw data. Interpretation of the data will be completed in the second phase of the study.

  14. Quantifying the seasonal variations in fluvial and eolian sources of terrigenous material to Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Elmore, Aurora C.; Thunell, Robert C.; Styles, Richard; Black, David; Murray, Richard W.; Martinez, Nahysa; Astor, Yrene

    2009-02-01

    The varved sediments that accumulate in the Cariaco Basin provide a detailed archive of the region's climatic history, including a record of the quantity of fluvial and wind-transported material. In this study, we examine the sedimentological characteristics (clay mineralogy and grain size) of both surface sediments and sinking lithogenic material collected from sediment trap samples over a three-year period from 1997 to 2000. Data from biweekly sediment trap samples show a tri-modal particle size distribution, with prominent peaks at 2, 22 and 80 μm, indicating sediment contributions from both eolian and fluvial sources. The clay mineralogy of the water column samples collected from 1997 to 1999 also shows distinctive characteristics of eolian and fluvial material. An examination of surface sediment samples from the Cariaco Basin indicates that the Unare River is the main source of riverine sediments to the eastern sub-basin. By combining these sedimentological proxies, we estimate that ˜10% of the terrigenous material delivered to the Cariaco Basin is eolian, while ˜90% is fluvial. This represents an annual dust accumulation rate of ˜0.59 mg/cm 2/yr. Since aerosols are closely linked to climate variability, the ability to quantify paleo-dust fluxes using sedimentological characteristics will be a useful tool for future paleoclimate studies looking at sub-Saharan aridity and latitudinal migration of the Intertropical Convergence Zone.

  15. Effects of untreated hospital effluents on the accumulation of toxic metals in sediments of receiving system under tropical conditions: case of South India and Democratic Republic of Congo.

    PubMed

    Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John

    2013-10-01

    Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Fine Increment Soil Collector (FISC): A new device to support high resolution soil and sediment sampling for agri-environmental assessments

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Meusburger, Katrin; Iurian, Andra-Rada; Owens, Philip N.; Toloza, Arsenio; Alewell, Christine

    2014-05-01

    Soil and sediment related research for terrestrial agri-environmental assessments requires accurate depth incremental sampling of soil and exposed sediment profiles. Existing coring equipment does not allow collecting soil/sediment increments at millimetre resolution. Therefore, the authors have designed an economic, portable, hand-operated surface soil/sediment sampler - the Fine Increment Soil Collector (FISC) - which allows extensive control of soil/sediment sampling process and easy recovery of the material collected by using a simple screw-thread extraction system. In comparison with existing sampling tools, the FISC has the following advantages and benefits: (i) it permits sampling of soil/sediment samples at the top of the profile; (ii) it is easy to adjust so as to collect soil/sediment at mm resolution; (iii) it is simple to operate by one single person; (iv) incremental samples can be performed in the field or at the laboratory; (v) it permits precise evaluation of bulk density at millimetre vertical resolution; and (vi) sample size can be tailored to analytical requirements. To illustrate the usefulness of the FISC in sampling soil and sediments for 7Be - a well-known cosmogenic soil tracer and fingerprinting tool - measurements, the sampler was tested in a forested soil located 45 km southeast of Vienna in Austria. The fine resolution increments of 7Be (i.e. 2.5 mm) affects directly the measurement of the 7Be total inventory but above all impacts the shape of the 7Be exponential profile which is needed to assess soil movement rates. The FISC can improve the determination of the depth distributions of other Fallout Radionuclides (FRN) - such as 137Cs, 210Pbexand239+240Pu - which are frequently used for soil erosion and sediment transport studies and/or sediment fingerprinting. Such a device also offers great potential to investigate FRN depth distributions associated with fallout events such as that associated with nuclear emergencies. Furthermore, prior to remediation activities - such as topsoil removal - in contaminated soils and sediments (e.g. by heavy metals, pesticides or nuclear power plant accident releases), basic environmental assessment often requires the determination of the extent and the depth penetration of the different contaminants, precision that can be provided by using the FISC.

  17. Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle.

    PubMed

    Shue, Meei-Fang; Chen, Ting-Chien; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2014-01-01

    This study investigated the concentrations of Tributyltin (TBT) in water, sediment, and fish muscle samples taken from Kaohsiung Harbor and Kaoping River estuary, Taiwan. TBT concentrations in water and sediment samples ranged from less than 18.5 to 34.1 ng Sn L(-1) and from 2.44 to 29.7 ng Sn g(-1) weight per weight (w/w), respectively. Concentrations in the TBT-contaminated fish muscle samples ranged from 10.8 to 79.6 ng Sn g(-1) w/w. The TBT concentrations in fish muscle were higher than those in water and sediment samples. The fish muscle/water TBT bioconcentration factor (BCF) ranged from 590 to 3363 L kg(-1). Additionally, the water samples were assessed for androgenic activity with an MCF7-AR1 human breast cancer cell line. The androgenic activity ranged from 0.94 to 3.1 ng-dihydrotestosterone per litre water (ng-DHT L(-1)). Higher concentrations of TBT in water and sediment samples occurred in the dry season, but the androgenic activity had higher values in the rainy season.

  18. Method of evaluation of process of red blood cell sedimentation based on photometry of droplet samples.

    PubMed

    Aristov, Alexander; Nosova, Ekaterina

    2017-04-01

    The paper focuses on research aimed at creating and testing a new approach to evaluate the processes of aggregation and sedimentation of red blood cells for purpose of its use in clinical laboratory diagnostics. The proposed method is based on photometric analysis of blood sample formed as a sessile drop. The results of clinical approbation of this method are given in the paper. Analysis of the processes occurring in the sample in the form of sessile drop during the process of blood cells sedimentation is described. The results of experimental studies to evaluate the effect of the droplet sample focusing properties on light radiation transmittance are presented. It is shown that this method significantly reduces the sample volume and provides sufficiently high sensitivity to the studied processes.

  19. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Brumbaugh, W.G.; Johnson, B. Thomas; Kemble, N.E.; Kunz, J.L.; May, T.W.; Wang, N.; Smith, J.R.; Sparks, D.W.; Ireland, D.S.

    2002-01-01

    The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox® Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3.4 (based on concentrations of metals, PAHs, and PCBs) was exceeded in 33% of the sediment samples and a mean quotient of 0.63 was exceeded in 70% of the thirty sediment samples from the assessment area. A 50% incidence of toxicity has been previously reported in a database for sediment tests with H. azteca at a mean quotient of 3.4 in 10-day exposures and at a mean quotient of 0.63 in 28-day exposures. Among the Indiana Harbor samples, most of the samples with a mean PEC quotient above 0.63 (i.e., 15 of 21; 71%) and above 3.4 (i.e., 10 of 10; 100%) were toxic to amphipods. Results of this study and previous studies demonstrate that sediments from this assessment area are among the most contaminated and toxic that have ever been reported.

  20. Investigation of Sediment Pathways and Concealed Sedimentological Features in Hidden River Cave, Kentucky

    NASA Astrophysics Data System (ADS)

    Feist, S.; Maclachlan, J. C.; Reinhardt, E. G.; McNeill-Jewer, C.; Eyles, C.

    2016-12-01

    Hidden River Cave is part of a cave system hydrogeologically related to Mammoth Cave in Kentucky and is a multi-level active cave system with 25km of mapped passages. Upper levels experience flow during flood events and lower levels have continuously flowing water. Improper industrial and domestic waste disposal and poor understanding of local hydrogeology lead to contamination of Hidden River Cave in the early 1940s. Previously used for hydroelectric power generation and as a source of potable water the cave was closed to the public for almost 50 years. A new sewage treatment plant and remediation efforts since 1989 have improved the cave system's health. This project focuses on sedimentological studies in the Hidden River Cave system. Water and sediment transport in the cave are being investigated using sediment cores, surface sediment samples and water level data. An Itrax core scanner is used to analyze sediment cores for elemental concentrations, magnetic susceptibility, radiography, and high resolution photography. Horizons of metal concentrations in the core allow correlation of sedimentation events in the cave system. Thecamoebian (testate amoebae) microfossils identified in surface samples allow for further constraint of sediment sources, sedimentation rates, and paleoclimatic analysis. Dive recorders monitor water levels, providing data to further understand the movement of sediment through the cave system. A general time constraint on the sediment's age is based on the presence of microplastic in the surface samples and sediment cores, and data from radiocarbon and lead-210 dating. The integration of various sedimentological data allows for better understanding of sedimentation processes and their record of paleoenvironmental change in the cave system. Sediment studies and methodologies from this project can be applied to other karst systems, and have important applications for communities living on karst landscapes and their water management policies.

  1. Impacts of pollution derived from ship wrecks on the marine environment on the basis of s/s "Stuttgart" (Polish coast, Europe).

    PubMed

    Rogowska, Justyna; Wolska, Lidia; Namieśnik, Jacek

    2010-11-01

    In 1943 the German hospital ship s/s Stuttgart (Lazaretschiff "C") was sunk close to the port of Gdynia (Gulf of Gdańsk - Polish coast). This and other actions (undertaken after the war to remove the wreck) led to pollution of the sea bottom with oil derivatives. During our studies (2009) 11 surface sediment and water samples were collected as well as sediment core samples at 4 locations in order to determine the concentration levels of priority pollutants belonging to polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB). The concentrations of 16 PAH and 7 PCB were analysed with GC-MS. ΣPAH varied between 11.54 ± 0.39 and 206.7 ± 6.5mg/kg dry weight in the surface sediments, and from 0.686 ± 0.026 to 1291 ± 53 mg/kg dry weight in the core samples. Contamination in the core samples collected may reach a depth of at least 230-240 cm (deepest sample studied). The PAH-group profiles in all surface sediment samples suggest a pyrolytic source of PAH, while the results obtained for core samples indicate a mixed pattern of pyrolytic and petrogenic inputs of PAH. Results obtained may suggest also that fuel residues being present at sea bottom is not crude oil derived but results from coal processing (synthetic fuel). The sum of PCB in surface sediments ranged from 0.761 ± 0.068 to 6.82 ± 0.28 μg/kg dry weight (except for sampling point W2, where ΣPCB was 108.8 ± 4.4 μg/kg dry weight). The strong correlation between PAH and PCB levels, and the fact that PCB are present only in the surface sediments, suggest that the compounds in these sediments got there as a result of emission from urban areas, entering the aquatic environment via atmospheric deposition. PCB levels in the sediment core samples were generally very low and in most cases did not exceed the method quantification limit. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. An evaluation of contaminated estuarine sites using sediment quality guidelines and ecological assessment methodologies.

    PubMed

    Fulton, M; Key, P; Wirth, E; Leight, A K; Daugomah, J; Bearden, D; Sivertsen, S; Scott, G

    2006-10-01

    Toxic contaminants may enter estuarine ecosystems through a variety of pathways. When sediment contaminant levels become sufficiently high, they may impact resident biota. One approach to predict sediment-associated toxicity in estuarine ecosystems involves the use of sediment quality guidelines (ERMs, ERLs) and site-specific contaminant chemistry while a second approach utilizes site-specific ecological sampling to assess impacts at the population or community level. The goal of this study was to utilize an integrated approach including chemical contaminant analysis, sediment quality guidelines and grass shrimp population monitoring to evaluate the impact of contaminants from industrial sources. Three impacted sites and one reference site were selected for study. Grass shrimp populations were sampled using a push-netting approach. Sediment samples were collected at each site and analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Contaminant levels were then compared to sediment quality guidelines. In general, grass shrimp population densities at the sites decreased as the ERM quotients increased. Grass shrimp densities were significantly reduced at the impacted site that had an ERM exceedance for chromium and the highest Mean ERM quotient. Regression analysis indicated that sediment chromium concentrations were negatively correlated with grass shrimp density. Grass shrimp size was reduced at two sites with intermediate levels of contamination. These findings support the use of both sediment quality guidelines and site-specific population monitoring to evaluate the impacts of sediment-associated contaminants in estuarine systems.

  3. U.S. Geological Survey Quality-Assurance Project for Sediment Analysis

    USGS Publications Warehouse

    Gordon, John D.; Newland, Carla

    2000-01-01

    Introduction Sediment is derived primarily from natural weathering of rock and is an assemblage of individual mineral grains that are then deposited by some physical agent, such as water, wind, ice, or gravity (Fetter, 1988). The U.S. Geological Survey (USGS) samples sediments and collects data on the amount of sediment in selected waterways. The most pressing sediment-related problems are associated with environmental questions, such as the transport and fate of attached pollutants, effects of sediment on aquatic biota and their habitats, and effects on sediment transport from land-use changes. Current (2000) sediment issues require that sediment studies address multiple objectives in water-resources management (Koltun and others, 1997). To support sediment research, the USGS operates laboratories for the analysis of the physical characteristics of sediment. Sediment laboratories producing data for the USGS have two principal functions: (1) the determination of suspended-sediment concentration in samples and (2) the determination of sand/fine separations. The reliability of these determinations and the usefulness of the data are dependent on the accuracy and reliability of the laboratory analyses (Guy, 1969).

  4. Extraction of organic contaminants from marine sediments and tissues using microwave energy.

    PubMed

    Jayaraman, S; Pruell, R J; McKinney, R

    2001-07-01

    In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, and polycyclic aromatic hydrocarbons (PAHs). Initial experiments were conducted on dry standard reference materials (SRMs) and field collected marine sediments. Moisture content in samples greatly influenced the recovery of the analytes of interest. When wet sediments were included in a sample batch, low recoveries were often encountered in other samples in the batch, including the dry SRM. Experiments were conducted to test the effect of standardizing the moisture content in all samples in a batch prior to extraction. SRM1941a (marine sediment). SRM1974a (mussel tissue), as well as QA96SED6 (marine sediment), and QA96TIS7 (marine tissue), both from 1996 NIST Intercalibration Exercise were extracted using microwave and conventional methods. Moisture levels were adjusted in SRMs to match those of marine sediment and tissue samples before microwave extraction. The results demonstrated that it is crucial to standardize the moisture content in all samples, including dry reference material to ensure good recovery of organic contaminants. MSE yielded equivalent or superior recoveries compared to conventional methods for the majority of the compounds evaluated. The advantages of MSE over conventional methods are reduced solvent usage, higher sample throughput and the elimination of halogenated solvent usage.

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, H.E.; Weaver, T.A.

    1979-01-01

    During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both aremore » actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations.« less

  6. Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1988-01-01

    Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  7. Sediment quality assessment studies of Tampa bay, Florida

    USGS Publications Warehouse

    Carr, Scott R.; Chapman, Duane C.; Long, Edward R.; Windom, Herbert L.; Thursby, Glen; Sloane, Gail M.; Wolfe, Douglas A.

    1996-01-01

    A survey of the toxicity of sediments throughout the Tampa Bay estuary was performed as part of the National Oceanic and Atmospheric Administration's National Status and Trends Program. The objectives of the survey were to determine the spatial extent and severity of toxicity and to identify relationships between chemical contamination and toxicity. Three independent toxicity tests were performed: a 10-d amphipod survival test of the whole sediments with Ampelisca abdita, a sea urchin fertilization test of sediment pore water with Arbacia punctulata, and a 5-min Microtox® bioluminescence test with solvent extracts of the sediments. Seventy-three percent of the 165 undiluted sediment pore-water samples were significantly toxic relative to reference samples with the sea urchin fertilization test. In contrast, only 2% of the 165 samples were significantly toxic in the amphipod tests. The causes of toxicity were not determined. However, concentrations of numerous trace metals, pesticides, polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), and ammonia were highly correlated with pore-water toxicity. Concentrations of many substances, especially total dichlorodiphenyltrichloroethanes (DDTs), endrin, total PCBs, certain PAHs, lead, and zinc, occurred at concentrations in the toxic samples that equaled or exceeded concentrations that have been previously associated with sediment toxicity.

  8. Geochemical distribution, fractionation and contamination assessment of heavy metals in marine sediments of the Asaluyeh port, Persian Gulf.

    PubMed

    Delshab, Hossein; Farshchi, Parvin; Keshavarzi, Behnam

    2017-02-15

    In this study, total concentration and speciation of heavy metals in sediments of the Asaluyeh, one of the Iran's largest commercial ports, are investigated. 48 sediment samples were collected and analyzed for trace and major elements. Sediment quality guidelines along with calculated enrichment factors and trace metal profiles indicate that Asaluyeh port is threated by contamination, especially with respect to Hg and Cu. Normalization to Sc indicated high enrichment factors in the sediments following the decreasing order of: Hg>Cu>As>Ni>Zn>Pb≈Cr≈Mn>Co≈V≈Fe≈Al. Hg displayed the greatest potential ecological risk factor among sampling stations. The results of sequential extraction procedure revealed that in some stations >50% of Mn, V, Cu and Zn occur in potentially mobile phases and therefore are more readily mobilized in the sediments of the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Passive sampling methods for contaminated sediments: Risk assessment and management

    PubMed Central

    Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F

    2014-01-01

    This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr Environ Assess Manag 2014;10:224–236. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24343931

  10. Results of the Chemical and Isotopic Analyses of Sediment and Ground Water from Alluvium of the Canadian River Near a Closed Municipal Landfill, Norman, Oklahoma, Part 2

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Berry, Cyrus J.; Christenson, Scott C.; Jaeschke, Jeanne B.

    2008-01-01

    Analytical results on sediment and associated ground water from the Canadian River alluvium collected subsequent to those described in Breit and others (2005) are presented in this report. The data presented herein were collected primarily to evaluate the iron and sulfur species within the sediment at well sites IC 36, IC 54, and IC South located at the USGS Norman Landfill study site. Cored sediment and water samples were collected during October 2004 and April 2005. The 52 sediment samples collected by coring were analyzed to determine grain size, the abundance of extractable iron species, and the abundance of sulfur forms and their isotopic compositions. Ground water was collected from cluster wells that sampled ground water from 11 to 15 screened intervals at each of the three sites. The depth range of the wells overlapped the interval of cored sediment. Concentrations of major ions, dissolved organic carbon (DOC), ammonium, and iron are reported with pH, specific conductance, and the isotopic composition of the water for the 75 water samples analyzed. Dissolved sulfate in selected water samples was analyzed to determine its sulfur and oxygen isotope composition.

  11. Concentration of novel brominated flame retardants and HBCD in leachates and sediments from selected municipal solid waste landfill sites in Gauteng Province, South Africa.

    PubMed

    Olukunle, O I; Okonkwo, O J

    2015-09-01

    In this study leachate and sediment samples were collected from six municipal solid waste landfill sites across Gauteng Province in South Africa to determine the levels of 2-ethylhexyl 2,3,4,5 tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and hexabromocyclododecane (HBCD). Soxhlet as well as liquid-liquid extraction were employed for sediment and leachates respectively followed by GC-EIMS analysis. Concentrations of novel brominated flame retardants (NBFRs) ranged from below detection (

  12. Evaluation of dredged material proposed for ocean disposal from Hudson River, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.

    1996-09-01

    The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzedmore » for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.« less

  13. Data Report: A Search for Deposits of the Late Pliocene Impact of the Eltanin Asteroid in Rise Sediments from the Antarctic Peninsula, Site 1096

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    Concentrations of Ir have been measured in 87 sediment samples from Ocean Drilling Program Site 1096 in search of evidence of fallout from the impact of the Eltanin asteroid, which occurred at 2.15 Ma, approx. 1300 km northwest of the site. An additional six samples were measured from a unique sand layer and adjacent sediments that are dated at approx. 1.6 Ma. These 93 sediment samples are all silts and muds that were deposited on a continental rise drift of the Antarctic Peninsula. No evidence of the Eltanin impact deposit was found in this study.

  14. Characterization and Modeling of Settling, Consolidation, and Suspension to Optimize Sediment Retention of Sediment Diversions for Coastal Restoration

    NASA Astrophysics Data System (ADS)

    Sha, X.; Xu, K.; Bentley, S. J.; Robichaux, P.

    2016-02-01

    Although many studies of sediment diversions have been conducted on the Mississippi Delta, relatively less attention has been paid to understanding sediment retention and basic cohesive sedimentation processes in receiving basins. Our research evaluates long-term (up to six months) sedimentation processes through various laboratory experiments, especially cohesive sediment settling, consolidation and resuspension and their impacts on sediment retention. Bulk sediment samples were collected from West Bay, near Head of Passes of the Mississippi Delta, and the Big Mar basin that receive water and sediment from the Caernarvon Diversion in the upper Breton Sound region of Louisiana, USA. A-230-cm tall settling column with nine sampling ports at 15 cm intervals was used to measure the consolidation for four initial sediment concentrations (10-120 kg m-3) with two salinities (1 ppt & 5 ppt). Samples of sediment slurry were taken from every port at different time intervals up to 15 days or longer (higher concentration needs longer time to consolidate) to record concentrations gravimetrically. A 200 cm long tube was connected to a 50 cm long core chamber to accumulate at least a 10 cm thick sediment column for erosion tests. A dual-core Gust Erosion Microcosm System was employed to measure time-series (0.5, 1, 2, 3, 4, 5, 6 months) erodibility at seven shear stress regimes (0.01-0.60 Pa). Our preliminary results show a significant decrease of erodibility with time and high concentration (120g/L). Salinity impacted on sediment behavior in consolidation experiments. Our study reveals that more enclosed receiving basins, intermittent openings of diversions, or reduced shear stress due to man-made structure all can potentially reduce cohesive sediment erosion in coastal Louisiana. Further results will be analyzed to determine the model constants. Consolidating rates and corresponding erosional changes will be determined to optimize sediment retention in coastal protection.

  15. Characterization of sediment transport upstream and downstream from Lake Emory on the Little Tennessee River near Franklin, North Carolina, 2014–15

    USGS Publications Warehouse

    Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.

    2017-09-06

    Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.

  16. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  17. Quality-assurance plan for the analysis of fluvial sediment by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    USGS Publications Warehouse

    Shreve, Elizabeth A.; Downs, Aimee C.

    2005-01-01

    This report describes laboratory procedures used by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial-sediment samples for concentration of sand and finer material. The report details the processing of a sediment sample through the laboratory from receiving the sediment sample, through the analytical process, to compiling results of the requested analysis. Procedures for preserving sample integrity, calibrating and maintaining of laboratory and field instruments and equipment, analyzing samples, internal quality assurance and quality control, and validity of the sediment-analysis results also are described. The report includes a list of references cited and a glossary of sediment and quality-assurance terms.

  18. Electron donor concentrations in sediments and sediment properties at the agricultural chemicals team research site near New Providence, Iowa, 2006-07

    USGS Publications Warehouse

    Maharjan, Bijesh; Korom, Scott F.; Smith, Erik A.

    2013-01-01

    The concentrations of electron donors in aquifer sediments are important to the understanding of the fate and transport of redox-sensitive constituents in groundwater, such as nitrate. For a study by the U.S. Geological Survey National Water-Quality Assessment Program, 50 sediment samples were collected from below the water table from 11 boreholes at the U.S. Geological Survey Agricultural Chemicals Team research site near New Providence, Iowa, during 2006-07. All samples were analyzed for gravel, sand (coarse, medium, and fine), silt, clay, Munsell soil color, inorganic carbon content, and for the following electron donors: organic carbon, ferrous iron, and inorganic sulfide. A subset of 14 sediment samples also was analyzed for organic sulfur, but all of these samples had concentrations less than the method detection limit; therefore, the presence of this potential electron donor was not considered further. X-ray diffraction analyses provided important semi-quantitative information of well-crystallized dominant minerals within the sediments that might be contributing electron donors.

  19. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  20. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con

  1. Suspended sediments from upstream tributaries as the source of downstream river sites

    NASA Astrophysics Data System (ADS)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  2. Sediment studies in the Assabet River, central Massachusetts, 2003

    USGS Publications Warehouse

    Zimmerman, Marc J.; Sorenson, Jason R.

    2005-01-01

    From its headwaters in Westborough, Massachusetts, to its confluence with the Sudbury River, the 53-kilometer-long Assabet River passes through a series of small towns and mixed land-use areas. Along the way, wastewater-treatment plants release nutrient-rich effluents that contribute to the eutrophic state of this waterway. This condition is most obvious where the river is impounded by a series of dams that have sequestered large amounts of sediment and support rooted and floating macrophytes and epiphytic algae. The water in parts of these impoundments may also have low concentrations of dissolved oxygen, another symptom of eutrophication. All of the impoundments had relatively shallow maximum water depths, which ranged from approximately 2.4 to 3.4 meters, and all had extensive shallow areas. Sediment volumes estimated for the six impoundments ranged from approximately 380 cubic meters in the Aluminum City impoundment to 580,000 cubic meters in the Ben Smith impoundment. The other impoundments had sediment volumes of 120,000 cubic meters (Powdermill), 67,000 cubic meters (Gleasondale), 55,000 cubic meters (Hudson), and 42,000 cubic meters (Allen Street). The principal objective of this study was the determination of sediment volume, extent, and chemistry, in particular, the characterization of toxic inorganic and organic chemicals in the sediments. To determine the bulk-sediment chemical-constituent concentrations, more than one hundred sediment cores were collected in pairs from the six impoundments. One core from each pair was sampled for inorganic constituents and the other for organic constituents. Most of the cores analyzed for inorganics were sectioned to provide information on the vertical distribution of analytes; a subset of the cores analyzed for organics was also sectioned. Approximately 200 samples were analyzed for inorganic constituents and 100 for organics; more than 10 percent were quality-control replicate or blank samples. Maximum bulk-sediment phosphorus concentrations in surface samples from the impoundments increased along a downstream gradient, with the exception of samples from the last impoundment, where the concentrations decreased. In addition, the highest phosphorus concentrations were generally in the surface samples; this finding may prove helpful if surface dredging is selected as a means to control phosphorus release from sediments. There is no known relation, however, between bulk-sediment concentration of phosphorus and the concentrations of phosphorus available to biota. Potentially toxic metals, including arsenic, cadmium, chromium, copper, nickel, lead, and zinc were frequently measured at concentrations that exceeded U.S. Environmental Protection Agency sediment-quality guidelines for the protection of aquatic life and that occasionally exceeded Massachusetts Department of Environmental Protection guidelines governing landfill disposal (reuse). Due to the effects of matrix interference and sample dilution on laboratory analyses, neither pesticides nor volatile organic compounds were detected at any sites. However, samples collected in other studies from nearby streams indicated the possibility that pesticides might have been detected in the impoundments if not for these analytical problems. Although polychlorinated biphenyl concentrations, as individual Aroclors, generally exceeded published U.S. Environmental Protection Agency guideline concentrations for potential effects on aquatic life, the U.S. Environmental Protection Agency guideline concentrations for human contact or the Massachusetts guidelines for landfill reuse were rarely exceeded. Concentrations of polycyclic aromatic hydrocarbons, both individually and total, frequently were greater than guideline concentrations. Concentrations of total extractable petroleum hydrocarbons did not exceed Massachusetts guideline concentrations in any samples. When the sediment analytes from surface samples are considered togethe

  3. Occurrence, distribution and transport of pesticides into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, L.A.; Kuivila, K.M.

    2008-01-01

    The Salton Sea is a hypersaline lake located in southeastern California. Concerns over the ecological impacts of sediment quality and potential human exposure to dust emissions from exposed lakebed sediments resulting from anticipated shrinking of shoreline led to a study of pesticide distribution and transport within the Salton Sea Basin, California, in 2001-2002. Three sampling stations-upriver, river mouth, and offshore-were established along each of the three major rivers that discharge into the Salton Sea. Large-volume water samples were collected for analysis of pesticides in water and suspended sediments at the nine sampling stations. Samples of the bottom sediment were also collected at each site for pesticide analysis. Sampling occurred in October 2001, March-April 2002, and October 2002, coinciding with the regional fall and spring peaks in pesticide use in the heavily agricultural watershed. Fourteen current-use pesticides were detected in water and the majority of dissolved concentrations ranged from the limits of detection to 151 ng/l. Diazinon, EPTC and malathion were detected at much higher concentrations (940-3,830 ng/l) at the New and Alamo River upriver and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and EPTC were higher in the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring, which matched seasonal use patterns of these pesticides. Current-use pesticides were also detected on suspended and bed sediments in concentrations ranging from detection limits to 106 ng/g. Chlorpyrifos, dacthal, EPTC, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number of detections and concentrations of suspended sediment-associated pesticides were often similar for the river upriver and near-shore sites, consistent with downstream transport of pesticides via suspended sediment. While detectable suspended sediment pesticide concentrations were more sporadic than detected aqueous concentrations, seasonal trends were similar to those for dissolved concentrations. Generally, the pesticides detected on suspended sediments were the same as those on the bed sediments, and concentrations were similar, especially at the Alamo River upriver site. With a few exceptions, pesticides were not detected in suspended or bed sediments from the off-shore sites. The partitioning of pesticides between water and sediment was not predictable from solely the physical-chemical properties of individual pesticide compounds, but appear to be a complicated function of the quantity of pesticide applied in the watershed, residence time of sediments in the water, and compound solubility and hydrophobicity. Sediment concentrations of most pesticides were found to be 100-1,000 times lower than the low-effects levels determined in human health risk assessment studies. However, maximum concentrations of chlorpyrifos on suspended sediments were approximately half the low-effects level, suggesting the need for further sediment characterization of lake sediments proximate to riverine inputs. ?? 2008 Springer Science+Business Media B.V.

  4. Locations and descriptions of gravity, box, and push cores collected in San Francisco Bay between January and February, 1990 and 1991

    USGS Publications Warehouse

    Anima, Roberto J.; Clifton, H. Edward; Reiss, Carol; Wong, Florence L.

    2005-01-01

    A project to study San Francisco Bay sediments collected over 300 sediment gravity cores; six push cores, and three box cores in San Francisco Bay during the years 1990-91. The purpose of the sampling effort is to establish a database on the Holocene sediment history of the bay. The samples described and mapped are the first effort to catalog and present the data collected. Thus far the cores have been utilized in various cooperative studies with state colleges and universities, and other USGS divisions. These cores serve as a base for ongoing multidisciplinary studies. The sediment studies project has initiated subsequent coring efforts within the bay using refined coring techniques to attain deeper cores.

  5. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  6. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    USGS Publications Warehouse

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended-sediment samples, including pyrethroid insecticides and fungicides. Fourteen legacy organochlorine pesticides also were detected in the suspended-sediment samples. Greater numbers of current-use and organochlorine pesticides were observed in the Alamo River samples in comparison with the New River samples. Maximum concentrations of current-use pesticides in suspended-sediment samples ranged from below their method detection limits to 174 micrograms per kilogram (pendimethalin). Most organochlorine pesticides were detected at or below their method detection limits, with the exception of p,p'-DDE, which had a maximum concentration of 54.2 micrograms per kilogram. The most frequently detected current-use pesticides in the suspended-sediment samples were chlorpyrifos, permethrin, tetraconazole, and trifluralin, which were observed in more than 83 percent of the samples. The organochlorine degradates p,p'-DDD and p,p'-DDE were detected in all suspended-sediment samples.

  7. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence.

    PubMed

    Fairchild, J F; Kemble, N E; Allert, A L; Brumbaugh, W G; Ingersoll, C G; Dowling, B; Gruenenfelder, C; Roland, J L

    2012-07-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States-Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM - AVS); and (3) ∑SEM - AVS normalized to the fractional organic carbon (f(oc)) (i.e., ∑SEM - AVS/f(oc)). The most highly metal-contaminated sample (∑PEQ(TRM) = 132; ∑PEQ(SEM) = 54; ∑SEM - AVS = 323; and ∑SEM - AVS/(foc) = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS - SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM - AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate colonization studies in an experimental pond (8-week duration) indicated that two of the most metal-contaminated UCR sediments (dominated by high levels of sand-sized slag particles) exhibited decreased invertebrate colonization compared with sand-based reference sediments. Field-exposed SIR-300 resin samples also exhibited decreased invertebrate colonization numbers compared with reference materials, which may indicate behavioral avoidance of this material under field conditions. Multiple lines of evidence (analytical chemistry, laboratory toxicity, and field colonization results), along with findings from previous studies, indicate that high metal concentrations associated with slag-enriched sediments in the UCR are likely to adversely impact the growth and survival of native benthic invertebrate communities. Additional laboratory toxicity testing, refinement of the applications of sediment benchmarks for metal toxicity, and in situ benthic invertebrate studies will assist in better defining the spatial extent, temporal variations, and ecological impacts of metal-contaminated sediments in the UCR system.

  8. Sediment-source data for four basins tributary to Lake Tahoe, California and Nevada; August 1983-June 1988

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1990-01-01

    Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  9. Environmental PCBs in Guánica Bay, Puerto Rico: implications for community health.

    PubMed

    Kumar, Naresh; Ramirez-Ortiz, Daisy; Solo-Gabriele, Helena M; Treaster, Joseph B; Carrasquillo, Olveen; Toborek, Michal; Deo, Sapna; Klaus, Jim; Bachas, Leonidas G; Whitall, David; Daunert, Sylvia; Szapocznik, Jose

    2016-02-01

    Guánica Bay, located in southwestern Puerto Rico, has suffered oil spills and other pollution discharges since the 1960s. Previous research showed elevated concentrations of polychlorinated biphenyls (PCBs) in coral reef and sediment. This research examined PCB concentrations in sediment and fish. Sediment and fish sampling in the bay was facilitated by community members. This study identified the second highest reported PCB level (129,300 ng/g) in sediment in the USA. Fish samples also showed elevated concentrations (1623 to 3768 ng/g), which were higher than the thresholds of safe levels of PCBs in fish for human consumption. The alarmingly high concentration of PCBs calls for proactive community engagement to bring awareness about contamination of the bay and more extensive sampling to test for the concentration of PCBs in seafood and the people of Guánica. This study also underscores the value of the involvement of local communities during sampling design aimed at identifying hot spots of contaminants.

  10. Quantitative determination of polyphosphate in sediments using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and partial least squares regression.

    PubMed

    Khoshmanesh, Aazam; Cook, Perran L M; Wood, Bayden R

    2012-08-21

    Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 μg g(-l) d.w. Using this technique, there is no solvent extraction or chemical treatment required, sample preparation is minimal and simple, and the analysis time is greatly reduced. The results from this study demonstrated the potential of ATR FT-IR spectroscopy as an alternative method to study Poly-P in sediments.

  11. Trace element, semivolatile organic, and chlorinated organic compound concentrations in bed sediments of selected streams at Fort Gordon, Georgia, February-April 2010

    USGS Publications Warehouse

    Thomas, Lashun K.; Journey, Celeste A.; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.

    2011-01-01

    A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed sediment samples from most nonreference sites exceeded concentrations in samples from reference sites at Fort Gordon. Bed sediments from one of the nonreference sites sampled contained the highest concentrations of copper and lead with elevated levels of zinc and chromium relative to reference sites. The percentage change of major ions, trace elements, and total organic carbon that had been detected at sites previously sampled in May 1998 and current bed sediment sites ranged from -4 to 8 percent with an average percentage change of less than 1 percent. Concentrations of major ions and trace elements in bed sediments exceeded probable effect levels for aquatic life (based on the amphipod Hyalella azteca) established by the U.S. Environmental Protection Agency at 46 and 69 percent of the current and previously sampled locations, respectively. The greatest frequency of exceedances for major ions and trace elements in bed sediments was observed for lead. Concentrations of semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls were detected in bed sediment samples at 94 percent of the sites currently sampled. Detections of these organic compounds were reported with greater frequency in bed sediments at upstream sampling locations, when compared to downstream locations. The greatest number of detections of these compounds was reported for bed sediment samples collected from two creeks above a lake. The percentage change of semivolatile organic compounds detected at previously sampled and current bed sediment sites ranged from -68 to 100 percent with the greatest percentage increase reported for one of the creeks above the lake. Concentrations of semivolatile organic compounds and polychlorinated biphenyls in bed sediments exceeded aquatic life criteria established by the U.S. Environmental Protection Agency at three sites. Contaminant compounds exceeding aquatic life criteria included fluoranthene, phenanthrene, anthracene, benzo(a)anthracene

  12. The inhibition of Clostridium botulinum type C by other bacteria in wetland sediments

    USGS Publications Warehouse

    Sandler, Renee J.; Rocke, Tonie E.; Yuill, Thomas M.

    1998-01-01

    Bacteria with inhibitory activity against Clostridium botulinum type C were isolated from 32% of sediment samples (n = 1600) collected from 10 marshes in a northern California wetland over a 12 mo period. Aerobic and anaerobic bacteria with inhibitory activity were isolated from 12% and 23% of the samples, respectively. Bacteria with inhibitory activity were isolated from all 10 study sites and throughout the year. This study demonstrates that bacteria with inhibitory activity against C. botulinum type C occur naturally in wetland sediments.

  13. Characteristics of suspended and streambed sediment within constructed chutes and the main channel at Upper Hamburg and Glovers Point Bends, Missouri River, Nebraska, 2008

    USGS Publications Warehouse

    Woodward, Brenda K.; Rus, David L.

    2011-01-01

    The U.S. Army Corps of Engineers, Omaha District, as part of the Missouri River Bank Stabilization and Navigation Mitigation Project, has constructed 17 off-channel chutes along the channelized Missouri River, downstream from Sioux City, Iowa, to increase habitat diversity. To better understand characteristics of suspended and streambed sediment within these constructed chutes, the U.S. Geological Survey investigated specific aspects of chute design and function in relation to sediment characteristics including: (1) effects of inlet structures; (2) changes occurring between the inlet and the outlet of a chute; (3) effects of chutes on sediment characteristics in the main channel; and (4) differences in chute dynamics between sampled chutes. Two chutes differing in design, location, and dynamics were studied, Upper Hamburg Bend near Nebraska City, Nebr., and Glovers Point Bend near Winnebago, Nebr. Each site was characterized using five or more sampling transects (two in the chute and three to four in the main channel) designed to bracket sediment exchanges between chutes and the main channel. A sixth transect was included at the Upper Hamburg Bend study site to account for the effects of a nontarget chute having its inlet midway between the inlet and outlet of the primary chute. Representative samples of suspended and streambed sediment were collected at each transect, along with measurements of turbidity and streamflow, between June and November 2008. Four sets of samples were collected at the Glovers Point Bend study site and five sample sets were collected from the Upper Hamburg Bend study site. Results from paired t-tests and standard t-tests indicated that the inlet structure design, passing inflow only from the top of the main-channel water column, reduced the supply of coarse-grained suspended sediment entering the chutes. Statistical comparisons did not indicate differences between the inlet and outlet of either chute; however, anecdotal evidence of recent bank erosion and in-channel deposition was observed in both chutes during the study period. Chutes had little effect on Missouri River main-channel sediment characteristics, which could be explained by the much greater streamflow of the main channel. Between-chute comparisons showed no significant differences in the suspended-sediment characteristics; however, the Upper Hamburg Bend chute had a coarser streambed, wider channel, and much greater streamflow than did the Glovers Point Bend chute.

  14. PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon.

    PubMed

    Mattes, Timothy E; Ewald, Jessica M; Liang, Yi; Martinez, Andres; Awad, Andrew; Richards, Patrick; Hornbuckle, Keri C; Schnoor, Jerald L

    2017-08-12

    Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that are distributed worldwide. Although industrial PCB production has stopped, legacy contamination can be traced to several different commercial mixtures (e.g., Aroclors in the USA). Despite their persistence, PCBs are subject to naturally occurring biodegradation processes, although the microbes and enzymes involved are poorly understood. The biodegradation potential of PCB-contaminated sediments in a wastewater lagoon located in Virginia (USA) was studied. Total PCB concentrations in sediments ranged from 6.34 to 12,700 mg/kg. PCB congener profiles in sediment sample were similar to Aroclor 1248; however, PCB congener profiles at several locations showed evidence of dechlorination. The sediment microbial community structure varied among samples but was dominated by Proteobacteria and Firmicutes. The relative abundance of putative dechlorinating Chloroflexi (including Dehalococcoides sp.) was 0.01-0.19% among the sediment samples, with Dehalococcoides sp. representing 0.6-14.8% of this group. Other possible PCB dechlorinators present included the Clostridia and the Geobacteraceae. A PCR survey for potential PCB reductive dehalogenase genes (RDases) yielded 11 sequences related to RDase genes in PCB-respiring Dehalococcoides mccartyi strain CG5 and PCB-dechlorinating D. mccartyi strain CBDB1. This is the first study to retrieve potential PCB RDase genes from unenriched PCB-contaminated sediments.

  15. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  16. Surface sediment quality relative to port activities: A contaminant-spectrum assessment.

    PubMed

    Yu, Shen; Hong, Bing; Ma, Jun; Chen, Yongshan; Xi, Xiuping; Gao, Jingbo; Hu, Xiuqin; Xu, Xiangrong; Sun, Yuxin

    2017-10-15

    Ports are facing increasing environmental concerns with their importance to the global economy. Numerous studies indicated sediment quality deterioration in ports; however, the deterioration is not discriminated for each port activity. This study investigated a spectrum of contaminants (metals and organic pollutants) in surface sediments at 20 sampling points in Port Ningbo, China, one of the top five world ports by volume. The spectrum of contaminants (metals and organic pollutants) was quantified following marine sediment quality guidelines of China and USA and surface sediment quality was assessed according to thresholds of the two guidelines. Coupling a categorical matrix of port activities with the matrix of sedimentary contaminants revealed that contaminants were highly associated with the port operations. Ship repair posed a severe chemical risk to sediment. Operations of crude oil and coal loadings were two top activities related to organic pollutants in sediments while port operations of ore and container loadings discharged metals. Among the 20 sampling points, Cu, Zn, Pb, and DDT and its metabolites were the priority contaminants influencing sediment quality. Overall, surface sediments in Port Ningbo had relatively low environmental risks but ship repair is an environmental concern that must be addressed. This study provides a practical approach for port activity-related quality assessment of surface sediments in ports that could be applicable in many world sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Distribution of butyltins in the waters and sediments along the coast of India.

    PubMed

    Garg, Anita; Meena, Ram M; Jadhav, Sangeeta; Bhosle, Narayan B

    2011-02-01

    Water and surface sediment samples were analyzed for butyltins (TBT, DBT, MBT) from various ports along the east and west coast of India. The total butyltin (TB) in water samples varied between ~1.7 and 342 ng S nl⁻¹, whereas for sediments it varied between below detection limit to 14861 ng S ng⁻¹ dry weight of sediment. On an average Chennai port recorded the highest level of butyltins in the sediments while Paradip recorded the highest level of butylins in the waters. A fairly good relationship between the TB in the sediment and overlying water samples, as well as between organic carbon and TB, implicates the importance of adsorption/desorption process in controlling the levels of TBT in these port areas. In India the data on organotin pollution is very sparse; most of the port areas have been surveyed for butyltins for the first time during this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Short-term impact of deep sand extraction and ecosystem-based landscaping on macrozoobenthos and sediment characteristics.

    PubMed

    de Jong, Maarten F; Baptist, Martin J; Lindeboom, Han J; Hoekstra, Piet

    2015-08-15

    We studied short-term changes in macrozoobenthos in a 20m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were estimated with a hydrodynamic model. Two years after the cessation of sand extraction, macrozoobenthic biomass increased fivefold in the deepest areas. Species composition changed significantly and white furrow shell (Abra alba) became abundant. Several sediment characteristics also changed significantly in the deepest parts. Macrozoobenthic species composition and biomass significantly correlated with time after cessation of sand extraction, sediment and hydrographical characteristics. Ecosystem-based landscaped sand bars were found to be effective in influencing sediment characteristics and macrozoobenthic assemblage. Significant changes in epifauna occurred in deepest parts in 2012 which coincided with the highest sedimentation rate. We recommend continuing monitoring to investigate medium and long-term impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Occurrence of Selected Nutrients, Trace Elements, and Organic Compounds in Streambed Sediment in the Lower Chena River Watershed near Fairbanks, Alaska, 2002-03

    USGS Publications Warehouse

    Kennedy, Ben W.; Hall, Cassidee C.

    2009-01-01

    In 2002-03, the U.S. Geological Survey collected samples of streambed sediment at 18 sites in the lower Chena River watershed for analysis of selected nutrients, traces elements, and organic compounds. The purpose of the project was to provide Federal, State, and local agencies as well as neighborhood committees, with information for consideration in plans to improve environmental conditions in the watershed. The exploratory sampling program included analysis of streambed sediment from the Chena River and Chena Slough, a tributary to the Chena River. Results were compared to streambed-sediment guidelines for the protection of aquatic life and to 2001-02 sediment data from Noyes Slough, a side channel of the lower Chena River. The median total phosphorus concentration in Chena Slough sediment samples, 680 milligrams per kilogram (mg/kg), was two orders of magnitude greater than median total phosphorus concentration in Chena River sediment samples of 5.2 mg/kg. Median concentrations of chloride and sulfate also were greater in Chena Slough samples. Low concentrations of nitrate were detected in most of the Chena Slough samples; nitrate concentrations were below method reporting limits or not detected in Chena River sediment samples. Streambed-sediment samples were analyzed for 24 trace elements. Arsenic, nickel, and zinc were the only trace elements detected in concentrations that exceeded probable-effect levels for the protection of aquatic life. Concentrations of arsenic in Chena Slough samples ranged from 11 to 70 mg/kg and concentrations in most of the samples exceeded the probable-effect guideline for arsenic of 17 mg/kg. Arsenic concentrations in samples from the Chena River ranged from 9 to 12 mg/kg. The background level for arsenic in the lower Chena River watershed is naturally elevated because of significant concentrations of arsenic in local bedrock and ground water. Sources of elevated concentrations of zinc in one sample, and of nickel in two samples, are unknown. With the exception of elevated arsenic levels in samples from Chena Slough, the occurrence and concentration of trace elements in the streambed sediments of Chena Slough and Chena River were similar to those in Noyes Slough sediment. Sediment samples were analyzed for 78 semivolatile organic compounds and 32 organochlorine pesticides and polychlorinated biphenyls (PCBs). Low concentrations of dimethylnaphthalene and p-Cresol were detected in most Chena Slough and Chena River sediment samples. The number of semivolatile organic compounds detected ranged from 5 to 21 in most Chena Slough sediment samples. In contrast, three or fewer semivolatile organic compounds were detected in Chena River sediment samples, most likely because chemical-matrix interference resulted in elevated reporting limits for organochlorine compounds in the Chena River samples. Low concentrations of fluoranthene, pyrene, and phenanthrene were detected in Chena Slough sediment. Relatively low concentrations of DDT or its degradation products, DDD and DDE, were detected in all Chena Slough samples. Concentrations of total DDT (DDT+DDD+DDE) in two Chena Slough sediment samples exceeded the effectsrange median aquatic-life criteria of 46.1 micrograms per kilogram (ug/kg). DDT concentrations in Chena River streambed-sediment samples were less than 20 ug/kg. Low concentrations of PCB were detected in two Chena Slough streambed-sediment samples. None of the concentrations of the polychlorinated biphenyls or semivolatile organic compounds for which the samples were analyzed exceeded available guidelines for the protection of aquatic life. With the exception of elevated total DDT in two Chena Slough samples, the occurrence and concentration of organochlorine compounds in Chena Slough and Chena River sediment were similar to those in samples collected from Noyes Slough in 2001-02.

  20. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado Desert BLM Resource Area and vicinity. Included in the 1,245 stream-sediment samples collected by the USGS are 284 samples collected as part of the current study, 817 samples collected as part of investigations of the12 BLM WSAs and re-analyzed for the present study, 45 samples from the Needles 1? X 2? quadrangle, and 99 samples from the El Centro 1? X 2? quadrangle. The NURE stream-sediment and soil samples were re-analyzed as part of the USGS study in the Needles quadrangle. Analytical data for samples from the Chocolate Mountain Aerial Gunnery Range, which is located within the area of the NECD, were previously reported (King and Chaffee, 1999a). For completeness, these results are also included in this report. Analytical data for samples from the area of Joshua Tree National Park that is within the NECD have also been reported (King and Chaffee, 1999b). These results are not included in this report. The analytical data presented here can be used for baseline geochemical, mineral resource, and environmental geochemical studies.

  1. PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing Sites - Apra Harbor, Guam

    DTIC Science & Technology

    2017-09-01

    ADCP locations used for model calibration. ......................................................................... 12 Figure 4-3. Sample water...Example of fine sediment sample [Set d, Sample B30]. (B) Example of coarse sediment sample [Set d, sample B05...Turning Basin average sediment size distribution curve. ................................................... 21 Figure 5-5. Turning Basin average size

  2. Chemical constituents in sediment in Lake Pontchartrain and in street mud and canal sediment in New Orleans, Louisiana, following Hurricanes Katrina and Rita, 2005

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Horowitz, Arthur J.; Skrobialowski, Stanley C.; Foreman, William T.; Fuller, Christopher C.; Burkhardt, Mark R.; Elrick, Kent A.; Mahler, Barbara J.; Smith, James J.; Zaugg, Steven D.

    2007-01-01

    Samples of street mud, suspended and bottom sediment in canals discharging to Lake Ponchartrain, and suspended and bottom sediment in the lake were collected and analyzed for chemical constituents to help evaluate the effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana. The approach used for sampling and analysis of chemical data for the study is presented herein. Radionuclides, major and trace elements, and numerous organic compounds in sediment were analyzed. The organic compounds include organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, urban waste indicator compounds, and current-use pesticides. Methods for the analysis of urban waste indicator compounds and current-use pesticides in sediment were developed only recently.

  3. Anodonta imbecillis QA Test 2, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Atiodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected August 14 from Poplar Creek Miles 6.0 and 4.3 was conducted from August 24-September 2, 1993. Results from this test showed no toxicity (survival effects) to fresh--water mussels during a 9-day exposure to the sediments.

  4. Anodonta imbecillis QA Test 3, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected May 5 from Poplar Creek Miles 6.0 and 2.9 was conducted from May 10-19, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments.

  5. Estuarine bed-sediment-quality data collected in New Jersey and New York after Hurricane Sandy, 2013

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Phillips, Patrick J.; Reilly, Timothy J.; Focazio, Michael J.; Loftin, Keith A.; Benzel, William M.; Jones, Daniel K.; Smalling, Kelly L.; Fisher, Shawn C.; Fisher, Irene J.; Iwanowicz, Luke R.; Romanok, Kristin M.; Jenkins, Darkus E.; Bowers, Luke; Boehlke, Adam; Foreman, William T.; Deetz, Anna C.; Carper, Lisa G.; Imbrigiotta, Thomas E.; Birdwell, Justin E.

    2015-01-01

    Bed-sediment samples were collected from June to October 2013 from 167 estuarine sites extending from Cape May, New Jersey, to the New York Harbor and the eastern end of Long Island. Each sampling location and study region was characterized by using geographic information to identify potential contaminant sources. Characterizations included land cover, locations and types of businesses (industrial, financial, and others), spills (sewage, chemical, and others), bulk storage facilities, effluent discharges within 2 kilometers of the sampling point, and discharges within inundated and non-inundated regions near the sampling location. Samples were analyzed for particle size, total organic carbon, metals and trace elements, semivolatile organic compounds, wastewater compounds, hormones, and sediment toxicity. Samples were also screened using x-ray fluorescence, Fourier transform infrared spectroscopy, and x-ray diffraction. In addition, bioassays for endocrine disruptors and protein phosphatase 2A inhibition were conducted. The study was designed to provide the data needed to understand the extent and sources of contamination resulting from Hurricane Sandy, to compare the chemistry and toxicity of estuarine bed sediments before and after the storm, and to evaluate the usefulness of rapid screening and bioassay approaches in disaster settings.

  6. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    PubMed

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development and the sediment concentrations of some metals (Cu, Hg, Pb, Zn), acid-volatile sulphides (AVS), polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs) was found. No correlation was found with DDTs, hexachlorobenzene and organotin compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fingerprinting of bed sediment in the Tay Estuary, Scotland: an environmental magnetism approach

    NASA Astrophysics Data System (ADS)

    Jenkins, Pierre A.; Duck, Rob W.; Rowan, John S.; Walden, John

    Sediment fingerprinting is commonly used for sediment provenance studies in lakes, rivers and reservoirs and on hillslopes and floodplains. This investigation explores the mixing of terrestrial and marine-derived sediment in the Tay Estuary, Scotland, using mineral magnetic attributes for fingerprinting. Samples representative of the estuary sediments and of four sources (end-members) were subjected to a suite of magnetic susceptibility and remanence measurements. Sediment samples from the beds of the Rivers Tay and Earn represented fluvial inputs while samples from the Angus and Fife coasts represented marine input. Multivariate discriminant and factor analysis showed that the sources could be separated on the basis of six magnetic parameters in a simple multivariate unmixing model to identify source contributions to estuarine bed sediments. Multi-domain magnetite signatures, characteristic of unweathered bedrock, dominate the magnetic measurements. Overall contributions of 3% from the River Earn, 17% from the River Tay, 29% from the Angus coast and 51% from the Fife coast source end-members, demonstrated the present-day regime of marine sediment derivation in the Tay Estuary. However, this conceals considerable spatial variability both along-estuary and in terms of sub-environments, with small-scale variations in sediment provenance reflecting local morphology, particularly areas of channel convergence.

  8. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.

  9. Riverbed Sediments as Reservoirs of Multiple Vibrio cholerae Virulence-Associated Genes: A Potential Trigger for Cholera Outbreaks in Developing Countries.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2017-01-01

    Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx -negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications.

  10. Pesticides in the nation's rivers, 1975-1980, and implications for future monitoring

    USGS Publications Warehouse

    Gilliom, Robert J.; Alexander, Richard B.; Smith, Richard A.

    1985-01-01

    Water samples were taken four times per year and bed-sediment samples two times per year during 1975-80 at 160 to 180 stations on major rivers of the United States. Samples were analyzed for 18 insecticides and 4 herbicides, which together accounted for about one-third of the total amount of all pesticides applied to major crops during 1975-80. Fewer than 10 percent of almost 3,000 water samples and fewer than 20 percent of almost 1,000 bed-sediment samples contained reportable concentrations of any of the compounds. The patterns of detection result from a combination of widely variable detection capabilities, chemical properties, and use. Most detections in water samples were of relatively persistent yet soluble compounds: atrazine (4.8 percent of samples), diazinon (1.2), and lindane (1.1). Most detections in bed-sediment samples were of the hydrophobic and persistent insecticides: DDE (17 percent of samples), DDD (12), dieldrin (12), chlordane (9.9), and DDT (8.5). Only for atrazine in water, and for DDE, DDD, DDT, and chlordane in bed sediments, were geographic patterns of detection correlated (pH<0.10) with use on farms. Detections of organochlorine insecticides in both water and bed sediments appear to have erratically but gradually decreased during 1975-80. For the 1975-79 period, more stations had downtrends than had uptrends in bed-sediment levels of organochlorines. No clear trends were evident in concentrations of organophosphate insecticides or herbicides in either water or bed sediments. Findings suggest that future pesticide monitoring efforts must be responsive to changes in pesticides used and to geographic patterns of use. Different types of monitoring approaches are necesssary for chemicals having different chemical and physical properties. Before an effective dynamic monitoring effort can be designed, however, selected case studies are needed to characterize and refine sampling and analytical capabilities for different types of chemicals, river environments, and sample types.

  11. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    USGS Publications Warehouse

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity. ?? 2010 Springer Science+Business Media, LLC.

  12. Assessment of arsenic in coastal sediments, seawaters and molluscs in the Tarut Island, Arabian Gulf, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset S.; Youssef, Mohamed; Al-Kahtany, Khaled; Al-Otaiby, Naif

    2016-01-01

    In order to assess arsenic on the Tarut coast, Saudi Arabian Gulf, 38 sediment samples, 26 seawater samples and 40 gastropod and bivalve specimens were collected for analyses by Inductively Coupled Plasma-Mass Spectrometer. The Enrichment Factor (EF), the Geoaccumulation Index (Igeo) and the Contamination Factor (CF) indicated that coastal sediments of Tarut Island are severely enriched, strongly polluted and very highly contaminated with arsenic as a result of anthropogenic inputs. Comparison with arsenic in coastal sediments, seawaters and molluscs in the Red Sea, the Arabian Gulf and abroad coasts suggested that the studied samples have higher concentrations of As. The suggested natural sources of arsenic in the study area are the weathering and decomposition of neighboring deserts. The anthropogenic sources include the land reclamation, petrochemical industries, boat exhaust emissions, oil leakage, desalination plants and sewage effluents. These anthropogenic sources are the dominant sources of As in the study area and mostly came from Al Jubail industrial city to the north.

  13. Chemical data and lead isotopic compositions of geochemical baseline samples from streambed sediments and smelter slag, lead isotopic compositions in fluvial tailings, and dendrochronology results from the Boulder River watershed, Jefferson County, Montana

    USGS Publications Warehouse

    Unruh, Daniel M.; Fey, David L.; Church, Stan E.

    2000-01-01

    IntroductionAs a part of the U.S. Geological Survey Abandoned Mine Lands Initiative, metal-mining related wastes in the Boulder River study area in northern Jefferson County, Montana, have been evaluated for their environmental effects. The study area includes a 24-km segment of the Boulder River in and around Basin, Montana and three principal tributaries to the Boulder River: Basin Creek, Cataract Creek, and High Ore Creek. Mine and prospect waste dumps and mill wastes are located throughout the drainage basins of these tributaries and in the Boulder River. Mine-waste material has been transported into and down streams, where it has mixed with and become incorporated into the streambed sediments. In some localities, mine waste material was placed directly in stream channels and was transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by trace-element-contaminated sediment that moves from mine wastes into and down streams during snowmelt and storm runoff events within the Boulder River watershed.Present-day trace element concentrations in the streambed sediments and fluvial tailings have been extensively studied. However, in order to accurately evaluate the impact of mining on the stream environments, it is also necessary to evaluate the pre-mining trace-element concentrations in the streambed sediments. Three types of samples have been collected for estimation of pre-mining concentrations: 1) streambed sediment samples from the Boulder River and its tributaries located upstream from historical mining activity, 2) stream terrace deposits located both upstream and downstream of the major tributaries along the Boulder River, and 3) cores through sediment in overbank deposits, in abandoned stream channels, or beneath fluvial tailings deposits. In this report, we present geochemical data for six stream-terrace samples and twelve sediment-core samples and lead isotopic data for six terrace and thirteen core samples. Sample localities are in table 1 and figures 1 and 2, and site and sample descriptions are in table 2.Geochemical data have been presented for cores through fluvial tailings on High Ore Creek, on upper Basin Creek, and on Jack Creek and Uncle Sam Gulch. Geochemical and lead isotopic data for modern streambed-sediment samples have been presented by Fey and others.Lead isotopic determinations in bed sediments have been shown to be an effective tool for evaluating the contributions from various sources to the metals in bed sediments. However, in order to make these calculations, the lead isotopic compositions of the contaminant sources must also be known. Consequently, we have determined the lead isotopic compositions of five streambed-sediment samples heavily contaminated with fluvial mine waste immediately downstream from large mines in the Boulder River watershed in order to determine the lead isotopic signatures of the contaminants. Summary geochemical data for the contaminants are presented here and geochemical data for the streambed-sediment samples are given by Fey and others.Downstream from the Katie mill site and Jib tailings, fluvial deposits of mill tailings are present on a 10-m by 50-m bar in the Boulder River below the confluence with Basin Creek. The source of these tailings is not known, but fluvial tailings are also present immediately downstream from the Katie mill site, which is immediately upstream from the confluence with Basin Creek. Nine cores of fluvial tailings from this bar were analyzed.Dendrochronology samples were taken at several stream terrace localities to provide age control on the stream terrace deposits. Trees growing on the surfaces of stream terraces provide a minimum age for the terrace deposits, although floods subsequent to the trees' growth could have deposited post-mining overbank deposits around the trees. Historical data were also used to provide estimates of minimum ages of cultural features and to bracket the age of events.

  14. Analytical Results for 42 Fluvial Tailings Cores and 7 Stream Sediment Samples from High Ore Creek, Northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.

    1998-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubility. Sediments, fluvial tailings and water from High Ore Creek have been identified as significant contributors to water quality degradation of the Boulder River below Basin, Montana. A study of 42 fluvial tailings cores and 7 stream sediments from High Ore Creek was undertaken to determine the concentrations of environmentally sensitive elements (i.e. Ag, As, Cd, Cu, Pb, Zn) present in these materials, and the mineral phases containing those elements. Two sites of fluvial deposition of mine-waste contaminated sediment on upper High Ore Creek were sampled using a one-inch soil probe. Forty-two core samples were taken producing 247 subsamples. The samples were analyzed by ICP-AES (inductively coupled-plasma atomic emission spectroscopy) using a total mixed-acid digestion. Results of the core analyses show that the elements described above are present at very high concentrations (to 22,000 ppm As, to 460 ppm Ag, to 900 ppm Cd, 4,300 ppm Cu, 46,000ppm Pb, and 50,000 ppm Zn). Seven stream-sediment samples were also analyzed by ICP-AES for total element content and for leachable element content. Results show that the sediment of High Ore Creek has elevated levels of ore-related metals throughout its length, down to the confluence with the Boulder River, and that the metals are, to a significant degree, contained in the leachable phase, namely the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.

  15. Preliminary Problem Definition Study of 48 Munitions-Related Chemicals. Volume II. Propellant-Related Chemicals

    DTIC Science & Technology

    1978-04-01

    34analysis of sediment and biota samples from Radford AAP aquatic toxicity studies if the literature evaluation reveals the need for more information... Sampling and analysis at Radford be performed to determine the quantity of the compound entering the New River Best Available Co. -7- V - A literature...chemical properties of this compound if they can not be obtained from the manufacturer - Sampling and analysis of sediment and biota at Radford AAP to

  16. Nitrogen Cycling and Community Structure of Proteobacterial β-Subgroup Ammonia-Oxidizing Bacteria within Polluted Marine Fish Farm Sediments

    PubMed Central

    McCaig, Allison E.; Phillips, Carol J.; Stephen, John R.; Kowalchuk, George A.; Harvey, S. Martyn; Herbert, Rodney A.; Embley, T. Martin; Prosser, James I.

    1999-01-01

    A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantly disrupted directly beneath the fish cage, with inhibition of nitrification and denitrification. Although visual examination indicated some slight changes in sediment appearance at 20 m, all other measurements were similar to those obtained at 40 m, where the sediment was considered pristine. The community structures of proteobacterial β-subgroup ammonia-oxidizing bacteria at the sampling sites were compared by PCR amplification of 16S ribosomal DNA (rDNA), using primers which target this group. PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE) and with oligonucleotide hybridization probes specific for different ammonia oxidizers. A DGGE doublet observed in PCR products from the highly polluted fish cage sediment sample was present at a lower intensity in the 20-m sample but was absent from the pristine 40-m sample station. Band migration, hybridization, and sequencing demonstrated that the doublet corresponded to a marine Nitrosomonas group which was originally observed in 16S rDNA clone libraries prepared from the same sediment samples but with different PCR primers. Our data suggest that this novel Nitrosomonas subgroup was selected for within polluted fish farm sediments and that the relative abundance of this group was influenced by the extent of pollution. PMID:9872782

  17. Cross Validation of Two Partitioning-Based Sampling Approaches in Mesocosms Containing PCB Contaminated Field Sediment, Biota, and Activated Carbon Amendment

    EPA Science Inventory

    The Gold Standard for determining freely dissolved concentrations (Cfree) of hydrophobic organic compounds in sediment interstitial water would be in situ deployment combined with equilibrium sampling, which is generally difficult to achieve. In the present study, ex situ equilib...

  18. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments

    NASA Astrophysics Data System (ADS)

    Phillips, J. M.; Russell, M. A.; Walling, D. E.

    2000-10-01

    Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.

  19. Determination of variables in the prediction of strontium distribution coefficients for selected sediments

    USGS Publications Warehouse

    Pace, M.N.; Rosentreter, J.J.; Bartholomay, R.C.

    2001-01-01

    Idaho State University and the US Geological Survey, in cooperation with the US Department of Energy, conducted a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The Kds were determined to aid in assessing the variability of strontium Kds and their effects on chemical transport of strontium-90 in the Snake River Plain aquifer system. Data from batch experiments done to determine strontium Kds of five sediment-infill samples and six standard reference material samples were analyzed by using multiple linear regression analysis and the stepwise variable-selection method in the statistical program, Statistical Product and Service Solutions, to derive an equation of variables that can be used to predict strontium Kds of sediment-infill samples. The sediment-infill samples were from basalt vesicles and fractures from a selected core at the INEEL; strontium Kds ranged from ???201 to 356 ml g-1. The standard material samples consisted of clay minerals and calcite. The statistical analyses of the batch-experiment results showed that the amount of strontium in the initial solution, the amount of manganese oxide in the sample material, and the amount of potassium in the initial solution are the most important variables in predicting strontium Kds of sediment-infill samples.

  20. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  1. Permanent colonization of creek sediments, creek water and limnic water plants by four Listeria species in low population densities.

    PubMed

    Lang-Halter, Evi; Schober, Steffen; Scherer, Siegfried

    2016-09-01

    During a 1-year longitudinal study, water, sediment and water plants from two creeks and one pond were sampled monthly and analyzed for the presence of Listeria species. A total of 90 % of 30 sediment samples, 84 % of 31 water plant samples and 67 % of 36 water samples were tested positive. Generally, most probable number counts ranged between 1 and 40 g-1, only occasionally >110 cfu g-1 were detected. Species differentiation based on FT-IR spectroscopy and multiplex PCR of a total of 1220 isolates revealed L. innocua (46 %), L. seeligeri (27 %), L. monocytogenes (25 %) and L. ivanovii (2 %). Titers and species compositions were similar during all seasons. While the species distributions in sediments and associated Ranunculus fluitans plants appeared to be similar in both creeks, RAPD typing did not provide conclusive evidence that the populations of these environments were connected. It is concluded that (i) the fresh-water sediments and water plants are year-round populated by Listeria, (ii) no clear preference for growth in habitats as different as sediments and water plants was found and (iii) the RAPD-based intraspecific biodiversity is high compared to the low population density.

  2. Density contrast sedimentation velocity for the determination of protein partial-specific volumes.

    PubMed

    Brown, Patrick H; Balbo, Andrea; Zhao, Huaying; Ebel, Christine; Schuck, Peter

    2011-01-01

    The partial-specific volume of proteins is an important thermodynamic parameter required for the interpretation of data in several biophysical disciplines. Building on recent advances in the use of density variation sedimentation velocity analytical ultracentrifugation for the determination of macromolecular partial-specific volumes, we have explored a direct global modeling approach describing the sedimentation boundaries in different solvents with a joint differential sedimentation coefficient distribution. This takes full advantage of the influence of different macromolecular buoyancy on both the spread and the velocity of the sedimentation boundary. It should lend itself well to the study of interacting macromolecules and/or heterogeneous samples in microgram quantities. Model applications to three protein samples studied in either H(2)O, or isotopically enriched H(2) (18)O mixtures, indicate that partial-specific volumes can be determined with a statistical precision of better than 0.5%, provided signal/noise ratios of 50-100 can be achieved in the measurement of the macromolecular sedimentation velocity profiles. The approach is implemented in the global modeling software SEDPHAT.

  3. Identification of Critical Erosion Prone Areas and Computation of Sediment Yield Using Remote Sensing and GIS: A Case Study on Sarada River Basin

    NASA Astrophysics Data System (ADS)

    Sundara Kumar, P.; Venkata Praveen, T.; Anjanaya Prasad, M.; Santha Rao, P.

    2018-06-01

    The two most important resources blessed by nature to the mankind are land and water. Undoubtedly, these gifts have to be conserved and maintained with unflinching efforts from every one of us for an effective environmental and ecological balance. The efforts and energy of water resources engineers and conservationists are going in this direction to conserve these precious resources of nature. The present study is an attempt to develop suitable methodology to facilitate decision makers to conserve the resources and also reflects the cause mentioned above has been presented here. The main focus of this study is to identify the critical prone areas for soil erosion and computation of sediment yield in a small basin using Universal Soil Loss Equation and Modified Universal Soil Loss Equation (MUSLE) respectively. The developed model has been applied on Sarada river basin which has a drainage area of 1252.99 km2. This river is located in Andhra Pradesh State (AP), India. The basin has been divided into micro basins for effective estimation and also for precise identification of the areas that are prone to soil erosion. Remote Sensing and Geographic Information Systems tools were used to generate and spatially organize the data that is required for soil erosion modeling. It was found that the micro basins with very severe soil erosion are consisting of hilly areas with high topographic factor and 38.01% of the study area has the rate erosion more than 20 t/ha/year and hence requires an immediate attention from the soil conservation point of view. In this study region, though there is one discharge measuring gauge station available at Anakapalli but there is no sediment yield gauging means available to compute the sediment yield. Therefore, to arrive at the suspended-sediment concentration was a challenge task. In the present study the sediment measurement has been carried out with an instrument (DH-48), sediment sampling equipment as per IS: 4890-1968, has been used. Suspended-sediment samples were collected and sediment yield was arrived at the site by using this instrument. The sediment yield was also computed using MUSLE. Data for this model study has been generated from the samples collected from 28 storm events spread over a time span of 1 year, at the outlet of the basin at Anakapalli for computation of sediment yield. The sediment yield as estimated by MUSLE model has been successfully compared with the sediment yield measured at the outlet of the basin by sediment yield measuring unit and found fairly good correlation between them. Hence the developed methodology will be useful to estimate the sediment yield in the hydrologically similar basins that are not gauged for sediment yield.

  4. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS. ?? 2007 SETAC.

  5. Effects of tributyltin (TBT) on the seagrass Ruppia maritima.

    PubMed

    Jensen, H F; Holmer, M; Dahllöf, I

    2004-10-01

    The effects of tributyltin (TBT) on the seagrass Ruppia maritima were studied in two growth experiments. Plants were sampled at stations in Odense Fjord and Lunkebugten, Denmark, and replanted in reference sediment without TBT, reference sediment spiked with TBT, and in impacted sediment sampled in the highly TBT contaminated (7-57 microg kg (-1) dw) Odense Fjord. Plant performance was studied at weekly intervals for 3-4 weeks, by measuring net photosynthetic activity, respiration, relative growth rate (RGR) and number of leaves. Net photosynthetic activity in plants from spiked and impacted sediment was reduced by up to 60% relative to reference plants. Respiration both increased and decreased in response to TBT exposure, while RGR was generally lower in plants from contaminated sediments (reduced by 8-25%). The effects of spiked and impacted sediment differed between the experiments, which could be partly explained by the bioavailability of TBT in the two treatments, but also by adaptation of the plants from Odense Fjord to TBT. Measurements of enhanced TBT concentrations in the sediments in Odense Fjord suggest an impact of TBT on R. maritima is possible under in situ conditions.

  6. Field application of a multi-frequency acoustic instrument to monitor sediment for silt erosion study in Pelton turbine in Himalayan region, India

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Kumar, A.; Hies, T.; Nguyen, H. H.

    2016-11-01

    High sediment load passing through hydropower components erodes the hydraulic components resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance, especially in Himalayan regions. The size and concentration of sediment play a major role in silt erosion. The traditional process of collecting samples manually to analyse in laboratory cannot suffice the need of monitoring temporal variation in sediment properties. In this study, a multi-frequency acoustic instrument was applied at desilting chamber to monitor sediment size and concentration entering the turbine. The sediment size and concentration entering the turbine were also measured with manual samples collected twice daily. The samples collected manually were analysed in laboratory with a laser diffraction instrument for size and concentration apart from analysis by drying and filtering methods for concentration. A conductivity probe was used to calculate total dissolved solids, which was further used in results from drying method to calculate suspended solid content of the samples. The acoustic instrument was found to provide sediment concentration values similar to drying and filtering methods. However, no good match was found between mean grain size from the acoustic method with the current status of development and laser diffraction method in the first field application presented here. The future versions of the software and significant sensitivity improvements of the ultrasonic transducers are expected to increase the accuracy in the obtained results. As the instrument is able to capture the concentration and in the future most likely more accurate mean grain size of the suspended sediments, its application for monitoring silt erosion in hydropower plant shall be highly useful.

  7. Trace elements and organic compounds in bed sediment from selected streams in southern Louisiana, 1998

    USGS Publications Warehouse

    Skrobialowski, Stanley C.

    2002-01-01

    Bed-sediment samples from 21 selected streams in southern Louisiana were collected and analyzed for the presence of trace elements and organic compounds during 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Concentrations of selected trace elements and organic compounds were compared on the basis of sediment-quality criteria, land use, and grain size; concentrations of selected trace elements also were compared with concentrations from previous studies. Concentrations of seven selected trace elements and 21 organic compounds were evaluated with sediment-quality criteria established by the Canadian Council of Ministers of the Environment. Concentrations of selected trace elements and organic compounds were highest at sites draining urban and agricultural areas and may result from cumulative effects of relatively high percentages of fine-grained material, iron, and organic material. Concentrations exceeding sediment-quality criteria for the protection of aquatic life occurred most frequently at Bayou Grosse Tete at Rosedale and Bayou Lafourche below weir at Thibodaux. Exceedance of Interim Sediment Quality Guidelines occurred most frequently for arsenic and chromium. Trace-element concentrations in fine-grained samples were compared with concentrations in bulk samples and were determined to be significantly different, and concentrations were generally higher in finegrained sediment. Shapiro-Wilk, paired t-test, and Wilcoxon rank sum statistical procedures, with an alpha of 0.05, were used to compare concentrations of 21 trace elements, total organic carbon, and total carbon in finegrained and bulk sediment samples for 19 sites. Significant differences were determined between fine-grained and bulk sediment samples for aluminum, barium, beryllium, chromium, copper, iron, lithium, nickel, phosphorus, selenium, titanium, and zinc concentrations. Of 133 paired concentrations, 69 percent were greater in fine-grained samples, and 23 percent were greater in bulk samples. Comparisons with data from previous studies indicate increases by more than 20 percent in concentrations of antimony at Bayou Lafourche below weir at Thibodaux, arsenic and chromium at Tickfaw River at Liverpool, lead at Bayou Lafourche below weir at Thibodaux, and zinc at Bayou Lafourche below weir at Thibodaux and Vermilion River at Perry. Historic comparisons also indicate decreases by more than 20 percent in concentrations of chromium at Bayou des Cannes near Eunice and mercury at Mermentau River at Mermentau.

  8. Streamflow and sediment-transport data, Colorado River and three tributaries in Grand Canyon, Arizona, 1983 and 1985-86

    USGS Publications Warehouse

    Garrett, W.B.; van de Vanter, E.K.; Graf, J.B.

    1993-01-01

    The U.S. Geological Survey collected streamflow and sediment-transport data at 5 streamflow-gaging stations on the Colorado River between Glen Canyon Dam and Lake Mead as a part of an interagency environmental study. The data were collected for about 6 mo in 1983 and about 4 mo in 1985-86; data also were collected at 3 sites on tributary streams in 1983. The data were used for development of unsteady flow-routing and sediment-transport models, sand-load rating curves, and evaluation of channel changes. For the 1983 sampling period, 1,076 composite cross-section suspended-sediment samples were analyzed; 809 of these samples were collected on the main stem of the Colorado River and 267 samples were from the tributaries. Bed-material samples were obtained at 1,988 verticals; 161 samples of material in transport near the bed (bedload) were collected to define the location of sand, gravel, and bed rock in the channel cross section; and 664 discharge measurements were made. For the 1985-86 sampling period, 765 composite cross-section suspended-sediment samples and 887 individual vertical samples from cross sections were analyzed. Bed-material samples were obtained at 531 verticals, 159 samples of bedload were collected, and 218 discharge measurements were made. All data are presented in tabular form. Some types of data also are presented in graphs to better show trends or variations. (USGS)

  9. Organochlorine compounds and trace elements in fish tissue and streambed sediment in the Mobile River Basin, Alabama, Mississippi, and Georgia, 1998

    USGS Publications Warehouse

    Zappia, Humbert

    2002-01-01

    During the summer of 1998, as part of the National Water-Quality Assessment Program, a survey was conducted to determine which organochlorine compounds and trace elements occur in fish tissues and streambed sediments in the Mobile River Basin, which includes parts of Alabama, Mississippi, Georgia, and Tennessee. The data collected were compared to guidelines related to wildlife, land use, and to 1991 and 1994 National Water-Quality Assessment Program Study-Unit data.Twenty-one sites were sampled in subbasins of the Mobile River Basin. The subbasins ranged in size from about 9 to 22,000 square miles and were dominated by either a single land use or a combination of land uses. The major land-use categories were urban, agriculture, and forest.Organochlorine compounds were widespread spatially in the Mobile River Basin. At least one organochlorine compound was reported at the majority of sampling sites (84 percent) and in a majority of whole-fish (80 percent) and streambed-sediment (52 percent) samples. Multiple organochlorine compounds were reported at 75 percent of the sites where fish tissues were collected and were reported at many of the streambed-sediment sampling sites (45 percent). The majority of concentrations reported, however, were less than 5 micrograms per kilogram in fish-tissue samples and less than 1 microgram per kilogram in streambed-sediment samples.The majority of trace elements analyzed in fish-liver tissue (86 percent) and streambed-sediment (98 percent) samples were reported during this study. Multiple trace elements were reported in all samples and at all sites.Based on comparisons of concentrations of organochlorine compounds and trace elements in fish-tissue and streambed-sediment samples in relation to National Academy of Science and National Academy of Engineering and Canadian tissue guidelines, probable-effects concentrations, and mean probable-effects concentration quotients for streambed sediment, the potential exists for adverse effects to wildlife at 15 (72 percent) of the sites sampled. The potential for adverse effects at these sites is because of the presence of residues or breakdown products related to polychlorinated biphenyls (PCB?s), chlordane, dichlorodiphenyltrichloroethane (DDT), chromium, lead, and zinc.The majority of compounds reported (65 percent) were chlordane, DDT, and PCB?s, or their breakdown products. Concentrations of chlordane and heptachlor epoxide in whole-fish tissue were positively correlated to the amount of urban land use in a basin. Total DDT concentrations in whole-fish tissues were positively correlated to agriculture.The relation of trace elements to land use is not as clear as the relation of organochlorine compounds to land use. This lack of clarity may be due to the possibility of geologic sources of trace elements in the Mobile River Basin and to the ubiquitous nature of many of these trace elements. However, there may be a correlation between the amount of urban land use and concentrations of antimony, cadmium, lead, and zinc in streambed-sediment samples from the Mobile River Basin.Fewer organochlorine compounds and trace elements were reported in samples from the Mobile River Basin than in samples collected during the 1991 and 1994 National Water-Quality Assessment Program studies. Of the organochlorine compounds analyzed nationally, 57 percent were reported in whole-fish tissue samples collected locally and 41 percent were reported in streambed-sediment samples collected locally, whereas 96 percent and 86 percent, respectively, were reported nationally. Of trace elements analyzed nationally, 86 percent were reported in fish-liver tissue locally and 95 percent were reported in streambed-sediment samples locally, whereas 95 percent and 98 percent, respectively, were reported nationally.In general, concentrations of organochlorine compounds and trace elements and the frequency with which they were reported in the Mobile River Basin are similar to or less than t

  10. High resolution microprofiling, fractionation and speciation at sediment water interfaces

    NASA Astrophysics Data System (ADS)

    Fabricius, Anne-Lena; Duester, Lars; Ecker, Dennis; Ternes, Thomas A.

    2016-04-01

    Within aquatic environments, the exchange between the sediment and the overlaying water is often driven by steep gradients of, e.g., the oxygen concentration, the redox potential or the pH value at the sediment water interface (SWI). Important transport processes at the SWI are sedimentation and resuspension of particulate matter and diffusional fluxes of dissolved substances. To gain a better understanding of the key factors and processes determining the fate of substances at the SWI, methods with a spatial high resolution are required that enable the investigation of several sediment parameters in parallel to different analytes of interest in the sediment pore water. Moreover, beside the total content, questions concerning the speciation and fractionation are of concern in studying the different (transport) processes. Due to the availability of numerous micro-sensors and -electrodes (e.g., O2, redox potential, pH value, H2S, N2O) and the development of methods for pore water sampling [1], the toolbox to study the heterogeneous and often dynamic conditions at the SWI at a sub-millimetre scale were considerably improved. Nevertheless, the methods available for pore water sampling often require the installation of the sampling devices at the sampling site and/or intensive preparation procedures that may influence the conditions at the area studied and/or the characteristics of the samples taken. By combination of a micro profiling system with a new micro filtration probe head connected to a pump and a fraction collector, a micro profiling and micro sampling system ("missy") was developed that enables for the first time a direct, automate and low invasive sampling of small volumes (<500 μL) at a spatial high resolution of a few millimetres to sub-millimetres [2]. Via the application of different sample preparation procedures followed by inductively plasma-mass spectrometry analyses, it was possible to address not only the total content of metal(loid)s, but also their fractionation (size dependent and micelle mediated) or speciation related distributions along sediment depth profiles in parallel to different sediment parameters (O2, redox and pH). Together with the results of missy-experiments, the results of different experimental approaches will be given and discussed, especially with regard to their potentials and limitations. Based on application examples it will be demonstrated how a variety of parameters can be studied in parallel with the aim to get a more holistic understanding of natural and anthropogenic caused processes that govern the fate of substances at the SWI. 1. Stockdale, A., W. Davison, and H. Zhang, Micro-scale biogeochemical heterogeneity in sediments: A review of available technology and observed evidence. Earth-Science Reviews, 2009. 92(1-2): p. 81-97. 2. Fabricius, A.-L., et al., New Microprofiling and Micro Sampling System for Water Saturated Environmental Boundary Layers. Environmental Science & Technology, 2014.

  11. Polycyclic aromatic hydrocarbon pollution in the surface water and sediments of Chabahar Bay, Oman Sea.

    PubMed

    Agah, Homira; Mehdinia, Ali; Bastami, Kazem Darvish; Rahmanpour, Shirin

    2017-02-15

    In the present study, the concentrations and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in the water and surface sediments from the Chabahar Bay, Oman Sea, were investigated in May (premonsoon) and December (postmonsoon) 2012. The concentrations of PAHs in the surface water samples ranged from 1.7 to 2.8ngl -1 and from 0.04 to 59.6ngl -1 in pre- and postmonsoon, respectively. In general, the PAH levels of the water samples from Chabahar Bay were higher in postmonsoon than in premonsoon (p<0.05). The concentrations of PAHs in the sediment samples varied from undetectable levels to 92.8ngg -1 d.w. in both seasons. The seasonal comparison of the results in sediment samples showed that the overall concentration of PAH compounds was higher in the postmonsoon season (p<0.05). Copyright © 2016. Published by Elsevier Ltd.

  12. Tracing suspended sediment sources in the Upper Sangamon River Basin using conservative and non-conservative tracers

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2015-12-01

    As the awareness of water pollution, eutrophication and other water related environmental concerns grows, the significance of sediment in the transport of nutrients and contaminants from agricultural areas to streams has received increasing attention. Both the physical and geochemical properties of suspended sediment are strongly controlled by sediment sources. Thus, tracing sources of suspended sediment in watersheds is important for the design of management practices to reduce sediment loads and contributions of sediment-adsorbed nutrients from agricultural areas to streams. However, the contributions of different sediment sources to suspended sediment loads within intensively managed watersheds in the Midwest still remain insufficiently explored. This study aims to assess the provenance of suspended sediment and the relation between channel morphology and production of suspended sediment in the Upper Sangamon River Basin, Illinois, USA. The 3,690-km2 Upper Sangamon River Basin is characterized by low-relief, agricultural lands dominated by row-crop agriculture. Sediment source samples were collected in the Saybrook from five potential sources: farmland, forests, floodplains, river banks, and grasslands. Event-based and accumulated suspended sediment samples were collected by ISCO automatic pump samplers and in situ suspended sediment samplers and from the stream at watershed outlet. A quantitative geochemical fingerprinting technique, combining statistically verified multicomponent signatures and an un-mixing model, was employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and radionuclides from soil samples were used as potential tracers. Our preliminary results indicate that the majority of suspended sediment is derived from floodplains in the downstream portions of the watersheds, while only minor amounts of suspended sediment are derived from upland areas and banks. These results suggest that floodplain erosion during high flow events contributes to the suspended sediment.

  13. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.

  14. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    USGS Publications Warehouse

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Pyrethroids are hydrophobic compounds that have been observed to accumulate in sediments (Laskowski 2002). Toxicity of pyrethroids in field-collected sediment from small urban streams (Weston et al. 2005; Holmes et al. 2008; Ding et al. 2010; Domagalski et al. 2010) or with pyrethroids spiked into sediment (Amweg et al. 2006; Hintzen et al. 2009) have been evaluated primarily in 10 day lethality tests conducted with the amphipod Hyalella azteca. However, the sublethal effects in long-term exposures to pyrethroids in sediment have not been evaluated, and the distribution of pyrethroids sediments has not typically been evaluated in wadeable streams (Gilliom et al. 2006). This article is the second in a series that describe the results of a study of the distribution and toxicity of pyrethroids and other co-occurring trace elements and organic contaminants (PCBs, PAHs, OC pesticides) in stream sediments from 7 metropolitan areas across the United States (Moran et al. 2012). The study evaluated 98 sediment samples collected from streams ranging from undeveloped to highly urban and differs from previous studies by sampling larger wadeable streams and avoiding point sources (such as storm drains) and other inflows (Gilliom et al. 2006). Part 1 of the series characterizes sediment contaminants in relation to urbanization and other factors in the 7 metropolitan study areas (Nowell et al. 2012). Part 2 (this article) evaluates relationships between sediment chemistry and sediment toxicity in 28 day whole-sediment exposures conducted with the amphipod H. azteca and in 10 day whole-sediment exposure conducted with the midge Chironomus dilutus (USEPA United States Environmental Protection Agency 2000; ASTM American Society for Testing and Materials International 2012). Toxicity end points evaluated in the amphipod and midge exposures included the effects of these field-collected sediments on survival, weight, or biomass of the test organisms.

  15. Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP

    ERIC Educational Resources Information Center

    Todebush, Patricia Metthe; Geiger, Franz M.

    2005-01-01

    The study of soil samples, using light scattering and Inductively Coupled Plasma spectrometry (ICP) to determine colloid sedimentation rates and the quantity of chromium, lead, and iron in the sample is described. It shows the physical and chemical behavior of solid components in soil, and how such pollutant binding colloid surfaces directly…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.

    A total of 338 water and 1877 sediment samples were collected over a 20,700-km/sup 2/ area from 2125 locations at a nominal density of one sample per 10 km/sup 2/. Water samples were collected from wells, streams, springs, and artificial ponds. Sediment samples were collected from streams, springs, natural ponds, and artificial ponds. Arbitrary anomaly thresholds of two standard deviations above the mean were chosen for both water and sediment sample populations. The U concentrations in waters collected in the Tularosa quadrangle range from below the detection limit of 0.2 parts per billion (ppB) to 57.8 ppB. Most clusters ofmore » water samples containing anomalously high uranium concentrations were collected from locations in uplifts underlain either by volcanic rocks of the mid-Tertiary Datil group or by sedimentary rocks of late Paleozoic and Mesozoic age. Other groups of anomalous waters are from wells that tap Cenozoic aquifers in the intermontane basins. In those areas where the water-sample location coverage is adequate, the known U occurrences are generally associated with high or anomalous U concentrations in water samples. With the exception of one sample with a U concentration of 67.7 ppM, sediments collected in this study have U concentrations that range between 0.2 and 15.2 ppM. Most sediments with U concentrations above the arbitrary anomaly threshold value are from locations which occur in or parallel outcrops of Precambrian crystalline rock exposed in the San Andres and Oscura Mountains. Other anomalous sediments occur as more discreet groups in areas underlain by mid-Tertiary volcanic rocks of the Datil group. Several anomalous samples from the Mogollon-Datil volcanic field were collected along ring fracture systems that surround large volcanic cauldrons.« less

  17. An overview of the ecological half-life of the 137Cs radioisotope and a determination of radioactivity levels in sediment samples after Chernobyl in the Eastern Black Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Baltas, Hasan; Sirin, Murat; Dalgic, Goktug; Cevik, Ugur

    2018-01-01

    A study which determined the activity concentration of 137Cs in sediments contaminated by effluents from the Chernobyl accident which had collected along the coast of the Eastern Black Sea region in Turkey was carried out in 1993. Marine sediment samples were collected in 2015 from the same fifteen sampling points, and the activity concentrations of 226Ra, 232Th, 40K and 137Cs were determined for the sediment samples. The activity concentrations ranged from 10.94-25.95, 12.14-33.05, 265.74-459.89 and 2.08-37.45 Bq kg- 1 for 226Ra, 232Th, 40K and 137Cs respectively. The results showed that there was a steep decline in 137Cs within the sediment at most of the sampling sites from the Eastern Black Sea region during the 22-year period, except for two sites at which the measured levels were much higher. This may be the result of the combined effects of radioactive contaminant entry into this area from rivers, environmental changes and nuclear testing between 1993 and 2015. Furthermore, the ecological half-life (EHL) of the 137Cs radionuclide was estimated for the sediment samples, and radiological hazard parameters such as the absorbed dose rate in air (D), the annual effective dose equivalent (AEDE) and the excess lifetime cancer risk (ELCR) were calculated and compared with the international recommended values. It was shown that these sediments do not present any significant health risk for humans in this area.

  18. Environmental assessment of creosote-treated pilings in the marine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butala, J.H.; Webb, D.A.; Jop, K.M.

    1995-12-31

    A comprehensive ecological risk assessment was conducted to evaluate the environmental impact of creosote-treated pilings in the marine environment at Moss Landing Harbor, Moss Landing, California. Four areas of investigation comprising the risk assessment were (1) evaluation of environmental conditions around existing creosote-treated pilings (2) investigating effects related to restoration of pilings (3) assessing creosote migration into surrounding environment, one year after pile-driving and (4) confirmation of creosote toxicity in laboratory studies. Biological and chemical evaluation of the impact of creosote-treated pilings was conducted on surface sheen, water column and sediment samples collected at Moss Landing Harbor. Water samples (surfacemore » sheen, water column and sediment pore water) were evaluated using short-term chronic exposures with Mysidopsis bahia, while bulk sediment samples were evaluated with 10-day sediment toxicity tests with Ampelisca abdita. Samples of surface, column water and sediment were analyzed for the constituents of creosote by GC mass spectrometry. In addition, a sample of neat material used to preserve treated pilings represented a reference for the polyaromatic hydrocarbons. Verification of organism response and analyses of field collected samples was performed by conducting 10-day A. abdita sediment and 7-day M. bahia elutriate exposures with creosote applied to clean sediment collected at Moss Landing, Evaluations were also performed to determine the effects of photoinduced toxicity on test organisms exposed to PAHs. The biological and analytical results of the field and laboratory exposures are being used to evaluate and determine risk of creosote-treated pilings on the marine environment.« less

  19. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: Finding adverse effects using multiple lines of evidence

    USGS Publications Warehouse

    Fairchild, J.F.; Kemble, N.E.; Allert, A.L.; Brumbaugh, W.G.; Ingersoll, C.G.; Dowling, B.; Gruenenfelder, C.; Roland, J.L.

    2012-01-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States–Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM − AVS); and (3) ∑SEM − AVS normalized to the fractional organic carbon (foc) (i.e., ∑SEM − AVS/foc). The most highly metal-contaminated sample (∑PEQTRM = 132; ∑PEQSEM = 54; ∑SEM − AVS = 323; and ∑SEM − AVS/foc = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS – SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM − AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate colonization studies in an experimental pond (8-week duration) indicated that two of the most metal-contaminated UCR sediments (dominated by high levels of sand-sized slag particles) exhibited decreased invertebrate colonization compared with sand-based reference sediments. Field-exposed SIR-300 resin samples also exhibited decreased invertebrate colonization numbers compared with reference materials, which may indicate behavioral avoidance of this material under field conditions. Multiple lines of evidence (analytical chemistry, laboratory toxicity, and field colonization results), along with findings from previous studies, indicate that high metal concentrations associated with slag-enriched sediments in the UCR are likely to adversely impact the growth and survival of native benthic invertebrate communities. Additional laboratory toxicity testing, refinement of the applications of sediment benchmarks for metal toxicity, and in situ benthic invertebrate studies will assist in better defining the spatial extent, temporal variations, and ecological impacts of metal-contaminated sediments in the UCR system.

  20. Passive sampling methods for contaminated sediments: State of the science for metals

    PubMed Central

    Peijnenburg, Willie JGM; Teasdale, Peter R; Reible, Danny; Mondon, Julie; Bennett, William W; Campbell, Peter GC

    2014-01-01

    “Dissolved” concentrations of contaminants in sediment porewater (Cfree) provide a more relevant exposure metric for risk assessment than do total concentrations. Passive sampling methods (PSMs) for estimating Cfree offer the potential for cost-efficient and accurate in situ characterization of Cfree for inorganic sediment contaminants. In contrast to the PSMs validated and applied for organic contaminants, the various passive sampling devices developed for metals, metalloids, and some nonmetals (collectively termed “metals”) have been exploited to a limited extent, despite recognized advantages that include low detection limits, detection of time-averaged trends, high spatial resolution, information about dissolved metal speciation, and the ability to capture episodic events and cyclic changes that may be missed by occasional grab sampling. We summarize the PSM approaches for assessing metal toxicity to, and bioaccumulation by, sediment-dwelling biota, including the recognized advantages and limitations of each approach, the need for standardization, and further work needed to facilitate broader acceptance and application of PSM-derived information by decision makers. Integr Environ Assess Manag 2014;10:179–196. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. Key Points Passive sampling methods (PSMs) offer the potential for cost-efficient and accurate in situ characterization of the dissolved concentrations for inorganic sediment contaminants. PSMs are useful for evaluating the geochemical behavior of metals in surficial sediments, including determination of fluxes across the sediment-water interface, and post-depositional changes in metal speciation. Few studies have tried to link PSM responses in sediments to metal uptake and toxicity responses in benthic organisms. There is a clear need for further studies. Future PSMs could be designed to mimic saturable kinetics, which would fill the gap between the kinetic and the equilibrium regime samplers currently used, and may improve prediction of metals accumulation by benthic organisms. PMID:24470168

  1. Cultivation and diversity of fungi buried in the Baltic Sea sediments

    NASA Astrophysics Data System (ADS)

    Xiao, N.

    2015-12-01

    @font-face { "MS 明朝"; }@font-face { "Century"; }@font-face { "Century"; }@font-face { "@MS 明朝"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0mm 0mm 0.0001pt; text-align: justify; font-size: 12pt; ; }.MsoChpDefault { ; }div.WordSection1 { page: WordSection1; } Studies on molecular biological and cultivation have been done for the prokaryotic microbial community in the deep biosphere. Compare to the prokaryotic community, few attempts have been done for eukaryotic microbial community. Here we report the study on fungi buried in deep-subsurface sediments by approaches of both cultivation and molecular diversity survey. Cultivation targeting fungi has been done using a sequential sediment samples obtained from the Baltic Sea, Landsort Deep site during the IODP expedition 347. 6 culture media with different nutrition and salt concentration have been tried for the fungi cultivation. 50 isolates of fungi were obtained from the sediment samples. The surface sediments showed richness of fungi strains but not for the deep sediments. Internal Transcribed Spacer (ITS) regions of RNA genes were amplified and for the identification of the isolates. The isolates were classified to 11 different genera. Pseudeurotium bakeri was the dominant strain throughout the glacial and interglacial sediments. We also found different representative fungal strains from glacial and interglacial sediments, suggesting the cultivated strains are buried from different sources. The survey of fungal diversity was done by sequencing the 18S RNA genes in the total DNA extracted from selected sediment samples. Fungi community showed different cluster in the glacial and interglacial sediments.Our results revealed the presence and activity of fungi in the deep biosphere of the Baltic sea and provided evidence of fungal community response to the climate change.

  2. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  3. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  4. Occurrence, distribution, and concentrations of selected contaminants in streambed- and suspended-sediment samples collected in Bexar County, Texas, 2007-09

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2011-01-01

    High concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. U.S. Geological Survey personnel periodically collected surficial streambed-sediment samples during 2007-09 and collected suspended-sediment samples from selected streams after storms during 2008 and 2009. All sediment samples were analyzed for major and trace elements, pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons.

  5. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    USGS Publications Warehouse

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.

  6. The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang,Malaysia.

    PubMed

    Kusin, Faradiella Mohd; Rahman, Muhammad Syazwan Abd; Madzin, Zafira; Jusop, Shamshuddin; Mohamat-Yusuff, Ferdaus; Ariffin, Mariani; Z, Mohd Syakirin Md

    2017-01-01

    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo ). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.

  7. Summary geochemical maps for samples of rock, stream sediment, and nonmagnetic heavy-mineral concentrate, Sweetwater Roadless Area, Mono County, California and Lyon and Douglas Counties, Nevada

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1986-01-01

    Map A shows the locations of all sites where rock samples were collected for this report and the distributions of anomalous concentrations for 12 elements in the 127 rock samples collected. In a similar manner, map B shows the collection sites for 59 samples of minus-60-mesh stream sediment, and 59 samples of nonmagnetic heavy-mineral concentrate derived from stream sediment and also shows the distributions of anomalous concentrations for 13 elements in the stream-sediment samples and 17 elements in the concentrate samples. Map C shows outlines of those drainage basins containing samples of stream sediment and concentrate with anomalous element concentrations and also shows weighted values for each outlined basin based on the number of elements with anomalous concentrations in each stream-sediment and concentrate sample and on the degree to which these concentrations are anomalous in each sample.

  8. Cross Validation of Two Partitioning-Based Sampling Approaches in Mesocosms Containing PCB Contaminated Field Sediment, Biota, and Activated Carbon Amendment.

    PubMed

    Schmidt, Stine N; Wang, Alice P; Gidley, Philip T; Wooley, Allyson H; Lotufo, Guilherme R; Burgess, Robert M; Ghosh, Upal; Fernandez, Loretta A; Mayer, Philipp

    2017-09-05

    The Gold Standard for determining freely dissolved concentrations (C free ) of hydrophobic organic compounds in sediment interstitial water would be in situ deployment combined with equilibrium sampling, which is generally difficult to achieve. In the present study, ex situ equilibrium sampling with multiple thicknesses of silicone and in situ pre-equilibrium sampling with low density polyethylene (LDPE) loaded with performance reference compounds were applied independently to measure polychlorinated biphenyls (PCBs) in mesocosms with (1) New Bedford Harbor sediment (MA, U.S.A.), (2) sediment and biota, and (3) activated carbon amended sediment and biota. The aim was to cross validate the two different sampling approaches. Around 100 PCB congeners were quantified in the two sampling polymers, and the results confirmed the good precision of both methods and were in overall good agreement with recently published LDPE to silicone partition ratios. Further, the methods yielded C free in good agreement for all three experiments. The average ratio between C free determined by the two methods was factor 1.4 ± 0.3 (range: 0.6-2.0), and the results thus cross-validated the two sampling approaches. For future investigations, specific aims and requirements in terms of application, data treatment, and data quality requirements should dictate the selection of the most appropriate partitioning-based sampling approach.

  9. Assessing the Extent of Sediment Contamination Around Creosote-treated Pilings Through Chemical and Biological Analyses

    NASA Astrophysics Data System (ADS)

    Stefansson, E. S.

    2008-12-01

    Creosote is a common wood preservative used to treat marine structures, such as docks and bulkheads. Treated dock pilings continually leach polycyclic aromatic hydrocarbons (PAHs) and other creosote compounds into the surrounding water and sediment. Over time, these compounds can accumulate in marine sediments, reaching much greater concentrations than those in seawater. The purpose of this study was to assess the extent of creosote contamination in sediments, at a series of distances from treated pilings. Three pilings were randomly selected from a railroad trestle in Fidalgo Bay, WA and sediment samples were collected at four distances from each: 0 meters, 0.5 meters, 1 meter, and 2 meters. Samples were used to conduct two bioassays: an amphipod bioassay (Rhepoxynius abronius) and a sand dollar embryo bioassay. Grain size and PAH content (using a fluorometric method) were also measured. Five samples in the amphipod bioassay showed significantly lower effective survival than the reference sediment. These consisted of samples closest to the piling at 0 and 0.5 meters. One 0 m sample in the sand dollar embryo bioassay also showed a significantly lower percentage of normal embryos than the reference sediment. Overall, results strongly suggest that creosote-contaminated sediments, particularly those closest to treated pilings, can negatively affect both amphipods and echinoderm embryos. Although chemical data were somewhat ambiguous, 0 m samples had the highest levels of PAHs, which corresponded to the lowest average survival in both bioassays. Relatively high levels of PAHs were found as far as 2 meters away from pilings. Therefore, we cannot say how far chemical contamination can spread from creosote-treated pilings, and at what distance this contamination can still affect marine organisms. These results, as well as future research, are essential to the success of proposed piling removal projects. In addition to creosote-treated pilings, contaminated sediments must be removed and disposed of properly, in order to make future piling removals as effective and beneficial to ecosystem health as possible.

  10. Jack Dymond's "Fingerprints" on Sediment Chemistry, Biogeochemical Fluxes, and my Career

    NASA Astrophysics Data System (ADS)

    Leinen, M.

    2004-12-01

    I first met Jack Dymond as a graduate student at Oregon State University. He wasn't my thesis advisor. He wasn't even on my committee. But his ever so gentle counsel and his low key advice did much to shape my career, as a student, as a scientist, and later as an administrator of science. At the time, Jack was wading through the analysis of a very large number of surface sediment samples from the Nazca Plate as part of an IDOE project. The number and density of sampling was extraordinary for the time and his work showed that the geochemistry of the sediments could be deconvolved to understand the contributions of sediment sources over the entire plate. I had been planning to analyze DSDP samples from the equatorial Pacific to understand the history of siliceous sedimentation in that region and I began to talk with Jack about how I could use geochemical signatures to estimate the non-biogenic fraction of the sediment. When Jack's Nazca Plate paper came out, Debra Stakes and I decided to analyze all of my sample residues for the same elements that Jack had studied. In the only piece of bad advice that he ever gave me, Jack told me that it was a waste of time because there wouldn't be high enough concentrations of transition metals in the calcareous and siliceous sediments to measure. We insisted and Jack, in typical fashion, agreed to pay for reagents and give us instrument time without charge anyway. The larger than expected concentrations, and the even more surprising match between the accumulation rates of some the metals and the accumulation rates of biogenic sediment were the subject of many discussions, all of which ended in the need for more information on the composition, fluxes and transformations of biogenic sediment in the water column and in recent sediments. This, of course, became another of Jack's specialties: his designs for sediment traps were important contributions to the evolution of this important sampling device. His studies of fluxes in a wide variety of environments - from hydrothermal vent fields to Crater Lake --were critical to the development of modern biogeochemical cycling experiments and thinking. And this, of course, was only one of the fields in which he made major contributions.

  11. Sediment quality in the north coastal basin of Massachusetts, 2003

    USGS Publications Warehouse

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston Harbor. The probable toxicity to benthic organisms ranged from about 33 to 91 percent across the study area. Of the elements analyzed, antimony, arsenic, beryllium, and lead exceeded the soil standards for risk to human health. Of the PAHs analyzed, four also exceeded soil standards. Organochlorine pesticide concentrations, however, were not high enough relative to the soil standards to pose a risk to human health. Some trace element and some organic compound concentrations in bottom sediment may be toxic to aquatic organisms and may pose a risk to human health.

  12. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  13. Estimating total suspended sediment yield with probability sampling

    Treesearch

    Robert B. Thomas

    1985-01-01

    The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Albuquerque NTMS Quadrangle, New Mexico, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, L.W.; Bolivar, S.L.

    1979-06-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less

  15. Suspended sediment and bedload in the First Broad River Basin in Cleveland County, North Carolina, 2008-2009

    USGS Publications Warehouse

    Hazell, William F.; Huffman, Brad A.

    2011-01-01

    A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two monitoring stations. Historically, the estimated mean annual suspended-sediment yield at the long-term streamflow station during the period 1970-1979 was 250 tons per square mile, with an estimated mean annual suspended-sediment load of 15,000 tons. Drought conditions throughout most of the study period were a potential factor in the smaller yields at the monitoring stations compared to the yields estimated at the long-term streamflow station in the 1970s. During an extreme runoff event on January 7, 2009, bedload was 0.4 percent, 0.8 percent, and 0.1 percent of the total load at the three study sites, which indicates that during extreme runoff conditions the percentage of the total load that is bedload is not significant. The percentages of the total load that is bedload during low-flow conditions ranged from 0.1 to 90.8, which indicate that the bedload is variable both spatially and temporally.

  16. Analysis of sediment production from two small semiarid basins in Wyoming

    USGS Publications Warehouse

    Rankl, J.G.

    1987-01-01

    Data were collected at two small, semiarid basins in Wyoming to determine the relation between rainfall, runoff, and sediment production. The basins were Dugout Creek tributary and Saint Marys Ditch tributary. Sufficient rainfall and runoff data were collected at Dugout Creek tributary to determine the source of sediment and the dominant sediment production processes. Because runoff from only one storm occurred in Saint Marys Ditch tributary, emphasis of the study was placed on the analysis of data collected at Dugout Creek tributary. At Dugout Creek tributary, detailed measurements were made to establish the source of sediment. To determine the quantity of material removed from headcuts during the study, two headcuts were surveyed. Aerial photographs were used to define movement of all headcuts. The total quantity of sediment removed from all headcuts between September 26, 1982, and September 26, 1983, was estimated to be 1,220 tons, or 15%-25% of the estimated total sediment load passing the streamflow-gaging station. A soil plot was used to sample upland erosion. A rainfall and runoff modeling system was used to evaluate the interaction between the physical processes which control sediment production. The greatest change in computed sediment load was caused by changing the parameter values for equations used to compute the detachment of sediment particles by rainfall and overland flow resulted in very small changes in computed sediment load. The upland areas were the primary source of sediment. A relationship was developed between the peak of storm runoff and the total sediment load for that storm runoff. The sediment concentration used to compute the total sediment load for the storm runoff was determined from sediment samples collected by two automatic pumping samplers. The coefficient of variation of the relationship is 34% with a 0.99 correlation coefficient. (Author 's abstract)

  17. Overview of the U.S. EPA/SERDP/ESTCP: Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual

    EPA Science Inventory

    Passive sampling can be used for applications at contaminated sediment sites including performing assessments of contaminant bioavailability (i.e., freely dissolved concentration (Cfree)), conducting remedial investigations and feasibility studies, and assessing the potential for...

  18. Overview of the U.S. EPA/SERDP/ESTCP: Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual.

    EPA Science Inventory

    Passive sampling is used for applications at contaminated sediment sites including performing assessments of contaminant bioavailability (i.e., freely dissolved concentration (Cfree)), conducting remedial investigations and feasibility studies, and assessing the potential for con...

  19. UTILIZATION OF THE CARBON AND HYDROGEN ISOTOPIC COMPOSITION OF INDIVIDUAL COMPOUNDS IN REFINED HYDROCARBON PRODUCTS TO MONITOR THEIR FATE IN THE ENVIRONMENT

    EPA Science Inventory

    Isotope effects resulting from biodegradation of MTBE
    To conduct the microcosm biodegradation study, sediment samples were collected from sites offering high potential of MTBE biodegradation. Sites where sediment samples were collected for the MTBE microcosm c...

  20. Dissolution Rates of Biogenic Carbonate Sediments from the Bermuda Platform

    NASA Astrophysics Data System (ADS)

    Finlay, A. J.; Andersson, A. J.

    2016-02-01

    The contribution of biogenic carbonate sediment dissolution rates to overall net reef accretion/erosion (under both present and future oceanic pCO2 levels) has been strikingly neglected, despite experimental results indicating that sediment dissolution might be more sensitive to ocean acidification (OA) than calcification. Dissolution of carbonate sediments could impact net reef accretion rates as well as the formation and preservation of valuable marine and terrestrial ecosystems. Bulk sediment dissolution rates of samples from the Bermuda carbonate platform were measured in natural seawater at pCO2 values ranging from approximately 3500 μatm to 9000 μatm. This range of pCO2 levels incorporates values currently observed in porewaters on the Bermuda carbonate platform as well as a potential future increase in porewater pCO2 levels due to OA. Sediment samples from two different stations on the reef platform were analyzed for grain size and mineralogy. Dissolution rates of sediments in the dominant grain size fraction of the platform (500-1000 μm) from both stations ranged between 16.25 and 47.19 (± 0.27 to 0.79) μmoles g-1 hr-1 and are comparable to rates previously obtained from laboratory experiments on other natural carbonate sediments. At a pCO2 of 3500 μatm, rates from both samples were similar, despite their differing mineralogy. However, at pCO2 levels above 3500 μatm, the sediment sample with a greater weight percent of Mg-calcite had slightly higher dissolution rates. Despite many laboratory studies on biogenic carbonate dissolution, a significant disparity still exists between laboratory measurements and field observations. Performing additional controlled, laboratory experiments on natural sediment may help to elucidate the reasons for this disparity.

  1. Effects of Sterilization on the Physico-Chemical Properties of Natural Sediments From the Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, T.L.; Kukkadapu, R.K.; Madden, A.S.

    2009-04-29

    Batch U(VI) sorption/reduction experiments were completed on sterilized and non-sterilized sediment samples to elucidate biological and geochemical reduction mechanisms. Results from X-ray absorption near-edge structure (XANES) spectroscopy revealed that {gamma}-sterilized sediments were actually better sorbents of U(VI), despite the absence of any measurable biological activity. These results indicate that {gamma}-irradiation induced significant physico-chemical changes in the sediment which is contrary to numerous other studies identifying {gamma}-sterilization as an effective and minimally invasive technique. To identify the extent and method of alteration of the soil as a result of {gamma}-sterilization, untreated soil samples, physically separated size fractions, and chemically extracted fractionsmore » of the soil were analyzed pre- and post-sterilization. The effects of sterilization on mineralogy, pH, natural organic matter (NOM), cation exchange capacity (CEC), and iron oxidation state were determined. Results indicated that major mineralogy of the clay and whole sediment samples was unchanged. Sediment pH decreased only slightly with {gamma}-irradiation; however, irradiation produced a significant decrease in CEC of the untreated sediments and affected both the organic and inorganic fractions. Moessbauer spectra of non-sterile and {gamma}-sterilized sediments measured more reduced iron present in {gamma}-sterilized sediments compared to non-sterile samples. Our results suggest that sterilization by {gamma}-irradiation induced iron reduction that may have increased the sorption and/or reduction of U(VI) onto these sediments. However, Moessbauer and batch sorption data are somewhat contradictory, the former indicates that the iron oxide or iron hydroxide minerals are more significantly reduced while the later indicates that reduced clay minerals account for greater sorption of U(VI).« less

  2. Effects of gamma-sterilization on the physicochemical properties of natural sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, Tracy L; Madden, Andrew; Baldwin, Mark E

    2008-06-01

    Batch U(VI) sorption/reduction experiments were completed on sterilized and non-sterilized sediment samples to elucidate biological and geochemical reduction mechanisms. Results from X-ray absorption near-edge structure (XANES) spectroscopy revealed that {gamma}-sterilized sediments were actually better sorbents of U(VI), despite the absence of any measurable biological activity. These results indicate that {gamma}-irradiation induced significant physico-chemical changes in the sediment which is contrary to numerous other studies identifying {gamma}-sterilization as an effective and minimally invasive technique. To identify the extent and method of alteration of the soil as a result of {gamma}-sterilization, untreated soil samples, physically separated size fractions, and chemically extracted fractionsmore » of the soil were analyzed pre- and post-sterilization. The effects of sterilization on mineralogy, pH, natural organic matter (NOM), cation exchange capacity (CEC), and iron oxidation state were determined. Results indicated that major mineralogy of the clay and whole sediment samples was unchanged. Sediment pH decreased only slightly with {gamma}-irradiation; however, irradiation produced a significant decrease in CEC of the untreated sediments and affected both the organic and inorganic fractions. Moessbauer spectra of non-sterile and {gamma}-sterilized sediments measured more reduced iron present in {gamma}-sterilized sediments compared to non-sterile samples. Our results suggest that sterilization by {gamma}-irradiation induced iron reduction that may have increased the sorption and/or reduction of U(VI) onto these sediments. However, Moessbauer and batch sorption data are somewhat contradictory, the former indicates that the iron oxide or iron hydroxide minerals are more significantly reduced while the later indicates that reduced clay minerals account for greater sorption of U(VI).« less

  3. Dioxin-like biological activity of organic extracts from sediments and fish livers sampled along the Israeli Mediterranean and Red Sea coasts.

    PubMed

    Yudkovski, Yana; Herut, Barak; Shefer, Edna; Tom, Moshe

    2015-09-15

    This study provides, for the first time, a baseline evaluation of dioxin-like biological activity in sediments and fish sampled in- and adjacent to anchorages along the Mediterranean and Red Sea coasts of Israel. It indicates the effect of past pollution, still present in the sediments of older Israeli harbors, with putative contribution of still existing sources of pollution. A commercial reporter gene bioassay was used to evaluate the biological activity of dioxin-like compounds extracted from the samples. HRGC/HRMS analysis of several samples contributed a profile of dioxin-like compounds in sediments and fish. The results point out 1,2,3,4,6,7,8-HeptaCDD, 2,3,4,6,7,8-HexaCDF, 1,2,3,4,6,7,8-HeptaCDF, РСВ-126 and РСВ-118 as major contributors to the dioxin-like activity in sediments. It indicates polychlorinated biphenyls non-selective absorption in fish livers, in contrary to a biased accumulation of poorly chlorinated and more potent dibenzodioxins and dibenzofurans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics.

    PubMed

    Counihan, Timothy D; Waite, Ian R; Nilsen, Elena B; Hardiman, Jill M; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D

    2014-06-15

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated. Published by Elsevier B.V.

  5. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics

    USGS Publications Warehouse

    Counihan, Timothy D.; Waite, Ian R.; Nilsen, Elena B.; Hardiman, Jill M.; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D.

    2014-01-01

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16 km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus–PCP–PAH). We also observed significant differences between strata in the number of detections of Indus–PCP–PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated.

  6. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    USGS Publications Warehouse

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  7. Spatial analysis of soil erosion and sediment fluxes: a paired watershed study of two Rappahannock River tributaries, Stafford County, Virginia.

    PubMed

    Ricker, Matthew C; Odhiambo, Ben K; Church, Joseph M

    2008-05-01

    Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.

  8. Stream-sediment geochemistry in mining-impacted streams: Prichard, Eagle, and Beaver creeks, northern Coeur d'Alene Mining District, northern Idaho

    USGS Publications Warehouse

    Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (<0.063, 0.063?0.25, and 0.25?1.0 mm) and analyzed for 40 elements after four-acid digestion by inductively coupled plasma atomic-emission spectrometry and for mercury by continuous- flow cold-vapor atomic-absorption spectrometry in the U.S. Geological Survey laboratory in Denver, Colo. Historical mining of silver-lead-zinc ores in the headwater reaches of the Prichard Creek, Eagle Creek, and Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along Prichard Creek near Murray, which were not studied here. Metal contents in samples of unfractionated suspended sediment collected during a high-flow event in April 2000 are generally similar to, but slightly higher than, those in the fine (<0.063- mm grain size) fraction of streambed sediment from the same sampling site. Although metal enrichment in streambed sediment typically begins adjacent to the mine portals and their associated mine-waste rock dumps, volumetrically larger inputs of metal-enriched materials were contributed by the ore-concentration millsites and their associated, more finely ground, more metal rich mill-tailings impoundments.

  9. Quantifying ratios of suspended sediment sources in forested headwater streams following timber-harvesting operations

    NASA Astrophysics Data System (ADS)

    Rachels, A. A.; Bladon, K. D.; Bywater-Reyes, S.

    2017-12-01

    Historically, timber-harvesting has increased fine sediment inputs to streams due to increased hillslope and streambank erosion and mass wasting along roads. However, under modern best management practices, the relative importance and variability of these sources is poorly understood. We present preliminary results from an ongoing study investigating the primary sources of suspended sediment in Oregon Coast Range streams influenced by timber harvesting. We instrumented two catchments, Enos Creek (harvested 2016) and Scheele Creek (reference) in fall 2016. Phillips samplers (5-6 per catchment) have been deployed longitudinally down the streams to enable robust characterization of suspended sediments—the collected samples integrate the chemical signatures of upstream sediment exports. We will collect samples monthly over 2 wet seasons and return to the laboratory to analyze the sediment using source fingerprinting approaches. The fingerprinting technique compares the chemical properties of stream sediment samples with the chemical properties of potential source areas, including 1) roads, 2) stream banks, and 3) hillslopes. To design a robust model for sediment-source identification, different types of chemical data are required—we will analyze sediment samples using a combination of: a) stable isotopes and C/N ratios (i.e., δ15N, δ13C, and C/N), b) geochemistry (Fe, K, and Ca), and c) radiogenic isotopes (137Cs and 210Pb). At the harvested site, the C/N ratios of the streambanks (17.9 ± 3.8) and the hillslopes (26.4 ± 4.8) are significantly different from one another (p = .016). C/N ratios of the suspended sediment (20.5 ± 2.0) are intermediate values between potential endmembers and behave conservatively with transport. The C/N ratios of the suspended sediment appear unaffected by roads (18.9 ± 8.7) along specific sections of the stream, suggesting that roads are not a primary sediment contributor. Under this assumption, the suspended sediment is, on average, comprised of 69.5% streambank sediments and 30.5% hillslope sediments. Additional analyses are required (and in progress) to support these implications and to further interpret the importance and variability of suspended sediment sources through both space (from head to outlet) and time.

  10. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations

    USGS Publications Warehouse

    Cleveland, Danielle; Brumbaugh, William G.; MacDonald, Donald D.

    2017-01-01

    Evaluations of sediment quality conditions are commonly conducted using whole-sediment chemistry analyses but can be enhanced by evaluating multiple lines of evidence, including measures of the bioavailable forms of contaminants. In particular, porewater chemistry data provide information that is directly relevant for interpreting sediment toxicity data. Various methods for sampling porewater for trace metals and dissolved organic carbon (DOC), which is an important moderator of metal bioavailability, have been employed. The present study compares the peeper, push point, centrifugation, and diffusive gradients in thin films (DGT) methods for the quantification of 6 metals and DOC. The methods were evaluated at low and high concentrations of metals in 3 sediments having different concentrations of total organic carbon and acid volatile sulfide and different particle-size distributions. At low metal concentrations, centrifugation and push point sampling resulted in up to 100 times higher concentrations of metals and DOC in porewater compared with peepers and DGTs. At elevated metal levels, the measured concentrations were in better agreement among the 4 sampling techniques. The results indicate that there can be marked differences among operationally different porewater sampling methods, and it is unclear if there is a definitive best method for sampling metals and DOC in porewater.

  11. Using sediment particle size distribution to evaluate sediment sources in the Tobacco Creek Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou

    2014-05-01

    Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by managing sediment according to the identified sediment sources in the watershed.

  12. METHOD FOR TESTING THE AQUATIC TOXICITY OF SEDIMENT EXTRACTS FOR USE IN IDENTIFYING ORGANIC TOXICANTS IN SEDIMENTS

    EPA Science Inventory

    Biologically-directed fractionation techniques are a fundamental tool for identifying the cause of toxicity in environmental samples, but few are available for studying mixtures of organic chemicals in aquatic sediments. This paper describes a method for extracting organic chemic...

  13. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    PubMed

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  14. INNOVATIVE TECHNOLOGY EVALUATION REPORT ...

    EPA Pesticide Factsheets

    The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the sampler?s ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Russian Peat Borer and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Russian Peat Borer was the only sampler that collected samples in the deep depth interval (4 to 11 feet below sediment surface). It collected representative and relatively uncompressed core samples of consolidated sediment in discrete depth intervals. The reference samplers collected relatively compressed samples of both consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved only for consolidated sediment samples collected by the Russian Peat Borer but for bo

  15. Ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in sediments of rivers Niger and Benue confluence, Lokoja, Central Nigeria.

    PubMed

    Ekere, Nwachukwu; Yakubu, Newman; Ihedioha, Janefrances

    2017-08-01

    The concentrations of six heavy metals (HMs) and 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) in sediment samples of the confluence of rivers Niger and Benue were investigated. The ecological risk assessment of the contaminants was carried out. The results showed that the sediment samples were heavily polluted with iron and moderately polluted with Cd while other metals posed no pollution problem when compared with USEPA sediment quality guidelines. Only six out of the 16 priority PAHs were detected in the samples, and source apportionment of the PAHs indicated that they are of pyrogenic origin. The ∑PAHs in the samples were lower than many of similar studies and were of no pollution risk. The ecological risk assessment result of the heavy metals showed that the sediments were of considerable risk due majorly to Cd levels. The HM concentration results statistically showed significant difference between seasons at probability value (P < .05). Data analysis by PCA classified the metals into three different components according to sources. The levels of HMS and PAHs detected in the sediments were correlated for source identification, and the correlation showed that the majority of the pollutants were mainly from anthropogenic sources. There is increasing level of anthropogenic activities at the vicinity of the confluence due to urbanization which may call for periodic monitoring of the sediment quality.

  16. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China.

    PubMed

    Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y

    2002-01-01

    Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.

  17. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.

    PubMed

    Nahlik, Amanda M; Mitsch, William J

    2008-01-01

    Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, D.M.; Gibeaut, J.C.; Short, J.W.

    Following the Exxon Valdez oil spill, sediment traps were deployed in nearshore subtidal areas of Prince William Sound, Alaska (PWS) to monitor particulate chemistry and mineralogy. Complemented by benthic sediment chemistry and core sample stratigraphy at the study sites, results were compared to historical trends and data from other Exxon Valdez studies. These results clearly indicate the transport of oil-laden sediments from oiled shorelines to adjacent subtidal sediments. The composition of hydrocarbons adsorbed to settling particulates at sites adjacent to oiled shorelines matched the PAH pattern of weathered Exxon Valdez crude oil.

  19. Transport and Sources of Suspended Sediment in the Mill Creek Watershed, Johnson County, Northeast Kansas, 2006-07

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.; Fuller, Christopher C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, evaluated suspended-sediment transport and sources in the urbanizing, 57.4 mi2 Mill Creek watershed from February 2006 through June 2007. Sediment transport and sources were assessed spatially by continuous monitoring of streamflow and turbidity as well as sampling of suspended sediment at nine sites in the watershed. Within Mill Creek subwatersheds (2.8-16.9 mi2), sediment loads at sites downstream from increased construction activity were substantially larger (per unit area) than those at sites downstream from mature urban areas or less-developed watersheds. Sediment transport downstream from construction sites primarily was limited by transport capacity (streamflow), whereas availability of sediment supplies primarily influenced transport downstream from mature urban areas. Downstream sampling sites typically had smaller sediment loads (per unit area) than headwater sites, likely because of sediment deposition in larger, less sloping stream channels. Among similarly sized storms, those with increased precipitation intensity transported more sediment at eight of the nine monitoring sites. Storms following periods of increased sediment loading transported less sediment at two of the nine monitoring sites. In addition to monitoring performed in the Mill Creek watershed, sediment loads were computed for the four other largest watersheds (48.6-65.7 mi2) in Johnson County (Blue River, Cedar, Indian, and Kill Creeks) during the study period. In contrast with results from smaller watersheds in Mill Creek, sediment load (per unit area) from the most urbanized watershed in Johnson County (Indian Creek) was more than double that of other large watersheds. Potential sources of this sediment include legacy sediment from earlier urban construction, accelerated stream-channel erosion, or erosion from specific construction sites, such as stream-channel disturbance during bridge renovation. The implication of this finding is that sediment yields from larger watersheds may remain elevated after the majority of urban development is complete. Surface soil, channel-bank, suspended-sediment, and streambed-sediment samples were analyzed for grain size, nutrients, trace elements, and radionuclides in the Mill Creek watershed to characterize suspended sediment between surface or channel-bank sources. Although concentrations and activities of cobalt, nitrogen, selenium, total organic carbon, cesium-137, and excess lead-210 had significant differences between surface and channel-bank samples, biases resulting from urban construction, additional sorption of constituents during sediment transport, and inability to accurately represent erosion from rills and gullies precluded accurate characterization of suspended-sediment source.

  20. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan.

    PubMed

    Shikazono, N; Tatewaki, K; Mohiuddin, K M; Nakano, T; Zakir, H M

    2012-01-01

    Sediments of the Tamagawa River in central Japan were studied to explain the spatial variation, to identify the sources of heavy metals, and to evaluate the anthropogenic influence on these pollutants in the river. Sediment samples were collected from 20 sites along the river (five upstream, four midstream, and 11 downstream). Heavy metal concentrations, viz. chromium, nickel, copper, zinc, lead, cadmium, and molybdenum, in the samples were measured using inductively coupled plasma-mass spectroscopy. The chemical speciations of heavy metals in the sediments were identified by the widely used five-step Hall method. Lead isotopes were analyzed to identify what portion is contributed by anthropogenic sources. The total heavy metal concentrations were compared with global averages for continental crust (shale) and average values for Japanese river sediments. The mean heavy metal concentrations were higher in downstream sediments than in upstream and midstream samples, and the concentrations in the silt samples were higher than those in the sand samples. Speciation results demonstrate that, for chromium and nickel, the residual fractions were dominant. These findings imply that the influence of anthropogenic chromium and nickel contamination is negligible, while copper, zinc, and lead were mostly extracted in the non-residual fraction (metals in adsorbed/exchangeable/carbonate forms or bound to amorphous Fe oxyhydroxides, crystalline Fe oxides, or organic matter), indicating that these elements have high chemical mobility. The proportion of lead (Pb) isotopes in the downstream silt samples indicates that Pb accumulation is primarily derived from anthropogenic sources.

  1. Investigating the Influence of Clay Mineralogy on Stream Bank Erodibility

    NASA Astrophysics Data System (ADS)

    Ambers, R. K.; Stine, M. B.

    2005-12-01

    Soil scientists concerned with erosion of agricultural fields and geotechnical engineers concerned with the mechanical behavior of soils under different conditions have both examined the role of clay mineralogy in controlling soil/sediment properties. Fluvial geomorphologists studying stream channel erosion and stability have focused more on the effects of particle-size distribution, vegetation and rooting. The clay mineralogy of bed and bank sediment has the potential to influence cohesiveness and erodibility, however. The goal of this study is to determine the influence of clay mineralogy on the erodibility of natural stream bank sediment, utilizing techniques drawn from pedology and soil mechanics. Bank samples were collected from eleven sites in small watersheds in central and western Virginia. To obtain sediment containing a range of different clay minerals, watersheds with different types of bedrock were chosen for sampling. Rock types included mafic to felsic metamorphic and igneous rocks, shale, sandstone, and limestone. Where stream bank materials were clearly stratified, different layers were sampled separately. X-ray diffraction of the clay-fraction of the sediment indicates the presence of kaolinite, illite, vermiculite, and mixed-layer clay minerals in various abundances in the different samples. Clay content is 9-46%, as determined by the hydrometer method, and textures range from silty clay and silt loam to clay loam and sandy loam. Organic mater contents range from 1-5% by the loss-on-ignition method. Bulk density of intact sediment samples averages 1.5 g/cc. Liquid limits range from 23-41 with one sample having a value of 65; plasticity indices range from 15-22. While these tests predict that the samples would show a range of mechanical behaviors, the channel morphology at the sampling sites was not strikingly different, all having steep cut banks eroded primarily by scour with no evidence of mass movement and most having a width/depth ratio around 4.5. The ASTM pinhole test for identifying dispersive clay soils is being adapted to measure erodibility of intact and remolded sediment samples in the laboratory to look for more subtle differences in behavior under erosive conditions. Factors such as the extent and method of sample compaction are being taken into account in order to standardize the method.

  2. Coccolith concentrations in the Gulf of Cadiz at the IODP Site U1390 (Exp 339), in the last ~20,000 years

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Balestra, B.

    2013-12-01

    Our project is dedicated to the study of sediment samples gathered from the Gulf of Cadiz during the Integrated Ocean Drilling Project (IODP), Expedition 339 at Site U1390. The Gulf of Cadiz is an area of the Atlantic Ocean located directly south of Portugal and the western end of the Strait of Gibraltar. We analyzed the sediment samples to obtain the numbers of coccoliths per gram of sediment in each sample. Coccolithophores (from which the coccoliths are the fossils that remain in the sediments) are one of the most abundant groups of living phytoplankton and they are significant components of marine sediment. In order to prepare our samples for counting (the process by which we determined the number of coccoliths in our samples) we utilized about 23 samples from the uppermost 17 meters of the sediment core. This process involved collecting subsamples of each individual sample and then oven drying them. Then we weighted them by utilizing a microbalance to collect the desired amount of sample we needed (between 2 and 4 mg). Several of our samples were slightly below and above this desired amount due to human error. Once we gathered the desired amount of samples for our project, we proceeded to use a filtration system to obtain filters. Then we put the filters into an oven to dry them. After the samples were dried over the course of a day, we proceeded to prepare them for viewing through the microscope. To do this, we cut the filter and placed it upon a microscope slide. Then, we applied oil to the slide, cover and placed it under the Light Microscope (LM). We looked at five different views in each filters under the microscope, counting the number of coccoliths in each view. The counting has been expressed in terms of numbers of coccoliths per gram of sediment (total coccolith concentration). Our results showed us that the amount of coccoliths in the sediment samples receded during the cold periods of time, such as an ice age, and fluctuated in an upward pattern as the climate warmed. This project was part of a first step for further research, namely to continue to determine how climate has changed in the past ~20,000 years in the investigated area.

  3. Evaluation of the toxicity of sediments from the Anniston PCB Site to the mussel Lampsilis siliquoidea

    USGS Publications Warehouse

    Schein, Allison; Sinclair, Jesse A.; MacDonald, Donald D.; Ingersoll, Christopher G.; Kemble, Nile E.; Kunz, James L.

    2015-01-01

    The Anniston Polychlorinated Biphenyl (PCB) Site is located in the vicinity of the municipality of Anniston in Calhoun County, in the north-eastern portion of Alabama. Although there are a variety of land-use activities within the Choccolocco Creek watershed, environmental concerns in the area have focused mainly on releases of PCBs to aquatic and riparian habitats. PCBs were manufactured by Monsanto, Inc. at the Anniston facility from 1935 to 1971. The chemicals of potential concern (COPCs) in sediments at the Anniston PCB Site include: PCBs, mercury, metals, polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphorous pesticides, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs). The purpose of this study was to evaluate the toxicity of PCB-contaminated sediments to the juvenile fatmucket mussel (Lampsilis siliquoidea) and to characterize relationships between sediment chemistry and the toxicity of sediment samples collected from the Anniston PCB Site using laboratory sediment testing. Samples were collected in August 2010 from OU-4 of the Anniston PCB Site, as well as from selected reference locations. A total of 32 samples were initially collected from six test sites and one reference site within the watershed. A total of 23 of these 32 samples were evaluated in 28-day whole-sediment toxicity tests conducted with juvenile mussels (L. siliquoidea). Physical and chemical characterization of whole sediment included grain size, total organic carbon (TOC), nutrients, PCBs, parent and alkylated PAHs, organochlorine pesticides, PCDD/PCDFs, total metals, simultaneously extracted metals (SEM), and acid volatile sulfide (AVS). Sediment collected from Snow Creek and Choccolocco Creek contained a variety of COPCs. Organic contaminants detected in sediment included PCBs, organochlorine pesticides, PCDDs/PCDFs, and PAHs. In general, the highest concentrations of PCBs were associated with the highest concentrations of PAHs, PCDDs/PCDFs, and organochlorine pesticides. Specifically, sediments 08, 18, and 19 exceeded probable effect concentration quotients (PEC-Qs) of 1.0 for all organic classes of contaminants. These three sediment samples also had high concentrations of mercury and lead, which were the only metals found at elevated concentrations (i.e., above the probable effect concentration [PEC]) in the samples collected. Many sediment samples were highly contaminated with mercury, based on comparisons to samples collected from reference locations. The whole-sediment laboratory toxicity tests conducted with L. siliquoidea met the test acceptability criteria (e.g., control survival was greater than or equal to 80%). Survival of mussels was high in most samples, with 4 of 23 samples (17%) classified as toxic based on the survival endpoint. Biomass and weight were more sensitive endpoints for the L. siliquoidea toxicity tests, with both endpoints classifying 52% of the samples as toxic. Samples 19 and 30 were most toxic to L. siliquoidea, as they were classified as toxic according to all four endpoints (survival, biomass, weight, and length). Mussels were less sensitive in toxicity tests conducted with sediments from the Anniston PCB Site than Hyalella azteca and Chironomus dilutus. Biomass of L. siliquoidea was less sensitive compared to biomass of H. azteca or biomass of larval C. dilutus. Based on the most sensitive endpoint for each species, 52% of the samples were toxic to L. siliquoidea, whereas 67% of sediments were toxic to H. azteca (based on reproduction) and 65% were toxic to C. dilutus (based on adult biomass). The low-risk toxicity threshold (TTLR) was higher for L. siliquoidea biomass (e.g., 20,400 µg/kg dry weight [DW]) compared to that for H. azteca reproduction (e.g., 499 µg/kg DW) or C. dilutus adult biomass (e.g., 1,140 µg/kg DW; MacDonald et al. 2014). While mussels such as L. sili

  4. Shifting sources and transport paths for the late Quaternary Escanaba Trough sediment fill (northeast Pacific)

    USGS Publications Warehouse

    Zuffa, G.G.; De Rosa, R.; Normark, W.R.

    1997-01-01

    Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.

  5. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred.

  6. Effectiveness of three best management practices for highway-runoff quality along the Southeast Expressway, Boston, Massachusetts

    USGS Publications Warehouse

    Smith, Kirk P.

    2002-01-01

    Best management practices (BMPs) near highways are designed to reduce the amount of suspended sediment and associated constituents, including debris and litter, discharged from the roadway surface. The effectiveness of a deep-sumped hooded catch basin, three 2-chambered 1,500-gallon oil-grit separators, and mechanized street sweeping in reducing sediment and associated constituents was examined along the Southeast Expressway (Interstate Route 93) in Boston, Massachusetts. Repeated observations of the volume and distribution of bottom material in the oil-grit separators, including data on particle-size distributions, were compared to data from bottom material deposited during the initial 3 years of operation. The performance of catch-basin hoods and the oil-grit separators in reducing floating debris was assessed by examining the quantity of material retained by each structural BMP compared to the quantity of material retained by and discharged from the oil-grit separators, which received flow from the catch basins. The ability of each structural BMP to reduce suspended-sediment loads was assessed by examining (a) the difference in the concentrations of suspended sediment in samples collected simultaneously from the inlet and outlet of each BMP, and (b) the difference between inlet loads and outlet loads during a 14-month monitoring period for the catch basin and one separator, and a 10-month monitoring period for the second separator. The third separator was not monitored continuously; instead, samples were collected from it during three visits separated in time by several months. Suspended-sediment loads for the entire study area were estimated on the basis of the long-term average annual precipitation and the estimated inlet and outlet loads of two of the separators. The effects of mechanized street sweeping were assessed by evaluating the differences between suspended-sediment loads before and after street sweeping, relative to storm precipitation totals, and by comparing the particle-size distributions of sediment samples collected from the sweepers to bottom-material samples collected from the structural BMPs. A mass-balance calculation was used to quantify the accuracy of the estimated sediment-removal efficiency for each structural BMP. The ability of each structural BMP to reduce concentrations of inorganic and organic constituents was assessed by determining the differences in concentrations between the inlets and outlets of the BMPs for four storms. The inlet flows of the separators were sampled during five storms for analysis of fecal-indicator bacteria. The particle-size distribution of bottom material found in the first and second chambers of the separators was similar for all three separators. Consistent collection of floatable debris at the outlet of one separator during 12 storms suggests that floatable debris were not indefinitely retained.Concentrations of suspended sediment in discrete samples of runoff collected from the inlets of the two separators ranged from 8.5 to 7,110 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlets of the separators ranged from 5 to 2,170 mg/L. The 14-month sediment-removal efficiency was 35 percent for one separator, and 28 percent for the second separator. In the combined-treatment system in this study, where catch basins provided primary suspended-sediment treatment, the separators reduced the mass of the suspended sediment from the pavement by about an additional 18 percent. The concentrations of suspended sediment in discrete samples of runoff collected from the inlet of the catch basin ranged from 32 to 13,600 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlet of the catch basin ranged from 25.7 to 7,030 mg/L. The sediment-removal efficiency for individual storms during the 14-month monitoring period for the deep-sumped hooded catch basin was 39 percent.The concentrations of 29 in

  7. Semi-automatic surface sediment sampling system - A prototype to be implemented in bivalve fishing surveys

    NASA Astrophysics Data System (ADS)

    Rufino, Marta M.; Baptista, Paulo; Pereira, Fábio; Gaspar, Miguel B.

    2018-01-01

    In the current work we propose a new method to sample surface sediment during bivalve fishing surveys. Fishing institutes all around the word carry out regular surveys with the aim of monitoring the stocks of commercial species. These surveys comprise often more than one hundred of sampling stations and cover large geographical areas. Although superficial sediment grain sizes are among the main drivers of benthic communities and provide crucial information for studies on coastal dynamics, overall there is a strong lack of this type of data, possibly, because traditional surface sediment sampling methods use grabs, that require considerable time and effort to be carried out on regular basis or on large areas. In face of these aspects, we developed an easy and un-expensive method to sample superficial sediments, during bivalve fisheries monitoring surveys, without increasing survey time or human resources. The method was successfully evaluated and validated during a typical bivalve survey carried out on the Northwest coast of Portugal, confirming that it had any interference with the survey objectives. Furthermore, the method was validated by collecting samples using a traditional Van Veen grabs (traditional method), which showed a similar grain size composition to the ones collected by the new method, on the same localities. We recommend that the procedure is implemented on regular bivalve fishing surveys, together with an image analysis system to analyse the collected samples. The new method will provide substantial quantity of data on surface sediment in coastal areas, using a non-expensive and efficient manner, with a high potential application in different fields of research.

  8. Assessing the performance of a plastic optical fibre turbidity sensor for measuring post-fire erosion from plot to catchment scale

    NASA Astrophysics Data System (ADS)

    Keizer, J. J.; Martins, M. A. S.; Prats, S. A.; Santos, L. F.; Vieira, D. C. S.; Nogueira, R.; Bilro, L.

    2015-09-01

    This study is the first comprehensive testing of a novel plastic optical fibre turbidity sensor with runoff samples collected in the field and, more specifically, with a total of 158 streamflow samples and 925 overland flow samples from a recently burnt forest area in north-central Portugal, collected mainly during the first year after the wildfire, as well as with 56 overland flow samples from a nearby long-unburnt study site. Sediment concentrations differed less between overland flow and streamflow samples than between study sites and, at one study site, between plots with and without effective erosion mitigation treatments. Maximum concentrations ranged from 0.91 to 8.19 g L-1 for the micro-plot overland flow samples from the six burnt sites, from 1.74 to 8.99 g L-1 for the slope-scale overland flow samples from these same sites, and amounted to 4.55 g L-1 for the streamflow samples. Power functions provided (reasonably) good fits to the - expected - relationships of increasing normalized light loss with increasing sediment concentrations for the different sample types from individual study sites. The corresponding adjusted R2 values ranged from 0.64 to 0.81 in the case of the micro-plot samples from the six burnt sites, from 0.72 to 0.89 in the case of the slope-scale samples from these same sites, and was 0.85 in the case of the streamflow samples. While the overall performance of the sensor was thus rather satisfactory, the results pointed to the need for scale of site-specific calibrations to maximize the reliability of the predictions of sediment concentration by the POF (plastic optical fibre) sensor. This especially applied to the cases in which sediment concentrations were comparatively low, for example following mulching with forest residues.

  9. Comparison. US P-61 and Delft sediment samplers

    USGS Publications Warehouse

    Beverage, Joseph P.; Williams, David T.

    1990-01-01

    The Delft Bottle (DB) is a flow-through device designed by the Delft Hydraulic Laboratory (DHL), The Netherlands, to sample sand-sized sediment suspended in streams. The US P-61 sampler was designed by the Federal Interagency Sedimentation Project (FISP) at the St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota, to collect suspended sediment from deep, swift rivers. The results of two point-sampling tests in the United States, the Mississippi River near Vicksburg, Mississippi, in 1983 and the Colorado River near Blythe, California, in 1984, are provided in this report. These studies compare sand-transport rates, rather than total sediment-transport rates, because fine material washes through the DB sampler. In the United States, the commonly used limits for sand-sized material are 0.062 mm to 2.00 mm (Vanoni 1975).

  10. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)

    NASA Astrophysics Data System (ADS)

    Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe

    2018-01-01

    The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.

  11. Comparability of river suspended-sediment sampling and laboratory analysis methods

    USGS Publications Warehouse

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  12. Trace elements and organic chemicals in stream-bottom sediments and fish tissues, Red River of the North basin, Minnesota, North Dakota, and South Dakota, 1992-95

    USGS Publications Warehouse

    Brigham, M.E.; Goldstein, R.M.; Tornes, L.H.

    1998-01-01

    Stream-bottom sediment and fish-tissue samples from the Red River of the North Basin, were analyzed for a large suite of chemical elements and organic chemicals. Cadmium, lead, and mercury were widespread in sediments, at concentrations not indicative of acute contamination. Mercury, the element of greatest health concern in the region, was detected at low concentrations in 38 of 43 sediment samples (<0.02-0.13 micrograms per gram) and all of eleven fish-liver samples (0.03-0.6 micrograms per gram dry weight, or 0.0066-0.13 micrograms per gram wet weight). Concentrations of many elements appeared to be controlled by mineral rather than anthropogenic sources. DDT and its metabolites were the most frequently detected synthetic organochlorines: p,p'-DDE was detected in 9 of 38 sediment samples (concentration range: <1-16 nanograms per gram) and also frequently in whole-fish samples. Total DDT (the sum of DDT and its metabolites) concentrations ranged from <5 to 217 nanograms per gram, and at least one component of total DDT was detected in 19 of 23 fish samples. Concentrations of DDT and its metabolites in stream sediments were significantly higher in the intensively cropped Red River Valley Lake Plain, compared to upland areas, probably because of greater historical DDT usage in the lake plain. Several polycyclic aromatic hydrocarbons were detected in stream-bottom sediments. Although the potentially toxic chemicals measured in this study were at low levels, relative to more contaminated areas of the Nation, maximum concentrations of some chemicals are of concern because of their possible effects on aquatic biota and human health.

  13. Determination of gamma-emitting radionuclides in the inter-tidal sediments off Balochistan (Pakistan) Coast, Arabian Sea.

    PubMed

    Akram, M; Qureshi, Riffat M; Ahmad, Nasir; Solaija, Tariq Jamal

    2007-01-01

    Natural radionuclide contents of 226Ra, 228Ra and (40)K were studied for inter-tidal sediments collected from selected locations off the745 km long Balochistan Coast using HPGe detector based gamma-spectrometry system. The sampling zone extends from the beaches of Sonmiani (near Karachi metropolis) through Jiwani (close to the border of Iran). The natural radioactivity levels detected in various sediment samples range from 14.4 +/- 2.5 to 36.6 +/- 3.8 Bq kg(-1) for 226Ra, 9.8 +/- 1.2 to 35.2 +/- 2.0 Bq kg(-1) for (228)Ra and 144.6 +/- 9.4 to 610.5 +/- 23.9 Bq kg(-1) for (40)K. No artificial radionuclide was detected in any of the marine coastal sediment samples. 137Cs, (60)Co, 106Ru and 144Ce contents in sediment samples were below the limit of detection. The measured radioactivity levels are compared with those reported in the literature for coastal sediments in other parts of the world. The information presented in this paper will serve as the first ever local radioactivity database for the Balochistan/Makran Coastal belt of Pakistan. The presented data will also contribute to the IAEA's, Asia-Pacific Marine Radioactivity Database (ASPAMARD) and the Global Marine Radioactivity Database (GLOMARD).

  14. Sedimentation and sediment chemistry, Neopit Mill Pond, Menominee Indian Reservation, Wisconsin, 2001

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.

    2003-01-01

    The volume, texture, and chemistry of sediment deposited in a mill pond on the West Branch of the Wolf River at Neopit, Wis., Menominee Reservation, were studied in 2001-2002. The study was accomplished by examining General Land Office Survey Notes from 1854, establishing 12 transects through the mill pond, conducting soundings of the soft and hard bottom along each transect, and collecting core samples for preliminary screening of potential contaminants. Combined information from transects, cores, and General Land Office Survey notes were used to reconstruct the pre-dam location of the West Branch of the Wolf River through the mill pond. Neopit Mill Pond contains approximately 253 acre-ft of organic-rich muck, on average about 1.2 ft thick, that was deposited after the dam was built. Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with creosote and pentachlorophenol were found in post-dam sediment samples collected from Neopit Mill Pond. Trace-element concentrations were at or near background concentrations. Further study and sampling are needed to identify the spatial extent and variability of the PAHs, pentachlorophenol, and other byproducts from wood preservatives

  15. Accumulation of Pb and Cu heavy metals in sea water, sediment, and leaf and root tissue of Enhalus sp. in the seagrass bed of Banten Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauziah, Faiza, E-mail: faiza.fauziah@gmail.com; Choesin, Devi N., E-mail: faiza.fauziah@gmail.com

    2014-03-24

    Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At eachmore » station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO{sub 3} acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing)« less

  16. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-01-01

    An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated 43 to 420 micrograms per liter. Sediment elutriate samples were toxic to Ceriodaphnia dubta, Pimephales promelas, Photobacterium phosphoreum, and Salenastrum capricornulum.

  17. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    USGS Publications Warehouse

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging stations beginning in 2000 on the larger of the previously ungaged tributaries of the Colorado River downstream from Glen Canyon Dam. The sediment-monitoring gaging stations consist of a downward-looking stage sensor and passive suspended-sediment samplers. Two stations are equipped with automatic pump samplers to collect suspended-sediment samples during flood events. Directly measuring discharge and collecting suspended-sediment samples in these remote ephemeral streams during significant sediment-transporting events is nearly impossible; most significant run-off events are short-duration events (lasting minutes to hours) associated with summer thunderstorms. As the remote locations and short duration of these floods make it prohibitively expensive, if not impossible, to directly measure the discharge of water or collect traditional depth-integrated suspended-sediment samples, a method of calculating sediment loads was developed that includes documentation of stream stages by field instrumentation, modeling of discharges associated with these stages, and automatic suspended-sediment measurements. The approach developed is as follows (1) survey and model flood high-water marks using a two-dimensional hydrodynamic model, (2) create a stage-discharge relation for each site by combining the modeled flood flows with the measured stage record, (3) calculate the discharge record for each site using the stage-discharge relation and the measured stage record, and (4) calculate the instantaneous and cumulative sediment loads using the discharge record and suspended-sediment concentrations measured from samples collected with passive US U-59 samplers and ISCOTM pump samplers. This paper presents the design of the gaging network and briefly describes the methods used to calculate discharge and sediment loads. The design and methods herein can easily be used at other remote locations where discharge and sediment loads are required.

  18. Assessment of geochemical and hydrologic conditions near Old Yuma Mine in Saguaro National Park, Arizona, 2014–17

    USGS Publications Warehouse

    Beisner, Kimberly R.; Gray, Floyd

    2018-03-13

    The Old Yuma Mine is an abandoned copper, lead, zinc, silver, and gold mine located within the boundaries of Saguaro National Park, Tucson Mountain District, Arizona. This study analyzed the geochemistry of sediments associated with the Old Yuma Mine and assessed hydrologic and geochemical conditions of groundwater to evaluate the area surrounding the Old Yuma Mine. The purpose of the study was to establish the geochemical signature of material associated with the Old Yuma Mine and to compare it with background material and groundwater in the area. Few groundwater samples exceeded the U.S. Environmental Protection Agency (EPA) drinking water standards. Concentrations of several elements were elevated in the waste rock and mine tailings compared with concentrations in sediments collected in background areas. A subset of 15 sediment samples was leached to simulate precipitation interacting with the solid material. Analysis of leachate samples compared to groundwater samples suggests that groundwater samples collected in this study are distinct from leachate samples associated with mining related material. Results suggest that at this time groundwater samples collected during this investigation are not influenced by elements leached from Old Yuma Mine materials.

  19. Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment.

    PubMed

    Haris, Hazzeman; Looi, Ley Juen; Aris, Ahmad Zaharin; Mokhtar, Nor Farhanna; Ayob, Nur Ain Ayunie; Yusoff, Fatimah Md; Salleh, Abu Bakar; Praveena, Sarva Mangala

    2017-12-01

    The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo ) and contamination factor (C f ) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.

  20. Adjustable shear stress erosion and transport flume

    DOEpatents

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  1. Carbon-13 natural abundance signatures of long-chain fatty acids to determinate sediment origin: A case study in northeast Austria

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Gibbs, Max; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Swales, Andrew; Alewell, Christine

    2016-04-01

    - Several recently published information from scientific research have highlighted that compound-specific stable isotope (CSSI) signatures of fatty acids (FAs) based on the measurement of carbon-13 natural abundance signatures showed great promises to identify sediment origin. The authors have used this innovative isotopic approach to investigate the sources of sediment in a three hectares Austrian sub-watershed (i.e. Mistelbach). Through a previous study using the Cs-137 technique, Mabit et al. (Geoderma, 2009) reported a local maximum sedimentation rate reaching 20 to 50 t/ha/yr in the lowest part of this watershed. However, this study did not identify the sources. Subsequently, the deposited sediment at its outlet (i.e. the sediment mixture) and representative soil samples from the four main agricultural fields - expected to be the source soils - of the site were investigated. The bulk delta carbon-13 of the samples and two long-chain FAs (i.e. C22:0 and C24:0) allowed the best statistical discrimination. Using two different mixing models (i.e. IsoSource and CSSIAR v1.00) and the organic carbon content of the soil sources and sediment mixture, the contribution of each source has been established. Results suggested that the grassed waterway contributed to at least 50% of the sediment deposited at the watershed outlet. This study, that will require further validation, highlights that CSSI and Cs-137 techniques are complementary as fingerprints and tracers for establishing land sediment redistribution and could provide meaningful information for optimized decision-making by land managers.

  2. Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment

    NASA Astrophysics Data System (ADS)

    Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette

    2017-04-01

    Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μg.kg-1) was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.

  3. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  4. Spatial distribution and ecological risk assessment of heavy metals in coastal surface sediments in the Hebei Province offshore area, Bohai Sea, China

    USGS Publications Warehouse

    Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W.

    2018-01-01

    Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were more finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution.

  5. Density Contrast Sedimentation Velocity for the Determination of Protein Partial-Specific Volumes

    PubMed Central

    Brown, Patrick H.; Balbo, Andrea; Zhao, Huaying; Ebel, Christine; Schuck, Peter

    2011-01-01

    The partial-specific volume of proteins is an important thermodynamic parameter required for the interpretation of data in several biophysical disciplines. Building on recent advances in the use of density variation sedimentation velocity analytical ultracentrifugation for the determination of macromolecular partial-specific volumes, we have explored a direct global modeling approach describing the sedimentation boundaries in different solvents with a joint differential sedimentation coefficient distribution. This takes full advantage of the influence of different macromolecular buoyancy on both the spread and the velocity of the sedimentation boundary. It should lend itself well to the study of interacting macromolecules and/or heterogeneous samples in microgram quantities. Model applications to three protein samples studied in either H2O, or isotopically enriched H2 18O mixtures, indicate that partial-specific volumes can be determined with a statistical precision of better than 0.5%, provided signal/noise ratios of 50–100 can be achieved in the measurement of the macromolecular sedimentation velocity profiles. The approach is implemented in the global modeling software SEDPHAT. PMID:22028836

  6. Denitrification rates in estuarine sediments of Ashtamudi, Kerala, India.

    PubMed

    Salahudeen, Junaid Hassan; Reshmi, R R; Anoop Krishnan, K; Ragi, M S; Vincent, Salom Gnana Thanga

    2018-05-03

    Estuarine sediments are important sites for denitrification, which is microbially mediated reduction of nitrate to dinitrogen that also influences global climate change by co-production of nitrous oxide, a potent greenhouse gas. Physicochemical properties and nutrients of sediment samples that influence denitrification rate were studied in Ashtamudi estuarine sediments. They were pH, electrical conductivity (EC), salinity, nitrate-nitrogen (NO 3 - -N), exchangeable ammonia (NH 3 - -N), total kjeldahl nitrogen (TKN) and organic carbon (Corg). Sediment samples were collected from six stations during summer, monsoon of 2013 and 13 stations from monsoon 2014 and summer 2015. The sedimentary denitrification potential ranged from 0.49 ± 0.05 to 4.85 ± 0.782 mmol N 2 O m -2 h -1 . Maximum denitrification was observed in S4, which is attributed to a local anthropogenic source coupled with intense rainfall episode preceding the sampling season of monsoon 2013. However, this trend was not repeated in the subsequent monsoon samples. This shows that in Ashtamudi, monsoonal effects do not influence sedimentary denitrification. Among the various environmental variables, NO 3 - -N, Corg and NH 3 -N were the key factors that influence denitrification in the Ashtamudi estuarine sediments. Among these key factors, NO 3 - -N was the limiting factor for denitrification, and hence, it is of prime importance to understand the source of NO 3 - -N that fuel denitrification in the sediments. In Ashtamudi, the concentration of NO 3 - -N in overlying water was very less, which suggests reduced nitrogen yield in the estuary from the fluvial input of Kallada River and agricultural runoff. Sedimentary NO 3 - -N correlated with denitrification which reveals that denitrification is coupled with nitrification in the sediments. This is further explained by the fact that NH 3 -N positively correlated with denitrification. The anoxic sediments were the source of ammonia for nitrous oxide production by nitrogen mineralisation. Also, the Corg in sediment samples were sufficient to support denitrification and Corg was an important factor favouring but not limiting denitrification. The results of sediment denitrification in Ashtamudi can be a model for tropical estuaries experiencing unpredictable rainfall as well as high temperature than temperate systems.

  7. Sediment Source Analysis at Malakoff Diggins State Historic Park, California

    NASA Astrophysics Data System (ADS)

    Ward, A. J., IV; Monohan, C.; Matiasek, S. J.; Alpers, C. N.; Curtis, J.; Campbell, K. M.; Roth, D. A.; Howle, J.

    2016-12-01

    This study aims to identify the sources of suspended sediment and trace metals which are discharged during storm events into Humbug Creek from Malakoff Diggins State Historic Park (MDSHP) in Nevada County, California. MDSHP includes a pit where approximately 32,000,000 cubic meters of auriferous Eocene gravel was mined by hydraulic and dredging methods during 1866-1884 and 1893-1910. High erosion rates within the pit contribute to water-quality impairment downstream; Humbug Creek is listed as an impaired water body under section 303(d) of the Clean Water Act because of suspended sediment, copper, mercury, and zinc. Sediment fingerprinting techniques (mineralogy and geochemistry) are being used to identify stratigraphic units in the pit responsible for delivering the greatest volume of sediment to the pit drain at Hiller Tunnel, which flows to Humbug Creek. In-situ sediment samples were collected in 2015 along four vertical transects located in the mine pit. Additionally, surface water samples were collected during 2015 and 2016 within the pit and Hiller Tunnel, targeting drainage networks below the in-situ sampling sites. In-situ and suspended sediment samples were analyzed for grain-size distribution, X-ray diffraction (XRD) to obtain quantitative mineralogy, inductively coupled plasma - mass spectrometry (ICP-MS) for trace elements, and inductively coupled plasma - optical emission spectroscopy (ICP-OES) for major elements. Preliminary XRD data indicate that the fine suspended sediment in Hiller Tunnel is composed predominantly of kaolinite and halloysite, with minor smectite, illite, and muscovite. Kaolinite is abundant in many of the samples from the in-situ vertical transects, but relatively few stratigraphic units have abundant halloysite. Quantitative erosion rates from a time series of terrestrial LiDAR measurements (2014-16) and from historical aerial photos will help to refine possible scenarios regarding sediment sources within the pit. Chemical and physical characterization of the in-situ sediments may reveal key indicators, or fingerprints, which will allow for a more efficient application of mitigation efforts in MDSHP by identifying which stratigraphic units are delivering high amounts of sediment to Humbug Creek.

  8. Hydrocarbon pollution fixed to combined sewer sediment: a case study in Paris.

    PubMed

    Rocher, Vincent; Garnaud, Stéphane; Moilleron, Régis; Chebbo, Ghassan

    2004-02-01

    Over a period of two years (2000-2001), sediment samples were extracted from 40 silt traps (STs) spread through the combined sewer system of Paris. All sediment samples were analysed for physico-chemical parameters (pH, organic matter content, grain size distribution), with total hydrocarbons (THs) and 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA. The two main objectives of the study were (1) to determine the hydrocarbon contamination levels in the sediments of the Paris combined sewer system and (2) to investigate the PAH fingerprints in order to assess their spatial variability and to elucidate the PAH origins. The results show that there is some important inter-site and intra-site variations in hydrocarbon contents. Despite this variability, TH and PAH contamination levels (50th percentile) in the Parisian sewer sediment are estimated at 530 and 18 microg g(-1), respectively. The investigation of the aromatic compound distributions in all of the 40 STs has underlined that there is, at the Paris sewer system scale, a homogeneous PAH background pollution. Moreover, the study of the PAH fingerprints, using specific ratios, suggests the predominance of a pyrolytic origin for those PAHs fixed to the sewer sediment.

  9. Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario.

    PubMed

    Yeung, Leo W Y; De Silva, Amila O; Loi, Eva I H; Marvin, Chris H; Taniyasu, Sachi; Yamashita, Nobuyoshi; Mabury, Scott A; Muir, Derek C G; Lam, Paul K S

    2013-09-01

    Fourteen perfluoroalkyl substances (PFASs) including short-chain perfluorocarboxylates (PFCAs, C4-C6) and perfluoroalkane sulfonates (PFSAs, C4 and C6) were measured in surface sediment samples from 26 stations collected in 2008 and sediment core samples from three stations (Niagara, Mississauga, and Rochester basins) collected in 2006 in Lake Ontario. Perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA) were detected in all 26 surface sediment samples, whereas perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonamide (FOSA), perfluorododecanoate (PFDoDA) and perfluorobutanoate (PFBA) were detected in over 70% of the surface sediment samples. PFOS was detected in all of the sediment core samples (range: 0.492-30.1ngg(-1) d.w.) over the period 1952-2005. The C8 to C11 PFCAs, FOSA, and PFBA increased in early 1970s. An overall increasing trend in sediment PFAS concentrations/fluxes from older to more recently deposited sediments was evident in the three sediment cores. The known PFCAs and PFSAs accounted for 2-44% of the anionic fraction of the extractable organic fluorine in surface sediment, suggesting that a large proportion of fluorine in this fraction remained unknown. Sediment core samples collected from Niagara basin showed an increase in unidentified organic fluorine in recent years (1995-2006). These results suggest that the use and manufacture of fluorinated organic compounds other than known PFCAs and PFSAs has diversified and increased. © 2013.

  10. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    USGS Publications Warehouse

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  11. A preliminary assessment of the spatial sources of contemporary suspended sediment in the Ohio River basin, United States, using water quality data from the NASQAN programme in a source tracing procedure

    USGS Publications Warehouse

    Zhang, Y.-S.; Collins, A.L.; Horowitz, A.J.

    2012-01-01

    Reliable information on catchment scale suspended sediment sources is required to inform the design of management strategies for helping abate the numerous environmental issues associated with enhanced sediment mobilization and off-site loadings. Since sediment fingerprinting techniques avoid many of the logistical constraints associated with using more traditional indirect measurement methods at catchment scale, such approaches have been increasingly reported in the international literature and typically use data sets collected specifically for sediment source apportionment purposes. There remains scope for investigating the potential for using geochemical data sets assembled by routine monitoring programmes to fingerprint sediment provenance. In the United States, routine water quality samples are collected as part of the US Geological Survey's revised National Stream Quality Accounting Network programme. Accordingly, the geochemistry data generated from these samples over a 10-year period (1996-2006) were used as the basis for a fingerprinting exercise to assess the key tributary sub-catchment spatial sources of contemporary suspended sediment transported by the Ohio River. Uncertainty associated with the spatial source estimates was quantified using a Monte Carlo approach in conjunction with mass balance modelling. Relative frequency weighted means were used as an alternative way of summarizing the spatial source contributions, thereby avoiding the need to use confidence limits. The results should be interpreted in the context of the routine, but infrequent nature, of the suspended sediment samples used to assemble geochemistry as a basis for the sourcing exercise. Nonetheless, the study demonstrates how routine monitoring samples can be used to provide some preliminary information on sediment provenance in large drainage basins. ?? 2011 John Wiley & Sons, Ltd.

  12. Stepped-combustion 14C dating of bomb carbon in lake sediment

    USGS Publications Warehouse

    McGeehin, J.; Burr, G.S.; Hodgins, G.; Bennett, S.J.; Robbins, J.A.; Morehead, N.; Markewich, H.

    2004-01-01

    In this study, we applied a stepped-combustion approach to dating post-bomb lake sediment from north-central Mississippi. Samples were combusted at a low temperature (400 ??C) and then at 900 ??C. The CO2 was collected separately for both combustions and analyzed. The goal of this work was to develop a methodology to improve the accuracy of 14C dating of sediment by combusting at a lower temperature and reducing the amount of reworked carbon bound to clay minerals in the sample material. The 14C fraction modern results for the low and high temperature fractions of these sediments were compared with well-defined 137Cs determinations made on sediment taken from the same cores. Comparison of "bomb curves" for 14C and 137Cs indicate that low temperature combustion of sediment improved the accuracy of 14C dating of the sediment. However, fraction modern results for the low temperature fractions were depressed compared to atmospheric values for the same time frame, possibly the result of carbon mixing and the low sedimentation rate in the lake system.

  13. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  14. Concentration of Antifouling Biocides and Metals in Sediment Core Samples in the Northern Part of Hiroshima Bay

    PubMed Central

    Tsunemasa, Noritaka; Yamazaki, Hideo

    2014-01-01

    Accumulation of Ot alternative antifoulants in sediment is the focus of this research. Much research had been done on surface sediment, but in this report, the accumulation in the sediment core was studied. The Ot alternative antifoulants, Diuron, Sea-Nine211, and Irgarol 1051, and the latter’s degradation product, M1, were investigated in five samples from the northern part of Hiroshima Bay. Ot compounds (tributyltin (TBT) and triphenyltin (TPT)) were also investigated for comparison. In addition, metal (Pb, Cu, Zn, Fe and Mn) levels and chronology were measured to better understand what happens after accumulation on the sea floor. It was discovered that Ot alternative antifoulant accumulation characteristics in sediment were like Ot compounds, with the concentration in the sediment core being much higher than surface sediment. The concentration in sediment seems to have been affected by the regulation of Ot compounds in 1990, due to the concentration of Ot alternative antifoulants and Ot compounds at the survey point in front of the dock, showing an increase from almost the same layer after the regulation. PMID:24901529

  15. Laboratory theory and methods for sediment analysis

    USGS Publications Warehouse

    Guy, Harold P.

    1969-01-01

    The diverse character of fluvial sediments makes the choice of laboratory analysis somewhat arbitrary and the pressing of sediment samples difficult. This report presents some theories and methods used by the Water Resources Division for analysis of fluvial sediments to determine the concentration of suspended-sediment samples and the particle-size distribution of both suspended-sediment and bed-material samples. Other analyses related to these determinations may include particle shape, mineral content, and specific gravity, the organic matter and dissolved solids of samples, and the specific weight of soils. The merits and techniques of both the evaporation and filtration methods for concentration analysis are discussed. Methods used for particle-size analysis of suspended-sediment samples may include the sieve pipet, the VA tube-pipet, or the BW tube-VA tube depending on the equipment available, the concentration and approximate size of sediment in the sample, and the settling medium used. The choice of method for most bed-material samples is usually limited to procedures suitable for sand or to some type of visual analysis for large sizes. Several tested forms are presented to help insure a well-ordered system in the laboratory to handle the samples, to help determine the kind of analysis required for each, to conduct the required processes, and to assist in the required computations. Use of the manual should further 'standardize' methods of fluvial sediment analysis among the many laboratories and thereby help to achieve uniformity and precision of the data.

  16. Patterns in bacterial and archaeal community structure and diversity in western Beaufort Sea sediments and waters

    NASA Astrophysics Data System (ADS)

    Hamdan, L. J.; Sikaroodi, M.; Coffin, R. B.; Gillevet, P. M.

    2010-12-01

    A culture-independent phylogenetic study of microbial communities in water samples and sediment cores recovered from the Beaufort Sea slope east of Point Barrow, Alaska was conducted. The goal of the work was to describe community composition in sediment and water samples and determine the influence of local environmental conditions on microbial populations. Archaeal and bacterial community composition was studied using length heterogeneity-polymerase chain reaction (LH-PCR) and multitag pyrosequencing (MTPS). Sediment samples were obtained from three piston cores on the slope (~1000m depth) arrayed along an east-west transect and one core from a depth of approximately 2000m. Discrete water samples were obtained using a CTD-rosette from three locations adjacent to piston core sites. Water sample were selected at three discrete depths within a vertically stratified (density) water column. The microbial community in near surface waters was distinct from the community observed in deeper stratified layers of the water column. Multidimensional scaling analysis (MDS) revealed that water samples from mid and deep stratified layers bore high similarity to communities in cores collected in close proximity. Overall, the highest diversity (bacteria and archaea) was observed in a core which had elevated methane concentration relative to other locations. Geochemical (e.g., bulk organic and inorganic carbon pools, nutrients, metabolites) and physical data (e.g. depth, water content) were used to reveal the abiotic factors structuring microbial communities. The analysis indicates that sediment water content (porosity) and inorganic carbon concentration are the most significant structuring elements on Beaufort shelf sedimentary microbial communities.

  17. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China.

    PubMed

    Zhao, Jianmin; Ran, Wen; Teng, Jia; Liu, Yongliang; Liu, Hui; Yin, Xiaonan; Cao, Ruiwen; Wang, Qing

    2018-06-02

    Microplastics are one of the most significant pollutants in the marine environment and accumulate in sediments all over the world. To assess the pollution level in the marine environment in China, the distribution and abundance of microplastics in sediments from the Bohai Sea and the Yellow Sea were investigated in this study. The sediment samples were collected from 72 different sites in the Bohai Sea and the Yellow Sea. Microplastics were separated from sediment through density flotation and categorized according to shape and size under a microscope. Additionally, polymer types were identified using Fourier-Transform Infrared Micro-spectroscopy (μ-FT-IR). Our study demonstrated that microplastics were consistently found in all samples, which emphasized their extensive distribution throughout the Bohai Sea and the Yellow Sea. The average microplastic abundance was 171.8, 123.6 and 72.0 items per kg of dry weight sediment for the Bohai Sea, Northern Yellow Sea and Southern Yellow Sea, respectively. Among the sampled microplastics, fiber (93.88%) and small microplastics (<1000 μm) (71.06%) were the most frequent types. Fourier transform infrared microspectroscopy (μ-FT-IR) analysis determined that the main types of microplastics were rayon (RY), polyethylene (PE) and polyethylene terephthalate (PET). Our results highlighted the widespread distribution of microplastics in sediments from the Bohai Sea and the Yellow Sea and provided useful information for evaluating the environmental risks of microplastics in China. Copyright © 2018. Published by Elsevier B.V.

  18. Geochemistry and mercury contamination in receiving environments of artisanal mining wastes and identified concerns for food safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichelt-Brushett, Amanda J., E-mail: amanda.reich

    Artisanal small-scale gold mining (ASGM) using mercury (Hg) amalgamation has been occurring on Buru Island, Indonesia since early 2012, and has caused rapid accumulation of high Hg concentrations in river, estuary and marine sediments. In this study, sediment samples were collected from several sites downstream of the Mount Botak ASGM site, as well as in the vicinity of the more recently established site at Gogrea where no sampling had previously been completed. All sediment samples had total Hg (THg) concentrations exceeding Indonesian sediment quality guidelines and were up to 82 times this limit at one estuary site. The geochemistry ofmore » sediments in receiving environments indicates the potential for Hg-methylation to form highly bioavailable Hg species. To assess the current contamination threat from consumption of local seafood, samples of fish, molluscs and crustaceans were collected from the Namlea fish market and analysed for THg concentrations. The majority of edible tissue samples had elevated THg concentrations, which raises concerns for food safety. This study shows that river, estuary and marine ecosystems downstream of ASGM operations on Buru Island are exposed to dangerously high Hg concentrations, which are impacting aquatic food chains, and fisheries resources. Considering the high dietary dependence on marine protein in the associated community and across the Mollucas Province, and the short time period since ASGM operations commenced in this region, the results warrant urgent further investigation, risk mitigation, and community education. - Highlights: • Mercury contamination of sediments and seafood due to artisanal gold mining. • Considerable risks to human and ecosystem health are identified. • Results emphasise the urgent need for risk mitigation and community education.« less

  19. Dioxins, furans and dioxin-like PCBs in sediment samples and suspended particulate matter from the Scheldt estuary and the North Sea Coast: Comparison of CALUX concentration levels in historical and recent samples.

    PubMed

    Vandermarken, T; Gao, Y; Baeyens, W; Denison, M S; Croes, K

    2018-06-01

    The Scheldt estuary is historically a highly polluted river system. While several studies have focused on contamination with metals, pesticides, Polycyclic Aromatic Hydrocarbons (PAHs) and marker PolyChlorinated Biphenyls (PCBs), no data are available concerning past contamination by dioxin-like compounds. The objective of this study is to determine spatial and time trends of PolyChlorinated Dibenzo-p-Dioxins and DibenzoFurans (PCDD/Fs) and dioxin-like PCBs (dl-PCBs) in sediment samples and Suspended Particulate Matter (SPM) from the Scheldt River basin and the North Sea Coast. Dioxin-like compounds (PCDD/F and dl-PCB fractions) were measured with the CALUX-bioassay. Bioanalytical EQuivalent concentrations (BEQs) and Total Organic Carbon (TOC) content of historical (1982-1984) and recent (2011-2015) sediment and SPM samples from different locations in the coastal area and the estuary, were evaluated. A decrease in dioxin-like compound concentrations was found at all stations over time, especially for the PCDD/Fs. Dl-PCBs were relatively low in all samples. The Scheldt mouth and the Antwerp harbor yielded the highest BEQs and levels were higher in SPM than in sediment due to the higher organic carbon content in this fraction. Current PCDD/F and dl-PCB levels in the Belgian Coastal Zone and Scheldt estuary are much lower than their levels 30 years ago and pose a relatively low risk to the aquatic system. This is the result of a strong decrease in emissions, however, large local variabilities in sediment concentration levels can still exist because of local variability in sedimentation, erosion rates and in organic carbon content. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    NASA Astrophysics Data System (ADS)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  1. Geochemistry and mercury contamination in receiving environments of artisanal mining wastes and identified concerns for food safety.

    PubMed

    Reichelt-Brushett, Amanda J; Stone, Jane; Howe, Pelli; Thomas, Bernard; Clark, Malcolm; Male, Yusthinus; Nanlohy, Albert; Butcher, Paul

    2017-01-01

    Artisanal small-scale gold mining (ASGM) using mercury (Hg) amalgamation has been occurring on Buru Island, Indonesia since early 2012, and has caused rapid accumulation of high Hg concentrations in river, estuary and marine sediments. In this study, sediment samples were collected from several sites downstream of the Mount Botak ASGM site, as well as in the vicinity of the more recently established site at Gogrea where no sampling had previously been completed. All sediment samples had total Hg (THg) concentrations exceeding Indonesian sediment quality guidelines and were up to 82 times this limit at one estuary site. The geochemistry of sediments in receiving environments indicates the potential for Hg-methylation to form highly bioavailable Hg species. To assess the current contamination threat from consumption of local seafood, samples of fish, molluscs and crustaceans were collected from the Namlea fish market and analysed for THg concentrations. The majority of edible tissue samples had elevated THg concentrations, which raises concerns for food safety. This study shows that river, estuary and marine ecosystems downstream of ASGM operations on Buru Island are exposed to dangerously high Hg concentrations, which are impacting aquatic food chains, and fisheries resources. Considering the high dietary dependence on marine protein in the associated community and across the Mollucas Province, and the short time period since ASGM operations commenced in this region, the results warrant urgent further investigation, risk mitigation, and community education. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Standardization of Blastocystis hominis diagnosis using different staining techniques].

    PubMed

    Eymael, Dayane; Schuh, Graziela Maria; Tavares, Rejane Giacomelli

    2010-01-01

    The present study was carried out from March to May 2008, with the aim of evaluating the effectiveness of different techniques for diagnosing Blastocystis hominis in a sample of the population attended at the Biomedicine Laboratory of Feevale University, Novo Hamburgo, Rio Grande do Sul. On hundred feces samples from children and adults were evaluated. After collection, the samples were subjected to the techniques of spontaneous sedimentation (HPJ), sedimentation in formalin-ether (Ritchie) and staining by means of Gram and May-Grünwald-Giemsa (MGG). The presence of Blastocystis hominis was observed in 40 samples, when staining techniques were used (MGG and Gram), while sedimentation techniques were less efficient (32 positive samples using the Ritchie technique and 20 positive samples using the HPJ technique). Our results demonstrate that HPJ was less efficient than the other methods, thus indicating the need to include laboratory techniques that enable parasite identification on a routine basis.

  3. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    PubMed

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Seasonal flux and assemblage composition of planktic foraminifers from a sediment-trap study in the northern Gulf of Mexico

    USGS Publications Warehouse

    Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.

    2013-01-01

    Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico

  5. Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey.

    PubMed

    Aytas, Sule; Yusan, Sabriye; Aslani, Mahmoud A A; Karali, Turgay; Turkozu, D Alkim; Gok, Cem; Erenturk, Sema; Gokce, Melis; Oguz, K Firat

    2012-01-01

    This article represents the first results of the natural radionuclides in the Maritza and Tundja river sediments, in the vicinity of Edirne city, Turkey. The aim of the article is to describe the natural radioactivity concentrations as a baseline for further studies and to obtain the distribution patterns of radioactivity in trans-boundary river sediments of the Maritza and Tundja, which are shared by Turkey, Bulgaria and Greece. Sediment samples were collected during the period of August 2007-April 2010. The riverbank sediment samples were analyzed firstly for their pH, organic matter content and soil texture. The gross alpha/beta and (238)U, (232)Th and (40)K activity concentrations were then investigated in the collected sediment samples. The mean and standard error of mean values of gross alpha and gross beta activity concentrations were found as 91 ± 11, 410 ± 69 Bq/kg and 86 ± 11, 583 ± 109 Bq/kg for the Maritza and Tundja river sediments, respectively. Moreover, the mean and standard error of mean values of (238)U, (232)Th and (40)K activity concentrations were determined as 219 ± 68, 128 ± 55, 298 ± 13 and as 186 ± 98, 121 ± 68, 222 ± 30 Bq/kg for the Maritza and Tundja River, respectively. Absorbed dose rates (D) and annual effective dose equivalent s have been calculated for each sampling point. The average value of adsorbed dose rate and effective dose equivalent were found as 191 and 169 nGy/h; 2 and 2 mSv/y for the Maritza and the Tundja river sediments, respectively.

  6. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.

    PubMed

    Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei

    2016-06-01

    Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the amphipod Hyalella azteca. However, low TU values were found for the samples from rural areas. These results indicate that the bottom sediments were exposed to high risk largely by the residual SPs from urban areas. The summed TUs were mostly attributable to cypermethrin, followed by λ-cyhalothrin and es/fenvalerate. Despite permethrin contributing ∼28.7 % of the Σ12SP concentration, it only represented 6.34 % of the summed TUs. Therefore, our results suggest that high levels of urbanization can increase the accumulation of SPs in aquatic environments.

  7. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and possibly bioavailability of contaminants in disturbed streambed sediments), the toxicity of water samples to the indicator species Pimephales promelas (fathead minnow) was evaluated by using standard 7-day water-toxicity testing.

  8. Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu, India.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John

    2015-09-01

    Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.

  9. Estimating accumulation rates and physical properties of sediment behind a dam: Englebright Lake, Yuba River, northern California

    USGS Publications Warehouse

    Snyder, Noah P.; Rubin, David M.; Alpers, Charles N.; Childs, Jonathan R.; Curtis, Jennifer A.; Flint, Lorraine E.; Wright, Scott A.

    2004-01-01

    Studies of reservoir sedimentation are vital to understanding scientific and management issues related to watershed sediment budgets, depositional processes, reservoir operations, and dam decommissioning. Here we quantify the mass, organic content, and grain-size distribution of a reservoir deposit in northern California by two methods of extrapolating measurements of sediment physical properties from cores to the entire volume of impounded material. Englebright Dam, completed in 1940, is located on the Yuba River in the Sierra Nevada foothills. A research program is underway to assess the feasibility of introducing wild anadromous fish species to the river upstream of the dam. Possible management scenarios include removing or lowering the dam, which could cause downstream transport of stored sediment. In 2001 the volume of sediments deposited behind Englebright Dam occupied 25.5% of the original reservoir capacity. The physical properties of this deposit were calculated using data from a coring campaign that sampled the entire reservoir sediment thickness (6–32 m) at six locations in the downstream ∼3/4 of the reservoir. As a result, the sediment in the downstream part of the reservoir is well characterized, but in the coarse, upstream part of the reservoir, only surficial sediments were sampled, so calculations there are more uncertain. Extrapolation from one-dimensional vertical sections of sediment sampled in cores to entire three-dimensional volumes of the reservoir deposit is accomplished via two methods, using assumptions of variable and constant layer thickness. Overall, the two extrapolation methods yield nearly identical estimates of the mass of the reservoir deposit of ∼26 × 106 metric tons (t) of material, of which 64.7–68.5% is sand and gravel. Over the 61 year reservoir history this corresponds to a maximum basin-wide sediment yield of ∼340 t/km2/yr, assuming no contribution from upstream parts of the watershed impounded by other dams. The uncertainties and limitations of the estimates of overall sediment quantities are discussed. Implications for watershed management and future reservoir sedimentation studies are also presented.

  10. Reservoir-flooded river mouth areas as sediment traps revealing erosion from peat mining areas - Jukajoki case study in eastern Finland

    NASA Astrophysics Data System (ADS)

    Tahvanainen, Teemu; Meriläinen, Henna-Kaisa; Haraguchi, Akira; Simola, Heikki

    2016-04-01

    Many types of soil-disturbing land use have caused excess sedimentation in Finnish lakes. Identification and quantification of catchment sources of sediment material is crucial in cases where demands for remediation measures are considered. We studied recent (50 yr) sediments of four small rivers, all draining to a reservoir impounded in 1971. Catchments of two of the rivers had had peat mining activities from early 1980s until recently, exposing large areas of peat surfaces to erosion. The water level of the reservoir had risen to the river mouth areas of all rivers, while in each case, the river mouth areas still form riverine narrows separable from the main reservoir, hence collecting sedimentation from their own catchments. The original soils under the reservoir water level could readily be observed in core samples, providing a dated horizon under recent sediments. In addition, we used 137Cs-stratigraphies for dating of samples from original river bed locations. As expected, recent sediments of rivers with peat mining influence differed from others e.g. by high organic content and C:N ratios. Stable isotopes 13C and 15N both correlated with C:N (r = 0.799 and r = -0.717, respectively) and they also differentiated the peat-mining influenced samples from other river sediments. Principal components of the physical-chemical variables revealed clearer distinction than any variables separately. Light-microscopy revealed abundance of leafs of Sphagnum mosses in peat-mining influenced river sediments that were nearly absent from other rivers. Spores of Sphagnum were, however, abundant in all river sediments indicating their predominantly airborne origin. We find that combination of several physical-chemical characters rather than any single variable and microscopy of plant remains can result in reliable recognition of peatland-origin of sediment material when non-impacted sites are available for comparison. Dating of disturbed recent sediments is challenging. River-mouth areas with reservoir history can be particularly useful as the terrestrial soil strata provides a dated horizon under recent sediments.

  11. Applicability of solid-phase microextraction combined with gas chromatography atomic emission detection (GC-MIP AED) for the determination of butyltin compounds in sediment samples.

    PubMed

    Carpinteiro, J; Rodríguez, I; Cela, R

    2004-11-01

    The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED.

  12. Concentrations of Elements in Sediments and Selective Fractions of Sediments, and in Natural Waters in Contact with Sediments from Lake Roosevelt, Washington, September 2004

    USGS Publications Warehouse

    Paulson, Anthony J.; Wagner, Richard J.; Sanzolone, Richard F.; Cox, Steven E.

    2006-01-01

    Twenty-eight composite and replicate sediment samples from 8 Lake Roosevelt sites were collected and analyzed for 10 alkali and alkaline earth elements, 2 non-metals, 20 metals, and 4 lanthanide and actinide elements. All elements were detected in all sediment samples except for silver (95 percent of the elements detected for 1,008 analyses), which was detected only in 4 samples. Sequential selective extraction procedures were performed on single composite samples from the eight sites. The percentage of detections for the 31 elements analyzed ranged from 76 percent for the first extraction fraction using a weak extractant to 93 percent for the four-acid dissolution of the sediments remaining after the third sequential selective extraction. Water samples in various degrees of contact with the sediment were analyzed for 10 alkali and alkaline earth elements, 5 non-metals, 25 metals, and 16 lanthanide and actinide elements. The filtered water samples included 10 samples from the reservoir water column at 8 sites, 32 samples of porewater, 55 samples from reservoir water overlying sediments in 8 cores from the site incubated in a field laboratory, and 24 water samples that were filtered after being tumbled with sediments from 8 sites. Overall, the concentrations of only 37 percent of the 6,776 analyses of the 121 water samples were greater than the reporting limit. Selenium, bismuth, chromium, niobium, silver, and zirconium were not detected in any water samples. The percentage of concentrations for the water samples that were above the reporting limit ranged from 14 percent for the lanthanide and actinide elements to 77 percent for the alkali and alkaline earth elements. Concentrations were greater than reporting limits in only 23 percent of the analyses of reservoir water and 29 percent of the analyses of reservoir water overlying incubation cores. In contrast, 47 and 48 percent of the concentrations of porewater and water samples tumbled with sediments, respectively, were greater than the reporting limit.

  13. INNOVATIVE TECHNOLOGY EVALUATION REPORT ...

    EPA Pesticide Factsheets

    The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the samplers ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Split Core Sampler and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Split Core Sampler performed as well as or better than the reference samplers. Based on visual observations, both the Split Core Sampler and reference samplers collected partially compressed samples of consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved for both consolidated and unconsolidated sediment samples collected by the Split Core Sampler and reference samplers. No sampler was able to collect samples

  14. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill.

    PubMed

    Bejarano, Adriana C; Michel, Jacqueline

    2010-05-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU(FCV,43)). Samples were assigned to risk categories according to ESBTU(FCV,43) values: no-risk (< or = 1), low (>1 - < or = 2), low-medium (>2 - < or = 3), medium (>3 - < or = 5) and high-risk (>5). Sixty seven percent of samples had ESBTU(FCV,43) > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30 - <60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma- summary of information on pesticides, 1970-90

    USGS Publications Warehouse

    Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.

    1996-01-01

    Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground water, was found in 15 of 95 samples from 15 of 79 wells with concentrations ranging from 0.1 to 8.2 micrograms per liter. Metolachlor, alachlor, and prometon were detected more than once with maximum concentrations less than 1.0 micrograms per liter, except for prometon (2.4 micrograms per liter). Chlordane was the pesticide having the most number of detections in bed sediment and biological tissue. Chlordane was detected in 12 of 73 samples from 10 of 45 bed-sediment sites with concentrations ranging from 2.0 to 240 micrograms per kilogram. In biological tissue, chlordane was found in 93 of 151 samples from 39 of 53 sites with concentrations ranging from 0.009 to 8.6 milligrams per kilogram. Other pesticides or pesticide metabolites detected more than once in bed sediment include DDT, DDD, p,p'-DDE, DDE, and hexachlorobenzene and in biological tissue include DDT, p,p'-DDE, and hexachlorobenzene. Quality criteria or standards have been established for 15 of the pesticides detected in the study unit. For surface-water samples, the drinking water maximum contaminant level for alachlor was exceeded in one sample from one site in 1982. For ground-water samples, the drinking water maximum contaminant level for atrazine was exceeded in four samples from four wells in 1990. For biological-tissue samples collected during the years 1982-89, the fish tissue action levels for chlordane (19 sites; 26 samples), heptachlor epoxide (3 sites; 3 samples), p,p'-DDE (2 sites; 2 samples), dieldrin (2 sites, 2 samples), and mirex (1 site; 1 sample) were exceeded. For bed-sediment samples, quality criteria or standards were not exceeded for any pesticide. Pesticides do not pose any widespread or persistent problems in the study unit, based on the limited number of samples that exceeded quality criteria and standards.

  16. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    USGS Publications Warehouse

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  17. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges.

    PubMed

    Rutgersson, Carolin; Fick, Jerker; Marathe, Nachiket; Kristiansson, Erik; Janzon, Anders; Angelin, Martin; Johansson, Anders; Shouche, Yogesh; Flach, Carl-Fredrik; Larsson, D G Joakim

    2014-07-15

    There is increasing concern that environmental antibiotic pollution promotes transfer of resistance genes to the human microbiota. Here, fluoroquinolone-polluted river sediment, well water, irrigated farmland, and human fecal flora of local villagers within a pharmaceutical industrial region in India were analyzed for quinolone resistance (qnr) genes by quantitative PCR. Similar samples from Indian villages farther away from industrial areas, as well as fecal samples from Swedish study participants and river sediment from Sweden, were included for comparison. Fluoroquinolones were detected by MS/MS in well water and soil from all villages located within three km from industrially polluted waterways. Quinolone resistance genes were detected in 42% of well water, 7% of soil samples and in 100% and 18% of Indian and Swedish river sediments, respectively. High antibiotic concentrations in Indian sediment coincided with high abundances of qnr, whereas lower fluoroquinolone levels in well water and soil did not. We could not find support for an enrichment of qnr in fecal samples from people living in the fluoroquinolone-contaminated villages. However, as qnr was detected in 91% of all Indian fecal samples (24% of the Swedish) it suggests that the spread of qnr between people is currently a dominating transmission route.

  18. Determination of plutonium and its isotopic ratio in marine sediment samples using quadrupole ICP-MS with the shield torch system under normal plasma conditions.

    PubMed

    Zheng, Jian; Yamada, Masatoshi; Wang, Zhongliang; Aono, Tatsuo; Kusakabe, Masashi

    2004-06-01

    An analytical method for determining (239)Pu and (240)Pu in marine sediment samples, which uses quadrupole ICP-MS, was developed in this work. A simple anion-exchange chromatography system was employed for the separation and purification of Pu from the sample matrix. A sufficient decontamination factor of 1.4 x 10(4) for U, which interferes with the determination of (239)Pu, was achieved. High sensitivity Pu determination was obtained, which led to an extremely low concentration detection limit of approximately 8 fg/ml (0.019 mBq/ml for (239)Pu; 0.071 mBq/ml for (240)Pu) in a sample solution, or an absolute detection limit of 42 fg in a 5 ml sample solution, by using the shield torch technique. Analytical results for the determination of the (239+240)Pu and the (240)Pu/(239)Pu ratio in IAEA 368 (ocean sediment) reference material indicated that the accuracy of the method was satisfactory. The method developed was successfully applied to a study of Pu behavior in the sediments from Sagami Bay, Japan. The observed high (240)Pu/(239)Pu ratio in the sediment core indicated that there was additional Pu input derived from close-in fallout in addition to the global fallout.

  19. Agricultural land use doubled sediment yield of western China's rivers

    NASA Astrophysics Data System (ADS)

    Schmidt, A. H.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Rood, D. H.; Martin, J.; Hill, M.

    2017-12-01

    Land use changes, such as deforestation and agriculture, increase soil erosion rates on the scale of hillslopes and small drainage basins; however, the effects of these changes on the sediment load in larger rivers is poorly quantified, with a few studies scattered globally, and only 10 data points in the world's most populous nation, China. At 20 different sites in western China, we compare contemporary (1945-1987) fluvial sediment yield data collected daily over 4 to 26 years (median = 19 years) to long-term measures of erosion (sediment generation) based on new isotopic measurements of in situ 10Be in river sediments. We find that median sediment transport at these sites exceeds background sediment generation rates by a factor of two (from 0.13 to 5.79 times, median 1.85 times) and that contemporary sediment yield is statistically significantly different from long-term sediment yield (p < 0.05). Agricultural land use is directly and significantly proportional to the ratio of contemporary sediment yield to long term sediment generation rates (Spearman correlation coefficient rho = 0.52, p < 0.05). We support these findings by calculating erosion indices (following Brown et al., 1988), which compare the delivery of meteoric 10Be to each watershed with the export of meteoric 10Be bound to riverine sediment. Erosion indices are also directly and significantly proportional to agricultural land use (rho = 0.58, p < 0.05). We measured unsupported 210Pb and 137Cs in 130 detrital samples from throughout the region. We find that only 4 samples (those from high elevation, low relief watersheds) have detectable 137Cs and 31 samples have detectable unsupported 210Pb. The lack of 137Cs in most samples suggests high rates of erosion in the 1950s-1960s when 137Cs would have been delivered to the landscape. Detectable 210Pb in 25% of the watersheds suggests that in some areas erosion rates have slowed since that time allowing 210Pb to accumulate to measurable levels. Together, these data sets demonstrate that upstream agricultural land use has significantly increased sediment supply to rivers in western China, likely increasing turbidity and decreasing ecosystem services such as fisheries.

  20. Magnetic properties of Japan Sea sediments in areas which host shallow gas hydrates and in relation to the the amount of gas hydrate

    NASA Astrophysics Data System (ADS)

    Shimono, T.; Matsumoto, R.

    2016-12-01

    Shallow gas hydrate is known to occur as massive nodular aggregates in subsurface and/or shallow marine sediments (e.g. Matsumoto et al. 2009). We conducted a rock magnetic study of marine core sediments to clarify the relationship between shallow gas hydrate and the surrounding sediments. The core samples were taken from around Oki area and offshore Joetsu, the eastern margin of Japan Sea, during PS15 cruise in 2015. We mainly report magnetic susceptibility measurement of whole-round core samples. From the onboard measurements, the magnetic susceptibilities of gas hydrates indicated diamagnetic mineral like water or ice ( -0.9 x 10-5 vol. SI). Moreover, we introduce a method to assess the amount of gas hydrate present within marine sediments using magnetic susceptibility and rock magnetic analyses. This study was conducted under the commission from AIST as a part of the methane hydrate research project of METI (the Ministry of Economy, Trade and Industry, Japan).

  1. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  2. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    USGS Publications Warehouse

    Juracek, Kyle E.; Rasmussen, Patrick P.

    2008-01-01

    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects. The largest copper, lead, silver, and zinc concentrations, measured for a sample collected from Sand Creek downstream from Newton, Kansas, likely were related to urban sources of contamination. Radionuclide activities and bacterial densities in the streambed sediment varied throughout the basin. Variability in the former may be indicative of subbasin differences in the contribution of sediment from surface-soil and channel-bank sources. Streambed sediment may be useful for reconnaissance purposes to determine sources of particulate nitrogen, phosphorus, organic carbon, and other sediment-associated constituents in the basin. If flow conditions prior to streambed-sediment sampling and during water-quality sampling are considered, it may be possible to use streambed sediment as an indicator of water quality for nitrogen, phosphorus, and organic carbon. Flow conditions affect sediment-associated constituent concentrations in streambed-sediment and water samples, in part, because the sources of sediment (surface soils, channel banks) can vary with flow as can the size of the particles transported.

  3. Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15

    USGS Publications Warehouse

    Hermosillo, Edyth; Coes, Alissa L.

    2017-03-01

    Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.

  4. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    USGS Publications Warehouse

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg/L), and the Middle Fork Clearwater River at Kooskia, Idaho (15 mg/L). The largest measured concentrations of suspended sediment (3,300 and 1,400 mg/L) during a rain-on-snow event in January 2011 were from samples collected at the Potlatch River near Spalding, Idaho, and the Palouse River at Hooper, Washington, respectively. Generally, samples collected from agricultural watersheds had a high percentage of silt and clay-sized suspended sediment, whereas samples collected from forested watersheds had a high percentage of sand. During water years 2009–11, Lower Granite Reservoir received about 10 million tons of suspended sediment from the combined loads of the Snake and Clearwater Rivers. The Snake River accounted for about 2.97 million tons per year (about 89 percent) of the total suspended sediment, 1.48 million tons per year (about 90 percent) of the suspended sand, and about 1.52 million tons per year (87 percent) of the suspended silt and clay. Of the suspended sediment transported to Lower Granite Reservoir, the Salmon River accounted for about 51 percent of the total suspended sediment, about 56 percent of the suspended sand, and about 44 percent of the suspended silt and clay. About 6.2 million tons (62 percent) of the sediment contributed to Lower Granite Reservoir during 2009–11 entered during water year 2011, which was characterized by an above average winter snowpack and sustained spring runoff. A comparison of historical data collected from the Snake River near Anatone with data collected during this study indicates that concentrations of total suspended sediment and suspended sand in the Snake River were significantly smaller during water years 1972–79 than during 2008–11. Most of the increased sediment content in the Snake River is attributable to an increase of sand-size material. During 1972–79, sand accounted for an average of 28 percent of the suspended-sediment load; during 2008–11, sand accounted for an average of 48 percent. Historical data from the Clearwater River at Spalding indicates that the concentrations of total suspended sediment collected during 1972–79 were not significantly different from the concentrations measured during this study. However, the suspended-sand concentrations in the Clearwater River were significantly smaller during 1972–79 than during 2008–11. The increase in suspended-sand concentrations in the Snake and Clearwater Rivers are probably attributable to numerous severe forest fires that burned large areas of central Idaho from 1980–2010. Acoustic backscatter from an acoustic Doppler velocity meter proved to be an effective method of estimating suspended-sediment concentration and load for most streamflow conditions in the Snake and Clearwater Rivers. Models based on acoustic backscatter were able to simulate most of the variability in suspended-sediment concentrations in the Clearwater River at Spalding (coefficient of determination [R2]=0.93) and the Snake River near Anatone (R2=0.92). Acoustic backscatter seems to be especially effective for estimating suspended-sediment concentration and load over short (monthly and single storm event) and long (annual) time scales when sediment load is highly variable. However, during high streamflow events acoustic surrogate tools may be unable to capture the contribution of suspended sand moving near the bottom of the water column and thus, underestimate the total load of suspended sediment. At the stations where bedload was collected, the particle-size distribution at low streamflows typically was unimodal with sand comprising the dominant particle size. At higher streamflows and during peak bedload discharge, the particle size typically was bimodal and was comprised primarily of sand and coarse gravel. About 55,000 tons of bedload was discharged from the Snake River to Lower Granite Reservoir during water years 2009–11, about 0.62 percent of the total sediment load delivered by the Snake River. About 9,500 tons of bedload was discharged from the Clearwater River to Lower Granite Reservoir during 2009–11, about 0.83 percent of the total sediment load discharged by the Clearwater River during 2009–11.

  5. Textural characteristics and sedimentary environment of sediment at eroded and deposited regions in the severely eroded coastline of Batu Pahat, Malaysia.

    PubMed

    Wan Mohtar, Wan Hanna Melini; Nawang, Siti Aminah Bassa; Abdul Maulud, Khairul Nizam; Benson, Yannie Anak; Azhary, Wan Ahmad Hafiz Wan Mohamed

    2017-11-15

    This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determining the sources of fine-grained sediment using the Sediment Source Assessment Tool (Sed_SAT)

    USGS Publications Warehouse

    Gorman Sanisaca, Lillian E.; Gellis, Allen C.; Lorenz, David L.

    2017-07-27

    A sound understanding of sources contributing to instream sediment flux in a watershed is important when developing total maximum daily load (TMDL) management strategies designed to reduce suspended sediment in streams. Sediment fingerprinting and sediment budget approaches are two techniques that, when used jointly, can qualify and quantify the major sources of sediment in a given watershed. The sediment fingerprinting approach uses trace element concentrations from samples in known potential source areas to determine a clear signature of each potential source. A mixing model is then used to determine the relative source contribution to the target suspended sediment samples.The computational steps required to apportion sediment for each target sample are quite involved and time intensive, a problem the Sediment Source Assessment Tool (Sed_SAT) addresses. Sed_SAT is a user-friendly statistical model that guides the user through the necessary steps in order to quantify the relative contributions of sediment sources in a given watershed. The model is written using the statistical software R (R Core Team, 2016b) and utilizes Microsoft Access® as a user interface but requires no prior knowledge of R or Microsoft Access® to successfully run the model successfully. Sed_SAT identifies outliers, corrects for differences in size and organic content in the source samples relative to the target samples, evaluates the conservative behavior of tracers used in fingerprinting by applying a “Bracket Test,” identifies tracers with the highest discriminatory power, and provides robust error analysis through a Monte Carlo simulation following the mixing model. Quantifying sediment source contributions using the sediment fingerprinting approach provides local, State, and Federal land management agencies with important information needed to implement effective strategies to reduce sediment. Sed_SAT is designed to assist these agencies in applying the sediment fingerprinting approach to quantify sediment sources in the sediment TMDL framework.

  7. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Karoon River, Khuzestan Province, Iran.

    PubMed

    Keshavarzi, Behnam; Mokhtarzadeh, Zeinab; Moore, Farid; Rastegari Mehr, Meisam; Lahijanzadeh, Ahmadreza; Rostami, Soqra; Kaabi, Helena

    2015-12-01

    Karoon is the longest river in Iran and provides water for industries located along its banks, such as metal, petrochemical, and oil industries. It is also the source of drinking water for cities such as Ahwas, Abadan, and Khorramshahr. In this study, 34 and 18 surface sediment samples were collected and analyzed for heavy metals (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and polycyclic aromatic hydrocarbons (PAHs). The measured concentrations of heavy metals were compared with US EPA sediment quality guidelines, and the results showed that Cu concentration was above the threshold effect level (TEL) in 65.67% of the samples and Hg concentration was above the effect range median (ERM) in some samples. The results revealed that Hg was severely enriched (5 < enrichment factor < 20) and classified in very high ecological risk index category. It is the major metallic contaminant in the study area. The total PAH concentrations ranged from 11.54-117,730 μg/kg, with the mean value of 7034.55 μg/kg dominated by lower molecular weight (LMW) PAHs. The total potentially carcinogenic PAHs (∑cPAHs) in sediment samples ranged from 2.09 to 31,930 μg/kg, indicating high carcinogenic potential of sediments in the study area. The total toxic equivalent (TEQ) values ranged from 1.06 to 7228.7 μg/kg. Maximum TEQ occurred in Abadan oil refinery station followed by Khorramshahr soap factory and Abadan petrochemical complex. Principal component analysis and cluster analysis also revealed the relationships between the studied parameters and identified their probable sources.

  8. Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling.

    PubMed

    Kellner, Elliott; Hubbart, Jason A

    2017-11-15

    Given the importance of suspended sediment to biogeochemical functioning of aquatic ecosystems, and the increasing concern of mixed-land-use effects on pollutant loading, there is an urgent need for research that quantitatively characterizes spatiotemporal variation of suspended sediment dynamics in contemporary watersheds. A study was conducted in a representative watershed of the central United States utilizing a nested-scale experimental watershed design, including five gauging sites (n=5) partitioning the catchment into five sub-watersheds. Hydroclimate stations at gauging sites were used to monitor air temperature, precipitation, and stream stage at 30-min intervals during the study (Oct. 2009-Feb. 2014). Streamwater grab samples were collected four times per week, at each site, for the duration of the study (Oct. 2009-Feb. 2014). Water samples were analyzed for suspended sediment using laser particle diffraction. Results showed significant differences (p<0.05) between monitoring sites for total suspended sediment concentration, mean particle size, and silt volume. Total concentration and silt volume showed a decreasing trend from the primarily agricultural upper watershed to the urban mid-watershed, and a subsequent increasing trend to the more suburban lower watershed. Conversely, mean particle size showed an opposite spatial trend. Results are explained by a combination of land use (e.g. urban stormwater dilution) and surficial geology (e.g. supply-controlled spatial variation of particle size). Correlation analyses indicated weak relationships with both hydroclimate and land use, indicating non-linear sediment dynamics. Suspended sediment parameters displayed consistent seasonality during the study, with total concentration decreasing through the growing season and mean particle size inversely tracking air temperature. Likely explanations include vegetation influences and climate-driven weathering cycles. Results reflect unique observations of spatiotemporal variation of suspended sediment particle size class. Such information is crucial for land and water resource managers working to mitigate aquatic ecosystem degradation and improve water resource sustainability in mixed-land-use watersheds globally. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of critical shear stresses for consolidated cohesive sediment depositions by using PIV compared with field measurements

    NASA Astrophysics Data System (ADS)

    Harb, Gabriele; Haun, Stefan

    2013-04-01

    Reservoir sedimentation is a common problem today. Due to the reduced flow velocities, turbulences and bed shear stresses the transported sediment load start to settle. These depositions reduce the worldwide average storage capacity in the range of about 1% per year. However, depending on the climate conditions and the geology in the catchment area this value may vary strongly. Therefore sediment management tasks, especially the removal of already accumulated sediments, have to be developed for each reservoir separately. The critical bed shear stress is a key parameter used to evaluate the different management tasks and depend strongly on the grain size distribution of the inflowing sediments. However, depositions which contain fine particles like clay and silt increase the critical bed shear stress due to occurring cohesive forces and the use of the Shield curve for evaluating the critical shear stress is no longer valid. Additional data is required for estimating the valid critical shear stress at the reservoir bed. In this study the critical shear stress was evaluated for cohesive sediment samples, taken from two different reservoirs, in a flume in the laboratory. The sediment samples were placed in an installed double bottom in the research flume and the discharge was increased stepwise until mass erosion took place (determined by visual inspection). A 2D PIV device was used to measure the flow conditions (velocities and turbulences) over the sediment sample. The obtained values were used to calculate the bed shear stress for the specific discharge rate by the gravity method and the Reynolds stress method. The results of both methods showed good agreement in the comparison of the values, what indicates that nearly uniform flow conditions occurred in the flume. The results from this study showed that the behaviour of natural cohesive sediments depend strongly on the natural conditions as a result of physical, chemical and biological processes. In this case especially the effect of the layer structure in the sediment samples was controlling the erosion mechanism. The results of the experiments showed also that the obtained average shear stress was above most of the values found in previous conducted studies, which may be explained by consolidation effects in the reservoirs. Additional conducted vane strength measurements have been carried out in situ. The in the field obtained vane strength values were set in relation to the critical shear stresses derived by the experimental tests from the laboratory and to data from a previous conducted study to develop a new relation function. This function may be used in future studies for a rough estimation of the critical shear stress, based on in situ measured vane strength values.

  10. Biodiversity of Clostridium botulinum Type E Associated with a Large Outbreak of Botulism in Wildlife from Lake Erie and Lake Ontario ▿

    PubMed Central

    Hannett, George E.; Stone, Ward B.; Davis, Stephen W.; Wroblewski, Danielle

    2011-01-01

    The genetic relatedness of Clostridium botulinum type E isolates associated with an outbreak of wildlife botulism was studied using random amplification of polymorphic DNA (RAPD). Specimens were collected from November 2000 to December 2008 during a large outbreak of botulism affecting birds and fish living in and around Lake Erie and Lake Ontario. In our present study, a total of 355 wildlife samples were tested for the presence of botulinum toxin and/or organisms. Type E botulinum toxin was detected in 110 samples from birds, 12 samples from fish, and 2 samples from mammals. Sediment samples from Lake Erie were also examined for the presence of C. botulinum. Fifteen of 17 sediment samples were positive for the presence of C. botulinum type E. Eighty-one C. botulinum isolates were obtained from plants, animals, and sediments; of these isolates, 44 C. botulinum isolates produced type E toxin, as determined by mouse bioassay, while the remaining 37 isolates were not toxic for mice. All toxin-producing isolates were typed by RAPD; that analysis showed 12 different RAPD types and multiple subtypes. Our study thus demonstrates that multiple genetically distinct strains of C. botulinum were involved in the present outbreak of wildlife botulism. We found that C. botulinum type E is present in the sediments of Lake Erie and that a large range of bird and fish species is affected. PMID:21115703

  11. Analysis of pesticides in surface water and sediment from Yolo Bypass, California, 2004-2005

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Inputs to the Yolo Bypass are potential sources of pesticides that could impact critical life stages of native fish. To assess the direct inputs during inundation, pesticide concentrations were analyzed in water, in suspended and bed-sediment samples collected from six source watersheds to the Yolo Bypass, and from three sites within the Bypass in 2004 and 2005. Water samples were collected in February 2004 from the six input sites to the Bypass during the first flood event of the year representing pesticide inputs during high-flow events. Samples were also collected along a transect across the Bypass in early March 2004 and from three sites within the Bypass in the spring of 2004 under low-flow conditions. Low-flow data were used to understand potential pesticide contamination and its effects on native fish if water from these areas were used to flood the Bypass in dry years. To assess loads of pesticides to the Bypass associated with suspended sediments, large-volume water samples were collected during high flows in 2004 and 2005 from three sites, whereas bed sediments were collected from six sites in the fall of 2004 during the dry season. Thirteen current-use pesticides were detected in surface water samples collected during the study. The highest pesticide concentrations detected at the input sites to the Bypass corresponded to the first high-flow event of the year. The highest pesticide concentrations at the two sites sampled within the Bypass during the early spring were detected in mid-April following a major flood event as the water began to subside. The pesticides detected and their concentrations in the surface waters varied by site; however, hexazinone and simazine were detected at all sites and at some of the highest concentrations. Thirteen current-use pesticides and three organochlorine insecticides were detected in bed and suspended sediments collected in 2004 and 2005. The pesticides detected and their concentrations varied by site and sediment sample type. Trifluralin, p,p'-DDE, and p,p'-DDT were highest in the bed sediments, whereas oxyfluorfen and thiobencarb were highest in the suspended sediments. With the exception of the three organochlorine insecticides, suspended sediments had higher pesticide concentrations compared with bed sediments, indicating the potential for pesticide transport throughout the Bypass, especially during high-flow events. Understanding the distribution of pesticides between the water and sediment is needed to assess fate and transport within the Bypass and to evaluate the potential effects on native fish.

  12. Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis.

    PubMed

    Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming

    2018-05-01

    Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.

  13. Microbial community analysis of an Alabama coastal salt marsh impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Beazley, M. J.; Martinez, R.; Rajan, S.; Powell, J.; Piceno, Y.; Tom, L.; Andersen, G. L.; Hazen, T. C.; Van Nostrand, J. D.; Zhou, J.; Mortazavi, B.; Sobecky, P. A.

    2011-12-01

    Microbial community responses of an Alabama coastal salt marsh environment to the Deepwater Horizon oil spill were studied by 16S rRNA (PhyloChip) and functional gene (GeoChip) microarray-based analysis. Oil and tar balls associated with the oil spill arrived along the Alabama coast in June 2010. Marsh and inlet sediment samples collected in June, July, and September 2010 from a salt marsh ecosystem at Point Aux Pines Alabama were analyzed to determine if bacterial community structure changed as a result of oil perturbation. Sediment total petroleum hydrocarbon (TPH) concentrations ranged from below detection to 189 mg kg-1 and were randomly dispersed throughout the salt marsh sediments. Total DNA extracted from sediment and particulates were used for PhyloChip and GeoChip hybridization. A total of 4000 to 8000 operational taxonomic units (OTUs) were detected in marsh and inlet samples. Distinctive changes in the number of detectable OTUs were observed between June, July, and September 2010. Surficial inlet sediments demonstrated a significant increase in the total number of OTUs between June and September that correlated with TPH concentrations. The most significant increases in bacterial abundance were observed in the phyla Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. Bacterial richness in marsh sediments also correlated with TPH concentrations with significant changes primarily in Acidobacteria, Actinobacteria, Firmicutes, Fusobacteria, Nitrospirae, and Proteobacteria. GeoChip microarray analysis detected 5000 to 8300 functional genes in marsh and inlet samples. Surficial inlet sediments demonstrated distinctive increases in the number of detectable genes and gene signal intensities in July samples compared to June. Signal intensities increased (> 1.5-fold) in genes associated with petroleum degradation. Genes related to metal resistance, stress, and carbon cycling also demonstrated increases in oiled sediments. This study demonstrates the value of applying phylogenetic and functional gene microarray technology to characterize the extensive microbial diversity of marsh environments. Moreover, this technology provides significant insight into bacterial community responses to anthropogenic oil events.

  14. Improved Method for the Detection and Quantification of Naegleria fowleri in Water and Sediment Using Immunomagnetic Separation and Real-Time PCR

    PubMed Central

    Mull, Bonnie J.; Narayanan, Jothikumar; Hill, Vincent R.

    2013-01-01

    Primary amebic meningoencephalitis (PAM) is a rare and typically fatal infection caused by the thermophilic free-living ameba, Naegleria fowleri. In 2010, the first confirmed case of PAM acquired in Minnesota highlighted the need for improved detection and quantification methods in order to study the changing ecology of N. fowleri and to evaluate potential risk factors for increased exposure. An immunomagnetic separation (IMS) procedure and real-time PCR TaqMan assay were developed to recover and quantify N. fowleri in water and sediment samples. When one liter of lake water was seeded with N. fowleri strain CDC:V212, the method had an average recovery of 46% and detection limit of 14 amebas per liter of water. The method was then applied to sediment and water samples with unknown N. fowleri concentrations, resulting in positive direct detections by real-time PCR in 3 out of 16 samples and confirmation of N. fowleri culture in 6 of 16 samples. This study has resulted in a new method for detection and quantification of N. fowleri in water and sediment that should be a useful tool to facilitate studies of the physical, chemical, and biological factors associated with the presence and dynamics of N. fowleri in environmental systems. PMID:24228172

  15. Aquatic sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePinto, J.V.; Young, T.C.; Booty, W.G.

    1984-06-01

    This literature review includes conference proceedings on the interactions of PCBs. Papers range from the adsorption/desorption behavior of PCBs to the influence of suspended and benthic sediments on fate and transport modeling of PCBs in the Great Lakes. Other papers are included in the review which involve analytical and sampling methods, paleolimnology, and modeling and sediment transport. Two papers presented the results of using radionuclides (Pb-210, Ru-106, Cs-137) in the study of lake-sediment dynamics. 111 references.

  16. Assessment of elemental concentrations in streams of the New Lead Belt in southeastern Missouri, 2002-05

    USGS Publications Warehouse

    Brumbaugh, William G.; May, Thomas W.; Besser, John M.; Allert, Ann L.; Schmitt, Christopher J.

    2007-01-01

    Concerns about possible effects of lead-mining activities on the water quality of federally protected streams located in southeastern Missouri prompted a suite of multidisciplinary studies to be conducted by the U.S. Geological Survey. As part of this investigation, a series of biological studies were initiated in 2001 for streams in the current mining region and the prospecting area. In this report, results are examined for trace elements and other selected chemical measurements in sediment, surface water, and sediment interstitial (pore) water sampled between 2002 and 2005 in association with these biological studies. Compared to reference sites, fine sediments collected downstream from mining areas were enriched in metals by factors as large as 75 for cadmium, 62 for cobalt, 171 for nickel, 95 for lead, and 150 for zinc. Greatest metal concentrations in sediments collected in 2002 were from sites downstream from mines on Strother Creek, Courtois Creek, and the West Fork Black River. Sediments from sites on Bee Fork, Logan Creek, and Sweetwater Creek also were noticeably enriched in lead. Sediments in Clearwater Lake, at least 75 kilometers downstream from mining activity, had metal concentrations that were 1.5 to 2.1 times greater than sediments in an area of the lake with no upstream mining activity. Longitudinal sampling along three streams in 2004 indicated that sediment metal concentrations decreased considerably a few kilometers downstream from mining activities; however, in Strother Creek some metals were still enriched by a factor of five or more as far as 13 kilometers downstream from the Buick tailings impoundment. Compared with 2002 samples, metals concentrations were dramatically lower in sediments collected in 2004 at an upper West Fork Black River site, presumably because beneficiation operations at the West Fork mill ceased in 2000. Concentrations of metals and sulfate in sediment interstitial (pore) waters generally tracked closely with metal concentrations in sediments. Metals, including cobalt, nickel, lead, and zinc, were elevated substantially in laboratory-produced pore waters of fine sediments collected near mining operations in 2002 and 2004. Passive diffusion samplers (peepers) buried 4 to 6 centimeters deep in riffle-run stream sediments during 2003 and 2005 had much lower pore-water metal concentrations than the laboratory-produced pore waters of fine sediments collected in 2002 and 2004, but each sampling method produced similar patterns among sites. The combined mean concentration of lead in peeper samples from selected sites located downstream from mining activities for six streams was about 10-fold greater than the mean of the reference sites. In most instances, metals concentrations in surface water and peeper water were not greatly different, indicating considerable exchange between the surface water and pore water at the depths and locations where peepers were situated. Passive sampling probes used to assess metal lability in pore waters of selected samples during 2004 sediment toxicity tests indicated that most of the filterable lead in the laboratory-prepared pore water was relatively non-labile, presumably because lead was complexed by organic matter, or was present as colloidal species. In contrast, large percentages of cobalt and nickel in pore water appeared to be labile. Passive integrative samplers deployed in surface water for up to 3 weeks at three sites in July 2005 confirmed the presence of elevated concentrations of labile metals downstream from mining operations on Strother Creek and, to a lesser extent, Bee Fork. These samplers also indicated a considerable increase in metal loadings occurred for a few days at the Strother Creek site, which coincided with moderate increases in stream discharges in the area.

  17. Results of sampling and analysis : preliminary sediment quality assessment Martha Lake Snohomish County Washington

    DOT National Transportation Integrated Search

    1995-10-18

    This report presents the results of sediment sampling and analysis conducted in support of proposed dredging activities of Martha Lake Sediments. The characterization of the sediments will be used in support of permitting applications and exploring v...

  18. Geochemical characteristics of organic compounds in a permafrost sediment core sample from northeast Siberia, Russia

    NASA Technical Reports Server (NTRS)

    Matsumoto, G. I.; Friedmann, E. I.; Gilichinsky, D. A.

    1995-01-01

    We studied total organic carbon (TOC), hydrocarbons and fatty acids in a permafrost sediment core sample (well 6-90, length 32.0 m, 1.5-2.5 Ma BP) from northeast Siberia (approximately 70 degrees N, 158 degrees E), Russia, to elucidate their geochemical features in relation to source organisms and paleoenvironmental conditions. Long-chain n-alkanes and n-alkanoic acids (>C19) were most predominant hydrocarbons and fatty acids, respectively, so organic matter in the sediment core was derived mainly from vascular plants and, to a much smaller extent, from bacteria. Low concentrations of unsaturated fatty acids revealed that organic matter in the sediment core was considerably degraded during and/or after sedimentation. The predominance of vascular plant components, the major ionic components of nonmarine sources, and geological data strongly implied that the sediment layers were formed in shallow lacustrine environments, such as swamp with large influences of tundra or forest-tundra vegetation. Also, no drastic changes in paleoenvironmental conditions for biological activity or geological events, such as sea transgressions or ice-sheet influences, occurred at the sampling site approximately 100 km from the coast of the East Siberian Sea during the late Pliocene an early Pleistocene periods.

  19. Optimization of sample preparation and chromatography for the determination of perfluoroalkyl acids in sediments from the Yangtze Estuary and East China Sea.

    PubMed

    Wang, Qian-Wen; Yang, Gui-Peng; Zhang, Ze-Ming; Zhang, Jing

    2018-08-01

    Perfluoroalkyl acids (PFAAs) are ubiquitous pollutants present in various environmental media, including marine sediments. A method was proposed for the determination of 17 target PFAA analytes in marine sediment samples (n = 49) collected from the Yangtze Estuary and East China Sea. The proposed method involves the use of an optimized pretreatment procedure and ultrahigh-performance liquid chromatography electrospray ionization-tandem mass spectrometry in dynamic multiple reaction monitoring mode. The method relied on extraction cycles using methanol followed by concentration, filtration, and small volume injection to UHPLC-MS/MS. The recovery, time efficiency, and detection limit of the proposed method are improved relative to those of traditional methods. Limits of detection varied from 0.003 to 0.045 ng/g, and spike recoveries to sediment ranged from 90% to 110% with suitable precisions (1.7%-14.6%). PFAAs were widely present in the samples, and ΣPFAAs ranged from 0.67 ng/g dw to 36.75 ng/g dw. Results indicated that terrigenous input strongly influences PFAA distribution in sediments from the study areas. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were identified as the dominant perfluorocarboxylic acid (PFCA) and perfluoroalkylsulfonate (PFSA) in sediment samples from the Yangtze Estuary and the East China Sea. Preliminary environmental risk assessment indicated that PFOS may pose a higher environmental risk than PFOA. Furthermore, risk quotient values indicated that PFOS poses a significant risk to the aquatic ecosystem of the study areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China

    PubMed Central

    Wan, Li; Xu, Liang; Fu, Yongsheng

    2016-01-01

    The exposure of heavy metals to lake bed sediment of scenic areas may pose risks on aquatic ecosystems and human health, however very few studies on risk assessment have been reported for scenic areas. Accordingly, this study determined concentration levels, and assessed contamination characteristics and risks, of heavy metals in lake bed sediment of National Scenic Areas Songhuahu (NSAS) in China. The concentrations of Zn, Cr, Pb, Ni, and Cu were determined in 29 bed sediment samples. Results showed that the mean values of Zn, Cr, Pb, Ni, and Cu were 92.69, 90.73, 38.29, 46.77, and 49.44 mg/kg, respectively. Pearson correlation coefficients indicated that organic matter was a major factor influencing distribution of heavy metals. The results for enrichment factors indicated that contamination rates and anthropogenic inputs of single heavy metals decreased in the order Cu > Ni > Pb > Cr > Zn; results of Nemerow integrated pollution index suggested that 72.41% of sampling sites were exposed to low to moderately integrated pollution, and 27.59% of sampling sites were exposed to strongly integrated pollution. According to results for potential ecological risk index, ecological risks of single and all the heavy metals in bed sediment from all the sampling sites were low. Human risks were assessed with hazardous quotients, and the results suggested that exposure of heavy metals to bed sediment posed no or little risk to human health, and the pathway of ingestion significantly contributed to human health risks. PMID:27455296

  1. Ascribing soil erosion of hillslope components to river sediment yield.

    PubMed

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity.

    PubMed

    Harris, W G; Fisher, M M; Cao, X; Osborne, T; Ellis, L

    2007-01-01

    Fine sediments in shallow water bodies such as Lake Okeechobee are prone to resuspension. Predominantly inorganic "mud" sediment that covers approximately 670 km2 of the lake has been recognized as a persistent source of turbidity. The objective of this study was to determine if mineral components of sediments in Lake Okeechobee and water conveyances of the northern Everglades also occur as suspended sediment and hence constitute a potential abiotic contributor to turbidity. Sediment samples were collected from nine stations within the lake and eight locations north of Water Conservation Area 2A in the Everglades. Water samples were also collected at selected locations. The silt and clay mineralogy of sediment and suspended particles was determined using X-ray diffraction, thermogravimetry, scanning-electron microscopy, energy-dispersive X-ray elemental microanalysis, and high-resolution transmission-electron microscopy. Clay fractions of the lake sediment contained the Mg silicate minerals sepiolite and palygorskite, along with smectite, dolomite, calcite, and kaolinite. Sediment silt fractions were dominated by carbonates and/or quartz, with smaller amounts of Ca phosphates and sepiolite. Mineralogy of the mud sediment was similar to that reported for geologic phosphate deposits. This suggests that the mud sediment might have accumulated by stream transport of minerals from these deposits. Suspended solids and mud-sediment mineralogy were similar, except that smectite was more abundant in suspended solids. Everglade samples also contained Mg-rich minerals. The small size, low density, and fibrous or platy nature of the prevalent mud sediment minerals make them an abiotic, hydrodynamically sensitive source of persistent turbidity in a shallow lake. Mitigation efforts focused exclusively on P-induced biogeochemical processes do not address the origin or effects of these minerals. Ecological management issues such as turbidity control, P retention, geologic P input, and suitability of dredging are related to mud-sediment properties and provenance.

  3. Calibrating SALT: a sampling scheme to improve estimates of suspended sediment yield

    Treesearch

    Robert B. Thomas

    1986-01-01

    Abstract - SALT (Selection At List Time) is a variable probability sampling scheme that provides unbiased estimates of suspended sediment yield and its variance. SALT performs better than standard schemes which are estimate variance. Sampling probabilities are based on a sediment rating function which promotes greater sampling intensity during periods of high...

  4. Occurrence and origin of Escherichia coli in water and sediments at two public swimming beaches at Lake of the Ozarks State Park, Camden County, Missouri, 2011-13

    USGS Publications Warehouse

    Wilson, Jordan L.; Schumacher, John G.; Burken, Joel G.

    2014-01-01

    In the past several years, the Missouri Department of Natural Resources has closed two popular public beaches, Grand Glaize Beach and Public Beach 1, at Lake of the Ozarks State Park in Osage Beach, Missouri when monitoring results exceeded the established Escherichia coli (E. coli) standard. As a result of the beach closures, the U.S. Geological Survey and Missouri University of Science and Technology, in cooperation with the Missouri Department of Natural Resources, led an investigation into the occurrence and origins of E. coli at Grand Glaize Beach and Public Beach 1. The study included the collection of more than 1,300 water, sediment, and fecal source samples between August 2011 and February 2013 from the two beaches and vicinity. Spatial and temporal patterns of E. coli concentrations in water and sediments combined with measurements of environmental variables, beach-use patterns, and Missouri Department of Natural Resources water-tracing results were used to identify possible sources of E. coli contamination at the two beaches and to corroborate microbial source tracking (MST) sampling efforts. Results from a 2011 reconnaissance sampling indicate that water samples from Grand Glaize Beach cove contained significantly larger E. coli concentrations than adjacent coves and were largest at sites at the upper end of Grand Glaize Beach cove, indicating a probable local source of E. coli contamination within the upper end of the cove. Results from an intensive sampling effort during 2012 indicated that E. coli concentrations in water samples at Grand Glaize Beach cove were significantly larger in ankle-deep water than waist-deep water, trended downward during the recreational season, significantly increased with an increase in the total number of bathers at the beach, and were largest during the middle of the day. Concentrations of E. coli in nearshore sediment (sediment near the shoreline) at Grand Glaize Beach were significantly larger in foreshore samples (samples collected above the shoreline) than in samples collected in ankle-deep water below the shoreline, significantly larger in the left and middle areas of the beach than the right area, and substantially larger than similar studies at E. coli- contaminated beaches on Lake Erie in Ohio. Concentrations of E. coli in the water column also were significantly larger after resuspension of sediments. Results of MST indicate a predominance of waterfowl-associated markers in nearshore sediments at Grand Glaize Beach consistent with frequent observations of goose and vulture fecal matter in sediment, especially on the left and middle areas of the beach. The combination of spatial and temporal sampling and MST indicate that an important source of E. coli contamination at Grand Glaize Beach during 2012 was E. coli released into the water column by bathers resuspending E. coli-contaminated sediments, especially during high-use days early in the recreational season.

  5. Effects of radionuclides on the recent foraminifera from the clastic sediments of the Çanakkale Strait-Turkey

    NASA Astrophysics Data System (ADS)

    Yümün, Zeki Ünal; Kam, Erol

    2017-07-01

    The radionuclides that cause radioactivity accumulate in the sediments as they descend to the seabed, similar to heavy metals. As radionuclides are present on the surface of the sediment or within the sediment, marine benthic foraminifera can be affected by the radioactive pollution. In this study, the habitat of benthic foraminifera was evaluated for radioactive pollution in the Çanakkale Strait, which constitutes the passage of the Marmara Sea and the Aegean Sea. In 2015, seven core samples and one drilling sample were taken from the shallow marine environment, which is the habitat of benthic foraminifera, in the Çanakkale Strait. Locations of the core samples were specifically selected to be pollution indicators in port areas. Gamma spectrometric analysis was used to determine the radioactivity properties of sediments. The radionuclide concentration activity values in the sediment samples obtained from the locations were Cs-137: <2-20 (Bq/kg), Th-232: 17.5-58.3 (Bq/kg), Ra-226: 16.9-48.6 (Bq/kg) and K-40: 443.7-725.6 (Bq/kg). These values were compared with the Turkish Atomic Energy Agency (TAEK) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data and environmental analysis was carried out. The Ra-226 series, the Th-232 series and the K-40 radionuclides accumulate naturally and increase continuously due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to UNSCEAR values, the K-40 and Th-232 series values were observed to be high in almost all locations. The values of Cs-137 were found to be maximum 20 in Çanakkale Dere Port and they were parallel to the values in the other places. In the study, 13 genera and 20 species were identified from core and drilling samples. The number of foraminifera species and individuals obtained at locations with high pollution was very low compared to those in non-polluted zones.

  6. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in the Yuma Valley, Arizona, 1995

    USGS Publications Warehouse

    Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William

    1997-01-01

    Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples, and concentrations ranged from 11 to 16 micrograms per gram. Concentrations ofaluminum, beryllium, boron, copper, lead, and zinc were highest in samples from Main Drain at southerly international boundary near San Luis, Arizona. Selenium was detected in all bottom-sediment samples, and concentrations ranged from 0.1 to 0.7 micrograms per gram. Concentrations of cadmium, europium, homium, mercury, molybdenum, silver, tantalum, tin, and uranium were below analytical reporting limits in the bottom-sediment samples. Concentrations of trace elements in bottom-sediment samples were within the ranges found in a study of soils of the western United States and did not indicate a significant accumulation of these constituents. p,p'Dichlorodiphenyldichloroethylene (commonly referred to as p,-p'-DDE) was detected in one bottom-sediment sample at a concentration of 1.4 micrograms per gram. No other organochlorine compounds were detected in the bottom-sediment samples. DDE was present in all fish and bird samples. Almost one-half of the fish samples contained DDE residues that were two times higher than the mean calculated for a national study in 1984-85. Twenty-tree percent of the fish contained more than three times the national mean. Fish from downstream parts of the Main Drain had the highest concentrations of DDE. Although concentrations of DDE in fish and in bird carcasses and eggs were above background levels, residues generally were below thresholds associated with chronic poisoning and reproductive problems in figh and wildlife. Concentrations of 18 trace elements were detected in cattail (Typha sp.) roots, freshwater clam (Corbicula fluminea), fish, and bird samples. Selenium in most fish and in livers of red-winged (Agelaius phoeniceus) and yellow-headed (Xanthocephalus xanthocephalus) blackbirds was above background concentrations but below toxic concentrations. In contrast, selenium was present in a killdeer (Charadrium vociferus) liver sample at potentially toxic con

  7. Use of stable isotopes of carbon and nitrogen to identify sources of organic matter to bed sediments of the Tualatin River, Oregon

    USGS Publications Warehouse

    Bonn, Bernadine A.; Rounds, Stewart A.

    2010-01-01

    The potential sources of organic matter to bed sediment of the Tualatin River in northwestern Oregon were investigated by comparing the isotopic fractionation of carbon and nitrogen and the carbon/nitrogen ratios of potential sources and bed sediments. Samples of bed sediment, suspended sediment, and seston, as well as potential source materials, such as soil, plant litter, duckweed, and wastewater treatment facility effluent particulate were collected in 1998-2000. Based on the isotopic data, terrestrial plants and soils were determined to be the most likely sources of organic material to Tualatin River bed sediments. The delta 13C fractionation matched well, and although the delta 15N and carbon/nitrogen ratio of fresh plant litter did not match those of bed sediments, the changes expected with decomposition would result in a good match. The fact that the isotopic composition of decomposed terrestrial plant material closely resembled that of soils and bed sediments supports this conclusion. Phytoplankton probably was not a major source of organic matter to bed sediments. Compared to the values for bed sediments, the delta 13C values and carbon/nitrogen ratios of phytoplankton were too low and the delta 15N values were too high. Decomposition would only exacerbate these differences. Although phytoplankton cannot be considered a major source of organic material to bed sediment, a few bed sediment samples in the lower reach of the river showed a small influence from phytoplankton as evidenced by lower delta 13C values than in other bed sediment samples. Isotopic data and carbon/nitrogen ratios for bed sediments generally were similar throughout the basin, supporting the idea of a widespread source such as terrestrial material. The delta 15N was slightly lower in tributaries and in the upper reaches of the river. Higher rates of sediment oxygen demand have been measured in the tributaries in previous studies and coupled with the isotopic data may indicate the presence of more labile organic matter in these areas. Results from this study indicate that strategies to improve oxygen conditions in the Tualatin River are likely to be more successful if they target sources of soil, leaf litter, and other terrestrially derived organic materials to the river rather than the instream growth of algae.

  8. Modern Foraminifera from a depth transect offshore Brunei Darussalam: diversity, sedimentation rate and preservation pathways.

    NASA Astrophysics Data System (ADS)

    Briguglio, Antonino; Goeting, Sulia; Kusli, Rosnani; Roslim, Amajida; Polgar, Gianluca; Kocsis, Laszlo

    2016-04-01

    For this study, 11 samples have been collected by scuba diving from 5 to 35 meters water depth off shore Brunei Darussalam. The locations sampled are known as: Pelong Rock (5 samples, shallow reef with soft and stony corals and larger foraminifera, 5 to 8 meters water depth), Abana Rock (1 sample, shallow reef with mainly soft corals and larger foraminifera, 13 to 18 meters water depth), Oil Rig wreck (1 sample, very sandy bottom with larger foraminifera, 18 meters water depth), Dolphin wreck (1 sample, muddy sand with many small rotaliids, 24 meters water depth), US wreck, (1 sample, sand with small clay fraction, 28 meters water depth), Australian wreck (1 sample, mainly medium to coarse sand with larger foraminifera, 34 meters water depth) and Blue water wreck (1 sample, mainly coarse sand, coral rubble and larger foraminifera, 35 meters water depth). Those samples closer to the river inputs are normally richer in clay, while the most distant samples are purely sandy. Some additional samples have been collected next to reef environments which, even if very shallow, are mainly sandy with almost no clay fraction. The deepest sample, which is 30 km offshore, contains some planktonic foraminifera and is characterized by a large range of preservations concerning foraminifera, thus testifying the presence or relict sediments at the sea bottom. The presence of relict sediments was already pointed out by older oil-related field studies offshore Brunei Darussalam, and now it is possible to draw the depth limit of these deposits. The diversity of the benthic foraminiferal fauna is relatively high but not as higher as neighboring regions as some studies have highlighted. The species collected and identified are more than 50: in reef environment the most abundant are Calcarina defrancii, Neorotalia calcar and the amphisteginidae; deeper in the muddy sediments the most abundant is Pararotalia schroeteriana and in the deepest sandy sample the most abundant are Calcarina hispida, followed by Operculina ammonoides.

  9. Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects.

    PubMed

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Birane, Niane; de Alencastro, Luiz Felippe; Grandjean, Dominique; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-09-01

    This paper discusses the occurrence and spatial distribution of metals and persistent organic pollutants (POPs: including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in sediments from a river-reservoir system. Surface sediments were sampled from thirteen sites of the Congo River Basin and Lake Ma Vallée, both situated in the vicinity of the capital city Kinshasa (Congo Democratic Republic). Sediment qualities were evaluated using toxicity test based on exposing Ostracods to the sediment samples. The highest metal concentrations were observed in sediments subjected to anthropogenic influences, urban runoff and domestic and industrial wastewaters, discharge into the Congo River basin. Ostracods exposed to the sediments resulted in 100% mortality rates after 6d of incubation, indicating the ultimate toxicity of these sediments as well as potential environmental risks. The POPs and PAHs levels in all sediment samples were low, with maximum concentration found in the sediments (area of pool Malebo): OCP value ranged from 0.02 to 2.50 with ∑OCPs: 3.3μgkg(-1); PCB ranged from 0.07 to 0.99 with Total PCBs (∑7×4.3): 15.31μgkg(-1); PAH value ranged from 0.12 to 9.39 with ∑PAHs: 63.89μgkg(-1). Our results indicate that the deterioration of urban river-reservoir water quality result mainly from urban stormwater runoff, untreated industrial effluents which discharge into the river-reservoirs, human activities and uncontrolled urbanization. This study represents useful tools incorporated to evaluate sediment quality in river-reservoir systems which can be applied to similar aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Erythrocyte Sedimentation Rate Levels among a Sample of Pregnant Women Attending Health Centers in Erbil-Iraq

    ERIC Educational Resources Information Center

    Khazal, Suhad Ali; Zangana, Jwan M. Sabir

    2016-01-01

    There are so many significant hematological changes occurring in pregnancy, erythrocyte sedimentation rate (ESR) is one of them. The objectives of this study were to determine the range of erythrocyte sedimentation rate values obtained in healthy pregnant women and to examine the effect of gestational age and hemoglobin concentration on…

  11. Organic contaminants, trace and major elements, and nutrients in water and sediment sampled in response to the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Nowell, Lisa H.; Ludtke, Amy S.; Mueller, David K.; Scott, Jonathon C.

    2012-01-01

    Beach water and sediment samples were collected along the Gulf of Mexico coast to assess differences in contaminant concentrations before and after landfall of Macondo-1 well oil released into the Gulf of Mexico from the sinking of the British Petroleum Corporation's Deepwater Horizon drilling platform. Samples were collected at 70 coastal sites between May 7 and July 7, 2010, to document baseline, or "pre-landfall" conditions. A subset of 48 sites was resampled during October 4 to 14, 2010, after oil had made landfall on the Gulf of Mexico coast, called the "post-landfall" sampling period, to determine if actionable concentrations of oil were present along shorelines. Few organic contaminants were detected in water; their detection frequencies generally were low and similar in pre-landfall and post-landfall samples. Only one organic contaminant--toluene--had significantly higher concentrations in post-landfall than pre-landfall water samples. No water samples exceeded any human-health benchmarks, and only one post-landfall water sample exceeded an aquatic-life benchmark--the toxic-unit benchmark for polycyclic aromatic hydrocarbons (PAH) mixtures. In sediment, concentrations of 3 parent PAHs and 17 alkylated PAH groups were significantly higher in post-landfall samples than pre-landfall samples. One pre-landfall sample from Texas exceeded the sediment toxic-unit benchmark for PAH mixtures; this site was not sampled during the post-landfall period. Empirical upper screening-value benchmarks for PAHs in sediment were exceeded at 37 percent of post-landfall samples and 22 percent of pre-landfall samples, but there was no significant difference in the proportion of samples exceeding benchmarks between paired pre-landfall and post-landfall samples. Seven sites had the largest concentration differences between post-landfall and pre-landfall samples for 15 alkylated PAHs. Five of these seven sites, located in Louisiana, Mississippi, and Alabama, had diagnostic geochemical evidence of Macondo-1 oil in post-landfall sediments and tarballs. For trace and major elements in water, analytical reporting levels for several elements were high and variable. No human-health benchmarks were exceeded, although these were available for only two elements. Aquatic-life benchmarks for trace elements were exceeded in 47 percent of water samples overall. The elements responsible for the most exceedances in post-landfall samples were boron, copper, and manganese. Benchmark exceedances in water could be substantially underestimated because some samples had reporting levels higher than the applicable benchmarks (such as cobalt, copper, lead and zinc) and some elements (such as boron and vanadium) were analyzed in samples from only one sampling period. For trace elements in whole sediment, empirical upper screening-value benchmarks were exceeded in 57 percent of post-landfall samples and 40 percent of pre-landfall samples, but there was no significant difference in the proportion of samples exceeding benchmarks between paired pre-landfall and post-landfall samples. Benchmark exceedance frequencies could be conservatively high because they are based on measurements of total trace-element concentrations in sediment. In the less than 63-micrometer sediment fraction, one or more trace or major elements were anthropogenically enriched relative to national baseline values for U.S. streams for all sediment samples except one. Sixteen percent of sediment samples exceeded upper screening-value benchmarks for, and were enriched in, one or more of the following elements: barium, vanadium, aluminum, manganese, arsenic, chromium, and cobalt. These samples were evenly divided between the sampling periods. Aquatic-life benchmarks were frequently exceeded along the Gulf of Mexico coast by trace elements in both water and sediment and by PAHs in sediment. For the most part, however, significant differences between pre-landfall and post-landfall samples were limited to concentrations of PAHs in sediment. At five sites along the coast, the higher post-landfall concentrations of PAHs were associated with diagnostic geochemical evidence of Deepwater Horizon Macondo-1 oil.

  12. Trace element distribution in the water and sediments of certain storage lakes from the Jijia catchment, (Romania)

    NASA Astrophysics Data System (ADS)

    Dughila, A.; Iancu, O. G.; Romanescu, G. T.

    2012-04-01

    The present study aims at investigating the concentrations and distribution levels of a series of trace elements in water and sediment samples collected from six storage lakes located in the Jijia catchment - NE of Romania. The lakes are multi-purpose water reservoirs, three of them being mainly used as a source of municipal drinking water, or for fishing, irrigation for the farms in the area, protection against floods and the regulation of river flows. By contrast, agricultural wastes, fertilizers, raw sewage effluents and road runoff constitute the predominant anthropogenic sources, which supply the lakes in question with Cd, Cu, Pb and Zn. The present study was conducted on a series of 63 sediment samples and 18 water samples, collected from the same locations, in order to establish the distribution levels of certain trace elements from the water through sediments. Sediment cores were collected from two sections across each lake by means of a motor boat, using a system that consists of a graduated sampling tube (0.9 m in length and 72.5 mm in diameter) made of Plexiglas (Eijkelkamp sample tube guide). Prior to the analyses, the samples were air-dried, ground and homogenized using an agate mortar, oven-dried at 50 °C for 6 days and then sieved through 63 µm sieves. The sediment and water samples were subjected to a digestion technique with concentrated nitric acid using a microwave oven (Berghof type), and analyzed for the following elements: Pb, Zn, Cu, Cd, Cr and Ni. The total concentration of the elements was measured through atomic absorption spectrometry (AAS) with an RSD of < 10 % from solutions. The vertical distribution of most elements in the cores examined could be characterized as relatively uniform, with higher concentrations for those collected from the lakes which are more influenced by anthropogenic factors, compared to those situated in forested areas. The lake-water quality characteristics were below the recommended drinking water standards imposed by the current legislation (MMGA Ord. No. 161/16.02.2006 - Normative regarding the classification of surface waters in order to establish the ecological status of water bodies, which combines European and Romanian provisions), with the exception of copper (with very high concentrations in all the water samples), lead and cadmium. Keywords: AAS, Jijia catchment (Romania), lake water, sediment core, trace elements

  13. An acoustic method for predicting relative strengths of cohesive sediment deposits

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Sanders, W. M.

    2017-12-01

    Cohesive sediment dynamics are fundamentally determined by sediment mineralogy, organic matter composition, ionic strength of water, and currents. These factors work to bind the cohesive sediments and to determine depositional rates. Once deposited the sediments exhibit a nonlinear response to stress and they develop increases in shear strength. Shear strength is critically important in resuspension, transport, creep, and failure predictions. Typically, shear strength is determined by point measurements, both indirectly from free-fall penetrometers or directly on cores with a shear vane. These values are then used to interpolate over larger areas. However, the remote determination of these properties would provide continuos coverage, yet it has proven difficult with sonar systems. Recently, findings from an acoustic study on cohesive sediments in a laboratory setting suggests that cohesive sediments may be differentiated using parametric acoustics; this method pulses two primary frequencies into the sediment and the resultant difference frequency is used to determine the degree of acoustic nonlinearity within the sediment. In this study, two marine clay species, kaolinite and montmorillonite, and two biopolymers, guar gum and xanthan gum were mixed to make nine different samples. The samples were evaluated in a parametric acoustic measurement tank. From the parametric acoustic measurements, the quadratic nonlinearity coefficient (beta) was determined. beta was correlated with the cation exchange capacity (CEC), an indicator of shear strength. The results indicate that increased acoustic nonlinearity correlates with increased CEC. From this work, laboratory measurements indicate that this correlation may be used evaluate geotechnical properties of cohesive sediments and may provide a means to predict sediment weakness in subaqueous environments.

  14. Evaluating porewater polycyclic aromatic hydrocarbon-related toxicity at a contaminated sediment site using a spiked field-sediment approach.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; Vadas, George G; Yonkos, Lance T

    2018-03-01

    Although the complexity of contaminant mixtures in sediments can confound the identification of causative agents of adverse biological response, understanding the contaminant(s) of primary concern at impacted sites is critical to sound environmental management and remediation. In the present study, a stock mixture of 18 polycyclic aromatic hydrocarbon (PAH) compounds was prepared to reflect the variety and relative proportions of PAHs measured in surface sediment samples collected from discrete areas of a historically contaminated industrial estuary. This site-specific PAH stock mixture was spiked into nontoxic in-system and out-of-system field-collected reference sediments in dilution series spanning the range of previously measured total PAH concentrations from the region. Spiked sediments were evaluated in 10-d Leptocheirus plumulosus tests to determine whether toxicity in laboratory-created PAH concentrations was similar to the toxicity found in field-collected samples with equivalent PAH concentrations. The results show that toxicity of contaminated sediments was not explained by PAH exposure, while indicating that toxicity in spiked in-system (fine grain, high total organic carbon [TOC]) and out-of-system (course grain, low TOC) sediments was better explained by porewater PAH concentrations, measured using an antibody-based biosensor that quantified 3- to 5-ring PAHs, than total sediment PAH concentrations. The study demonstrates the application of site-specific spiking experiments to evaluate sediment toxicity at sites with complex mixtures of multiple contaminant classes and the utility of the PAH biosensor for rapid sediment-independent porewater PAH analysis. Environ Toxicol Chem 2018;37:893-902. © 2017 SETAC. © 2017 SETAC.

  15. Application of parasound data for sediment study on methane seep site at Simeulue basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiguna, Taufan, E-mail: taufan.wiguna@bppt.go.id; Ardhyastuti, Sri

    2015-09-30

    The Parasound data presents sea depth and sub-bottom profiler. In terms of geological terminology, parasound data represents significant recent surface sedimentary structures that valuable for the selection of subsequent sampling site such as sampling at methane seep site. Therefore, Parasound is used to detailing methane seep at surface sediment following seismic data interpretation. In this study, parasound is used to focus observe area especially for sediment study on methane seep site. The Parasound systems works both as narrow beam sounder use high frequency and as sediment echosounder use low frequency. Parasound acquisition applies parametric effect. It produces additional frequency bymore » nonlinear acoustic interaction of finite amplitude waves. Parasound transducers have 128 elements on 1 m2 and need transmission power up to 70 kW. The results of this study are discovered large seep carbonate with porous surface which means there are gas expulsions passing through that rock.« less

  16. Cosmogenic Nuclides 10Be-21Ne Burial Dating of Middle Miocene Sedimentary Formation of the Hongliu Valley in Southern Ningxia Basin: A Case of Isotopic Geochronology Study for the Cenozoic Sedimentary Strata

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, H.; Wang, W.; Wu, Y.; Pang, J.; Zheng, D.; Li, D.

    2015-12-01

    Chronology studies for the Cenozoic sedimentary strata based on the magnetostratigraphy cannot afford the unique chronological sequences in the absence of absolute ages from biostratigraphy or volcanic ash chronology. In situ-produced cosmogenic nuclides provide a powerful tool for the sediment dating based on the time-dependent concentration ratio of two nuclides, which are produced in the same mineral but with different half-lives. Thereinto, 10Be-26Al is the most widely used nuclide pairs, of which the available dating range spans the Plio-Pleistocene. But the coupling of 10Be with the stable nuclide 21Ne would significantly improve the burial dating range up to the middle Miocene, which is promising in revolutionizing the chronology study for the Late Cenozoic terrestrial sedimentary sequences. We have applied 10Be-21Ne pair for dating the middle Miocene sediments of the Hongliu Valley in southern Ningxia basin. Two major features of the sediments are involved in our study: (1) sediments originated from the steady erosion of the source area, and (2) the burial depth of our sample after deposition is time dependent due to the gradual accumulation of sediments into basin. The post-burial nuclide production is estimated to be less than 3%, including the contribution by muon interactions, of the total nuclide concentrations measured in our sample. Our 10Be-21Ne analysis demonstrates the age of the burial sample is 12.4(+0.6/-0.4) Ma, and the erosion rate at the source area is 0.26±0.01 cm ka-1. The sample's burial age is consistent with the age constraint set by the Hongliugou Formation (16.7-5.4 Ma) which we collected the sample in. Vertebrate fossils of Platybelodon tongxinensis with an age between 12 and 15 Ma exhumated along with our sample further verifies the reliability of our dating results for the middle Miocene sediments.This study has shown the improved age range of cosmogenic-nuclide burial dating method by incorporating the stable nuclide 21Ne, and has established the feasibility of 10Be-21Ne pair in chronology studies for the Cenozoic sedimentary strata.

  17. Tungsten in the environment: A geochemical and mineralogical investigation of an emerging contaminant

    NASA Astrophysics Data System (ADS)

    Datta, S.; Hobson, C.; Mohajerin, T. J.; Johannesson, K. H.; Tappero, R.; Telfeyan, K.; Witten, M. L.; Sheppard, P. R.

    2012-12-01

    Interest in tungsten (W) research has increased in the past several years, as it may have previously unrecognized human toxicological and environmentally degrading effects [1][2]. In 2002, the Center for Disease Control (CDC) investigated several clusters of acute lymphatic leukemia in both Nevada and in Arizona. The study found residents had urinary W levels above the 95th percentile for the US [1][3]. After this, the EPA classified W as an emerging contaminant. Field studies have shown that W is mobile in the environment [1][4], but there is still a paucity of knowledge about the actual behavior of W in groundwater flow systems and the processes that control W concentration and transport. Here the hypothesis being tested is that physical and chemical changes from chemical weathering, mineral dissolution and precipitation, and redox reactions catalyzed by microbial activity control W transport and sequestration. Sediment samples have been collected from three different localities with elevated W. Fallon, NV is the first site being analyzed, along with Sierra Vista, AZ and Cheyenne Bottoms refuge near Hoisington, KS. The first few centimeters of the sediment profile are scraped aside and then sediment core samples are collected at incremental depths of approximately two feet, starting with a near surface sample. The sediment cores are being studied for total extractability of W from the sediments and then the mineral associations within the sediments are studied by petrographic observations and FESEM assisted single grain mapping (also to understand the association of W to Fe, Mn and S in these sediments). Various extraction techniques of the sediment samples including sequential extractions (assisted by microwave digestion) are done along with solid state synchrotron analyses (by acquiring μXRF maps and having specific hotspots analyzed for μXRD and μXANES). This elucidates valuable information about W's oxidation state, concentration, and where it is bound in the sediment fractions. The μXRF results from both Fallon and Cheyenne Bottoms have shown different elemental correlations. In Fallon, W shows good correlation with Cu and Zn but not with Fe or Mn, whereas they themselves correlate well with each other. In Cheyenne Bottoms W does not correlate with any particular element, while Cu and Zn now correlate well with Fe and Mn. All locations have shown discrete hot spots of high W concentration, rather than a dispersed uniform distribution. In Fallon, W has predominately been shown to be in W (VI) oxidation state. Water sample analyses from Hoisington (the only water samples collected thus far) does not seem to contain high levels of dissolved W. The dissolved species in the water samples displays different trends in concentration from one sample to another. Some elements (Fe, Pb, Zn, Cu, As) displayed similar patterns in change in concentration as W. Other elements/anions (K, Mn, Mg, Ca, SO4, U, Ni) show a different trend from W. [1]Seiler, Stollenwerk, Garbarino (2005) App. GeoChem 20, 423-441. [2] Strigul, Koutsospyros, Arienti, Christodoulatos, Dermatas, Braida (2005) Chemo 61, 248-258. [3] Koutsospyros, Braida, Christodoulatos, Dermatas, Strigul (2006) J. Hazard. Mat. 136, 1-19.[4] Johannesson, Tang (2009) J. Hydro 378, 13-28.

  18. Determination of pre-mining geochemical conditions and paleoecology in the Animas River Watershed, Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Brouwers, E.M.; Holmes, C.W.; Blair, Robert

    1999-01-01

    Determination of the pre-mining geochemical baseline in bed sediments and the paleoecology in a watershed impacted by historical mining activity is of utmost importance in establishing watershed restoration goals. We have approached this problem in the Animas River watershed using geomorphologic mapping methods to identify old pre-mining sediments. A systematic evaluation of possible sites resulted in collection of a large number of samples of pre-mining sediments, overbank sediments, and fluvial tailings deposits from more than 50 sites throughout the watershed. Chemical analysis of individual stratigraphic layers has resulted in a chemical stratigraphy that can be tied to the historical record through geochronological and dendochronological studies at these sites. Preliminary analysis of geochemical data from more than 500 samples from this study, when coupled with both the historical and geochronological record, clearly show that there has been a major impact by historical mining activities on the geochemical record preserved in these fluvial bed sediments. Historical mining activity has resulted in a substantial increase in metals in the very fine sand to clay sized component of the bed sediment of the upper Animas River, and Cement and Mineral Creeks. Enrichment factors for metals in modern bed sediments, relative to the pre-mining sediments, range from a factor of 2 to 6 for arsenic, 4 to more than 10 for cadmium, 2 to more than 10 for lead, 2 to 5 for silver, and 2 to more than 15 for zinc. However, the pre-mining bed sediment geochemical baseline is high relative to crustal abundance levels of many orerelated metals and the watershed would readily be identified as a highly mineralized area suitable for mineral exploration if it had not been disturbed by historical mining activity. We infer from these data that the water chemistry in the streams was less acidic prior to historical mining activity in the watershed. Paleoentologic evidence does not indicate a healthy aquatic habitat in any of the stream reaches investigated above the confluence of the Animas River with Mineral Creek (fig. 1) prior to the impact of historical mining activity. The absence of paleoentologic remains is interpreted to reflect the poor preservation regime of the bed sediment materials sampled. The fluvial sediments sampled in this study represent higher energy environments than are conducive to the preservation of most aquatic organisms including fish remains. We interpret the sedimentological data to indicate that there has been substantial loss of riparian habitat in the upper Animas River above Howardsville as a result of historical mining activity.

  19. Direct microscopy versus sputum cytology analysis and bleach sedimentation for diagnosis of tuberculosis: a prospective diagnostic study

    PubMed Central

    2010-01-01

    Background Diagnostic options for pulmonary tuberculosis in resource-poor settings are commonly limited to smear microscopy. We investigated whether bleach concentration by sedimentation and sputum cytology analysis (SCA) increased the positivity rate of smear microscopy for smear-positive tuberculosis. Methods We did a prospective diagnostic study in a Médecins Sans Frontières-supported hospital in Mindouli, Republic of Congo. Three sputum samples were obtained from 280 consecutive pulmonary tuberculosis suspects, and were processed according to WHO guidelines for direct smear microscopy. The remainder of each sputum sample was homogenised with 2.6% bleach, sedimented overnight, smeared, and examined blinded to the direct smear result for acid-fast bacilli (AFB). All direct smears were assessed for quality by SCA. If a patient produced fewer than three good-quality sputum samples, further samples were requested. Sediment smear examination was performed independently of SCA result on the corresponding direct smear. Positivity rates were compared using McNemar's test. Results Excluding SCA, 43.2% of all patients were diagnosed as positive on direct microscopy of up to three samples. 47.9% were diagnosed on sediment microscopy, with 48.2% being diagnosed on direct microscopy, sediment microscopy, or both. The positivity rate increased from 43.2% to 47.9% with a case definition of one positive smear (≥1 AFB/100 high power fields) of three, and from 42.1% to 43.9% with two positive smears. SCA resulted in 87.9% of patients producing at least two good-quality sputum samples, with 75.7% producing three or more. Using a case definition of one positive smear, the incremental yield of bleach sedimentation was 14/121, or 11.6% (95% CI 6.5-18.6, p = 0.001) and in combination with SCA was 15/121, or 12.4% (95% CI 7.1-19.6, p = 0.002). Incremental yields with two positive smears were 5/118, or 4.2% (95% CI 1.4-9.6, p = 0.062) and 7/118, or 5.9% (95% CI 2.4-11.8, p = 0.016), respectively. Conclusions The combination of bleach sedimentation and SCA resulted in significantly increased microscopy positivity rates with a case definition of either one or two positive smears. Implementation of bleach sedimentation led to a significant increase in the diagnosis of smear-positive patients. Implementation of SCA did not result in significantly increased diagnosis of tuberculosis, but did result in improved sample quality. Requesting extra sputum samples based on SCA results, combined with bleach sedimentation, could significantly increase the detection of smear-positive patients if routinely implemented in resource-limited settings where gold standard techniques are not available. We recommend that a pilot phase is undertaken before routine implementation to determine the impact in a particular context. PMID:20858253

  20. Sedimentological downstream effects of dam failure and the role of sediment connectivity: a case study from the Bohemian Massif, Austria

    NASA Astrophysics Data System (ADS)

    Wurster, Maria-Theresia; Weigelhofer, Gabriele; Pichler-Scheder, Christian; Hein, Thomas; Pöppl, Ronald

    2017-04-01

    Sediment connectivity describes the potential for sediment transport through catchment systems, further defining locality and characteristics of sedimentation in river channels. Dams generally decrease sediment connectivity and act as temporary sediment sinks. When dams are removed these sediments are being reworked and released downstream. During dam restoration works along a small-sized stream in the Bohemian Massif of Austria in December 2015 a dam failure occurred which led to the entrainment of several tons of fine-grained reservoir sediments further entering and depositing in the downstream channel reaches, located in the Thayatal National Park. Aiming to remove these fine sediment deposits the National Park Authority decided to initiate a flushing event in April 2016. The main aim of the present study was to investigate the effects of dam failure-induced fine sediment release and reservoir flushing on downstream bed sediment characteristics by applying geomorphological mapping (incl. volumetric surveys) and sedimentological analyses (freeze-core sampling and granulometry), further discussing the role of in-channel sediment connectivity. The obtained results have shown that immediately after the dam failure event a total of ca. 18 m3 of fine-grained sediments have accumulated as in-channel sediment bars which were primarily formed in zones of low longitudinal connectivity (e.g. in the backwater areas of woody debris jams, or at slip-off bank locations). The flushing event has been shown to have caused remobilization and downstream translocation of these deposits, further reducing their total volume by approx. 60%. The results of the granulometric analyses of the freeze-core samples have revealed fine sediment accumulation and storage in the upper parts of the channel bed, having further increased after the flushing event. Additionally, effects on chemical conditions and invertebrate community have been observed. These observations clearly indicate a significant influence of vertical connectivity conditions on in-channel fine sediment storage.

  1. Water-quality, bed-sediment, and biological data (October 2010 through September 2011) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2013-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin of western Montana; additional water samples were collected from near Galen to near Missoula at select sites as part of a supplemental sampling program. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2010 through September 2011. Bed-sediment and biota samples were collected once at 14 sites during August 2011. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2010 through September 2011. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  2. Minimum and Maximum Times Required to Obtain Representative Suspended Sediment Samples

    NASA Astrophysics Data System (ADS)

    Gitto, A.; Venditti, J. G.; Kostaschuk, R.; Church, M. A.

    2014-12-01

    Bottle sampling is a convenient method of obtaining suspended sediment measurements for the development of sediment budgets. While these methods are generally considered to be reliable, recent analysis of depth-integrated sampling has identified considerable uncertainty in measurements of grain-size concentration between grain-size classes of multiple samples. Point-integrated bottle sampling is assumed to represent the mean concentration of suspended sediment but the uncertainty surrounding this method is not well understood. Here we examine at-a-point variability in velocity, suspended sediment concentration, grain-size distribution, and grain-size moments to determine if traditional point-integrated methods provide a representative sample of suspended sediment. We present continuous hour-long observations of suspended sediment from the sand-bedded portion of the Fraser River at Mission, British Columbia, Canada, using a LISST laser-diffraction instrument. Spectral analysis suggests that there are no statistically significant peak in energy density, suggesting the absence of periodic fluctuations in flow and suspended sediment. However, a slope break in the spectra at 0.003 Hz corresponds to a period of 5.5 minutes. This coincides with the threshold between large-scale turbulent eddies that scale with channel width/mean velocity and hydraulic phenomena related to channel dynamics. This suggests that suspended sediment samples taken over a period longer than 5.5 minutes incorporate variability that is larger scale than turbulent phenomena in this channel. Examination of 5.5-minute periods of our time series indicate that ~20% of the time a stable mean value of volumetric concentration is reached within 30 seconds, a typical bottle sample duration. In ~12% of measurements a stable mean was not reached over the 5.5 minute sample duration. The remaining measurements achieve a stable mean in an even distribution over the intervening interval.

  3. Water-quality, bed-sediment, and biological data (October 2015 through September 2016) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2018-03-30

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2015 through September 2016. Bed-sediment and biota samples were collected once at 13 sites during August 2016.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2015 through September 2016. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Samples for analysis of turbidity were collected at 13 sites, whereas samples for analysis of dissolved organic carbon were collected at 10 sites. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained (less than 0.063 millimeter) fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  4. Sediment transport to and from small impoundments in northeast Kansas, March 2009 through September 2011

    USGS Publications Warehouse

    Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times those at Atchison County or Banner Creek Lakes. These data indicate larger yields of sediment from watersheds with row crops and those with fewer small ponds, and smaller yields in watersheds which are primarily grassland, or agricultural with substantial tile drainage and riparian buffers along streams. These results also indicated that a cultivated watershed can produce yields similar to those observed under the assumed reference (or natural) condition. Selected small ponds were studied in the Atchison County Lake watershed to characterize the role of small ponds in sediment trapping. Studied ponds trapped about 8 percent of the sediment upstream from the sediment-sampling site. When these results were extrapolated to the other ponds in the watershed, differences in the extent of these ponds was not the primary factor affecting differences in yields among the three watersheds. However, the selected small ponds were both 45 years old at the time of this study, and have reduced capacity because of being filled in with sediments. Additionally, trapping efficiency of these small ponds decreased over five observed storms, indicating that processes that suspended or resuspended sediments in these shallow ponds, such as wind and waves, affected their trapping efficiencies. While small ponds trapped sediments in small storms, they could be a source of sediment in larger or more closely spaced storm events. Channel slope was similar at all three watersheds, 0.40, 0.46, and 0.31 percent at Atchison County, Banner Creek, and Centralia Lake watersheds, respectively. Other factors, such as increased bank and stream erosion, differences in tile drainage, extent of grassland, or riparian buffers, could be the predominant factors affecting sediment yields from these basins. These results show that reference-like sediment yields may be observed in heavily agricultural watersheds through a combination of field-scale management activities and stream channel protection. When computing loads using published erosion rates obtained by single-point survey methodology, streambank contributions from the main stem of Banner Creek are three times more than the sediment load observed by this study at the sediment sampling site at Banner Creek, 2.6 times more than the sediment load observed by this study at the sediment sampling site at Clear Creek (upstream from Atchison County Lake), and are 22 percent of the load observed by this study at the sediment sampling site at Black Vermillion River above Centralia Lake. Comparisons of study sites to similarly sized urban and urbanizing watersheds in Johnson County, Kansas indicated that sediment yields from the Centralia Lake watershed were similar to those in construction-affected watersheds, while much smaller sediment yields in the Atchison County and Banner Creek watersheds were comparable to stable, heavily urbanized watersheds. Comparisons of study sites to larger watersheds upstream from Tuttle Creek Lake indicate the Black Vermillion River watershed continues to have high sediment yields despite 98 percent of sediment from the Centralia watershed (a headwater of the Black Vermillion River) being trapped in Centralia Lake. Estimated trapping efficiencies for the larger watershed lakes indicated that Banner Creek and Centralia Lakes trapped 98 percent of incoming sediment, whereas Atchison County Lake trapped 72 percent of incoming sediment during the 3-year study period.

  5. Primary sources and toxicity of PAHs in Milwaukee-area streambed sediment

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Lutz, Michelle A.; Ingersoll, Christopher G.; Dorman, Rebecca A.; Magruder, Christopher; Magruder, Matthew

    2017-01-01

    High concentrations of polycyclic aromatic hydrocarbons (PAHs) in streams can be a significant stressor to aquatic organisms. To understand the likely sources and toxicity of PAHs in Milwaukee-area streams, streambed sediment samples from 40 sites and parking lot dust samples from 6 sites were analyzed for 38 parent PAHs and 25 alkylated PAHs. Diagnostic ratios, profile correlations, principal components analysis, source-receptor modeling, and mass fractions analysis were used to identify potential PAH sources to streambed sediment samples, and land-use analysis was used to relate streambed sediment PAH concentrations to different urban-related land uses. On the basis of this multiple lines-of-evidence approach, coal-tar pavement sealant was indicated as the primary source of PAHs in a majority of streambed sediment samples, contributing an estimated 77% of total PAHs to samples, on average. Comparison to the Probable Effect Concentrations and (or) the Equilibrium Partitioning Sediment Benchmark indicates that 78% of stream sediment samples are likely to cause adverse effects to benthic organisms. Laboratory toxicity tests on a 16-sample subset of the streambed sites using the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) measured significant reductions in one or more biological endpoints, including survival, in 75% of samples, with H. azteca more responsive than C. dilutus.

  6. Depressurization-induced fines migration in hydrate-bearing clayey sands: X-ray CT imaging and quantification

    NASA Astrophysics Data System (ADS)

    Han, G.; Kwon, T. H.; Lee, J. Y.

    2016-12-01

    As gas and water flows induced by depressurization of hydrate-bearing sediments exert seepage forces on fines in sediments, such as clay particles, depressurization is reported to accompany the transport of fine particles through sediment pores, i.e., fines migration. Because such fines migration can cause pore clogging, the fines migration is considered as one of the critical phenomena contributing to the transport of fluids among various pore-scale processes associated with depressurization. However, quantification of fines migration during depressurization still remains poorly understood. This study thus investigated fines migration caused by depressurization using X-ray computerized tomography(X-ray CT) imaging. A host sediment was prepared by mixing fine sand with kaolinite clay minerals to achieve 10% mass fraction of fines (less than 75 um). Then, methane hydrate was synthesized in the host clayey sand, and thereafter water was injected to saturate the hydrate-bearing sediment sample. Step-wise depressurization was applied while the produced gas was collected through an outlet fluid port. X-ray CT imaging was conducted on the sediment sample over the courses of the experiment to monitor the sample preparation, hydrate formation, depressurization, and fines migration. Based on the calibration tests, the amount and locations of methane hydrate formed in the sample was estimated, and the gas migration path was also identified. Finally, the spatial distribution of fines after completion of depressurization was first assessed using the obtained X-ray images and then compared with the post-mortem mine-back results.Notably, we found that the middle part of the sample was clogged possibly by fines or by re-formed hydrate, leading to a big pressure difference between the inlet and outlet fluid port of the sample by 3 MPa. Owing to this clogging and the lost in pressure communication, hydrate dissociation first occurred at the bottom half and the hydrate dissociation in the top half part followed later. Our study demonstrates that X-ray CT imaging can be a useful tool to visualize and quantify the fines migration during hydrate depressurization, and our results present an experimental evidence that depressurization can cause pore clogging in sediments containing more than 10% fines fraction.

  7. Distribution and sources of polychlorinated biphenyls in Woods Inlet, Lake Worth, Fort Worth, Texas, 2003

    USGS Publications Warehouse

    Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2005-01-01

    Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely source of PCBs associated with a sampling site that receives runoff from Air Force Plant 4. Three approaches to the analyses of congener assemblages indicate that PCBs in surficial bottom sediment of Woods Inlet primarily enter Lake Worth from Meandering Road Creek and that runoff from Air Force Plant 4 is a source of the PCBs in Meandering Road Creek. Although current (2003) transport of PCBs from Air Force Plant 4 to the creek is occurring, large decreases in PCB concentrations with decreasing age in two cores indicate that PCB loading to the inlet has decreased greatly since the 1960s. Because runoff entering Meandering Road Creek from some parts of Air Force Plant 4 was not measured or sampled in this study, it cannot be said with certainty that the Air Force Plant 4 site sampled is the only source of PCBs to Meandering Road Creek.

  8. Monitoring Sediment Size Distributions in a Regulated Gravel-Bed Coastal Stream

    NASA Astrophysics Data System (ADS)

    O'Connor, M. D.; Lewis, J.; Andrew, G.

    2014-12-01

    Lagunitas Creek drains 282 km2 in coastal Marin County, California. The watershed contains water supply reservoirs, urban areas, parks and habitat for threatened species (e.g. coho salmon). Water quality is impaired by excess fine sediment, and a plan to improve water quality (i.e. TMDL) was adopted by State authorities in 2014. The TMDL asserts changes in sediment delivery, transport, and storage contributed to the decline of coho. A sediment source analysis found a 2x increase in sediment supply. Concentrations of sand and fine gravel in the channel are elevated and, during high flows, more mobile. The Federal Coho Salmon Recovery Plan (2012) describes sediment conditions affecting coho habitat as "fair". Reservoir managers were directed by the State in 1995 to reduce sedimentation and improve riparian vegetation and woody debris to improve fish habitat. Prior sediment monitoring found variability related primarily to intense winter runoff without identifying clear trends. A new sediment monitoring program was implemented in 2012 for ongoing quantification of sediment conditions. The goal of monitoring is to determine with specified statistical certainty changes in sediment conditions over time and variation among reaches throughout the watershed. Conditions were compared in 3 reaches of Lagunitas Cr. and 2 tributaries. In each of the 5 channel reaches, 4 shorter reaches were sampled in a systematic grid comprised of 30 cross-channel transects spaced at intervals of 1/2 bankfull width and 10 sample points per transect; n=1200 in 5 channel reaches. Sediment diameter class (one clast), sediment facies (a patch descriptor), and habitat type were observed at each point. Fine sediment depth was measured by probing the thickness of the deposit, providing a means to estimate total volume of fine sediment and a measure of rearing habitat occupied by fine sediment (e.g. V*). Sub-surface sediment samples were collected and analyzed for size distribution at two scales: a larger sample of a spawning site in each sample reach and 20 smaller sub-samples of fine sediment facies. These data provide a robust description of streambed sediment conditions (e.g. % < 1 mm) expected to vary systematically across the watershed (e.g. fining downstream) and over time in response to management of watershed resources.

  9. Distribution of Escherichia coli, coliphages and enteric viruses in water, epilithic biofilms and sediments of an urban river in Germany.

    PubMed

    Mackowiak, Martin; Leifels, Mats; Hamza, Ibrahim Ahmed; Jurzik, Lars; Wingender, Jost

    2018-06-01

    Fecal contamination of surface water is commonly evaluated by quantification of bacterial or viral indicators such as Escherichia coli and coliphages, or by direct testing for pathogens such as enteric viruses. Retention of fecally derived organisms in biofilms and sediments is less frequently considered. In this study, we assessed the distribution of E. coli, somatic coliphages, and enteric viruses including human adenovirus (HAdV), enterovirus (EV), norovirus genogroup GII (NoV GII) and group A rotavirus (RoV) in an urban river environment in Germany. 24 samples each of water, epilithic biofilms and sediments were examined. E. coli and somatic coliphages were prevalent not only in the flowing water, but also in epilithic biofilms and sediments, where they were accumulated compared to the overlying water. During enhanced rainfall, E. coli and coliphage concentrations increased by approximately 2.5 and 1 log unit, respectively, in the flowing water, whereas concentrations did not change significantly in epilithic biofilms and sediments. The occurrence of human enteric viruses detected by qPCR was higher in water than in biofilms and sediments. 87.5% of all water samples were positive for HAdV. Enteric viruses found less frequently were EV, RoV and NoV GII in 20.8%, 16.7% and 8.3% of the water samples, respectively. In epilithic biofilms and sediments, HAdV was found in 54.2% and 50.0% of the samples, respectively, and EV was found in 4.2% of both biofilm and sediment samples. RoV and NoV GII were not detected in any of the biofilms and sediments. Overall, the prevalence of enteric viruses was in the order of HAdV > EV > RoV ≥ NoV GII. In conclusion, epilithic biofilms and sediments can be reservoirs for fecal indicators and enteric viruses and thus should be taken into consideration when assessing microbial pollution of surface water environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Compositional Data for Bengal Delta Sediment Collected from a Borehole at Rajoir, Bangladesh

    USGS Publications Warehouse

    Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Berry, Cyrus J.; Whitney, John W.

    2007-01-01

    Processes active within sediment of the Bengal basin have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from a borehole in the town of Rajoir, Rajoir upazila, Madaripur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediment was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion; Inductively Coupled Plasma Atomic Emission Spectroscopy; Energy Dispersive X-ray Fluorescence; and Hydride Generation Atomic Absorption Spectrophotometry. Sediment was treated with 0.5 N HCl and resulting solutions were analyzed, primarily to evaluate the abundance and oxidation state of acid-soluble iron. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured on a few samples. Sediment sampled at Rajoir is typically unlithified, gray, micaceous, feldspathic arenaceous sand with a few silt and clay layers. Arsenic content of the sediment ranges from 0.6 to 21 ppm with a median of 1.2 ppm.

  11. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the North.

    PubMed

    Guy, A C; Desutter, T M; Casey, F X M; Kolka, R; Hakk, H

    2012-01-01

    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements, the objectives of this study, which focused on Fargo, ND, and Moorhead, MN, were to assess floodwater quality and to determine the quantity and quality of overbank sediment deposited after floodwaters recede and the quality of soil underlying sediment deposits. 17β-Estradiol was detected in 9 of 24 water samples, with an average concentration of 0.61 ng L. Diesel-range organics were detected in 8 of 24 samples, with an average concentration of 80.0 μg L. The deposition of sediment across locations and transects ranged from 2 to 10 kg m, and the greatest mass deposition of chemicals was closest to the river channel. No gasoline-range organics were detected, but diesel-range organics were detected in 26 of the 27 overbank sediment samples (maximum concentration, 49.2 mg kg). All trace elements detected in the overbank sediments were within ranges for noncontaminated sites. Although flooding has economic, social, and environmental impacts, based on the results of this study, it does not appear that flooding in the RR in F-M led to decreased quality of water, sediment, or soil compared with normal river flows or resident soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  13. Geochemical data for core and bottom-sediment samples collected in 2007 from Grand Lake O' the Cherokees, northeast Oklahoma

    USGS Publications Warehouse

    Fey, David L.; Becker, Mark F.; Smith, Kathleen S.

    2010-01-01

    Grand Lake O' the Cherokees is a large reservoir in northeast Oklahoma, below the confluence of the Neosho and Spring Rivers, both of which drain the Tri-State Mining District to the north. The Tri-State district covers an area of 1,200 mi2 (3,100 km2) and comprises Mississippi Valley-type lead-zinc deposits. A result of 120 years of mining activity is an estimated 75 million tons of processed mine tailings (chat) remaining in the district. Concerns of sediment quality and the possibility of human exposure to cadmium and lead through eating fish have led to several studies of the sediments in the Tri-State district. In order to record the transport and deposition of metals from the Tri-State district by the Spring and Neosho Rivers into Grand Lake O' the Cherokees, the U.S. Geological Survey collected 11 sediment cores and 15 bottom-sediment samples in September 2007. Subsamples from five selected cores and the bottom-sediment samples were analyzed for major and trace elements and forms of carbon. The sediment samples collected from the sediment-water interface had larger average concentrations of zinc, cadmium, and lead than local background. The core collected from the Spring River had the largest concentrations of mining-related elements. A core collected just south of Twin Bridges State Park, at the confluence of the Spring and Neosho Rivers, showed a mixing zone with more mining-related elements coming from the Spring River side. The element zinc showed the most definitive patterns in graphs depicting concentration-versus-depth profiles. A core collected from the main body of the reservoir showed affected sediment down to a depth of 85 cm (33 in). This core and two others appear to have penetrated to below mining-affected sediment.

  14. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska

    USGS Publications Warehouse

    Foster, A.L.; Munk, L.; Koski, R.A.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The relations among geochemical parameters and sediment microbial communities were examined at three shoreline sites in the Prince William Sound, Alaska, which display varying degrees of impact by acid-rock drainage (ARD) associated with historic mining of volcanogenic massive sulfide deposits. Microbial communities were examined using total fatty acid methyl esters (FAMEs), a class of compounds derived from lipids produced by eukaryotes and prokaryotes (bacteria and Archaea); standard extraction techniques detect FAMEs from both living (viable) and dead (non-viable) biomass, but do not detect Archaeal FAMEs. Biomass and diversity (as estimated by FAMEs) varied strongly as a function of position in the tidal zone, not by study site; subtidal muds, Fe oxyhydroxide undergoing biogenic reductive dissolution, and peat-rich intertidal sediment had the highest values. These estimates were lowest in acid-generating, intertidal zone sediment; if valid, the estimates suggest that only one or two bacterial species predominate in these communities, and/or that Archeal species are important members of the microbial community in this sediment. All samples were dominated by bacterial FAMEs (median value >90%). Samples with the highest absolute abundance of eukaryotic FAMEs were biogenic Fe oxyhydroxides from shallow freshwater pools (fungi) and subtidal muds (diatoms). Eukaryotic FAMEs were practically absent from low-pH, sulfide-rich intertidal zone sediments. The relative abundance of general microbial functional groups such as aerobes/anaerobes and gram(+)/gram(-) was not estimated due to severe inconsistency among the results obtained using several metrics reported in the literature. Principal component analyses (PCAs) were performed to investigate the relationship among samples as separate functions of water, sediment, and FAMEs data. PCAs based on water chemistry and FAMEs data resulted in similar relations among samples, whereas the PCA based on sediment chemistry produced a very different sample arrangement. Specifically, the sediment parameter PCA grouped samples with high bulk trace metal concentration regardless of whether the metals were incorporated into secondary precipitates or primary sulfides. The water chemistry PCA and FAMEs PCA appear to be less prone to this type of artifact. Signature lipids in sulfide-rich sediments could indicate the presence of acid-tolerant and/or acidophilic members of the genus Thiobacillus or they could indicate the presence of SO4-reducing bacteria. The microbial community documented in subtidal and offshore sediments is rich in SRB and/or facultative anaerobes of the Cytophaga-Flavobacterium group; both could reasonably be expected in PWS coastal environments. The results of this study provide evidence for substantial feedback between local (meter to centimeter-scale) geochemical variations, and sediment microbial community composition, and show that microbial community signatures in the intertidal zone are significantly altered at sites where ARD drainage is present relative to sites where it is not, even if the sediment geochemistry indicates net accumulation of ARD-generated trace metals in the intertidal zone. ?? 2007 Elsevier Ltd. All rights reserved.

  15. Concentration and spatial distribution of selected constituents in Detroit River bed sediment adjacent to Grassy Island, Michigan, August 2006

    USGS Publications Warehouse

    Hoard, C.J.

    2008-01-01

    In August 2006, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, collected sediment?core samples from the bed of the Detroit River adjacent to Grassy Island. The goal of the sampling was to assess the distribution and concentration of chemical constituents in sediment adjacent to Grassy Island, which was operated from 1960 to 1982 as a confined disposal facility to hold dredge spoils. On August 31, 2006, seven samples were collected at four locations in the Detroit River on the north, south, east, and west sides of the island. Metals concentrations in the riverbed sediment tended to be higher on the west side of the island, whereas organic?compound concentrations were generally higher on the east side. Comparison of results from this sampling to concentrations reported in previous studies indicates that the concentrations of inorganic constituents, mainly metals, in the riverbed sediment around Grassy Island fell within the range of concentrations found regionally throughout the Detroit River and in most cases have lower mean and median values than found elsewhere regionally in the Detroit River. Comparison of results from the August 31, 2006, sampling to U.S. Environmental Protection Agency risk?based sediment?quality guidelines indicates that 18 organic constituents for which an ecological screening level (ESL), and (or) a threshold effect concentration (TEC), and (or) a probable effect concentration (PEC) has been defined exceeded one or more of these guidelines at least once. Further work would be needed to determine whether constituent concentrations in the river sediment are related to constituent runoff from Grassy Island.

  16. Priority-pollutant trace elements in streambed sediments of the Cook Inlet basin, Alaska, 1998-2000

    USGS Publications Warehouse

    Frenzel, Steven A.

    2002-01-01

    Trace element concentrations in 48 streambed sediment samples collected at 47 sites in the Cook Inlet Basin, Alaska, were compared to concentrations from studies in the conterminous United States using identical methods and to Probable Effect Concentrations. Concentrations of arsenic, chromium, mercury, and nickel in the 0.063-mm size fraction of streambed sediments from the Cook Inlet Basin were elevated relative to reference sites in the conterminous United States. Concentrations of cadmium, lead, and zinc were highest at the most urbanized site in Anchorage and at two sites downstream from an ore body in Lake Clark National Park and Preserve. At least 35 percent of the 48 samples collected in the Cook Inlet Basin exceeded the Probable Effect Concentration for arsenic, chromium, or nickel. More than 50 percent of the samples were considered to have low potential toxicity for cadmium, lead, mercury, nickel, selenium, and zinc. A Probable Effect Concentration quotient that reflects the combined toxicity of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc was exceeded in 44 percent of the samples from the Cook Inlet Basin. The potential toxicity was high in the Denali and Lake Clark National Parks and Preserves where organic carbon concentrations in streambed sediments were low. However, potential toxicity results should be considered in context with the very small amounts of fine-grained sediment present in the streambed sediments of the Cook Inlet Basin.

  17. The microbiome of Brazilian mangrove sediments as revealed by metagenomics.

    PubMed

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H(2)S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.

  18. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics

    PubMed Central

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments. PMID:22737213

  19. Water-quality data for the Clark Fork and selected tributaries from Deer Lodge to Milltown, Montana, March 1985 through June 1986

    USGS Publications Warehouse

    Lambing, J.H.

    1987-01-01

    A sampling program was conducted at six stream sites. The purpose of the study was to collect baseline data on concentrations of suspended sediment and selected trace metals in streamflow. Included in this report are tables of daily data for mean streamflow, suspended sediment concentration, and suspended sediment discharge at two streamflow gaging stations on the Clark Fork; periodic data for instantaneous streamflow, onsite water quality, and trace metal and suspended sediment concentrations in the Clark Fork and tributaries; and summary statistics for all the water quality data. Also included are graphs for each site showing median concentrations of trace metals, relationship of concentrations of trace metals to suspended sediment, and median concentrations of trace metals in suspended sediments. Hydrographs for two sites on the main stem show daily mean streamflow, suspended sediment concentration, and suspended sediment discharge for the period of study. (Author 's abstract)

  20. Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.

    2014-01-01

    Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.

  1. Piecewise SALT sampling for estimating suspended sediment yields

    Treesearch

    Robert B. Thomas

    1989-01-01

    A probability sampling method called SALT (Selection At List Time) has been developed for collecting and summarizing data on delivery of suspended sediment in rivers. It is based on sampling and estimating yield using a suspended-sediment rating curve for high discharges and simple random sampling for low flows. The method gives unbiased estimates of total yield and...

  2. Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (central Morocco).

    PubMed

    Tahri, M; Benyaïch, F; Bounakhla, M; Bilal, E; Gruffat, J J; Moutte, J; Garcia, D

    2005-03-01

    Concentrations of Al, Fe, Cr, Cu, Ni, Pb and Zn in soils, sediments and water samples collected along the Oued Boufekrane river (Meknes, central Morocco) were determined. In soils, a homogeneous distribution of metal concentrations was observed throughout the study area except for Pb, which presents high enrichment at sites located at the vicinity of a main highway. In sediments, high enrichment, with respect to upstream sites, were observed downstream of the city of Meknes for Al, Cr, Fe and Ni and inside the city for Cu, Zn and Pb. In water samples, the metal contents showed to correlate with their homologues in sediments suggesting that the metal contents in water and sediments have identical origins. Descriptive statistics and multivariate analysis (principal factor method, PFM) were used to assist the interpretation of elemental data. This allowed the determination of the correlations between the metals and the identification of three main factor loadings controlling the metal variability in soils and sediments.

  3. Erosion processes, fluvial sediment transport, and reservoir sedimentation in a part of the Newell and Zayante Creek basins, Santa Cruz County, California

    USGS Publications Warehouse

    Brown, W. M.

    1973-01-01

    The drainage basins upstream from Loch Lomond, a water-supply reservoir on Newell Creek, and a proposed reservoir site on Zayante Creek were investigated for their characteristics with respect to the erosion, transportation, and deposition of sediment. The study area is underlain predominantly by sandstone, siltstone, and shale of Tertiary age that decompose readily into moderately deep soils, friable colluvium, and easily transported sediment particles. The Rices Mudstone and Twobar, Shale Members of the San Lorenzo Formation of Brabb (1964) underlie steep dip slopes in the study area, and probably are the most highly erodible of the several geologic units present there. However, nearly all of the geologic units have shown a propensity for accelerated erosion accompanying the disturbance of the land surface by the roadbuilding practices that predominate over other types of sediment-producing land-use activities in the study area. Sediment transport in the study area was estimated from (1) a reservoir survey of Loch Lomond in 1971 that was compared with a preconstruction survey of 1960, and (2) sampling of sediment transported in suspension by Zayante Creek during the 1970 and 1971 water years. At least 46 acre-feet of sediment accumulated in Loch Lomond in a 10-year period, and an unmeasured quantity of very fine sediment in the form of a thin layer over much of the reservoir bottom was observed. The measured quantity of deposited sediment in a 10-year period represented a sediment yield of about 1,100 tons annually per square mile of drainage basin upstream from the reservoir arms where the major deposition occurred. This sediment occupied less than i percent of the original capacity of Loch Lomond, but the volume of measured sediment deposition is probably conservative in view of the unmeasured deposits observed and a reservoir trap efficiency of about 95 percent. Sediment sampling on Zayante Creek indicated suspended-sediment yields of about 4,570 and 570 tons per square mile for the 1970 and 1971 water years. These values were considered excessive with respect to the relatively low flows during which they were measured, and probably reflect the intensive and current roadbuilding practices in the central and upstream parts of the Zayante Creek drainage in the study area.

  4. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network.

    PubMed

    Huang, Wei; Chen, Xing; Wang, Kun; Chen, Junyi; Zheng, Binghui; Jiang, Xia

    2018-06-10

    Sediment microbial communities from plain river networks exert different effects on pollutant transformation and migration in lake basins. In this study, we examined millions of Illumina reads (16S rRNA gene amplicons) to compare lake, lake wetland, and estuary bacterial communities through a technically consistent approach. Results showed that bacterial communities in the sampled lake sediments had the highest alpha-diversity (Group B), than in sampled lake wetland sediments and estuary sediments. Proteobacteria was the most abundant (more than 30%) phyla in all the sediments. The lake sediments had more Nitrospirae (1.63%-11.75%) and Acidobacteria (3.46%-10.21%) than the lake wetland and estuary sediments, and estuary sediments had a greater abundance of the phylum Firmicutes (mean of 22.30%). Statistical analysis (LEfSe) revealed that lake wetland sediments contained greater abundances of the class Anaerolineaceae, orders Xanthomonadales, Pseudomonadales, and genera Flavobacterium, Acinetobacter. The lake sediments had a distinct community of diverse primary producers, such as phylum Acidobacteria, order Ignavibacteriales, and families Nitrospiraceae, Hydrogenophilaceae. Total phosphorus and organic matter were the main factors influencing the bacterial communities in sediments from several parts of the lake wetland and river estuary (p < .05). The novel insights into basin pollution control in plain river networks may be obtained from microbial distribution in sediments from different basin regions. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Reconnaissance study of water quality in the mining-affected Aries River Basin, Romania

    USGS Publications Warehouse

    Friedel, Michael J.; Tindall, James A.; Sardan, Daniel; Fey, David L.; Poputa, G.L.

    2008-01-01

    The Aries River basin of western Romania has been subject to mining activities as far back as Roman times. Present mining activities are associated with the extraction and processing of various metals including Au, Cu, Pb, and Zn. To understand the effects of these mining activities on the environment, this study focused on three objectives: (1) establish a baseline set of physical parameters, and water- and sediment-associated concentrations of metals in river-valley floors and floodplains; (2) establish a baseline set of physical and chemical measurements of pore water and sediment in tailings; and (3) provide training in sediment and water sampling to personnel in the National Agency for Mineral Resources and the Rosia Poieni Mine. This report summarizes basin findings of physical parameters and chemistry (sediment and water), and ancillary data collected during the low-flow synoptic sampling of May 2006.

  6. Carbonate Sediment Deposits on the Reef Front Around Oahu, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, M A.; Blay, Charles T.; Murray, Christopher J.

    2004-06-01

    Large sediment deposits on the reef front around Oahu are a possible resource for replenishing eroded beaches. High-resolution subbottom profiles clearly depict the deposits in three study areas: Kailua Bay off the windward coast, Makua to Kahe Point off the leeward coast, and Camp Erdman to Waimea off the north coast. Most of the sediment is in water depths between 20 and 100 m, resting on submerged shelves created during lowstands of sea level. The mapped deposits have a volume of about 400 million cubic meters in water depths less than 100 m, being thickest off the mouth of channelsmore » carved into the modern insular shelf, from which most of the sediment issues. Vibracore samples contain various amounts of sediment of similar size to the sand on Oahu beaches, with the most compatible prospects located off Makaha, Haleiwa, and Camp Erdman and the least compatible ones located in Kailua Bay. Laboratory tests show a positive correlation of abrasion with Halimeda content; samples from Kailua Bay suffered high amounts of attrition but others were comparable to tested beach samples.« less

  7. Assessment of the ecotoxicity of urban estuarine sediment using benthic and pelagic copepod bioassays.

    PubMed

    Charry, Maria P; Keesing, Vaughan; Costello, Mark; Tremblay, Louis A

    2018-01-01

    Urban estuarine sediments are sinks to a range of contaminants of anthropogenic origin, and a key challenge is to characterize the risk of these compounds to receiving environments. In this study, the toxicity of urban estuarine sediments was tested using acute and chronic bioassays in the benthic harpacticoid Quinquelaophonte sp., and in the planktonic calanoid Gladioferens pectinatus , two New Zealand copepod species. The sediment samples from the estuary tributary sites significantly impacted reproduction in Quinquelaophonte sp. However, results from one of the estuary sites were not significantly different to those from the tributaries sites, suggesting that chemicals other than trace metals, polycyclic aromatic hydrocarbons and ammonia may be the causative stressors. Sediment elutriate samples had significant effects on reproductive endpoints in G. pectinatus , and on the induction of DNA damage in cells, as shown by the comet assay. The results indicate that sediment contamination at the Ahuriri Estuary has the potential to impact biological processes of benthic and pelagic organisms. The approach used provides a standardized methodology to assess the toxicity of estuarine sediments.

  8. A sample-freezing drive shoe for a wire line piston core sampler

    USGS Publications Warehouse

    Murphy, F.; Herkelrath, W.N.

    1996-01-01

    Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core sampler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about -109??F (-78??C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.

  9. Water and sediment quality assessment in the Colastiné-Corralito stream system (Santa Fe, Argentina): impact of industry and agriculture on aquatic ecosystems.

    PubMed

    Regaldo, Luciana; Gutierrez, María F; Reno, Ulises; Fernández, Viviana; Gervasio, Susana; Repetti, María R; Gagneten, Ana M

    2018-03-01

    The present study focuses on the evaluation of metal (chromium, copper, and lead), arsenic, and pesticide (atrazine and endosulfan) contamination in freshwater streams of one of the most important agricultural and industrial areas of central-eastern Argentina, which has not been reported earlier. The environmental fate of inorganic microcontaminants and pesticides was assessed. Samples were collected monthly for a year. Pesticide concentrations were measured in water; metal and arsenic concentrations were measured in water and sediments, and physicochemical variables were analyzed. In most cases, metals and arsenic in water exceeded the established guideline levels for the protection of aquatic biota: 98 and 56.25% of the samples showed higher levels of Cr and Pb, while 81.25 and 85% of the samples presented higher values for Cu and As, respectively. Cr, Pb, Cu, and As exceeded 181.5 times, 41.6 times, 57.5 times, and 12.9 times, respectively, the guideline level values. In sediment samples, permitted levels were also surpassed by 40% for Pb, 15% for As, 4% for Cu, and 2% for Cr. Geoaccumulation Index (Igeo) demonstrated that most of the sediment samples were highly polluted by Cr and Cu and very seriously polluted by Pb, which indicates progressive deterioration of the sediment quality. Atrazine never exceeded them, but 27% of the 48 water samples contained total endosulfan that surpassed the guidelines. The findings of this study suggest risk to the freshwater biota over prolong periods and possible risk to humans if such type of contaminated water is employed for recreation or human use. Improper disposal of industrial effluents and agricultural runoffs need to be controlled, and proper treatment should be done before disposal to avoid further deterioration of the aquifers of this area.

  10. Reconnaissance of pharmaceuticals and wastewater indicators in streambed sediments of the lower Columbia River basin, Oregon and Washington

    USGS Publications Warehouse

    Nilsen, Elena; Furlong, Edward T.; Rosenbauer, Robert

    2014-01-01

    One by-product of advances in modern chemistry is the accumulation of synthetic chemicals in the natural environment. These compounds include contaminants of emerging concern (CECs), some of which are endocrine disrupting compounds (EDCs) that can have detrimental reproductive effects. The role of sediments in accumulating these types of chemicals and acting as a source of exposure for aquatic organisms is not well understood. Here we present a small-scale reconnaissance of CECs in bed sediments of the lower Columbia River and several tributaries and urban streams. Surficial bed sediment samples were collected from the Columbia River, the Willamette River, the Tualatin River, and several small urban creeks in Oregon. Thirty-nine compounds were detected at concentrations ranging from 1,000 ng [g sediment]-1 dry weight basis. Columbia River mainstem, suggesting a higher risk of exposure to aquatic life in lower order streams. Ten known or suspected EDCs were detected during the study. At least one EDC was detected at 21 of 23 sites sampled; several EDCs were detected in sediment from most sites. This study is the first to document the occurrence of a large suite of CECs in the sediments of the Columbia River basin. A better understanding of the role of sediment in the fate and effects of emerging contaminants is needed.

  11. Comparison between Measured and Calculated Sediment Transport Rates in North Fork Caspar Creek, California

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Yarnell, S. M.; Yager, E.; Leidman, S. Z.

    2015-12-01

    Caspar Creek is a gravel-bedded stream located in the Jackson Demonstration State Forest in the coast range of California. The Caspar Creek Experimental Watershed has been actively monitored and studied by the Pacific Southwest Research Station and California Department of Forestry and Fire Protection for over five decades. Although total annual sediment yield has been monitored through time, sediment transport during individual storm events is less certain. At a study site on North Fork Caspar Creek, cross-section averaged sediment flux was collected throughout two storm events in December 2014 and February 2015 to determine if two commonly used sediment transport equations—Meyer-Peter-Müller and Wilcock—approximated observed bedload transport. Cross-section averaged bedload samples were collected approximately every hour during each storm event using a Helley-Smith bedload sampler. Five-minute composite samples were collected at five equally spaced locations along a cross-section and then sieved to half-phi sizes to determine the grain size distribution. The measured sediment flux values varied widely throughout the storm hydrographs and were consistently less than two orders of magnitude in value in comparison to the calculated values. Armored bed conditions, changing hydraulic conditions during each storm and variable sediment supply may have contributed to the observed differences.

  12. Comparison of methods for the removal of organic carbon and extraction of chromium, iron and manganese from an estuarine sediment standard and sediment from the Calcasieu River estuary, Louisiana, U.S.A.

    USGS Publications Warehouse

    Simon, N.S.; Hatcher, S.A.; Demas, C.

    1992-01-01

    U.S. National Bureau of Standards (NBS) estuarine sediment 1646 from the Chesapeake Bay, Maryland, and surface sediment collected at two sites in the Calcasieu River estuary, Louisiana, were used to evaluate the dilute hydrochloric acid extraction of Cr, Fe and Mn from air-dried and freeze-dried samples that had been treated by one of three methods to remove organic carbon. The three methods for the oxidation and removal of organic carbon were: (1) 30% hydrogen peroxide; (2) 30% hydrogen peroxide plus 0.25 mM pyrophosphate; and (3) plasma oxidation (low-temperature ashing). There was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the percent of organic carbon removed by the three methods. Generally, there was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the concentration of Cr, Fe and Mn that was extracted, regardless of the extraction technique that was used. Hydrogen peroxide plus pyrophosphate removed the most organic carbon from sediment collected at the site in the Calcasieu River that was upstream from industrial outfalls. Plasma oxidation removed the most organic carbon from the sediment collected at a site in the Calcasieu River close to industrial outfalls and from the NBS estuarine sediment sample. Plasma oxidation merits further study as a treatment for removal of organic carbon. Operational parameters can be chosen to limit the plasma oxidation of pyrite which, unlike other Fe species, will not be dissolved by dilute hydrochloric acid. Preservation of pyrite allows the positive identification of Fe present as pyrite in sediments. ?? 1992.

  13. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality.

    PubMed

    Buttino, Isabella; Vitiello, Valentina; Macchia, Simona; Scuderi, Alice; Pellegrini, David

    2018-03-01

    The copepod Acartia tonsa was used as a model species to assess marine sediment quality. Acute and chronic bioassays, such as larval development ratio (LDR) and different end-points were evaluated. As a pelagic species, A. tonsa is mainly exposed to water-soluble toxicants and bioassays are commonly performed in seawater. However, an interaction among A. tonsa eggs and the first larval stages with marine sediments might occur in shallow water environments. Here we tested two different LDR protocols by incubating A. tonsa eggs in elutriates and sediments coming from two areas located in Tuscany Region (Central Italy): Livorno harbour and Viareggio coast. The end-points analyzed were larval mortality (LM) and development inhibition (DI) expressed as the percentage of copepods that completed the metamorphosis from nauplius to copepodite. Aims of this study were: i) to verify the suitability of A. tonsa copepod for the bioassay with sediment and ii) to compare the sensitivity of A. tonsa exposed to different matrices, such as water and sediment. A preliminary acute test was also performed. Acute tests showed the highest toxicity of Livorno's samples (two out of three) compared to Viareggio samples, for which no effect was observed. On the contrary, LDR tests with sediments and elutriates revealed some toxic effects also for Viareggio's samples. Results were discussed with regards to the chemical characterization of the samples. Our results indicated that different end-points were affected in A. tonsa, depending on the matrices to which the copepods were exposed and on the test used. Bioassays with elutriates and sediments are suggested and LDR test could help decision-makers to identify a more appropriate management of dredging materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Water-quality assessment of the Kentucky River basin, Kentucky; nutrients, sediments, and pesticides in streams, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of nutrients, suspended sediment, and pesticides in streams. Concentrations of phosphorus were signifi- cantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, all of the stream nitrogen load was attributable to wastewater- treatment-plant effluent. Tributary streams affected by agricultural sources of nutrients contained higher densities of phytoplankton than streams that drained forested areas. Data indicate that a consid- erable percentage of total nitrogen was transported as algal biomass during periods of low discharge. Average suspended-sediment concentrations for the study period were positively correlated with dis- charge. There was a downward trend in suspended- sediment concentrations downstream in the Kentucky River main stem during the study. Although a large amount of suspended sediment originates in the Eastern Coal Field Region, contributions of suspended sediment from the Red River and other tributary streams of the Knobs Region also are important. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organo- phosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, heptachlor epoxide, and lindane were found in streambed- sediment samples.

  15. Metal concentrations in aquatic environments of Puebla River basin, Mexico: natural and industrial influences.

    PubMed

    Morales-García, S S; Rodríguez-Espinosa, P F; Shruti, V C; Jonathan, M P; Martínez-Tavera, E

    2017-01-01

    The rapid urban expansion and presence of volcanoes in the premises of Puebla River basin in central Mexico exert significant influences over its aquatic environments. Twenty surface sediment samples from Puebla River basin consisting of R. Alseseca, R. Atoyac, and Valsequillo dam were collected during September 2009 and analyzed for major (Al, Fe, Mg, Ba, Ca, and K) and trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, and Zn) in order to identify the metal concentrations and their enrichment. R. Atoyac sediments presented higher concentrations of Ba (1193.8 μg g -1 ) and Pb (27.1 μg g -1 ) in comparison with the local reference sample values. All the metal concentrations except Sr for R. Alseseca sediments were within the range of local reference sample values indicating no significant external influence, whereas Valsequillo dam sediments had elevated concentrations of all the metals suggesting both natural and external influences in the study region. The magnitude of metal contamination was assessed using several indices such as geoaccumulation index (I geo ), enrichment factor (EF), degree of contamination (C d ), and pollution load index (PLI). The results suggest that As, Pb, and Zn were predominantly enriched in the Puebla River basin sediments. Comparing with sediment quality guidelines and ecotoxicological values, it is revealed that Cd, Cr, Cu, and Ni have possible harmful effects on the biological community. The present study provides an outlook of metal enrichment in Puebla River basin sediments, highlighting the necessity to conserve this river ecosystem for the near future.

  16. Searching for signatures across microbial communities: Metagenomic analysis of soil samples from mangrove and other ecosystems.

    PubMed

    Imchen, Madangchanok; Kumavath, Ranjith; Barh, Debmalya; Azevedo, Vasco; Ghosh, Preetam; Viana, Marcus; Wattam, Alice R

    2017-08-18

    In this study, we categorize the microbial community in mangrove sediment samples from four different locations within a vast mangrove system in Kerala, India. We compared this data to other samples taken from the other known mangrove data, a tropical rainforest, and ocean sediment. An examination of the microbial communities from a large mangrove forest that stretches across southwestern India showed strong similarities across the higher taxonomic levels. When ocean sediment and a single isolate from a tropical rain forest were included in the analysis, a strong pattern emerged with Bacteria from the phylum Proteobacteria being the prominent taxon among the forest samples. The ocean samples were predominantly Archaea, with Euryarchaeota as the dominant phylum. Principal component and functional analyses grouped the samples isolated from forests, including those from disparate mangrove forests and the tropical rain forest, from the ocean. Our findings show similar patterns in samples were isolated from forests, and these were distinct from the ocean sediment isolates. The taxonomic structure was maintained to the level of class, and functional analysis of the genes present also displayed these similarities. Our report for the first time shows the richness of microbial diversity in the Kerala coast and its differences with tropical rain forest and ocean microbiome.

  17. The SED-TOX: Toxicity-directed management tool to assess and rank sediments based on their hazard -- concept and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bombardier, M.; Bermingham, N.

    1999-04-01

    This article introduces the sediment Toxicity (SED-TOX) Index for the assessment and ranking of toxic hazards in sediment. Major features include expression of toxicity responses on a single scale of measurement (dry weight-based toxic units), consideration of multiple routes of exposure (pore water, organic extract, wet sediment, and whole sediment), application of differential treatments to toxicity data depending on the level of response, and use of weighting factors to discriminate sediment exposure phases and effect endpoints on the basis of sensitivity. A battery of seven bioassays with four test species (Vibrio fischeri, Escherichia coli, Lytechinus pictus, and Amphiporeia virginiana) wasmore » conducted on 49 marine sediment samples collected from six sites at Anse-a-Beaufils and Cap-aux-Meules, which are in the Gulf of St. Lawrence. The SED-TOX scores were calculated for each sampling station and compared with sediment contaminant concentrations. Results indicate that physico-chemical characterization is not sufficient to assess contaminated-sediment hazard for organisms; furthermore, using several exposure phases and test species belonging to various trophic levels increases the possibility of correctly identifying toxic sediments. The results of this study indicate that the SED-TOX approach is valuable as a toxicity assessment and ranking tool for sediments. It could easily be combined with other measures of ecosystem disturbance to discriminate between polluted and unpolluted sites.« less

  18. Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia

    NASA Astrophysics Data System (ADS)

    Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe

    2008-02-01

    Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.

  19. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Simon, Nancy S.; Ingle, Sarah N.

    2011-01-01

    μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (<63 μm) were approximately equal in samples at depths greater than 10 cm below the sediment water interface. Chemical analyses included both size fractions of freeze-dried samples. Chemical analyses included determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P associated with mineral phases. The difference between the concentration of total P and sum of the concentrations of inorganic forms of P is referred to as residual P. Residual P was the largest fraction of P in all of the sediment samples. In UKL, the correlation between concentrations of total P and total Fe in sediment is poor (R2<0.1). The correlation between the concentrations of total P and P associated with poorly crystalline Fe oxides is good (R2=0.43) in surface sediment (0.5-4.5 cm below the sediment water interface) but poor (R2<0.1) in sediments at depths between 10 cm and 30 cm. Phosphorus associated with poorly crystalline Fe oxides is considered bioavailable because it is released when sediment conditions change from oxidizing to reducing, which causes dissolution of Fe oxides.

  20. TESTING ACUTE TOXICITY OF CONTAMINATED SEDIMENT IN JINZHOU BAY WITH MARINE AMPHIPODS

    EPA Science Inventory

    Sediments in some areas of Jinzhou Bay are contaminated seriously by heavy metals and organic contaminants. To assess the biological effects of these compounds in the sediment, seven surface samples of sediment were collected at an interval of about 2km between sampling stations ...

  1. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples.

    PubMed

    Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M

    2012-08-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.

  2. Denaturing Gradient Gel Electrophoresis and Barcoded Pyrosequencing Reveal Unprecedented Archaeal Diversity in Mangrove Sediment and Rhizosphere Samples

    PubMed Central

    Pires, Ana C. C.; Cleary, Daniel F. R.; Almeida, Adelaide; Cunha, Ângela; Dealtry, Simone; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2012-01-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages. PMID:22660713

  3. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun

    2012-09-01

    Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.

  4. Relationships of sedimentation and benthic macroinvertebrate assemblages in headwater streams using systematic longitudinal sampling at the reach scale.

    PubMed

    Longing, S D; Voshell, J R; Dolloff, C A; Roghair, C N

    2010-02-01

    Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design. Further investigations of invertebrate sensitivity to sedimentation may benefit from assessments of sedimentation impacts at different spatial scales, determining compromised physical habitat integrity of specific taxa and developing alternative streambed measures for quantifying sedimentation.

  5. Spatial distribution and ecological risk assessment of heavy metals in coastal surface sediments in the Hebei Province offshore area, Bohai Sea, China.

    PubMed

    Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W

    2018-06-01

    Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Pollution characteristics and ecological risk of heavy metals in ballast tank sediment.

    PubMed

    Feng, Daolun; Chen, Xiaofei; Tian, Wen; Qian, Qun; Shen, Hao; Liao, Dexiang; Lv, Baoyi

    2017-02-01

    This study was conducted to illustrate the contents and potential ecological risk of heavy metals in ballast tank sediment. Ballast sediment samples were collected from six ships during their stay in shipyard, and the heavy metals were determined by inductive coupled plasma emission spectrometer. Results showed that high concentrations of heavy metals were detected in all six sediment samples following the order: Zn > Cu > Pb > Cr > As > Cd > Hg. The geoaccumulation index explained the average pollution degree of heavy metals decreased as the following: Zn > Pb > Cu > As > Cr > Hg, and the environmental risk indices suggested that concentration found of Zn, Pb, and Cu might be highly toxic to aquatic organisms. Principal component and correlation analysis indicated the metal pollution in ballast tank sediment was affected by complex and different contamination mechanisms, and the corrosion of ballast tank played an important role in this process. In conclusion, this study is very useful for comprehensive consideration and efficient management of ballast tank sediment in order to protect the marine environment.

  7. Application of quantitative composite fingerprinting technique to identify the main sediment sources in two small catchments of Iran

    NASA Astrophysics Data System (ADS)

    Kouhpeima, A.; Feiznia, S.; Ahmadi, H.; Hashemi, S. A.; Zareiee, A. R.

    2010-09-01

    The targeting of sediment management strategies is a key requirement in developing countries including Iran because of the limited resources available. These targeting is, however hampered by the lack of reliable information on catchment sediment sources. This paper reports the results of using a quantitative composite fingerprinting technique to estimate the relative importance of the primary potential sources within the Amrovan and Royan catchments in Semnan Province, Iran. Fifteen tracers were first selected for tracing and samples were analyzed in the laboratory for these parameters. Statistical methods were applied to the data including nonparametric Kruskal-Wallis test and Differentiation Function Analysis (DFA). For Amrovan catchment three parameters (N, Cr and Co) were found to be not significant in making the discrimination. The optimum fingerprint, comprising Oc, PH, Kaolinite and K was able to distinguish correctly 100% of the source material samples. For the Royan catchment, all of the 15 properties were able to distinguish between the six source types and the optimum fingerprint provided by stepwise DFA (Cholorite, XFD, N and C) correctly classifies 92.9% of the source material samples. The mean contributions from each sediment source obtained by multivariate mixing model varied at two catchments. For Amrovan catchment Upper Red formation is the main sediment sources as this sediment source approximately supplies 36% of the reservoir sediment whereas the dominant sediment source for the Royan catchment is from Karaj formation that supplies 33% of the reservoir sediments. Results indicate that the source fingerprinting approach appears to work well in the study catchments and to generate reliable results.

  8. Distribution of potentially bioavailable natural organic carbon in aquifer sediments at a chloroethene-contaminated site

    USGS Publications Warehouse

    Thomas, L.K.; Widdowson, M.A.; Chapelle, F.H.; Novak, J.T.; Boncal, J.E.; Lebrón, C. A.

    2012-01-01

    The distribution of natural organic carbon was investigated at a chloroethene-contaminated site where complete reductive dechlorination of tetrachloroethene (PCE) to vinyl chloride and ethene was observed. In this study, operationally defined potentially bioavailable organic carbon (PBOC) was measured in surficial aquifer sediment samples collected at varying depths and locations in the vicinity of a dense nonaqueous phase liquid (DNAPL) source and aqueous phase plume. The relationship between chloroethene concentrations and PBOC levels was examined by comparing differences in extractable organic carbon in aquifer sediments with minimal chloroethene exposure relative to samples collected in the source zone. Using performance-monitoring data, direct correlations with PBOC were also developed with chloroethene concentrations in groundwater. Results show a logarithm-normal distribution for PBOC in aquifer sediments with a mean concentration of 187  mg/kg. PBOC levels in sediments obtained from the underlying confining unit were generally greater when compared to sediments collected in the sandy surficial aquifer. Results demonstrated a statistically significant inverse correlation (p=0.007) between PBOC levels in aquifer sediments and chloroethene concentrations for selected monitoring wells in which chloroethene exposure was the highest. Results from laboratory exposure assays also demonstrated that sediment samples exhibited a reduction in PBOC levels of 35% and 73%, respectively, after a 72-h exposure period to PCE (20,000  μg/L). These results support the notion that PBOC depletion in sediments may be expected in chloroethene-contaminated aquifers, which has potential implications for the long-term sustainability of monitored natural attenuation.

  9. Sediment redistribution and grainsize effects on 230Th-normalized mass accumulation rates and focusing factors in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Loveley, Matthew R.; Marcantonio, Franco; Lyle, Mitchell; Ibrahim, Rami; Hertzberg, Jennifer E.; Schmidt, Matthew W.

    2017-12-01

    Here, we examine how redistribution of differing grain sizes by sediment focusing processes in Panama Basin sediments affects the use of 230Th as a constant-flux proxy. We study representative sediments of Holocene and Last Glacial Maximum (LGM) time slices from four sediment cores from two different localities close to the ridges that bound the Panama Basin. Each locality contains paired sites that are seismically interpreted to have undergone extremes in sediment redistribution, i.e., focused versus winnowed sites. Both Holocene and LGM samples from sites where winnowing has occurred contain significant amounts (up to 50%) of the 230Th within the >63 μm grain size fraction, which makes up 40-70% of the bulk sediment analyzed. For sites where focusing has occurred, Holocene and LGM samples contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4 μm), which makes up 26-40% of the bulk sediment analyzed. There are slight underestimations of 230Th-derived mass accumulation rates (MARs) and overestimations of 230Th-derived focusing factors at focused sites, while the opposite is true for winnowed sites. Corrections made using a model by Kretschmer et al. (2010) suggest a maximum change of about 30% in 230Th-derived MARs and focusing factors at focused sites, except for our most focused site which requires an approximate 70% correction in one sample. Our 230Th-corrected 232Th flux results suggest that the boundary between hemipelagically- and pelagically-derived sediments falls between 350 and 600 km from the continental margin.

  10. Enantiomer fractions of chlordane components in sediment from U.S. Geological Survey sites in lakes and rivers

    USGS Publications Warehouse

    Ulrich, E.M.; Foreman, W.T.; Van Metre, P.C.; Wilson, J.T.; Rounds, S.A.

    2009-01-01

    Spatial, temporal, and sediment-type trends in enantiomer signatures were evaluated for cis- and trans-chlordane (CC, TC) in archived core, suspended, and surficial-sediment samples from six lake, reservoir, and river sites across the United States. The enantiomer fractions (EFs) measured in these samples are in good agreement with those reported for sediment, soil, and air samples in previous studies. The chlordane EFs were generally close to the racemic value of 0.5, with CC values ranging from 0.493 to 0.527 (usually >0.5) and TC values from 0.463 to 0.53 (usually <0.5). EF changes with core depth were detected for TC and CC in some cores, with the most non-racemic values near the top of the core. Surficial and suspended sediments generally have EF values similar to the top core layers but are often more non-racemic, indicating that enantioselective degradation is occurring before soils are eroded and deposited into bottom sediments. We hypothesize that rapid losses (desorption or degradation) from suspended sediments of the more bioavailable chlordane fraction during transport and initial deposition could explain the apparent shift to more racemic EF values in surficial and top core sediments. Near racemic CC and TC in the core profiles suggest minimal alteration of chlordane from biotic degradation, unless it is via non-enantioselective processes. EF values for the heptachlor degradate, heptachlor epoxide (HEPX), determined in surficial sediments from one location only were always non-racemic (EF ??? 0.66), were indicative of substantial biotic processing, and followed reported EF trends.

  11. Sediment sampling and processing methods in Hungary, and possible improvements

    NASA Astrophysics Data System (ADS)

    Tamas, Eniko Anna; Koch, Daniel; Varga, Gyorgy

    2016-04-01

    The importance of the monitoring of sediment processes is unquestionable: sediment balance of regulated rivers suffered substantial alterations in the past century, affecting navigation, energy production, fish habitats and floodplain ecosystems alike; infiltration times to our drinking water wells have shortened, exposing them to an eventual pollution event and making them vulnerable; and sediment-attached contaminants accumulate in floodplains and reservoirs, threatening our healthy environment. The changes in flood characteristics and rating curves of our rivers are regularly being researched and described, involving state-of-the-art measurement methods, modeling tools and traditional statistics. Sediment processes however, are much less known. Unlike the investigation of flow processes, sediment-related research is scarce, which is partly due to the outdated methodology and poor database background in the specific field. Sediment-related data, information and analyses form an important and integral part of Civil engineering in relation to rivers all over the world. In relation to the second largest river of Europe, the Danube, it is widely known in expert community and for long discussed at different expert forums that the sediment balance of the river Danube has changed drastically over the past century. Sediment monitoring on the river Danube started as early as the end of the 19th century, with scattered measurements carried out. Regular sediment sampling was developed in the first half of the 20th century all along the river, with different station density and monitoring frequencies in different countries. After the first few decades of regular sampling, the concept of (mainly industrial) development changed along the river and data needs changed as well, furthermore the complicated and inexact methods of sampling bed load on the alluvial reach of the river were not developed further. Frequency of suspended sediment sampling is very low along the river, best organized in the upstream countries, where also on tributaries like the Drau/Drava monitoring stations are in operation. Sampling frequency of suspended load is 3 to 7 per year in Hungary, and even lower downstream. Sediment management is a major challenge, as most methods developed until now are unsustainable, require continuous intervention and are expensive as well. However, there is a new focus on the subject in the 21st century, which still lacks uniform methodological recommendations for measurements and analyses, and the number of engineers with sediment expertise and experience is alarmingly low. Data related to sediment quantity are unreliable and often contradictory. It is difficult to produce high quality long-term databases that could support and enable the mathematical calibration of sediment transport models. Sediment measurements are different in different countries in Europe. Even in Hungary, sampling and laboratory techniques have changed several times in the past. Also, sediment sampling was never really systhematic, and the sampling campaigns did not follow the hydrological processes. That is how sediment data can hardly be compared; and the data series are inhomogeneous and they cannot be statistically analysed. The majority of the existing sediment data in Hungary are not suitable for the data supply needs of state-of-the-art numerical modeling. It is even problematic to describe the connections between water flow (discharge) and sediment transport, because data are scarce and irregular. Even the most modern measurement methods (Acoustic Doppler Current Profiler [ADCP], or Laser In Situ Scattering and Transmissometry [LISST]) need calibration, which means field sampling and laboratory processing. For these reasons we need (both quantitatively and qualitively) appropriate sampling of sediment. In frame of projects and programs of the Institute for Hydraulic engineering and Water management of Eötvös József College, we developed the methodology of field-data collection campaigns in relation to sediment data in order to meet the calibration and verification needs of state-of-the art numerical modeling, and to be able to collect comparable data series for statistical analyses.

  12. Water-quality, bed-sediment, and biological data (October 2014 through September 2015) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2017-01-19

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2014 through September 2015. Bed-sediment and biota samples were collected once at 13 sites during August 2015.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2014 through September 2015. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, samples for analysis of dissolved organic carbon and turbidity were collected. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  13. Assessment of pathogen levels in stream water column and bed sediment of Merced River Watershed in California

    NASA Astrophysics Data System (ADS)

    Vaddella, V. K.; Pandey, P.; Biswas, S.; Lewis, D. J.

    2014-12-01

    Mitigating pathogen levels in surface water is crucial for protecting public health. According to the U.S. Environmental Protection Agency (US EPA), approximately 480,000 km of rivers/streams are contaminated in the U.S., and a major cause of contamination is elevated levels of pathogen/pathogen indicator. Many of past studies showed considerably higher pathogen levels in sediment bed than that of the stream water column in rivers. In order to improve the understanding of pathogen levels in rivers in California, we carried out an extensive pathogen monitoring study in four different watersheds (Bear Creek, Ingalsbe, Maxwell, and Yosemite watersheds) of Merced River. Stream water and streambed sediment samples were collected from 17 locations. Pathogen levels (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were enumerated in streambed sediment and water column. In addition, the impacts of heat stress on pathogen survival were assessed by inoculating pathogens into the water and sediment samples for understanding the pathogen survival in stream water column and streambed sediment. The pathogen enumeration (in water column and sediment bed) results indicated that the E. coli O157:H7, Salmonella spp. and Listeria monocytogenes levels were non-detectable in the water column and streambed sediment. The results of heat stress (50◦ C for 180 minutes) test indicated a pathogen decay at one order of magnitude (108 cfu/ml to 107 cfu/ml). Nonetheless, higher pathogen levels (1.13 × 107 cfu/ml) after the heat stress study showed potential pathogen survival at higher temperature. Preliminary results of this study would help in understanding the impacts of elevated temperature on pathogen in stream environment. Further studies are required to test the long-term heat-stress impacts on pathogen survival.

  14. Depositional history of Louisiana-Mississippi outer continental shelf

    USGS Publications Warehouse

    Kindinger, J.L.; Miller, R.J.; Stelting, C.E.

    1982-01-01

    A geological study was undertaken in 1981 in the Louisiana-Mississippi outer continental shelf for the Bureau of Land Management. The study included a high-resolution seismic reflection survey, surficial sediment sampling and surface current drifter sampling. Approximately 7100 sq km of the Louisiana-Mississippi shelf and upper slope were surveyed. The sea floor of the entire area is relatively smooth except for occasional areas of uplift produced by diapiric intrusion along the upper slope. Characteristics of the topography and subsurface shelf sediments are the result of depositional sequences due to delta outbuilding over transgressive sediments with intervening periods of erosion during low sea level stands. Little evidence of structural deformation such as faults, diapirs, and shallow gas is present on the shelf and only a few minor faults and scarps are found on the slope. Minisparker seismic records in combination with air gun (40 and 5 cu in) and 3.5-kHz subbottom profile records reveal that seven major stages of shelf development have occurred since the middle Pleistocene. The shelf development has been controlled by the rise and fall of sea level. These stages are defined by four major unconformities, several depositions of transgressive sediments, sequences of river channeling and progradational delta deposits. Surficial sediment sample and seismic records indicate tat the last major depositional event was the progradation of the St. Bernard Delta lobe. This delta lobe covered the northwestern and central regions. Surficial sediments in most of the study area are the product of the reworking of the San Bernard Delta lobe and previous progradations.

  15. Water-quality, bed-sediment, and biological data (October 2009 through September 2010) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2012-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2009 through September 2010. Bed-sediment and biota samples were collected once at 13 sites during August 2010. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2009 through September 2010. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  16. Water-quality, bed-sediment, and biological data (October 2011 through September 2012) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2011 through September 2012. Bed-sediment and biota samples were collected once at 13 sites during August 2012. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2011 through September 2012. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record since 1985.

  17. Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan.

    PubMed

    Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M

    2018-03-01

    The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A primer on trace metal-sediment chemistry

    USGS Publications Warehouse

    Horowitz, Arthur J.

    1985-01-01

    In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic matter) and ways in which the metals are entrained by the sediments (such as adsorption, complexation, and within mineral lattices).

  19. Turbidity-controlled sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  20. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma; organic compounds in surface water, bed sediment, and biological tissue, 1992-95

    USGS Publications Warehouse

    Bell, Richard W.; Davis, Jerri V.; Femmer, Suzanne R.; Joseph, Robert L.

    1997-01-01

    Organic-compound samples, including pesticides and semi-volatiles, were collected from 1992-95 at 43 surface-water and 27 bed-sediment and biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Most surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus. At most surface-water sampling sites, one to three pesticide samples were collected in the spring and early summer of 1994 and 1995; two sites had additional samples collected either weekly, biweekly, or monthly from February 1994 through December 1994. At most bed-sediment and biological-tissue sampling sites, a single organic-compounds sample was collected. Agricultural pesticide use was approximately 4.9 million pounds of active ingredients per year from 1987-91 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Atrazine was the second most frequently applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 85 percent of the pesticides applied within the study unit. The highest pesticide application rate occurred on these crops in the Mississippi Alluvial and Osage Plains. Pastureland was the crop type that received the greatest amount of pesticides in 53 of the 96 counties in the study unit. The most commonly detected herbicide (63 samples) in surface water was atrazine. Five other pesticides--desethylatrazine, tebuthiuron, prometon, metolachlor, and simazine--were detected in 15 or more samples. The most commonly detected insecticide (13 samples) was p,p'-DDE. Two other insecticides, diazinon and cis-permethrin, were detected in seven or more samples. Pesticides were detected at 39 surface-water sites; samples collected at Yocum Creek near Oak Grove, Ark. had the most pesticide detections (13). Seventeen other sites had samples with six or more pesticide detections. Analysis of pesticide data collected at surface-water sites indicates that the largest variety of different pesticides detected (18) was in small, agricultural drainage basins; the largest percentage of detections of a single pesticide (about 80) was in medium, agricultural basins. Pesticide concentrations were small, and in most cases, at or near the detection limit. Maximum concentrations ranged from 0.001 to 0.007 micrograms per liter (mg/L) at small, forest sites; 0.001 to 0.029 mg/L at medium, forest sites; 0.001 to 0.079 mg/L at small, agricultural sites; and 0.003 to 0.29 mg/L at medium, agricultural sites. Pesticides were detected significantly more often in medium, agricultural basins in the Springfield Plateau. The most commonly detected (13 samples) organic compound in bed sediment, in concentrations noticeably above background levels, was 2,6-dimethylnaphthalene; the maximum concentration of 2,6-dimethylnaphthalene was 130 micrograms per kilogram. Seventeen or more compounds were detected in bed-sediment samples collected at three sites. Four compounds were detected in biological-tissue samples: p,p'-DDT in Corbicula fluminea (Asiatic clam) tissue collected at the Osage River near St. Thomas, Mo. and cis-chlordane, trans-chlordane, and trans-nonachlor in C. fluminea tissue collected at the James River near Boaz, Mo. Organic compounds collected at surface-water, bed-sediment, or biological-tissue sampling sites were not detected in concentrations that exceeded any health criteria or standards. Based on this information, organic compounds do not pose any widespread or persistent problems in the study unit.

  1. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    EPA Science Inventory

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practica...

  2. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    EPA Science Inventory

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical...

  3. Organochlorine pesticides and polychlorinated biphenyls in surface soils of Novi Sad and bank sediment of the Danube River.

    PubMed

    Skrbic, Biljana; Cvejanov, Jelena; Durisic-Mladenovic, Natasa

    2007-01-01

    The contents of 16 organochlorine pesticides (OCPs) and six so-called indicator polychlorinated biphenyls (PCBs) were determined in the surface zone (0-5 cm) of soil and sediment samples, taken from different locations in the city of Novi Sad, capitol of Vojvodina Province (North of the Serbia) covering residential and commercial area, recreational and arable zone. The total organochlorine pesticides concentration in soil varied from 2.63 to 31.78 ng g(-1) dry weight, while the level in sediment was 10.35 ng g(-1) dry weight. Maximum content of identified individual organochlorine pesticide in soil samples was 10.40 ng g(-1) dry weight for p, p-DDE in the market garden and 6.31 ng g(-1) dry weight for p, p'-DDT in sediment of the Danube River, although their application is restricted in Serbia. Some of investigated PCBs were identified only in the soil samples from a park-school backyard in the city downtown (0.32 ng g(-1) dry weight) and market garden (0.22 ng g(-1) dry weight), and also in sediment sample from left bank of the Danube River (0.41 ng g(-1) dry weight). Data of the OCPs and PCBs present in this study were compared with the ones found for soils and river sediments throughout the world, and with limit values set by soil and sediment quality guidelines. Also, correlation between the levels of certain pesticides and soil characteristics (organic matter, pH and clay content) was investigated.

  4. Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: Assessment of environmental pollution.

    PubMed

    Alshahri, Fatimh

    2017-01-01

    Accumulation of heavy metals in environment may cause series potential risk in the living system. This study was carried out to investigate heavy metal contamination in sand samples and sediments along the beach near to disposal site of reject brine from Alkhobar desalination plant, which is one of the oldest and largest reverse osmosis desalination plants in eastern Saudi Arabia, Arabian Gulf. Fourteen heavy metals (U, Ca, Fe, Al, Ti, Sr, Rb, Ni, Pb, Cd, Cr, Cu, As, and Zr) were measured using gamma-ray spectrometry, atomic absorption spectrometer (AAS) and energy dispersive X-ray fluorescence spectrometer (EDX). The obtained data revealed that the concentrations of these metals were higher than the values in sediment and soil for other studies in Arabian Gulf. Furthermore, the mean values of Fe, Mn, Cr, Cu, As, Sr, and Zr concentrations in sand and sediments were higher than the geochemical background values in shale. The contamination factor (CF), modified degree of contamination (mC d ) and pollution load index (PLI) were assessed. According to contamination factors (CF > 1), the results showed elevated levels of Cu, Cr, Mn, Zr, and As in all samples. The highest value of contamination factor was found for As. Based on PLI (PLI > 1), the values of all sampling sites indicate a localized pollution in the study area. Current study could be useful as baseline data for heavy metals in sand and sediments nearby a desalination plant.

  5. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa

    PubMed Central

    Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Oluwaseun E.; Msagati, Titus A. M.

    2016-01-01

    Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons) classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs. PMID:27043597

  6. Distribution of brominated flame retardants and dechloranes between sediments and benthic fish--A comparison of a freshwater and marine habitat.

    PubMed

    Sühring, Roxana; Busch, Friederike; Fricke, Nicolai; Kötke, Danijela; Wolschke, Hendrik; Ebinghaus, Ralf

    2016-01-15

    A total of 53 halogenated flame retardants (HFRs) were analysed in sediments, European eels and dabs from both freshwater and marine sampling stations in the German Bight and the river Elbe. Classic HFRs, such as polybrominated diphenylethers (PBDEs), were the highest concentrated HFRs in eels as well as in most dabs (apart from 1,2,5,6-tetrabromocyclooctane (TBCO)). In sediments, on the other hand, alternate BFRs and especially dechloranes dominated the contamination pattern. Dabs were still found to be statistically representative for the contamination patterns and relative magnitude in sediments from their respective habitats. Contamination patterns in eels seemed to be more driven by the contamination situation in the food chain or historical contamination of their habitat. Unsuspectedly the alternate flame retardant TBCO was found in comparably high concentrations (up to 12 ng g(-1) ww) in dabs from two sampling stations as well as in sediments from these stations (up to 1.2 ng g(-1) dw). It could not be detected in any other analysed fish or sediment samples, indicating a localised contamination source in the area. This study provides information on HFR contamination patterns and behaviour in both marine and freshwater sediments and their potential role as contamination source for benthic fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay

    PubMed Central

    Liu, Li; Chen, Ling; Floehr, Tilman; Xiao, Hongxia; Bluhm, Kerstin; Hollert, Henner; Wu, Lingling

    2015-01-01

    Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components. PMID:26606056

  8. Physical property studies in the USGS GHASTLI Laboratory

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Hutchinson, Deborah R.; Mason, David H.

    2008-01-01

    One of the many challenges in studying methane hydrate is that it is unstable at typical surface pressure and temperature conditions. To enable methane hydrates and hydrate-bearing sediments to be formed, analyzed, and experimented with, the National Energy Technology Laboratory (NETL), and the U.S. Geological Survey (USGS) in Woods Hole, MA collaborated in the development of the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Over the past decade, the USGS has been operating GHASTLI and collaborating in the development of new sample handling tools and procedures, in an effort to improve our ability to analyze methane hydrate in the lab. These tools will enable hydrate researchers to more confidently link field studies (for example geophysics or drilling) with theoretical and predictive studies, leading to a better understanding of the geological conditions and processes that control the growth and concentration of natural gas hydrates, how hydrates affect the properties of the host sediments, and how the hydrate-sediment system changes when hydrate dissociates and releases the previously bound gas. To date, GHASTLI has been used to measure natural samples from ODP Leg 164 (Blake Ridge off the U.S. southeast Atlantic margin), Leg 204 (Hydrate Ridge off the Pacific Northwest margin) and the Mallik well (Mackenzie Delta in northwestern Canada). Additional samples in the queue for analysis are from the Chevron Joint Industry Project Experiment in the Gulf of Mexico and most recently, from IODP Leg 311 off Vancouver Island. Several foreign nations have asked whether GHASTLI will be available to analyze samples that might be recovered during national drilling programs. The ability to perform lab testing of hydrates within sediments is one of the unique capabilities of GHASTLI that separates it from other simulators at NETL and elsewhere.

  9. The quantification of short-chain chlorinated paraffins in sediment samples using comprehensive two-dimensional gas chromatography with μECD detection.

    PubMed

    Muscalu, Alina M; Morse, Dave; Reiner, Eric J; Górecki, Tadeusz

    2017-03-01

    The analysis of persistent organic pollutants in environmental samples is a challenge due to the very large number of compounds with varying chemical and physical properties. Chlorinated paraffins (CPs) are complex mixtures of chlorinated n-alkanes with varying chain lengths (C 10 to C 30 ) and degree of chlorination (30 to 70% by weight). Their physical-chemical properties make these compounds persistent in the environment and able to bioaccumulate in living organisms. Comprehensive two-dimensional gas chromatography (GC × GC) coupled with micro-electron capture detection (μECD) was used to separate and quantify short-chain chlorinated paraffins (SCCP) in sediment samples. Distinct ordered bands were observed in the GC × GC chromatograms pointing to group separation. Using the Classification function of the ChromaTOF software, summary tables were generated to determine total area counts to set up multilevel-calibration curves for different technical mixes. Fortified sediment samples were analyzed by GC × GC-μECD with minimal extraction and cleanup. Recoveries ranged from 120 to 130%. To further validate the proposed method for the analysis of SCCPs, the laboratory participated in interlaboratory studies for the analysis of standards and sediment samples. The results showed recoveries between 75 and 95% and z-score values <2, demonstrating that the method is suitable for the analysis of SCCPs in soil/sediment samples. Graphical abstract Quantification of SCCPs by 2D-GC-μECD.

  10. Microbiome succession during ammonification in eelgrass bed sediments.

    PubMed

    Ettinger, Cassandra L; Williams, Susan L; Abbott, Jessica M; Stachowicz, John J; Eisen, Jonathan A

    2017-01-01

    Eelgrass ( Zostera marina ) is a marine angiosperm and foundation species that plays an important ecological role in primary production, food web support, and elemental cycling in coastal ecosystems. As with other plants, the microbial communities living in, on, and near eelgrass are thought to be intimately connected to the ecology and biology of eelgrass. Here we characterized the microbial communities in eelgrass sediments throughout an experiment to quantify the rate of ammonification, the first step in early remineralization of organic matter, also known as diagenesis, from plots at a field site in Bodega Bay, CA. Sediment was collected from 72 plots from a 15 month long field experiment in which eelgrass genotypic richness and relatedness were manipulated. In the laboratory, we placed sediment samples ( n  = 4 per plot) under a N 2 atmosphere, incubated them at in situ temperatures (15 °C) and sampled them initially and after 4, 7, 13, and 19 days to determine the ammonification rate. Comparative microbiome analysis using high throughput sequencing of 16S rRNA genes was performed on sediment samples taken initially and at seven, 13 and 19 days to characterize changes in the relative abundances of microbial taxa throughout ammonification. Within-sample diversity of the sediment microbial communities across all plots decreased after the initial timepoint using both richness based (observed number of OTUs, Chao1) and richness and evenness based diversity metrics (Shannon, Inverse Simpson). Additionally, microbial community composition changed across the different timepoints. Many of the observed changes in relative abundance of taxonomic groups between timepoints appeared driven by sulfur cycling with observed decreases in predicted sulfur reducers ( Desulfobacterales ) and corresponding increases in predicted sulfide oxidizers ( Thiotrichales ). None of these changes in composition or richness were associated with variation in ammonification rates. Our results showed that the microbiome of sediment from different plots followed similar successional patterns, which we infer to be due to changes related to sulfur metabolism. These large changes likely overwhelmed any potential changes in sediment microbiome related to ammonification rate. We found no relationship between eelgrass presence or genetic composition and the microbiome. This was likely due to our sampling of bulk sediments to measure ammonification rates rather than sampling microbes in sediment directly in contact with the plants and suggests that eelgrass influence on the sediment microbiome may be limited in spatial extent. More in-depth functional studies associated with eelgrass microbiome will be required in order to fully understand the implications of these microbial communities in broader host-plant and ecosystem functions (e.g., elemental cycling and eelgrass-microbe interactions).

  11. Water-Quality, Bed-Sediment, and Biological Data (October 2006 through September 2007) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2008-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2006 through September 2007. Bed-sediment and biological samples were collected once at 12 sites during August 2007. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2006 through September 2007. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for samples collected at sites where seasonal daily values of turbidity were being determined. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  12. Characterization of sediment trapped by macroalgae on a Hawaiian reef flat

    USGS Publications Warehouse

    Stamski, R.E.; Field, M.E.

    2006-01-01

    Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (???1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (??0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km2 of reef flat (54 g m-2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Characterization of sediment trapped by macroalgae on a Hawaiian reef flat

    NASA Astrophysics Data System (ADS)

    Stamski, Rebecca E.; Field, Michael E.

    2006-01-01

    Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (˜1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (±0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km 2 of reef flat (54 g m -2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments.

  14. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  15. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.

    2011-01-01

    Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio

  16. Water-Quality, Bed-Sediment, and Biological Data (October 2004 through September 2005) and Statistical Summaries of Data for Streams in the Upper Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2006-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a long-term monitoring program, conducted in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the upper Clark Fork basin of western Montana. Sampling sites were located on the Clark Fork, six major tributaries, and three smaller tributaries. Water-quality samples were collected periodically at 18 sites during October 2004 through September 2005 (water year 2005). Bed-sediment and biological samples were collected once in August 2005. The primary constituents analyzed were trace elements associated with tailings from historical mining and smelting activities. This report summarizes the results of water-quality, bed-sediment, and biota samples col-lected in water year 2005 and provides statistical summaries of data collected since 1985. Water-quality data for samples collected periodically from streams include concentrations of selected major ions, trace ele-ments, and suspended sediment. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for three sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of water-quality, bed-sediment, and biological data are provided for the period of record since 1985 for each site.

  17. Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary.

    PubMed

    Chanson, Hubert; Takeuchi, Maiko; Trevethan, Mark

    2008-09-01

    The suspended sediment concentration is a key element in stream monitoring, although the turbidity and acoustic Doppler backscattering may be suitable surrogate measures. Herein a series of new experiments were conducted in laboratory under controlled conditions using water and mud samples collected in a small subtropical estuary of Eastern Australia. The relationship between suspended sediment concentration and turbidity exhibited a linear relationship, while the relationships between suspended sediment concentration and acoustic backscatter intensity showed a monotonic increase. The calibration curves were affected by both sediment material characteristics and water quality properties, implying that the calibration of an acoustic Doppler system must be performed with the waters and soil materials of the natural system. The results were applied to some field studies in the estuary during which the acoustic Doppler velocimeter was sampled continuously at high frequency. The data yielded the instantaneous suspended sediment flux per unit area in the estuarine zone. They showed some significant fluctuations in instantaneous suspended mass flux, with a net upstream-suspended mass flux during flood tide and net downstream sediment flux during ebb tide. For each tidal cycle, the integration of the suspended sediment flux per unit area data with respect of time yielded some net upstream sediment flux in average.

  18. Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management.

    PubMed

    Lv, Baoyi; Cui, Yuxue; Tian, Wen; Feng, Daolun

    2017-12-01

    This study aims to reveal the composition and influencing factors of bacterial communities in ballast tank sediments. Nine samples were collected and their 16S rRNA gene sequences were analyzed by high-throughput sequencing. The analysis results showed the Shannon index in ballast tank sediments was in the range of 5.27-6.35, which was significantly higher than that in ballast water. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria were the dominant phyla and accounted for approximately 80% of all 16S rRNA gene sequences of the samples. Besides, the high contents of sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria were detected in sediments, indicating that the corrosion of metal caused by SRB might occur in ballast tank. In addition, the trace of human fecal bacteria and candidate pathogens were also detected in ballast tank sediments, and these undesirable microbes reduced the effect of ballast water exchange. Furthermore, C and N had significant effects on the bacterial community composition in ballast tank sediments. In conclusion, our findings suggest that the proper management and disposal of the ballast tank sediments should be considered in order to reduce the negative impact and ecological risks related to ballast water and sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Application of stable isotope (δ13C and δ18O) composition of mollusc shells in palaeolimnological studies - possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Apolinarska, Karina; Pełechaty, Mariusz; Kossler, Annette; Pronin, Eugeniusz; Noskowiak, Daria

    2017-04-01

    Carbon (δ13C) and oxygen (δ18O) stable isotope analyses are among the standard methods applied in the studies of past environment, including climate. In lacustrine sediments, δ13C and δ18O values can be measured in fine carbonate fraction (carbonate mud), in charophyte encrustations, ostracod carapaces and mollusc shells. Application of the stable isotope record of each of the above-mentioned components of the lake sediment requires knowledge about possibilities and limitations of the method. The present research discusses the most important results of the studies carried out between 2011 and 2013, concentrated on the stable isotope composition of snail shells, primarily, the species commonly preserved in central European Quaternary lacustrine sediments. The stable isotope studies involved also, the zebra mussel (Dreissena polymorpha), one of the most invasive freshwater species in the world. The research involved shell isotope studies of both recent (Apolinarska, 2013; Apolinarska et al., 2016; Apolinarska and Pełechaty, in press) and fossil molluscs derived from the Holocene sediments (Apolinarska et al., 2015a, b). Shell δ13C values were species-specific and among the gastropods studied the same order of species from the most to the least 13C-depleted was observed at all sites sampled. Shell δ18O values were more uniform. The wide range of δ13C and δ18O values were observed in population and subpopulation, i.e. when live snails were sampled live from restricted area within the lake littoral zone. Carbon and oxygen stable isotope values of the mono-specific shells sampled from 1 cm thick sediment samples were highly variable. Those intra-specific differences (n=20) were as large as several permill. Such significant variability in δ13C and δ18O values indicates that stable isotope composition of single shells is unlikely to be representative of the sediment sample. In conclusion, samples of freshwater molluscs for stable isotope analyses should be monospecific and composed of at least several shells. The number of shells being dependent on the difference between the minimum and maximum values within the sediment layer. The research was funded by the Polish Ministry of Science and Higher Education, Iuventus Plus Program, grant No. IP2010 000670. Apolinarska, K., 2013. Stable isotope compositions of recent Dreissena polymorpha (Pallas) shells: paleoenvironmental implications. Journal of Paleolimnology 50, 353-364. Apolinarska, K., Pełechaty, M. & Kossler, A., 2015a. Within-sample variability of δ13C and δ18O values of freshwater gastropod shells and the optimum number of shells to measure per sediment layer in the Paddenluch palaeolacustrine sequence, Germany. Journal of Paleolimnology 54, 305-323. Apolinarska, K., Pełechaty, M. & Noskowiak, D., 2015b. Differences in stable isotope compositions of freshwater snails from surface sediments of two Polish shallow lakes. Limnologica 53, 95-105. Apolinarska, K., Pełechaty, M. & Pronin, E., 2016. Discrepancies between the stable isotope compositions of water, macrophyte carbonates and organics, and mollusc shells in the littoral zone of a charophyte-dominated lake (Lake Lednica, Poland). Hydrobiologia 768, 1-17. Apolinarska, K. & Pełechaty, M., Inter- and intra-specific variability in δ13C and δ18O values of freshwater gastropod shells from Lake Lednica, western Poland. DOI: 10.1515/agp-2016-0028

  20. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    PubMed

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K

    2014-01-01

    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

  1. Correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, indonesia

    NASA Astrophysics Data System (ADS)

    Sharani, Jeanny; Hidayat, Jafron W.; Putro, Sapto P.

    2018-05-01

    Macrobenthic community play important role in sedimentary habitats as a part of food chain. Their structure may be influenced by environmental characteristic spatially and temporally. The purpose of this study is to access the correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, Indonesia. Water and sediments samples were taken twice, where the first and second sampling time were taken in June and October 2016, respectively. Samples were taken in the area of fish farming at coastal area of policulture/IMTA (as Location I), site of 1 km away from fish farming area as a reference site (as Location II), and monoculture sites (as Location III), with three stations for each location. Data of abiotic parameters included the composition of sediment substrate and DO, pH, salinity, temperature, and. Sediment samples were taken using Ekman grab. The organisms were 1 mm -size sieved and fixed using 10% formalin for further analysis, i.e. sorting, preserving, enumerating, identifying, and grouping. The relationship between biotics (macrobentos) and abiotics (physical-chemical factors) was assessed using a non-parametric multivariate procedure (BIOENV). This study found 61 species consisting of 46 families and 5 classes of macrobenthos. The most common classes were member of Mollusca and Polychaeta. Total nitrogen, silt, and clay were the abiotic factors most influencing macrobenthic structure (BIO-ENV; r = 0.46; R2 = 21.16%).

  2. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments

    PubMed Central

    Meral, Ramazan

    2008-01-01

    The limitation of traditional sampling method to provide detailed spatial and temporal profiles of suspended sediment concentration has led to an interest in alternative devices and methods based on scattering of underwater sound and light. In the present work, acoustic backscatter and LISST (the Laser In Situ Scattering Transmissometry) devices, and methodologies were given. Besides a laboratory study was conducted to compare pumping methods for different sediment radiuses at the same concentration. The glass spheres (ballotini) of three different radiuses of 115, 137 and 163 μm were used to obtain suspension in the sediment tower at laboratory. A quite good agreement was obtained between these methods and pumping results with the range at 60.6-94.2% for sediment concentration and 91.3-100% for radius measurements. These results and the other studies show that these methods have potential for research tools for sediment studies. In addition further studies are needed to determine the ability of these methods for sediment measurement under different water and sediment material conditions. PMID:27879747

  3. Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management

    NASA Astrophysics Data System (ADS)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples were ~equal or less than the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1 except at a site located in the stream in the Holland Marsh, which was ~7 times greater. Forms and distribution of P varied with sediment section and sampling site. The range of total sediment-P was from ~0.8 to 2.5 g P kg-1 sediment, and at some sites the mobile P forms accounted for > 75% of the total sediment-P. The study will continue to examine the temporal spatial and vertical distribution of P forms to predict the rates of P release under varying water chemistries. This basic research provides a fundamental approach for characterization of the legacy P in stream sediments, ultimately providing a better understanding of the linkage between changes in agricultural management practices affecting P losses from terrestrial sources and observed changes in surface water quality.

  4. Source-to-Sink Methods by Hyperspectral Imaging: a Case Study of the Laminated Sediments of Lake Linné (Svalbard).

    NASA Astrophysics Data System (ADS)

    Van Exem, A.; Debret, M.; Copard, Y.; Verpoorter, C.; Sorrel, P.; de Wet, G.; Werner, A.; Roof, S.; Laignel, B.; Retelle, M.

    2016-12-01

    Laminated sediments contained valuable information recorded on a micrometric scale. Information about sediments flux and origins require high-resolution source tracking analysis. Quick and non-destructive, hyperspectral imaging provides contiguous reflectance datasets into 2 dimensions with a spatial resolution of 0.02 mm. Located on the west of the Spitzbergen, Lake Linné is the largest lake in the region. Erosion is mainly driven by glacier fluctuations and three different bedrocks are potential sediment sources. Organic matter (coal) is only found in some carboniferous rocks. Four cores recovered from different parts of the lake contain millimeter scale laminae. Two approaches were compared: (i) measurement of statistical correlations between the sediments and source samples, (ii) extraction of extreme spectral signatures from the VNIR hyperspectral images. Total Organic Carbon (TOC) values of all samples were also given by bulk geochemistry (RE6 ® pyrolyzer). Consequently, the measured similarity between the hyperspectral image and the field samples illustrates the sources contribution within the core. Three sample clusters and three equivalent spectral signatures were found. TOC values from the archive show good correlation (r=0.86, p<0.001, n=73) with the hyperspectral signature relative to TOC content. A least-squares regression (r²=0.74) was used to extrapolate TOC values in order to represent their distribution at 0.02 mm resolution. This is the first source-to-sink study based on imaging spectroscopy. Our results indicate that hyperspectral imagery is a useful tool to (i) identify sediment sources, (ii) perform continuous paleo-environmental reconstruction at high resolution, and (iii) can provide quantitative results (TOC values) validated by destructive analyses.

  5. Sediment loads and transport at constructed chutes along the Missouri River - Upper Hamburg Chute near Nebraska City, Nebraska, and Kansas Chute near Peru, Nebraska

    USGS Publications Warehouse

    Densmore, Brenda K.; Rus, David L.; Moser, Matthew T.; Hall, Brent M.; Andersen, Michael J.

    2016-02-04

    Comparisons of concentrations and loads from EWI samples collected from different transects within a study site resulted in few significant differences, but comparisons are limited by small sample sizes and large within-transect variability. When comparing the Missouri River upstream transect to the chute inlet transect, similar results were determined in 2012 as were determined in 2008—the chute inlet affected the amount of sediment entering the chute from the main channel. In addition, the Kansas chute is potentially affecting the sediment concentration within the Missouri River main channel, but small sample size and construction activities within the chute limit the ability to fully understand either the effect of the chute in 2012 or the effect of the chute on the main channel during a year without construction. Finally, some differences in SSC were detected between the Missouri River upstream transects and the chute downstream transects; however, the effect of the chutes on the Missouri River main-channel sediment transport was difficult to isolate because of construction activities and sampling variability.

  6. Sediment studies associated with drilling activity on a tropical shallow shelf.

    PubMed

    Souza, Claudete R; Vital, Helenice; Melo, Germano; Souza, Cleuneide R; da Silva Nogueira, Mary Lucia; Tabosa, Werner Farkatt

    2015-02-01

    Environmental monitoring studies were developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin. This tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grain size, texture, mineral composition, carbonate content, and organic matter, prior to drilling with samples obtained 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm and 0-10 cm layers. The results show that sedimentary cover around the well is dominated by bioclastic sediments, poor to very poorly sorted. Only minor sedimentological variations occurred in the area affected by drilling operations. The most noticeable effects were observed during the second cruise, in terms of a change in grain size distribution associated to a slight increase in siliciclastic content. This impact occurred in the most surficial sediment (0-2 cm), in the radials closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, 1 year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.

  7. Morphology of methane hydrate host sediments

    USGS Publications Warehouse

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.

    2005-01-01

    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  8. Quadrant III RFI draft report: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The purpose of the RCRA Facility Investigation (RFI) at The Portsmouth Gaseous Diffusion Plant (PORTS) is to acquire, analyze and interpret data that will: characterize the environmental setting, including ground water, surface water and sediment, soil and air; define and characterize sources of contamination; characterize the vertical and horizontal extent and degree of contamination of the environment; assess the risk to human health and the environment resulting from possible exposure to contaminants; and support the Corrective Measures Study (CMS), which will follow the RFI, if required. A total of 18 Solid Waste Management Units (SWMU's) were investigated. All surficial soilmore » samples (0--2 ft), sediment samples and surface-water samples proposed in the approved Quadrant III RFI Work Plan were collected as specified in the approved work plan and RFI Sampling Plan. All soil, sediment and surface-water samples were analyzed for parameters specified from the Target Compound List and Target Analyte List (TCL/TAL) as listed in the US EPA Statement of Work for Inorganic (7/88a) and Organic (2/88b) analyses for Soil and Sediment, and analyses for fluoride, Freon-113 and radiological parameters (total uranium, gross alpha, gross beta and technetium).« less

  9. Quadrant III RFI draft report: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The purpose of the RCRA Facility Investigation (RFI) at The Portsmouth Gaseous Diffusion Plant (PORTS) is to acquire, analyze and interpret data that will: characterize the environmental setting, including ground water, surface water and sediment, soil and air; define and characterize sources of contamination; characterize the vertical and horizontal extent and degree of contamination of the environment; assess the risk to human health and the environment resulting from possible exposure to contaminants; and support the Corrective Measures Study (CMS), which will follow the RFI, if required. A total of 18 Solid Waste Management Units (SWMU`s) were investigated. All surficial soilmore » samples (0--2 ft), sediment samples and surface-water samples proposed in the approved Quadrant III RFI Work Plan were collected as specified in the approved work plan and RFI Sampling Plan. All soil, sediment and surface-water samples were analyzed for parameters specified from the Target Compound List and Target Analyte List (TCL/TAL) as listed in the US EPA Statement of Work for Inorganic (7/88a) and Organic (2/88b) analyses for Soil and Sediment, and analyses for fluoride, Freon-113 and radiological parameters (total uranium, gross alpha, gross beta and technetium).« less

  10. Oscillatory erosion and transport flume with superimposed unidirectional flow

    DOEpatents

    Jepsen, Richard A.; Roberts, Jesse D.

    2004-01-20

    A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.

  11. Trace elements and organic compounds in streambed sediment and fish tissue of coastal New England streams, 1998-99

    USGS Publications Warehouse

    Chalmers, Ann

    2002-01-01

    Streambed sediment and fish tissue were collected at 14 river sites in eastern New England during low-flow conditions in 1998 and 1999 as part of the New England Coastal Basins (NECB) study of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Sampling sites were selected over a range of urban settings. Population densities at selected sites ranged from 26 to 3,585 people per square mile, and urban land use ranged from 1 to 68 percent. The streambed sediment samples were analyzed for a total of 141 contaminants, including 45 trace elements, 32 organochlorine compounds, and 64 semi-volatile organic compounds. The fish tissue samples were analyzed for 22 trace elements and 28 organochlorine compounds. Concentrations of selected contaminants in both streambed sediment and fish tissue correlated more strongly with population density than with other watershed characteristics. Cadmium, copper, lead, mercury, zinc, total polycyclic aromatic hydrocarbons (PAHs), total polychlorinated biphenyls (PCBs), dichloro diphenyl trichloroethane and metabolites (DDTM), and total chlordane in streambed sediment all showed strong positive correlations with population density (rho = 0.71 to 0.85, p value = 0.005 to <0.001). Correlations between population density and selected contaminants in fish tissue were less significant than with streambed sediment (rho = 0.62 to 0.72, p value = 0.03 to 0.008). Organic carbon concentrations were correlated with concentrations of arsenic, selenium, total PAHs, total PCBs, and DDTM in streambed sediment. The relation between concentrations of contaminants in streambed sediment and fish tissue was stronger for organochlorine compounds (rho = 0.75 to 0.55, p = 0.005 to 0.065) than for trace elements (rho = 0.63 to 0.53, p = 0.029 to 0.069). The NECB study area had the highest median concentrations of lead, mercury, total PAHs, total PCBs, and DDTM in streambed sediment and the highest median concentration of PCBs in fish tissue compared to 45 other NAWQA study units across the Nation. Concentrations of many of these constituents in streambed sediment also were frequently above the consensus-based Sediment-Quality Guidelines for the protection of wildlife, suggesting they are a threat to the health of aquatic biota in New England.

  12. Impacts of Deepwater Horizon Oil on Marsh Sediment Biogeochemistry in Barataria Bay, LA, USA

    NASA Astrophysics Data System (ADS)

    Mills, C. T.; Windham-Myers, L.; Waldrop, M. P.; Krabbenhoft, D. P.; Marvin-DiPasquale, M. C.; Orem, W. H.; Piazza, S.; Haw, M.; McFarland, J.; Varonka, M. S.

    2012-12-01

    Oil from the Deepwater Horizon spill came ashore on many salt marsh islands in Barataria Bay, LA in summer 2010, coating plants and settling on the sediment surface. In coordination with a plant community study of affected marshes, we investigated impacts of oiling on marsh sediment microbial biogeochemistry. Sediment samples (upmost 2 cm) were collected along transects perpendicular and parallel to the shore at three oiled and three non-oiled sites in both July and Oct. 2011. Samples from both collections were analyzed for sediment characteristics, total and methylmercury, and microbial membrane phospholipid fatty acids (PLFAs) which are a proxy for viable microbial cell numbers. Sediment DNA collected in Oct. 2011 was analyzed for bacterial, fungal, and archaeal community composition and abundance as well as various enzyme activities. Select Oct. 2011 samples were assayed to determine the rates of terminal electron accepting processes (oxygen demand, denitrification, iron reduction, sulfate reduction, methanogenesis). All sites had similar sediment characteristics. Impacts on sediment biogeochemistry were greatest at marsh edges, and reduced microbial abundance appeared to be more important than changes in microbial community structure. In July 2011, the mean PLFA concentration in oiled marsh edge sediments (0.15±0.03 μmol g-1; 95% CI; n=9) was substantially lower than for non-oiled sites (0.33±0.08 μmol g-1; n=9). Mean PLFA concentrations for interior marsh samples were more similar for oiled (0.30±0.08 μmol g-1; n=8) and non-oiled (0.37±0.04 μmol g-1; n=9) sites. This PLFA pattern was also observed in Oct. 2011 samples, and other measures of microbial abundance and activity showed similar trends. Cellulase, phosphatase, and chitinase mean activities were nearly twice as great in non-oiled versus oiled edge sites. Lower microbial activity in oiled sites was also inferred by somewhat lower denitrification and sulfate reduction potentials. Conversely, both methanogenesis rates and concentrations of methanogen DNA were somewhat greater in oiled edge samples, suggesting an effect of oiling on terminal electron accepting processes. The mean methylmercury concentration was lower in oiled versus non-oiled edge sites, likely as a result of decreased sulfate-reducer activity. The reduced microbial activity in near-edge sediments of the oiled marsh is likely an indirect effect of reduced plant productivity which supports rhizosphere communities. Both mean above- and below-ground live biomass at oiled edge sites were less than half that at non-oiled edge sites. Some marsh edge samples from the oiled site contained relatively large amounts of oil and we are currently quantifying oil-derived hydrocarbons to understand impacts of the oil itself on sediment biogeochemistry.

  13. Arsenic contamination in New Orleans soil: temporal changes associated with flooding.

    PubMed

    Rotkin-Ellman, Miriam; Solomon, Gina; Gonzales, Christopher R; Agwaramgbo, Lovell; Mielke, Howard W

    2010-01-01

    The flooding of New Orleans in late August and September 2005 caused widespread sediment deposition in the flooded areas of the city. Post-flood sampling by US EPA revealed that 37% of sediment samples exceeded Louisiana corrective screening guidelines for arsenic of 12mg/kg, but there was debate over whether this contamination was pre-existing, as almost no pre-flood soil sampling for arsenic had been done in New Orleans. In this study, archived soil samples collected in 1998-1999 were location-matched with 70 residential sites in New Orleans where post-flood arsenic concentrations were elevated. Those same locations were sampled again during the recovery period 18 months later. During the recovery period, sampling for arsenic was also done for the first time at school sites and playgrounds within the flooded zone. Every sample of sediment taken 1-10 months after the flood exceeded the arsenic concentration found in the matched pre-flood soils. The average difference between the two sampling periods was 19.67mg/kg (95% CI 16.63-22.71) with a range of 3.60-74.61mg/kg. At virtually all of these sites (97%), arsenic concentrations decreased substantially by 18 months into the recovery period when the average concentration of matched samples was 3.26mg/kg (95% CI 1.86-4.66). However, 21 (30%) of the samples taken during the recovery period still had higher concentrations of arsenic than the matched sample taken prior to the flooding. In addition, 33% of samples from schoolyards and 13% of samples from playgrounds had elevated arsenic concentrations above the screening guidelines during the recovery period. These findings suggest that the flooding resulted in the deposition of arsenic-contaminated sediments. Diminution of the quantity of sediment at many locations has significantly reduced overall soil arsenic concentrations, but some locations remain of concern for potential long-term soil contamination.

  14. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  15. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  16. The physical characteristics of the sediments on and surrounding Dauphin Island, Alabama

    USGS Publications Warehouse

    Ellis, Alisha M.; Marot, Marci E.; Smith, Christopher G.; Wheaton, Cathryn J.

    2017-06-20

    Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, washover deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS was part of a larger study to assess the feasibility and sustainability of proposed restoration efforts for Dauphin Island, Alabama, and assess the island’s resilience to rising sea level and storm events. The data presented in this publication can be used by modelers to attempt validation of hindcast models and create predictive forecast models for both baseline conditions and storms. This study was funded by the National Fish and Wildlife Foundation, via the Gulf Environmental Benefit Fund.This report serves as an archive for sedimentological data derived from surface sediments. Downloadable data are available as Excel spreadsheets, JPEG files, and formal Federal Geographic Data Committee metadata.

  17. Historical trends of polycyclic aromatic hydrocarbons in the reservoir sediment core at Osaka

    NASA Astrophysics Data System (ADS)

    Moriwaki, Hiroshi; Katahira, Kenshi; Yamamoto, Osamu; Fukuyama, Joji; Kamiura, Toshikazu; Yamazaki, Hideo; Yoshikawa, Shusaku

    The historical trends of polycyclic aromatic hydrocarbons (PAHs) in the sediment core of the moat in Osaka Castle, located at the center of Osaka city, Japan, were studied. The moats in Osaka Castle were built in the 1620s, and the undisturbed sediment core, which consists of atmospheric deposits in Osaka city from 1671 to 1976, was withdrawn from the moat. PAHs in the sediment core were identified and quantified in the total concentration range of 0.053-26 mg kg -1 dry wt. The highest content of PAHs was found in the sample, which was dated to 1944 during World War II. Osaka Castle was exposed to intense bombing raids during World War II, and the spiked peak of the PAH concentration during the mid-1940s was due to the air attacks. The total PAH concentration in the sediment core sample during World War II was about two-fold greater than the average after the war. This study made it appear that the largest impact of PAHs on the atmospheric environment in Osaka city in almost 300 years was caused by modern warfare.

  18. Yeast diversity associated to sediments and water from two Colombian artificial lakes

    PubMed Central

    Silva-Bedoya, L.M.; Ramírez-Castrillón, M.; Osorio-Cadavid, E.

    2014-01-01

    In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them. PMID:24948924

  19. Occurrence and concentrations of selected trace elements, halogenated organic compounds, and polycyclic aromatic hydrocarbons in streambed sediments and results of water-toxicity testing in Westside Creeks and the San Antonio River, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    Sediment samples and samples for water-toxicity testing were collected during 2014 from several streams in San Antonio, Texas, known locally as the Westside Creeks (Alazán, Apache, Martínez, and San Pedro Creeks) and from the San Antonio River. Samples were collected during base flow and after periods of stormwater runoff (poststorm conditions) to determine baseline sediment- and water-quality conditions. Streambed-sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, polychlorinated biphenyls (PCBs), brominated flame retardants, and polycyclic aromatic hydrocarbons (PAHs). Potential risks of contaminants in sediment were evaluated by comparing concentrations of contaminants in sediment to two effects-based sediment-quality guidelines: (1) a lower level, called the threshold effect concentration, below which, harmful effects to benthic biota are not expected, and (2) a higher level, the probable effect concentration (PEC), above which harmful effects are expected to occur frequently. Samples for water-toxicity testing were collected from each stream to provide information about fish toxicity in the study area. The trace metal lead was detected at potentially toxic concentrations greater than the PEC in both the base-flow and poststorm samples collected at two sites sampled on San Pedro Creek. The PECs for the pesticides dichlorodiphenyldichloroethane, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, and chlordane were exceeded in some of the samples at the same two sites on San Pedro Creek. Brominated flame retardants and polybrominated diphenyl ether (PBDE) 85, 153, and 154 were found in all streambed-sediment samples. Federal Environmental Quality Guidelines established by Environment Canada for PBDE 99 and PBDE 100 were exceeded in all samples in which PBDE 99 was detected and in a majority of the samples in which PBDE 100 was detected; the greatest concentrations occurred in samples collected at the same two sites on San Pedro Creek where the samples containing elevated lead and pesticide concentrations were collected. All concentrations of total PCBs (computed as the sum of the 18 reported PCB congeners) in the individual streambed-sediment samples were less than the threshold effect concentration, but the concentrations were elevated in the two sites on San Pedro Creek compared to concentrations at other sites. At one site on Apache Creek, 6 of the individual PAHs measured in the sample collected during base-flow conditions exceeded the PECs and 8 of the 9 PECs were exceeded in the sample collected during poststorm conditions. The total PAH concentration in the sample collected at the site during poststorm conditions was 3.3 times greater than the PEC developed for total PAHs. Average PAH profiles computed for base-flow samples and poststorm samples most closely resemble the parking lot coal-tar sealcoat dust PAH source profile, defined as the average PAH concentrations in dust swept from parking lots in six cities in the United States that were sealed with a black, viscous liquid containing coal-tar pitch. Six of ten water samples collected during base-flow conditions caused reductions in Pimephales promelas (fathead minnow) survival and were considered to be toxic.

  20. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  1. Carbonate sediment deposits on the reef front around Oahu, Hawaii

    USGS Publications Warehouse

    Hampton, M.A.; Blay, C.T.; Murray, C.J.

    2004-01-01

    Large sediment deposits on the reff front around Oahu are a possible resource for replenishing eroded beaches. High-resolution subbottom profiles clearly depict the deposits in three study areas: Kailua Bay off the windward coast, Makua to Kahe Point off the leeward coast, and Camp Erdman to Waimea off the north coast. Most of the sediment is in water depths between 20 and 100 m, resting on submerged shelves created during lowstands of sea level. The mapped deposits have a volume of about 4 ?? 108 m3 in water depths less than 100 m, being thickest off the mouth of channels carved into the modern insular shelf, from which most of the sediment issues. Vibracore samples contain various amounts of sediment of similar size to the sand on Oahu beaches, with the most compatible prospects located off Makaha, Haleiwa, and Camp Erdman, and the least compatible ones located in Kailua Bay. Laboratory tests show a positive correlation of abrasion with Halimeda content: samples from Kailua Bay suffered high amounts of attrition, but others were comparable to tested beach samples. The common gray color of the offshore sediment, aesthetically undesirable for sand on popular tourist beaches, was diminished in the laboratory by soaking in heated hydrogen peroxide. ?? Taylor and Francis Inc.

  2. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Roberts, C.; Jacobi, M.

    1998-08-01

    Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less

  3. PAHs distribution in sediments associated with gas hydrate and oil seepage from the Gulf of Mexico.

    PubMed

    Wang, Cuiping; Sun, Hongwen; Chang, Ying; Song, Zhiguang; Qin, Xuebo

    2011-12-01

    Six sediment samples collected from the Gulf of Mexico were analyzed. Total concentrations of the PAHs ranged from 52 to 403 ng g(-1) dry weight. The lowest PAH concentration without 5-6 rings PAHs appeared in S-1 sample associated with gas hydrate or gas venting. Moreover, S-1 sample had the lowest organic carbon content with 0.85% and highest reduced sulfur level with 1.21% relative to other samples. And, analysis of the sources of PAHs in S-1 sample indicated that both pyrogenic and petrogenic sources, converserly, while S-8, S-10 and S-11 sample suggested petrogenic origin. The distribution of dibenzothiophene, fluorine and dibenzofuran and the maturity parameters of triaromatic steranes suggested that organic matters in S-1 sample were different from that in S-8, S-10 and S-11 sample. This study suggested that organic geochemical data could help in distinguish the characteristic of sediment associated with gas hydrate or with oil seepage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments.

    PubMed

    Wentzel, Lia Costa Pinto; Inforsato, Fábio José; Montoya, Quimi Vidaurre; Rossin, Bruna Gomes; Nascimento, Nadia Regina; Rodrigues, André; Sette, Lara Durães

    2018-06-19

    Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.

  5. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 4, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organisms quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected September 8 from Poplar Creek Miles 6.0 and 1.0 was conducted September 13--22, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original; Toxicity testmore » bench sheets; Ammonia analysis request and results; and Meter calibration log sheets.« less

  6. Effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County, northeast Kansas, February 2006 through November 2008

    USGS Publications Warehouse

    Lee, Casey J.; Ziegler, Andrew C.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County, Kansas, Stormwater Management Program, investigated the effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County from February 2006 through November 2008. Streamgages and continuous turbidity sensors were operated at 15 sites within the urbanizing 57-square-mile Mill Creek Basin, and 4 sites downstream from the other largest basins (49 to 66 square miles) in Johnson County. The largest sediment yields in Johnson County were observed downstream from basins with increased construction activity. Sediment yields attributed to the largest (68 acre) active construction site in the study area were 9,300 tons per square mile in 2007 and 12,200 tons per square mile in 2008; 5 to 55 times larger than yields observed at other sampling sites. However, given erodible soils and steep slopes at this site, sediment yields were relatively small compared to the range in historic values from construction sites without erosion and sediment controls in the United States (2,300 to 140,000 tons per square mile). Downstream from this construction site, a sediment forebay and wetland were constructed in series upstream from Shawnee Mission Lake, a 120-acre reservoir within Shawnee Mission Park. Although the original intent of the sediment forebay and constructed wetland were unrelated to upstream construction, they were nonetheless evaluated in 2008 to characterize sediment removal before stream entry into the lake. The sediment forebay was estimated to reduce 33 percent of sediment transported to the lake, whereas the wetland did not appear to decrease downstream sediment transport. Comparisons of time-series data and relations between turbidity and sediment concentration indicate that larger silt-sized particles were deposited within the sediment forebay, whereas smaller silt and clay-sized sediments were transported through the wetland and into the lake. Data collected at sites up and downstream from the constructed wetland indicated that hydraulic retention alone did not substantially reduce sediment loading to Shawnee Mission Lake. Mean-daily turbidity values at sampling sites downstream from basins with increased construction activity were compared to U.S. Environmental Protection Agency turbidity criteria designed to reduce discharge of pollutants from construction sites. The U.S. Environmental Protection Agency numeric turbidity criteria specifies that effluent from construction sites greater than 20 acres not exceed a mean-daily turbidity value of 280 nephelometric turbidity units beginning in 2011; this criteria will apply to sites greater than 10 acres beginning in 2014. Although numeric criteria would not have been applicable to data from sampling sites in Johnson County because they were not directly downstream from construction sites and because individual states still have to determine additional details as to how this criteria will be enforced, comparisons were made to characterize the potential of construction site effluent in Johnson County to exceed U.S. Environmental Protection Agency Criteria, even under extensive erosion and sediment controls. Numeric criteria were exceeded at sampling sites downstream from basins with increased construction activity for multiple days during the study period, potentially indicating the need for additional erosion and sediment controls and (or) treatment to bring discharges from construction sites into compliance with future numeric turbidity criteria. Among sampling sites in the Mill Creek Basin, sediment yields from the urbanizing Clear Creek Basin were approximately 2 to 3 times those from older, more stable urban or rural basins. Sediments eroded from construction sites adjacent to or surrounding streams appear to be more readily transported downstream, whereas sediments eroded from construction sites in headwater areas are more likely to

  7. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  8. Water-Quality, Bed-Sediment, and Biological Data (October 2005 through September 2006) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2007-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2005 through September 2006. Bed-sediment and biological samples were collected once at 12 sites during August 2006. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2005 through September 2006. Water-quality data include concentrations of selected major ions, trace ele-ments, and suspended sediment. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  9. Estuarine sediment toxicity tests on diatoms: Sensitivity comparison for three species

    NASA Astrophysics Data System (ADS)

    Moreno-Garrido, Ignacio; Lubián, Luis M.; Jiménez, Begoña; Soares, Amadeu M. V. M.; Blasco, Julián

    2007-01-01

    Experimental populations of three marine and estuarine diatoms were exposed to sediments with different levels of pollutants, collected from the Aveiro Lagoon (NW of Portugal). The species selected were Cylindrotheca closterium, Phaeodactylum tricornutum and Navicula sp. Previous experiments were designed to determine the influence of the sediment particle size distribution on growth of the species assayed. Percentage of silt-sized sediment affect to growth of the selected species in the experimental conditions: the higher percentage of silt-sized sediment, the lower growth. In any case, percentages of silt-sized sediment less than 10% did not affect growth. In general, C. closterium seems to be slightly more sensitive to the selected sediments than the other two species. Two groups of sediment samples were determined as a function of the general response of the exposed microalgal populations: three of the six samples used were more toxic than the other three. Chemical analysis of the samples was carried out in order to determine the specific cause of differences in toxicity. After a statistical analysis, concentrations of Sn, Zn, Hg, Cu and Cr (among all physico-chemical analyzed parameters), in order of importance, were the most important factors that divided the two groups of samples (more and less toxic samples). Benthic diatoms seem to be sensitive organisms in sediment toxicity tests. Toxicity data from bioassays involving microphytobentos should be taken into account when environmental risks are calculated.

  10. Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    This report contains pesticide concentration data for water, and suspended and bed sediment samples collected in April 2003 from twelve sites along the New and Alamo Rivers in the Salton Sea watershed, in southeastern California. The study was done in collaboration with the California State Regional Water Quality Control Board, Colorado River Region, to assess inputs of current-use pesticides associated with water and sediment into the New and Alamo Rivers. Five sites along the New River and seven sites along the Alamo River, downstream of major agricultural drains, were selected and covered the lengths of the rivers from the international boundary to approximately 1.5 km from the river mouths. Sampling from bridges occurred at seven of the twelve sites. At these sites, streamflow measurements were taken. These same sites were also characterized for cross-stream homogeneity by measuring dissolved oxygen, pH, specific conductance, temperature, and suspended solids concentration at several vertical (depths) and horizontal (cross-stream) points across the river. Large volume water samples (200?300 L) were collected for isolation of suspended sediments by flow-through centrifugation. Water from the outflow of the flow-through centrifuge was sampled for the determination of aqueous pesticide concentrations. In addition, bottom sediments were sampled at each site. Current-use pesticides and legacy organochlorine compounds (p,p'-DDT, p,p'-DDE and p,p'-DDD) were extracted from sediments and measured via gas chromatography/mass spectrometry (GC/MS). Organic carbon and percentage of fines were also determined for suspended and bottom sediments. Cross-stream transects of dissolved constituents and suspended sediments showed that the rivers were fairly homogeneous at the sites sampled. Streamflow was higher at the outlet sites, with the Alamo River having higher flow (1,240 cfs) than the New River (798 cfs). Twelve current-use pesticides, one legacy organochlorine compound (p,p'-DDE), and the additive piperonyl butoxide were detected in water samples. Trifluralin was found in the highest concentration of all detected compounds (68.5?599 ng/L) at all sites in both rivers, except for the international boundary sites. Atrazine was also detected in high concentration (51.0?285 ng/L) at several sites. The outlet sites had among the highest numbers of pesticides detected and the international boundary sites had the lowest numbers of pesticides detected for both rivers. The numbers of pesticides detected were greater for the Alamo River than for the New River. Six current-use pesticides and two legacy organochlorines (p,p'-DDE and p,p'-DDD) were found associated with suspended and bed sediments. The DDT metabolite p,p'-DDE was detected in all suspended and bed sediments from the Alamo River, but only at two sites in the New River. Dacthal, chlorpyrifos, pendimethalin, and trifluralin were the most commonly detected current-use pesticides. Trifluralin was the compound found in the highest concentrations in suspended (14.5?120 ng/g) and bed (1.9?9.0 ng/g) sediments. The sites along the Alamo River had more frequent detections of pesticides in suspended and bed sediments when compared with the New River sites. The greatest number of pesticides that were detected in suspended sediments (seven) were in the samples from the Sinclair Road and Harris Road sites. For bottom sediments, the Alamo River outlet site had the greatest number of pesticide detections (eight).

  11. Constraining Resurgence through Lake Sediment Paleomagnetism on Resurgent Dome Samosir Island in Toba Caldera, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Solada, K.; de Silva, S. L.; Stoner, J. S.; Mucek, A. E.; Reilly, B. T.; Hatfield, R. G.; Pratomo, I.; Bowers, J.; Jamil, R.; Setianto, B.

    2017-12-01

    Around 74 ka, a supervolcano, Toba Caldera in Sumatra, Indonesia erupted, producing the Youngest Toba Tuff and its associated caldera. After this catastrophic eruption, a lake filled the caldera, sedimentation within the lake occurred, and the process known as resurgence began. Today, the resurgent dome, Samosir Island, is uplifted 700 m above the lake with the upper 100 m composed of these post eruption lake sediments. These sediments and their ages offer insight to the resurgent uplift history. To constrain sediment chronology, we collected discrete paleomagnetic 8 cm3 cubes and 43 radiocarbon samples from 10 sites around the island. Bulk organic carbon 14C ages provide an initial chronostratigraphic framework, which is improved by correlating paleomagnetic signals between site sections. Additionally, nearby marine sediment paleomagnetic records show large amplitude changes in inclination over the past 74 ka, providing a good template to compare the sediment chronology. 27 radiocarbon samples have already been dated, with the oldest dating at 38 ka. However, our radiocarbon and paleomagnetic correlation suggest that this record extends even older. Natural and laboratory magnetizations on discrete samples were studied using alternating field (AF) demagnetization at the Oregon State University P-Mag Lab. Although there is variability in magnetic susceptibility between study sites and natural remanant magnetization intensities are often relatively low ( 10-4 (A/m)), AF demagnetization behavior suggests a primary magnetization is recorded. Characteristic remanent magnetizations are reasonably well-defined using a principal component analysis with maximum angular deviation values < 15°, though stronger samples typically have better resolved magnetizations. Data from 4 sites with 14C ages ranging from 23 ka to 38 ka, show low inclination values, averaging around -5° compared with geocentric axial dipole prediction for the site location of approximately 4°. This is consistent with the negative inclination anomaly associated with this region. These observations and similar patterns between sections suggest that a reliable record is preserved that is suitable for magnetic stratigraphy.

  12. Method for the determination of organophosphate insecticides in water, sediment and biota.

    PubMed

    Tse, Hung; Comba, Michael; Alaee, Mehran

    2004-01-01

    A procedure for the determination of 13 organophosphate insecticides (OPs) in water, sediment and biota at low ppb levels is described. Samples were extracted with dichloromethane or acetone/hexane and cleaned up with micro-column silica gel chromatography. Measurements were made by dual capillary column gas chromatography using both nitrogen-phosphorus (NPD) and electron capture (ECD) detection. Recoveries from fortified water samples ranged from 76% to 102% for all sample types. Practical detection limits ranged between 0.003 and 0.029 microg/l in natural water samples, 0.0004-0.005 microg/g w.w. for sediments, and 0.001-0.005 microg/g w.w for biota using the NPD and ECD method. Losses in sediments were experienced when sulphur was removed. Precision and accuracy were not affected in sediment samples where sulphur was not removed.

  13. Geochemical Evidence for Recent Hydrothermal Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Abe, G.; Yamaguchi, K. E.

    2014-12-01

    Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site, magnitude of negative Eu anomalies was variable independent of the sediment depth. This suggests changes in the redox conditions, most likely due to occasional invasions of O2-bearing seawater into sediments. Different regimes of hydrothermal fluid flows govern the chemical environments of marine sediments in active hydrothermal areas.

  14. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities.

    PubMed

    Peng, Guyu; Xu, Pei; Zhu, Bangshang; Bai, Mengyu; Li, Daoji

    2018-03-01

    Microplastics, which are plastic debris with a particle diameter of less than 5 mm, have attracted growing attention in recent years. Its widespread distributions in a variety of habitats have urged scientists to understand deeper regarding their potential impact on the marine living resources. Most studies on microplastics hitherto are focused on the marine environment, and research on risk assessment methodology is still limited. To understand the distribution of microplastics in urban rivers, this study investigated river sediments in Shanghai, the largest urban area in China. Seven sites were sampled to ensure maximum coverage of the city's central districts, and a tidal flat was also included to compare with river samples. Density separation, microscopic inspection and μ-FT-IR analysis were conducted to analyze the characteristics of microplastics and the type of polymers. The average abundance of microplastics in six river sediment samples was 802 items per kilogram of dry weight. The abundance in rivers was one to two orders of magnitude higher than in the tidal flat. White microplastic spheres were most commonly distributed in river sediments. Seven types of microplastics were identified, of which polypropylene was the most prevailing polymers presented. The study then conducted risk assessment of microplastics in sediments based on the observed results, and proposed a framework of environmental risk assessment. After reviewing waste disposal related legislation and regulations in China, this study conclude that in situ data and legitimate estimations should be incorporated as part of the practice when developing environmental policies aiming to tackle microplastic pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-08-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants.

  16. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary.

    PubMed

    Klosterhaus, Susan L; Grace, Richard; Hamilton, M Coreen; Yee, Donald

    2013-04-01

    Novel methods utilizing liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry were validated for low-level detection of 104 pharmaceuticals and personal care products ingredients (PPCPs) and four alkylphenols (APs) in environmental samples. The methods were applied to surface water, sediment, and mussel tissue samples collected from San Francisco Bay, CA, USA, an urban estuary that receives direct discharge from over forty municipal and industrial wastewater outfalls. Among the target PPCPs, 35% were detected in at least one sample, with 31, 10, and 17 compounds detected in water, sediment, and mussels, respectively. Maximum concentrations were 92 ng/L in water (valsartan), 33 ng/g dry weight (dw) in sediments (triclocarban), and 14 ng/g wet weight (ww) in mussels (N,N-diethyl-m-toluamide). Nonylphenol was detected in water (<2-73 ng/L), sediments (22-86 ng/g dw), and mussels (<0.04-95 ng/g ww), and nonylphenol mono- and diethoxylates were detected in sediments (<1-40 ng/g dw) and mussels (<5-192 ng/g ww). The concentrations of PPCPs and APs detected in the San Francisco Bay samples were generally at least an order of magnitude below concentrations expected to elicit toxic effects in aquatic organisms. This study represents the first reconnaissance of PPCPs in mussels living in an urban estuary and provides the first field-derived bioaccumulation factors (BAFs) for select compounds in aquatic organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Water-Quality, Bed-Sediment, and Biological Data (October 2007 through September 2008) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2009-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 23 sites from October 2007 through September 2008. Bed-sediment and biota samples were collected once at 13 sites during August 2008. This report presents the analytical results and quality assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2007 through September 2008. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at sites where seasonal daily values of turbidity were being determined and at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  18. Water-quality, bed-sediment, and biological data (October 2008 through September 2009) and statistical summaries of long-term data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2010-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 24 sites from October 2008 through September 2009. Bed-sediment and biota samples were collected once at 13 sites during August 2009. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2008 through September 2009. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined as well as at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  19. In situ passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ex situ measurements, and use of data.

    PubMed

    Apell, Jennifer N; Gschwend, Philip M

    2016-11-01

    Superfund sites with sediments contaminated by hydrophobic organic compounds (HOCs) can be difficult to characterize because of the complex nature of sorption to sediments. Porewater concentrations, which are often used to model transport of HOCs from the sediment bed into overlying water, benthic organisms, and the larger food web, are traditionally estimated using sediment concentrations and sorption coefficients estimated using equilibrium partitioning (EqP) theory. However, researchers have begun using polymeric samplers to determine porewater concentrations since this method does not require knowledge of the sediment's sorption properties. In this work, polyethylene passive samplers were deployed into sediments in the field (in situ passive sampling) and mixed with sediments in the laboratory (ex situ active sampling) that were contaminated with polychlorinated biphenyls (PCBs). The results show that porewater concentrations based on in situ and ex situ sampling generally agreed within a factor of two, but in situ concentrations were consistently lower than ex situ porewater concentrations. Imprecision arising from in situ passive sampling procedures does not explain this bias suggesting that field processes like bioirrigation may cause the differences observed between in situ and ex situ polymeric samplers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain.

    PubMed

    Petrovic, Mira; Fernández-Alba, Amadeo Rodrigez; Borrull, Francisco; Marce, Rosa Maria; González, Mazo Eduardo; Barceló, Damià

    2002-01-01

    Spain is one of the European countries that still discharges untreated wastewaters and sewage sludge to the sea. A total of 35 samples of coastal waters and 39 samples of harbor sediments was analyzed. Samples were collected from several hot spots on the Spanish coast, such as the harbors of Tarragona, Almería, and Barcelona, the mouths of the Besos and Llobregat rivers, the Bay of Cadiz, and various yacht harbors at the Mediterranean coast. A generic analytical procedure based on solid-phase extraction-liquid chromatography-atmospheric pressure chemical ionization/electrospray ionization mass spectrometry (SPE-LC-APCI/ESI-MS) was employed for determining the concentrations of alcohol ethoxylates (AEO), nonylphenol ethoxylates (NPEO), coconut diethanol amides (CDEA), nonylphenoxy-monocarboxylates (NPEC), nonylphenol (NP), octylphenol (OP), and linear alkylbenzene sulfonates (LAS) in sediment and water samples. The analysis revealed the presence of considerably high concentrations of NPEOs and NP near the points of discharge of industrial and urban wastewaters. Nonylphenol was found in 47% of water samples and in 77% of all sediment samples analyzed. Values for NP ranged from <0.15 to 4.1 microg/L in seawater and from <8 to 1,050 microg/kg in sediments. Levels of AEOs and CDEAs in seawater and marine sediments are reported for the first time. Concentrations of CDEAs in sediment, which were predominated by C11 through C15 homologues, ranged from 30 to 2,700 microg/kg, while in seawater, concentrations found were up to 24 microg/L. The AEOs were found to accumulate in a bottom sediment and they were detected in all analyzed sediment samples in concentrations from 37 to 1,300 microg/kg.

  1. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008.

    PubMed

    Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature. Published by Elsevier B.V.

  2. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    USGS Publications Warehouse

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature.

  3. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    USGS Publications Warehouse

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total nitrogen loading was from stormflows. The stormflow load accounted for 76.6 percent of the total load for the 2010 water year and 80.6 percent of the total load for the 2011 water year. The estimated monthly total nitrogen loads were higher during the winter and spring (December through May) than during the summer (June through August). For the Bakersville station, the estimated suspended-sediment load (SSL) was 17,700 tons for 11 months of the 2010 water year (November 2009 to September 2010). The storm beginning January 24, 2010, provided 34.4 percent of the annual SSL, and the storm beginning March 10, 2010, provided 31.9 percent of the annual SSL. Together, these two winter storms provided 66 percent of the annual SSL for the 2010 water year. For the 2011 water year, the estimated annual SSL was 13,500 tons. For the 2011 water year, the SSLs were more evenly divided among storms than for the 2010 water year. Seven of 37 storms with the highest SSLs provided a total of 65.7 percent of the annual SSL for the 2011 water year; each storm provided from 4.6 to 12.3 percent of the annual SSL. The highest cumulative SSL for the 2010 and 2011 water years generally occurred during the late winter. Stormflows with the highest peak discharges generally carried the highest SSL. The sediment-fingerprinting approach was used to quantify sources of fine-grained suspended sediment in the watershed draining to the Laurel Hill Creek near Bakersville streamflow-gaging station. Sediment source samples were collected from five source types: 20 from cropland, 9 from pasture, 18 from forested areas, 20 from unpaved roads, and 23 from streambanks. At the Bakersville station, 10 suspended-sediment samples were collected during 6 storms for sediment-source analysis. Thirty-five tracers from elemental analysis and 4 tracers from stable isotope analysis were used to fingerprint the source of sediment for the 10 storm samples. Statistical analysis determined that cropland and pasture could not be discriminated by the set of tracers and were combined into one source group—agriculture. Stepwise discriminant function analysis determined that 11 tracers best described the 4 sources. An "unmixing" model applied to the 11 tracers showed that agricultural land (cropland and pasture) was the major source of sediment, contributing an average of 53 percent of the sediment for the 10 storm samples. Streambanks, unpaved roads, and forest contributions for the 10 storm samples averaged 30, 17, and 0 percent, respectively. Agriculture was the major contributor of sediment during the highest sampled stormflows. The highest stormflows also produced the highest total nitrogen and suspended-sediment loads.

  4. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    NASA Astrophysics Data System (ADS)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other uncertainty factors.

  5. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions and pollution history. The other reason maybe the article is lack of research on pH, salinity and others factors which may affect adsorption and desorption.

  6. Maps showing water geochemistry of the Buffalo Peaks Wilderness Study Area, Lake, Park, and Chaffee Counties, Colorado

    USGS Publications Warehouse

    Nowlan, G.A.; Ficklin, Walter H.; Dover, Robert A.

    1985-01-01

    This report presents results of geochemical studies carried out in June and July of 1982 in the Buffalo Peaks Wilderness Study Area, Colo. (see index map). Samples of water were collected from 84 streams and 18 springs draining the study area. Tabulations of the analyses and a sample locality map are in Ficklin and others (1984). The geochemistry of stream sediments and panned concentrates of the study area is in Nowlan and Gerstel (1985). The geology of the study area and vicinity is in Hedlund (1985). The mineral resource potential of the study area is described in Hedlund and others (1983). This report (1) assists in the assessment of the mineral resource potential of the Buffalo Peaks Wilderness Study Area; and (2) compares analyses of water samples with analyses of stream-sediment and panned-concentrate samples (Nowlan and Gerstel, 1985).

  7. Comparison of routine urinalysis and urine Gram stain for detection of bacteriuria in dogs.

    PubMed

    Way, Leilani Ireland; Sullivan, Lauren A; Johnson, Valerie; Morley, Paul S

    2013-01-01

    To determine the utility of performing urine Gram stain for detection of bacteriuria compared to routine urine sediment examination and bacterial aerobic urine culture. Prospective, observational study. University teaching hospital. Urine samples acquired via cystocentesis through convenience sampling from 103 dogs presenting to a tertiary referral institution. All samples underwent routine urinalysis, including sediment examination, as well as urine Gram stain and quantitative bacterial aerobic urine culture. The urine Gram stain demonstrated improved sensitivity (96% versus 76%), specificity (100% versus 77%), positive predictive value (100% versus 83%), and negative predictive value (93% versus 69%) when identifying bacteriuria, compared to routine urine sediment examination. The urine Gram stain is highly sensitive and specific when detecting the presence of bacteria in canine urine samples. Gram staining should be considered when bacteriuria is highly suspected and requires rapid identification while bacterial culture is pending. © Veterinary Emergency and Critical Care Society 2013.

  8. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  9. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI)

    USGS Publications Warehouse

    Winters, W.J.

    1999-01-01

    As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.

  10. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported, eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.

  11. Assessment of Sediment Measurements in Lake Michigan as a Case Study: Implications for Monitoring and Modeling

    EPA Science Inventory

    Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sediment sampling sites throughout the lake in an intensive monitoring effort were utilized for assessment ...

  12. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations at depth for Bi, Cd, Cu, Hg, In, Pb, Sb, Sn, Te, and Zn. Radioisotope dating indicates that the elevated metal and trace element concentrations are associated with sediments deposited before 1963. Arsenic concentration was greater in cattail roots compared with surrounding sediment at Tavasci Marsh. Concentrations of As, Ni, and Se from yellow bullhead catfish (Ameiurus natalis) in Tavasci Marsh exceeded the 75th percentile of several other regional studies. Mercury concentration in dragonfly larvae and fish from Tavasci Marsh were similar to or greater than in Tavasci Marsh sediment. Future work includes a biologic risk assessment utilizing the data collected in this study to provide the monument management with additional information for their restoration plan.

  13. The role of bacteria in the nutrient exchange between sediment and water in a flow-through system.

    PubMed

    Kairesalo, T; Tuominen, L; Hartikainen, H; Rankinen, K

    1995-03-01

    The contribution of bacteria to phosphorus (P) and nitrogen (N ) release from, or retention in, sediment was studied in a flow-through system. "Live" and formaldehyde-"killed" sediment communities were incubated in 25-liter bottles with a continuous flow of P- or P + N-enriched water. Sediment bacteria in the killed communities were inhibited by adding formaldehyde (final concentration 0.04% v/v) to the sediment before the start of the experiment. Bacterial activity in the live sediments measured with [(3)H]thymidine and [(14)C]leucine incorporation techniques did not change essentially during the experiment period (7-8 days). Chemical mechanisms were found to be of principal importance in PO4-P retention in the sediment. In the live samples, the net retention of PO4-P was lower than in the killed samples, which was likely due to the reduced O2 conditions in the sediment as a consequence of bacterial mineralization. In total P exchange, however, bacteria increased the retention rate by recycling dissolved organic P in the sediment. In the live communities the retention of N was very efficient, and all the introduced NH4 -N and NO3-N was immobilized by sediment bacteria. Nitrogen enrichment, however, did not alter the P exchange rates. The gradual emergence of bacterial activity (and grazing) in the killed communities, subsequent to the dilution of formaldehyde concentration, enhanced the release of PO4-P and NH4-N from sediment.

  14. Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland.

    PubMed

    Lilley, Thomas M; Meierjohann, Axel; Ruokolainen, Lasse; Peltonen, Jani; Vesterinen, Eero; Kronberg, Leif; Nikinmaa, Mikko

    2012-08-01

    Due to their adsorptive behavior, organotin compounds (OTCs), such as tributyltin (TBT), are accumulated in aquatic sediments. They resist biodegradation and, despite a ban in 2008, are a potential source for future exposure. Sediment OTCs have mostly been measured from sites of known high concentrations such as ports, shipping lanes, and marine dredging waste sites. The possible flow of OTCs from marine to terrestrial ecosystems, however, has not been studied. In the present study, the authors assessed whether sediments in common reed beds (Phragmites australis) accumulate TBT and whether chironomid (Diptera: Chironomidae) communities developing in reed-bed sediments act as vectors in the transfer of TBT from aquatic to terrestrial ecosystems in the Airisto channel, Archipelago Sea. The authors also investigated whether distance from the only known source and depth and TBT concentration of the adjacent shipping lane affect reed-bed concentrations. Thirty-six sites along the Airisto channel were sampled at 2-km intervals with triplicate samples from reed beds and the adjacent shipping lane for sediment and seven reed-bed sites for chironomids, and these were analyzed with an solid phase extraction liquid chromatography tamdem mass spectrometry method. The closer to the source the sample site was, the higher the measured TBT concentrations were; and the deeper the shipping lane, the lower the concentration of TBT in reed-bed sediments. The chironomid TBT concentrations correlated with reed-bed sediment TBT concentrations and showed evidence of accumulation. Therefore, TBT may be transferred, through the food web, from aquatic to terrestrial ecosystems relatively close to a source through ecosystem boundaries, such as common reed beds, which are areas of high insect biomass production in the Archipelago Sea. Copyright © 2012 SETAC.

  15. In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.

    PubMed

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.

  16. Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.

    2009-01-01

    Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.

  17. Salt-dome-related diagenesis of Miocene sediment, Black Bayou field, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leger, W.R.

    1988-09-01

    The Black Bayou field is associated with a salt dome that pierces Miocene sediment and rises to within 900 ft (275 m) of the surface. The Louisiana Gulf Coast regional geothermal gradient is locally affected by the salt dome. The gradient increases to values greater than the regional gradient, 1.26/degrees/F/100 ft (23/degrees/C/km), near the dome. Local effects of the salt dome on clastic diagenesis have been determined by studying sandstone samples adjacent to and away from the salt dome within Miocene sediment. Sample depths range from 4155 to 6145 ft (1266 to 1873 m). Distances of samples from the edgemore » of the dome range from 82 to 820 ft (25 to 250 m).« less

  18. Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, C.; Yoo, C.

    2001-12-01

    The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.

  19. Short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: Spatial distributions, source apportionment and risk assessment.

    PubMed

    Qiao, Lin; Gao, Lirong; Xia, Dan; Huang, Huiting; Zheng, Minghui

    2017-01-01

    Chlorinated paraffins (CPs) are easily adsorbed into sediments where they pose potential risks to the ecosystem and human health. Few studies have investigated short- and medium-chain CPs (SCCPs and MCCPs) in sediments. The aim of the present study was to comprehensively investigate contamination levels, spatial distributions, sources and risks posed by CPs in sediments from the middle reaches of the Yangtze River. The sediment samples were analyzed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). The concentrations of SCCPs and MCCPs ranged from 4.19 to 41.6ng/g dry weight (dw) and not detected to 14.6ng/g dw, respectively. No significant correlation was found between the total organic carbon contents and CP concentrations (P>0.05). The spatial distributions showed that CP contamination levels in the sediments were related to local human activities. The dominant congener groups were C 10-11 Cl 6-7 for SCCPs, and C 14 Cl 7-8 for MCCPs. Correspondence analysis revealed that likely sources of SCCPs were the production and use of CP-42 and CP-52. Principal component analysis indicated that SCCPs and MCCPs in the sediments may come from different sources. Moreover, CPs with nine carbon atoms were quantitated for the first time in sediment samples, and the results indicated they should not be neglected in future analyses. Risk assessments indicated that CPs in the sediments did not pose a great ecological risk currently. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Polychlorinated Biphenyls in suspended-sediment samples from outfalls to Meandering Road Creek at Air Force Plant 4, Fort Worth, Texas, 2003-08

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.

    2010-01-01

    Meandering Road Creek is an intermittent stream and tributary to Lake Worth, a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. U.S. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth. Meandering Road Creek gains inflow from several stormwater outfalls as it flows across AFP4. Several studies have characterized polychlorinated biphenyls (PCBs) in the water and sediments of Lake Worth and Meandering Road Creek; sources of PCBs are believed to originate primarily from AFP4. Two previous U.S. Geological Survey (USGS) reports documented elevated PCB concentrations in surficial sediment samples from Woods Inlet relative to concentrations in surficial sediment samples from other parts of Lake Worth. The second of these two previous reports also identified some of the sources of PCBs to Lake Worth. These reports were followed by a third USGS report that documented the extent of PCB contamination in Meandering Road Creek and Woods Inlet and identified runoff from outfalls 4 and 5 at AFP4 as prominent sources of these PCBs. This report describes the results of a fourth study by the USGS, in cooperation with the Lockheed Martin Corporation, to investigate PCBs in suspended-sediment samples in storm runoff from outfalls 4 and 5 at AFP4 following the implementation of engineering controls designed to potentially alleviate PCB contamination in the drainage areas of these outfalls. Suspended-sediment samples collected from outfalls 4 and 5 during storms on March 2 and November 10, 2008, were analyzed for selected PCBs. Sums of concentrations of 18 reported PCB congeners (Sigma PCBc) in suspended-sediment samples collected before and after implementation of engineering controls are compared. At both outfalls, the Sigma PCBc before engineering controls was higher than the Sigma PCBc after engineering controls. The Sigma PCBc in suspended-sediment samples collected at AFP4 before and after implementation of engineering controls also is compared to the threshold effect concentration (TEC), the concentration below which adverse effects to benthic biota rarely occur. Sigma PCBc exceeded the TEC for 75 percent of the samples collected at outfall 4 and 67 percent of the samples collected at outfall 5 before the implementation of engineering controls. Sigma PCBc did not exceed the TEC in samples collected at either outfall 4 or outfall 5 after the implementation of engineering controls. The relative prominence of 10 selected PCB congeners was evaluated by graphical analysis of ratios of individual concentrations of the 10 PCB congeners to the sum of these PCB congeners. An overall decrease in concentrations of PCB congeners at outfalls 4 and 5 after implementation of engineering controls, as well as a shift in prominence from lighter, less chlorinated congeners to a heavier, more chlorinated congener might have resulted from the implementation of engineering controls. Because of the small number of samples collected and lack of runoff and precipitation data to evaluate comparability of sampling conditions before and after implementation of engineering controls, all conclusions are preliminary.

  1. Characterization of soil behavior using electromagnetic wave-based technique

    NASA Astrophysics Data System (ADS)

    Dong, Xiaobo

    A 2.2 mm open-ended coaxial probe is selected to explore the broadband measurement of complex permittivity ranging from kHz up to GHz. The measurements are conducted in three different frequency ranges, i.e., high frequency (HF, 500 MHz ˜ 20 GHz), medium frequency (MF, 10 MHz ˜ 1 GHz), and low frequency (LF, 1 kHz ˜ 15 MHz), in view of pertinent aperture admittance models, feasible measurement principles, and required calibrations for system biases. These considerations are discussed and described in turn from the high frequency measurements to low frequency tests. Verification of the associated measurement techniques in the three operating frequency regimes is provided by experiments on pure ethanol and methanol liquids as well as on NaCl solutions of different concentrations. These testing techniques are also applied to measure the broadband dielectric spectrum of kaolinite slurry; simple analyses focusing on subtracting the influence of DC conductivity and multiple relaxations are presented. A complex permittivity spectrum from 1 kHz to 3 GHz is measured in kaolinite sediment of different structures using the slim-form open-ended coaxial probe. The sediment structure is manipulated by changing the pore-fluid pH. When the pH is below the isoelectrical point of the edge surface, IEPedge, the structure of face-to-edge (EF) flocculation is promoted in voluminous sediment (Group A samples). A higher dielectric constant due to bulk water polarization is measured because of the higher water content. As the pH is increased to greater than IEP edge, dense sediment with face-to-face (FF) aggregation is produced (Group B samples) and a lower dielectric constant is obtained. In bound water and spatial polarization, higher relaxation strength and longer relaxation time are observed in the Group B samples, which can be attributed to more negatively charged surfaces and denser packing. Fluid conductivity dominates the global conductivity of the sediment in the Group A samples so that the beta value, i.e., the ratio between the conductivities of the sediment and the fluid, is smaller than 1. The beta value is greater than 1 in the Group B samples owing to an overcompensation of surface conduction. Sedimentation behavior of two kaolinite samples with distinct fabric associations is characterized using mechanical and electromagnetic wave-based techniques. The two different fabric formations, the edge-to-face (EF) flocculated structure (i.e., sample A) and the dispersed and deflocculated structure (i.e., sample B), were regulated by changing the pH of the pore fluid and are produced. The anisotropy of shear wave velocity and DC conductivity was not observed in the sediment of sample A because of EF isotropic fabric associations but it was detected in sample B as a result of face-to-face (FF) aggregation. An open card-house structure of the sample A sediment results in a higher relaxation strength of the bulk water, Deltakappaw owing to a higher water content; the smaller Deltakappaw measured in the sample B sediment indicates denser packing. In both samples, sediment consolidation gives rise to a decrease in the bulk-water relaxation strength but an increase in the bound-water relaxation strength owing to increasing particle content. In response to sediment consolidation, the sediment conductivity of sample A continuously decreases because of the reduced contribution from the fluid conductivity. In sample B, the surface conduction via the overlapped double layer overcompensates such a decreased contribution so that the sediment conductivity increases with increasing particle content. The slim-form open-ended coaxial probe is also used to conduct a local dielectric measurement. The measured results, i.e. dielectric relaxation strength of bulk water, Deltakappaw, and the DC conductivity of the saturated sample, sigmamix, are jointly used to characterize the spatial variability of different specimens including glass beads, sand and mica samples, and kaolinte sediments with two different fabric associations. The pore distribution along the sample depth can be reflected from the measured Deltakappaw, and the local porosity can be estimated based on the mixing rules. The directional feature of the interconnected pores is captured in the totruosity which is derived from the measured sigmamix. In the kaolinite sediments, the ratio between the sediment and the pore-fluid conductivity not only reveals the spatial variability of the sediment packing but also the relative contribution of the fluid conductivity and surface conduction to the global sediment conductivity.

  2. Kinetics of fluoride bioavailability in supernatant saliva and salivary sediment.

    PubMed

    Naumova, E A; Sandulescu, T; Bochnig, C; Gaengler, P; Zimmer, S; Arnold, W H

    2012-07-01

    The assessment of the fluoride kinetics in whole saliva as well as in the different salivary phases (supernatant saliva and sediment) is essential for the understanding of fluoride bioavailability. To assess the fluoride content, provided by sodium fluoride and amine fluoride, in the supernatant saliva and in salivary sediment. Seven trained volunteers were randomly attributed to 2 groups in a cross-over design and brushed their teeth in the morning for 3 min with a product containing either sodium fluoride or amine fluoride. Saliva was collected before, immediately after tooth brushing and 30, 120, and 360 min later and measured. The samples were centrifuged 10 min at 3024 × g. Fluoride content of the supernatant saliva and of the sediment was analysed using a fluoride sensitive electrode. All subjects repeated the study cycles 2 times, and statistical analyses were made using the nonparametric sign test for related samples, the Wilcoxon-Mann-Whitney-test for independent samples. There was a significant increase in fluoride immediately after tooth brushing in both groups in saliva and sediment. The distribution of fluoride between salivary sediment and supernatant saliva (ratio) varied considerably at the different collection times: decreased from 17.87 in baseline samples of saliva to 0.07 immediately and to 0.86 half an hour after tooth brushing in the sodium fluoride group and from 14.33 to 2.85 and to 3.09 in the amine fluoride group. Furthermore after 120 min and after 360 min after tooth brushing the ratio increased from 17.6 to 31.6 in the sodium fluoride group and from 20.5 to 25.76 in the amine fluoride group. No difference was found in the sediment-supernatant saliva ratio between the sodium fluoride and the amine fluoride groups 360 min after tooth brushing. For the assessment of fluoride kinetics in whole saliva it is necessary to pay attention to at least four factors: fluoride formulation, time after fluoride application, fluoride concentration in supernatant saliva and fluoride concentration in salivary sediment. This study was approved by the Ethical Committee of the University of Witten/Herdecke permission 21/2008. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990

    USGS Publications Warehouse

    Rinella, F.A.

    1993-01-01

    Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.

  4. Relationship between sediment morphology and oil pollution along the Suez Canal beaches, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barakat, M.A.K.; Shimy, T.M.; Mostafa, Y.M.

    1996-10-01

    In this study, marine surface sediments are collected from nine locations along the Suez Canal in order to investigate the relationship between the morphology of sands in the studied beaches and pollution by oil. Basically, the studied samples were analyzed by three techniques: grains-size analysis, microscopic examination, and gas chromatographic (GC) analysis. This study concluded that medium sand is the major class represented in the studied marine sediments. Pollution in these sand grains increases in the irregular grains more so than in the more rounded grains. Also, deep surface points, pitting, and fissures are considered to be good sites tomore » precipitate oil contamination. Also, the presence of iron oxides may be taken as evidence for tanker ballast washings. The heavy fraction (zircon) shows more contamination than the light fraction (quartz) in these samples. Finally, GC profiles have shown two types of samples: one typical of weathered or highly weathered crude oil patterns and the other for samples with very highly weathered profiles. The relationship obtained between morphology studies and both oil content and GC chromatogram profiles indicates that all of the studied locations are suffering from pollution of oil that is spilled while shipping petroleum through the Suez Canal.« less

  5. Use of spatial statistics and isotopic tracers to measure the influence of arsenical pesticide use on stream sediment chemistry in New England, USA

    USGS Publications Warehouse

    Robinson, G.R.; Ayuso, R.A.

    2004-01-01

    Arsenical pesticides and herbicides, principally Pb arsenate, Ca arsenate, and Na arsenate with lesser use of other metal-As pesticides, were widely applied on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Agricultural census data for this time period is used to define an agricultural index that identifies areas that are inferred to have used arsenical pesticides extensively. Factor analysis on metal concentrations in 1597 stream sediment samples collected throughout New England, grouped by agricultural-index categories, indicate a positive association of areas with stream sediment sample populations that contain higher As and Pb concentrations than samples from the region as a whole with sample site settings having high agricultural-index values. Population statistics for As and Pb concentrations and factor scores for an As-Pb factor all increase systematically and significantly with increasing agricultural-index intensity in the region, as tested by Kruskal-Wallis analysis. Lead isotope compositions for 16 stream sediments from a range of agricultural-index settings generally overlap the observed variation in rock sulfides and their weathering products; however, sediments collected from high agricultural-index settings have slightly more radiogenic Pb compositions, consistent with an industrial Pb contribution to these samples. Although weathering products from rocks are likely to be the dominant source of As and metals to most of the stream sediment samples collected in the region, the widespread use of arsenical pesticides and herbicides in New England during the early 1900-1960s appears to be a significant anthropogenic source of As and metals to many sediments in agricultural areas in the region and has raised background levels of As in some regions. Elevated concentrations of As in stream sediments are of concern for two reasons. Stream sediments with elevated As concentrations delineate areas with elevated background concentrations of As from both natural rock and anthropogenic sources that may contribute As to groundwater systems used for drinking water supplies. Conversion of agricultural land contaminated with arsenical pesticide residues to residential development may increase the likelihood that humans will be exposed to As. In addition, many stream sediment sites have As concentrations that exceed sediment quality guidelines established for freshwater ecosystems. Thirteen percent of the New England sediment sample sites exceed 9.79 mg/kg As, the threshold effects concentration (TEC), below which harmful effects are unlikely to be observed. Arsenic concentrations exceed 33 mg/kg, the probable effects concentration (PEC), above which harmful effects on sediment-dwelling organisms are expected to occur frequently, at 1.25% of the sediment sample sites. The sample sites that exceed the PEC value occur predominately in agricultural areas that used arsenical pesticides.

  6. In vitro and in vivo toxicities of sediment and surface water in an area near a major steel industry of Korea: endocrine disruption, reproduction, or survival effects combined with instrumental analysis.

    PubMed

    Kim, Sunmi; Lee, Sangwoo; Kim, Cheolmin; Liu, Xiaoshan; Seo, Jihyun; Jung, Hyorin; Ji, Kyunghee; Hong, Seongjin; Park, Jinsoon; Khim, Jong Seong; Yoon, Seokmin; Lee, Woojin; Park, Jeongim; Choi, Kyungho

    2014-02-01

    The influence of industrial and/or municipal contaminant inputs on the aquatic environment of Pohang, Korea was investigated, with a focus on bioassay combined with instrumental analysis. Pohang is the most heavily populated city in Gyeongsangbuk-do province of Korea, with more than half a million residents, and also hosts the nation's biggest steel manufacturer and related industries. Sediment (n=15) and surface water samples (n=17) were collected from Hyeongsan River which runs across the Pohang city, in two separate events, i.e., June 2010 and February 2011. Sediment samples were first Soxhlet-extracted (raw extract) and were measured for estrogenicity using H295R cell line, and also analyzed for alkylphenols (APs), bisphenol A (BPA), PAHs, and PCBs. For sediment samples which exhibited greatest effects in the cell line, further fractionation was performed into non-polar, mid-polar, and polar portions. In surface water samples, heavy metals were also analyzed. Among 15 sediment samples, station S2 near the steel industry complex and station M3 near the municipal area showed the greatest sex hormone changes, and these changes were generally explained by the fractions which contained APs and BPA. Principal component analysis (PCA) however suggests that chemicals that were not analyzed in the present study would better explain endocrine disruption capacity of sediments. In water samples, adverse effects on hatchability and growth of Japanese medaka fish, and on Daphnia reproduction were noted following exposure to six water samples collected from stations near industrial and municipal areas. Several heavy metals and nonylphenol (NP) concentrations exceeded surface water quality guidelines, suggesting adverse effects of contamination inputs from both industrial and municipal activities. Observed estrogenicities in stations such as S2 and M3 warrant further investigations on longer term ecosystem impacts near industrial and municipal areas. The levels of major organic chemicals in sediments are quite comparable to those reported in ~10 years ago, emphasizing a need for source control. © 2013 Elsevier B.V. All rights reserved.

  7. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    A series of modeling simulations were performed to develop an understanding of the underlying factors and principles involved in developing field sampling designs for measuring bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs. These simulations reveal...

  8. Metabolic activity of subseafloor microbes in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Ito, M.; Terada, T.; Inagaki, F.

    2013-12-01

    The South Pacific Gyre (SPG) is characterized as the most oligotrophic open ocean environment. The sediment is rich in oxygen but poor in energy-sources such as reduced organic matter, and hence harbors very low numbers of microbial cells in relatively shallow subseafloor sediment (D'Hondt et al., 2009; Kallmeyer et al., 2012). In such an energy-limited sedimentary habitat, a small size of microbial community persists living functions with extraordinary low oxygen-consumption rate (Røy et al., 2012). During IODP Expedition 329, a series of sediment samples were successfully recovered from 7 drill sites (U1365-1371) from the seafloor to basement in the SPG, providing an unprecedented opportunity to study metabolic activity of the aerobic subseafloor microbial communities. We initiated incubation onboard by adding stable isotope-labeled substrates to the freshly collected sediment sample, such as 13C and/or 15N-labeled bicarbonate, glucose, amino acids, acetate, and ammonium under the (micro-) aerobic condition. One of the technological challenges in this study is to harvest microbial cells from very low-biomass sediment samples for the analysis using nano-scale secondary ion mass spectrometry (NanoSIMS). To address the technical issue, we improved existing cell separation technique for the SPG sediment samples with small inorganic zeolitic grains. By monitoring cell recovery rates through an image-based cell enumeration technique (Morono et al., 2009), we found that cell recovery rates in the SPG sediment samples are generally lower than those in other oceanographic settings (i.e., organic-rich ocean margin sediments). To gain higher cell recovery ratio, we applied multiple density gradient layers, resulting in the cell recovery ratio up to around 80-95% (Morono et al., in press). Then, using the newly developed cell separation technique, we successfully sorted enough number of microbial cells in small spots on the membrane (i.e., 103 to 105 cells per spot). NanoSIMS analysis showed incorporation of the supplemented stable isotope-labeled substrates after 1.5 year-incubation. The substrate incorporation rates of individual microbial cell ranged in average from 1/10 to 1/2 of those values previously observed in an organic-rich ocean margin sediment (Morono et al., 2011). References S. D'Hondt et al., Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106, 11651 (2009) J. Kallmeyeret al., Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109, 16213 (2012) H. Røy et al., Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336, 922 (2012) Y. Morono et al. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J 3, 503 (2009) Y. Morono et al., An Improved Cell Separation Technique for Marine Subsurface Sediments: Applications for High-throughput Analysis Using Flow Cytometry and Cell Sorting. Environ Microbiol, (2013) Y. Morono et al., Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA 108, 18295 (2011)

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Trinidad NTMS Quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, W.A.; LaDelfe, C.M.; Weaver, T.A.

    1978-10-01

    During the field seasons of 1976 and 1977, 1,060 natural water and 1,240 waterborne sediment samples were collected from 1,768 locations in the Trinidad, Colorado, NTMS quadrangle. The samples from this 19,600-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detection limit of 0.02 parts per billion (ppb) to 88.3 ppb, with a mean value of 4.05 ppb. The concentrations in sediments ranged from 1.3 parts per million (ppM) to 721.9 ppM, with a mean value of 5.55 ppM. Based on simple statistical analyses ofmore » these data, arbitrary anomaly thresholds were set at 20 ppb for water samples and 12 ppM for sediment samples. By this definition, fifty-eight water and 39 sediment samples were considered anomalous. At least five areas delineated by the data appear to warrant more detailed investigations. Twenty-six anomalous water samples outline a broad area corresponding to the axis of the Apishapa uplift, seven others form a cluster in Huerfano Park, and five others outline a small area in the northern part of the San Luis Valley. Twenty-three anomalous sediment samples outline an area corresponding generally to Precambrian metamorphic rocks in the Culebra Range, and seven anomalous sediment samples form a cluster near Crestone Peak in the Sangre de Cristo Mountains.« less

  10. Exploring Links Between Global Climate and Explosive Arc Volcanism in Tephra-Rich Quaternary Sediments: A Pilot Study from IODP Expedition 350 Site 1437B, Izu Bonin Rear-Arc Region

    NASA Astrophysics Data System (ADS)

    Corry-Saavedra, K.; Straub, S. M.; Bolge, L.; Schindlbeck, J. C.; Kutterolf, S.; Woodhead, J. D.

    2015-12-01

    Fallout tephra in marine sediment provide an excellent archive of explosive arc volcanism that can be directly related to the other parameters of climate change, such as ice volume data, IRD (ice-rafted debris) input, etc. Current studies are based on 'discrete' tephra beds, which are produced by major eruptions and visible with the naked eye. Yet the more common, but less explosive arc eruptions that are more continuous through time produce 'disperse' tephra, which is concealed by the non-volcanic host sediment and invisible to the eye. The proportion of disperse tephra in marine sediments is known to be significant and may be critical in elucidating potential synchronicity between arc volcanism and glacial cycles. We conducted a pilot study in young sediments of IODP Hole 1437B drilled at 31°47.3911'N and 139°01.5788'E at the rear-arc of the Izu Bonin volcanic arc. By means of δ18O (Vautravers, in revision), eleven climatic cycles are recorded in uppermost 120 meter of carbonate mud that is interspersed by cm-thick tephra fallout layers. We selected six tephra layers, ranging from 0.2 to 1.16 million years in age, and sampled those vertically, starting from carbonate mud below the basal contact throughout the typical gradational top into the carbonate mud above. From each tephra bed, volcanic particles (>125 micrometer) were handpicked. All other samples were powdered and leached in buffered acetic acid and hydroxylamine hydrochloride to remove the carbonate and authigenous fraction, respectively. Major and trace element abundances (except for SiO2) from all samples were determined by ICP-MS and ICP-OES methods. Strong binary mixing trends are revealed between the pure tephra end member, and detrital sediment component. The tephra is derived from the Izu Bonin volcanic front and rear-arc, while the sediment component is presumably transported by ocean surface currents from the East China Sea. Our data show that mixing proportions change systematically with sample percentage left after leaching and the stratigraphic position of sample, implying that the composition of the aluminosilicate fraction is an indicator of the percentage of disperse ash present in the carbonate mud. This data leave potential to investigate temporal trends. Our results are currently being refined with radiogenic isotope data.

  11. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  12. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  13. Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity tests, microtox, mutatox and semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Petty, Jimmie D.; Johnson, B. Thomas; Lebo, Jon A.; Orazio, Carl E.; Dionne, Jane

    1997-01-01

    Eight whole sediment samples from Antarctica (four from Winter Quarters Bay and four from McMurdo Sound) were toxicologically and chemically evaluated. Also, the influence of ultraviolet radiation on the toxicity and bioavailability of contaminants associated with the sediment samples was assessed. The evaluations were accomplished by use of a 10-day whole sediment test with Leptocheirus plumulosus, Microtox®, Mutatox® and semipermeable membrane devices (SPMDs). Winter Quarters Bay sediments contained about 250 ng g−1 (dry weight) total PCBs and 20 μg g−1 total PAHs. These sediments elicited toxicity in the Microtox test and avoidance and inhibited burrowing in the L. plumulosus test. The McMurdo Sound sediment samples contained only trace amounts of PCBs and no PAHs, and were less toxic in both the L. plumulosus and Microtox tests compared to the Winter Quarters Bay sediments. The sediments from McMurdo Sound apparently contained some unidentified substance which was photolytically modified to a more toxic form. The photolytic modification of sediment-associated contaminants, coupled with the polar ozone hole and increased incidence of ultraviolet radiation could significantly increase hazards to Antarctic marine life.

  14. Benthic-invertebrate, fish-community, and streambed-sediment-chemistry data for streams in the Indianapolis metropolitan area, Indiana, 2009–2012

    USGS Publications Warehouse

    Voelker, David C.

    2014-01-01

    Aquatic-biology and sediment-chemistry data were collected at seven sites on the White River and at six tributary sites in the Indianapolis metropolitan area of Indiana during the period 2009 through 2012. Data collected included benthic-invertebrate and fish-community information and concentrations of metals, insecticides, herbicides, and semivolatile organic compounds adsorbed to streambed sediments. A total of 120 benthic-invertebrate samples were collected, of which 16 were replicate samples. A total of 26 fish-community samples were collected in 2010 and 2012. Thirty streambed-sediment chemistry samples were collected in 2009 and 2011, of which four were concurrent duplicate samples

  15. Sources of polychlorinated biphenyls to Devils Swamp Lake near Baton Rouge, Louisiana

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Kimball, Briant A.

    2006-01-01

    Devils Swamp Lake near Baton Rouge, Louisiana, created in 1973 by dredging in Devils Swamp along the Mississippi River, is contaminated with polychlorinated biphenyls (PCBs) from historical industrial discharges. This study involved the investigation of the occurrence, distribution, and sources of PCBs in the lake, including the possible historical contribution of PCBs from a hazardous-chemical disposal facility by way of a wastewater drainage ditch that was used from 1971 to 1993. Six bed sediment cores from the lake and three bed sediment grab samples from the drainage ditch were collected; 61 subsamples from selected intervals in five of the six cores and the three grab samples from the ditch were analyzed for PCBs using an immunoassay screening method. Sixteen of the core subsamples and one ditch sample were analyzed for organochlorine pesticides, PCBs, polycyclic aromatic hydrocarbons (PAHs) (15 samples), and major and trace elements. PCB congener profiles and a factor analysis of congener composition indicate that PCBs in sediment from the drainage ditch and in lake sediment deposited near the canal since the mid-1980s are similar, which indicates the disposal facility, by way of the wastewater drainage ditch, is the source of the PCBs. Sediment from several hundred meters down the lake to the west, near where Bayou Baton Rouge enters the lake, had a different PCB composition and in a sample deposited in the early 1980s, a much higher concentration, indicating a second source of PCBs in the watershed of Bayou Baton Rouge. Large differences in PAHs and metals between sediment near the ditch and sediment near Bayou Baton Rouge support this conclusion. The identity of the Bayou Baton Rouge source(s) cannot be established using available data. The short duration and relatively high concentrations of PCBs from the bayou source indicate either a spill or a flood-related release-there was a large flood on the Mississippi River in 1983. Older (deeper) samples from cores near the drainage ditch (dated as deposited before the mid-1980s) had PCB compositions that indicate a mixture of sources (Bayou Baton Rouge and the drainage ditch). Elevated PCB concentrations in sediment from the drainage ditch and cores from near the mouth of the ditch in recent (post-2000) samples indicate that some PCB inputs from the ditch might still be occurring.

  16. Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout

    DOE PAGES

    Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; ...

    2015-07-14

    The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicatesmore » a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. In addition, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.« less

  17. Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout

    PubMed Central

    Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; Romero, Isabel; Moore, Christopher; Reichart, Gert-Jan; Jilbert, Tom; Chanton, Jeff P.; Hastings, David W.; Overholt, Will A.; Marks, Kala P.; Kostka, Joel E.; Holmes, Charles W.; Hollander, David

    2015-01-01

    The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. Further, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge. PMID:26172639

  18. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms

    USGS Publications Warehouse

    Wang, N.; Besser, J.M.; Buckler, D.R.; Honegger, J.L.; Ingersoll, C.G.; Johnson, B. Thomas; Kurtzweil, M.L.; MacGregor, J.; McKee, M.J.

    2005-01-01

    The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water–sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l−1 nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43–83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23–97%) was only observed in overlying water sampled from water–sediment microcosms during the first 24 h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4–6 mg l−1) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.

  19. Effects of Chinese Deforestation and Reforestation Policies on Sediment Sourcing in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Henck Schmidt, A. C.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Singleton, A.; Qiu, Y.; Bower, J.; Rood, D. H.

    2015-12-01

    Widespread deforestation from the 1960s through 1980s, blamed for catastrophic flooding in the lower Yangtze in 1998, prompted bans on logging and agriculture on steep slopes in western China. However, despite reports of extensive erosion resulting from the deforestation, sediment yield data show no corresponding increase during this time. Prior work suggested that if the deforestation increased erosion, the sediment is stored in floodplains, terraces, and alluvial fans throughout the region. In order to test this hypothesis, we sampled in-channel and overbank sediments at 38 locations, 19 of which are co-located with Chinese hydrology stations with at least five years of daily sediment yield data. Sediments were analyzed for meteoric and in situ 10-Be, unsupported 210-Pb, and 137-Cs. Unsupported 210-Pb activity is uniformly low throughout the study area and 137-Cs was found only in a few high-altitude, low-relief watersheds. Modern sediment yields, determined from Chinese data, are higher than long term in situ 10-Be-derived erosion rates in all but four watersheds, where we hypothesize sediment is being stored in alluvial features and agricultural terraces or that stochastic events such as landslides were not captured in the sediment yield data. Overall there is no relationship between topographic or climatic metrics, including slope, relief, or mean annual rainfall for any of the four isotopes except for a weak but statistically significant negative relationship between in situ 10-Be derived erosion rate and rainfall. Although paired in-channel and overbank samples are statistically indistinguishable for meteoric and in situ 10-Be, the overbank samples have lower unsupported 210-Pb activity, suggesting deeper sediment sourcing during the monsoon. In summary, in addition to suggesting differences between wet- and dry-season sediment sources, preliminary results support previous hypotheses regarding increased contemporary erosion and low hillslope-channel connectivity.

  20. Historical sediment record and levels of PCBs in sediments and mangroves of Jobos Bay, Puerto Rico.

    PubMed

    Alegria, Henry; Martinez-Colon, Michael; Birgul, Askin; Brooks, Gregg; Hanson, Lindsey; Kurt-Karakus, Perihan

    2016-12-15

    Polychlorinated biphenyls (PCBs) were quantified in 18 surface sediment samples, 1 sediment core, and several mangrove tissue samples collected in Jobos Bay, Puerto Rico in September 2013. Total PCBs in surface sediments ranged from 0.42 to 1232ngg -1 dw. Generally, higher levels were observed near-shore close to urban and industrial areas. The levels suggest significant pollution in Jobos Bay with respect to PCBs. Two-thirds of the sites were dominated by lighter PCB congeners (tri- to penta-chlorinated PCBs) while one-third had heavy PCB congeners (hexa- to octa-chlorinated PCBs) dominant. Total PCBs in a sediment core indicated levels fluctuating according to historical usage patterns. Total PCBs were measured in mangal leaves (14-747ngg -1 dw), roots (0.26-120ngg -1 dw), and seeds (16-93ngg -1 dw), suggesting bioaccumulation from sediments. This is the first report of a historical profile of PCBs in the study area and of PCB bioaccumulation in mangroves. This article provides new and useful information on PCBs in the Caribbean area of the GRULAC region. Copyright © 2016 Elsevier B.V. All rights reserved.

Top