Sample records for study soil samples

  1. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  2. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  3. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  4. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes, closing soil gas pathways etc.). In the case of H2O exchange rate, values increased with increasing soil water contents (up to 0.15-0.20 cm3/cm3) and then remained approximately constant. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  5. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    NASA Astrophysics Data System (ADS)

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.

    2016-05-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.

  6. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  7. SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES

    EPA Science Inventory

    Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

  8. BOREAS TE-2 NSA Soil Lab Data

    NASA Technical Reports Server (NTRS)

    Veldhuis, Hugo; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    This data set contains the major soil properties of soil samples collected in 1994 at the tower flux sites in the Northern Study Area (NSA). The soil samples were collected by Hugo Veldhuis and his staff from the University of Manitoba. The mineral soil samples were largely analyzed by Barry Goetz, under the supervision of Dr. Harold Rostad at the University of Saskatchewan. The organic soil samples were largely analyzed by Peter Haluschak, under the supervision of Hugo Veldhuis at the Centre for Land and Biological Resources Research in Winnipeg, Manitoba. During the course of field investigation and mapping, selected surface and subsurface soil samples were collected for laboratory analysis. These samples were used as benchmark references for specific soil attributes in general soil characterization. Detailed soil sampling, description, and laboratory analysis were performed on selected modal soils to provide examples of common soil physical and chemical characteristics in the study area. The soil properties that were determined include soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus: particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. These data are stored in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Treesearch

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  10. The Preparation of Gelatine-Embedded Soil and Litter Sections and Their Application to Some Soil Ecological Studies.

    ERIC Educational Resources Information Center

    Anderson, J. M.

    1978-01-01

    A method is described for preparing large gelatine-embedded soil sections for ecological studies. Sampling methods reduce structural disturbance of the samples to a minimum and include freezing the samples in the field to kill soil invertebrates in their natural microhabitats. Projects are suggested for upper secondary school students. (Author/BB)

  11. Concentrations of the Allelochemical (+/-)-catechin IN Centaurea maculosa soils.

    PubMed

    Perry, Laura G; Thelen, Giles C; Ridenour, Wendy M; Callaway, Ragan M; Paschke, Mark W; Vivanco, Jorge M

    2007-12-01

    The phytotoxin (+/-)-catechin has been proposed to mediate invasion and autoinhibition by the Eurasian plant Centaurea maculosa (spotted knapweed). The importance of (+/-)-catechin to C. maculosa ecology depends in part on whether sufficient catechin concentrations occur at appropriate times and locations within C. maculosa soil to influence neighboring plants. Previous research on catechin in C. maculosa soils has yielded conflicting results, with some studies finding high soil catechin concentrations and other, more recent studies finding little or no catechin in field soils. Here, we report the most extensive study of soil catechin concentrations to date. We examined soil catechin concentrations in 402 samples from 11 C. maculosa sites in North America sampled in consecutive months over 1 yr, excluding winter months. One site was sampled on seven dates, another was sampled twice, and the remaining nine sites were each sampled once on a range of sampling dates. Methods used were similar to those with which we previously measured high soil catechin concentrations. We detected catechin only in the site that was sampled on seven dates and only on one sampling date in that site (May 16 2006), but in all samples collected on that date. The mean soil catechin concentration on that date was 0.65 +/- 0.45 (SD) mg g(-1), comparable to previously reported high concentrations. There are a number of possible explanations for the infrequency with which we detected soil catechin in this work compared to previous studies. Differences in results could reflect spatial and temporal variation in catechin exudation or degradation, as we examined different sites in a different year from most previous studies. Also, large quantities of catechin were detected in blanks for two sampling periods in the present study, leading us to discard those data. This contamination suggests that previous reports of high catechin concentrations that did not include blanks should be viewed with caution. Our results suggest that pure catechin is only rarely present in C. maculosa bulk soils. Thus, although catechin may play a role in C. maculosa invasion, the infrequency of soil catechin that we determined in this study suggests that we cannot be as certain of its role as previous reports of high soil catechin concentrations suggested.

  12. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  13. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  14. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-04-01

    Soil piping is a complex land degradation process, which involves the hydraulic removal of soil particles by subsurface flow. This process is frequently underestimated and omitted in most soil erosion studies. However, during the last decades several studies reported the importance of soil piping in various climatic zones and for a wide range of soil types. Compared to sheet, rill and gully erosion, very few studies focused on the factors controlling piping and, so far, there is no research study dealing with the effects of plant roots on piping susceptibility of soils having a low cohesion. The objective of this study is therefore to assess the impact of grass root density (RD) on soil piping in sandy soils using the pinhole test. The pinhole test involves a water flow passing through a hole of 1 mm diameter in a soil specimen (sampled using a metal ring with a diameter of 5 cm and a length of 8 cm), under varying hydraulic heads (50 mm, 180 mm, 380 mm and 1020 mm; Nadal-Romero et al., 2011). To provide a quantitative assessment piping susceptibility of the soil sample, the pipeflow discharge (cm3 s-1) and the sediment discharge (g s-1) were measured every minute during a five minute test. Bare and root-permeated samples were tested, using a sandy soil with a sand, silt, clay content of respectively, 94%, 4% and 2%. The root-permeated topsoil samples were taken in field plots sown with a mixture of grasses with fibrous roots. All soil samples were placed on a sandbox with a 100 mm head for 24 hours to ensure a similar water content for all samples. In total, 67 pinhole tests (lasting 5 minutes each) were conducted, i.e. 43 root-permeated soil samples with RD ranging from 0.01 to 0.93 kg m-3 and 24 root-free soil samples as a reference. Clear piping erosion could be observed in 65% of the root-free soil samples, whereas only 17% of rooted soil samples revealed clear piping erosion during the tests. Statistical analyses show that there is a negative correlation (-0.41, p < 0.05) between RD and sediment discharge. Mean pipeflow discharge was 1.4 times larger for the root-free samples compared to the root-permeated samples, while mean sediment discharge was 3 times higher for the root-free samples compared to the rooted samples. This indicates that the presence of fibrous roots in topsoils decreases the susceptibility to soil piping significantly. Furthermore, a positive correlation between the hydraulic head (50-1020 mm) and sediment discharge was observed. Overall, our results suggest that root density is a highly relevant factor for decreasing the soil piping erosion rates in the sandy topsoils. The presence of even very low root densities (< 1 kg m3) decrease pipeflow and sediment discharge. A. Bernatek-Jakiel is supported by the ETIUDA doctoral scholarship (UMO-2015/16/T/ST10/00505) financed by the National Science Centre of Poland. Reference: Nadal-Romero, E., Verachtert, E., Maes, R., Poesen, J., 2011. Quantitative assessment of the piping erosion susceptibility of loess-derived soil horizons using the pinhole test. Geomorphology 135, 66-79.

  15. Changes in the enzymatic activity of soil samples upon their storage

    NASA Astrophysics Data System (ADS)

    Dadenko, E. V.; Kazeev, K. Sh.; Kolesnikov, S. I.; Val'Kov, V. F.

    2009-12-01

    The influence of the duration and conditions of storage of soil samples on the activity of soil enzymes (catalase, β-fructofuranosidase, and dehydrogenase) was studied for the main soils of southern Russia (different subtypes of chernozems, chestnut soils, brown forest soils, gray forest soils, solonetzes, and solonchaks). The following soil storage conditions were tested: (1) the air-dry state at room temperature, (2) the airdry state at a low positive (in a refrigerator, +4°C) temperature, (3) naturally moist samples at a low positive temperature, and (4) naturally moist samples at a negative (in a freezer, -5°C) temperature. It was found that the sample storing caused significant changes in the enzymatic activities, which depended on the soil type, the land use, the type of enzyme, and the duration and conditions of the sample storage. In the course of the storage, the changes in the enzymatic activity had a nonlinear character. The maximum changes were observed in the initial period (up to 12 weeks). Then, a very gradual decrease in the activity of the studied enzymes was observed. Upon the long-term (>12 weeks) storage under the different conditions, the difference in the activities of the soil enzymes became less pronounced. The storage of soil samples in the air-dried state at room temperature can be recommended for mass investigations.

  16. Distribution and Diversity of Soil Microfauna from East Antarctica: Assessing the Link between Biotic and Abiotic Factors

    PubMed Central

    Velasco-Castrillón, Alejandro; Schultz, Mark B.; Colombo, Federica; Gibson, John A. E.; Davies, Kerrie A.; Austin, Andrew D.; Stevens, Mark I.

    2014-01-01

    Terrestrial life in Antarctica has been described as some of the simplest on the planet, and mainly confined to soil microfaunal communities. Studies have suggested that the lack of diversity is due to extreme environmental conditions and thought to be driven by abiotic factors. In this study we investigated soil microfauna composition, abundance, and distribution in East Antarctica, and assessed correlations with soil geochemistry and environmental variables. We examined 109 soil samples from a wide range of ice-free habitats, spanning 2000 km from Framnes Mountains to Bailey Peninsula. Microfauna across all samples were patchily distributed, from complete absence of invertebrates to over 1600 specimens/gram of dry weight of soil (gdw), with highest microfauna abundance observed in samples with visible vegetation. Bdelloid rotifers were on average the most widespread found in 87% of sampled sites and the most abundant (44 specimens/gdw). Tardigrades occurred in 57% of the sampled sites with an abundance of 12 specimens/gdw. Nematodes occurred in 71% of samples with a total abundance of 3 specimens/gdw. Ciliates and mites were rarely found in soil samples, with an average abundance of 1.3 and 0.04 specimens/gdw, respectively. We found that microfaunal composition and abundance were mostly correlated with the soil geochemical parameters; phosphorus, NO3 − and salinity, and likely to be the result of soil properties and historic landscape formation and alteration, rather than the geographic region they were sampled from. Studies focusing on Antarctic biodiversity must take into account soil geochemical and environmental factors that influence population and species heterogeneity. PMID:24498126

  17. Evaluation of Porcelain Cup Soil Water Samplers for Bacteriological Sampling1

    PubMed Central

    Dazzo, Frank B.; Rothwell, Donald F.

    1974-01-01

    The validity of obtaining soil water for fecal coliform analyses by porcelain cup soil water samplers was examined. Numbers from samples of manure slurry drawn through porcelain cups were reduced 100- to 10,000,000-fold compared to numbers obtained from the external manure slurry, and 65% of the cups yielded coliform-free samples. Fecal coliforms adsorbed to cups apparently were released, thus influencing the counts of subsequent samples. Fecal coliforms persisted in soil water samplers buried in soil and thus could significantly influence the coliform counts of water samples obtained a month later. These studies indicate that porcelain cup soil water samplers do not yield valid water samples for fecal coliform analyses. Images PMID:16349998

  18. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  19. Microbial diversity in firework chemical exposed soil and water samples collected in Virudhunagar district, Tamil Nadu, India.

    PubMed

    Dhasarathan, P; Theriappan, P; Ashokraja, C

    2010-03-01

    Microbial diversity of soil and water samples collected from pyrochemicals exposed areas of Virdhunagar district (Tamil Nadu, India) was studied. Soil and water samples from cultivable area, waste land and city area of the same region were also studied for a comparative acount. There is a remarkable reduction in total heterotrophic bacterial population (THB) in pyrochemicals exposed soil and water samples (42 × 10(4) CFU/g and 5.6 × 10(4) CFU/ml respectively), compared to the THB of cultivable area soil and water samples (98 × 10(7) CFU/g and 38.6 × 10(7) CFU/ml). The generic composition the THB of the pyrochemicals exposed samples too exhibited considerable change compared to other samples. Pseudomonas sp. was the predominant one (41.6%) followed by Achromobacter sp. (25%) in pyrochemical exposed soil and Pseudomonas sp. was the predominant one (25%) in pyrochemical exposed water samples followed by Bacillus sp. (25%) and Micrococcus sp. (16.6%). It was observed that Cornybacterium sp. and Micrococcus sp. were absent completely in pyrochemical exposed soil and Achromobacter sp. was missing in the pyrochemical exposed water samples, which were present in the other samples. The outcome of this study clearly demonstrates that pollutants such as chemicals used in pyrotechniques affect the microbial biodiversity and suitable measures have to be taken to control the pollution level and to save biodiversity.

  20. Investigating the Relationship Between Soil Water Mobility and Stable Isotope Composition with Implications for the Ecohydrologic Separation Hypothesis

    NASA Astrophysics Data System (ADS)

    Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.

    2017-12-01

    The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.

  1. Soil analyses for 1,3-dichloropropene (1,3-DCP), sodium n-methyldithiocarbamate (metam-sodium), and their degradation products near Fort Hall Idaho, September 1999 through March 2000

    USGS Publications Warehouse

    Parliman, D.J.

    2001-01-01

    Between September 1999 and March 2000, soil samples from the Fort Hall, Idaho, area were analyzed for two soil fumigants, 1,3-dichloropropene (1,3-DCP) and sodium n-methyldithiocarbamate (metam-sodium), and their degradation products. Ground water is the only source of drinking water at Fort Hall, and the purpose of the investigation was to determine potential risk of ground-water contamination from persistence and movement of these pesticides in cropland soils. 1,3-DCP, metam-sodium, or their degradation products were detected in 42 of 104 soil samples. The samples were collected from 1-, 2-, and 3-foot depths in multiple backhoe trenches during four sampling events—before pesticide application in September; after application in October; before soil freeze in December; and after soil thaw in March. In most cases, concentrations of the pesticide compounds were at or near their laboratory minimum reporting limits. U.S. Environmental Protection Agency Method 5035 was used as the guideline for soil sample preparation and analyses, and either sodium bisulfate (NaHSO4), an acidic preservative, or pesticide-free water was added to samples prior to analyses. Addition of NaHSO4 to the samples resulted in a greater number of compound detections, but pesticide-free water was added to most samples to avoid the strong reactions of soil carbonate minerals with the NaHSO4. As a result, nondetection of compounds in samples containing pesticide-free water did not necessarily indicate that the compounds were absent. Detections of these compounds were inconsistent among trenches with similar soil characteristics and histories of soil fumigant use. Compounds were detected at different depths and different trench locations during each sampling event. Overall results of this study showed that the original compounds or their degradation products can persist in soil 6 months or more after their application and are present to at least 3 feet below land surface in some areas. A few of the soil analyses results were unexpected. Degradation products of metam-sodium were detected in samples from croplands with a history of 1,3-DCP applications only, and were not detected in samples from croplands with a history of metam-sodium applications. Although 1,2-dibromoethane (EDB) has not been used in the area for many years, EDB was detected in a few soil samples. The presence of EDB in soil could be caused by irrigation of croplands with EDBcontaminated ground water. Analyses of these soil samples resulted in many unanswered questions, and further studies are needed. One potential study to determine vertical extent of pesticide compound migration in sediments, for example, would include analysis of one or more columns of soil and sediments (land surface to ground water, about 35 to 50 feet below land surface) in areas with known soil contamination. Another study would expand the scope of soil contamination to include broader types of cropland conditions and compound analyses.

  2. Heavy metals and hydrocarbons contents in soils of urban areas of Yamal autonomous region (Russia)

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Abakumov, Evgeny; Shamilishvili, George

    2016-04-01

    This investigation is devoted to evaluation of heavy metals and hydrocarbons contents in soils of different functional localities within the Yamalo-Nenets autonomous region (YaNAR, North-Western Siberia, Russia). Geo-accumulation indices Igeo (Müller 1988) were calculated in order to assess soil contamination levels with heavy metals (Cu, Pb, Cd, Zn, Ni, As, Hg) in the studied settlements: Harsaim, Aksarka, Labytnangy, Harp and Salekhard. The degree of soil pollution was assessed according to seven contamination classes (Förstner et al. 1990) in order of increasing numerical value of the index. Cd's regional soil background concentrations of the Yamal peninsula (Moskovchenko 2010), Hg's Earth crust clarke (Greenwood & Earnshaw 2008) and concentrations of the rest trace elements in natural sandy soil from the Beliy island, YaNAR (Tomashunas & Abakumov, 2014) were used in calculations. In general terms, obtained Igeo values in all samples were under or slightly above the 0 level, indicating low to moderate pollution of the studied soils. However, considerable Igeo values of Zn, Pb and Ni were revealed in several samples, suggesting different soil pollution levels, namely: Zn Igeo in Harsaim soil sample of 2.22 - moderate polluted to highly polluted soil; Pb Igeo in Aksarka soil sample of 4.04 - highly polluted to extremely polluted soil; Ni Igeo in Harp soil sample of 4.34 - highly polluted to extremely polluted soil. Soil contamination level was additionally evaluated, comparing with the maximal permissible concentrations (MPCs) of the trace elements in soil (SANPIN 4266-87), established by the national legislation. Almost all samples exceeded the MPC for As in soils (2 mg•kg-1). Concentrations of Ni in several soil samples taken in Harp were 19 times higher than recommended level (20 mg•kg-1). Moderate excess of Zn, Pb and Cu MPCs was also noted. Data obtained will be used in further environmental researches and environmental management purposes in this key oil and gas exploration region. This study was supported by Russian president's grant for Young Doctors of Science № MD 3615-2015-4.

  3. Detection of Toxoplasma gondii oocysts in soils in northwestern China using a new semi-nested PCR assay.

    PubMed

    Wang, Meng; Meng, Peng; Ye, Qiang; Pu, Yuan-Hua; Yang, Xiao-Yu; Luo, Jian-Xun; Zhang, Nian-Zhang; Zhang, De-Lin

    2014-09-28

    Toxoplasma gondii is a zoonotic pathogen that can infect a range of animals and humans. Ingestion of T. gondii oocysts in soil is a significant transmission route for humans and animals acquiring toxoplasmosis. In the present study, we developed a new semi-nested PCR method to determine T. gondii oocysts distribution in soils in northwestern China. The one tube semi-nested PCR assay was developed to detect the oocysts of T. gondii in soil, targeting the repetitive 529 bp fragment of T. gondii genomic DNA. Then a total of 268 soil samples, including 148 samples from Gansu Province and 120 samples from Qinghai Province, northwestern China, were examined by the semi-nested PCR method. One third of the positive samples were sequenced. The sensitivity of the semi-nested PCR assay was 10(2)  T. gondii oocysts in 5 g soil sample. Investigation of soil samples from northwestern China showed that 34 out of 268 soil samples (12.69%) were T. gondii positive. Sequences of the partial 529 bp fragments varied from 0-1.2% among the sequenced samples. The prevalence of T. gondii oocysts in soil from cities (24/163) was slightly higher than that in soils from pasturing areas (10/105) (P = 0.21). Among the different regions in cities, the prevalence of T. gondii oocysts in soils from parks was 14.15%, whereas that in soils from schools was 19.05%. The present study firstly reported the prevalence of T. gondii oocysts in soils in northwest China using a novel semi-nested PCR assay, which provided baseline data for the effective prevention and control of toxoplasmosis in this region.

  4. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  5. Local versus field scale soil heterogeneity characterization - a challenge for representative sampling in pollution studies

    NASA Astrophysics Data System (ADS)

    Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.

    2015-06-01

    This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.

  6. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR FIELD COLLECTION OF YARD COMPOSITE SOIL SAMPLES (UA-F-5.1)

    EPA Science Inventory

    The purpose of this SOP is to establish a uniform procedure for the collection of yard composite soil samples in the field. This procedure was followed to ensure consistent and reliable collection of outdoor soil samples during the Arizona NHEXAS project and the "Border" study. ...

  7. Methodological Approaches toward Chemico-Biological Diagnostics of the State of Soils in Technogenically Transformed Territories

    NASA Astrophysics Data System (ADS)

    Fokina, A. I.; Dabakh, E. V.; Domracheva, L. I.; Skugoreva, S. G.; Lyalina, E. I.; Ashikhmina, T. Ya.; Zykova, Yu. N.; Leonova, K. A.

    2018-05-01

    The comprehensive diagnostics of the state of soils in the impact zone of thermal power station (TPS-5) in the city of Kirov was performed on the basis of the soil chemical analyses and the study of biota response to the loads at different organization levels. The chemical analyses attested to a satisfactory state of the soils. However, the use of soil cyanobacteria and bird's-foot trefoil ( Lótus corniculátus) as test objects showed the toxicity of studied soil samples. The toxicity of the samples was judged from the bioindication effects of cyanophytization and melanization of soil microbial complexes. The obtained results demonstrated that at relatively low concentrations of total and mobile heavy metal compounds in the soil samples, their amount released into the tested soil water (1: 4) extract exceeded the limit allowable for normal functioning of living organisms. For the first time, the express cyanobacterial tetrazole-topographic method of biotesting was applied in the geoecological study to estimate the toxicity of the soil samples. The results obtained with the help of traditional and express methods proved to be comparable. The express-method was sufficiently sensitive and efficient. It allowed the determination of the samples' toxicity in five hours, i.e., four to five times faster than the traditional technique. An inverse relationship between the number of viable cells of cyanobacteria (as judged from the inclusion of formazan crystals) and the concentration of lead ions in the tested soil extracts was found. This finding can be considered a prerequisite for further study and application of the express method in the practice of geoecological monitoring. Our study demonstrated the necessity of a comprehensive approach for the assessment of the real ecological state of soils in the investigated impact zone of the thermal power station.

  8. 78 FR 60721 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... groundwater study that was completed by the PRPs in January 1990. Many soil and groundwater samples were... detected in soil and groundwater samples on a sporadic and limited basis. During the supplemental RI... investigation, CDM collected 305 soil samples from both surface and subsurface locations. Surface samples were...

  9. A common soil handling technique can generate incorrect estimates of soil biota effects on plants

    USDA-ARS?s Scientific Manuscript database

    Several plant-soil biota (PSB) studies were recently published in high profile journals that used the suspect “mixed soil sampling” methodology. To explore the extent to which mixing field samples (i.e. employing mixed soil sample designs) can generate erroneous conclusions, we used real data to pa...

  10. Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China.

    PubMed

    Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui

    2018-01-01

    Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.

  11. RESULTS FROM EPA FUNDED RESEARCH PROGRAMS ON THE IMPORTANCE OF PURGE VOLUME, SAMPLE VOLUME, SAMPLE FLOW RATE AND TEMPORAL VARIATIONS ON SOIL GAS CONCENTRATIONS

    EPA Science Inventory

    Two research studies funded and overseen by EPA have been conducted since October 2006 on soil gas sampling methods and variations in shallow soil gas concentrations with the purpose of improving our understanding of soil gas methods and data for vapor intrusion applications. Al...

  12. Hyperspectral analysis of clay minerals

    NASA Astrophysics Data System (ADS)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  13. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR FIELD COLLECTION OF YARD COMPOSITE SOIL SAMPLES (UA-F-5.1)

    EPA Science Inventory

    The purpose of this SOP is to establish a uniform procedure for the collection of yard composite soil samples in the field. This procedure was followed to ensure consistent and reliable collection of outdoor soil samples during the Arizona NHEXAS project and the Border study. Ke...

  14. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  15. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, Sebnem

    2017-07-01

    This research evaluated the irrigation water and agricultural soil quality in the Kopruoren Basin by using hierarchical cluster analysis. Physico-chemical properties and major ion chemistry of 19 groundwater samples were used to determine the irrigation water quality indices. The results revealed out that the groundwaters are in general suitable for irrigation and have low sodium hazard, although they are very hard in nature due to the dominant presence of Ca+2, Mg+2 and HCO3- ions. Water samples contain arsenic in concentrations below the recommended guidelines for irrigation (59.7 ± 14.7 μg/l), however, arsenic concentrations in 89% of the 9 soil samples exceed the maximum allowable concentrations set for agricultural soils (81 ± 24.3 mg/kg). Nickel element, albeit not present in high concentrations in water samples, is enriched in all of the agricultural soil samples (390 ± 118.2 mg/kg). Hierarchical cluster analysis studies conducted to identify the sources of chemical constituents in water and soil samples elicited that the chemistry of the soils in the study area are highly impacted by the soil parent material and both geogenic and anthropogenic pollution sources are responsible for the metal contents of the soil samples. On the other hand, water chemistry in the area is affected by water-rock interactions, anthropogenic and agricultural pollution.

  16. The preservation of microbial DNA in archived soils of various genetic types.

    PubMed

    Ivanova, Ekaterina A; Korvigo, Ilia O; Aparin, Boris F; Chirak, Evgenii L; Pershina, Elizaveta V; Romaschenko, Nikolay S; Provorov, Nikolai A; Andronov, Evgeny E

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70-90 years) and modern soils of two different genetic types-chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies.

  17. The preservation of microbial DNA in archived soils of various genetic types

    PubMed Central

    Korvigo, Ilia O.; Aparin, Boris F.; Chirak, Evgenii L.; Pershina, Elizaveta V.; Romaschenko, Nikolay S.; Provorov, Nikolai A.; Andronov, Evgeny E.

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70–90 years) and modern soils of two different genetic types–chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies. PMID:28339464

  18. PCR detection of Burkholderia multivorans in water and soil samples.

    PubMed

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter

    2016-08-12

    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  19. Rapid analysis of 2,4-D in soil samples by modified Soxhlet apparatus using HPLC with UV detection.

    PubMed

    Kashyap, Sanjay M; Pandya, Girish H; Kondawar, Vivek K; Gabhane, Sanjay S

    2005-02-01

    The 2,4-dichlorophenoxy acetic acid (2,4-D) is used as a systemic herbicide to control broadleaf weeds in wheat, corn, range land/pasture land, sorghum, and barley. In this study, a fast and efficient method is developed by selection of modified extraction apparatus and high-performance liquid chromatography (HPLC)-UV conditions for the determination of 2,4-D in soil samples. The method is applied to the study of soil samples collected from the agricultural field. The herbicide is extracted from soil samples by acetonitrile in a modified Soxhlet apparatus. The advantages of the apparatus are that it uses small volume of organic solvent, reduced time of extraction, and better recovery of the analyte. The extract is filtered using a very fine microfiber paper. The total extract is concentrated in a rotatory evaporator, dried under ultrahigh pure N2, and finally reconstituted in 1 mL of acetonitrile. HPLC-UV at 228 nm is used for analysis. The herbicide is identified and quantitated using the HPLC system. The method is validated by the analysis of spiked soil samples. Recoveries obtained varied from 85% to 100% for spiked soil samples. The limit of quantitation (LOQ) and the limit of detection (LOD) are 0.010 and 0.005 parts per million (ppm), respectively, for spiked soil samples. The LOQ and LOD are 0.006 and 0.003 ppm for unspiked soil samples. The measured concentrations of 2,4-D in spiked soil samples are between 0.010 and 0.020 ppm with an average of 0.016 +/- 0.003 ppm. For unspiked soil samples it is between 0.006 ppm and 0.012 ppm with an average of 0.009 +/- 0.002 ppm. The measured concentrations of 2,4-D in soil samples are generally low and do not exceed the regulatory agencies guidelines.

  20. Analyses and description of soil samples from Mountain Lake and Peters Mountain Wilderness Study areas, Virginia and West Virginia

    USGS Publications Warehouse

    Motooka, J.M.; Curtis, Craig A.; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 30 elements and atomic absorption analysis for zinc on 98 soil samples are reported here in detail. Location for all samples are in Universal Transverse Mercator (UTM) coordinates. A few samples of soil developed on Lower Devonian sandstone and chert contain more barium and zinc than soils on other formations but do not suggest the occurrence of economic concentrations of either element.

  1. [Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous region].

    PubMed

    Alekseev, I I; Abakumov, E V; Shamilishvili, G A; Lodygin, E D

    In August 2015 there were executed investigations on the study of the soils diversity of the Yamal-Nenets Autonomous Okrug. One of the directions of this work got be the study of urban soils of settlements of the Yamal-Nenents Autonomous Okrug. The sectors for the observation were settlement of Harsaim, village Aksarka, city of Salekhard, settlement Harp and city of Labytnangi. About 20 soil samples were collected during the field work. Samples were collected from a depth of 0-5 cm and 5-20 cm. Heavy metals (HM) were detected with the use of X-ray fluorescent analyzer “Spectroscan-MAX”. The HM content values were compared with the corresponding Approxible Permissible Concentrations and Maximum Allowable Concentrations (MAC) adopted in Russia. Hydrocarbons content was determined by gravimetric method. Values of the hydrocarbons content in studied soils were compared with the existing regulations of the Russian Federation. The levels of soil contamination by hydrocarbons were determined. The study of soil samples from different settlements allowed to reveal characteristic features of soil contamination of separate settlements by HM and hydrocarbons and to compare them against each other. The vast majority of samples are characterized by arsenic exceedance of MAC, which should indicate to a high regional background of this element. For a more adequate assessment of the Zc meaning as the value of the total pollution index of soils there were used not only arithmetical average values of the coefficients of the chemical composition concentration (Kc), but also their average geometric values. According to levels of total soil contamination most of soil samples are characterized as non-hazardous (Zc<16). Calculation of soil pollution index showed that the most of soil samples have values less than 1. It characterizes soils as unpolluted. Statistical processing of obtained data in the media of the analytical software interface STATISTICA 10 showed a statistically significant difference in the content ofHM and hydrocarbons for the layer of 0-20 cm of the soils for three elements (Cu, Zn, Ni).

  2. Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP

    ERIC Educational Resources Information Center

    Todebush, Patricia Metthe; Geiger, Franz M.

    2005-01-01

    The study of soil samples, using light scattering and Inductively Coupled Plasma spectrometry (ICP) to determine colloid sedimentation rates and the quantity of chromium, lead, and iron in the sample is described. It shows the physical and chemical behavior of solid components in soil, and how such pollutant binding colloid surfaces directly…

  3. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs

    PubMed Central

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

  4. Cost-effective sampling of ¹³⁷Cs-derived net soil redistribution: part 1--estimating the spatial mean across scales of variation.

    PubMed

    Li, Y; Chappell, A; Nyamdavaa, B; Yu, H; Davaasuren, D; Zoljargal, K

    2015-03-01

    The (137)Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many (137)Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of (137)Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954-2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate (137)Cs-derived net soil redistribution across scales of variation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Distribution of 137Cs in surface soil of Fraser's Hill, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Bakar, Ahmad Sanadi Abu; Hamzah, Zaini; Saat, Ahmad

    2017-01-01

    Caesium-137 (137Cs) in an anthropogenic radionuclide originated from the fission of fissile materials. Nuclear weapons testing during the 1960s and the Chernobyl disaster introduced substantial amount of 137Cs into the atmosphere that are then eventually deposited back to earth's surface. Caesium-137 can be used as tracer to study soil movements since it adsorbs to soil particles. This paper aims to describe the distribution of 137Cs in surface soil of Fraser's Hill, Pahang, determine the levels of 137Cs here compared to other areas, and to check correlation of 137Cs levels to physical data. A series of sampling were carried out between February 2014 and August 2015. Soil samples were taken from 31 locations using soil scraper. The samples were then taken to the laboratory to be dried, homogenized, grinded and sieved. The activity concentration of 137Cs in the samples was determined using gamma spectroscopy. The activity concentration was found to be between 0.26 Bq/kg and 5.14 Bq/kg. Although this paper only studies surface soil, 137Cs is expected to be present within the soil body. Further study of 137Cs in the soil body can be used to predictive model for soil erosion.

  6. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    PubMed

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  7. GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 1: ASSESSING SOIL SPLITTING PROTOCOLS

    EPA Science Inventory

    Five soil sample splitting methods (riffle splitting, paper cone riffle splitting, fractional shoveling, coning and quartering, and grab sampling) were evaluated with synthetic samples to verify Pierre Gy sampling theory expectations. Individually prepared samples consisting of l...

  8. NHEXAS PHASE I MARYLAND STUDY--METALS IN SOIL ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Soil data set contains analytical results for measurements of up to 4 metals in 277 soil samples over 75 households. Composite samples were obtained from up to 24 locations around the outside of the specific residence and combined into a single sample. The primary...

  9. NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN SOIL ANALYTICAL RESULTS

    EPA Science Inventory

    The Pesticides in Soil data set contains analytical results for measurements of up to 9 pesticides in 60 soil samples over 41 households. Composite samples were obtained from up to 24 locations around the outside of the specific residence and combined into a single sample. Only...

  10. Lead (II) removal from natural soils by enhanced electrokinetic remediation.

    PubMed

    Altin, Ahmet; Degirmenci, Mustafa

    2005-01-20

    Electrokinetic remediation is a very effective method to remove metal from fine-grained soils having low adsorption and buffering capacity. However, remediation of soil having high alkali and adsorption capacity via the electrokinetic method is a very difficult process. Therefore, enhancement techniques are required for use in these soil types. In this study, the effect of the presence of minerals having high alkali and cation exchange capacity in natural soil polluted with lead (II) was investigated by means of the efficiency of electrokinetic remediation method. Natural soil samples containing clinoptilolite, gypsum and calcite minerals were used in experimental studies. Moreover, a sample containing kaolinite minerals was studied to compare with the results obtained from other samples. Best results for soils bearing alkali and high sorption capacity minerals were obtained upon addition of 3 mol AcH and application of 20 V constant potential after a remediation period of 220 h. In these test conditions, lead (II) removal efficiencies for these samples varied between 60% and 70% up to 0.55 normalized distance. Under the same conditions, removal efficiencies in kaolinite sample varied between 50% and 95% up to 0.9 normalized distance.

  11. Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County, Wyoming

    USGS Publications Warehouse

    Smith, David B.; Sweat, Michael J.

    2012-01-01

    Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.

  12. Quantitative evaluation of the CEEM soil sampling intercomparison.

    PubMed

    Wagner, G; Lischer, P; Theocharopoulos, S; Muntau, H; Desaules, A; Quevauviller, P

    2001-01-08

    The aim of the CEEM soil project was to compare and to test the soil sampling and sample preparation guidelines used in the member states of the European Union and Switzerland for investigations of background and large-scale contamination of soils, soil monitoring and environmental risk assessments. The results of the comparative evaluation of the sampling guidelines demonstrated that, in soil contamination studies carried out with different sampling strategies and methods, comparable results can hardly be expected. Therefore, a reference database (RDB) was established by the organisers, which acted as a basis for the quantitative comparison of the participants' results. The detected deviations were related to the methodological details of the individual strategies. The comparative evaluation concept consisted of three steps: The first step was a comparison of the participants' samples (which were both centrally and individually analysed) between each other, as well as with the reference data base (RDB) and some given soil quality standards on the level of concentrations present. The comparison was made using the example of the metals cadmium, copper, lead and zinc. As a second step, the absolute and relative deviations between the reference database and the participants' results (both centrally analysed under repeatability conditions) were calculated. The comparability of the samples with the RDB was categorised on four levels. Methods of exploratory statistical analysis were applied to estimate the differential method bias among the participants. The levels of error caused by sampling and sample preparation were compared with those caused by the analytical procedures. As a third step, the methodological profiles of the participants were compiled to concisely describe the different procedures used. They were related to the results to find out the main factors leading to their incomparability. The outcome of this evaluation process was a list of strategies and methods, which are problematic with respect to comparability, and should be standardised and/or specified in order to arrive at representative and comparable results in soil contamination studies throughout Europe. Pre-normative recommendations for harmonising European soil sampling guidelines and standard operating procedures have been outlined in Wagner G, Desules A, Muntau H, Theocharopoulos S. Comparative Evaluation of European Methods for Sampling and Sample Preparation of Soils for Inorganic Analysis (CEEM Soil). Final Report of the Contract SMT4-CT96-2085, Sci Total Environ 2001;264:181-186. Wagner G, Desaules A, Munatu H. Theocharopolous S, Quevauvaller Ph. Suggestions for harmonising sampling and sample pre-treatment procedures and improving quality assurance in pre-analytical steps of soil contamination studies. Paper 1.7 Sci Total Environ 2001b;264:103-118.

  13. How much will afforestation of former cropland influence soil C stocks? A synthesis of paired sampling, chronosequence sampling and repeated sampling studies

    NASA Astrophysics Data System (ADS)

    Vesterdal, Lars; Hansen, K.; Stupak, I.; Don, Axel; Poeplau, C.; Leifeld, Jens; van Wesemael, Bas

    2010-05-01

    The need for documentation of land-use change effects on soil C is high on the agenda in most signatory countries to the Kyoto Protocol. Large land areas in Europe have experienced land-use change from cropland to forest since 1990 by direct afforestation as well as abandonment and regrowth of marginally productive cropland. Soil C dynamics following land-use change remain highly uncertain due to a limited number of available studies and due to influence of interacting factors such as land use history, soil type, and climate. Common approaches for estimation of potential soil C changes following land-use change are i) paired sampling of plots with a long legacy of different land uses, ii) chronosequence studies of land-use change, and lastly iii) repeated sampling of plots subject to changed land use. This paper will synthesize the quantitative effects of cropland afforestation on soil C sequestration based on all three approaches and will report on related work within Cost 639. Paired plots of forest and cropland were used to study the general differences between soil C stocks in the two land uses. At 27 sites in Denmark distributed among different regions and soil types forest floor and mineral soil were sampled in and around soil pits. Soil C stocks were higher in forest than cropland (mean difference 22 Mg C ha-1 to 1 m depth). This difference was caused solely by the presence of a forest floor in forests; mineral soil C stocks were similar (108 vs. 109 Mg C ha-1) in the two land uses regardless of soil type and the soil layers considered. The chronosequence approach was employed in the AFFOREST project for evaluation of C sequestration in biomass and soils following afforestation of cropland. Two oak (Quercus robur) and four Norway spruce (Picea abies) afforestation chronosequences (age range 1 to 90 years) were studied in Denmark, Sweden and the Netherlands. Forest floor and mineral soil (0-25 cm) C contents were as a minimum unchanged and in most cases there was net C sequestration (range 0-1.3 Mg C ha-1 yr-1). The allocation of sequestered soil C was quite different among chronosequences; forest floors consistently sequestered C (0.1-0.7 Mg C ha-1 yr-1) but there was no general pattern in mineral soil C sequestration. While the paired sampling and the chronosequence approaches both may be confounded by site factors other than the land use, repeated sampling of plots best addresses the pure land-use change effect. Repeated sampling after 18 years was done in a systematic 7x7 km grid to address soil C changes in 15 cropland plots that were converted to forest (7-22 years since afforestation). Consistent with the other two approaches, detectable soil C changes were confined to the forest floor component; forest floor C sequestration rates were 0.24 Mg C ha-1 yr-1 while no changes were detected for mineral soils. The three approaches to estimation of soil C sequestration indeed point to a common conclusion: The potential for soil C sequestration is mainly confined to the forest floor whereas notable C sequestration is less likely to occur in the mineral soil. However, more generalizable knowledge is badly needed for reporting of land-use change effects on mineral soil C pools. WG II of Cost 639 and the FP7 project GHG Europe is currently establishing a database of LUC studies. This database will be used to establish so-called Carbon Response Functions (CRF), i.e. simple models predicting the annual rate of change in soil C pools. These CRFs may serve as tools for syntheses of land-use change effects for Europe as well as for improved reporting of soil C dynamics following land-use change.

  14. Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey.

    PubMed

    Karadeniz, Hatice; Yenisoy-Karakaş, Serpil

    2015-03-01

    In this study, a total of 75 water samples (38 groundwater and 37 surface water samples) and 54 surface soil samples were collected from the five districts of Bolu, which is located in the Western Black Sea Region of Turkey in the summer season of 2009. In the autumn season, 17 water samples (surface water and groundwater samples) and 17 soil samples were collected within the city center to observe the seasonal changes of organochlorine pesticides (OCPs). Groundwater and surface water samples were extracted using solid phase extraction. Soil samples were extracted ultrasonically. Sixteen OCP compounds in the standard solution were detected by a gas chromatography-electron capture detector (GC-ECD). Therefore, the method validation was performed for those 16 OCP compounds. However, 13 OCP compounds could be observed in the samples. The concentrations of most OCPs were higher in samples collected in the summer than those in the autumn. The most frequently observed pesticides were endosulfan sulfate and 4,4'-dichlorodiphenyltrichloroethane (DDT) in groundwater samples, α-HCH in surface water samples, and endosulfan sulfate in soil samples. The average concentration of endosulfan sulfate was the highest in water and soil samples. Compared to the literature values, the average concentrations in this study were lower values. Spatial distribution of OCPs was evaluated with the aid of contour maps for the five districts of Bolu. Generally, agricultural processes affected the water and soil quality in the region. However, non-agricultural areas were also affected by pesticides. The concentrations of pesticides were below the legal limits of European directives for each pesticide.

  15. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon fractions to analyze the SOC pool dynamics is presented in this study. A detailed field topographic survey and mapping of the spatial variability of soil properties and nutrient contents from soil analyses displayed similar spatial patterns of 137Cs and soil nutrients that also were directly and significantly correlated (p≤0.01). As much as 70% of the surface of the study field had lower values of 137Cs inventory indicating a predominance of soil loss linked to a generalized loss of soil nutrients. SOC gain was found in less than 1% of the study field and there was a large loss of SON compared to the undisturbed reference site. Higher and significant (p≤0.01) contents of soil nutrients were found in topsoil samples than in the bulk ones. Furthermore, there was an enrichment of the relative contribution of ACF to total SOC in sampling points where there was a 137Cs gain in both bulk and topsoil samples. Understanding patterns of soil nutrients can be useful for developing and implementing land management strategies to preserve soil quality in Mediterranean agricultural areas.

  16. To determine the slow shearing rate for consolidation drained shear box tests

    NASA Astrophysics Data System (ADS)

    Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah

    2017-08-01

    Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.

  17. Terrestrial Eco-Toxicological Tests as Screening Tool to Assess Soil Contamination in Krompachy Area

    NASA Astrophysics Data System (ADS)

    Ol'ga, Šestinová; Findoráková, Lenka; Hančuľák, Jozef; Fedorová, Erika; Tomislav, Špaldon

    2016-10-01

    In this study, we present screening tool of heavy metal inputs to agricultural and permanent grass vegetation of the soils in Krompachy. This study is devoted to Ecotoxicity tests, Terrestrial Plant Test (modification of OECD 208, Phytotoxkit microbiotest on Sinapis Alba) and chronic tests of Earthworm (Dendrobaena veneta, modification of OECD Guidelines for the testing of chemicals 317, Bioaccumulation in Terrestrial Oligochaetes) as practical and sensitive screening method for assessing the effects of heavy metals in Krompachy soils. The total Cu, Zn, As, Pb and Hg concentrations and eco-toxicological tests of soils from the Krompachy area were determined of 4 sampling sites in 2015. An influence of the sampling sites distance from the copper smeltery on the absolutely concentrations of metals were recorded for copper, lead, zinc, arsenic and mercury. The highest concentrations of these metals were detected on the sampling sites up to 3 km from the copper smeltery. The samples of soil were used to assess of phytotoxic effect. Total mortality was established at earthworms using chronic toxicity test after 7 exposure days. The results of our study confirmed that no mortality was observed in any of the study soils. Based on the phytotoxicity testing, phytotoxic effects of the metals contaminated soils from the samples 3KR (7-9) S.alba seeds was observed.

  18. NHEXAS PHASE I ARIZONA STUDY--METALS IN SOIL ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Soil data set contains analytical results for measurements of up to 11 metals in 551 soil samples over 392 households. Samples were taken by collecting surface soil in the yard and next to the foundation from each residence. The primary metals of interest include ...

  19. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  20. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil

    NASA Technical Reports Server (NTRS)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.

    1975-01-01

    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B.B.; Ripp, J.; Sims, R.C.

    The Electric Power Research Institute (EPRI) is studying the environmental impact of preservatives associated with in-service utility poles. As part of this endeavor, two EPRI contractors, META Environmental, Inc. (META) and Atlantic Environmental Services, Inc. (Atlantic), have collected soil samples from around wood utility poles nationwide, for various chemical and physical analyses. This report covers the results for 107 pole sites in the US. These pole sites included a range of preservative types, soil types, wood types, pole sizes, and in-service ages. The poles in this study were preserved with one of two types of preservative: pentachlorophenol (PCP) or creosote.more » Approximately 40 to 50 soil samples were collected from each wood pole site in this study. The soil samples collected from the pole sites were analyzed for chlorinated phenols and total petroleum hydrocarbons (TPH) if the pole was preserved with PCP, or for polycyclic aromatic hydrocarbons (PAHs) if the pole was preserved with creosote. The soil samples were also analyzed for physical/chemical parameters, such as pH, total organic carbon (TOC), and cationic exchange capacity (CEC). Additional samples were used in studies to determine biological degradation rates, and soil-water distribution and retardation coefficients of PCP in site soils. Methods of analysis followed standard EPA and ASTM methods, with some modifications in the chemical analyses to enable the efficient processing of many samples with sufficiently low detection limits for this study. All chemical, physical, and site-specific data were stored in a relational computer database.« less

  2. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    PubMed

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  4. Soil Geochemical Data for the Wyoming Landscape Conservation Initiative Study Area

    USGS Publications Warehouse

    Smith, David B.; Ellefsen, Karl J.

    2010-01-01

    In 2008, soil samples were collected at 139 sites throughout the Wyoming Landscape Conservation Initiative study area in southwest Wyoming. These samples, representing a density of 1 site per 440 square kilometers, were collected from a depth of 0-5 cm and analyzed for a suite of more than 40 major and trace elements following a near-total multi-acid extraction. In addition, soil pH, electrical conductivity, total nitrogen, total and organic carbon, and sodium adsorption ratio were determined. The resulting data set provides a baseline for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used, and makes available all the soil geochemical data generated in the study.

  5. Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia.

    PubMed

    Yasir, Muhammad; Azhar, Esam I; Khan, Imran; Bibi, Fehmida; Baabdullah, Rnda; Al-Zahrani, Ibrahim A; Al-Ghamdi, Ahmed K

    2015-03-14

    Saudi Arabia is mostly barren except the southwestern highlands that are susceptible to environmental changes, a hotspot for biodiversity, but poorly studied for microbial diversity and composition. In this study, 454-pyrosequencing of 16S rRNA gene hypervariable region V6 was used to analyze soil bacterial community along elevation gradients of the southwestern highlands. In general, lower percentage of total soil organic matter (SOM) and nitrogen were detected in the analyzed soil samples. Total 33 different phyla were identified across the samples, including dominant phyla Proteobacteria, Actinobacteria and Acidobacteria. Representative OTUs were grouped into 329 and 508 different taxa at family and genus level taxonomic classification, respectively. The identified OTUs unique to each sample were very low irrespective of the altitude. Jackknifed principal coordinates analysis (PCoA) revealed, overall differences in the bacterial community were more related to the quantity of specific OTUs than to their diversity among the studied samples. Bacterial diversity and soil physicochemical properties did not show consistent changes along the elevation gradients. The large number of OTUs shared between the studied samples suggest the presence of a core soil bacterial community in the southwestern highlands of Saudi Arabia.

  6. Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics

    NASA Astrophysics Data System (ADS)

    van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.

    2013-04-01

    In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.

  7. Occurrence and species distribution of pathogenic Mucorales in unselected soil samples from France.

    PubMed

    Mousavi, B; Costa, J M; Arné, P; Guillot, J; Chermette, R; Botterel, F; Dannaoui, E

    2018-04-01

    Mucormycosis is a life-threatening invasive fungal disease that affects a variety of patient groups. Although Mucorales are mostly opportunistic pathogens originating from soil or decaying vegetation, there are currently few data on prevalence of this group of fungi in the environment. The aim of the present study was to assess the prevalence and diversity of species of Mucorales from soil samples collected in France. Two grams of soil were homogenized in sterile saline and plated on Sabouraud dextrose agar and RPMI agar supplemented with itraconazole or voriconazole. Both media contained chloramphenicol and gentamicin. The plates were incubated at 35 ± 2 °C and checked daily for fungal growth for a maximum of 7 d. Mucorales were subcultured for purity. Each isolate was identified phenotypically and molecular identification was performed by ITS sequencing. A total of 170 soil samples were analyzed. Forty-one isolates of Mucorales were retrieved from 38 culture-positive samples. Among the recovered isolates, 27 Rhizopus arrhizus, 11 Mucor circinelloides, one Lichtheimia corymbifera, one Rhizopus microsporus and one Cunninghamella bertholletiae were found. Positive soil samples came from cultivated fields but also from other types of soil such as flower beds. Mucorales were retrieved from samples obtained in different geographical regions of France. Voriconazole-containing medium improved the recovery of Mucorales compared with other media. The present study showed that pathogenic Mucorales are frequently recovered from soil samples in France. Species diversity should be further analyzed on a larger number of soil samples from different geographic areas in France and in other countries.

  8. Experimental Study of Factors Affecting Soil Erodibility

    NASA Astrophysics Data System (ADS)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.

    2018-03-01

    The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.

  9. Diversity of Leptospira spp. in Rats and Environment from Urban Areas of Sarawak, Malaysia

    PubMed Central

    Pui, Chai Fung; Apun, Kasing; Su'ut, Lela

    2017-01-01

    Various prevalence studies on Leptospira in animals and humans, as well as environmental samples, had been conducted worldwide, including Malaysia. However, limited studies have been documented on the presence of pathogenic, intermediate, and saprophytic Leptospira in selected animals and environments. This study was therefore conducted to detect Leptospira spp. in rats, soil, and water from urban areas of Sarawak using the polymerase chain reaction (PCR) method. A total of 107 rats, 292 soil samples, and 324 water samples were collected from April 2014 to February 2015. Pathogenic Leptospira was present in 5.6% (6/107) of rats, 11.6% (34/292) of soil samples, and 1.9% (6/324) of water samples. Intermediate Leptospira was present in 2.7% (8/292) of soil samples and 1.9% (6/324) of water samples. Saprophytic Leptospira was present in 10.3% (11/107) of rats, 1.4% (4/292) of soil samples, and 0.3% (1/324) of water samples. From this study, 76 Leptospira spp. were isolated. Based on DNA sequencing, the dominant Leptospira spp. circulating in urban areas of Sarawak are pathogenic Leptospira noguchii, intermediate Leptospira wolffii serovar Khorat, and saprophytic Leptospira meyeri, respectively. Overall, this study provided important surveillance data on the prevalence of Leptospira spp. from rats and the environment, with dominant local serovars in urban areas of Sarawak. PMID:28348601

  10. Diversity of Leptospira spp. in Rats and Environment from Urban Areas of Sarawak, Malaysia.

    PubMed

    Pui, Chai Fung; Bilung, Lesley Maurice; Apun, Kasing; Su'ut, Lela

    2017-01-01

    Various prevalence studies on Leptospira in animals and humans, as well as environmental samples, had been conducted worldwide, including Malaysia. However, limited studies have been documented on the presence of pathogenic, intermediate, and saprophytic Leptospira in selected animals and environments. This study was therefore conducted to detect Leptospira spp. in rats, soil, and water from urban areas of Sarawak using the polymerase chain reaction (PCR) method. A total of 107 rats, 292 soil samples, and 324 water samples were collected from April 2014 to February 2015. Pathogenic Leptospira was present in 5.6% (6/107) of rats, 11.6% (34/292) of soil samples, and 1.9% (6/324) of water samples. Intermediate Leptospira was present in 2.7% (8/292) of soil samples and 1.9% (6/324) of water samples. Saprophytic Leptospira was present in 10.3% (11/107) of rats, 1.4% (4/292) of soil samples, and 0.3% (1/324) of water samples. From this study, 76 Leptospira spp. were isolated. Based on DNA sequencing, the dominant Leptospira spp. circulating in urban areas of Sarawak are pathogenic Leptospira noguchii , intermediate Leptospira wolffii serovar Khorat, and saprophytic Leptospira meyeri , respectively. Overall, this study provided important surveillance data on the prevalence of Leptospira spp. from rats and the environment, with dominant local serovars in urban areas of Sarawak.

  11. Measurement of Tritium in Gas Phase Soil Moisture and Helium-3 in Soil Gas at the Hanford Townsite and 100 K Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KB Olsen; GW Patton; R Poreda

    2000-07-05

    In 1999, soil gas samples for helium-3 measurements were collected at two locations on the Hanford Site. Eight soil gas sampling points ranging in depth from 1.5 to 9.8 m (4.9 to 32 ft) below ground surface (bgs) in two clusters were installed adjacent to well 699-41-1, south of the Hanford Townsite. Fifteen soil gas sampling points, ranging in depth from 2.1 to 3.2 m (7 to 10.4 ft) bgs, were installed to the north and east of the 100 KE Reactor. Gas phase soil moisture samples were collected using silica gel traps from all eight sampling locations adjacent tomore » well 699-41-1 and eight locations at the 100 K Area. No detectable tritium (<240 pCi/L) was found in the soil moisture samples from either the Hanford Townsite or 100 K Area sampling points. This suggests that tritiated moisture from groundwater is not migrating upward to the sampling points and there are no large vadose zone sources of tritium at either location. Helium-3 analyses of the soil gas samples showed significant enrichments relative to ambient air helium-3 concentrations with a depth dependence consistent with a groundwater source from decay of tritium. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) at the Hanford Townsite ranged from 1.012 at 1.5 m (5 ft) bgs to 2.157 at 9.8 m (32 ft) bgs. Helium-3/helium-4 ratios at the 100 K Area ranged from 0.972 to 1.131. Based on results from the 100 K Area, the authors believe that a major tritium plume does not lie within that study area. The data also suggest there may be a tritium groundwater plume or a source of helium-3 to the southeast of the study area. They recommend that the study be continued by placing additional soil gas sampling points along the perimeter road to the west and to the south of the initial study area.« less

  12. Evaluation and characterization of thyroid-disrupting activities in soil samples along the Second Songhua River, China.

    PubMed

    Kong, Dongdong; Wang, Yafei; Wang, Jinsheng; Teng, Yanguo; Li, Na; Li, Jian

    2016-11-01

    In this study, a recombinant thyroid receptor (TR) gene yeast assay combined with Monte Carlo simulation were used to evaluate and characterize soil samples collected from Jilin (China) along the Second Songhua River, for their ant/agonist effect on TR. No TR agonistic activity was found in soils, but many soil samples exhibited TR antagonistic activities, and the bioassay-derived amiodarone hydrochloride equivalents, which was calculated based on Monte Carlo simulation, ranged from not detected (N.D.) to 35.5μg/g. Hydrophilic substance fractions were determined to be the contributors to TR antagonistic activity in these soil samples. Our results indicate that the novel calculation method is effective for the quantification and characterization of TR antagonists in soil samples, and these data could provide useful information for future management and remediation efforts for contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Antibiotic resistance of microorganisms in agricultural soils in Russia

    NASA Astrophysics Data System (ADS)

    Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.

  14. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN SOIL ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Soil data set contains analytical results for measurements of up to 11 metals in 91 soil samples over 91 households. Samples were taken by collecting surface soil in the yard of each residence. The primary metals of interest include lead (CAS# 7439-92-1), arsenic ...

  15. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajós gold mining reserve, Pará State, Brazil.

    PubMed

    Egler, Silvia G; Rodrigues-Filho, Saulo; Villas-Bôas, Roberto C; Beinhoff, Christian

    2006-09-01

    This study examines the total Hg contamination in soil and sediments, and the correlation between the total Hg concentration in soil and vegetables in two small scale gold mining areas, São Chico and Creporizinho, in the State of Para, Brazilian Amazon. Total Hg values for soil samples for both study areas are higher than region background values (ca. 0.15 mg/kg). At São Chico, mean values in soils samples are higher than at Creporizinho, but without significant differences at alpha<0.05 level. São Chico's aboveground produce samples possess significantly higher values for total Hg levels than samples from Creporizinho. Creporizinho's soil-root produce regression model were significant, and the slope negative. Creporizinho's soil-aboveground and root wild plants regression models were also significant, and the slopes positives. Although, aboveground:root ratios were >1 in all of São Chico's produce samples, soil-plant parts regression were not significant, and Hg uptake probably occurs through stomata by atmospheric mercury deposition. Wild plants aboveground:root ratios were <1 at both study areas, and soil-plant parts regressions were significant in samples of Creporizinho, suggesting that they function as an excluder. The average total contents of Hg in edible parts of produces were close to FAO/WHO/JECFA PTWI values in São Chico area, and much lower in Creporizinho. However, Hg inorganic small gastrointestinal absorption reduces its adverse health effects.

  16. Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria

    PubMed Central

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; Marsh, Terence L.; Hildebrandt, Britton; Rivers, Mark L.

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g-1 soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g-1 soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes. PMID:25909444

  17. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria

    DOE PAGES

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; ...

    2015-07-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO₂ emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis ofmore » amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO₂ emission constituted 1,200 µm C g⁻¹ soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO₂ emission constituted 2,000 µm C g⁻¹ soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO₂ emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.« less

  18. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria.

    PubMed

    Negassa, Wakene C; Guber, Andrey K; Kravchenko, Alexandra N; Marsh, Terence L; Hildebrandt, Britton; Rivers, Mark L

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S-18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75-80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g(-1) soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g(-1) soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.

  19. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO₂ emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis ofmore » amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO₂ emission constituted 1,200 µm C g⁻¹ soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO₂ emission constituted 2,000 µm C g⁻¹ soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO₂ emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.« less

  20. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.

    PubMed

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-09-24

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  1. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania)

    USGS Publications Warehouse

    Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.

  2. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory.

    PubMed

    Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille

    2015-11-01

    Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2016-06-01

    In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.

  4. Stability of mercury concentration measurements in archived soil and peat samples

    USGS Publications Warehouse

    Navrátil, Tomáš; Burns, Douglas; Nováková, Tereza; Kaňa, Jiří; Rohovec, Jan; Roll, Michal; Ettler, Vojtěch

    2018-01-01

    Archived soil samples can provide important information on the history of environmental contamination and by comparison with recently collected samples, temporal trends can be inferred. Little previous work has addressed whether mercury (Hg) concentrations in soil samples are stable with long-term storage under standard laboratory conditions. In this study, we have re-analyzed using cold vapor atomic adsorption spectroscopy a set of archived soil samples that ranged from relatively pristine mountainous sites to a polluted site near a non-ferrous metal smelter with a wide range of Hg concentrations (6 - 6485 µg kg-1). Samples included organic and mineral soils and peats with a carbon content that ranged from 0.2 to 47.7%. Soil samples were stored in polyethylene bags or bottles and held in laboratory rooms where temperature was not kept to a constant value. Mercury concentrations in four subsets of samples were originally measured in 2000, 2005, 2006 and 2007, and re-analyzed in 2017, i.e. after 17, 12, 11 and 10 years of storage. Statistical analyses of either separated or lumped data yielded no significant differences between the original and current Hg concentrations. Based on these analyses, we show that archived soil and peat samples can be used to evaluate historical soil mercury contamination.

  5. Detection of environmental sources of Histoplasma capsulatum in Chiang Mai, Thailand, by nested PCR.

    PubMed

    Norkaew, Treepradab; Ohno, Hideaki; Sriburee, Pojana; Tanabe, Koichi; Tharavichitkul, Prasit; Takarn, Piyawan; Puengchan, Tanpalang; Bumrungsri, Sara; Miyazaki, Yoshitsugu

    2013-12-01

    Histoplasmosis is a systemic mycosis caused by inhaling spores of Histoplasma capsulatum, a dimorphic fungus. This fungus grows in soil contaminated with bat and avian excreta. Each year, patients with disseminated histoplasmosis have been diagnosed in Chiang Mai, northern Thailand. No published information is currently available on the environmental sources of this fungus in Chiang Mai or anywhere else in Thailand. The aim of this study was to detect H. capsulatum in soil samples contaminated with bat guano and avian droppings by nested PCR. Two hundred and sixty-five samples were collected from the following three sources: soil contaminated with bat guano, 88 samples; soil contaminated with bird droppings, 86 samples; and soil contaminated with chicken droppings, 91 samples. Genomic DNA was directly extracted from each sample, and H. capsulatum was detected by nested PCR using a primer set specific to a gene encoding 100-kDa-like protein (HcI, HcII and HcIII, HcIV). Histoplasma capsulatum was detected in seven of 88 soil samples contaminated with bat guano, one of 21 soil samples contaminated with pigeon droppings and 10 of 91 soil samples contaminated with chicken droppings. The results indicate the possibility of the association of bat guano and chicken droppings with H. capsulatum in this area of Thailand.

  6. Heavy metals in apple orchard soils and fruits and their health risks in Liaodong Peninsula, Northeast China.

    PubMed

    Wang, Quanying; Liu, Jingshuang; Cheng, Shuai

    2015-01-01

    This study aimed to assess the heavy metal concentrations in soils and fruits and their possible human health risk in apple orchards of Liaodong Peninsula-a well-known fruit-producing area of China. The soil pollution index (PI) and health risk assessment methods (daily intake of metals (DIM) and health risk index (HRI)) were employed to explore the soil pollution levels and the potential health hazards of heavy metals in fruits. The results showed that all orchard soils were with low PI values (PI ≤1) for Cd and Zn, while 2.78 and 5.56% of the soil samples exceeded the allowable levels of Cr and Cu for orchard soil, respectively. The Cd, Cu, and Zn concentrations for the apple flesh samples were all lower than the national maximum permissible concentrations. While 6.34% of apple peel samples for Cd, 76.5% of apple peel samples and 65.6% of apple flesh samples for Cr, and 28.1% of apple peel samples for Zn exceeded the national maximum permissible levels, respectively. Furthermore, both the DIM and the HRI values for all the apple flesh samples were within the safe limits, indicating that no health risk was found for heavy metals in the fruits of the study area. In order to protect the consumers from fruits that might cause health risks, results from this study suggested that the regular survey of heavy metal pollution levels should be conducted for the orchards of Liaodong Peninsula.

  7. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow.

    PubMed

    Lenart, Anna; Wolny-Koładka, Katarzyna

    2013-01-01

    The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.

  8. The soiling of materials in the ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Hamilton, R. S.; Mansfield, T. A.

    Models describing the rate of soiling of exposed surfaces due to the deposition and accumulation of particulate matter from the atmosphere are reviewed. Samples of white painted wood were exposed for 110 days in the ambient atmosphere. Separate samples were sheltered and unsheltered from rainfall. Reflectance was measured daily. Results are compared with recently published studies in the U.S.A. (samples in the ambient atmosphere) and the U.K. (samples in a road tunnel). Experimental soiling rates were compared with predicted values. Existing models were satisfactory for predicting soiling in a tunnel but underestimated soiling in an ambient situation; a revised formulation is proposed for this situation. Rainfall generally produced a cleaning effect but redistribution of washed-off material could produce enhanced soiling.

  9. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    EPA Science Inventory

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  10. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR FIELD COLLECTION OF RESIDENTIAL FOUNDATION SOIL SAMPLES (UA-F-6.1)

    EPA Science Inventory

    The purpose of this SOP is to establish a uniform procedure for the collection of residential foundation soil samples in the field. This procedure was followed to ensure consistent and reliable collection of outdoor soil samples during the Arizona NHEXAS project and the "Border"...

  11. An ancient Roman bowl embedded in a soil sample: surface shaded three dimensional display using data from a multi-detector CT.

    PubMed

    De Maeseneer, M; Buls, N; Cleeren, N; Lenchik, L; De Mey, J

    2006-01-01

    We present an unusual application of multidetector CT and shaded surface rendering in the investigation of a soil sample, containing an ancient Roman bronze bowl. The CT findings were of fundamental importance in helping the archaeologists study the bronze bowl from the soil sample.

  12. Comparative Efficiency of the Fenwick Can and Schuiling Centrifuge in Extracting Nematode Cysts from Different Soil Types

    PubMed Central

    Bellvert, Joaquim; Crombie, Kieran; Horgan, Finbarr G.

    2008-01-01

    The Fenwick can and Schuiling centrifuge are widely used to extract nematode cysts from soil samples. The comparative efficiencies of these two methods during cyst extraction have not been determined for different soil types under different cyst densities. Such information is vital for statutory laboratories that must choose a method for routine, high-throughput soil monitoring. In this study, samples of different soil types seeded with varying densities of potato cyst nematode (Globodera rostochiensis) cysts were processed using both methods. In one experiment, with 200 ml samples, recovery was similar between methods. In a second experiment with 500 ml samples, cyst recovery was higher using the Schuiling centrifuge. For each method and soil type, cyst extraction efficiency was similar across all densities tested. Extraction was efficient from pure sand (Fenwick 72%, Schuiling 84%) and naturally sandy soils (Fenwick 62%, Schuiling 73%), but was significantly less efficient from clay-soil (Fenwick 42%, Schuiling 44%) and peat-soil with high organic matter content (Fenwick 35%, Schuiling 33%). Residual moisture (<10% w/w) in samples prior to analyses reduced extraction efficiency, particularly for sand and sandy soils. For each soil type and method, there were significant linear relationships between the number of cysts extracted and the numbers of cysts in the samples. We discuss the advantages and disadvantages of each extraction method for cyst extraction in statutory soil laboratories. PMID:19259516

  13. Tests on the centrifugal flotation technique and its use in estimating the prevalence of Toxocara in soil samples from urban and suburban areas of Malaysia.

    PubMed

    Loh, A G; Israf, D A

    1998-03-01

    The influence of soil texture (silt, sand and laterite) and flotation solutions (saturated NaCl, sucrose, NaNO3, and ZnSO4) upon the recovery of Toxocara ova from seeded soil samples with the centrifugal flotation technique was investigated. Soil samples of different texture were artificially seeded with Toxocara spp. ova and subjected to a centrifugal flotation technique which used various flotation solutions. The results showed significant (P < 0.001) interactions between the soil types and the flotation solutions. The highest percentage of ova recovery was obtained with silty soil (34.9-100.8%) with saturated NaCl as the flotation solution (45.3-100.8%). A combination of washing of soil samples with 0.1% Tween 80, and flotation using saturated NaCl and a 30 min coverslip recovery period was used to study the prevalence of contamination of soil samples. Forty-six soil samples were collected from up to 24 public parks/playgrounds in urban areas of Petaling Jaya and suburban areas of Serdang. The prevalence of Toxocara species in the urban and suburban areas was 54.5% and 45.8% respectively.

  14. Rapid and sensitive determination of tellurium in soil and plant samples by sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2013-11-15

    In this work, we report a rapid and highly sensitive analytical method for the determination of tellurium in soil and plant samples using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Soil and plant samples were digested using Aqua regia. After appropriate dilution, Te in soil and plant samples was directly analyzed without any separation and preconcentration. This simple sample preparation approach avoided to a maximum extent any contamination and loss of Te prior to the analysis. The developed analytical method was validated by the analysis of soil/sediment and plant reference materials. Satisfactory detection limits of 0.17 ng g(-1) for soil and 0.02 ng g(-1) for plant samples were achieved, which meant that the developed method was applicable to studying the soil-to-plant transfer factor of Te. Our work represents for the first time that data on the soil-to-plant transfer factor of Te were obtained for Japanese samples which can be used for the estimation of internal radiation dose of radioactive tellurium due to the Fukushima Daiichi Nuclear Power Plant accident. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Soil Conditions That Can Alter Natural Suppression of Escherichia coli O157:H7 in Ohio Specialty Crop Soils

    PubMed Central

    Williams, Michele L.; LeJeune, Jeffrey T.

    2015-01-01

    Food-borne pathogen persistence in soil fundamentally affects the production of safe vegetables and small fruits. Interventions that reduce pathogen survival in soil would have positive impacts on food safety by minimizing preharvest contamination entering the food chain. Laboratory-controlled studies determined the effects of soil pH, moisture content, and soil organic matter (SOM) on the survivability of this pathogen through the creation of single-parameter gradients. Longitudinal field-based studies were conducted in Ohio to quantify the extent to which field soils suppressed Escherichia coli O157:H7 survival. In all experiments, heat-sensitive microorganisms were responsible for the suppression of E. coli O157 in soil regardless of the chemical composition of the soil. In laboratory-based studies, soil pH and moisture content were primary drivers of E. coli O157 survival, with increases in pH after 48 h (P = 0.02) and decreases in moisture content after 48 h (P = 0.007) significantly increasing the log reduction of E. coli O157 numbers. In field-based experiments, E. coli O157 counts from both heated and unheated samples were sensitive to both season (P = 0.004 for heated samples and P = 0.001 for unheated samples) and region (P = 0.002 for heated samples and P = 0.001 for unheated samples). SOM was observed to be a more significant driver of pathogen suppression than the other two factors after 48 h at both planting and harvest (P = 0.002 at planting and P = 0.058 at harvest). This research reinforces the need for both laboratory-controlled experiments and longitudinal field-based experiments to unravel the complex relationships controlling the survival of introduced organisms in soil. PMID:25934621

  16. Detection of Viable Cryptosporidium parvum in Soil by Reverse Transcription–Real-Time PCR Targeting hsp70 mRNA ▿

    PubMed Central

    Liang, Zhanbei; Keeley, Ann

    2011-01-01

    Extraction of high-quality mRNA from Cryptosporidium parvum is a key step in PCR detection of viable oocysts in environmental samples. Current methods for monitoring oocysts are limited to water samples; therefore, the goal of this study was to develop a rapid and sensitive procedure for Cryptosporidium detection in soil samples. The efficiencies of five RNA extraction methods were compared (mRNA extraction with the Dynabeads mRNA Direct kit after chemical and physical sample treatments, and total RNA extraction methods using the FastRNA Pro Soil-Direct, PowerSoil Total RNA, E.Z.N.A. soil RNA, and Norgen soil RNA purification kits) for the direct detection of Cryptosporidium with oocyst-spiked sandy, loamy, and clay soils by using TaqMan reverse transcription-PCR. The study also evaluated the presence of inhibitors by synthesis and incorporation of an internal positive control (IPC) RNA into reverse transcription amplifications, used different facilitators (bovine serum albumin, yeast RNA, salmon DNA, skim milk powder, casein, polyvinylpyrrolidone, sodium hexametaphosphate, and Salmonella enterica serovar Typhi) to mitigate RNA binding on soil components, and applied various treatments (β-mercaptoethanol and bead beating) to inactivate RNase and ensure the complete lysis of oocysts. The results of spiking studies showed that Salmonella cells most efficiently relieved binding of RNA. With the inclusion of Salmonella during extraction, the most efficient mRNA method was Dynabeads, with a detection limit of 6 × 102 oocysts g−1 of sandy soil. The most efficient total RNA method was PowerSoil, with detection limits of 1.5 × 102, 1.5 × 103, and 1.5 × 104 C. parvum oocysts g−1 soil for sandy, loamy, and clay samples, respectively. PMID:21803904

  17. Risk assessment of an abandoned pyrite mine in Spain based on direct toxicity assays.

    PubMed

    García-Gómez, Concepción; Sánchez-Pardo, Beatriz; Esteban, Elvira; Peñalosa, Jesús Manuel; Fernández, María Dolores

    2014-02-01

    This research reports the risk assessment of an abandoned pyrite mine using direct toxicity assays of soil and groundwater samples taken at the site. The toxicity of As and heavy metals from mining soils to soil and aquatic organisms was studied using the Multispecies Soil System (MS-3) in soil columns. Ecotoxicological assessment was performed with soil samples diluted with a control soil at concentrations of 12.5, 25, 50 and 100% test soil/soil (w/w). In this way, changes in the mobility and bioavailability of soil contaminants due to changes in geochemical soil properties via soil dilution were studied. The toxicity of water samples was tested on algae and Daphnia magna. The assessment of the mining area indicated that the current presence of As and heavy metals at the site may cause injuries to soil and aquatic organisms in the entire research area. Moreover, this investigation demonstrated that changes in geochemical conditions can increase the availability of arsenic and, consequently, the environmental risk of these soils. A good correlation was not found between toxicity parameters and the concentrations of soil contaminants based on total and extracted element concentrations. This finding reinforces the usefulness of direct toxicity assays for evaluating environmental risk. © 2013.

  18. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    PubMed

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  19. Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Onda, Yuichi; Kato, Hiroaki; Hoshi, Masaharu; Takahashi, Yoshio; Nguyen, Minh-Long

    2015-01-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident resulted in extensive radioactive contamination of the environment via deposited radionuclides such as radiocesium and (131)I. Evaluating the extent and level of environmental contamination is critical to protecting citizens in affected areas and to planning decontamination efforts. However, a standardized soil sampling protocol is needed in such emergencies to facilitate the collection of large, tractable samples for measuring gamma-emitting radionuclides. In this study, we developed an emergency soil sampling protocol based on preliminary sampling from the FDNPP accident-affected area. We also present the results of a preliminary experiment aimed to evaluate the influence of various procedures (e.g., mixing, number of samples) on measured radioactivity. Results show that sample mixing strongly affects measured radioactivity in soil samples. Furthermore, for homogenization, shaking the plastic sample container at least 150 times or disaggregating soil by hand-rolling in a disposable plastic bag is required. Finally, we determined that five soil samples within a 3 m × 3-m area are the minimum number required for reducing measurement uncertainty in the emergency soil sampling protocol proposed here. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    PubMed

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  1. Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States

    Treesearch

    Mark D. Coleman; J.G. Isebrands; David N. Tolsted; Virginia R. Tolbert

    2004-01-01

    We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed...

  2. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    PubMed

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  3. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data

    PubMed Central

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579

  4. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  5. Statistical design and analysis of environmental studies for plutonium and other transuranics at NAEG ''safety-shot'' sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    This paper is centered around the use of stratified random sampling for estimating the total amount (inventory) of $sup 239-240$Pu and uranium in surface soil at ten ''safety-shot'' sites on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) that are currently being studied by the Nevada Applied Ecology Group (NAEG). The use of stratified random sampling has resulted in estimates of inventory at these desert study sites that have smaller standard errors than would have been the case had simple random sampling (no stratification) been used. Estimates of inventory are given for $sup 235$U, $sup 238$U, and $supmore » 239-240$Pu in soil at A Site of Area 11 on the NTS. Other results presented include average concentrations of one or more of these isotopes in soil and vegetation and in soil profile samples at depths to 25 cm. The regression relationship between soil and vegetation concentrations of $sup 235$U and $sup 238$U at adjacent sampling locations is also examined using three different models. The applicability of stratified random sampling to the estimation of concentration contours of $sup 239-240$Pu in surface soil using computer algorithms is also investigated. Estimates of such contours are obtained using several different methods. The planning of field sampling plans for estimating inventory and distribution is discussed. (auth)« less

  6. Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China.

    PubMed

    Li, Jian; Wang, Yafei; Kong, Dongdong; Wang, Jinsheng; Teng, Yanguo; Li, Na

    2015-11-01

    In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 μg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 μg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.

  7. A novel in-situ method for real-time monitoring of gas transport in soil

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.

  8. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil

    PubMed Central

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation. PMID:26714315

  9. [Biodegradation of landfill leachate in soil].

    PubMed

    Fu, Mei-yun; Zhou, Li-xiang

    2007-01-01

    With aerobic and anaerobic incubation tests, this paper studied the biodegradation of three kind landfill leachates in acidic and calcareous soils. The leachates were collected from a landfill just receiving refuse (fresh sample) and the landfills having received refuse for 4-5 years (Tianjingwa sample) and 12 years (Shuige sample). The results showed that in the first seven days of incubation, these three landfill leachates degraded more quickly. Under aerobic condition, the apparent degradation rate of fresh sample, Tianjingwa sample and Shuige sample was 88.9%, 60.5% and 25.0% in acidic soil, and 96.6%, 80.4%, and 65.0% in calcareous soil, respectively. Seven days after, a lower degradation rate was observed. In same test soils, the shorter the landfilling age, the higher apparent degradation rate of the leachates was. Similar results were obtained under anaerobic condition, but the degradation rates were lower. The degradation of test landfill leachates fitted first-order kinetics model well, with a half-life of 12-16 days for fresh sample, and 20-30 days for Tianjingwa and Shuige samples. Once the leachates penetrated into soil, their degradation quickened greatly, suggesting that soil treatment of landfill leachate could have definite efficacy.

  10. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    NASA Astrophysics Data System (ADS)

    Bargsten, A.; Falge, E.; Pritsch, K.; Huwe, B.; Meixner, F. X.

    2010-05-01

    Nitric oxide (NO) plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification), that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries) in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany). We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate). Net potential NO fluxes (in terms of mass of N) from soil samples taken under different understories ranged from 1.7-9.8 ng m-2 s-1 (soil sampled under grass and moss cover), 55.4-59.3 ng m-2 s-1 (soil sampled under spruce cover), and 43.7-114.6 ng m-2 s-1 (soil sampled under blueberry cover) at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level) only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory vegetation type, amount of roots, and degree of mycorrhization; they have the potential to explain the observed differences of net potential NO fluxes.

  11. The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in a polluted calcareous soil.

    PubMed

    Safari, Yaser; Delavar, Mohammad-Amir; Zhang, Chaosheng; Esfandiarpour-Boroujeni, Isa; Owliaie, Hamid-Reza

    2015-12-01

    Accumulated anthropogenic heavy metals in the surface layer of agricultural soils may be transferred through the food chain via plant uptake processes. The objectives of this study were to assess the spatial distribution of lead (Pb) in the soils and wheat plants and to determine the soil properties which may affect the Pb transferring from soil to wheat plants in Zanjan Zinc Town area, northwestern Iran. A total of 110 topsoil samples (0-20 cm) were systematically collected from an agricultural area near a large metallurgical factory for the analyses of physico-chemical properties and total and bioavailable Pb concentrations. Furthermore, a total of 65 wheat samples collected at the same soil sampling locations were analyzed for Pb concentration in different plant parts. The results showed that elevated Pb concentrations were mostly found in soils located surrounding the industrial source of pollution. The bioavailable Pb concentration in the studied soils was up to 128.4 mg kg(-1), which was relatively high considering the observed soil alkalinity. 24.6% of the wheat grain samples exceeded the FAO/WHO maximum permitted concentration of Pb in wheat grain (0.2 mg kg(-1)). Correlation analyses revealed that soil organic matter, soil pH, and clay content showed insignificant correlation with Pb concentration in the soil and wheat grains, whereas calcium carbonate content showed significantly negative correlations with both total and bioavailable Pb in the soil, and Pb content in wheat grains, demonstrating the strong influences of calcium carbonate on Pb bioavailability in the polluted calcareous soils.

  12. Studies on geotechnical properties of subsoil in south east coastal region of India

    NASA Astrophysics Data System (ADS)

    Dutta, Susom; Barik, D. K.

    2017-11-01

    Soil testing and analysis has become essential before commencement of any activity or process on soil i.e. residential construction, road construction etc. It is the most important work particularly in coastal area as these areas are more vulnerable to the natural disastrous like tsunami and cyclone. In India, there is lack of facility to collect and analyse the soil from the field. Hence, to study the various characteristics of the coastal region sub soil, Old Mahabalipuram area, which is the South East region of India has been chosen in this study. The aim of this study is to collect and analyse the soil sample from various localities of the Old Mahabalipuram area. The analysed soil data will be helpful for the people who are working in the field of Geotechnical in coastal region of India to make decision. The soil sample collected from different boreholes have undergone various field and laboratory tests like Pressuremeter Test, Field Permeability Test, Electrical Resistivity Test, Standard Penetration Test, Shear Test, Atterberg Limits etc. are performed including rock tests to know the geotechnical properties of the soil samples for each and every stratum

  13. Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity.

    PubMed

    Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina

    2017-01-01

    The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.

  14. Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity

    PubMed Central

    Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina

    2017-01-01

    The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content. PMID:29333243

  15. Does Timing Matter? Temporal Stability of Soil-Magnetic Climate Proxies

    NASA Astrophysics Data System (ADS)

    Geiss, C. E.

    2013-12-01

    Numerous studies have shown that the rock-magnetic properties of soils can serve as valuable proxies of continental climates. Many studies average the magnetic properties of several closely spaced sites to reconstruct regional climate signals, but little is known about the temporal variability of soil-magnetic properties. We analyzed the magnetic properties of five, closely spaced (within 20 m from each other) soil profiles that were sampled over a period of five years between 2002 and 2006. The soil profiles are well-developed and display strong magnetic enhancement. According to land records, agricultural influence was minimal as the site had never been plowed and solely been used as pasture. Detailed soil descriptions and measurements of magnetic susceptibility (χ), anhysteretic and isothermal remanent magnetization (ARM, IRM), as well as coercivity parameters show that all studied profiles have very similar horizination and magnetic properties are virtually unchanged from year to year. The only differences between the soil profiles are the position and strength of redoximorphic features. These nanocrystalline iron-oxide deposits have little influence on the magnetic properties of the soils and the timing of soil sampling for magnetic analyses is not a critical factor when sampling for climatic reconstructions.

  16. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  17. Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  18. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  19. Use of a (137)Cs re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy.

    PubMed

    Porto, Paolo; Walling, Des E; Alewell, Christine; Callegari, Giovanni; Mabit, Lionel; Mallimo, Nicola; Meusburger, Katrin; Zehringer, Markus

    2014-12-01

    Soil erosion and both its on-site and off-site impacts are increasingly seen as a serious environmental problem across the world. The need for an improved evidence base on soil loss and soil redistribution rates has directed attention to the use of fallout radionuclides, and particularly (137)Cs, for documenting soil redistribution rates. This approach possesses important advantages over more traditional means of documenting soil erosion and soil redistribution. However, one key limitation of the approach is the time-averaged or lumped nature of the estimated erosion rates. In nearly all cases, these will relate to the period extending from the main period of bomb fallout to the time of sampling. Increasing concern for the impact of global change, particularly that related to changing land use and climate change, has frequently directed attention to the need to document changes in soil redistribution rates within this period. Re-sampling techniques, which should be distinguished from repeat-sampling techniques, have the potential to meet this requirement. As an example, the use of a re-sampling technique to derive estimates of the mean annual net soil loss from a small (1.38 ha) forested catchment in southern Italy is reported. The catchment was originally sampled in 1998 and samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimate of mean annual erosion for the period 1954-1998 with that for the period 1999-2013. The availability of measurements of sediment yield from the catchment for parts of the overall period made it possible to compare the results provided by the (137)Cs re-sampling study with the estimates of sediment yield for the same periods. In order to compare the estimates of soil loss and sediment yield for the two different periods, it was necessary to establish the uncertainty associated with the individual estimates. In the absence of a generally accepted procedure for such calculations, key factors influencing the uncertainty of the estimates were identified and a procedure developed. The results of the study demonstrated that there had been no significant change in mean annual soil loss in recent years and this was consistent with the information provided by the estimates of sediment yield from the catchment for the same periods. The study demonstrates the potential for using a re-sampling technique to document recent changes in soil redistribution rates. Copyright © 2014. Published by Elsevier Ltd.

  20. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  1. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  2. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.

  3. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China)

    PubMed Central

    Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Wu, Xianliang

    2017-01-01

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People’s Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area. PMID:29258250

  4. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China).

    PubMed

    Huang, Xianfei; Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Fan, Mingyi; Wu, Xianliang

    2017-12-18

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People's Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area.

  5. Contribution of soil fauna to soil functioning in degraded environments: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan

    2016-04-01

    The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure. All replicates were subjected to soil respiration measurement by means of chemical titration method. Then some replicates were destructively analyzed for PLFA and ergosterol and others were used for the 3D soil image analysis of the soil pore system. The soil cores were imaged using X-ray microtomography and three-dimensional image processing was performed in order to obtain 3D reconstructions and preliminary analysis of the identified biopores. The experimental approach used in this multidisciplinary study showed a promising potential to provide new useful information about the widely differentiated contribution of many types of macrofauna to the formation of the soil pore system and to the development of the soil microbial functions in different types of environments.

  6. Contamination of apple orchard soils and fruit trees with copper-based fungicides: sampling aspects.

    PubMed

    Wang, Quanying; Liu, Jingshuang; Liu, Qiang

    2015-01-01

    Accumulations of copper in orchard soils and fruit trees due to the application of Cu-based fungicides have become research hotspots. However, information about the sampling strategies, which can affect the accuracy of the following research results, is lacking. This study aimed to determine some sampling considerations when Cu accumulations in the soils and fruit trees of apple orchards are studied. The study was conducted in three apple orchards from different sites. Each orchard included two different histories of Cu-based fungicides usage, varying from 3 to 28 years. Soil samples were collected from different locations varying with the distances from tree trunk to the canopy drip line. Fruits and leaves from the middle heights of tree canopy at two locations (outer canopy and inner canopy) were collected. The variation in total soil Cu concentrations between orchards was much greater than the variation within orchards. Total soil Cu concentrations had a tendency to increase with the increasing history of Cu-based fungicides usage. Moreover, total soil Cu concentrations had the lowest values at the canopy drip line, while the highest values were found at the half distances between the trunk and the canopy drip line. Additionally, Cu concentrations of leaves and fruits from the outer parts of the canopy were significantly higher than from the inner parts. Depending on the findings of this study, not only the between-orchard variation but also the within-orchard variation should be taken into consideration when conducting future soil and tree samplings in apple orchards.

  7. Anthropogenic impact on the presence of L. monocytogenes in soil, fruits, and vegetables.

    PubMed

    Szymczak, Barbara; Szymczak, Mariusz; Sawicki, Wojciech; Dąbrowski, Waldemar

    2014-01-01

    The aim of this study was to determine the prevalence of Listeria sp. and Listeria monocytogenes in soil samples with reference to type of fertilizers (natural and artificial) and distance from places intensively exploited by men, as well as to determine the relationship between the presence of L. monocytogenes in the soil and in fruits and vegetables. The examined 1,000 soil samples originated from 15 different areas, whilst 140 samples of fruits and 210 samples of vegetables were collected from those areas. L. monocytogenes was isolated only from 5.5 % of all soil samples coming exclusively from meadows intensively grazed by cattle (27.8 %) and areas near food processing plants (25 %) and wild animal forests (24 %). Listeria sp. and L. monocytogenes were not present on artificially fertilized areas and wastelands. L. monocytogenes was detected in 10 % of samples of strawberry, 15 % of potato samples, and 5 % of parsley samples. Our data indicate that Listeria spp. and particularly L. monocytogenes were found in the soil from (1) arable lands fertilized with manure, (2) pasture (the land fertilized with feces of domestic animals), and (3) forests (again, the land fertilized with feces of animals, not domestic but wild). The bacteria were not detected in the soil samples collected at (1) artificially fertilized arable lands and (2) wastelands (the lands that were not fertilized with manure or animal feces). Moreover, a correlation was determined in the presence of L. monocytogenes between soil samples and samples of the examined fruits and vegetables.

  8. Biocorrosive activity analysis of the oil pipeline soil in the Khanty-Mansiysk Autonomous Region of Ugra and the Krasnodar Territory of the Russian Federation

    NASA Astrophysics Data System (ADS)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.

    2017-08-01

    The purpose of the study was to assess the biocorrosive activity of oil pipeline soil in the Khanty-Mansiysk Autonomous Region of Yugra and the Krasnodar Territory of the Russian Federation, due to the action of a complex of factors and analysis of sulfate-reducing and thionic bacteria content. The number of bacteria in the sulfur cycle (autotrophic thionic and sulfate-reducing bacteria), the total concentration of sulfur and iron in soil samples adjacent to the surface of underground pipelines, the specific electrical resistivity of the soil was determined. A criterion for the biocorrosive activity of the soil (CBA) was established. The study of the biocorrosive activity of the soil has established its features in the area of the oil pipeline construction in the compared territories. In the soil of the Krasnodar Territory pipeline, aggressive samples were recorded in 5.75% of cases, samples with moderate aggressiveness (49.43%), with weak soil aggressiveness (42.53% of cases), and samples with potential aggressiveness (2.30%). On the territory of the Khanty-Mansiysk Autonomous Region of Yugra, samples with weak soil aggressiveness prevailed (55.17% of cases), with moderate aggressiveness (34.5% of cases). When carrying out multiple regression analysis in the system of variables "factors of soil biocorrosive activity", informative data of modeling the indicator "the content of thiobacteria in soil" was established. The results of the research show the need for dynamic monitoring and the development of preventive measures to prevent biocorrosion.

  9. Urease activity in different soils of Egypt.

    PubMed

    el-Shinnawi, M M

    1978-01-01

    Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.

  10. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.

  11. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe

    PubMed Central

    Aksoy, Ece

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%. PMID:27011357

  12. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    NASA Technical Reports Server (NTRS)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  13. Chemical migration during soil water retention curve evaluation.

    PubMed

    Pires, Luiz F; Villanueva, Felipe C A; Dias, Nivea M P; Bacchi, Osny O Santos; Reichardt, Klaus

    2011-09-01

    Wetting and drying (W-D) cycles can induce important elemental migrations in soils. The main purpose of this work was to study the possible existence of soil chemical elemental migrations in samples submitted to repeated W-D cycles during evaluations of soil water retention curve (SWRC). The experimental measurements were carried out by Atomic Absorption Spectrometry (AAS) for Ca(2+), Mg(2+) and K(+) on samples of three different Brazilian tropical soils (Geric Ferralsol, Eutric Nitosol and Rhodic Ferralsol). Results demonstrate an increase in the electrical conductivity of the water extracted from the samples and significant losses of Ca(2+), Mg(2+) and K(+) during the applications of up to nine W-D cycles. It was also observed differences in SWRC for all soils when samples submitted to the application of several W-D cycles were compared with samples not submitted to it. These differences occurred at the region of both structural and textural pores. A possible explanation for these results could be the soil chemical migration during the sequences of W-D cycles, which can affect the soil structure development.

  14. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    PubMed

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  15. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    PubMed

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  17. Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2005-01-01

    Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?

  18. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    NASA Astrophysics Data System (ADS)

    Setiawan, Budi; Mila, Oktri; Safni

    2014-03-01

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr+ ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10-2 g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

  19. ESEM results and changes in wettability patterns within soil: three years irrigation with slightly-salted water

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, Javier; Candela, Lucila; Medero, Gabriela; Buckman, Jim; Hasnayn, Mohammad M.

    2015-04-01

    Impacts on soil and aquifer media from the use of non-conventional water (treated wastewater-TWW, desalted) for irrigation have been widely studied in the last years . A number of contributions have focused on the impacts derived from the use of TWW (Assouline and Narkis, 2013; Lahav et al., 2010; Xu et al., 2010). Changes in soil hydraulic conductivity and clogging processes have been studied in laboratory experiments from soil columns (Lado and Ben-Hur, 2010) and at field scale (Costa, 1999; Minhas et al., 1994). Irrigation with non-conventional water may also lead to the occurrence of contaminants, a major current environmental concern (Valdes-Abellan et al., 2013). Previous studies have considered impacts in a uniform soil media pore structure; less attention has been paid at a microscopic scale and the influence that high-salinity water may have on wettability of soil. Environmental scanning electron microscopy (ESEM) is a useful technique to be applied in soil science to analyse microscopic changes in soil structure or soil wetting patterns. Research applying this technology for wet systems (Donald, 1998) or porous media (Ali et al., 1995) is available, however as far as we know research on soil impacts due to long term irrigation with saline or non-conventional water are much less common. The dynamic mode of the ESEM allows changes of samples from wet to dry by modifying the water vapour pressure and to observe the wetting and drying patterns and interactions between the solid and liquid phase in the soil (Lourenço et al., 2008). Preliminary results of the study at a microscopic scale of soil samples collected before and after three year irrigation with slightly salted water in an experimental plot setup in semi-arid climatic conditions (Alicante, SE Spain) are presented. We will show the micro-structure of soil and undertake a preliminary investigation of wetting and drying of samples using ESEM techniques Differences in the water vapour pressure value at which complete saturation is achieved was detected, being lower in the 3-years irrigated samples compared with the initial ones. Besides, velocity in which saturation took place was different: initial samples saturation process were developed very quickly, as triggered by a critical shift in the water vapour pressure value and much gradual process were develop in the 3-years irrigated sample when saturation started earlier.

  20. Evaluation of different approaches for identifying optimal sites to predict mean hillslope soil moisture content

    NASA Astrophysics Data System (ADS)

    Liao, Kaihua; Zhou, Zhiwen; Lai, Xiaoming; Zhu, Qing; Feng, Huihui

    2017-04-01

    The identification of representative soil moisture sampling sites is important for the validation of remotely sensed mean soil moisture in a certain area and ground-based soil moisture measurements in catchment or hillslope hydrological studies. Numerous approaches have been developed to identify optimal sites for predicting mean soil moisture. Each method has certain advantages and disadvantages, but they have rarely been evaluated and compared. In our study, surface (0-20 cm) soil moisture data from January 2013 to March 2016 (a total of 43 sampling days) were collected at 77 sampling sites on a mixed land-use (tea and bamboo) hillslope in the hilly area of Taihu Lake Basin, China. A total of 10 methods (temporal stability (TS) analyses based on 2 indices, K-means clustering based on 6 kinds of inputs and 2 random sampling strategies) were evaluated for determining optimal sampling sites for mean soil moisture estimation. They were TS analyses based on the smallest index of temporal stability (ITS, a combination of the mean relative difference and standard deviation of relative difference (SDRD)) and based on the smallest SDRD, K-means clustering based on soil properties and terrain indices (EFs), repeated soil moisture measurements (Theta), EFs plus one-time soil moisture data (EFsTheta), and the principal components derived from EFs (EFs-PCA), Theta (Theta-PCA), and EFsTheta (EFsTheta-PCA), and global and stratified random sampling strategies. Results showed that the TS based on the smallest ITS was better (RMSE = 0.023 m3 m-3) than that based on the smallest SDRD (RMSE = 0.034 m3 m-3). The K-means clustering based on EFsTheta (-PCA) was better (RMSE <0.020 m3 m-3) than these based on EFs (-PCA) and Theta (-PCA). The sampling design stratified by the land use was more efficient than the global random method. Forty and 60 sampling sites are needed for stratified sampling and global sampling respectively to make their performances comparable to the best K-means method (EFsTheta-PCA). Overall, TS required only one site, but its accuracy was limited. The best K-means method required <8 sites and yielded high accuracy, but extra soil and terrain information is necessary when using this method. The stratified sampling strategy can only be used if no pre-knowledge about soil moisture variation is available. This information will help in selecting the optimal methods for estimation the area mean soil moisture.

  1. A flotation/sieving method to detect Echinococcus multilocularis and Toxocara spp. eggs in soil by real-time PCR

    PubMed Central

    Umhang, Gérald; Bastien, Matthieu; Renault, Camille; Faisse, Marine; Caillot, Christophe; Boucher, Jean-Marc; Hormaz, Vanessa; Poulle, Marie-Lazarine; Boué, Franck

    2017-01-01

    Soil can be a source of human infection by many zoonotic helminth species including Echinococcus multilocularis and Toxocara spp. The prevention of alveolar echinococcosis could be greatly improved through the identification of at-risk areas. Yet very few data are available about the detection of E. multilocularis in soil, while more studies have been reported for Toxocara spp. Identification of soil contamination by E. multilocularis eggs requires the use of specific methods. This study describes the development of a method for the detection of E. multilocularis in soil samples with the concentration of eggs using a flotation/sieving method and detection by duplex real-time polymerase chain reaction (PCR). Toxocara spp. egg detection was also undertaken due to the widespread presence of this parasite in soil, despite it being considered less pathogenic. Method sensitivity of 100% was reached for the detection of 10 E. multilocularis eggs spiked in 10 g of soil. Concerning Toxocara spp., method sensitivity was lower but assumed to be due to the reduced effectiveness of the DNA extraction protocol. The parasitological status for E. multilocularis and Toxocara spp. of 63 carnivore fecal samples collected in highly endemic rural areas of France and of soil samples collected under and near these fecal samples was compared. The contamination of soil samples collected under positive fecal samples for E. multilocularis (n = 3) or Toxocara spp. (n = 19) confirmed the transfer of eggs from the definitive host to the environment. PMID:28737135

  2. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site-Working towards a toolbox for better assessment.

    PubMed

    Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.

  3. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site—Working towards a toolbox for better assessment

    PubMed Central

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)’s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete (“grab”) samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples. PMID:28759607

  4. Evaluation of a modified QuEChERS extraction of multiple classes of pesticides from a rice paddy soil by LC-APCI-MS/MS.

    PubMed

    Caldas, Sergiane S; Bolzan, Cátia M; Cerqueira, Maristela B; Tomasini, Débora; Furlong, Eliana B; Fagundes, Carlos; Primel, Ednei G

    2011-11-23

    A new method for the determination of clomazone, fipronil, tebuconazole, propiconazole, and azoxystrobin in samples of rice paddy soil is presented. The extraction of the pesticides from soil samples was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Some extraction conditions such as salt addition, sample acidification, use of buffer, and cleanup step were evaluated. The optimized method dealt with a single extraction of the compounds under study with acidified acetonitrile, followed by the addition of MgSO(4) and NaCl prior to the final determination by liquid chromatography-atmospheric chemical pressure ionization-tandem mass spectrometry. Validation studies were carried out in soil samples. Recoveries of the spiked samples ranged between 70.3 and 120% with relative standard deviation lower than 18.2%. The limits of quantification were between 10 and 50 μg kg(-1). The method was applied to the analysis of real samples of soils where rice is cultivated.

  5. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  6. [Distribution Characteristics of Heavy Metals in Environmental Samples Around Electroplating Factories and the Health Risk Assessment].

    PubMed

    Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan

    2015-09-01

    This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.

  7. Pesticides in soils and ground water in selected irrigated agricultural areas near Havre, Ronan, and Huntley, Montana

    USGS Publications Warehouse

    Clark, D.W.

    1990-01-01

    Three areas in Montana representing a range of agricultural practices and applied pesticides, were studied to document whether agricultural pesticides are being transported into the soil and shallow groundwater in irrigated areas. Analytical scans for triazine herbicides, organic-acid herbicides, and carbamate insecticides were performed on soil and shallow groundwater samples. The results indicate pesticide residue in both types of samples. The concentrations of pesticides in the groundwater were less than Federal health-advisory limits. At the Havre Agricultural Experiment Station, eight wells were installed at two sites. All four soil samples and two of four water samples collected after application of pesticides contained detectable concentrations of atrazine or dicamba. In an area where seed potatoes are grown near Ronan, eight wells were installed at two sites. Pesticides were not detected after initial application of pesticides and irrigation water. The site was resampled after irrigation water was reapplied, and aldicarb metabolities were detected in four of five soil samples and one of five water samples. At the Huntley Agricultural Experiment Station, five wells were installed in a no-tillage corn field where atrazine was applied in 1987. Soil and water samples were collected in June and July 1988; pesticides were not detected in any samples. Results indicate residue of two pesticides in soil samples and three soluble pesticides in groundwater samples. Therefore, irrigated agricultural areas in Montana might be susceptible to transport of soluble pesticides through permeable soil to the shallow groundwater system. (USGS)

  8. The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses.

    PubMed

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2009-09-01

    Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2.5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. The results can be explained in terms of the seed size-seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil seed survival and seed production can be avoided by separate use of soil seed abundance and experimental soil seed survival.

  9. Microbial soil community analyses for forensic science: Application to a blind test.

    PubMed

    Demanèche, Sandrine; Schauser, Leif; Dawson, Lorna; Franqueville, Laure; Simonet, Pascal

    2017-01-01

    Soil complexity, heterogeneity and transferability make it valuable in forensic investigations to help obtain clues as to the origin of an unknown sample, or to compare samples from a suspect or object with samples collected at a crime scene. In a few countries, soil analysis is used in matters from site verification to estimates of time after death. However, up to date the application or use of soil information in criminal investigations has been limited. In particular, comparing bacterial communities in soil samples could be a useful tool for forensic science. To evaluate the relevance of this approach, a blind test was performed to determine the origin of two questioned samples (one from the mock crime scene and the other from a 50:50 mixture of the crime scene and the alibi site) compared to three control samples (soil samples from the crime scene, from a context site 25m away from the crime scene and from the alibi site which was the suspect's home). Two biological methods were used, Ribosomal Intergenic Spacer Analysis (RISA), and 16S rRNA gene sequencing with Illumina Miseq, to evaluate the discriminating power of soil bacterial communities. Both techniques discriminated well between soils from a single source, but a combination of both techniques was necessary to show that the origin was a mixture of soils. This study illustrates the potential of applying microbial ecology methodologies in soil as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Soil ingestion rates for children under 3 years old in Taiwan.

    PubMed

    Chien, Ling-Chu; Tsou, Ming-Chien; Hsi, Hsing-Cheng; Beamer, Paloma; Bradham, Karen; Hseu, Zeng-Yei; Jien, Shih-Hao; Jiang, Chuen-Bin; Dang, Winston; Özkaynak, Halûk

    2017-01-01

    Soil and dust ingestion rates by children are among the most critical exposure factors in determining risks to children from exposures to environmental contaminants in soil and dust. We believe this is the first published soil ingestion study for children in Taiwan using tracer element methodology. In this study, 66 children under 3 years of age were enrolled from Taiwan. Three days of fecal samples and a 24-h duplicate food sample were collected. The soil and household dust samples were also collected from children's homes. Soil ingestion rates were estimated based on silicon (Si) and titanium (Ti). The average soil ingestion rates were 9.6±19.2 mg/day based on Si as a tracer. The estimated soil ingestion rates based on Si did not have statistically significant differences by children's age and gender, although the average soil ingestion rates clearly increased as a function of children's age category. The estimated soil ingestion rates based on Si was significantly and positively correlated with the sum of indoor and outdoor hand-to-mouth frequency rates. The average soil ingestion rates based on Si were generally lower than the results from previous studies for the US children. Ti may not be a suitable tracer for estimating soil ingestion rates in Taiwan because the Ti dioxide is a common additive in food. To the best of our knowledge, this is the first study that investigated the correlations between soil ingestion rates and mouthing behaviors in Taiwan or other parts of Asia. It is also the first study that could compare available soil ingestion data from different countries and/or different cultures. The hand-to-mouth frequency and health habits are important to estimate the soil ingestion exposure for children. The results in this study are particularly important when assessing children's exposure and potential health risk from nearby contaminated soils in Taiwan.

  11. Evaluation of various soil water samplers for virological sampling.

    PubMed Central

    Wang, D S; Lance, J C; Gerba, C P

    1980-01-01

    Two commercially available soil water samplers and a ceramic sampler constructed in our laboratories were evaluated for their ability to recover viruses from both tap water and secondary sewage effluent. The ceramic sampler consistently gave the best recoveries of viruses from water samples. Soil columns containing ceramic samplers at various depths provide a simple method for studying virus transport through sewage-contaminated soils. Images PMID:6247976

  12. Metal Load of the Crops Depending on Land Use, Land Management and Soil Characteristics

    NASA Astrophysics Data System (ADS)

    Oeztan, Sezin; Duering, Rolf-Alexander

    2010-05-01

    The increase of pollutant concentrations in soil and in the food chain became very important in the past few decades. Metals of different toxicities (Cd, Zn, As, Cr, Cu, Pb, Ni, Co, V, Tl) occur in soils as a result of weathering, industrial processes, fertilization and atmospheric deposition. Some of them can be absorbed by the plants due to their mobility. The transfer of metals from soil into the plants can be explained by the physicochemical characteristics of the soil such as pH-value, organic matter and clay content. Badly adapted cultivation of the agricultural soils (declining pH-value, application of unsuitable fertilizers) can enhance the mobility of the metals and by the way increase their concentrations in agricultural products. With this study, a field experiment was established and the aim is to test the relations between available metal concentrations in the soil and metal load of the plants depending on the fertilization techniques. The plants and soil samples of the reference sites were taken, heavy metal contents of the soil samples identified by Microwave Assisted Extraction (MAE) and compared to the Aqua Regia Digestion Method for confirming the methodology. For the determination of the metal content in plants, MAE was executed to the selected plant samples and for that procedure, the samples were digested with HNO3 and H2O2 in the microwave oven. Quantation of the metals in soil and in plants was done by ICP-OES Methodology. The evaluation of the first results confirmed that the metal content of the soil is strongly dependent on the properties of different fertilization variants (N,P,K) used and physicochemical characteristics of the soils. According to the fertilization variants, total metal contents of the soil are increased in the soil samples which have high amounts of N, P, K fertilization. Soils which were enforced with high P fertilization degrees had significantly higher total Cd content. Results on the Cd content of the plant samples also revealed that transition of metals from soil to plants depend heavily on the fertilizer since plant samples and soil samples treated with the same fertilizer showed similar results.

  13. Computed Tomography to Estimate the Representative Elementary Area for Soil Porosity Measurements

    PubMed Central

    Borges, Jaqueline Aparecida Ribaski; Pires, Luiz Fernando; Belmont Pereira, André

    2012-01-01

    Computed tomography (CT) is a technique that provides images of different solid and porous materials. CT could be an ideal tool to study representative sizes of soil samples because of the noninvasive characteristic of this technique. The scrutiny of such representative elementary sizes (RESs) has been the target of attention of many researchers related to soil physics field owing to the strong relationship between physical properties and size of the soil sample. In the current work, data from gamma-ray CT were used to assess RES in measurements of soil porosity (ϕ). For statistical analysis, a study on the full width at a half maximum (FWHM) of the adjustment of distribution of ϕ at different areas (1.2 to 1162.8 mm2) selected inside of tomographic images was proposed herein. The results obtained point out that samples with a section area corresponding to at least 882.1 mm2 were the ones that provided representative values of ϕ for the studied Brazilian tropical soil. PMID:22666133

  14. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed in a microcosm system under a constant temperature of 10°C. The water-saturated soil columns will be drained via suction plates at the bottom of the columns by stepwise increase of the suction. The head space of the soil columns will be permanently flushed with moistened synthetic air and CO2 concentrations will be measured via online gas chromatography. First results will be presented.

  15. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Kuźniar, Agnieszka; Banach, Artur; Stępniewska, Zofia; Frąc, Magdalena; Oszust, Karolina; Gryta, Agata; Kłos, Marta; Wolińska, Agnieszka

    2018-01-01

    The aim of the study was to assess the differences in the bacterial community physiological profiles in soils contaminated with heavy metals versus soils without metal contaminations. The study's contaminated soil originated from the surrounding area of the Szopienice non-ferrous metal smelter (Silesia Region, Poland). The control was soil unexposed to heavy metals. Metal concentration was appraised by flame atomic absorption spectrometry, whereas the the community-level physiological profile was determined with the Biolog EcoPlatesTM system. The soil microbiological activity in both sites was also assessed via dehydrogenase activity. The mean concentrations of metals (Cd and Zn) in contaminated soil samples were in a range from 147.27 to 12265.42 mg kg-1, and the heavy metal contamination brought about a situation where dehydrogenase activity inhibition was observed mostly in the soil surface layers. Our results demonstrated that there is diversity in the physiological profiles of microorganisms inhabiting contaminated and colntrol soils; therefore, for assessment purposes, these were treated as two clusters. Cluster I included colntrol soil samples in which microbial communities utilised most of the available substrates. Cluster II incorporated contaminated soil samples in which a smaller number of the tested substrates was utilised by the contained microorganisms. The physiological profiles of micro-organisms inhabiting the contaminated and the colntrol soils are distinctly different.

  16. The Uppermost Surface of the Moon

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.

    2009-01-01

    The Ap16 Clam shell Sampling Devices (CSSDs) were designed to sample the uppermost surface of lunar soil. The two devices used beta cloth (69003) and velvet (69004) to collect soil from the top 100 and 500 micrometers of the soil, respectively. Due to the difficulty of the sampling method, little material was collected and as a result little research has been done on these samples. Initial studies attempted to look at the material which had fallen off of the fabrics and was subsequently collected from inside the sample containers. However, this material was highly fractionated and did not provide an adequate picture of the uppermost surface. Recently, samples were obtained directly from the beta cloth using carbon tape. While still fractionated, these samples provide a unique glimpse into the undisturbed soil exposed at the lunar surface.

  17. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactormore » integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.« less

  18. IMPACT OF CRITICAL ANION SOIL SOLUTION CONCENTRATION ON ALUMINUM ACTIVITY IN ALPINE TUNDRA SOIL Andrew Evans, Jr.1 , Michael B. Jacobs2, and Jason R. Janke1, (1) Metropolitan State University of Denver, Dept. of Earth and Atmospheric Sciences, (2) Dept. of Chemistry, Denver, CO, United States.

    NASA Astrophysics Data System (ADS)

    Evans, A.

    2015-12-01

    Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.

  19. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this preliminary case, we use Partial Least Squares (PLS) regression with cross validation to develop a prediction model for soils of unknown carbon content given only their spectral signature. We find R2 values of greater than 0.93 for the MIR spectra and 0.87 for the VNIR spectra, indicating a strong ability to correlate a soil’s spectrum with its Ct content. We build on these encouraging results by continuing chemometric analyses using the full data set, different data subsets, separate model calibration and validation groups, combined VNIR and MIR spectra, and exploring different data pretreatment options and variations to the PLS parameters.

  20. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.

    PubMed

    Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M

    2015-07-28

    Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T. asperellum, T. ghanense, T. longibrachiatum and T. orientalis.

  1. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    PubMed

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  2. Dust emissions of organic soils observed in the field and laboratory

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third. In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples < 8 mm diameter of each organic soil were rotated in a 50 cm long tube and the dust generated was observed with the GRIMM during a 20 minute run. Comparisons of the field dust emission rates with the laboratory results will be presented.

  3. Geochemical baseline studies of soil in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  4. Genotypic Diversity of Escherichia coli in the Water and Soil of Tropical Watersheds in Hawaii ▿

    PubMed Central

    Goto, Dustin K.; Yan, Tao

    2011-01-01

    High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring. PMID:21515724

  5. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination.

    PubMed

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2016-07-01

    The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF SOIL OR HOUSE DUST SAMPLES USING CHLORPYRIFOS ELISA SAMPLES (BCO-L-1.0)

    EPA Science Inventory

    This abstract is included for completeness of documentation, but this SOP was not used in the study.

    The purpose of this SOP is to describe the procedures for analyzing both Stage II and Stage III soil and vacuum-cleaner collected house dust samples, and Stage III air samples u...

  7. [Mesophilic clostridia from soil of the Central Plateau of Costa Rica].

    PubMed

    Rodríguez, E; Mar Gamboa, M D; Fernández, B

    1993-12-01

    Thirty soil samples from the Central Plateau of Costa Rica yielded 710 isolates of 34 clostridia species. These were Clostridium lituseburense, C. oceanicum and C. sardiniense (100, 73, and 60%, respectively). The toxigenic species of the genus were present in at least one sample, except for C. botulinum, C. chauvoei and C. spiroforme. Diversity per sample (4-12 species) exceeded what has been reported in similar studies. No correlation has been found between the presence of a species and soil characteristics (organic matter, type of soil, pH, precipitation, altitude).

  8. Ptaquiloside in Pteridium aquilinum subsp. aquilinum and corresponding soils from the South of Italy: influence of physical and chemical features of soils on its occurrence.

    PubMed

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Traversa, Andreina; Miano, Teodoro M

    2014-10-15

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). Several studies are present in literature about eco-toxicological aspects related to PTA, whereas results about the effect of growth conditions and soil properties on the production and mobility of PTA are sometimes conflicting and further investigations are needed. The aim of the present work is to investigate the occurrence and possible fate of PTA in soils showing different physical and chemical features, and collected in several areas of the South of Italy. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterized from the physical and chemical points of view in order to correlate the possible influence of soil parameters on PTA production and occurrence. PTA concentration in P. aquilinum fern seemed to be significantly affected by the availability of nutrients (mainly P) and soil pH. At the same time, PTA concentration in soil samples was always undetectable, independent of the PTA concentration in the corresponding Pteridium samples and pedo-climatic conditions. This seems to suggest the degradation of the PTA by indigenous soil microbial community, whereas incubation studies underlined a certain affinity of PTA for both organic colloids and clay/silt particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Long-term effects of land application of class B biosolids on the soil microbial populations, pathogens, and activity.

    PubMed

    Zerzghi, Huruy; Gerba, Charles P; Brooks, John P; Pepper, Ian L

    2010-01-01

    This study evaluated the influence of 20 annual land applications of Class B biosolids on the soil microbial community. The potential benefits and hazards of land application were evaluated by analysis of surface soil samples collected following the 20th land application of biosolids. The study was initiated in 1986 at the University of Arizona Marana Agricultural Center, 21 miles north of Tucson, AZ. The final application of biosolids was in March 2005, followed by growth of cotton (Gossypium hirsutum L.) from April through November 2005. Surface soil samples (0-30 cm) were collected monthly from March 2005, 2 wk after the final biosolids application, through December 2005, and analyzed for soil microbial numbers. December samples were analyzed for additional soil microbial properties. Data show that land application of Class B biosolids had no significant long-term effect on indigenous soil microbial numbers including bacteria, actinomycetes, and fungi compared to unamended control plots. Importantly, no bacterial or viral pathogens were detected in soil samples collected from biosolid amended plots in December (10 mo after the last land application) demonstrating that pathogens introduced via Class B biosolids only survived in soil transiently. However, plots that received biosolids had significantly higher microbial activity or potential for microbial transformations, including nitrification, sulfur oxidation, and dehydrogenase activity, than control plots and plots receiving inorganic fertilizers. Overall, the 20 annual land applications showed no long-term adverse effects, and therefore, this study documents that land application of biosolids at this particular site was sustainable throughout the 20-yr period, with respect to soil microbial properties.

  10. Use of X-ray diffraction technique and chemometrics to aid soil sampling strategies in traceability studies.

    PubMed

    Bertacchini, Lucia; Durante, Caterina; Marchetti, Andrea; Sighinolfi, Simona; Silvestri, Michele; Cocchi, Marina

    2012-08-30

    Aim of this work is to assess the potentialities of the X-ray powder diffraction technique as fingerprinting technique, i.e. as a preliminary tool to assess soil samples variability, in terms of geochemical features, in the context of food geographical traceability. A correct approach to sampling procedure is always a critical issue in scientific investigation. In particular, in food geographical traceability studies, where the cause-effect relations between the soil of origin and the final foodstuff is sought, a representative sampling of the territory under investigation is certainly an imperative. This research concerns a pilot study to investigate the field homogeneity with respect to both field extension and sampling depth, taking also into account the seasonal variability. Four Lambrusco production sites of the Modena district were considered. The X-Ray diffraction spectra, collected on the powder of each soil sample, were treated as fingerprint profiles to be deciphered by multivariate and multi-way data analysis, namely PCA and PARAFAC. The differentiation pattern observed in soil samples, as obtained by this fast and non-destructive analytical approach, well matches with the results obtained by characterization with other costly analytical techniques, such as ICP/MS, GFAAS, FAAS, etc. Thus, the proposed approach furnishes a rational basis to reduce the number of soil samples to be collected for further analytical characterization, i.e. metals content, isotopic ratio of radiogenic element, etc., while maintaining an exhaustive description of the investigated production areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Are There Dangerous Levels of Lead in Local Soil?

    NASA Astrophysics Data System (ADS)

    Pita, I.

    2017-12-01

    The purpose of this experiment was to show that comparing random soil samples from areas in New Orleans; the Garden District will have the highest levels of lead in soil. My Independent variable was the soil samples collected from locations in the Garden District area of New Orleans, and other locations throughout New Orleans. The control was the soil samples collected from the local playground in the New Orleans area. My dependent variable was the lead soil test kit, using ppm (parts per million) of lead to show concentration. 400 ppm + in bare soil where children play is considered dangerous hazard levels. 1,000 + ppm in all other areas is considered dangerous hazard levels. The first step to my experiment, I collected soil samples from different locations throughout the Garden District area of New Orleans. The second step to my experiment, I conducted the lead soil testing in a controlled area at home in a well ventilated room, using all the necessary safety equipment needed, I began testing a 24 hour test period and a 48 hour test period. I then collected the data from both test. The results showed that soil samples from the Garden District area compared to the other sample locations had higher lead concentrations in the soil. This backed my hypothesis when comparing soil samples from areas in New Orleans, the Garden District will have the highest lead levels. In conclusion these experiments showed that with the soil samples collected, there were higher concentrations of lead in the soil from the Garden District area compared to the other areas where soil was collected. Reconstruction and renovations, from the devastation that Hurricane Katrina created, are evident of the lead in paint of older homes which now show the lead concentration in the soil. Lead is a lethal element if consumed or inhaled in high doses, which can damage key organs in our body, which can be deadly. Better awareness through social media, television, radio, doctors, studies, pamphlets, environmental agencies, and other forms to address the steps in protecting your family and home for a lead free environment.

  12. A Comparative Study of Sediment Quality in Four Reservoirs.

    DTIC Science & Technology

    1984-02-01

    same time as the reservoir samples. Precision for interstitial water samples was initially measured using soil - solution samples. As interstitial...Variable Composite Sample hean, ma&L Replicates Deviation, ma L Deviation. Ammonium nitrogen Soil solution 0.07 12 0.01 14 DeGray composite 2.00 10 0.01...0.5 Nitrate nitrite Filtered wastewater 0.04 10 0.01 25 nitrogen Soluble reactive Soil solution 0.04 12 0.01 25 phosphorus DeGray composite 0.16 10 0.01

  13. Application of a Stir Bar Sorptive Extraction sample preparation method with HPLC for soil fungal biomass determination in soils from a detrital manipulation study.

    PubMed

    Beni, Áron; Lajtha, Kate; Kozma, János; Fekete, István

    2017-05-01

    Ergosterol is a sterol found ubiquitously in cell membranes of filamentous fungi. Although concentrations in different fungal species span the range of 2.6 to 42μg/mL of dry mass, many studies have shown a strong correlation between soil ergosterol content and fungal biomass. The analysis of ergosterol in soil therefore could be an effective tool for monitoring changes in fungal biomass under different environmental conditions. Stir Bar Sorptive Extraction (SBSE) is a new sample preparation method to extract and concentrate organic analytes from liquid samples. SBSE was here demonstrated to be a simple, fast, and cost effective method for the quantitative analysis of ergosterol from field-collected soils. Using this method we observed that soil ergosterol as a measure of fungal biomass proved to be a sensitive indicator of soil microbial dynamics that were altered by changes in plant detrital inputs to soils in a long-term field experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Matching soil salinization and cropping systems in communally managed irrigation schemes

    NASA Astrophysics Data System (ADS)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  15. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  16. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    PubMed

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  17. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  18. Radioactivites in returned lunar materials and in meteorites

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1983-01-01

    The cosmic-ray, solar-flare, and solar-wind bombardments of lunar rocks and soils and meteorites were studied by measurements of tritium, carbon-14 and argon radioactivity. The radioactivity integrates the bombardment for a time period equal to several half-lines. H-3, Ar-37, Ar-39, C-14. For the interior samples of lunar rocks and for deep lunar soil samples, the amounts of the radioactivities were equal to those calculated for galactic cosmic-ray interactions. The top near-surface samples of lunar rocks and the shallow lunar soil samples show excess amounts of the radioactivities attributable to solar flares. Lunar soil fines contain a large amount of hydrogen due to implanted solar wind. Studies of the H-3 in lunar soils and in recovered Surveyor-3 materials gave an upper limit for the H-3/H ratio in the solar wind of 10 to the -11th power. Solar wind carbon is also implanted on lunar soil fines. Lunar soils collected on the surface contained a 0.14 component attributable to implanted solar wind C-14. The C-14/H ratio attributed to the solar wind from this C-14 excess is approximately 4 x 10 to the -11th power.

  19. Investigation of the Influence of Selected Soil and Plant Properties from Sakarya, Turkey, on the Bioavailability of Trace Elements by Applying an In Vitro Digestion Model.

    PubMed

    Altundag, Huseyin; Albayrak, Sinem; Dundar, Mustafa S; Tuzen, Mustafa; Soylak, Mustafa

    2015-11-01

    The main aim of this study was an investigation of the influence of selected soil and plant properties on the bioaccessibility of trace elements and hence their potential impacts on human health in urban environments. Two artificial digestion models were used to determine trace element levels passing from soil and plants to man for bioavailability study. Soil and plant samples were collected from various regions of the province of Sakarya, Turkey. Digestive process is started by addition of soil and plant samples to an artificial digestion model based on human physiology. Bioavailability % values are obtained from the ratio of the amount of element passing to human digestion to element content of soil and plants. According to bioavailability % results, element levels passing from soil samples to human digestion were B = Cr = Cu = Fe = Pb = Li < Al < Ni < Co < Ba < Mn < Sr < Cd < Na < Zn < Tl, while element levels passing from plant samples to human digestion were Cu = Fe = Ni = Pb = Tl = Na = Li < Co < Al < Sr < Ba < Mn < Cd < Cr < Zn < B. It was checked whether the results obtained reached harmful levels to human health by examining the literature.

  20. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  1. Influence of pore size distributions on decomposition of maize leaf residue: evidence from X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark

    2014-05-01

    Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (<0.05, 0.05-0.1, 0.10-05, 0.5-1.0 and 1.0-2.0 mm). Weighted average pore diameters ranged from 10 µm (<0.05 mm fraction) to 104 µm (1-2 mm fraction), while maximum pore diameter were in a range from 29 µm (<0.05 mm fraction) to 568 µm (1-2 mm fraction) in the created soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to <0.05 mm size. Five to six replicated samples were used for intact and ground samples of all sizes with and without leaves. Two replications of the intact aggregate fractions of all sizes with leaves were subjected to µ-CT scanning before and after incubation, whereas all the remaining replications of both intact and ground aggregate fractions of <0.05, 0.05-0.1, and 1.0-2.0 mm sizes with leaves were scanned with µ-CT after the incubation. The µ-CT image showed that approximately 80% of the leaves in the intact samples of large aggregate fractions (0.5-1.0 and 1.0-2.0 mm) was decomposed during the incubation, while only 50-60% of the leaves were decomposed in the intact samples of smaller sized fractions. Even lower percent of leaves (40-50%) was decomposed in the ground samples, with very similar leaf decomposition observed in all ground samples regardless of the aggregate fraction size. Consistent with µ-CT results, the proportion of decomposed leaf estimated with the conventional mass loss method was 48% and 60% for the <0.05 mm and 1.0-2.0 mm soil size fractions of intact aggregates, and 40-50% in ground samples, respectively. The results of the incubation experiment demonstrated that, while greater C mineralization was observed in samples of all size fractions amended with leaf, the effect of leaf presence was most pronounced in the smaller aggregate fractions (0.05-0.1 mm and 0.05 mm) of intact aggregates. The results of the present study unequivocally demonstrate that differences in pore size distributions have a major effect on the decomposition of plant residues added to soil. Moreover, in presence of plant residues, differences in pore size distributions appear to also influence the rates of decomposition of the intrinsic soil organic material.

  2. Evaluation of the Feasibility of Biodegrading Explosives-Contaminated Soils and Groundwater at the Newport Army Ammunition Plant (NAAP)

    DTIC Science & Technology

    1991-06-01

    undamaged to its original location. 9 3 Biodegradation Studies The NAAP soils were used for both the basic microbiological studies and the bench scale...reactor studies. The microbiological studies were directed at measuring (1) the growth potential of bacteria present in the soil samples and (2) the...clear and odorless, and no TNT was detected in them. The detection limit for TNT in the water samples was 0.5 mg/L. Microbiological characterization

  3. [Restoration of microbial ammonia oxidizers in air-dried forest soils upon wetting].

    PubMed

    Zhou, Xue; Huang, Rong; Song, Ge; Pan, Xianzhang; Jia, Zhongjun

    2014-11-04

    This study was aimed to investigate the abundance and community shift of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in air-dried forest soils in response to water addition, to explore the applicability of air-dried soil for microbial ecology study, and to elucidate whether AOA within the marine group 1. 1a dominate ammonia oxidizers communities in the acidic forest soils in China. Soil samples were collected from 10 forest sites of the China Ecosystem Research Network (CERN) and kept under air-drying conditions in 2010. In 2013 the air-dried soil samples were adjusted to 60% of soil maximum water holding capacity for a 28-day incubation at 28 degrees C in darkness. DGGE fingerprinting, clone library construction, pyrosequencing and quantitative PCR of amoA genes were performed to assess community change of ammonia oxidizers in air-dried and re-wetted soils. After incubation for 28 days, the abundance of bacteria and archaea increased significantly, up to 3,230 and 568 times, respectively. AOA increased significantly in 8 samples, and AOB increased significantly in 5 of 10 samples. However, pyrosequencing of amoA genes reveals insignificant changes in composition of AOA and AOB communities. Phylogenetic analysis of amoA genes indicates that archaeal ammonia oxidizers were predominated by AOA within the soil group 1. 1b lineage, while the Nitrosospira-like AOB dominate bacteria ammonia oxidizer communities. There was a significantly positive correlation between AOA/AOB ratio and total nitrogen (r2 = 0.54, P < 0.05), implying that soil ammonia oxidation might be dominated by AOA in association with ammonium released from soil mineralization. Phylogenetic analysis suggest that AOA members within the soil group 1. 1b lineage were not restricted to non-acidic soils as previously thought. The abundance rather than composition of AOA and AOB changed in response to water addition. This indicates that air-dried soil could be of help for microbial biogeography study.

  4. Soil Ingestion is Associated with Child Diarrhea in an Urban Slum of Nairobi, Kenya.

    PubMed

    Bauza, Valerie; Ocharo, R M; Nguyen, Thanh H; Guest, Jeremy S

    2017-03-01

    Diarrhea is a leading cause of mortality in children under 5 years of age. We conducted a cross-sectional study of 54 children aged 3 months to 5 years old in Kibera, an urban slum in Nairobi, Kenya, to assess the relationship between caregiver-reported soil ingestion and child diarrhea. Diarrhea was significantly associated with soil ingestion (adjusted odds ratio = 9.9, 95% confidence interval = 2.1-47.5). Soil samples from locations near each household were also collected and analyzed for Escherichia coli and a human-associated Bacteroides fecal marker (HF183). Escherichia coli was detected in 100% of soil samples (mean 5.5 log colony forming units E. coli per gram of dry soil) and the Bacteroides fecal marker HF183 was detected in 93% of soil samples. These findings suggest that soil ingestion may be an important transmission pathway for diarrheal disease in urban slum settings.

  5. Soil Ingestion is Associated with Child Diarrhea in an Urban Slum of Nairobi, Kenya

    PubMed Central

    Bauza, Valerie; Ocharo, R. M.; Nguyen, Thanh H.; Guest, Jeremy S.

    2017-01-01

    Diarrhea is a leading cause of mortality in children under 5 years of age. We conducted a cross-sectional study of 54 children aged 3 months to 5 years old in Kibera, an urban slum in Nairobi, Kenya, to assess the relationship between caregiver-reported soil ingestion and child diarrhea. Diarrhea was significantly associated with soil ingestion (adjusted odds ratio = 9.9, 95% confidence interval = 2.1–47.5). Soil samples from locations near each household were also collected and analyzed for Escherichia coli and a human-associated Bacteroides fecal marker (HF183). Escherichia coli was detected in 100% of soil samples (mean 5.5 log colony forming units E. coli per gram of dry soil) and the Bacteroides fecal marker HF183 was detected in 93% of soil samples. These findings suggest that soil ingestion may be an important transmission pathway for diarrheal disease in urban slum settings. PMID:28093532

  6. A simple evaluation of soil quality of waterlogged purple paddy soils with different productivities.

    PubMed

    Liu, Zhanjun; Zhou, Wei; Lv, Jialong; He, Ping; Liang, Guoqing; Jin, Hui

    2015-01-01

    Evaluation of soil quality can be crucial for designing efficient farming systems and ensuring sustainable agriculture. The present study aimed at evaluating the quality of waterlogged purple paddy soils with different productivities in Sichuan Basin. The approach involved comprehensive analyses of soil physical and chemical properties, as well as enzyme activities and microbial community structure measured by phospholipid fatty acid analysis (PLFA). A total of 36 soil samples were collected from four typical locations, with 12 samples representing high productivity purple paddy soil (HPPS), medium productivity purple paddy soil (MPPS) and low productivity purple paddy soil (LPPS), respectively. Most measured soil properties showed significant differences (P ≤ 0.05) among HPPS, MPPS and LPPS. Pearson correlation analysis and principal component analysis were used to identify appropriate soil quality indicators. A minimum data set (MDS) including total nitrogen (TN), available phosphorus (AP), acid phosphatase (ACP), total bacteria (TB) and arbuscular mycorrhizal fungi was established and accounted for 82.1% of the quality variation among soils. A soil quality index (SQI) was developed based on the MDS method, whilst HPPS, MPPS and LPPS received mean SQI scores of 0.725, 0.536 and 0.425, respectively, with a ranking of HPPS > MPPS > LPPS. HPPS showed relatively good soil quality characterized by optimal nutrient availability, enzymatic and microbial activities, but the opposite was true of LPPS. Low levels of TN, AP and soil microbial activities were considered to be the major constraints limiting the productivity in LPPS. All soil samples collected were rich in available N, K, Si and Zn, but deficient in available P, which may be the major constraint for the studied regions. Managers in our study area should employ more appropriate management in the LPPS to improve its rice productivity, and particularly to any potential limiting factor.

  7. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.

  8. Monitoring of Nitrate and Pesticide Pollution in Mnasra, Morocco Soil and Groundwater.

    PubMed

    Marouane, Bouchra; Dahchour, Abdelmalek; Dousset, Sylvie; El Hajjaji, Souad

    2015-06-01

    This study evaluates the levels of nitrates and pesticides occurring in groundwater and agricultural soil in the Mnasra, Morocco area, a zone with intensive agricultural activity. A set of 108 water samples and 68 soil samples were collected from ten selected sites in the area during agricultural seasons, from May 2010 to September 2012. The results reveal that 89.7% of water samples exceeded the standard limit of nitrate concentrations for groundwater (50 mg/L). These results can be explained by the prevailing sandy nature of the soil in the area, the frequency of fertilizer usage, and the shallow level of the water table, which favors the leaching of nitrate from field to groundwater. In contrast, the selected pesticide molecules were not detected in the analysed soil and water samples; levels were below the quantification limit in all samples. This situation could be explained by the probable partial or total transformation of the molecules in soil.

  9. A survey of lead contamination in soil along Interstate 880, Alameda County, California.

    PubMed

    Teichman, J; Coltrin, D; Prouty, K; Bir, W A

    1993-09-01

    This study was undertaken to determine the levels of lead in soils taken from yards of homes in close proximity to a major freeway. Soils were collected from the yards of homes in communities adjacent to the freeway and within a 1-mile radius. Samples were analyzed using U.S. Environmental Protection Agency (EPA) methods and atomic absorption instrumentation. Ten percent of the samples were split and sent to a second laboratory for quality control. The possibility of lead-based paint contributing to the contamination was eliminated by sampling more than 20 feet from the homes. The soils closest to the highway showed lead levels exceeding California's and EPA's criteria for hazardous waste. A stratified sample of the depth of contamination in soils was also undertaken. Previously identified "hot spots" (soils with lead levels exceeding 500 ppm in the top 0.75 inch) were core sampled. Results indicated 90% of the subsurface samples contained lead exceeding the surface contaminations. This may be attributed to decades of urban lead-laden dust deposition. As the use of leaded gasolines have diminished in the past decade, the uppermost layers of soil/dust contained lower amounts of lead.

  10. Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study.

    PubMed

    Sun, Xiangyu; Ma, Tingting; Yu, Jing; Huang, Weidong; Fang, Yulin; Zhan, Jicheng

    2018-02-15

    The copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China, were investigated. The results showed that the copper pollution status in vineyard soils, grapes and wines in the investigated area in China is under control, with only 4 surface soil (0-20cm) samples over maximum residue limits (MRL) and no grape or wine samples over MRL. Different vineyards, grape varieties, vine ages, and training systems all significantly influenced the copper contents in the vineyard soils, grape and wines. Additionally, the copper levels in the vineyard soils, grapes and wines all had some correlation. In wine samples, the copper contents ranged from 0.52 to 663μg/L, which is only approximately one percent the level found in grapes and one ten-thousandth that found in soils. Of the wine samples, red wines showed a significantly higher copper content than white wines, while in the red/white grape and soil samples, no significant differences were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Selected papers in the hydrologic sciences 1984; July 1984

    USGS Publications Warehouse

    Meyer, Eric L.

    1984-01-01

    The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.

  12. Interpolated mapping and investigation of environmental radioactivity levels in soils and mushrooms in the Middle Black Sea Region of Turkey.

    PubMed

    Türkekul, İbrahim; Yeşilkanat, Cafer Mert; Ciriş, Ali; Kölemen, Uğur; Çevik, Uğur

    2018-06-01

    The activity concentration of natural ( 238 U, 232 Th, and 40 K) and artificial ( 137 Cs) radionuclides was determined in 50 samples (obtained from the same station) from various species of mushrooms and soil collected from the Middle Black Sea Region (Turkey). The activities of 238 U, 232 Th, 40 K, and 137 Cs were found as 84 ± 16, 45 ± 14, 570 ± 28, and 64 ± 6 Bq kg -1 (dry weight), respectively, in the mushroom samples and as 51 ± 6, 41 ± 6, 201 ± 11, and 44 ± 4 Bq kg -1 , respectively, in the soil samples for the entire area of study. The results of all radionuclide activity measurements, except those of 238 U and 232 Th in the mushroom samples, are consistent with previous studies. In the soil samples, the mean values of 238 U and 232 Th are above the world mean, and the activity mean of 40 K is below the world mean. Finally, the activity estimation was made with both the soil and mushroom samples for unmeasured points within the study area by using the ordinary kriging method. Radiological distribution maps were generated.

  13. A laboratory rainfall simulator to study the soil erosion and runoff water

    NASA Astrophysics Data System (ADS)

    Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco

    2010-05-01

    The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four samples were subjected to controlled burnings with different fire severity: two samples burnt to 250°C and the other two samples burnt to 450°C. Preliminary laboratory data of soil erosion and surface and subsurface runoff were obtained. The water parameters analysed were: pH, electrical conductivity, temperature (in the moment of sampling) and suspended sediments, ammonium, nitrates, total nitrogen (Kjeldahl method), within 24 hours after sampling.

  14. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of rhizosphere and the favorable soil moisture conditions under tree canopy on soil microbial activities. TOC, BR and MB-C values were considerably lower in soil depth of 10-40cm compared with 0-10 cm in both irrigated and rainfed soil parcels. Moreover BR and MB-C was higher in irrigated soil parcels compared with rainfed ones suggesting that the periodic irrigation significantly enhances the soil microbial activity. There were no considerable differences in TOC. For this the TOC and potential activity of microbial community can contribute in the soil nutrient and irrigation management guidelines in order to exploit the utilization of productive soils in the region under studied.

  15. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils.

    PubMed

    Lawrence, Gregory B; Fernandez, Ivan J; Hazlett, Paul W; Bailey, Scott W; Ross, Donald S; Villars, Thomas R; Quintana, Angelica; Ouimet, Rock; McHale, Michael R; Johnson, Chris E; Briggs, Russell D; Colter, Robert A; Siemion, Jason; Bartlett, Olivia L; Vargas, Olga; Antidormi, Michael R; Koppers, Mary M

    2016-11-25

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  16. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils

    PubMed Central

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael R.; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael R.; Koppers, Mary M.

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise. PMID:27911419

  17. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    USGS Publications Warehouse

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  18. Fine Increment Soil Collector (FISC): A new device to support high resolution soil and sediment sampling for agri-environmental assessments

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Meusburger, Katrin; Iurian, Andra-Rada; Owens, Philip N.; Toloza, Arsenio; Alewell, Christine

    2014-05-01

    Soil and sediment related research for terrestrial agri-environmental assessments requires accurate depth incremental sampling of soil and exposed sediment profiles. Existing coring equipment does not allow collecting soil/sediment increments at millimetre resolution. Therefore, the authors have designed an economic, portable, hand-operated surface soil/sediment sampler - the Fine Increment Soil Collector (FISC) - which allows extensive control of soil/sediment sampling process and easy recovery of the material collected by using a simple screw-thread extraction system. In comparison with existing sampling tools, the FISC has the following advantages and benefits: (i) it permits sampling of soil/sediment samples at the top of the profile; (ii) it is easy to adjust so as to collect soil/sediment at mm resolution; (iii) it is simple to operate by one single person; (iv) incremental samples can be performed in the field or at the laboratory; (v) it permits precise evaluation of bulk density at millimetre vertical resolution; and (vi) sample size can be tailored to analytical requirements. To illustrate the usefulness of the FISC in sampling soil and sediments for 7Be - a well-known cosmogenic soil tracer and fingerprinting tool - measurements, the sampler was tested in a forested soil located 45 km southeast of Vienna in Austria. The fine resolution increments of 7Be (i.e. 2.5 mm) affects directly the measurement of the 7Be total inventory but above all impacts the shape of the 7Be exponential profile which is needed to assess soil movement rates. The FISC can improve the determination of the depth distributions of other Fallout Radionuclides (FRN) - such as 137Cs, 210Pbexand239+240Pu - which are frequently used for soil erosion and sediment transport studies and/or sediment fingerprinting. Such a device also offers great potential to investigate FRN depth distributions associated with fallout events such as that associated with nuclear emergencies. Furthermore, prior to remediation activities - such as topsoil removal - in contaminated soils and sediments (e.g. by heavy metals, pesticides or nuclear power plant accident releases), basic environmental assessment often requires the determination of the extent and the depth penetration of the different contaminants, precision that can be provided by using the FISC.

  19. Visual assessment of soil structure quality in an agroextractivist system in Southeastern Amazonia

    NASA Astrophysics Data System (ADS)

    Fernanda Simões da Silva, Laura; Stuchi Boschi, Raquel; Ortega Gomes, Matheus; Cooper, Miguel

    2016-04-01

    Soil structure is considered a key factor in the functioning of soil, affecting its ability to support plant and animal life, and moderate environmental quality. Numerous methods are available to evaluate soil structure based on physical, chemical and biological indicators. Among the physical indicators, the attributes most commonly used are soil bulk density, porosity, soil resistance to penetration, tensile strength of aggregates, soil water infiltration, and available water. However, these methods are expensive and generally time costly for sampling and laboratorial procedures. Recently, evaluations using qualitative and semi-quantitative indicators of soil structure quality have gained importance. Among these methods, the method known as Visual Evaluation of Soil Structure (VESS) (Ball et al., 2007; Guimarães et al., 2011) can supply this necessity in temperate and tropical regions. The study area is located in the Piranheira Praialta Agroextrativist Settlement Project in the county of Nova Ipixuna, Pará, Brazil. Two toposequences were chosen, one under native forest and the other under pasture. Pits were opened in different landscape positions (upslope, midslope and downslope) for soil morphological, micromorphological and physical characterization. The use of the soil visual evaluation method (SVE) consisted in collecting an undisturbed soil sample of approximately 25 cm in length, 20 cm in width and 10 cm in depth. 12 soil samples were taken for each land use. The samples were manually fragmented, respecting the fracture planes between the aggregates. The SVE was done comparing the fragmented sample with a visual chart and scores were given to the soil structure. The categories that define the soil structure quality (Qe) vary from 1 to 5. Lower scores mean better soil structure. The final score calculation was done using the classification key of Ball et al. (2007) adapted by Guimarães (2011). A change in soil structure was observed between forest and pasture. The presence of layers of different depths, and size and shape of aggregates resulted in a lower Qe in the forest soils (Qe= 2,04 ±0,4), followed by the pasture (Qe= 3,09 ± 1,3). These results indicate certain degradation in the soil structure in the pasture. The variability of the soil structure in the forest samples was lower. The pasture samples presented a worse soil structure when compared to the forest, although their Qe values can be considered good.

  20. Near infrared index to assess the effect of soil tillage and fertilizer on soil water content.

    NASA Astrophysics Data System (ADS)

    Soltani, Ines; Fouad, Youssef; Michot, Didier; Breger, Pascale; Dubois, Remy; Pichelin, Pascal; Cudennec, Christophe

    2017-04-01

    Characterization of soil hydraulic properties is important for assessing soil water regime in agricultural fields. In the laboratory, measurements of soil hydrodynamic properties are costly and time consuming. Numerous studies recently demonstrated that reflectance spectroscopy can give a rapid estimation of several soil properties including those related with soil water content. The main objective of this research study was to show that near infrared spectroscopy (NIRS) is a useful tool to study the combined effect of soil tillage and fertilizer input on soil hydrodynamic properties. The study was carried out on soil samples collected from an experimental station located in Brittany, France. In 2000, the field was designed in a split-plot combining three tillage practices and four sources of fertilizers (mineral and organic). Undisturbed soil blocks were sampled in 2012 from three different depths of topsoil (0-7 cm, 7-15 cm and 15-20 cm) at each treatment. From each soil block, four aggregates with 3-4 cm diameter by 5-6 cm height were collected. Soil aggregates were first saturated and were then drained through 10 matric potential, from saturation up to permanent wilting point (pF=4.2), by successively using a suction table and a pressure chamber. Once the desired water pressure head was reached, soil samples were scanned to acquire reflectance spectra between 400-2500 nm using a handheld spectroradiometer equipped with a contact probe. Each spectrum was transformed into continuum removal, and an index based on the full width at half maximum (FWHM) of the absorption feature around 1920 nm was calculated. This index showed a linear relationship (R2>0.9) with volumetric water content. Moreover our results showed that the slope of the line was well correlated with the range of treatment. Overall, our findings indicate that the absorption feature of continuum removal spectra around 1900 nm can be useful to study the effect, particularly, of tillage on hydrodynamic properties of soils.

  1. Response of Soil Inorganic Nitrogen to Land Use and Topographic Position in the Cofre de Perote Volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Campos C., Adolfo

    2010-08-01

    This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005-August 2006) with 11 observations. Significant differences in soil NH4 +-N and NO3 --N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 --N content. In tropical cloud forest and grassland, high soil NH4 +-N and low NO3 --N content were recorded, while soil NO3 --N content was high in coffee crop. Low NO3 --N contents could mean a substantial microbial assimilation of NO3 --N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function ( N = 33 + 2459exp-0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.

  2. Soil data from Picea mariana stands near delta junction, Alaska of different ages and soil drainage type

    USGS Publications Warehouse

    Manies, Kristen L.; Harden, Jennifer W.; Silva, Steven R.; Briggs, Paul H.; Schmid, Brian M.

    2004-01-01

    The U.S. Geological Survey project Fate of Carbon in Alaskan Landscapes (FOCAL) is studying the effect of fire and soil drainage on soil carbon storage in the boreal forest. This project has selected several sites to study within central Alaska of varying ages (time since fire) and soil drainage types. This report describes the location of these sampling sites, as well as the procedures used to describe, sample, and analyze the soils. This report also contains data tables with this information, including, but not limited to field descriptions, bulk density, particle size distribution, moisture content, carbon (C) concentration, nitrogen (N) concentration, isotopic data for C, and major, minor and trace elemental concentration.

  3. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops ( p < 0.05). Cluster analysis revealed four categories of soil arthropods according to abundance, i.e., highly abundant (Collembola, Acarina, Myripoda, Hymenoptera), moderately abundant (Orthoptera, Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface arthropods were the major contributors of variation in overall abundance in extreme temperature months while microarthropods in low-temperature months. CCA analysis revealed the occurrence of different arthropod groups in correspondence with different abiotic variables. Results are discussed in view of position of these arthropods as useful indicators under changing environmental conditions impacting agroecosystems in the study area.

  4. Exfiltrometer apparatus and method for measuring unsaturated hydrologic properties in soil

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.; Schafer, Annette L.

    2006-01-17

    Exfiltrometer apparatus includes a container for holding soil. A sample container for holding sample soil is positionable with respect to the container so that the sample soil contained in the sample container is in communication with soil contained in the container. A first tensiometer operatively associated with the sample container senses a surface water potential at about a surface of the sample soil contained in the sample container. A second tensiometer operatively associated with the sample container senses a first subsurface water potential below the surface of the sample soil. A water content sensor operatively associated with the sample container senses a water content in the sample soil. A water supply supplies water to the sample soil. A data logger operatively connected to the first and second tensiometers, and to the water content sensor receives and processes data provided by the first and second tensiometers and by the water content sensor.

  5. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania.

    PubMed

    Nyanza, Elias C; Joseph, Mary; Premji, Shahirose S; Thomas, Deborah Sk; Mannion, Cynthia

    2014-04-15

    Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15-49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita District are exposed to potentially high levels of chemical elements, depending upon frequency of consumption, daily amount consumed and the source location of soil eaten.

  6. Distribution and Source Identification of Pb Contamination in industrial soil

    NASA Astrophysics Data System (ADS)

    Ko, M. S.

    2017-12-01

    INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0­-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb concentration at depth indicated elusive contamination event or contamination sources. In order to identify the contamination source clearly, isotope and Pb compound/mineralogy analysis are necessary.

  7. Cost-effective sampling of (137)Cs-derived net soil redistribution: part 2 - estimating the spatial mean change over time.

    PubMed

    Chappell, A; Li, Y; Yu, H Q; Zhang, Y Z; Li, X Y

    2015-06-01

    The caesium-137 ((137)Cs) technique for estimating net, time-integrated soil redistribution by the processes of wind, water and tillage is increasingly being used with repeated sampling to form a baseline to evaluate change over small (years to decades) timeframes. This interest stems from knowledge that since the 1950s soil redistribution has responded dynamically to different phases of land use change and management. Currently, there is no standard approach to detect change in (137)Cs-derived net soil redistribution and thereby identify the driving forces responsible for change. We outline recent advances in space-time sampling in the soil monitoring literature which provide a rigorous statistical and pragmatic approach to estimating the change over time in the spatial mean of environmental properties. We apply the space-time sampling framework, estimate the minimum detectable change of net soil redistribution and consider the information content and cost implications of different sampling designs for a study area in the Chinese Loess Plateau. Three phases (1954-1996, 1954-2012 and 1996-2012) of net soil erosion were detectable and attributed to well-documented historical change in land use and management practices in the study area and across the region. We recommend that the design for space-time sampling is considered carefully alongside cost-effective use of the spatial mean to detect and correctly attribute cause of change over time particularly across spatial scales of variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A Comparison of delO18 Composition of Water Extracted from Suction Lysimeters, Centrifugation, and Azeotropic Distillation

    NASA Astrophysics Data System (ADS)

    Figueroa, A.; Tindall, J. A.; Friedel, M. J.

    2005-12-01

    Concentration of delO18 in water samples extracted by suction lysimeters is compared to samples obtained by methods of centrifugation and azeotropic distillation. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida on properties belonging to the Walt Disney World Resort Complex. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. The delO18 water was analyzed on a mass spectrophotometer. Potassium Bromide (KBr) was also used as a tracer and analyzed by ion chromatography. A portion of the data obtained was modeled using CXTFIT. Water collected by centrifugation and azeotropic distillation data were about 2-5% more negative than that collected by suction lysimeter values from the Florida (sandy) soil and about 5-7 % more negative from the Missouri (well structured clay) soil. Results indicate that the majority of soil water in well structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. Also, it is plausible that evaporation caused some delO18 enrichment in the suction lysimeters. Suction lysimeters preferentially sampled water held at lower matric potentials, which may not represent total soil water. In cases where a sufficient volume of water has passed through the soil profile and displaced all previous pore water, suction lysimeters will however collect a representative sample of all the water at that depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeters be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The CXTFIT program worked well for Florida soils (a more homogeneous sand), but gave poor performance for Missouri soils (well structured clays) except for deeper depths where clay structure was less variable. The data also suggest that each extraction method samples a separate component of soil-pore water. Consequently, centrifugation can be used with good success, particularly for efficient sampling of large areas. Azeotropic distillation is more appropriate when strict qualitative and quantitative data for desorption, desorption, and various types of kinetic studies are needed.

  9. Identification of dust storm origin in South -West of Iran.

    PubMed

    Broomandi, Parya; Dabir, Bahram; Bonakdarpour, Babak; Rashidi, Yousef

    2017-01-01

    Deserts are the main sources of emitted dust, and are highly responsive to wind erosion. Low content of soil moisture and lack of vegetation cover lead to fine particle's release. One of the semi-arid bare lands in Iran, located in the South-West of Iran in Khoozestan province, was selected to investigate Sand and Dust storm potential. This paper focused on the metrological parameters of the sampling site, their changes and the relationship between these changes and dust storm occurrence, estimation of Reconaissance Drought Index, the Atterberg limits of soil samples and their relation with soil erosion ability, the chemical composition, size distribution of soil and airborne dust samples, and estimation of vertical mass flux by COMSALT through considering the effect of saffman force and interparticle cohesion forces during warm period (April-September) in 2010. The chemical compositions are measured with X-ray fluorescence, Atomic absorption spectrophotometer and X-ray diffraction. The particle size distribution analysis was conducted by using Laser particle size and sieve techniques. There was a strong negative correlation between dust storm occurrence and annual and seasonal rainfall and relative humidity. Positive strong correlation between annual and seasonal maximum temperature and dust storm frequency was seen. Estimation of RDI st in the studied period showed an extremely dry condition. Using the results of particle size distribution and soil consistency, the weak structure of soil was represented. X-ray diffraction analyses of soil and dust samples showed that soil mineralogy was dominated mainly by Quartz and calcite. X-ray fluorescence analyses of samples indicated that the most important major oxide compositions of the soil and airborne dust samples were SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, and Fe 2 O 3 , demonstrating similar percentages for soil and dust samples. Estimation of Enrichment Factors for all studied trace elements in soil samples showed Br, Cl, Mo, S, Zn, and Hg with EF values higher than 10. The findings, showed the possible correlation between the degree of anthropogenic soil pollutants, and the remains of Iraq-Iran war. The results expressed sand and dust storm emission potential in this area, was illustrated with measured vertical mass fluxes by COMSALT.

  10. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    PubMed

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  11. Contaminant gradients in trees: Directional tree coring reveals boundaries of soil and soil-gas contamination with potential applications in vapor intrusion assessment

    USGS Publications Warehouse

    Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  12. Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran

    NASA Astrophysics Data System (ADS)

    Mazhari, Seyed Ali; Sharifiyan Attar, Reza; Haghighi, Faezeh

    2017-10-01

    Soils developed in the Sabzevar ophiolitic area originate from different bedrocks. All samples display similar physico-chemical properties, but heavy metal concentrations vary extremely in different soil samples. Serpentine soils have the highest total concentration of Cr, Ni and Co; while soils derived from mafic rocks (olivine basalts and hornblende gabbros) show the highest Cu (85.29-109.11 ppm) and Zn (46.88-86.60 ppm). The DTPA-extraction of soil samples indicates that the order of metal bioavailability was Cr3% of total Cr; >12% of total Co and >17% of total Zn). Oxide minerals (such as chromite and magnetite) in Sabzevar soils play as resistant minerals and impede the heavy metal availability; while forsterite, pyroxene, serpentine and talc are more labile and show higher DTPA-extractable of heavy metals.

  13. General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types

    PubMed Central

    Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion

    2012-01-01

    Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. PMID:22937029

  14. Impacts of heterogeneous organic matter on phenanthrene sorption--Different soil and sediment samples

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Childs, Jeffrey; Sabatini, David A.

    2001-01-01

    Organic petrography has been proposed as a tool for characterizing the heterogeneous organic matter present in soil and sediment samples. A new simplified method is proposed as a quantitative means of interpreting observed sorption behavior for phenanthrene and different soils and sediments based on their organic petrographical characterization. This method is tested under singe solute conditions and at phenanthrene concentration of 1 μg/L. Since the opaque organic matter fraction dominates the sorption process, we propose that by quantifying this fraction one can interpret organic content normalized sorption distribution coefficient (Koc) values for a sample. While this method was developed and tested for various samples within the same aquifer, in the current study the method is validated for soil and sediment samples from different sites that cover a wide range of organic matter origin, age, and organic content. All 10 soil and sediment samples studied had log Koc values for the opaque particles between 5.6 and 6.8. This range of Koc values illustrates the heterogeneity of opaque particles between sites and geological formations and thus the need to characterize the opaque fraction of materials on a site-by-site basis.

  15. Geochemical and mineralogical data for soils of the conterminous United States

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Kilburn, James E.; Fey, David L.

    2013-01-01

    In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1,600 square kilometers, 4,857 sites) geochemical and mineralogical survey of soils of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Sampling and analytical protocols were developed at a workshop in 2003, and pilot studies were conducted from 2004 to 2007 to test and refine these recommended protocols. The final sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting dataset provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report (1) describes the sampling, sample preparation, and analytical methods used; (2) gives details of the quality control protocols used to monitor the quality of chemical and mineralogical analyses over approximately six years; and (3) makes available the soil geochemical and mineralogical data in downloadable tables.

  16. Geochemical data for Colorado soils-Results from the 2006 state-scale geochemical survey

    USGS Publications Warehouse

    Smith, David B.; Ellefsen, Karl J.; Kilburn, James E.

    2010-01-01

    In 2006, soil samples were collected at 960 sites (1 site per 280 square kilometers) throughout the state of Colorado. These samples were collected from a depth of 0-15 centimeters and, following a near-total multi-acid digestion, were analyzed for a suite of more than 40 major and trace elements. The resulting data set provides a baseline for the natural variation in soil geochemistry for Colorado and forms the basis for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used and makes available all the soil geochemical data generated in the study.

  17. Soil contamination in landfills: a case study of a landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2016-02-01

    A phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as a bioindicator of heavy metals. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body, and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu, and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth, or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body, and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity - in particular samples 3 to 8 - yet the seed germination capacity in all eight samples of tested soils ranges between 86 and 137 %.

  18. Soil contaminations in landfill: a case study of the landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2015-10-01

    Phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as heavy metals bioindicator. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity; in particular samples 3 to 8, yet the seed germination capacity in all 8 samples of tested soils range between 86 and 137 %.

  19. Measuring environmental change in forest ecosystems by repeated soil sampling: a North American perspective

    USGS Publications Warehouse

    Lawrence, Gregory B.; Fernandez, Ivan J.; Richter, Daniel D.; Ross, Donald S.; Hazlett, Paul W.; Bailey, Scott W.; Oiumet, Rock; Warby, Richard A.F.; Johnson, Arthur H.; Lin, Henry; Kaste, James M.; Lapenis, Andrew G.; Sullivan, Timothy J.

    2013-01-01

    Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution. This review synthesizes the current state of the science to further the development and use of soil resampling as an integral method for recording and understanding environmental change in forested settings. The origins of soil resampling reach back to the 19th century in England and Russia. The concepts and methodologies involved in forest soil resampling are reviewed and evaluated through a discussion of how temporal and spatial variability can be addressed with a variety of sampling approaches. Key resampling studies demonstrate the type of results that can be obtained through differing approaches. Ongoing, large-scale issues such as recovery from acidification, long-term N deposition, C sequestration, effects of climate change, impacts from invasive species, and the increasing intensification of soil management all warrant the use of soil resampling as an essential tool for environmental monitoring and assessment. Furthermore, with better awareness of the value of soil resampling, studies can be designed with a long-term perspective so that information can be efficiently obtained well into the future to address problems that have not yet surfaced.

  20. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    USDA-ARS?s Scientific Manuscript database

    Soils developed on relict hydrothermally altered soils throughout the Western United States present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally ...

  1. Sorption characteristics of cadmium in a clay soil of Mae Ku creek, Tak Province, Thailand

    NASA Astrophysics Data System (ADS)

    Thunyawatcharakul, P.; Chotpantarat, S.

    2018-05-01

    Mae Sot is a district in Tak province, the northern part of Thailand where has encountered with cadmium (Cd) contaminated in soils. Exposure of Cd can lead to severe health effect, for examples, bone softening, osteoporosis, renal dysfunction, and Itai-Itai disease. This study aims at elucidating sorption behavior of Cd in the contaminated soil collected from Mae Ku creek, Mae Sot district, Thailand. Batch sorption experiment was conducted in order to investigate sorption characteristics of Cd onto the contaminated soil. The soil sample taken from the study area consists of 26% sand, 16% silt 58% clay, which categorized as a clay soil, based on USDA classification. Soil pH is slightly alkaline (pH∼7.7) and organic matter in the soil is 2.93%. The initial concentration in the batch sorption experiment was in the range from 0- 200 ppm. The result from the batch sorption experiment showed that soil sample can adsorb Cd up to 173.5 ppm and the sorption behavior of the soil sample can be well described by Freundlich isotherm, indicating the multilayer sorption (R2 = 0.9964), with Freundlich constants of 0.312 and 1.760 L g-1 for 1/n and Kf, respectively.

  2. [Pollution characteristics and sources of polycyclic aromatic hydrocarbons in riparian soils along urban rivers of Wenzhou city].

    PubMed

    Zhou, Jie-Cheng; Bi, Chun-Juan; Chen, Zhen-Lou; Wang, Lu; Xu, Shi-Yuan; Pan, Qi

    2012-12-01

    Twenty one riparian soil samples along Jiushanwai River and Shanxia River of Wenzhou city were collected in August 2010 to investigate the pollution characteristics of polycyclic aromatic hydrocarbons (PAHs). The samples were extracted by an accelerated solvent extractor (ASE), purified by a purification column and determined by GC-MS. Results showed that the total concentrations of PAHs in the riparian soils ranged from 60.7 ng x g(-1) to 3 871.3 ng x g(-1), and the concentrations of sigma PAHs in soils along the Shanxia River were significantly lower than the levels along Jiushanwai River. The dominant compounds were 2 to 3 rings in the riparian soils along both rivers, which in average accounted for 62.47% - 72.51% in sigma PAHs. Compared with the PAHs concentrations in soils of other areas in the world, the riparian soils of the studied rivers were moderately polluted by PAHs, but the concentrations of BaP in three soil samples were much higher than the soil standard value of the former Soviet Union, which should be paid more attention. Based on the ratios of Ant/(Ant + Phe) and Fla/(Fla + Pyr) and principal component analysis results, PAHs in riparian soils of the studied rivers were mainly derived from both the petroleum and combustion.

  3. Uptake of explosives from contaminated soil by existing vegetation at the Joliet Army Ammunition Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.

    1994-01-01

    This study examines the uptake of explosives by existing vegetation growing in TNT-contaminated soils on Group 61 at the Joliet Army Ammunition Plant (JAAP). The soils in this group were contaminated more than 40 years ago. In this study, existing plant materials and soil from the root zone were sampled from 15 locations and analyzed to determine TNT uptake by plants under natural field conditions. Plant materials were separated by species if more than one species was present at a sampling location. Standard methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. Plantmore » materials were also analyzed. No. explosives were detected in the aboveground portion of any plant sample. However, the results indicate that TNT, 2-amino DNT, and/or 4-amino DNT were found in some root samples of false boneset (Kuhnia eupatorioides), teasel (Dipsacus sylvestris), and bromegrass (Bromus inermis). It is possible that slight soil contamination remained on the roots, especially in the case of the very fine roots for species like bromegrass, where washing was difficult. The presence of 2-amino DNT and 4-amino DNT, which could be plant metabolites of TNT, increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.« less

  4. Levels and distributions of organochlorine pesticides in the soil-groundwater system of vegetable planting area in Tianjin City, Northern China.

    PubMed

    Pan, Hong-Wei; Lei, Hong-Jun; He, Xiao-Song; Xi, Bei-Dou; Han, Yu-Ping; Xu, Qi-Gong

    2017-04-01

    To study the influence of long-term pesticide application on the distribution of organochlorine pesticides (OCPs) in the soil-groundwater system, 19 soil samples and 19 groundwater samples were collected from agricultural area with long-term pesticide application history in Northern China. Results showed that the composition of OCPs changed significantly from soil to groundwater. For example, ∑DDT, ∑HCH, and ∑heptachlor had high levels in the soil and low levels in the groundwater; in contrast, endrin had low level in the soil and high level in the groundwater. Further study showed that OCP distribution in the soil was significantly influenced by its residue time, soil organic carbon level, and small soil particle contents (i.d. <0.0002 mm). Correlation analysis also indicates that the distribution of OCPs in the groundwater was closely related to the levels of OCPs in the soil layer, which may act as a pollution source.

  5. Analytical Results for Agricultural Soils Samples from a Monitoring Program Near Deer Trail, Colorado (USA)

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.

    2009-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District, MWRD), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colorado, USA. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream bed sediment. Soils for this study were defined as the plow zone of the dry land agricultural fields - the top twelve inches of the soil column. This report presents analytical results for the soil samples collected at the Metro District farm land near Deer Trail, Colorado, during three separate sampling events during 1999, 2000, and 2002. Soil samples taken in 1999 were to be a representation of the original baseline of the agricultural soils prior to any biosolids application. The soil samples taken in 2000 represent the soils after one application of biosolids to the middle field at each site and those taken in 2002 represent the soils after two applications. There have been no biosolids applied to any of the four control fields. The next soil sampling is scheduled for the spring of 2010. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity (Colorado Department of Public Health and Environment, Hazardous Materials and Waste Management Division, 1997; Colorado Department of Public Health and Environment,1998; U.S. Environmental Protection Agency, 1993). Since these were the identified priority parameters for the biosolids, the soils have the same set of priority parameters. Although the composite soils' priority analytes have been reported earlier to Metro District, the remaining elemental datasets for both the composite soils samples and selected fields' individual subsamples' data are presented here for the first time. More information about the other monitoring components is presented elsewhere in the literature (http://co.water.usgs.gov/projects/CO406/CO406.html). In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, and(or) (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. The method chosen for sampling the soils proved to be an efficient and reliable representation of the average composition of each field. This was shown by analyzing individual subsamples, averaging the resulting values, and then comparing the values to the composited samples' values. The soil chemistry shows distinct differences between the two sites, most likely due to the different underlying parent material. Biosolids data were used to compile an inorganic-chemical biosolids signature that can be contrasted with the geochemical signature of the agricultural soils for this site. The biosolids signature and an understanding of the geology and hydrology of the site can be used to separate biosolids effects from natural geochemical effects. Elements of particular interest for a biosolids signature after application in the soils include bismuth, copper, silver, mercury, and phosphorus. This signat

  6. Impact of effluents from a car battery manufacturing plant in Nigeria on water, soil, and food qualities.

    PubMed

    Orisakwe, Orish Ebere; Asomugha, Rose; Afonne, Onyenmechi Johnson; Anisi, C N; Obi, Ejeatuluchukwualo; Dioka, Chudi Emma

    2004-01-01

    The authors investigated the impact of effluents from a car battery manufacturing plant in Nnewi, Nigeria, on water, soil, and food qualities. The authors analyzed heavy metals mercury, arsenic, lead, cadmium and nickel in tap and cassava waters, soil, dried cassava tuber, and edible fruit samples from the company, using an atomic absorption spectrophotometer. Other parameters the authors analyzed include pH, electrical conductivity (EC), salinity (SAL), total hardness (TH), biological oxygen demand (BOD), volatile and non-volatile solids, and bacterial and fungal loads of the soil samples. Results show that lead had the highest concentration in all the samples, with the soil samples having the highest lead concentration (38-12 ppm, 102 ppm) and the water samples having the lowest (0.02-0.20 ppm). Mercury had the lowest concentration (<0.0002 ppm) in all the samples. Soil sample B had the highest concentration of all the metals tested. Cassava water had higher levels of EC, SAL, TH, BOD, and volatile and nonvolatile solids, but lower pH than tap water. Bacterial loads were higher than fungal loads in all the soil samples. Because there was moderate contamination of the environment by some of the metals studied, with lead being exceptionally high and above the specified international standards, the authors recommend control measures to reduce lead exposure to the local populace within and around this industry.

  7. Study Of Functioning of Bacterial Complexes in East Antarctic Soils

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.; Churilin, N. A.

    2014-11-01

    Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms - the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral horizons of microorganisms with a high metabolic readiness to life revival and high maximum growth rate.

  8. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 4,4'-DDE and Endosulfan Levels in Agricultural Soils of the Çukurova Region, Mediterranean Turkey.

    PubMed

    Akça, Muhittin Onur; Hisatomi, Shihoko; Takemura, Manami; Harada, Naoki; Nonaka, Masanori; Sakakibara, Futa; Takagi, Kazuhiro; Turgay, Oğuz Can

    2016-03-01

    Mediterranean Turkey has long been at the forefront of Turkish agriculture and the use of organochlorinated pesticides (OCPs) in this area rose considerably between the 1940s and 1980s. This study aimed to determine OCP residue levels in agricultural soils collected from the Mersin and Adana Districts, Çukurova Basin in Mediterranean Turkey. Most soil samples were contaminated with one, or both, of two OCP metabolites; 4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE) and endosulfan sulfate. 4,4'-DDE occurred in 27 of the 29 samples and ranged from 6 to 1090 µg kg(-1)-dry soil (ds)(-1), while six samples contained endosulfan sulfate ranging between 82 and 1226 µg kg(-1)-ds(-1). Generally, horticultural and corn-planted soils contained only 4,4'-DDE, whereas greenhouse cultivation appeared to accumulate both residues. This study indicated that 4,4'-DDE occurred above acceptable levels of risk in agricultural soils of Mersin District and further studies on the qualitative and quantitative assessment of OCPs in other agricultural regions with intensive pesticide use are necessary to fully understand the impact of OCPs on agricultural soil in Turkey.

  10. Phytolith aided paleoenvironmental studies from the Dutch Neolithic

    NASA Astrophysics Data System (ADS)

    Persaits, Gergő; Gulyás, Sándor; Náfrádi, Katalin; Sümegi, Pál; Szalontai, Csaba

    2015-11-01

    There is increasing evidence for crop cultivation at sites of the Neolithic Swifterbant culture from ca. 4300 B.C. onwards. Presence of cereal fields at the Swifterbant S2, S3 and S4 sites has been corroborated from micro morphological studies of soil samples. Swifterbant sites with evidence for cultivated plants are still scarce though and only emerging, and have produced very low numbers of charred cereals only. The major aim of our work was to elucidate the environmental background of the Dutch Neolithic site Swifterbant S4 based on the investigation of phytolith remains retrieved from soil samples. In addition to find evidence for crop cultivation independently from other studies. Samples were taken at 1 cm intervals vertically from the soil section at the central profile of site S4. Additional samples were taken from pocket-like structures and adjacent horizons above and below. Pig coprolites yielded an astonishing phytolith assemblage which was compared to that of the soil samples. A pig tooth also yielded evaluable material via detailed investigation using SEM. The evaluation of phytolith assemblages retrieved from the soil horizons plus those ending up in the droppings of pigs feasting in the area enabled to draw a relatively reliable environmental picture of the area. All these refer to the presence of a Neolithic horticulture (cereal cultivation) under balanced micro-climatic conditions as a result of the vicinity of the nearby floodplain. These findings corroborate those of previous soil micro-morphological studies.

  11. Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling.

    PubMed

    Bugdalski, Lauren; Lemke, Lawrence D; McElmurry, Shawn P

    2014-01-01

    Soil lead pollution is a recalcitrant problem in urban areas resulting from a combination of historical residential, industrial, and transportation practices. The emergence of urban gardening movements in postindustrial cities necessitates accurate assessment of soil lead levels to ensure safe gardening. In this study, we examined small-scale spatial variability of soil lead within a 15 × 30 m urban garden plot established on two adjacent residential lots located in Detroit, Michigan, USA. Eighty samples collected using a variably spaced sampling grid were analyzed for total, fine fraction (less than 250 μm), and bioaccessible soil lead. Measured concentrations varied at sampling scales of 1-10 m and a hot spot exceeding 400 ppm total soil lead was identified in the northwest portion of the site. An interpolated map of total lead was treated as an exhaustive data set, and random sampling was simulated to generate Monte Carlo distributions and evaluate alternative sampling strategies intended to estimate the average soil lead concentration or detect hot spots. Increasing the number of individual samples decreases the probability of overlooking the hot spot (type II error). However, the practice of compositing and averaging samples decreased the probability of overestimating the mean concentration (type I error) at the expense of increasing the chance for type II error. The results reported here suggest a need to reconsider U.S. Environmental Protection Agency sampling objectives and consequent guidelines for reclaimed city lots where soil lead distributions are expected to be nonuniform. © 2013 Society for Risk Analysis.

  12. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Werner, S.L.; Cahill, J.D.

    2006-01-01

    Three sites in the Front Range of Colorado, USA, were monitored from May through September 2003 to assess the presence and distribution of pharmaceuticals in soil irrigated with reclaimed water derived from urban wastewater. Soil cores were collected monthly, and 19 pharmaceuticals, all of which were detected during the present study, were measured in 5-cm increments of the 30-cm cores. Samples of reclaimed water were analyzed three times during the study to assess the input of pharmaceuticals. Samples collected before the onset of irrigation in 2003 contained numerous pharmaceuticals, likely resulting from the previous year's irrigation. Several of the selected pharmaceuticals increased in total soil concentration at one or more of the sites. The four most commonly detected pharmaceuticals were erythromycin, carbamazepine, fluoxetine, and diphenhydramine. Typical concentrations of the individual pharmaceuticals observed were low (0.02-15 ??g/kg dry soil). The existence of subsurface maximum concentrations and detectable concentrations at the lowest sampled soil depth might indicate interactions of soil components with pharmaceuticals during leaching through the vadose zone. Nevertheless, the present study demonstrates that reclaimed-water irrigation results in soil pharmaceutical concentrations that vary through the irrigation season and that some compounds persist for months after irrigation. ?? 2006 SETAC.

  13. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece.

    PubMed

    Argyraki, Ariadne

    2014-08-01

    The relationships between two exposure media, garden soil and house dust, were studied for Pb uptake in Stratoni village in northern Greece, an industrial area of mining and processing of sulphide ore. Lead data for the two media were assessed in terms of total and bioaccessible content, measurement and geochemical variability, and mineralogical composition. It was found that total Pb was enriched in house dust samples by a factor of 2 on average. Total Pb concentration in soil samples had a maximum of 2,040 mg/kg and reached a maximum of 7,000 mg/kg in house dust samples. The estimated variability due to measurement uncertainty was dominated by the sampling process, and the proportion of sampling variance was greater for soil samples, indicating a higher degree of Pb heterogeneity in soil on the given spatial scale of sampling strata. Although the same general spatial trend was observed for both sampling media with decreasing Pb concentration by increasing distance from the ore-processing plant, Pb in dust samples displayed the highest concentrations within a 300-600-m zone from the ore-processing facility. The significant differences which were observed in Pb speciation between the studied media were explained by differences in mineralogical composition of outdoor soil and indoor dust. Lead-enriched Fe and Mn oxides predominated in soil samples while fine galena grains (<10-20 μm diameter) were the major Pb-bearing phase in dust samples. The integrated exposure uptake biokinetic model was used to predict the risk of elevated blood lead levels in children of Stratoni. Model prediction indicated an average probability of 61 % for blood-Pb to exceed 10 μg/dl. The results underline the importance of house dust in risk assessment and highlight the effect of outdoor and indoor conditions on the fate of Pb in the particular environment of Stratoni.

  14. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    PubMed

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H 3 PO 4 , NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H 3 PO 4 , 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H 3 PO 4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H 3 PO 4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John M; Li, Bin; Kahlon, Charanjit S

    2010-01-01

    In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.

  16. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China.

    PubMed

    Shi, Jiachun; Yu, Xiulin; Zhang, Mingkui; Lu, Shenggao; Wu, Weihong; Wu, Jianjun; Xu, Jianming

    2011-01-01

    Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples collected at >10 cm depth than the control. Mean soil pH at 0-10 cm was higher (>7.2) at all sites treated with lime compared to uncontaminated soil (5.5). At depths greater than 10 cm soil pH was <4.6. Soil copper was >16 mg/kg in all contaminated soil samples compared to 0.5 mg/kg in control. High seedling mortality in contaminated site is attributed to low soil pH and elevated soil copper levels which inhibited plant root growth and hence access to soil water. While surface liming of soil increased soil pH ameliorating the effect of elevated soil copper, this was only effective in the top 10 cm due to low solubility of hydrated lime. To improve seedling survival lime will need to be incorporated into the contaminated soil profile to allow plants to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context. To improve the success of vegetation restoration of sites contaminated with acidic copper solution, lime needs to be incorporated into the contaminated soil profile to allow plant roots to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context.

  18. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  19. Papers presented to the Conference on Luna 24. [lunar soil studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics covered include: the regional geology, geochemistry, and geophysics of Mare Crisium and the Luna 24 landing site; the petrology, mineral chemistry, and cooling histories of lithic fragments, the chemistry, isotopic studies, and geochronology of Luna 24 samples; and regolith studies of soil samples. Subject and topical indexes are provided.

  20. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.

    PubMed

    Keiblinger, Katharina M; Schneider, Martin; Gorfer, Markus; Paumann, Melanie; Deltedesco, Evi; Berger, Harald; Jöchlinger, Lisa; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz

    2018-03-01

    Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg -1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC 50 ranging from 76 to 187 mg EDTA-extractable Cu kg -1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC 50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg -1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.

  1. Environmental hazard assessment of contaminated soils in Antarctica: Using a structured tier 1 approach to inform decision-making.

    PubMed

    Pereira, Joana Luísa; Pereira, Patrícia; Padeiro, Ana; Gonçalves, Fernando; Amaro, Eduardo; Leppe, Marcelo; Verkulich, Sergey; Hughes, Kevin A; Peter, Hans-Ulrich; Canário, João

    2017-01-01

    Generally, Antarctica is considered to be an untouched area of the planet; however, the region's ecosystems have been subject to increased human pressure for at least the past half-century. This study assessed soils of Fildes Peninsula, where trace element pollution is thought to prevail. Four soil samples were collected from different locations and assessed following tier 1 methodologies for chemical and ecotoxicological lines of evidence (LoE) used in typical soil Environmental Risk Assessment (ERA). Trace element quantification was run on soil samples and sequential extracts, and elutriates were used to address their ecotoxicity using a standard ecotoxicological battery. The highest levels of trace elements were found for Cr, Cu, Ni and Zn, which were well above baseline levels in two sites located near previously identified contamination sources. Trace element concentrations in soils were compared with soil quality guidelines to estimate the contribution of the chemical LoE for integrated risk calculations; risk was found high, above 0.5 for all samples. Total concentrations in soil were consistent with corresponding sequentially extracted percentages, with Cu and Zn being the most bioavailable elements. Bacteria did not respond consistently to the elutriate samples and cladocerans did not respond at all. In contrast, the growth of microalgae and macrophytes was significantly impaired by elutriates of all soil samples, consistently to estimated trace element concentrations in the elutriate matrix. These results translated into lower risk values for the ecotoxicological compared to the chemical LoE. Nevertheless, integrated risk calculations generated either an immediate recommendation for further analysis to better understand the hazardous potential of the tested soils or showed that the soils could not adequately sustain natural ecosystem functions. This study suggests that the soil ecosystem in Fildes has been inadequately protected and supports previous claims on the need to reinforce protection measures and remediation activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Large scale prediction of soil properties in the West African yam belt based on mid-infrared soil spectroscopy

    NASA Astrophysics Data System (ADS)

    Baumann, Philipp; Lee, Juhwan; Paule Schönholzer, Laurie; Six, Johan; Frossard, Emmanuel

    2016-04-01

    Yam (Dioscorea sp.) is an important staple food in West Africa. Fertilizer applications have variable effects on yam tuber yields, and a management option solely based on application of mineral NPK fertilizers may bear the risk of increased organic matter mineralization. Therefore, innovative and sustainable nutrient management strategies need to be developed and evaluated for yam cultivation. The goal of this study was to establish a mid-infrared soil spectroscopic library and models to predict soil properties relevant to yam growth. Soils from yam fields at four different locations in Côte d'Ivoire and Burkina Faso that were representative of the West African yam belt were sampled. The project locations ranged from the humid forest zone (5.88 degrees N) to the northern Guinean savannah (11.07 degrees N). At each location, soils of 20 yam fields were sampled (0-30 cm). For the location in the humid forest zone additional 14 topsoil samples from positions that had been analyzed in the Land Degradation Surveillance Framework developed by ICRAF were included. In total, 94 soil samples were analyzed using established reference analysis protocols. Besides soils were milled and then scanned by fourier transform mid-infrared spectroscopy in the range between 400 and 4000 reciprocal cm. Using partial least squares (PLS) regression, PLS1 calibration models that included soils from the four locations were built using two thirds of the samples selected by Kennard-Stones sampling algorithm in the spectral principal component space. Models were independently validated with the remaining data set. Spectral models for total carbon, total nitrogen, total iron, total aluminum, total potassium, exchangeable calcium, and effective cation exchange capacity performed very well, which was indicated by R-squared values between 0.8 and 1.0 on both calibration and validation. For these soil properties, spectral models can be used for cost-effective, rapid, and accurate predictions. Measures of total silicium, total zinc, total copper, total manganese, pH, exchangeable magnesium, total sulfur, total phosphorus, resin membrane extractable phosphorus, DTPA iron, and DTPA copper were predicted with intermediate accuracy (R-squared of both calibration and validation between 0.5 and 0.8). For these measures, the models can be used to establish a rapid screening in order to distinguish high from low soil fertility status. Generally, soil fertility in West African soils is constrained by low organic C, for example, ranging between 0.2% to 2.5% in this study. The accurate prediction of total soil organic C is an important factor for monitoring soil fertility status. Results of this study showed that soil spectroscopy has a high potential to evaluate soil fertility in the selected locations.

  3. The distribution of microplastics in soil aggregate fractions in southwestern China.

    PubMed

    Zhang, G S; Liu, Y F

    2018-06-09

    Plastic particle accumulation in arable soils is a growing contaminant of concern with unknown consequences for soil productivity and quality. This study aimed to investigate abundance and distribution of plastic particles among soil aggregate fractions in four cropped areas and an established riparian forest buffer zone at Dian Lake, southwestern China. Plastic particles (10-0.05 mm) from fifty soil samples were extracted and then sorted by size, counted, and categorized. Plastic particles were found in all soil samples. The concentration of plastic particles ranges from 7100 to 42,960 particles kg -1 (mean 18,760 particles kg -1 ). 95% of the sampled plastic particles are in the microplastic size (1-0.05 mm) range. The predominant form is plastic fibers, making up on average 92% of each sample followed by fragments and films that contributed with to 8%. Results of this study also show that 72% of plastic particles are associated with soil aggregates, and 28% of plastic particles are dispersed. The abundance of aggregate-associated plastic fibers is significantly greater in the micro-aggregate than that in the macro-aggregate, whereas the less concentrations of plastic films and fragments are found in the micro-aggregate. Compared to the adjacent vegetable soil, the less concentration of plastic particles in the buffer soil implicates that application of soil amendments and irrigation with wastewater must be controlled to reduce accumulation of microplastics in agricultural soils. While the implications of microplastic on ecological and human health are poorly understood, the staggering number of microplastic in agricultural soils should be continually concerned in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Physicochemical properties of soils in the sago palm (Metroxylon spp.) growing area of Surat Thani province Thailand

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Sparrow, E. B.; Fochesatto, G. J.

    2016-12-01

    Sago palm is one of the most important plants for sustainable agriculture and rural development in tropical swampy and peaty soils. Where no major crops can grow without drainage or soil improvement. It stores large quantities of starch which can be further processed into various basic raw materials for food, animal feed, industrial uses and alternative energy. This study aims to investigate the physicochemical properties of soil across the sago palm growing areas at Surat Thani province Thailand, where major of sago palms growth naturally exists. The soil samples from three districts Khiri Rat Nikhom (KR; 9 sampling sites), Kanchanadit (KD; 5 sampling sites), and Khian Sa (KS; 2 sampling sites) were studied and compared at 0-15 cm depth during March to June 2016. Observations indicated that the physicochemical properties of soil varied in each growing area. Soil bulk densities averages were lower in KD (0.52 g cm-3) than those in KR (0.58 g cm-3) and KS (0.57 g cm-3). Soil texture around KD and KS were dominated by silty loam. While in KR soil texture was dominated by sandy loam. The average soil conductivity in KS (5.68 mS m-1) was higher than KR (2.62 mS m-1) and KD (1.65 mS m-1). Furthermore, we found the sago palms grow well in a range of soil pH from 5.52 to 7.15, average soil pH: KS (6.8) and KD (6.96), while acid in KR (5.84). We also discuss the conservation activities to adequately protect sago palm, most of which are significantly threatened by habitat destruction and unsustainable harvesting.

  5. An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil.

    PubMed

    Ma, Fujun; Wu, Bin; Zhang, Qian; Cui, Deshan; Liu, Qingbing; Peng, Changsheng; Li, Fasheng; Gu, Qingbao

    2018-02-15

    Stabilization/solidification (S/S) has been successfully employed in many superfund sites contaminated with organic materials. However, this method's long-term effectiveness has not been fully evaluated and the increase in soil volume following treatment is unfavorable to follow-up disposal. The present study developed a novel method for the S/S of PAHs-contaminated soil with the facilitation of sulfonated oil (SO). Adding SO significantly improved the unconfined compressive strength (UCS) values of Portland cement and activated carbon (PC-AC) treated soil samples, and the UCS values of the soil sample treated with 0.02% of SO were up to 2.3 times higher than without SO addition. When the soil was treated with PC-AC-SO, the PAHs leaching concentrations were 14%-25% of that in leachates of the control soil, and high molecular weight PAHs including benzo(a)pyrene were rarely leached. Freeze/thaw durability tests reveal that the leachability of PAHs was not influenced by freeze-thaw cycles. The UCS values of PC-AC-SO treated soil samples were 2.2-3.4 times greater than those of PC-AC treated soil samples after 12 freeze-thaw cycles. The PC-AC-SO treated soils resist disintegration better when compared to the PC-AC treated soils. The SEM micrographs reveal that the soils' compactness was significantly improved when treated with SO. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Factors associated with the likelihood of Giardia spp. and Cryptosporidium spp. in soil from dairy farms.

    PubMed

    Barwick, R S; Mohammed, H O; White, M E; Bryant, R B

    2003-03-01

    A study was conducted to identify factors associated with the likelihood of detecting Giardia spp. and Cryptosporidium spp. in the soil of dairy farms in a watershed area. A total of 37 farms were visited, and 782 soil samples were collected from targeted areas on these farms. The samples were analyzed for the presence of Cryptosporidium spp. oocysts, Giardia spp. cysts, percent moisture content, and pH. Logistic regression analysis was used to identify risk factors associated with the likelihood of the presence of these organisms. The use of the land at the sampling site was associated with the likelihood of environmental contamination with Cryptosporidium spp. Barn cleaner equipment area and agricultural fields were associated with increased likelihood of environmental contamination with Cryptosporidium spp. The risk of environmental contamination decreased with the pH of the soil and with the score of the potential likelihood of Cryptosporidium spp. The size of the sampling site, as determined by the sampling design, in square feet, was associated nonlinearly with the risk of detecting Cryptosporidium spp. The likelihood of the Giardia cyst in the soil increased with the prevalence of Giardia spp. in animals (i.e., 18 to 39%). As the size of the farm increased, there was decreased risk of Giardia spp. in the soil, and sampling sites which were covered with brush or bare soil showed a decrease in likelihood of detecting Giardia spp. when compared to land which had managed grass. The number of cattle on the farm less than 6 mo of age was negatively associated with the risk of detecting Giardia spp. in the soil, and the percent moisture content was positively associated with the risk of detecting Giardia spp. Our study showed that these two protozoan exist in dairy farm soil at different rates, and this risk could be modified by manipulating the pH of the soil.

  7. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect of soil water infiltration deeper into the soil on soil gas diffusivity could be observed during the following hours. Our new DS determination device can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows following modifications of soil gas diffusivity due to rain events. In addition it enables the analysis of non-diffusive soil gas transport processes.

  8. Uptake of explosives from contaminated soil by vegetation at the Joliet Army Ammunition Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.

    1994-06-01

    This study examines the uptake of explosives by vegetation growing on soils contaminated by 2,4,6-trinitrotoluene (TNT) in Group 61 at the Joliet Army Ammunition Plant (JAAP). Plant materials and soil from the root zone were sampled and analyzed to determine TNT uptake under natural field conditions. Standard USATHAMA methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. No- explosives were detected in the aboveground portion of any plant sample. However, results indicate that TNT, 2-aminodinitrotoluene (2-ADNT), and/or 4-ADNT were present in some root samples. The presence of 2-ADNT and 4-ADNT increases the likelihoodmore » that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.« less

  9. Soil Data from a Moderately Well and Somewhat Poorly Drained Fire Chronosequence near Thompson, Manitoba, Canada

    USGS Publications Warehouse

    Manies, K.L.; Harden, J.W.; Veldhuis, Hugo; Trumbore, Sue

    2006-01-01

    The U.S. Geological Survey project Fate of Carbon in Alaskan Landscapes (FOCAL) is studying the effect of fire and soil drainage on soil carbon storage in the boreal forest. As such this group was invited to be a part of a NSF-funded project (Fire, Ecosystem and Succession - Experiment Boreal or FIRES-ExB) to study the carbon balance of sites that varied in age (time since fire) and soil drainage in the Thompson, Manitoba, Canada region. This report describes the location of our FIRES-ExB sampling sites as well as the procedures used to describe, sample, and analyze the soils. This report also contains data tables with sample related information including, but not limited to, field descriptions, bulk density, particle size distribution, moisture content, carbon (C) concentration, nitrogen (N) concentration, isotopic data for C, and major, minor and trace elemental concentration.

  10. Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003

    USGS Publications Warehouse

    Williams, Shannon D.; Ladd, David E.; Farmer, James

    2006-01-01

    In 2002 and 2003, the U.S. Geological Survey (USGS), by agreement with the National Park Service (NPS), investigated the effects of oil and gas production operations on ground-water quality at Big South Fork National River and Recreation Area (BISO) with particular emphasis on the fate and transport of petroleum hydrocarbons in soils and ground water. During a reconnaissance of ground-water-quality conditions, samples were collected from 24 different locations (17 springs, 5 water-supply wells, 1 small stream, and 1 spring-fed pond) in and near BISO. Benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were not detected in any of the water samples, indicating that no widespread contamination of ground-water resources by dissolved petroleum hydrocarbons probably exists at BISO. Additional water-quality samples were collected from three springs and two wells for more detailed analyses to obtain additional information on ambient water-quality conditions at BISO. Soil gas, soil, water, and crude oil samples were collected at three study sites in or near BISO where crude oil had been spilled or released (before 1993). Diesel range organics (DRO) were detected in soil samples from all three of the sites at concentrations greater than 2,000 milligrams per kilogram. Low concentrations (less than 10 micrograms per kilogram) of BTEX compounds were detected in lab-analyzed soil samples from two of the sites. Hydrocarbon-degrading bacteria counts in soil samples from the most contaminated areas of the sites were not greater than counts for soil samples from uncontaminated (background) sites. The elevated DRO concentrations, the presence of BTEX compounds, and the low number of -hydrocarbon-degrading bacteria in contaminated soils indicate that biodegradation of petroleum hydrocarbons in soils at these sites is incomplete. Water samples collected from the three study sites were analyzed for BTEX and DRO. Ground-water samples were collected from three small springs at the two sites located on ridge tops. BTEX and DRO were not detected in any of the water samples, and petroleum hydrocarbons do not appear to have leached into ground water at these sites. Ground-water samples were collected from a small spring and from three auger holes at the third site, which is located in a stream valley. BTEX and DRO were not detected in these ground-water samples, and currently, petroleum hydrocarbons do not appear to be leaching into ground water at this site. Weathered crude oil, however, was detected at the water surface in one of the auger holes, indicating that soluble petroleum hydrocarbons may have leached into the ground water and may have migrated downgradient from the site in the past. The concentration of soluble petroleum hydrocarbons present in the ground water would depend on the concentration of the hydrocarbons in the crude oil at the site. A laboratory study was conducted to examine the dissolution of petroleum hydrocarbons from a fresh crude oil sample collected from one of the study sites. The effective solubility of benzene, toluene, ethylbenzene, and total xylenes for the crude oil sample was determined to be 1,900, 1,800, 220, and 580 micrograms per liter (?g/L), respectively. These results indicate that benzene and toluene could be present at concentrations greater than maximum contaminant levels (5 ?g/L for benzene and 1,000 ?g/L for toluene for drinking water) in ground water that comes into contact with fresh crude oil from the study area.

  11. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on magnetic extracts indicated the presence of magnetite/maghemite in the uppermost layers, and strong mineralogical transformation of iron oxyhydroxides during heating. Magnetic techniques give valuable information about the soil Fe oxides, which are useful for investigation of the environmental effects in soil. Key words: magnetic methods, Fe oxides, pollution, alluvial soils.

  12. Quantifying soil profile change caused by land use in central Missouri loess hillslopes

    Treesearch

    Samuel J. Indorante; John M. Kabrick; Brad D. Lee; Jon M. Maatta

    2014-01-01

    Three major challenges are present when studying anthropogenic impacts on soil profile properties: (i) site selection; (ii) sampling and modeling native and cultivated soil-landscape relationships; and (iii) graphically and statistically comparing native and cultivated sites to model soil profile changes. This study addressed those challenges by measuring and modeling...

  13. Differences in soil biological activity by terrain types at the sub-field scale in central Iowa US

    DOE PAGES

    Kaleita, Amy L.; Schott, Linda R.; Hargreaves, Sarah K.; ...

    2017-07-07

    Soil microbial communities are structured by biogeochemical processes that occur at many different spatial scales, which makes soil sampling difficult. Because soil microbial communities are important in nutrient cycling and soil fertility, it is important to understand how microbial communities function within the heterogeneous soil landscape. In this study, a self-organizing map was used to determine whether landscape data can be used to characterize the distribution of microbial biomass and activity in order to provide an improved understanding of soil microbial community function. Points within a row crop field in south-central Iowa were clustered via a self-organizing map using sixmore » landscape properties into three separate landscape clusters. Twelve sampling locations per cluster were chosen for a total of 36 locations. After the soil samples were collected, the samples were then analysed for various metabolic indicators, such as nitrogen and carbon mineralization, extractable organic carbon, microbial biomass, etc. It was found that sampling locations located in the potholes and toe slope positions had significantly greater microbial biomass nitrogen and carbon, total carbon, total nitrogen and extractable organic carbon than the other two landscape position clusters, while locations located on the upslope did not differ significantly from the other landscape clusters. However, factors such as nitrate, ammonia, and nitrogen and carbon mineralization did not differ significantly across the landscape. Altogether, this research demonstrates the effectiveness of a terrain-based clustering method for guiding soil sampling of microbial communities.« less

  14. Concentrations of polychlorinated biphenyls in soil and indoor dust associated with electricity generation facilities in Lagos, Nigeria.

    PubMed

    Folarin, Bilikis Temitope; Abdallah, Mohamed Abou-Elwafa; Oluseyi, Temilola; Olayinka, Kehinde; Harrad, Stuart

    2018-09-01

    Concentrations of 7 indicator polychlorinated biphenyls (PCBs) were measured in dust and soil samples from 12 power stations collected over the two major seasons of the Nigerian climate. Median ƩPCB 7 concentrations in soil ranged from 2 ng/g for power station A to 220 ng/g for power station I; while those in dust ranged from 21 ng/g for power station L to 2200 ng/g for power station I. For individual congeners, median PCB concentrations ranged from 3.8 ng/g for PCB 101 to 52 ng/g for PCB 180 in dust, and <0.07 ng/g for PCB 28 to 5.9 ng/g for PCB 153 in soil. The type of power station activity exerted a significant influence on concentrations of ΣPCB 7 in dust and soil (generation > transmission > distribution). Congener patterns in dust and soil samples were compared using principal component analysis (PCA) with those in transformer oil samples from 3 of the power stations studied and with common PCB mixtures (Aroclors). This revealed congener patterns in soil were more closely related to that in the transformer oil than dust. Congener patterns in most samples were similar to Aroclor 1260. Concentrations of PCBs in soil samples close to the transformers significantly exceeded those in soil sampled further away. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Differences in soil biological activity by terrain types at the sub-field scale in central Iowa US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaleita, Amy L.; Schott, Linda R.; Hargreaves, Sarah K.

    Soil microbial communities are structured by biogeochemical processes that occur at many different spatial scales, which makes soil sampling difficult. Because soil microbial communities are important in nutrient cycling and soil fertility, it is important to understand how microbial communities function within the heterogeneous soil landscape. In this study, a self-organizing map was used to determine whether landscape data can be used to characterize the distribution of microbial biomass and activity in order to provide an improved understanding of soil microbial community function. Points within a row crop field in south-central Iowa were clustered via a self-organizing map using sixmore » landscape properties into three separate landscape clusters. Twelve sampling locations per cluster were chosen for a total of 36 locations. After the soil samples were collected, the samples were then analysed for various metabolic indicators, such as nitrogen and carbon mineralization, extractable organic carbon, microbial biomass, etc. It was found that sampling locations located in the potholes and toe slope positions had significantly greater microbial biomass nitrogen and carbon, total carbon, total nitrogen and extractable organic carbon than the other two landscape position clusters, while locations located on the upslope did not differ significantly from the other landscape clusters. However, factors such as nitrate, ammonia, and nitrogen and carbon mineralization did not differ significantly across the landscape. Altogether, this research demonstrates the effectiveness of a terrain-based clustering method for guiding soil sampling of microbial communities.« less

  16. Combined radiochemical procedure for determination of plutonium, americium and strontium-90 in the soil samples from SNTS

    NASA Astrophysics Data System (ADS)

    Kazachevskii, I. V.; Lukashenko, S. N.; Chumikov, G. N.; Chakrova, E. T.; Smirin, L. N.; Solodukhin, V. P.; Khayekber, S.; Berdinova, N. M.; Ryazanova, L. A.; Bannyh, V. I.; Muratova, V. M.

    1999-01-01

    The results of combined radiochemical procedure for the determination of plutonium, americium and90Sr (via measurement of90Y) in the soil samples from SNTS are presented. The processes of co-precipitation of these nuclides with calcium fluoride in the strong acid solutions have been investigated. The conditions for simultaneous separation of americium and yttrium using extraction chromatography have been studied. It follows from analyses of real soil samples that the procedure developed provides the chemical recovery of plutonium and yttrium in the range of 50-95% and 60-95%, respectively. The execution of the procedure requires 3.5 working days including a sample decomposition study.

  17. Metals distribution in soils around the cement factory in southern Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2006-04-01

    Thirty one soil samples were collected from south Jordan around the cement factory in Qadissiya area. The samples were obtained at two depths, 0-10 cm and 10-20 cm and were analyzed by atomic absorption spectrophotometery for Pb, Zn, Cd, Fe, Cu and Cr. Physicochemical factors believed to affect their mobility of metals in soil of the study area were examined such as; pH, TOM, CaCO3, CEC and conductivity. The relatively high concentrations of lead, zinc and cadmium in the soil samples of the investigated area were related to anthropogenic sources such as cement industry, agriculture activities and traffic emissions. It was found that the lead, zinc and cadmium have the highest level in area close to the cement factory, while the concentration of chromium was low. This study indicate that all of the metals are concentrated on the surface soil, and decreased in the lower part of the soil, this due to reflects their mobility and physical properties of soil and its alkaline pH values. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of pollution for metals in urban soils.

  18. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  19. Analysis of Metals Concentration in the Soils of SIPCOT Industrial Complex, Cuddalore, Tamil Nadu

    PubMed Central

    Mathivanan, V.; Prabavathi, R.; Prithabai, C.; Selvisabhanayakam

    2010-01-01

    Phytoremediation is a promising area of new research, both for its low cost and great benefit to society in the clean retrieval of contaminated sites. Phytoremediation is the use of living green plants for in situ risk reduction and/or removal of contaminants from contaminated soil, water, sediments, and air. Specially selected or engineered plants are used in the process. The soil samples were taken from Cuddalore Old Town (OT) and the samples from SIPCOT industrial complex, which was the study area and analyzed for various metals concentrations. Fifteen metals have been analyzed by adopting standard procedure. The detection limits of metal concentration are drawn as control. The various (15) metal concentrations in the soil samples were found higher in soil taken from SIPCOT industrial complex, compared with samples taken from Cuddalore OT. In all the observations, it was found that most of the metals like calcium, cadmium, chromium, cobalt, nickel, and zinc showed maximum concentrations, whereas arsenic, antimony, lead, magnesium, sodium have shown minimum concentrations, both when compared with control. From the present study, it was found that the soil collected from SIPCOT complex area were more polluted due to the presence of various industrial effluents, municipal wastes, and sewages when compared with the soil collected from Cuddalore OT. PMID:21170256

  20. Evaluation of spatial variability of soil arsenic adjacent to a disused cattle-dip site, using model-based geostatistics.

    PubMed

    Niazi, Nabeel K; Bishop, Thomas F A; Singh, Balwant

    2011-12-15

    This study investigated the spatial variability of total and phosphate-extractable arsenic (As) concentrations in soil adjacent to a cattle-dip site, employing a linear mixed model-based geostatistical approach. The soil samples in the study area (n = 102 in 8.1 m(2)) were taken at the nodes of a 0.30 × 0.35 m grid. The results showed that total As concentration (0-0.2 m depth) and phosphate-extractable As concentration (at depths of 0-0.2, 0.2-0.4, and 0.4-0.6 m) in soil adjacent to the dip varied greatly. Both total and phosphate-extractable soil As concentrations significantly (p = 0.004-0.048) increased toward the cattle-dip. Using the linear mixed model, we suggest that 5 samples are sufficient to assess a dip site for soil (As) contamination (95% confidence interval of ±475.9 mg kg(-1)), but 15 samples (95% confidence interval of ±212.3 mg kg(-1)) is desirable baseline when the ultimate goal is to evaluate the effects of phytoremediation. Such guidelines on sampling requirements are crucial for the assessment of As contamination levels at other cattle-dip sites, and to determine the effect of phytoremediation on soil As.

  1. Characteristic variations in reflectance of surface soils

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1982-01-01

    Surface soil samples from a wide range of naturally occurring soils were obtained for the purpose of studying the characteristic variations in soil reflectance as these variations relate to other soil properties and soil classification. A total 485 soil samples from the U.S. and Brazil representing 30 suborders of the 10 orders of 'Soil Taxonomy' was examined. The spectral bidirectional reflectance factor was measured on uniformly moist soils over the 0.52 to 2.32 micron wavelength range with a spectroradiometer adapted for indoor use. Five distinct soil spectral reflectance curve forms were identified according to curve shape, the presence or absence of absorption bands, and the predominance of soil organic matter and iron oxide composition. These curve forms were further characterized according to generically homogeneous soil properties in a manner similar to the subdivisions at the suborder level of 'Soil Taxonomy'. Results indicate that spectroradiometric measurements of soil spectral bidirectional reflectance factor can be used to characterize soil reflectance in terms that are meaningful to soil classification, genesis, and survey.

  2. Soil-Gas Radon Anomaly Map of an Unknown Fault Zone Area, Chiang Mai, Northern Thailand

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Kaweewong, C.; Imurai, W.; Pondthai, P.

    2015-12-01

    Soil-gas radon concentration anomaly map was constructed to help detect an unknown subsurface fault location in San Sai District, Chiang Mai Province, Northern Thailand where a 5.1-magnitude earthquake took place in December 2006. It was suspected that this earthquake may have been associated with an unrecognized active fault in the area. In this study, soil-gas samples were collected from eighty-four measuring stations covering an area of approximately 50 km2. Radon in soil-gas samples was quantified using Scintrex Radon Detector, RDA-200. The samplings were conducted twice: during December 2014-January 2015 and March 2015-April 2015. The soil-gas radon map obtained from this study reveals linear NNW-SSE trend of high concentration. This anomaly corresponds to the direction of the prospective fault system interpreted from satellite images. The findings from this study support the existence of this unknown fault system. However a more detailed investigation should be conducted in order to confirm its geometry, orientation and lateral extent.

  3. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    NASA Astrophysics Data System (ADS)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  4. The Arctic Soil Bacterial Communities in the Vicinity of a Little Auk Colony

    PubMed Central

    Zielińska, Sylwia; Kidawa, Dorota; Stempniewicz, Lech; Łoś, Marcin; Łoś, Joanna M.

    2016-01-01

    Due to deposition of birds' guano, eggshells or feathers, the vicinity of a large seabirds' breeding colony is expected to have a substantial impact on the soil's physicochemical features as well as on diversity of vegetation and the soil invertebrates. Consequently, due to changing physicochemical features the structure of bacterial communities might fluctuate in different soil environments. The aim of this study was to investigate the bacterial assemblages in the Arctic soil within the area of a birds' colony and in a control sample from a topographically similar location but situated away from the colony's impact area. A high number of OTUs found in both areas indicates a highly complex microbial populations structure. The most abundant phyla in both of the tested samples were: Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, with different proportions in the total share. Despite differences in the physicochemical soil characteristics, the soil microbial community structures at the phylum level were similar to some extent in the two samples. The only share that was significantly higher in the control area when compared to the sample obtained within the birds' colony, belonged to the Actinobacteria phylum. Moreover, when analyzing the class level for each phylum, several differences between the samples were observed. Furthermore, lower proportions of Proteobacteria and Acidobacteria were observed in the soil sample under the influence of the bird's colony, which most probably could be linked to higher nitrogen concentrations in that sample. PMID:27667982

  5. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.

    PubMed

    Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.

  6. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field

    PubMed Central

    Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528

  7. COMPARISON OF GEOPROBE PRT AND AMS GVP SOIL-GAS SAMPLING SYSTEMS WITH DEDICATED VAPOR PROBES IN SANDY SOILS AT THE RAYMARK SUPERFUND SITE

    EPA Science Inventory

    A study was conducted near the Raymark Superfund Site in Stratford, Connecticut to compare results of soil-gas sampling using dedicated vapor probes, a truck-mounted direct-push technique - the Geoprobe Post-Run-Tubing (PRT) system, and a hand-held rotary hammer technique - the A...

  8. The causes of mangrove death on Yap, Palau, Pohnpei and Kosrae [Chapter II

    Treesearch

    Phil G. Cannon; Margie Falanruw; Francis Ruegorong; Rich MacKenzie; Katie Friday; Amy L. Ross-Davis; Sara M. Ashiglar; Ned B. Klopfenstein; Zhangfeng Liu; Mohammad Golabi; Chancy Thomas Iyekar

    2014-01-01

    The area of a massive mangrove dieback in Yinuf Mn Island, Yap, was selected as the first location to study mangrove dieback problems. Seawater and soil samples were collected from plots where the mangrove trees were dead/dying and these samples were analyzed for eight different seawater and soil floor properties. Seawater and soil properties from dead/dying/...

  9. General statistical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhardt, L L; Gilbert, R O

    From NAEG plutonium environmental studies program meeting; Las Vegas, Nevada, USA (2 Oct 1973). The high sampling variability encountered in environmental plutonium studies along with high analytical costs makes it very important that efficient soil sampling plans be used. However, efficient sampling depends on explicit and simple statements of the objectives of the study. When there are multiple objectives it may be difficult to devise a wholly suitable sampling scheme. Sampling for long-term changes in plutonium concentration in soils may also be complex and expensive. Further attention to problems associated with compositing samples is recommended, as is the consistent usemore » of random sampling as a basic technique. (auth)« less

  10. Evaluating Soil Health Using Remotely Sensed Evapotranspiration on the Benchmark Barnes Soils of North Dakota

    NASA Astrophysics Data System (ADS)

    Bohn, Meyer; Hopkins, David; Steele, Dean; Tuscherer, Sheldon

    2017-04-01

    The benchmark Barnes soil series is an extensive upland Hapludoll of the northern Great Plains that is both economically and ecologically vital to the region. Effects of tillage erosion coupled with wind and water erosion have degraded Barnes soil quality, but with unknown extent, distribution, or severity. Evidence of soil degradation documented for a half century warrants that the assumption of productivity be tested. Soil resilience is linked to several dynamic soil properties and National Cooperative Soil Survey initiatives are now focused on identifying those properties for benchmark soils. Quantification of soil degradation is dependent on a reliable method for broad-scale evaluation. The soil survey community is currently developing rapid and widespread soil property assessment technologies. Improvements in satellite based remote-sensing and image analysis software have stimulated the application of broad-scale resource assessment. Furthermore, these technologies have fostered refinement of land-based surface energy balance algorithms, i.e. Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) algorithm for evapotranspiration (ET) mapping. The hypothesis of this study is that ET mapping technology can differentiate soil function on extensive landscapes and identify degraded areas. A recent soil change study in eastern North Dakota resampled legacy Barnes pedons sampled prior to 1960 and found significant decreases in organic carbon. An ancillary study showed that evapotranspiration (ET) estimates from METRIC decreased with Barnes erosion class severity. An ET raster map has been developed for three eastern North Dakota counties using METRIC and Landsat 5 imagery. ET pixel candidates on major Barnes soil map units were stratified into tertiles and classified as ranked ET subdivisions. A sampling population of randomly selected points stratified by ET class and county proportion was established. Morphologic and chemical data will be recorded at each sampling site to test whether soil properties correlate to ET, thus serving as a non-biased proxy for soil health.

  11. Pyrogenic Carbon in forest soils across climate and soil property gradients in Switzerland

    NASA Astrophysics Data System (ADS)

    Reisser, Moritz; González Domínguez, Beatriz R.; Hagedorn, Frank; Abiven, Samuel

    2016-04-01

    Soil organic carbon (SOC) is an important measure for soil quality. Usually a high organic matter content in soils is favourable for most ecosystems. As a very stable component, pyrogenic organic carbon (PyC) can be of major interest to investigate to potential of organic matter, to persist very long in soils. Recent studies have shown, that the mean residence time of organic matter is not only due to its intrinsic chemical nature, but also to a variety of abiotic and biotic variables set by the ecosystem. Especially for PyC it is unclear, whether its content is related to fire regime, soil properties or other climatic conditions. In this study we wanted to investigate, how climatic and soil-related conditions are influencing the persistence of PyC in soils. Therefore we used a sample set from Swiss forest soil (n = 54), which was designed for the purpose of having most differing climatic conditions (aridity and temperature) and a large range of soil properties (pH between 3.4 and 7.6; clay content between 4.7 % and 60 %). The soils were sampled in the first 20 cm of the mineral horizon on a representative plot area of 40 x 40 m. The soils were sieved to 2 mm and dried prior to the analysis. We used the benzene polycarboxylic acids (BPCA) molecular marker method to quantify and characterize PyC in these soil samples. Despite the large span in environmental conditions, we observed rather small differences in the contribution of PyC to SOC between warmer and colder, as well as between wetter and dryer soils. The PyC content in SOC lies well in range with a global average for forest soils estimated in other studies. Stocks of PyC vary more than the content, because of the large range of SOC contents in the samples. The influence of other parameters like soil properties is still under investigation. Qualitative investigation of the BPCAs showed that the degree of condensation, defined by the relative amount of B6CA in the total BPCA, was higher in warmer soils. This might be explained by the fact that warmer conditions favour decomposition of organic matter and leave a higher relative amount of the most condensed and therefore also stable molecules.

  12. Effect of soil compaction on the degradation and ecotoxicological impact of isoproturon

    NASA Astrophysics Data System (ADS)

    Mamy, L.; Vrignaud, P.; Cheviron, N.; Perreau, F.; Belkacem, M.; Brault, A.; Breuil, S.; Delarue, G.; Touton, I.; Chaplain, V.

    2009-04-01

    Soil is essentially a non-renewable resource which performs many functions and delivers services vital to human activities and ecosystems survival. However the capacity of soil to keep on fully performing its broad variety of crucial functions is damaged by several threats and, among them, chemical contamination by pesticides and compaction due to intensive agriculture practices. How these two threats could interact is largely unknown: compaction may modify the fate of pesticides in soil therefore their effects on the biological functioning of soil. The aim of this work was to study the effect of soil compaction on (1) the degradation of one herbicide, isoproturon (2) the ecotoxicological impact of this herbicide measured through two enzyme activities involved in C (beta-glucosidase) and N (urease) cycles in soil. Undisturbed soil cylinders were sampled in the 2-4 cm layer of La Cage experimental site (INRA, Versailles, France), under intensive agriculture practices. Several soil samples were prepared with different bulk density then treated with isoproturon (IPU). The samples were incubated at 18 ± 1°C in darkness for 63 days. At 0, 2, 7, 14, 28 and 63 days, the concentrations of isoproturon and of two of its main metabolites in soil (monodesmethyl-isoproturon, IPPMU; didesmethyl-isoproturon, IPPU), and the enzyme activities were measured. The results showed that there was no significant difference in IPU degradation under no and moderate soil compaction. IPU was less persistent in the highly compacted soil, but this soil had also higher humidity which is known to increase the degradation. Only one metabolite, IPPMU, was detected independently of the conditions of compaction. The compaction did not modify the effect of IPU on beta-glucosidase and urease activities in the long term, but microbial communities were probably the same in all the soil samples that were initially not compacted. The communities developed in durably compacted zones in the field are possibly different and modification in enzyme activities might be observed as a result. These first results seem to show that compaction did not modify the degradation and ecotoxicological impact of isoproturon in the soil. However, further studies should be performed using soil samples taken in different zones of compaction in the field, and taking into account the relation between bulk density and soil humidity.

  13. Using the VegeSafe community science program to measure, evaluate risk and advise on soil-metal contamination in Sydney backyards

    NASA Astrophysics Data System (ADS)

    Taylor, M. P.; Rouillon, M.; Harvey, P.; Kristensen, L. J.; Steven, G. G.

    2016-12-01

    The extent of metal contamination in Sydney residential garden soils was evaluated using data collated from a 3-year university community science program called VegeSafe. Despite knowledge of industrial and urban contamination amongst scientists, the general public remains under informed about the potential risks of exposure from legacy contaminants in their home environments. The Australian community was offered free soil metal screening allowing access to soil samples for research purposes. Participants followed specific soil sampling instructions and posted samples to the University for analysis with a field portable X-ray Fluorescence (pXRF) spectrometer. Over the 3-year period >5000 soil samples were collected and analysed from >1000 households across Australia, primarly from vegetable gardens. As anticipated, the primary soil metal of concern was lead: mean concentrations were 413 mg/kg (front garden), 707 mg/kg (drip line), 226 mg/kg (back yard) and 301 mg/kg (vegetable garden). The Australian soil lead guideline of 300 mg/kg for residential yards was exceeded at 40% of domestic properties. Soil lead concentrations >1000 mg/kg were identified in 15% of Sydney backyards. The incidence of highest soil lead contamination was greatest in the inner city area with concentrations declining towards background values of 20-30 mg/kg at 30-40 km distance from the city. Community engagement with VegeSafe participants has resulted in useful outcomes: dissemination of knowledge related to contamination legacies and health risks, owners building raised beds containing clean soil, and, in numerous cases owners replacing their contaminated soil. This study demonstrates the potential for similar community science programs for expediting mass sample collection of soils and dusts for analysis of traditional and emerging contaminants within the home environment.

  14. Soil salinization in the agricultural lands of Rhodope District, northeastern Greece.

    PubMed

    Pisinaras, V; Tsihrintzis, V A; Petalas, C; Ouzounis, K

    2010-07-01

    The objective of this study was to identify seasonal and spatial trends and soil salinization patterns in a part of Rhodope District irrigated land, northeastern Greece, located east of Vistonis Lagoon. The study area is irrigated from a coastal aquifer, where salt water intrusion occurs because of extensive groundwater withdrawals. Fourteen monitoring sites were established in harvest fields in the study area, where soil samples were collected. Electrical conductivity (ECe), pH, and ion concentrations were determined in the saturated paste extract of the soil samples in the laboratory using standard methods. A clear tendency was observed for ECe to increase from April to September, i.e., within the irrigation period, indicating the effect of saline groundwater to soil. In the last years, the change from moderately sensitive (e.g., corn) to moderately tolerant crops (e.g., cotton) in the south part of the study area indicates the impacts of soil salinity. The study proposes management methods to alleviate this problem.

  15. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    PubMed

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  16. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site

    NASA Astrophysics Data System (ADS)

    Kanmani, S.; Gandhimathi, R.

    2013-03-01

    The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, W.G.

    Scapteriscus vicinus is the most important pest of turf and pasture grasses in Florida. This study develops a method of correlating sample results with true population density and provides the first quantitative information on spatial distribution and movement patterns of mole crickets. Three basic techniques for sampling mole crickets were compared: soil flushes, soil corer, and pitfall trapping. No statistical difference was found between the soil corer and soil flushing. Soil flushing was shown to be more sensitive to changes in population density than pitfall trapping. No technique was effective for sampling adults. Regression analysis provided a means of adjustingmore » for the effects of soil moisture and showed soil temperature to be unimportant in predicting efficiency of flush sampling. Cesium-137 was used to label females for subsequent location underground. Comparison of mean distance to nearest neighbor with the distance predicted by a random distribution model showed that the observed distance in the spring was significantly greater than hypothesized (Student's T-test, p < 0.05). Fall adult nearest neighbor distance was not different than predicted by the random distribution hypothesis.« less

  18. Spectroscopic Characteristics of Dissolved Organic Matter in Afforestation Forest Soil of Miyun District, Beijing

    PubMed Central

    Zhao, Chen; Shi, Zong-Hai; Zhong, Jun; Liu, Jian-Guo; Li, Jun-Qing

    2016-01-01

    In this study, soil samples collected from different plain afforestation time (1 year, 4 years, 10 years, 15 years, and 20 years) in Miyun were characterized, including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), available K (K+), microbial biomass carbon (MBC), and dissolved organic carbon (DOC). The DOM in the soil samples with different afforestation time was further characterized via DOC, UV-Visible spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, and 1H NMR spectroscopy. The results suggested that the texture of soil sample was sandy. The extracted DOM from soil consisted mainly of aliphatic chains and only a minor aromatic component. It can be included that afforestation can improve the soil quality to some extent, which can be partly reflected from the indexes like TOC, TN, TP, K+, MBC, and DOC. And the characterization of DOM implied that UV humic-like substances were the major fluorophores components in the DOM of the soil samples, which consisted of aliphatic chains and aromatic components with carbonyl, carboxyl, and hydroxyl groups. PMID:27433371

  19. Soil Pore Characteristics, an Underappreciated Regulatory Factor in GHGs Emission and C Stabilization

    NASA Astrophysics Data System (ADS)

    Toosi, E. R.; Yu, J.; Doane, T. A.; Guber, A.; Rivers, M. L.; Marsh, T. L.; Ali, K.; Kravchenko, A. N.

    2015-12-01

    Enduring challenges in understanding soil organic matter (SOM) stability and emission of greenhouse gases (GHGs) from soil stem from complexities of soil processes, many of which occur at micro-scales. The goal of this study is to evaluate the interactive effects soil pore characteristics, soil moisture levels, inherent SOM levels and properties, and substrate quality, on GHGs emission, and accelerated decomposition of native SOM following addition of fresh substrate i.e. priming. Our core hypothesis is that soil pore characteristics play a major role as a mediator in (i) the decomposition of organic matter regardless of its source (i.e. litter vs. native SOM) or substrate quality, as well as in (ii) GHGs emissions. Samples with prevalence of small (<10 μm) vs. large (>30 μm) pores were prepared from soils with similar properties but under long-term contrasting management. The samples were incubated (110 d) at low and optimum soil moisture conditions after addition of high quality (13C-soybean) and low quality (13C-corn) substrate. Headspace gas was analyzed for 13C-CO2 and GHGs on a regularly basis (day 1, 3, 7, 14, 24, 36, 48, 60, 72, 90, and 110). Selected samples were scanned at the early stage of decomposition (7, 14, 24 d) at 2-6 μm resolutions using X-ray computed μ tomography in order to: (1) quantify soil pore characteristics; (2) visualize and quantify distribution of soil moisture within samples of different pore characteristics; and (3) to visualize and measure losses of decomposing plant residue. Initial findings indicate that, consistent with our hypotheses, pore characteristics influenced GHGs emission, and intensity and pattern of plant residue decomposition. The importance of pores was highly pronounced in presence of added plant residue where greater N2O emission occurred in samples with dominant large pores, in contrast to CO2. Further findings will be discussed upon completion of the study and analysis of the results.

  20. Progress, Potential and Pitfalls in the Use of Bomb 14C to Constrain Soil Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.

    2007-12-01

    Forty four years have passed since atmospheric testing of thermonuclear weapons injected a major 14C spike into the atmosphere-biosphere-hydrosphere system. The use of bomb 14C, in combination with millennial decay of 14C, remains the most effective empirical tool for constraining rates of carbon (C) cycling in soils at timescales beyond experimental manipulations (>5 years). In the last 20 years, accelerator mass spectrometry has greatly increased the potential and throughput of soil 14C studies. At present, atmospheric Δ14C appears to be stabilizing at more constant values as a result of reinjection of bomb 14C from decadal storage in forests and soils. This means that current and future studies using bomb 14C have different sensitivities and uncertainties compared to those carried out during periods of rapid Δ14C decline such as the 1970s, 80s and 90s. Bomb 14C proves most effective when archived soil samples are available: simply using bulk Δ14C from samples collected at two or more times can surpass single time point Δ14C from soil fractions in providing robust C cycling rates. Of course, measurement of Δ14C in soil fractions from time series samples can significantly improve estimates of C cycling parameters. Samples collected between ca. 1965 and 1995 have now greatly surpassed pre-bomb samples in utility, although pre-bomb samples retain considerable usefulness for estimating the size of inert (millennial) C pools. Major pitfalls in the use of bomb 14C, particularly for single time point samples and fractions, are mainly associated with model assumptions. For example, calculated residence times can be highly sensitive to a minor component of old C (<10% of total C). Similarly, calculated residence times are also highly dependent upon rates of soil C accumulation or loss. A final key source of error is lag times between C fixation from atmospheric CO2 and incorporation in the measured soil C pool, either due to long-lived plant tissue, or residence times in other soil pools/horizons. All work using Δ14C should consider sensitivity and uncertainty related to these issues. Major potential exists in the use of Δ14C to constrain soil C dynamics as a function of soil depth, in relation to major unexplained losses of soil C, and to probe the mechanisms and rates of soil organic matter stabilization. These areas of major potential all lay outside conventional use of Δ14C to calculate simple residence times.

  1. Site suitability for riverbed filtration system in Tanah Merah, Kelantan-A physical model study for turbidity removal

    NASA Astrophysics Data System (ADS)

    Ghani, Mastura; Adlan, Mohd Nordin; Kamal, Nurul Hana Mokhtar; Aziz, Hamidi Abdul

    2017-10-01

    A laboratory physical model study on riverbed filtration (RBeF) was conducted to investigate site suitability of soil from Tanah Merah, Kelantan for RBeF. Soil samples were collected and transported to the Geotechnical Engineering Laboratory, Universiti Sains Malaysia for sieve analysis and hydraulic conductivity tests. A physical model was fabricated with gravel packs laid at the bottom of it to cover the screen and then soil sample were placed above gravel pack for 30 cm depth. River water samples from Lubok Buntar, Kedah were used to simulate the effectiveness of RBeF for turbidity removal. Turbidity readings were tested at the inlet and outlet of the filter with specified flow rate. Results from soil characterization show that the soil samples were classified as poorly graded sand with hydraulic conductivity ranged from 7.95 x 10-3 to 6.61 x 10-2 cm/s. Turbidity removal ranged from 44.91% - 92.75% based on the turbidity of water samples before filtration in the range of 33.1-161 NTU. The turbidity of water samples after RBeF could be enhanced up to 2.53 NTU. River water samples with higher turbidity of more than 160 NTU could only reach 50% or less removal by the physical model. Flow rates of the RBeF were in the range of 0.11-1.61 L/min while flow rates at the inlet were set up between 2-4 L/min. Based on the result of soil classification, Tanah Merah site is suitable for RBeF whereas result from physical model study suggested that 30 cm depth of filter media is not sufficient to be used if river water turbidity is higher.

  2. Selenium and sulfur relationships in alfalfa and soil under field conditions, San Joaquin Valley, California

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1992-01-01

    Relationships between total Se and S or soluble SeO4 and SO4 in soils and tissue concentrations in alfalfa (Medicago sativa L.), under field conditions in the San Joaquin Valley of California, suggest that the rate of accumulation of Se in alfalfa may be reduced in areas where high Se and S concentrations in soils were measured. These data suggest that the balance between carbonate and sulfate minerals in soil may have a greater influence on uptake of Se by alfalfa than does the balance of SeO4 and SO4 in soil solution. Soil and alfalfa were sampled from areas representing a wide range in soil Se and S concentrations. Specific sampling locations were selected based on a previous study of Se, S, and other elements where 721 soil samples were collected to map landscape variability and distribution of elements. Six multiple-linear regression equations were developed between total and/or soluble soil chemical constituents and tissue concentrations of Se in alfalfa. We chose a regression model that accounted for 72% of the variability in alfalfa Se concentrations based on an association of elements in soil (total C, S, Se, and Sr) determined by factor analysis. To prepare a map showing the spatial distribution of estimated alfalfa Se concentrations, the model was applied to the data from the previously collected 721 soil samples. Estimated alfalfa Se concentrations in most of the study area were within a range that is predicted to produce alfalfa with neither Se deficiency nor toxicity when consumed by livestock. A few small areas are predicted to produce alfalfa that potentially would not meet minimum dietary needs of livestock.

  3. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size of POM pieces. That was followed by discriminant analysis conducted using statistical and geostatistical characteristics of POM pieces. POM identified in the intact individual soil aggregates using the proposed procedure was in good agreement with POM measured in the studied aggregates using conventional lab method (R2=0.75). Of particular importance for accurate identification of POM in the images was the information on spatial characteristics of POM's GVs. Since this is the first attempt of POM determination, future work will be needed to explore how the proposed procedure performs under a variety of potentially influential factors, such as POM's origin and decomposition stage, X-ray scanning settings, image filtering and segmentation methods.

  4. Genus-Specific Primers for Study of Fusarium Communities in Field Samples

    PubMed Central

    Edel-Hermann, Véronique; Gautheron, Nadine; Durling, Mikael Brandström; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula; Friberg, Hanna

    2015-01-01

    Fusarium is a large and diverse genus of fungi of great agricultural and economic importance, containing many plant pathogens and mycotoxin producers. To date, high-throughput sequencing of Fusarium communities has been limited by the lack of genus-specific primers targeting regions with high discriminatory power at the species level. In the present study, we evaluated two Fusarium-specific primer pairs targeting translation elongation factor 1 (TEF1). We also present the new primer pair Fa+7/Ra+6. Mock Fusarium communities reflecting phylogenetic diversity were used to evaluate the accuracy of the primers in reflecting the relative abundance of the species. TEF1 amplicons were subjected to 454 high-throughput sequencing to characterize Fusarium communities. Field samples from soil and wheat kernels were included to test the method on more-complex material. For kernel samples, a single PCR was sufficient, while for soil samples, nested PCR was necessary. The newly developed primer pairs Fa+7/Ra+6 and Fa/Ra accurately reflected Fusarium species composition in mock DNA communities. In field samples, 47 Fusarium operational taxonomic units were identified, with the highest Fusarium diversity in soil. The Fusarium community in soil was dominated by members of the Fusarium incarnatum-Fusarium equiseti species complex, contradicting findings in previous studies. The method was successfully applied to analyze Fusarium communities in soil and plant material and can facilitate further studies of Fusarium ecology. PMID:26519387

  5. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.

    PubMed

    Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A

    2016-11-01

    Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    NASA Astrophysics Data System (ADS)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  7. Experimental study on microstructure characters of foamed lightweight soil

    NASA Astrophysics Data System (ADS)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  8. Radon levels in drinking water and soil samples of Jodhpur and Nagaur districts of Rajasthan, India.

    PubMed

    Mittal, Sudhir; Rani, Asha; Mehra, Rohit

    2016-07-01

    Radon causes lung cancer when it is trapped inside the lungs. Therefore it is very important to analyze the radon concentration in water and soil samples. In the present investigation, water and soil samples collected from 20 different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India have been studied by using RAD7. The measured radon concentration in water samples varies from 0.5 to 15Bql(-1). The observed values lie within the safe limit as set by UNSCEAR, 2008. The total annual effective dose due to radon in water corresponding to all studied locations has been found to be well within the safe limit of 0.1mSvy(-1) as recommended by World Health Organization (WHO, 2004) and European Council (EU, 1998). The measurements carried out on radon concentration in soil samples reveal a variation from 1750 to 9850Bqm(-3). These results explore that the water of Jodhpur and Nagaur districts is suitable for drinking purpose without posing any health hazard but soil hazards depend upon its permeability and radon concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of elevated CO2 concentrations on denitrifying and nitrifying popualtions at terrestrial CO2 leakeage analogous sites

    NASA Astrophysics Data System (ADS)

    Christine, Dictor Marie; Catherine, Joulian; Valerie, Laperche; Stephanie, Coulon; Dominique, Breeze

    2010-05-01

    CO2 capture and geological storage (CCS) is recognized to be an important option for carbon abatement in Europe. One of the risks of CCS is the leakage from storage site. A laboratory was conducted on soil samples sampled near-surface from a CO2 leakage analogous site (Latera, Italy) in order to evaluate the impact of an elevated soil CO2 concentration on terrestrial bacterial ecosystems form near surface terrestrial environments and to determine a potential bacterial indicator of CO2 leakage from storage site. Surveys were conducted along a 50m long transect across the vent centre, providing a spectrum of CO2 flux rates, soil gas concentrations and compositions (Beaubien et al., 2007). A bacterial diversity studies, performed by CE-SSCP technique, on a soil profile with increasing CO2 soil concentrations (from 0.3% to 100%) showed that a change on bacterial diversity was noted when CO2 concentration was above 50 % of CO2. From this result, 3 soil samples were taken at 70 cm depth in 3 distinct zones (background soil CO2 content, soil CO2 content of 20% and soil CO2 content of 50%). Then theses soil samples were incubated under closed jars flushed with different air atmospheres (20, 50 and 90 % of CO2) during 18 months. At initial, 3, 6, 12 and 18 months, some soil samples were collected in order to estimate the denitrifying, nitrifying activities as a function of CO2 concentration content and times. Theses enzymatic activities were chosen because one occurs under anaerobic conditions (denitrification) and the other occurs under aerobic conditions (nitrification). Both of them were involved in the nitrogen cycle and are major actors of soil function and groundwater quality preservation. Metabolic diversity using BIOLOG Ecoplates was determined on every soil samples. Physico-chemical parameters (e.g. pH, bulk chemistry, mineralogy) were analyzed to have some information about the evolution of the soil during the incubation with increasing soil CO2 concentrations. Statistical analyses were performed to correlate microbiological measures and physico-chemical parameters. For the soil sampled in a zone with background CO2 content, incubation under an atmosphere with 20% of CO2, induce a sharp decrease of denitrifying activity after 6 months of incubation and only after 3 months with an atmosphere of 50% of CO2. On the contrary, concerning the soil sampled in a zone with 25.5% of CO2, incubation with an atmosphere of 50% has no effect on denitrifying activity and moreover this activity was stimulated with an atmosphere of 90% of CO2.Last, with the soil sampled in an area with 65.8% of CO2, denitrifying activity was negatively impacted from the 3th month of incubation with 90% CO2.and the activity was 2 fold lower after 12th of incubation. Concerning the nitrifying activity, soil sampled in an area with background CO2 content, this one remains little affected by increasing CO2 incubation. At initial times, soil sampled in the areas with 25.5 and 65.8 % of CO2 showed low level of nitrifying activities and further CO2 incubations have no effect on these activities. At the end, denitrifying activities seems to be more sensitive to CO2 concentrations evolution in the soil. More studies need to be done as incubation with lower CO2 content (< 10%) in order to determine the threshold of CO2 that can affect the near-surface bacterial activities and identify a possible candidate of CO2 leakage from deep reservoirs.

  10. Evaluation of soil water stable isotope analysis by H2O(liquid)-H2O(vapor) equilibration method

    NASA Astrophysics Data System (ADS)

    Gralher, Benjamin; Stumpp, Christine

    2014-05-01

    Environmental tracers like stable isotopes of water (δ18O, δ2H) have proven to be valuable tools to study water flow and transport processes in soils. Recently, a new technique for soil water isotope analysis has been developed that employs a vapor phase being in isothermal equilibrium with the liquid phase of interest. This has increased the potential application of water stable isotopes in unsaturated zone studies as it supersedes laborious extraction of soil water. However, uncertainties of analysis and influencing factors need to be considered. Therefore, the objective of this study was to evaluate different methodologies of analysing stable isotopes in soil water in order to reduce measurement uncertainty. The methodologies included different preparation procedures of soil cores for equilibration of vapor and soil water as well as raw data correction. Two different inflatable sample containers (freezer bags, bags containing a metal layer) and equilibration atmospheres (N2, dry air) were tested. The results showed that uncertainties for δ18O were higher compared to δ2H that cannot be attributed to any specific detail of the processing routine. Particularly, soil samples with high contents of organic matter showed an apparent isotope enrichment which is indicative for fractionation due to evaporation. However, comparison of water samples obtained from suction cups with the local meteoric water line indicated negligible fractionation processes in the investigated soils. Therefore, a method was developed to correct the raw data reducing the uncertainties of the analysis.. We conclude that the evaluated method is advantageous over traditional methods regarding simplicity, resource requirements and sample throughput but careful consideration needs to be made regarding sample handling and data processing. Thus, stable isotopes of water are still a good tool to determine water flow and transport processes in the unsaturated zone.

  11. History and progress of the North American Soil Geochemical Landscapes Project, 2001-2010

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Rivera, Francisco Moreira; Rencz, Andrew N.; Garrett, Robert G.

    2012-01-01

    In 2007, the U.S. Geological Survey, the Geological Survey of Canada, and the Mexican Geological Survey initiated a low-density (1 site per 1600 km2, 13323 sites) geochemical and mineralogical survey of North American soils (North American Soil Geochemical Landscapes Project). Sampling and analytical protocols were developed at a series of workshops in 20032004 and pilot studies were conducted from 20042007. The ideal sampling protocol at each site includes a sample from 05 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The 3, HClO4, and HF. Separate methods are used for As, Hg, Se, and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling in the conterminous U.S. was completed in 2010 (c. 4800 sites) with chemical and mineralogical analysis currently underway. In Mexico, approximately 66% of the sampling (871 sites) had been done by the end of 2010 with completion expected in 2012. After completing sampling in the Maritime provinces and portions of other provinces (472 sites, 7.6% of the total), Canada withdrew from the project in 2010. Preliminary results for a swath from the central U.S. to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.

  12. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls.

    PubMed

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.

  13. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    PubMed Central

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  14. The MPLEx Protocol for Multi-omic Analyses of Soil Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicora, Carrie D.; Burnum-Johnson, Kristin E.; Nakayasu, Ernesto S.

    Mass spectrometry (MS)-based integrated metaproteomic, metabolomic and lipidomic (multi-omic) studies are transforming our ability to understand and characterize microbial communities in environmental and biological systems. These measurements are even enabling enhanced analyses of complex soil microbial communities, which are the most complex microbial systems known to date. Multi-omic analyses, however, do have sample preparation challenges since separate extractions are typically needed for each omic study, thereby greatly amplifying the preparation time and amount of sample required. To address this limitation, a 3-in-1 method for simultaneous metabolite, protein, and lipid extraction (MPLEx) from the exact same soil sample was created bymore » adapting a solvent-based approach. This MPLEx protocol has proven to be simple yet robust for many sample types and even when utilized for limited quantities of complex soil samples. The MPLEx method also greatly enabled the rapid multi-omic measurements needed to gain a better understanding of the members of each microbial community, while evaluating the changes taking place upon biological and environmental perturbations.« less

  15. Contaminant bioavailability in soil and phytotoxicity/genotoxicity tests in Vicia faba L.: a case study of boron contamination.

    PubMed

    Barbafieri, Meri; Giorgetti, Lucia

    2016-12-01

    In this work, the model plant for genotoxicity studies Vicia faba L. was used to investigate the relation between Boron (B) content and bioavailability in soil and plant genotoxic/phytotoxic response. A total of nine soil samples were investigated: two soil samples were collected from a B-polluted industrial area in Cecina (Tuscany, Italy), the other samples were obtained by spiking control soil (from a not polluted area of the basin) with seven increased doses of B, from about 20 to 100 mg B kg -1 . As expected, B availability, evaluated by chemical extraction, was higher (twofold) in spiked soils when compared with collected polluted soils with the same B total content. To analyze the phytotoxic effects of B, seed germination, root elongation, biomass production, and B accumulation in plant tissues were considered in V. faba plants grown in the various soils. Moreover, the cytotoxic/genotoxic effects of B were investigated in root meristems by mitotic index (MI) and micronuclei frequency (MCN) analysis. The results highlighted that V. faba was a B-sensitive plant and the appearance of phytotoxic effects, which altered plant growth parameters, were linearly correlated to the bioavailable B concentration in soils. Concerning the occurrence of cytotoxic/genotoxic effects induced by B, no linear correlation was observed even if MCN frequency was logarithmic correlated with the concentration of B bioavailable in soils.

  16. Soil profile property estimation with field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  17. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    PubMed Central

    Aschenbach, Katrin; Conrad, Ralf; Řeháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~103 gdw−1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  18. Americium-241 in surface soil associated with the Hanford site and vicinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, K.R.; Gilbert, R.O.; Gano, K.A.

    1981-05-01

    Various kinds of surface soil samples were collected and analyzed for Americium-241 (/sup 241/Am) to examine the feasibility of improving soil sample data for the Hanford Surface Environmental Surveillance Program. Results do not indicate that a major improvement would occur if procedures were changed from the current practices. Conclusions from this study are somewhat tempered by the very low levels of /sup 241/Am (< 0.10 pCi/g dry weight) detected in surface soil samples and by the fact that statistical significance depended on the type of statistical tests used. In general, the average concentration of /sup 241/Am in soil crust (0more » to 1.0 cm deep) was greater than the corresponding subsurface layer (1.0 to 2.5 cm deep), and the average concentration of /sup 241/Am in some onsite samples collected near the PUREX facility was greater than comparable samples collected 60 km upwind at an offsite location.« less

  19. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    PubMed

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction.

  20. Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey.

    PubMed

    Sahin, Latife; Hafızoğlu, Nurgül; Çetinkaya, Hakan; Manisa, Kaan; Bozkurt, Engin; Biçer, Ahmet

    2017-05-01

    The analysis of natural radioactivity from 238 U, 232 Th and 40 K in 357 soil samples collected from the province of Kütahya was carried out using a NaI(Tl) gamma-ray spectroscopy system at the Nuclear Physics Research Laboratory, Dumlupınar University, Kütahya, Turkey. The specific activities of 238 U, 232 Th and 40 K in the soil samples were evaluated. From the activity concentrations of 238 U, 232 Th and 40 K, the total absorbed outdoor gamma-ray dose rates and the corresponding annual effective dose rates were determined. The corresponding values of the external and internal hazard indices of all the soil samples were also calculated. The external gamma-ray dose rate at 1 m above the ground was directly measured at each collected soil sample location. The results obtained in this study were compared within the limits of values obtained in other cities of Turkey, those in other countries. Radiological maps of Kütahya Province were constructed from the results of this study.

  1. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    PubMed Central

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  2. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar.

    PubMed

    Leite, D C A; Balieiro, F C; Pires, C A; Madari, B E; Rosado, A S; Coutinho, H L C; Peixoto, R S

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  3. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.

  4. Isotopic studies in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Alexander, E. C., Jr.

    1971-01-01

    Analysis of lunar soil samples returned by Apollo 11 and 12 flights are discussed. Isotopic studies of the rare gases from Apollo 11 flight lunar samples are presented. The lunar soil analyses indicated the following: (1) high concentrations of solar wind rare gases, (2) isotopic match between solar wind gases and gas components in gas-rich meteorites, and (3) rare gases attributable to spallation reactions induced in heavier nuclides by cosmic ray particles.

  5. Effects of bioturbation on environmental DNA migration through soil media

    PubMed Central

    2018-01-01

    Extracting and identifying genetic material from environmental media (i.e. water and soil) presents a unique opportunity for researchers to assess biotic diversity and ecosystem health with increased speed and decreased cost as compared to traditional methods (e.g. trapping). The heterogeneity of soil mineralogy, spatial and temporal variations however present unique challenges to sampling and interpreting results. Specifically, fate/transport of genetic material in the terrestrial environment represents a substantial data gap. Here we investigate to what degree, benthic fauna transport genetic material through soil. Using the red worm (Eisenia fetida), we investigate how natural movement through artificial soil affect the transport of genetic material. All experiments were run in Frabill® Habitat® II worm systems with approximately 5 cm depth of artificial soil. We selected an “exotic” source of DNA not expected to be present in soil, zebrafish (Danio rerio) tissue. Experiment groups contained homogenized zebrafish tissue placed in a defined location combined with a varying number of worms (10, 30 or 50 worms per experimental group). Experimental groups comprised two controls and three treatment groups (representing different worm biomass) in triplicate. A total of 210 soil samples were randomly collected over the course of 15 days to investigate the degree of genetic transfer, and the rate of detection. Positive detections were identified in 14% - 38% of samples across treatment groups, with an overall detection rate of 25%. These findings highlight two important issues when utilizing environmental DNA for biologic assessments. First, benthic fauna are capable of redistributing genetic material through a soil matrix. Second, despite a defined sample container and abundance of worm biomass, as many as 86% of the samples were negative. This has substantial implications for researchers and managers who wish to interpret environmental DNA results from terrestrial systems. Studies such as these will aid in future study protocol design and sample collection methodology. PMID:29689092

  6. Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites.

    PubMed

    dela Cruz, Albert Leo N; Cook, Robert L; Dellinger, Barry; Lomnicki, Slawomir M; Donnelly, Kirby C; Kelley, Matthew A; Cosgriff, David

    2014-01-01

    We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ~30×, ~12×, and ~2× higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0 G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment.

  7. Assessment of Environmentally Persistent Free Radicals in Soils and Sediments from Three Superfund Sites

    PubMed Central

    dela Cruz, Albert Leo N.; Cook, Robert L.; Dellinger, Barry; Lomnicki, Slawomir M.; Donnelly, Kirby C.; Kelley, Matthew A.; Cosgriff, David

    2014-01-01

    We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ~30x, ~12x, and ~2x higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment. PMID:24244947

  8. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania

    PubMed Central

    2014-01-01

    Background Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. Method We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15–49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Results Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Conclusion Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita District are exposed to potentially high levels of chemical elements, depending upon frequency of consumption, daily amount consumed and the source location of soil eaten. PMID:24731450

  9. [Environmental Education Units.] Soil Sampling. Stream Profiles. Tree Watching. Plant Puzzles.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Five of these eleven units describe methods elementary school students can use when studying soil characteristics. Soil nitrogen and water holding capacity tests are included with two techniques for measuring soil pH. Survey methods for soil organisms are suggested. The remaining pamphlets describe diverse activities associated with field…

  10. Mapping of available heavy metals in Catamarca (Argentina)

    NASA Astrophysics Data System (ADS)

    Roca, N.; Pazos, M. S.; Bech, J.

    2009-04-01

    Copper, iron, manganese and zinc are four essential elements for plant growth. Mapping heavy metal migration and distribution in soils is a preliminary step in assessing heavy metal availability in soils. However, data of qualitative and quantitative trace elements composition of soils of Argentina are scarce. Despite the small amounts required by plants, agricultural soils are usually deficient in one or more micronutrients, therefore, their concentration in plant tissues falls below the levels that allow optimal growth. Soil nature plays a fundamental role in the availability of micronutrients and their behaviour at a soil-plant level. The aim of this study is to determine the plant availability and areas of deficiency in agricultural soils with risk of salinization. The presented maps have been elaborated on the basis of the information provided by the monochromatic aerial photographs, scale 1:7000 and projected using the topographic information of the National Topographic Maps. Soils were sampled according to the spatial variation of soil types and land use. Sampling points were geo-referenced. Soil samples were analyzed at the laboratory for complete physicochemical and mineralogical characteristics. The percentage of organic matter is the determining factor in the presence and distribution of the available metals in the soils of the studied area, being the top horizon the one of greatest accumulation. CuDTPA, FeDPTA and MnDPTA are mobile within the profile, whereas ZnDPTA remains adsorbed without vertical displacement. ZnDTPA is the only available metal which also shows differences due to soil salinity and textural classes. However, soil geochemical conditions imply low extractability and a certain difficulty for micronutrient absorption by plants.

  11. Impacts of land use changes on physical and chemical soil properties in the Central Pyrenees

    NASA Astrophysics Data System (ADS)

    Nadal Romero, Estela; Hoitinga, Leo; Valdivielso, Sergio; Pérez Cardiel, Estela; Serrano Muela, Pili; Lasanta, Teodoro; Cammeraat, Erik

    2015-04-01

    Soils and vegetation tend to evolve jointly in relation to climate evolution and the impacts of human activity. Afforestation has been one of the main policies for environmental management of forest landscapes in Mediterranean areas. Afforestation has been based mainly on conifers because they are fast-growing species, and also because it was believed that this would lead to rapid restoration of soil properties and hydrological processes, and the formation of protective vegetation cover. This study analyses the effects of afforestation on physical and chemical soil properties. Specifically, we addressed this research question: (i) How do soil properties change after land abandonment? The 11 microsites considered were: Afforestation Pinus sylvestris (escarpment, terrace and close to the stem), Afforestation Pinus nigra (escarpment, terrace and close to the stem), natural shrubland, grasslands, bare lands, and undisturbed forest site (pine cover and close to the stem). An extensive single sampling was carried out in September 2014. We systematically collected 5 top soil samples (0-10 cm) and 3 deep soil samples (10-20 cm) per microsite (88 composite samples in total). These properties were analysed: (i) soil texture, (ii) bulk density, (iii) pH and electrical conductivity, (iv) total SOC, (v) Total Nitrogen, (vi) organic matter, (vii) CaCO3 and (viii) aggregate stability. Statistical tests have been applied to determine relationships between the different soil properties and are used to assess differences between different soil samples, land use areas and soil depths. Implications of reafforestation for soil development and environmental response are discussed. Acknowledgments This research was supported by a Marie Curie Intra-European Fellowship in the project "MED-AFFOREST" (PIEF-GA-2013-624974).

  12. Learning About Dirt

    ERIC Educational Resources Information Center

    Atyeo, Marilyn J.

    1972-01-01

    Describes techniques for introducing studies of the soil in the early primary grades or in preschool classes. Includes suggestions for observation of soil samples, field trips to examine various soils in situ, and establishing a small garden. (AL)

  13. Correspondence between vegetation and soils in wetlands and nearby uplands

    USGS Publications Warehouse

    Scott, Michael L.; Slauson, William L.; Segelquist, Charles A.; Auble, Gregor T.

    1989-01-01

    The association between vegetation and soils from a geographically broad sampling of wetlands and adjoining uplands is reported for 38 hydric and 26 nonhydric soils, as recognized in the hydric soils list of the Soil Conservation Service. Wetlands represented in the study include estuaries, pitcher plant bogs, prairie depressional wetlands, and western riparian lands. The agreement between vegetation and soils is clear with few exceptions. In general, hydric soils support hydrophytic plant communities, and nonhydric soils support upland communities. Only 10% of the hydric soils sampled support upland communities and only 15% of the nonhydric soils support wetland communities. Exceptions to the correspondence between vegetation and soils are discussed; local hydrology, the transitional nature of some soils, and other determinants of wetland vegetation structure (e.g., salinity, disturbance) seem to account for many of the observed discrepancies. A method that simplifies the complexity of soils and vegetation cannot be expected to represent accurately all details of their interrelations.

  14. Kinetics of hydrogen release from lunar soil

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.

  15. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    PubMed

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological evaluation by using the same organism.

  16. A comparison of bacterial and fungal biomass in several cultivated soils.

    PubMed

    Kaczmarek, W

    1984-01-01

    Bacterial and fungal biomass was estimated in incubated samples of three cultivated soils, the influence of glucose, ammonium nitrate and cattle slurry on its formation being studied. The microbial biomass was determined in stained microscopic preparations of soil suspension. Bacterial biomass in the control samples was from 0.17 to 0.66 mg dry wt per 1 g dry soil and independently of the applied supplements was on the average two times larger in muck soils than in sand. Fungal biomass in the control soils ranged from 0.013 to 0.161 mg dry wt per 1 g dry soil, no relationship being found between its size and the soil type. As a result, the ratio of the size of fungal to bacterial biomass was dependent on the soil type; in sand the fungal biomass corresponded to 1/3 of the bacterial biomass, and in muck soils--only to 1/7.

  17. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  18. Occurrence and fate of the norsesquiterpene glucoside ptaquiloside (PTA) in soils

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Miano, Teodoro M.; Lattanzio, Vincenzo

    2014-05-01

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). This bracken constituent causes acute poisoning, blindness and cancer in animals, and can be transferred to man when bracken is utilized as food. Also milk from cows eating bracken is thought to be the vector for the transfer of PTA to humans, as well as PTA-contaminated drinking waters. Although some studies on the effect of growth conditions and soil properties on the production and mobility of PTA have been carried out (mainly in the North of Europe), results are sometimes conflicting and further investigations are needed. The aim of the present work is to study the occurrence and the fate of PTA in soils showing different physico-chemical features, collected in different pedoclimatic areas (from the South of Italy), but having the extensive ("wild") livestock farming as common denominator. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterizes from the physical and chemical point of view (pH, EC, texture, total carbonates, cation exchange capacity, organic C, total N, available nutrients and heavy metal concentration) in order to correlate the possible influence of soil parameters on PTA production, occurrence and mobility. PTA concentration in soil samples was always

  19. Effects of nitrogen enrichment on soil organic matter in tropical forests with different ambient nutrient status

    NASA Astrophysics Data System (ADS)

    Vaughan, E.; Cusack, D. F.; McDowell, W. H.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) enrichment is a widespread and increasingly important human influence on ecosystems globally, with implications for net primary production and biogeochemical processes. Previous research has shown that N enrichment can alter soil carbon (C) cycling, although the direction and magnitude of the changes are not consistent across studies, and may change with time. Inconsistent responses to N additions may be due to differences in ambient nutrient status, and/or variable responses of plant C inputs and microbial decomposition. Although plant production in the tropics is not often limited by N, soil processes may respond differently to N enrichment. Our study uses a 15-year N addition experiment at two different tropical forest sites in the Luquillo Long-Term Ecological Research project site in Puerto Rico to address long-term changes in soil C pools due to fertilization. The two forests differ in elevation and ambient nutrient status. Soil sampling three and five years post-fertilization showed increased soil C concentrations under fertilization, driven by increases in mineral-associated C (Cusack et al. 2011). However, the longer-term trends at these sites are unknown. To this end, soil samples were collected following fifteen years of fertilization. Soils were sampled from 0-10 cm and 10-20 cm. Bulk soil C and N concentrations will be measured and compared to samples collected before fertilization (2002) and three years post fertilization (2005). We are using density fractionation to isolate different soil organic matter pools into a free light, occluded light, and dense, mineral associated fraction. These pools represent different mechanisms of soil organic matter stabilization, and provide more detailed insight into changes in bulk soil C. These data will provide insight into the effects of N enrichment on tropical forest soils, and how those effects may change through time with a unique long-term data set.

  20. NIR & MIR spectroscopy as an effective tool for detecting urban influences on soils

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2016-04-01

    Soil supports ecosystem functions and services, sustains ecosystems and biodiversity, yet in the urban spreading world of today, soil as a resource is in constant danger. Human society takes for granted the services provided by open green patches allocated within and nearby cities, with no consideration of ramifications of urban development on those areas. The urban ecology science recognizes the need to learn, identify and monitor the soils of cities - urban soils. The definitions of those soils are mainly descriptive, since urban soils do not submitted to the pedological process as natural soils. The main objective of this paper is to characterize urban soils in open green undisturbed patches by mineralogical composition. This goal was achieved using field and laboratory spectroscopy across visible near, short wave infrared regions and laboratory thermal mid infrared region. The majority of the studies on urban soils concentrate on identifying and mapping of pollution mostly heavy metals. In this study a top-down analysis (a simple and intuitive spectral feature for detecting the presence of minerals, organic matter and pollutants in mixed soil samples) is applied. This method uses spectral activity (SA) detection in a structured hierarchical approach to quickly and, more importantly, correctly identify dominant spectral features. The applied method is adopted by multiple in-production tools including continuum removal normalization, guided by polynomial generalization, and spectral-likelihood algorithms: orthogonal subspace projection (OSP) and iterative spectral mixture analysis (ISMA) were compared to feature likelihood methods. A total of 70 soil samples were collected at different locations: in remnant area within the city (edge and core), on the borders of the neighborhoods (edge) and in the fringe zone and in 2 locations in the protected park. The park samples were taken in locations found more than 100m from roads or direct anthropogenic disturbances. The samples were collected outside the setback of the residential areas (edge), and the fringe samples were taken away from the edge, where construction debris or waste was no longer visible - approximately 18 m-50 m down the slopes. The samples were taken from the upper layer of the soils, after the course organic or trash residues were removed. A soil sample drill, 5 cm in diameter and 10 cm deep, was used collecting up to 100 ml sample caps. The samples were air-dried, sifted through a 2 mm sieve to remove large particles and rock fragments and ground to <200 nm samples for spectral analysis across 400-2500 nm and laboratory mid-IR analysis. A ratio between the spectral features of soils' aliphatic and aromatic groups and calcite or hydroxyls to estimate the total organic matter via method proposed by Dlapa et al., 2014; base on the ratio indices between aliphatic hydrocarbons (3000-2800cm-1) to calcite mineral (peak area at 875cm-1, central wave length) and between carboxyl aromatic groups (1800-1200cm-1) to calcite mineral, were calculated for soil total carbon estimation. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components found in the all the samples taken within city boundaries were organic matter. In the "organic matter" category, we summarized all forms of vegetation endmembers including coarse vegetation and organic carbon. The second component was concrete followed by plastic and bricks. We found traces of concrete in all the urban study samples, even samples taken as far as 150 m from the edge of patches. In the park soils, we found a low diversity of materials and only two identifications of anthropogenic substances. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no difference between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage. The suggested method was very effective for tracing the man-made substances, we could find concrete and asphalt, plastic and synthetic polymers after they were assimilated, broken down and decomposed into soil particles. By the top-down unmixing method we did not limit the substances we characterize and so we could detect unexpected materials and contaminants.

  1. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    NASA Astrophysics Data System (ADS)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  2. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    USGS Publications Warehouse

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi

  3. Using the Rasch model as an objective and probabilistic technique to integrate different soil properties

    NASA Astrophysics Data System (ADS)

    Rebollo, Francisco J.; Jesús Moral García, Francisco

    2016-04-01

    Soil apparent electrical conductivity (ECa) is one of the simplest, least expensive soil measurements that integrates many soil properties affecting crop productivity, including, for instance, soil texture, water content, and cation exchange capacity. The ECa measurements obtained with a 3100 Veris sensor, operating in both shallow (0-30 cm), ECs, and deep (0-90 cm), ECd, mode, can be used as an additional and essential information to be included in a probabilistic model, the Rasch model, with the aim of quantifying the overall soil fertililty potential in an agricultural field. This quantification should integrate the main soil physical and chemical properties, with different units. In this work, the formulation of the Rasch model integrates 11 soil properties (clay, silt and sand content, organic matter -OM-, pH, total nitrogen -TN-, available phosphorus -AP- and potassium -AK-, cation exchange capacity -CEC-, ECd, and ECs) measured at 70 locations in a field. The main outputs of the model include a ranking of all soil samples according to their relative fertility potential and the unexpected behaviours of some soil samples and properties. In the case study, the considered soil variables fit the model reasonably, having an important influence on soil fertility, except pH, probably due to its homogeneity in the field. Moreover, ECd, ECs are the most influential properties on soil fertility and, on the other hand, AP and AK the less influential properties. The use of the Rasch model to estimate soil fertility potential (always in a relative way, taking into account the characteristics of the studied soil) constitutes a new application of great practical importance, enabling to rationally determine locations in a field where high soil fertility potential exists and establishing those soil samples or properties which have any anomaly; this information can be necessary to conduct site-specific treatments, leading to a more cost-effective and sustainable field management. Furthermore, from the measures of soil fertility potential at sampled locations, estimates can be computed using, for instance, a geostatistical algorithm, and these estimates can be utilized to map soil fertility potential and delineate with a rational basis the management zones in the field. Keywords: Rasch model; soil management; soil electrical conductivity; probabilistic algorithm.

  4. Transport of Cryptosporidium parvum Oocysts in Soil Columns following Applications of Raw and Separated Liquid Slurries

    PubMed Central

    Petersen, Heidi H.; Enemark, Heidi L.; Olsen, Annette; Amin, M. G. Mostofa

    2012-01-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4′,6′-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r = 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry. PMID:22706058

  5. Culturable fungi in potting soils and compost.

    PubMed

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    NASA Astrophysics Data System (ADS)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  7. Mineral oil residues in soil and apple under temperate conditions of Kashmir, India.

    PubMed

    Ahmad, Malik Mukhtar; Wani, Ashraf Alam; Sofi, Mubashir; Ara, Ishrat

    2018-03-09

    The study was undertaken to ascertain the persistence of Orchol-13, a mineral oil used against insect pests of horticultural fruit crops in soil and apple following the dormant and summer applications of 2 and 0.75% respectively. Soil samples were collected during dormant, while as both soil and apple samples were collected during summer season. Samples were collected at 0, 1, 3, and 5 days post treatment in both the seasons. Average recoveries of paraffinic constituents (which constitute about 60% of mineral oils by composition) from soil and apple at 1 μg ml -1 spiking level were found to be 74.18 and 76.81% respectively. The final quantification of paraffinic constituents was performed on gas chromatograph equipped with flame ionization detector (GC-FID). No paraffinic constituents of mineral oil could be detected in soil and apple at 0 day post treatment in both the seasons.

  8. Effects of corn cob ash on lime stabilized lateritic soil

    NASA Astrophysics Data System (ADS)

    Nnochiri, Emeka Segun

    2018-03-01

    This study assesses the effects of Corn Cob Ash (CCA) on lime-stabilized lateritic soil. Preliminary tests were carried out on the natural soil sample for purpose of identification and classification. Lime being the main stabilizing material was thoroughly mixed with the soil sample to determine the optimum lime requirement of the sample as a basis for evaluating the effects of the CCA. The optimum lime requirement was 10%. The CCA was thereafter added to the lime stabilized soil in varying proportions of 2, 4, 6, 8 and 10%. Unsoaked CBR increased from 83% at 0% CCA to highest value of 94% at 4% CCA. Unconfined Compressive Strength (UCS) values increased from 1123kN/m2 at 0% CCA to highest value of 1180kN/m2 at 4% CCA. It was therefore concluded that CCA can serve as a good complement for lime stabilization in lateritic soil.

  9. The Laboratory Study of Shear Strength of the Overconsolidated and Quasi - Overconsolidated Fine - Grained Soil

    NASA Astrophysics Data System (ADS)

    Strozyk, Joanna

    2017-12-01

    The paper presents results of laboratory shear strength test conducted on fine-grained soil samples with different grain size distribution and with different geological age and stress history. The Triaxial Isotopic Consolidation Undrained Tests (TXCIU) were performed under different consolidation stress in normal and overconsolidadion stress state on the samples with natural structure. Soil samples were selected from soil series of different age and geological origins: overconsolidated sensu stricto Miopliocene silty clay (siCl) and quasi overconsolidated Pleistocene clayey silt (clSi). Paper pointed out that overconsolidated sensu stricto and quasi overconsolidated fine-grained soil in same stress and environmental condition could show almost similar behaviour, and in other condition could behave significantly different. The correct evaluation of geotechnical parameters, the possibility of predicting their time-correct ability is only possible with appropriately recognized geological past and past processes that accompanied the soil formation.

  10. Germanium and rare earth elements in soils under different land use types in the area of Freiberg (Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Moschner, Christin; Székely, Balázs

    2017-04-01

    A geochemical mapping study was conducted to investigate the spatial distribution and chemical fractionation of germanium (Ge) and selected rare earth elements (REEs) in topsoils and soil-grown plants under different land use types (moist grassland, mesic grassland, arable land) in the area of Freiberg (Saxony, Germany). The area of Freiberg is characterized by the mining of polymetallic sulphide deposits (Pb, As, Zn, Cd) which led to the pollution of top soils with metals and metalloids due to local emissions from metal smelting plants that occur widespread in the area. Since Ge often appears to be associated to sulphide ores like sphalerite, galenite and argyrodite, (post-)mining areas such as the Freiberg region are paradigmatic for phytomining research. The study area covers approximately 1,000 km2 in the south of Central Saxony, and 138 samples from 46 sampling sites were examined. Additionally, at each sampling site plant samples were collected. On arable soils the plant samples represented the cultivated crop species. On sites in mesic and moist grassland, samples from the most dominant plant species were taken and measured with ICP-MS. Ge and REEs in soils were partitioned by a sequential extraction procedure into mobile/exchangeable (Fraction 1), acid soluble (Fraction 2), bound to organic matter (Fraction 3), amorphous Fe/Mn-oxides (Fraction 4), crystalline Fe/Mn-oxides (Fraction 5) and residual fractions (Fraction 6). Total concentrations of Ge and REEs in soil varied considerably ranging from 1.0 µg g-1 to 4.3 µg g-1 for Ge and 97 µg g-1 to 402 µg g-1 for total REE concentrations. Elements in potentially plant available fractions (sums of Fraction 1 - Fraction 4) represented 8% of total Ge and 30% of total REEs, respectively. Soils on moist grasslands contained significantly higher total concentrations of Ge and REEs and higher concentrations of Ge and REEs in potentially plant available soil fractions compared to soils of mesic grasslands and arable land. Highest concentrations of Ge could be measured in plant species growing on moist grassland. The results of this study indicate that moist grasslands may act as sinks for Ge and REEs. In these soils high amounts of soil organic matter may foster the formation of labile element pools, increasing the availability of Ge and REEs. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  11. Antibiotic resistance of microorganisms in agricultural soils in Russia

    NASA Astrophysics Data System (ADS)

    Danilova, N. V.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Antibiotics are medicines that are widely used in livestock production not only for the prevention and treatment of infectious diseases, but also for accelerating the growth of animals. The application of manure for fertilizing agricultural soils leads to the entry into the soil ecosystem not only of the antibiotics themselves, but also the resistance genes to them. In this study, 30 samples of arable soils were tested for the presence of the tet(X) gene, which encodes bacterial resistance to antibiotics of the tetracycline group. Using real-time PCR, it was found that 27 out of 30 soil samples contained tet(X). 52% of these samples were heavily contaminated, 34% had a medium level of contamination and 14% were slightly contaminated by the resistance gene tet(X).

  12. Effect of organic amendments on quality indexes in an italian agricultural soil

    NASA Astrophysics Data System (ADS)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils was stored at 4 °C for biological analyses. On soil samples, organic C, dehydrogenase phosphatase, beta-glucosidase and urease activities as well as microbial biomass C and fungal mycelium were assayed. Results showed that sterilization treatments (solarization+calcium cyanamide) depressed almost all the enzymatic activities studied. By contrast their values were enhanced by the addition of compost combined with Rigen and/or straw. During the time the dehydrogenase activity strongly fell whereas slightly decreases occurred for the activity of phosphatase, beta-glucosidase and urease. Accordingly, a decrease in organic C content was measured. Conversely, arylsulphatase showed an activity increase at the second and third sampling. Microbial biomass C was improved by compost or compost + Rigen addition, in accordance with organic C trend. Normalizing the microbial biomass to the organic C content (microbial quotient) only in one plot a higher and significant value was obtained. Conversely the fungal growth was not influenced by amendment practices, rather in the time it was significantly depressed. Data showed an ameliorant effect of organic amendments, especially when compost was combined with other ones, on chemical, biological and biochemical properties of studied soils. Further investigations related also to crop production should however be carried out to achieve a clearer and comprehensive picture of the relationships between soil quality and soil management practices.

  13. Effects of Cd and Pb on soil microbial community structure and activities.

    PubMed

    Khan, Sardar; Hesham, Abd El-Latif; Qiao, Min; Rehman, Shafiqur; He, Ji-Zheng

    2010-02-01

    Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis. ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd(3)/Pb(3)-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd(3)/Pb(3) treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure. In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period. The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations. The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.

  14. Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing while Considering Spatial Variations

    PubMed Central

    Wang, Junxiao; Wang, Xiaorui; Zhou, Shenglu; Wu, Shaohua; Zhu, Yan; Lu, Chunfeng

    2016-01-01

    With China’s rapid economic development, the reduction in arable land has emerged as one of the most prominent problems in the nation. The long-term dynamic monitoring of arable land quality is important for protecting arable land resources. An efficient practice is to select optimal sample points while obtaining accurate predictions. To this end, the selection of effective points from a dense set of soil sample points is an urgent problem. In this study, data were collected from Donghai County, Jiangsu Province, China. The number and layout of soil sample points are optimized by considering the spatial variations in soil properties and by using an improved simulated annealing (SA) algorithm. The conclusions are as follows: (1) Optimization results in the retention of more sample points in the moderate- and high-variation partitions of the study area; (2) The number of optimal sample points obtained with the improved SA algorithm is markedly reduced, while the accuracy of the predicted soil properties is improved by approximately 5% compared with the raw data; (3) With regard to the monitoring of arable land quality, a dense distribution of sample points is needed to monitor the granularity. PMID:27706051

  15. Identification and Genotyping of Mycobacterium tuberculosis Isolated From Water and Soil Samples of a Metropolitan City

    PubMed Central

    Velayati, Ali Akbar; Farnia, Parissa; Mozafari, Mohadese; Malekshahian, Donya; Farahbod, Amir Masoud; Seif, Shima; Rahideh, Snaz

    2015-01-01

    BACKGROUND: The potential role of environmental Mycobacterium tuberculosis in the epidemiology of TB remains unknown. We investigated the transmission of M tuberculosis from humans to the environment and the possible transmission of M tuberculosis from the environment to humans. METHODS: A total of 1,500 samples were collected from three counties of the Tehran, Iran metropolitan area from February 2012 to January 2014. A total of 700 water samples (47%) and 800 soil samples (53%) were collected. Spoligotyping and the mycobacterial interspersed repetitive units-variable number of tandem repeats typing method were performed on DNA extracted from single colonies. Genotypes of M tuberculosis strains isolated from the environment were compared with the genotypes obtained from 55 patients with confirmed pulmonary TB diagnosed during the study period in the same three counties. RESULTS: M tuberculosis was isolated from 11 of 800 soil samples (1%) and 71 of 700 water samples (10%). T family (56 of 82, 68%) followed by Delhi/CAS (11 of 82, 13.4%) were the most frequent M tuberculosis superfamilies in both water and soil samples. Overall, 27.7% of isolates in clusters were related. No related typing patterns were detected between soil, water, and clinical isolates. The most frequent superfamily of M tuberculosis in clinical isolates was Delhi/CAS (142, 30.3%) followed by NEW-1 (127, 27%). The bacilli in contaminated soil (36%) and damp water (8.4%) remained reculturable in some samples up to 9 months. CONCLUSIONS: Although the dominant M tuberculosis superfamilies in soil and water did not correspond to the dominant M tuberculosis family in patients, the presence of circulating genotypes of M tuberculosis in soil and water highlight the risk of transmission. PMID:25340935

  16. Evaluating pasture and soil allowance of manganese for Kajli rams grazing in semi-arid environment.

    PubMed

    Khan, Zafar Iqbal; Ahmad, Kafeel; Ashraf, Muhammad; Naqvi, Syed Ali Hassan; Seidavi, Alireza; Akram, Nudrat Aisha; Laudadio, Vito; Tufarelli, Vincenzo

    2015-03-01

    The current research on the manganese (Mn) transfer from soil to plant as well as to grazing Kajli rams in the form of sampling periods was carried out under semi-arid environmental conditions. Forage, soil and blood plasma samples were collected during 4 months of the year after a 1-month interval, and Mn concentrations were assessed after wet digestion using an atomic absorption spectrophotometer. Results showed that Mn concentration in soil ranged from 48.28 to 59.44 mg/kg, with incoherent augment and decline across sampling periods, and effect of sampling period on soil Mn was also found to be significant (P < 0.05). The mean levels of Mn in soil appeared higher than the critical value and sufficient for forage crop requirement. The Mn concentration in forage ranged between 24.8 and 37.2 mg/kg, resulting deficient based on the requirement allowance of Mn for livestock grazing animals, therein with almost unchanged forage Mn concentration. The Mn values in blood plasma of rams varied from 0.066 to 0.089 mg/l, with a consistent increase based on sampling period, and the effect of sampling periods on plasma Mn was found to be highly significant (P < 0.05). The Mn levels in ram blood plasma were lesser than the normal level suggesting reasonable need for supplementation. Our study revealed the role of Mn availability in soil and plant species amassing capability on the transport of Mn in the soil-plant-animal system. Results indicated a much higher accumulation rate at the sampling characterized by vegetation dominated by legumes in comparison to grasses, crop residues and mixed pasture and a pronounced seasonal supply of Mn at the four sampling period of grazing land of diverse botanical composition.

  17. Microbial degradation of sulfentrazone in a Brazilian rhodic hapludox soil

    PubMed Central

    Martinez, Camila O.; Silva, Celia Maria M. S.; Fay, Elisabeth F.; Abakerli, Rosangela B.; Maia, Aline H. N.; Durrant, Lucia R.

    2010-01-01

    Sulfentrazone is amongst the most widely used herbicides for treating the main crops in the State of São Paulo, Brazil, but few studies are available on the biotransformation of this compound in Brazilian soils. Soil samples of Rhodic Hapludox soil were supplemented with sulfentrazone (0.7 µg active ingredient (a.i.) g-1 soil) and maintained at 27°C. The soil moisture content was corrected to 30, 70 or 100 % water holding capacity (WHC) and maintained constant until the end of the experimental period. Herbicide-free soil samples were used as controls. Another experiment was carried out using soil samples maintained at a constant moisture content of 70% WHC, supplemented or otherwise with the herbicide, and submitted to different temperatures of 15, 30 and 40° C. In both experiments, aliquots were removed after various incubation periods for the quantitative analysis of sulfentrazone residues by gas chromatography. Herbicide-degrading microorganisms were isolated and identified. After 120 days a significant effect on herbicide degradation was observed for the factor of temperature, degradation being higher at 30 and 40° C. A half-life of 91.6 days was estimated at 27° C and 70 % WHC. The soil moisture content did not significantly affect sulfentrazone degradation and the microorganisms identified as potential sulfentrazone degraders were Nocardia brasiliensis and Penicillium sp. The present study enhanced the prospects for future studies on the bio-prospecting for microbial populations related to the degradation of sulfentrazone, and may also contribute to the development of strategies for the bioremediation of sulfentrazone-polluted soils. PMID:24031483

  18. Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro- and microaggregates of a Mediterranean soil upon heating.

    PubMed

    Campo, J; Nierop, K G J; Cammeraat, E; Andreu, V; Rubio, J L

    2011-07-29

    The heating effect on the soil organic matter (SOM) of a Mediterranean soil was studied in two fractions (macro- and microaggregates) and in two environments (soil under canopy of Quercus coccifera and bare soil between plants). Samples were heated under laboratory conditions at different temperatures (220, 380 and 500°C) to establish their effects on the SOM quality and quantity by comparison with unheated control samples (25°C). The SOM content in the soil under canopy was higher than in the bare one and in the microaggregate fractions than in the macroaggregate ones. Increasing temperatures caused, in general, the decrease of SOM content in both soils as well as in both aggregate classes. The quality of SOM was determined after extraction with 0.1 M NaOH and analysed by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Obtained pyrolysates were characterized by the presence of polyphenols and other aromatic pyrolysis products (lipids, polysaccharides, proteins and lignin derivatives). Some of the products in these control samples, and furthermore the presence of black carbon (BC) markers (e.g. benzene, pyridine and toluene), confirmed the occurrence of past wildfires in the study zone. The composition of the SOM extracted from the soils heated at 220°C, was quite similar to that obtained from unheated soils. The products derived from polysaccharides and lignin, and some coming from polyphenols, were not detected in the pyrolysates of the soil heated at 380 and 500°C. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Lead identification in soil surrounding a used lead acid battery smelter area in Banten, Indonesia

    NASA Astrophysics Data System (ADS)

    Adventini, N.; Santoso, M.; Lestiani, D. D.; Syahfitri, W. Y. N.; Rixson, L.

    2017-06-01

    A used lead acid battery smelter generates particulates containing lead that can contaminate the surrounding environment area. Lead is a heavy metal which is harmful to health if it enters the human body through soil, air, or water. An identification of lead in soil samples surrounding formal and informal used lead acid battery smelters area in Banten, Indonesia using EDXRF has been carried out. The EDXRF accuracy and precision evaluated from marine sediment IAEA 457 gave a good agreement to the certified value. A number of 16 soil samples from formal and informal areas and 2 soil samples from control area were taken from surface and subsurface soils. The highest lead concentrations from both lead smelter were approximately 9 folds and 11 folds higher than the reference and control samples. The assessment of lead contamination in soils described in Cf index was in category: moderately and strongly polluted by lead for formal and informal lead smelter. Daily lead intake of children in this study from all sites had exceeded the recommended dietary allowance. The HI values for adults and children living near both lead smelter areas were greater than the value of safety threshold 1. This study finding confirmed that there is a potential health risk for inhabitants surrounding the used lead acid battery smelter areas in Banten, Indonesia.

  20. Integration of Magnetic and Geotechnical methods for Shallow Subsurface Soil Characterization at Sungai Batu, Kedah, Malaysia

    NASA Astrophysics Data System (ADS)

    Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.

    2018-04-01

    Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.

  1. [Effects of Phyllostachys edulis cultivation on soil bacterial and fungal community structure and diversity].

    PubMed

    Zhao, Tian Xin; Mao, Xin Wei; Cheng, Min; Chen, Jun Hui; Qin, Hua; Li, Yong Chun; Liang, Chen Fei; Xu, Qiu Fang

    2017-11-01

    This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.

  2. A dual stable-isotope approach to analyse the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme

    2017-04-01

    This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.

  3. Effects of Nitrogen Fertilization and Thinning Treatments on Subsurface Soil Carbon and Nitrogen

    NASA Astrophysics Data System (ADS)

    Gross, C. D.; James, J. N.; Harrison, R. B.

    2016-12-01

    Increases in intensively managed forest plantations have caused concern for the long-term productivity and sustainability of these stands, as decreased organic matter retention and shorter rotations can substantially impact soil nutrition both in the short- and long-term. This study aims to provide data for regional responses of soil carbon (C) and nitrogen (N) by depth to fertilization and thinning treatments. Soil was sampled at an intensively managed Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation in northwestern Oregon, USA. Nine 0.2-ha plots were sampled with at least three pits per plot. Management regimes included no treatment (control), fertilization (F+), minimal thinning (mT), repeated thinning (rT), and combination treatments (mTF+ and rTF+). Fertilized plots received a total of 1120 kg N ha-1 as urea over 16 years. Bulk density and chemical analysis samples were taken in the middle of succeeding soil layers at depths of 0.1, 0.2, 0.5, 1.0, and 1.5 m. Forest floor samples were collected from a randomly placed quadrat. Preliminary results show an increase in total soil C and N of 113 and 106%, respectively, on the mTF+ plot compared to a control plot. The subsoil, defined here as below 0.2 m, contained over 50% of both soil C and N on the mTF+ plot and experienced greater C and N increases than the surface soil following treatment. This study demonstrates that forest management practices over a relatively short time span (<30 years) can significantly alter subsoil, which comprises a substantial portion of biologically available C and N in terrestrial ecosystems. Subsoil processes are critical to our understanding of changes in soil quality and our ability to accurately assess changes in soil C and N reservoirs.

  4. Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment

    NASA Astrophysics Data System (ADS)

    Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette

    2017-04-01

    Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μg.kg-1) was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.

  5. Persistence and biodegradation of monoethanolamine and 2-propanolamine at an abandoned industrial site.

    PubMed

    Hawthorne, Steven B; Kubátová, Alena; Gallagher, John R; Sorensen, James A; Miller, David J

    2005-05-15

    Soil and groundwater samples were collected at the site of a former chemical processing plant in areas impacted by accidental releases of MEA (monoethanolamine) and IPA (2-propanolamine or isopropanolamine). Although their use had ceased ca. 10 years before sample collection, soils collected at contamination sites had MEA concentrations ranging from ca. 400 to 3000 mg/kg and IPA concentrations from ca. 30 to 120 mg/kg. Even though alkanolamines are miscible in water, transport to groundwater was slow, apparently because they are present in soil as bound cations. Only one groundwater sample (near the most highly contaminated soil)from wells directly adjacentto and down-gradient from the contaminated soils had detectable MEA, and none had detectable IPA. However, ammonia was found in the soil samples collected in the MEA-contaminated areas (ca. 500-1400 mg/kg) and the groundwater (80-120 mg/L), as would be consistent with bacterial degradation of MEA to ammonia, followed by transport of ammonia into the groundwater. Counts for bacteria capable of using MEA or IPA as a sole carbon source were ca. 5 x 106 and 1 x 106 (respectively) per gram in uncontaminated site soil, but no such organisms were found in highly contaminated soils. Similarly, bacterial degradation of MEA in slurries of highly contaminated soils was slow, with ca. 8-20 days required for half of the initial concentrations of MEA to be degraded at 20 degrees C and 30-60 days at 10 degrees C. In contrast, bacterial degradation studies using uncontaminated site soils spiked with ca. 1300 mg/L either MEA or IPA showed very rapid degradation of both compounds,with more than 99% degradation occurring in less than 3 days with quantitative conversion to ammonia, followed by slower conversion to nitrite and nitrate. The results obtained in the site soils, the groundwater samples, and from the biodegradation studies demonstrate that MEA and IPA can persist for decades on soil at high (hundreds of mg/kg) concentrations without significant migration into groundwater, despite the fact that they are miscible in water. Since MEA and IPA exist primarily as cations at the pH of site soils, their persistence apparently results from strong binding to soil, as well as inhibition of natural bioremediation in highly contaminated field soils.

  6. Fungal colonization in soils with different management histories: modeling growth in three-dimensional pore volumes.

    PubMed

    Kravchenko, Alexandra; Falconer, Ruth E; Grinev, Dmitri; Otten, Wilfred

    2011-06-01

    Despite the importance of fungi in soil functioning they have received comparatively little attention, and our understanding of fungal interactions and communities is lacking. This study aims to combine a physiologically based model of fungal growth with digitized images of internal pore volume of samples of undisturbed soil from contrasting management practices to determine the effect of physical structure on fungal growth dynamics. We quantified pore geometries of the undisturbed-soil samples from two contrasting agricultural practices, conventionally plowed (chisel plow) (CT) and no till (NT), and from native-species vegetation land use on land that was taken out of production in 1989 (NS). Then we modeled invasion of a fungal species within the soil samples and evaluated the role of soil structure on the progress of fungal colonization of the soil pore space. The size of the studied pores was > or =110 microm. The dynamics of fungal invasion was quantified through parameters of a mathematical model fitted to the fungal invasion curves. Results indicated that NT had substantially lower porosity and connectivity than CT and NS soils. For example, the largest connected pore volume occupied 79% and 88% of pore space in CT and NS treatments, respectively, while it only occupied 45% in NT. Likewise, the proportion of pore space available to fungal colonization was much greater in NS and CT than in NT treatment, and the dynamics of the fungal invasion differed among the treatments. The relative rate of fungal invasion at the onset of simulation was higher in NT samples, while the invasion followed a more sigmoidal pattern with relatively slow invasion rates at the initial time steps in NS and CT samples. Simulations allowed us to elucidate the contribution of physical structure to the rates and magnitudes of fungal invasion processes. It appeared that fragmented pore space disadvantaged fungal invasion in soils under long-term no-till, while large connected pores in soils under native vegetation or in tilled agriculture promoted the invasion.

  7. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    PubMed Central

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-01-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils. PMID:27958371

  8. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-12-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils.

  9. Soil-Transmitted Helminth Eggs Are Present in Soil at Multiple Locations within Households in Rural Kenya.

    PubMed

    Steinbaum, Lauren; Njenga, Sammy M; Kihara, Jimmy; Boehm, Alexandria B; Davis, Jennifer; Null, Clair; Pickering, Amy J

    2016-01-01

    Almost one-quarter of the world's population is infected with soil-transmitted helminths (STH). We conducted a study to determine the prevalence and location of STH-Ascaris, Trichuris, and hookworm spp.-egg contamination in soil within rural household plots in Kenya. Field staff collected soil samples from July to September 2014 from the house entrance and the latrine entrance of households in Kakamega County; additional spatial sampling was conducted at a subset of households (N = 22 samples from 3 households). We analyzed soil samples using a modified version of the US Environmental Protection Agency (EPA) method for enumerating Ascaris in biosolids. We found 26.8% of households had one or more species of STH eggs present in the soil in at least one household location (n = 18 out of 67 households), and Ascaris was the most commonly detected STH (19.4%, n = 13 out of 67 households). Prevalence of STH eggs in soil was equally likely at the house entrance (19.4%, N = 67) as at the latrine entrance (11.3%, N = 62) (p = 0.41). We also detected STH eggs at bathing and food preparation areas in the three houses revisited for additional spatial sampling, indicating STH exposure can occur at multiple sites within a household plot, not just near the latrine. The highest concentration of eggs in one house occurred in the child's play area. Our findings suggest interventions to limit child exposure to household soil could complement other STH control strategies.

  10. Mixing soil samples across experimental units ignores uncertainty and generates falsely precise estimates of soil biota effects on plants

    USDA-ARS?s Scientific Manuscript database

    A number of recent soil biota studies have deviated from the standard experimental approach of generating a distinct data value for each experimental unit (e.g. Yang et al., 2013; Gundale et al., 2014). Instead, these studies have mixed together soils from multiple experimental units (i.e. sites wi...

  11. FIRE STUDIES IN MALLEE (EUCALYPTUS SPP.) COMMUNITIES OF WESTERN NEW SOUTH WALES: SPATIAL AND TEMPORAL FLUXES IN SOIL CHEMISTRY AND SOIL BIOLOGY FOLLOWING PRESCRIBED FIRE.

    EPA Science Inventory

    The effects of prescribed fires on nutrient pools, soil-organisms, and vegetation patch dynamics were studied in three semi-arid mallee shrublands in western New South Wales. Repeated sampling of surface soil strata (0-2 and 2-4 cm) was undertaken at strategic times (immediately ...

  12. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    USGS Publications Warehouse

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  13. Changes in Physical and Chemical Soil Properties on Burnt Shrub Areas in Mediterranean Mountains, Northern Portugal

    NASA Astrophysics Data System (ADS)

    Fonseca, Felícia; de Figueiredo, Tomás; Leite, Micaela

    2014-05-01

    Human induced fire in scrublands to obtain better pastures for cattle is a relatively common practice in North Portugal. During burning, plant cover and litter layers are consumed, and the mineral soil is heated, resulting in changes to physical, chemical, mineralogical, and biological soil properties. Aiming at evaluating the effect of this kind of fires on a set of physical and chemical soil properties, two study areas were selected in contrasting mountain environments: Edroso, Vinhais municipality, NE Portugal, with typical Mediterranean climate, and Revelhe, Fafe, NW Portugal, with a strong ocean-influenced climate. In both, sampling was carried out in contiguous areas burnt and not burnt, covered by shrub vegetation, predominantly Cytisus multiflorus and Ulex europeus. In each study area (Edroso and Revelhe) 16 locations were selected for soil sampling (8 in the burned area and 8 in the not burnt area), six months after fire occurrence. Disturbed soil samples were collected in the layers 0-5, 5-10, 10-15, 15-20 and 20-30 cm depth, for assessing organic matter, N, P and K concentration, cation exchange capacity and related determinations, soil pH, electrical conductivity and soil texture. Undisturbed samples were collected, in 100 cm3 cylinders, to determine bulk density in the same above mentioned layers, and permeability in the 0-5 cm layer. Compared results of burnt and not burnt areas in Edroso and Revelhe study sites, show that coarse elements content and permeability decreased and bulk density slightly increased with the fire effect. Chemical properties in both sites changed with after fire, as organic matter content, exchangeable Al and cation exchange capacity increased, the opposite trend being found for phosphorus, sum of exchangeable bases and electrical conductivity. Potassium, total nitrogen and exchangeable acidity showed different soil responses to fire in the two study areas. Results stress the clear effects of fire on fertility related soil properties, not only chemical but also physical, which is decisive for the post-fire recover of burnt shrub communities, in terms of vegetation and soil functions in these marginal mountain environments.

  14. Installation Restoration General Environmental Technology Development. Task 6. Materials Handling of Explosive Contaminated Soil and Sediment.

    DTIC Science & Technology

    1985-06-01

    of chemical analysis and sensitivity testing on material samples . At this 4 time, these samples must be packaged and...preparation at a rate of three samples per hour. One analyst doing both sample preparation and the HPLC analysis can run 16 samples in an 8-hour day. II... study , sensitivity testing was reviewed to enable recommendations for complete analysis of contaminated soils. Materials handling techniques,

  15. Is soil dressing a way once and for all in remediation of arsenic contaminated soils? A case study of arsenic re-accumulation in soils remediated by soil dressing in Hunan Province, China.

    PubMed

    Su, Shiming; Bai, Lingyu; Wei, Caibing; Gao, Xiang; Zhang, Tuo; Wang, Yanan; Li, Lianfang; Wang, Jinjin; Wu, Cuixia; Zeng, Xibai

    2015-07-01

    The investigation of arsenic (As) re-accumulation in an area previously remediated by soil dressing will help in sustainable controlling the risks of As to local ecosystems and should influence management decisions about remediation strategies. In this study, As content in an area remediated by soil dressing and the possible As accumulation risk in agricultural products were investigated. The results indicated that after 7 years of agricultural activities, the average As content (24.6 mg kg(-1)) in surface soil of the investigated area increased by 83.6% compared with that (13.4 mg kg(-1)) in clean soil. Of the surface soil samples (n = 88), 21.6% had As levels that exceeded the limits of the Environmental Quality Standard for Soils of China (GB 15618-1995) and 98.9% of the surface soil samples with As contents exceeding that in clean soil was observed. Soil dressing might be not a remediation method once and for all in some contaminated areas, even though no significant difference in available As content was found between clean (0.18 mg kg(-1)) and surface (0.22 mg kg(-1)) soils. The foreign As in surface soil of the investigated area mainly specifically sorbed with soil colloid or associated with hydrous oxides of Fe and Al, or existed in residual fraction. The upward movement of contaminated soil from the deeper layers and the atmospheric deposition of slag particles might be responsible for the re-accumulation of As in the investigated area. Decreases in soil pH in the investigated soils and the fact that no plant samples had As levels exceeding the limits of the National Food Safety Standards for Contaminants of China (GB 2762-2012) were also observed.

  16. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania

    Treesearch

    S.W. Bailey; S.B. Horsley; R.P. Long

    2005-01-01

    Numerous studies have investigated the potential depletion of available base cation pools from forest soils in regions impacted by acid deposition. However, these studies mostly used indirect methods. Retrospective studies, providing direct evidence of chemical changes in forest soils, are relatively rare due to a lack of appropriate sampling, documentation, and...

  17. Simplifying field-scale assessment of spatiotemporal changes of soil salinity

    USDA-ARS?s Scientific Manuscript database

    Monitoring soil salinity (ECe) is important to properly plan agronomic and irrigation practices. Salinity can be readily measured through soil sampling directed by geospatial measurements of apparent soil electrical conductivity (ECa). Using data from a long-term (1999-2012) monitoring study at a 32...

  18. Desert soil collection at the JPL soil science laboratory

    NASA Technical Reports Server (NTRS)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Collection contains desert soils and other geologic materials collected from sites in the United States and foreign countries. Soils are useful for test purposes in research related to extraterrestrial life detection, sampling, harsh environmental studies, and determining suitable areas for training astronauts for lunar exploration.

  19. Part C: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  20. Part B: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  1. Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  2. Part D: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  3. Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada

    USGS Publications Warehouse

    Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on weathered Ordovician limestones in central Kentucky. On local scales, anomalous metal concentrations recognized in soil profiles, such as high P in soils from animal confinement sites, are consistent with local anthropogenic disturbances. At a larger scale, the distribution of Hg across the west to east transect demonstrates that it can be difficult to distinguish between natural or anthropogenic contributions and that many factors can contribute to an element’s spatial distribution. Only three samples in a subset of seventy-three 0–5 cm depth soil samples from the north to south transect had organochlorine pesticides values above the method detection limit, apparently related to historic usage of the pesticides DDT and dieldrin.

  4. Detection of environmentally persistent free radicals at a superfund wood treating site.

    PubMed

    dela Cruz, Albert Leo N; Gehling, William; Lomnicki, Slawomir; Cook, Robert; Dellinger, Barry

    2011-08-01

    Environmentally persistent free radicals (EPFRs) have previously been observed in association with combustion-generated particles and airborne PM(2.5) (particulate matter, d < 2.5um). The purpose of this study was to determine if similar radicals were present in soils and sediments at Superfund sites. The site was a former wood treating facility containing pentachlorophenol (PCP) as a major contaminant. Both contaminated and noncontaminated (just outside the contaminated area) soil samples were collected. The samples were subjected to the conventional humic substances (HS) extraction procedure. Electron paramagnetic resonance (EPR) spectroscopy was used to measure the EPFR concentrations and determine their structure for each sample fraction. Analyses revealed a ∼30× higher EPFR concentration in the PCP contaminated soils (20.2 × 10(17) spins/g) than in the noncontaminated soil (0.7 × 10(17) spins/g). Almost 90% of the EPFR signal originated from the minerals/clays/humins fraction. GC-MS analyses revealed ∼6500 ppm of PCP in the contaminated soil samples and none detected in the background samples. Inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) analyses revealed ∼7× higher concentrations of redox-active transition metals, in the contaminated soils than the noncontaminated soil. Vapor phase and liquid phase dosing of the clays/minerals/humins fraction of the soil with PCP resulted in an EPR signal identical to that observed in the contaminated soil, strongly suggesting the observed EPFR is pentachlorophenoxyl radical. Chemisorption and electron transfer from PCP to transition metals and other electron sinks in the soil are proposed to be responsible for EPFR formation.

  5. Relaxometry in soil science

    NASA Astrophysics Data System (ADS)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non-destructive way. Recent studies investigated wetting and swelling processes in soil samples, as well as the formation of microbial biofilms in soil the formation. This contribution gives an overview of current applications and the potential of NMR relaxometry in soil science with special emphasis on proton NMR relaxometry. References Bird, N.R.A., Preston, A.R., Randall, E.W., Whalley, W.R. & Whitmore, A.P. 2005. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance. 56, 135-143. Bryar, T.R. & Knight, R.J. 2002. Sensitivity of Nuclear Magnetic Resonance Relaxation Measurements to Changing Soil Redox Conditions. Geophysical Research Letters, 29, 50/1-50/4. Conte, P., Spaccini, R. & Piccolo, A. 2006. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid. Analytical and Bioanalytical Chemistry, 386, 382-390. Gunasekara, A.S., Simpson, M.I. & Xing, B. 2003. Identification and characterization of sorption domains in soil organic matter using strucuturally modified humic acids. Environmental Science & Technology, 37, 852-858. Jaeger, F., Grohmann, E., Boeckelmann, U. & Schaumann, G.E. 2006. Microbial effects on 1H NMR Relaxometry in soil samples and glass bead reactors. In Humic Substances - Linking Structure to Functions. Proceedings of the 13th Meeting of the International Humic Substances Societyin Karlsruhe eds. F.H. Frimmel & G. Abbt-Braun), pp. 929-932. Universität Karlsruhe, Karlsruhe. Hurraß, J. & Schaumann, G.E. 2007. Hydration kinetics of wettable and water repellent soil samples. Soil Science Society of America Journal, 71, 280-288. Jaeger, F., Grohmann, E. & Schaumann, G.E. 2006. 1H NMR Relaxometry in natural humous soil samples: Insights in microbial effects on relaxation time distributions. Plant and Soil, 280, 209-222. Jaeger, F., Rudolph, N., Lang, F. & Schaumann, G.E. 2008. Effects of soil solution's constituents on proton NMR relaxometry of soil samples. Soil Science Society of America Journal, 72, 1694-1707. Jaeger, F., Bowe, S. & Schaumann, G.E. in preparation. Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples. European Journal of Soil Science. Jähnert, S., Vaca Chavez, F., Schaumann, G.E., Schreiber, A., Schönhoff, M. & Findenegg, G.H. 2008. Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 39, 6039-6051. Schaumann, G.E., Hurraß, J., Müller, M. & Rotard, W. 2004. Swelling of organic matter in soil and peat samples: insights from proton relaxation, water absorption and PAH extraction. In Humic Substances: Nature's Most Versatile Materials eds. E.A. Ghabbour & G. Davies), pp. 101-117. Taylor and Francis, Inc., New York. Schaumann, G.E., Hobley, E., Hurraß, J. & Rotard, W. 2005. H-NMR Relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant and Soil, 275, 1-20. Schaumann, G.E. & Bertmer, M. 2008. Do water molecules bridge soil organic matter molecule segments? European Journal of Soil Science, 59, 423-429. Todoruk, T.R., Langford, C.H. & Kantzas, A. 2003. Pore-Scale Redistribution of Water during Wetting of Air-Dried Soils As Studied by Low-Field NMR Relaxometry. Environmental Science and Technology, 37, 2707-2713. Todoruk, T.R., Litvina, M., Kantzas, A. & Langford, C.H. 2003. Low-Field NMR Relaxometry: A Study of Interactions of Water with Water-Repellant Soils. Environmental Science and Technology, 37, 2878-2882. Van As, H. & van Dusschoten, D. 1997. NMR methods for imaging of transport processes in micro-porous systems. Geoderma, 80, 389-403. Van As, H. & Lens, P. 2001. Use of 1H NMR to study transport processes in porous biosystems. Journal of Industrial Microbiology & Biotechnology, 26, 43-52.

  6. Experimental parameters optimization of instrumental neutron activation analysis in order to determine selected elements in some industrial soils in Turkey

    NASA Astrophysics Data System (ADS)

    Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema

    2014-08-01

    The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.

  7. Polybrominated dibenzo-p-dioxins/ dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China.

    PubMed

    Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam

    2009-10-01

    The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/ Fs, calculated in our previous study.

  8. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    PubMed

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  9. Determination of the Thermal Properties of Sands as Affected by Water Content, Drainage/Wetting, and Porosity Conditions for Sands With Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-05-01

    It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.

  10. Spatial variation of radon and helium in soil gas vis-à-vis geology of area, NW Himalayas, India

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Bajwa, B.; Kumar, A.; Singh, S.; Walia, V.; Yang, T. F.

    2009-12-01

    In an effort to quantify the geological/lithological control on radon, helium soil gas potential and appraise the use of soil gas technique as a geological mapping tool, soil gas measurements were made, in some parts of Himachal Himalayas of NW Himalayan range, using soil gas grab sampling technique. More than 360 soil gas samples were collected from four different geological/lithologic rock units of the area under consideration. The collected soil gas samples were analyzed for radon and helium using RTM-2100 (SARAD) and Helium leak detector (ALCATEL) respectively. The observed values were then correlated with the geology/lithology of the study area. The study area is broadly divided into four different units on the basis of geology/lithology i.e. (A) Upper Shiwaliks (B) Middle & Lower Shiwaliks (C) Lesser Himalayan rocks (D) Higher Himalayan rocks. Significant differences in the soil gas concentrations among the geologic units were observed, where Lesser Himalayan rocks showing maximum concentrations of both radon (254 KBq/m3) and helium (5.46 ppm). Lesser Himalayan zone lies mainly between two major thrusts MBT and MCT running along the Himalayan trend, which still are tectonically active. It can be concluded from the present study that soil gases (radon and helium) can be used as a productive tool for geological mapping. These findings may have very important connation for health risk assessment of the area, since it has been shown that radon soil gas found in soils overlying basement rocks are the main source for indoor radon concentrations. Radioactive isotopes attach rapidly to atmospheric aerosols and can enter into a human body thus constitute significant hazard to human health.

  11. Mobility of arsenic and its compounds in soil and soil solution: the effect of soil pretreatment and extraction methods.

    PubMed

    Száková, J; Tlustos, P; Goessler, W; Frková, Z; Najmanová, J

    2009-12-30

    The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of arsenic and its compounds was tested. In the first part, five extraction procedures were compared with following order of extractable arsenic portions: 2M HNO(3)>0.43 M CH(3)COOH>or=0.05 M EDTA>or=Mehlich III (0.2M CH(3)COOH+0.25 M NH(4)NO(3)+0.013 M HNO(3)+0.015 M NH(4)F+0.001 M EDTA) extraction>water). Additionally, two methods of soil solution sampling were compared, centrifugation of saturated soil and the use of suction cups. The results showed that different sample pretreatments including soil solution sampling could lead to different absolute values of mobile arsenic content in soils. However, the interpretation of the data can lead to similar conclusions as apparent from the comparison of the soil solution sampling methods (r=0.79). For determination of arsenic compounds mild extraction procedures (0.05 M (NH(4))(2)SO(4), 0.01 M CaCl(2), and water) and soil solution sampling using suction cups were compared. Regarding the real soil conditions the extraction of fresh samples and/or in situ collection of soil solution are preferred among the sample pretreatments and/or soil extraction procedures. However, chemical stabilization of the solutions should be allowed and included in the analytical procedures for determination of individual arsenic compounds.

  12. Survival of Legionella in earthquake-induced soil disturbance (liquefaction) in residential areas, Christchurch, New Zealand: implications for disease.

    PubMed

    Graham, Frances F; Harte, David Jg

    2017-05-12

    To investigate a possible link between liquefaction dust exposure and the noticeable increase in legionellosis cases in response to major earthquakes in 2010 and 2011 that resulted in widespread soil disturbance (liquefaction) in parts of Christchurch, New Zealand. We culture tested liquefaction-affected soil for Legionella spp. in the six months following the first earthquake in 2010. Thirty silt samples were collected randomly from locations within Christchurch's metropolitan area that were affected by liquefaction. The samples were tested to determine the presence of Legionella using qualitative and quantitative methods. Liquefaction-affected soil samples from three sites were further subjected to particle size distribution analysis and determination of major oxides. A controlled field study was established using six silt samples and one control (commercial compost), seeded with a wild-type strain of Legionella bozemanae serogroup (sg) 1 and persistence monitored over a 60-day period by culturing for the presence of Legionella. Dry matter determinations were undertaken so that total Legionella could be calculated on a dry weight basis. Legionella bacteria were undetectable after day one in the silt samples. However, L. bozemanae sg1 was detected in the control sample for the entire study period. This study showed that the liquefaction-affected soil could not contribute directly to the observed increase in legionellosis cases after the earthquakes due to its inability to support growth and survival of the Legionella bacteria.

  13. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    PubMed

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  14. Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2009-12-01

    The objective of this study was to assess the extent and severity of metal contamination in urban soil around Queen Alia Airport, Jordan. Thirty-two soil samples were collected around steel manufacturing plants located in the Al-Jiza area, south Jordan, around the Queen Alia Airport. The samples were obtained at two depths, 0-10 and 10-20 cm, and were analyzed by atomic absorption spectrophotometry for lead (Pb), zinc (Zn), cadmium (Cd), iron (Fe), copper (Cu) and chromium (Cr) levels. The physicochemical factors believed to affect the mobility of metals in the soil of the study area were also examined, including pH, electrical conductivity, total organic matter, calcium carbonate (CaCO(3)) content and cation exchange capacity. The high concentrations of Pb, Zn and Cd in the soil samples were found to be related to anthropogenic sources, such as the steel manufacturing plants, agriculture and traffic emissions, with the highest concentrations of these metals close to the site of the steel plants; in contrast the concentration of Cr was low in the soil sampled close to the steel plants. The metals were concentrated in the surface soil, and concentrations decreased with increasing depth, reflecting the physical properties of the soil and its alkaline pH. The mineralogical composition of the topsoil, identified by X-ray diffraction, was predominantly quartz, calcite, dolomite and minor minerals, such as gypsum and clay minerals. Metal concentrations were compared using one-way analysis of variance (ANOVA) to compute the statistical significance of the mean. The results of the ANOVA showed significant differences between sites for Pb, Cd and Cu, but no significant differences for the remaining metals tested. Factor analysis revealed that polluted soil occurs predominantly at sites around the steel plants and that there is no significant variation in the characteristics of the unpolluted soil, which are uniform in the study area.

  15. Features of the Functioning Bacterial Ecosystems in the Antarctic

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.; Churilin, N.; Soina, V. S.; Vorobyova, E. A.; Mergelov, N. S.

    2014-10-01

    Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms -- the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral horizons of microorganisms with a high metabolic readiness to life revival and high maximum growth rate.

  16. Use of 137Cs measurements to estimate changes in soil erosion rates associated with changes in soil management practices on cultivated land.

    PubMed

    Schuller, P; Walling, D E; Sepúlveda, A; Trumper, R E; Rouanet, J L; Pino, I; Castillo, A

    2004-05-01

    Intensification of agricultural production in south-central Chile since the 1970s has caused problems of increased soil erosion and associated soil degradation. These problems have prompted a shift from conventional tillage to no-till management practices. Faced with the need to establish the impact of this shift in soil management on rates of soil loss, the use of caesium-137 (137Cs) measurements has been explored. A novel procedure for using measurements of the 137Cs depth distribution to estimate rates of soil loss at a sampling point under the original conventional tillage and after the shift to no-till management has been developed. This procedure has been successfully applied to a study site at Buenos Aires farm near Carahue in the 9th region of Chile. The results obtained indicate that the shift from conventional tillage to no-till management has caused net rates of soil loss to decrease to about 40% of those existing under conventional tillage. This assessment of the impact of introducing no-till management at the study site must, however, be seen as provisional, since only a limited number of sampling points were used. A simplified procedure aimed at documenting the reduction in erosion rates at additional sampling points, based solely on measurements of the 137Cs inventory of bulk cores and the 137Cs activity in the upper part of the soil has been developed and successfully tested at the study site. Previous application of 137Cs measurements to estimate erosion rates has been limited to estimation of medium-term erosion rates during the period extending from the beginning of fallout receipt to the time of sampling. The procedures described in this paper, which permits estimation of the change in erosion rates associated with a shift in land management practices, must be seen as representing a novel application of 137Cs measurements in soil erosion investigations.

  17. Occurrence of nonylphenol and nonylphenol monoethoxylate in soil and vegetables from vegetable farms in the Pearl River Delta, South China.

    PubMed

    Cai, Quan-Ying; Huang, Hui-Juan; Lü, Huixiong; Mo, Ce-Hui; Zhang, Jun; Zeng, Qiao-Yun; Tian, Jun-Jian; Li, Yan-Wen; Wu, Xiao-Lian

    2012-07-01

    Low molecular-mass nonylphenol ethoxylates (NPEOs) and 4-nonylphenol (NP) are biodegradation products of higher molecular mass NPEOs used as surface active agents, and they are endocrine-disrupting contaminants. In this study, surface soil (0-20 cm) samples and different vegetable samples were collected from 27 representative vegetable farms located in Shenzhen, Dongguan, and Huizhou within the Pearl River Delta region, South China, and NP and nonylphenol monoethoxylate (NP(1)EO) were analyzed using high-performance liquid chromatography with ultraviolet detection. The results show that NP and NP(1)EO were detected in soil and vegetable samples. The concentrations of NP and NP(1)EO in soil samples ranged from nondetectable (ND) to 7.22 μg kg(-1) dry weight (dw) and from ND to 8.24 μg kg(-1) dw, respectively. The average concentrations of both NP and NP(1)EO in soil samples decreased in the following order: Dongguan > Huizhou > Shenzhen. The levels of NP and NP(1)EO in vegetable samples varied from 1.11 to 4.73 μg kg(-1) dw and from 1.32 to 5.33 μg kg(-1) dw, respectively. The greatest levels of both NP and NP(1)EO were observed in water spinach, and the lowest levels of NP and NP(1)EO were recorded in cowpea. The bioconcentration factors (the ratio of contaminant concentration in plant tissue to soil concentration) of NP and NP(1)EO were <1.0 (mean 0.535 and 0.550, respectively). The occurrences of NP and NP(1)EO in this study are compared with other studies, and their potential sources are discussed.

  18. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1974-01-01

    The effect of storage of dry heat treated Teflon ribbons under nitrogen gas followed by high vacuum on the recovery of hardy organisms from the ribbons was studied. A similar experiment was performed on spore crops of hardy organisms recovered previously from Cape Canaveral. Hardy organisms have been inoculated onto slides and subjected to an artificial Martian environment in an attempt to demonstrate their growth in this environment. Additional experiments using the artificial Martian environment include response of soil samples from the VAB with both constant temperature and freeze-thaw cycles. These experiments were performed with dried soil and soil containing added water. Other investigations included the effect of heatshock on soil samples, psychrophilic counts of new soil samples from the manufacture area of the Viking spacecraft, effect of pour plate versus spread plate on psychrophilic counts, and preparation of spore crops of hardy organisms from Cape Canaveral.

  19. Determination of water-soluble ions in soils from the dry valleys of Antarctica

    NASA Technical Reports Server (NTRS)

    Bustin, R.

    1981-01-01

    The soil chemistry of the dry valleys of Antarctica was studied. These valleys furnish a terrestrial analog for the surface of Mars. The abundance of the water-soluble ions magnesium, calcium, potassium, sodium chloride, and nitrate in soil samples was determined. All samples examined contained water-soluble salts reflecting the aridity of the area. Movement of salts to low-lying areas was verified. Upward ionic migration was evident in all core samples. Of all cations observed, sodium showed the greatest degree of migration.

  20. Integrated ecological risk assessment of pesticides in tropical ecosystems: a case study with carbofuran in Brazil.

    PubMed

    Chelinho, Sónia; Lopes, Isabel; Natal-da-Luz, Tiago; Domene, Xaxier; Nunes, Maria Edna Tenorio; Espíndola, Evaldo L G; Ribeiro, Rui; Sousa, Jose P

    2012-02-01

    The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments. Copyright © 2011 SETAC.

  1. Occurrence and quantitative microbial risk assessment of Cryptosporidium and Giardia in soil and air samples.

    PubMed

    Balderrama-Carmona, Ana Paola; Gortáres-Moroyoqui, Pablo; Álvarez-Valencia, Luis Humberto; Castro-Espinoza, Luciano; Mondaca-Fernández, Iram; Balderas-Cortés, José de Jesús; Chaidez-Quiroz, Cristóbal; Meza-Montenegro, María Mercedes

    2014-09-01

    Cryptosporidium oocysts and Giardia cysts can be transmitted by the fecal-oral route and may cause gastrointestinal parasitic zoonoses. These zoonoses are common in rural zones due to the parasites being harbored in fecally contaminated soil. This study assessed the risk of illness (giardiasis and cryptosporidiosis) from inhaling and/or ingesting soil and/or airborne dust in Potam, Mexico. To assess the risk of infection, Quantitative Microbial Risk Assessment (QMRA) was employed, with the following steps: (1) hazard identification, (2) hazard exposure, (3) dose-response, and (4) risk characterization. Cryptosporidium oocysts and Giardia cysts were observed in 52% and 57%, respectively, of total soil samples (n=21), and in 60% and 80%, respectively, of air samples (n=12). The calculated annual risks were higher than 9.9 × 10(-1) for both parasites in both types of sample. Soil and air inhalation and/or ingestion are important vehicles for these parasites. To our knowledge, the results obtained in the present study represent the first QMRAs for cryptosporidiosis and giardiasis due to soil and air inhalation/ingestion in Mexico. In addition, this is the first evidence of the microbial air quality around these parasites in rural zones. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey.

    PubMed

    Bayramin, Ilhami; Basaran, Mustafa; Erpul, Günay; Canga, Mustafa R

    2008-05-01

    There has been increasing concern in highlands of semiarid Turkey that conversion of these systems results in excessive soil erosion, ecosystem degradation, and loss of sustainable resources. An increasing rate of land use/cover changes especially in semiarid mountainous areas has resulted in important effects on physical and ecological processes, causing many regions to undergo accelerated environmental degradation in terms of soil erosion, mass movement and reservoir sedimentation. This paper, therefore, explores the impact of land use changes on land degradation in a linkage to the soil erodibility, RUSLE-K, in Cankiri-Indagi Mountain Pass, Turkey. The characterization of soil erodibility in this ecosystem is important from the standpoint of conserving fragile ecosystems and planning management practices. Five adjacent land uses (cropland, grassland, woodland, plantation, and recreational land) were selected for this research. Analysis of variance showed that soil properties and RUSLE-K statistically changed with land use changes and soils of the recreational land and cropland were more sensitive to water erosion than those of the woodland, grassland, and plantation. This was mainly due to the significant decreases in soil organic matter (SOM) and hydraulic conductivity (HC) in those lands. Additionally, soil samples randomly collected from the depths of 0-10 cm (D1) and 10-20 cm (D2) with irregular intervals in an area of 1,200 by 4,200 m sufficiently characterized not only the spatial distribution of soil organic matter (SOM), hydraulic conductivity (HC), clay (C), silt (Si), sand (S) and silt plus very fine sand (Si + VFS) but also the spatial distribution of RUSLE-K as an algebraically estimate of these parameters together with field assessment of soil structure to assess the dynamic relationships between soil properties and land use types. In this study, in order to perform the spatial analyses, the mean sampling intervals were 43, 50, 64, 78, 85 m for woodland, plantation, grassland, recreation, and cropland with the sample numbers of 56, 79, 72, 13, and 69, respectively, resulting in an average interval of 64 m for whole study area. Although nugget effect and nugget effect-sill ratio gave an idea about the sampling design adequacy, the better results are undoubtedly likely by both equi-probable spatial sampling and random sampling representative of all land uses.

  3. Leachate Geochemical Results for Ash and Burned Soil Samples from the October 2007 Southern California Wildfires

    USGS Publications Warehouse

    Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Meeker, Gregory P.; Adams, Monique; Lamothe, Paul J.; Anthony, Michael W.

    2008-01-01

    This report is the second release of leachate geochemical data included as part of a multidisciplinary study of ash and burned soil samples from the October 2007 wildfires in southern California. Geochemical data for the first set of samples were released in an Open-File Report (Plumlee and others, 2007). This study is a continuation of that work. The objectives of this leaching study are to aid in understanding the interactions of ash and burned soil with rainfall. For this study, 12 samples collected in early November 2007 were leached using the U.S. Geological Survey (USGS) Field Leach Test (FLT). Following leaching, sub-samples of the leachate were analyzed for pH and specific conductance. The leachate was then filtered, and aliquots were preserved for geochemical analysis. This report presents leachate geochemical data for pH, specific conductance, alkalinity, anions using ion chromatography (I.C.), cations using inductively coupled plasma?atomic mass spectrometry (ICP-MS), and mercury by continuous flow injection?cold vapor?atomic fluorescence (CVAFS).

  4. Geospatial compilation of results from field sample collection in support of mineral resource investigations, Western Alaska Range, Alaska, July 2013

    USGS Publications Warehouse

    Johnson, Michaela R.; Graham, Garth E.; Hubbard, Bernard E.; Benzel, William M.

    2015-07-16

    This Data Series summarizes results from July 2013 sampling in the western Alaska Range near Mount Estelle, Alaska. The fieldwork combined in situ and camp-based spectral measurements of talus/soil and rock samples. Five rock and 48 soil samples were submitted for quantitative geochemi­cal analysis (for 55 major and trace elements), and the 48 soils samples were also analyzed by x-ray diffraction to establish mineralogy and geochemistry. The results and sample photo­graphs are presented in a geodatabase that accompanies this report. The spectral, mineralogical, and geochemical charac­terization of these samples and the sites that they represent can be used to validate existing remote-sensing datasets (for example, ASTER) and future hyperspectral studies. Empiri­cal evidence of jarosite (as identified by x-ray diffraction and spectral analysis) corresponding with gold concentrations in excess of 50 parts per billion in soil samples suggests that surficial mapping of jarosite in regional surveys may be use­ful for targeting areas of prospective gold occurrences in this sampling area.

  5. [A comparison of soil contamination with Toxocara canis and Toxocara cati eggs in rural and urban areas of Wielkopolska district in 2000-2005].

    PubMed

    Mizgajska-Wiktor, Hanna; Jarosz, Wojciech

    2007-01-01

    The aim of the studies was to compare the degree of soil contamination with Toxocara canis and T. cati eggs in rural and urban areas depending on time of sampling and type of places examined. Material and methods. Over 2000-2005 a total of 538 soil samples from 3 villages and 368 from Poznań city (Poland) areas were examined for Toxocara spp. eggs. In spring 418 samples in rural areas and 184 samples in urban areas were collected and in autumn 120 and 184 respectively. The samples were examined using flotation technique in saturated sodium nitrate. The discrimination of T. canis and T. cati eggs was based on the size of eggs and transparency of shell layers. Results. The contamination of soil with Toxocara eggs was higher in the urban areas (19.8% positive samples) than in the rural ones (15.6% positive samples) and city or village-backyards were most heavily contaminated. Both, in the villages and in the city, the degree of soil contamination with eggs in spring and autumn was similar (17.6 and 14.8% positive samples respectively). T. cati eggs were much more prevalent in urban areas (97% of all eggs recovered) while T. canis in rural areas (84% of all recovered eggs). The share of T. canis and T. cati eggs in soil contamination did not depend on the time of sampling.

  6. Organic matter content of soil after logging of fir and redwood forests

    Treesearch

    Philip B. Durgin

    1980-01-01

    Organic matter in soil controls a variety of soil properties. A study in Humboldt County, California, evaluated changes in percentages of organic matter in soil as a function of time after timber harvest and soil depth in fir and redwood forests. To assess organic matter content, samples were taken from cutblocks of various ages in soil to depths of 1.33 m. Results...

  7. Spatial variability of soil available phosphorous and potassium at three different soils located in Pannonian Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Pereira, Paulo; Đurđević, Boris

    2017-04-01

    Information on spatial distribution of soil nutrients in agroecosystems is critical for improving productivity and reducing environmental pressures in intensive farmed soils. In this context, spatial prediction of soil properties should be accurate. In this study we analyse 704 data of soil available phosphorus (AP) and potassium (AK); the data derive from soil samples collected across three arable fields in Baranja region (Croatia) in correspondence of different soil types: Cambisols (169 samples), Chernozems (131 samples) and Gleysoils (404 samples). The samples are collected in a regular sampling grid (distance 225 x 225 m). Several geostatistical techniques (Inverse Distance to a Weight (IDW) with the power of 1, 2 and 3; Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multiquadratic (MTQ), Completely Regularized Spline (CRS), Spline with Tension (SPT) and Thin Plate Spline (TPS); and Local Polynomial (LP) with the power of 1 and 2; two geostatistical techniques -Ordinary Kriging - OK and Simple Kriging - SK) were tested in order to evaluate the most accurate spatial variability maps using criteria of lowest RMSE during cross validation technique. Soil parameters varied considerably throughout the studied fields and their coefficient of variations ranged from 31.4% to 37.7% and from 19.3% to 27.1% for soil AP and AK, respectively. The experimental variograms indicate a moderate spatial dependence for AP and strong spatial dependence for all three locations. The best spatial predictor for AP at Chernozem field was Simple kriging (RMSE=61.711), and for AK inverse multiquadratic (RMSE=44.689). The least accurate technique was Thin plate spline (AP) and Inverse distance to a weight with a power of 1 (AK). Radial basis function models (Spline with Tension for AP at Gleysoil and Cambisol and Completely Regularized Spline for AK at Gleysol) were the best predictors, while Thin Plate Spline models were the least accurate in all three cases. The best interpolator for AK at Cambisol was the local polynomial with the power of 2 (RMSE=33.943), while the least accurate was Thin Plate Spline (RMSE=39.572).

  8. Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal.

    PubMed

    Otero, David; Alho, Ana M; Nijsse, Rolf; Roelfsema, Jeroen; Overgaauw, Paul; Madeira de Carvalho, Luís

    Toxocarosis is a zoonotic parasitic disease transmitted from companion animals to humans. Environmental contamination with Toxocara eggs is considered to be the main source of human infections. In Portugal, knowledge regarding the current situation, including density, distribution and environmental contamination by Toxocara spp., is largely unknown. The present study investigated environmental contamination with Toxocara spp. eggs, in soil and faecal samples collected from public parks and playground sandpits in Greater Lisbon, Portugal. A total of 151 soil samples and 135 canine faecal samples were collected from 7 public sandpits and 12 public parks, over a 4 month-period. Soil samples were tested by a modified centrifugation and sedimentation/flotation technique and faecal samples were tested by an adaptation of the Cornell-Wisconsin method. Molecular analysis and sequencing were performed to discriminate Toxocara species in the soil. Overall, 85.7% of the sandpits (6/7) and 50.0% of the parks (6/12) were contaminated with Toxocara spp. eggs. The molecular analysis of soil samples showed that, 85.5% of the sandpits and 34.4% of the parks were contaminated with Toxocara cati eggs. Faecal analysis showed that 12.5% of the sandpits and 3.9% of the parks contained Toxocara canis eggs. In total, 53.0% of soil and 5.9% of faecal samples were positive for Toxocara spp. Additionally, 56.0% of the eggs recovered from the samples were embryonated after 60 days of incubation, therefore considered viable and infective. The average density was 4.2 eggs per hundred grams of soil. Public parks and playground sandpits in the Lisbon area were found to be heavily contaminated with T. cati eggs, representing a serious menace to public health as the studied areas represent common places where people of all ages, particularly children, recreate. This study sounds an alarm bell regarding the necessity to undertake effective measures such as reduction of stray animals, active faecal collection by pet owners, awareness campaigns and control strategies to decrease the high risk to both animal and human health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Diversity and Distribution Characteristics of Viruses in Soils of a Marine-Terrestrial Ecotone in East China.

    PubMed

    Yu, Dan-Ting; Han, Li-Li; Zhang, Li-Mei; He, Ji-Zheng

    2018-02-01

    A substantial gap remains in our understanding of the abundance, diversity, and ecology of viruses in soil although some advances have been achieved in recent years. In this study, four soil samples according to the salinity gradient from shore to inland in East China have been characterized. Results showed that spherical virus particles represented the largest viral component in all of the four samples. The viromes had remarkably different taxonomic compositions, and most of the sequences were derived from single-stranded DNA viruses, especially from families Microviridae and Circoviridae. Compared with viromes from other aquatic and sediment samples, the community compositions of our four soil viromes resembled each other, meanwhile coastal sample virome closely congregated with sediment and hypersaline viromes, and high salinity paddy soil sample virome was similar with surface sediment virome. Phylogenetic analysis of functional genes showed that four viromes have high diversity of the subfamily Gokushovirinae in family Microviridae and most of Circoviridae replicase protein sequences grouped within the CRESS-DNA viruses. This work provided an initial outline of the viral communities in marine-terrestrial ecotone and will improve our understanding of the ecological functions of soil viruses.

  10. [Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake].

    PubMed

    Liu, Ying; Wang, Li-Hua; Hao, Chun-Bo; Li, Lu; Li, Si-Yuan; Feng, Chuan-Ping

    2014-06-01

    The main physicochemical parameters of the soil sample which was collected near an acid mine drainage reservoir in Anhui province was analyzed. The microbial diversity and community structure was studied through the construction of bacteria and archaea 16S rRNA gene clone libraries and ammonia monooxygenase gene clone library of archaea. The functional groups which were responsible for the process of ammonia oxidation were also discussed. The results indicated that the soil sample had extreme low pH value (pH < 3) and high ions concentration, which was influenced by the acid mine drainage (AMD). All the 16S rRNA gene sequences of bacteria clone library fell into 11 phyla, and Acidobacteria played the most significant role in the ecosystem followed by Verrucomicrobia. A great number of acidophilic bacteria existed in the soil sample, such as Candidatus Koribacter versatilis and Holophaga sp.. The archaea clone library consisted of 2 phyla (Thaumarchaeota and Euryarchaeota). The abundance of Thaumarchaeota was remarkably higher than Euryarchaeota. The ammonia oxidation in the soil environment was probably driven by ammonia-oxidizing archaea, and new species of ammonia-oxidizing archaea existed in the soil sample.

  11. Spatial and temporal variability of soil hydraulic properties of topsoil affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonin; Kodesova, Radka; Jaksik, Ondrej; Jirku, Veronika; Klement, Ales; Fer, Miroslav

    2014-05-01

    This study is focused on the comparison of soil hydraulic properties of topsoil that is affected by erosion processes. In order to include variable morphological and soil properties along the slope three sites - Brumovice, Vidim and Sedlčany were selected. Two transects (A, B) and five sampling sites along each one were chosen. Soil samples were taken in Brumovice after the tillage and sowing of winter wheat in October 2010 and after the wheat harvest in August 2011. At locality Vidim and Sedlčany samples were collected in May and August 2012. Soil hydraulic properties were studied in the laboratory on the undisturbed 100-cm3 soil samples placed in Tempe cells using the multi-step outflow test. Soil water retention data points were obtained by calculating water balance in the soil sample at each pressure head step of the experiment. The single-porosity model in HYDRUS-1D was applied to analyze the multi-step outflow and to obtain the parameters of soil hydraulic properties using the numerical inversion. The saturated hydraulic conductivities (Ks) and unsaturated hydraulic conductivities (Kw) for the pressure head of -2 cm of topsoil were also measured after the harvest using Guelph permeameter and Minidisk tensiometer, respectively. In general soil water retention curves measured before and after vegetation period apparently differed, which indicated soil material consolidation and soil-porous system rearrangement. Soil water retention curves obtained on the soil samples and hydraulic conductivities measured in the field reflected the position at the elevation transect and the effect of erosion/accumulation processes on soil structure and consequently on the soil hydraulic properties. The highest Ks values in Brumovice were obtained at the steepest parts of the elevation transects, that have been the most eroded. The Ks values at the bottom parts decreased due to the sedimentation of eroded soil particles. The change of the Kw values along transects didn't show similar trends. However, the variability of values within both transects was low. Higher values were obtained in transect B, where the soil was more affected by erosion. The highest values of Ks as well as the value of Kw were also obtained in the steepest part of transect A in Vidim. This trend was not observed in transect B. The results corresponded with measured retention curves. Two different trends were shown in Sedlčany. While the highest values of Ks and Kw were found in the upper part of transect A, in the case of transect B the highest values were measured at the bottom of transect. Differences observed at both localities were caused by the different terrain attributes of both transects and extent of soil erosion. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (QJ1230319).

  12. Spatial distribution of soil contamination by Toxoplasma gondii in relation to cat defecation behaviour in an urban area.

    PubMed

    Afonso, Eve; Lemoine, Mélissa; Poulle, Marie-Lazarine; Ravat, Marie-Caroline; Romand, Stéphane; Thulliez, Philippe; Villena, Isabelle; Aubert, Dominique; Rabilloud, Muriel; Riche, Benjamin; Gilot-Fromont, Emmanuelle

    2008-07-01

    In urban areas, there may be a high local risk of zoonosis due to high densities of stray cat populations. In this study, soil contamination by oocysts of Toxoplasma gondii was searched for, and its spatial distribution was analysed in relation to defecation behaviour of cats living in a high-density population present in one area of Lyon (France). Sixteen defecation sites were first identified. Cats were then repeatedly fed with marked food and the marked faeces were searched for in the defecation sites. Of 260 markers, 72 were recovered from 24 different cats. Defecation sites were frequented by up to 15 individuals. Soil samples were also examined in order to detect the presence of T. gondii using real-time PCR. The entire study area was then sampled according to cat density and vegetation cover type. Only three of 55 samples were positive and all came from defecation sites. In a second series of observations, 16 defecation sites were sampled. Eight of 62 samples tested positive, originating in five defecation sites. Laboratory experiments using experimental seeding of soil showed that the inoculated dose that can be detected in 50% of assays equals 100-1000oocysts/g, depending on the strain. This study shows that high concentrations of oocysts can be detected in soil samples using molecular methods and suggests that spatial distribution of contamination areas is highly heterogeneous. Positive samples were only found in some of the defecation sites, signifying that at-risk points for human and animal infection may be very localised.

  13. Ribosomal RNA gene detection and targeted culture of novel nitrogen-responsive fungal taxa from temperate pine forest soil.

    PubMed

    Hesse, Cedar N; Torres-Cruz, Terry J; Tobias, Terri Billingsley; Al-Matruk, Maryam; Porras-Alfaro, Andrea; Kuske, Cheryl R

    Soil fungal communities are responsible for carbon and nitrogen (N) cycling. The high complexity of the soil fungal community and the high proportion of taxonomically unidentifiable sequences confound ecological interpretations in field studies because physiological information is lacking for many organisms known only by their rRNA sequences. This situation forces experimental comparisons to be made at broader taxonomic racks where functions become difficult to infer. The objective of this study was to determine OTU (operational taxonomic units) level responses of the soil fungal community to N enrichment in a temperate pine forest experiment and to use the sequencing data to guide culture efforts of novel N-responsive fungal taxa. Replicate samples from four soil horizons (up to 10 cm depth) were obtained from ambient, enriched CO 2 and N-fertilization plots. Through a fungal large subunit rRNA gene (LSU) sequencing survey, we identified two novel fungal clades that were abundant in our soil sampling (representing up to 27% of the sequences in some samples) and responsive to changes in soil N. The two N-responsive taxa with no predicted taxonomic association were targeted for isolation and culturing from specific soil samples where their sequences were abundant. Representatives of both OTUs were successfully cultured using a filtration approach. One taxon (OTU6) was most closely related to Saccharomycotina; the second taxon (OTU69) was most closely related to Mucoromycotina. Both taxa likely represent novel species. This study shows how observation of specific OTUs level responses to altered N status in a large rRNA gene field survey provided the impetus to design targeted culture approaches for isolation of novel N-responsive fungal taxa.

  14. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    The majority of earth's biodiversity lives in and makes up the soil, but the majority of soil biodiversity has yet to be characterized or even quantified. This may be especially true of urban soil systems. The last decade of advances in molecular, technical and bioinformatic techniques have contributed greatly to our understanding of belowground biodiversity, from global distribution to species counts. Yet, much of this work has been done in ';natural' systems and it is not known if established patterns of distribution, especially in relation to soil factors hold up in urban soils. Urban soils are intensively managed and disturbed, often by effects unique to urban settings. It remains unclear how urban pressures influence soil biodiversity, or if there is a defined or typical ';urban soil community'. Here we describe a study to examine the total soil biodiversity - Bacteria, Archaea and Eukarya- of Central Park, New York City and test for patterns of distribution and relationships to soil characteristics. We then compare the biodiversity of Central Park to 57 global soils, spanning a number of biomes from Alaska to Antarctica. In this way we can identify similarities and differences in soil communities of Central Park to soils from ';natural' systems. To generate a broad-scale survey of total soil biodiversity, 596 soil samples were collected from across Central Park (3.41 km2). Soils varied greatly in vegetation cover and soil characteristics (pH, moisture, soil C and soil N). Using high-throughput Illumina sequencing technology we characterized the complete soil community from 16S rRNA (Bacteria and Archaea) and 18S rRNA gene sequences (Eukarya). Samples were rarified to 40,000 sequences per sample. To compare Central Park to the 57 global soils the complete soil community of the global soils was also characterized using Illumina sequencing technology. All samples were rarified to 40,000 sequences per sample. The total measured biodiversity in Central Park was high: >540,000 bacterial and archaeal species; and >97,000 eukaryotic species (as determined using a 97% sequence similarity cutoff). The most dominant bacterial phyla include Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia and Actinobacteria, and Archaea represent 1-8% of the sequences. Additionally, the distribution patterns of Acidobacteria and consequently beta-diversity, was strongly related to soil pH. The most dominant eukaryotic taxa include many Protists (Rhizara, Gregarinia), Fungi (Basidiomycota, Ascomycota), and Metazoa (Nematodes, Rotifers, Arthropods and Annelids). No single soil factor could predict eukaryotic distribution. Central Park soil diversity was strikingly similar to the diversity of the 57 global soils. Central Park and the global soils had similarities in alpha diversity, taxon abundances. Interestingly, there was significant overlap in a number of dominant species between Central Park and the global soils. Together these results represent the most comprehensive analysis of soil biodiversity conducted to date. Our data suggest that even well-studied locations like Central Park harbor very high levels of unexplored biodiversity, and that Central Park biodiversity is comparable to soil biodiversity found globally.

  15. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  16. Ecotoxicological study of arsenic and lead contaminated soils in former orchards at the Hanford Site, USA.

    PubMed

    Delistraty, Damon; Yokel, Jerry

    2014-01-01

    The purpose of this study was to assess ecotoxicity of former orchard soils contaminated with lead arsenate pesticides at the Hanford Site in Washington state (USA). Surface soil, plant, and invertebrate samples were collected from 11 sites in former orchard areas. Mean (standard deviation [SD]) for As and Pb in soil were 39.5 (40.6) and 208 (142) mg/kg dry wt, respectively (n = 11). These concentrations exceeded Hanford background levels but were similar to orchard soils elsewhere. In our study, As and Pb soil concentrations were positively and significantly correlated (r = 0.87, Bonferroni P < 0.05). Speciation of total inorganic As in soil (n = 6) demonstrated that As+5 was the dominant form (>99%). Mean (SD) for As and Pb in cheatgrass were 3.9 (7.9) and 12.4 (20.0) mg/kg dry wt, respectively (n = 11), while mean (SD) for As and Pb in darkling beetles were 5.4 (2.6) and 3.9 (3.0) mg/kg dry wt, respectively (n = 8). Linear regressions were constructed to estimate soil to cheatgrass and soil to darkling beetle uptake for As and Pb. These were significant (Bonferroni P < 0.05) only for cheatgrass versus soil (As) and darkling beetle versus soil (Pb). Standardized lettuce seedling and earthworm bioassays were performed with a subset of soil samples (n = 6). No significant effects (P > 0.05) were observed in lettuce survival or growth nor in earthworm survival or sublethal effects. Based on these bioassays, unbounded no observed effect concentrations (NOECs) in soil for As and Pb were 128 and 390 mg/kg dry wt, respectively. However, our range of soil concentrations generally overlapped a set of ecotoxicological benchmarks reported in the literature. Given uncertainty and limited sampling related to our NOECs, as well as uncertainty in generic benchmarks from the literature, further study is needed to refine characterization of As and Pb ecotoxicity in former orchard soils at the Hanford Site. Copyright © 2011 Wiley Periodicals, Inc.

  17. The polycyclic aromatic hydrocarbon concentrations in soils in the Region of Valasske Mezirici, the Czech Republic

    PubMed Central

    2009-01-01

    The polycyclic aromatic hydrocarbon (PAH) contamination of urban, agricultural and forest soil samples was investigated from samples obtained in the surroundings of Valasske Mezirici. Valasske Mezirici is a town located in the north-east mountainous part of the Czech Republic, where a coal tar refinery is situated. 16 PAHs listed in the US EPA were investigated. Organic oxidizable carbon was also observed in the forest soils. The PAH concentrations ranged from 0.86-10.84 (with one anomalous value of 35.14) and 7.66-79.39 mg/kg dm in the urban/agricultural and forest soils, respectively. While the PAH levels in the urban/agricultural soils are within the range typically found in industrialized areas, the forest soils showed elevated PAH concentrations compared to other forest soils in Western and Northern Europe. The PAH concentrations and their molecular distribution ratios were studied as functions of the sample location and the meteorological history. The soils from localities at higher altitudes above sea level have the highest PAH concentrations, and the PAH concentrations decrease with increasing distance from the town. PMID:20003407

  18. NASA applications project in Miami County, Indiana

    NASA Technical Reports Server (NTRS)

    Fernandez, R. Norberto; Lozano-Garcia, D. Fabian; Wyss, Phillip J.; Johannsen, Chris J.

    1989-01-01

    The study site selection is intended to serve all of the different research areas within the project, i.e., soil conditions, soil management, etc. There are seven major soil associations or soils formed on similar landscapes in the Miami Co., and over 38 soil series that were mapped. Soil sampling was conducted in some sites because of its variability in soils and cover types, variable topography, and presence of erosion problems. Results from analysis of these soil data is presented.

  19. Reindeer grazing in subarctic boreal forest - influences on the soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Koster, Kajar; Berninger, Frank; Köster, Egle; Pumpanen, Jukka

    2015-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems , which have many effects on plant diversity, soil nutrient cycling and soil organic matter decomposition. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil C dynamics. Earlier, the role of reindeer grazing in ground vegetation dynamics and in soil carbon (C) dynamics has been mostly investigated in open tundra heaths. The objectives of this study were to examine if and how the reindeer grazing (and the possible temperature changes in soil caused by heavy grazing) is affecting the soil C dynamics (CO2 efflux from the soil, C storage in soil, microbial biomass in the soil). In a field experiment in Finnish Lapland, in Värriö Strict Nature Reserve (67° 46' N, 29° 35' E) we have assessed the changes occurring in above- and belowground biomasses, and soil C dynamics (CO2 efflux, soil C content, soil microbial biomass C) among areas grazed and ungrazed by reindeer. Our study areas are located in the northern boreal subarctic coniferous forest at the zone of the last intact forest landscapes in Fennoscandia, where large areas of relatively undisturbed subarctic Scots pine (Pinus sylvestris L.) forests can still be found. The sample plots located in the Värriö Strict Nature Reserve (10 sample plots in total established in year 2013) are situated along the borderline between Finland and Russia, where the ungrazed area was excluded from the reindeer grazing already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. To characterize the stands we have established circular sample plots on areas with a radius of 11.28 m, where different tree characteristics were measured (diameter at 1.3 m, height, height of a tree, crown height, crown diameter, stand age, etc.). On every sample plot, four 0.5 x 0.5 m ground vegetation squares were established for species composition and recovery measurements. The squares were photographed for ground vegetation coverage analyses and definition of species composition. Ground vegetation biomass was determined from 4 sample squares (0.2 x 0.2 m) located systematically inside the circular sample plots (close to the ground vegetation squares). For soil C content measurements 5 soil cores (150 mm in length and 50 mm in diameter) were taken from every sample plot in Värriö and in Sodankylä. The soil cores were divided according to the morphological soil horizons; to litter and organic layer (F-horizon) and humus layer (O-horizon). The layers in mineral soil were divided to eluvial (A-horizon) and illuvial (B-horizon), and sieved. All roots were separated for root biomass calculations. The soil C content was measured with an elemental analyser (varioMAX CN elemental analyser, Elementar Analysensysteme GmbH, Germany). The soil respiration rates were measured only in Värriö study areas. In order to determine the CO2 efflux from soil to atmosphere, manual chamber measurements with a diffusion type CO2 probe (GMP343), were performed on 6 collars at each sample plot from June till September (five times per collar) at measuring intervals of two weeks. Soil microbial biomass was measured from five soil samples (soil from lower humus layer) per sample plot in Värriö. To determine the soil microbial C biomass (Cmic) and soil microbial N biomass (Nmic) chloroform fumigation direct extraction method was used. The average soil temperatures during the growing season (from June till September) were similar in all sample plots in Värriö, ranging from 10.9 to 11.5 ° C. There were also no differences between daily average temperatures or soil moisture between grazed and ungrazed areas. There was no statistically significant effect of reindeer grazing on soil C content, although it was mainly higher in grazed area compared to the ungrazed area. Also there was no significant differences in the soil CO2 efflux between the grazed and ungrazed area. This means that although the soil CO2 efflux was mostly lower in the ungrazed area, reindeer herding had no significant influence on the soil CO2 efflux. The CO2 effluxes were lowest in June. In July and August, the CO2 effluxes were more than two times higher compared to June. The microbial biomass C (Cmic) measured from humus horizon was lower in the grazed areas compared to the ungrazed areas, but the difference was not statistically significant. However, the microbial biomass N (Nmic) was significantly lower (p > 0.05) in the grazed areas compared to the ungrazed areas. We found also that grazing decreased significantly the biomass and cover of lichens in the coniferous forests. In Sodankylä the biomass of lichens was decreased around 74% due to grazing. In Värriö the decrease was even bigger, there the amount of lichen biomass was decreased more than 90% due to reindeer grazing. Ttal above ground biomass was higher in the area where no reindeer grazing had occurred. Moreover, the tree biomass was higher in the area with no grazing and tree regeneration was heavily affected by grazing, as we had much less tree regeneration in the grazed areas compared to the ungrazed areas.

  20. Mitigation of water repellency in burned soils applying hydrophillic polymers

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; de la Torre, Sara; Vidal-Vazquez, Eva; Lado, Marcos

    2017-04-01

    In this study, the effect of fire on water repellency was analyzed in soils from different parent materials, as well as the suitability of anionic polyacrylamide (PAM) to reduce water repellency in these soils. Samples were collected in four different sites where wildfires took place: two in the Canary Islands, with soils developed on volcanic materials, and two in Galicia (NW Spain), with soils developed on plutonic rocks. In Galicia, two soil samples were collected in each site, one in the burnt area and one in an adjacent unburnt area. In the Canary Islands, four samples were collected from each site, three inside the burnt area where the soils were affected by different fire intensities, and one in an unburnt adjacent area. Samples were air-dried and sieved by a 2-mm mesh sieve. Water repellency was measured using the Water Drop Penetration Time test. An amount of 10 g of soil was placed in a tray. Five drops of deionized water were place on the soil surface with a pipette, and the time for each drop to fully penetrate into the soil was recorded. PAM solution was applied to the burnt soils simulating a field application rate of 1gm-2. The polymer used was Superfloc A-110 (Kemira Water Solutions BV, Holland) with 1x107 Da molecular weigth and 15% hydrolysis. PAM was sprayed on the soil surface as solution with a concentration 0.2 g/L. After the application, the samples were dried and the WDPT test was performed. Three replicates for each treatment and soil were used, and the treatments included: dry soil, dry soil after a wetting treatment, dry PAM-treated soil. The results showed that water repellency was modified by fire differently in the various soils. In hydrophilic soils and soils with low water repellency, water repellency was increased after the action of fire. In soils with noticeable initial water repellency, this was reduced or eliminated after the fire. Wetting repellent soils caused a decrease in water repellency most probably because of the spatial redistribution of hydrophobic organic compounds that caused water repellency. The addition of PAM further reduced in all of the cases. The application of PAM could be an effective method for mitigation of water repellency in burnt soils.

  1. From the study of fire effects on individual soil properties to the development of soil quality indices. 1. The pioneer research

    NASA Astrophysics Data System (ADS)

    Mataix-Solera, Jorge; Zornoza, Raúl

    2013-04-01

    Although forest fires must be considered as a natural factor in Mediterranean ecosystems, the modification of its natural regime during last five decades has thansformed them in an environmental problem. In the Valencia region (E Spain) 1994 was the worst year in the history affecting more than 120,000 hectares. I started my Ph.D that year by studying the effects of fires in soil properties. The availability to be able to analyse a great set of different types of soil properties in the laboratories of University of Alicante allowed me to explore how fires could affect physical, chemical and micobiological soil properties. After years studying different soil properties, finding that several factors are involved, including: fire intensity and severity, vegetation, soil type, climate conditions, etc. (Mataix-Solera and Doerr, 2004; Mataix-Solera et al., 2008, 2011) my research as Ph-D supervisor has been focussed to investigate more in depth some selected properties, such as aggregate stability and water repellency (Arcenegui et al., 2007, 2008). But one of the main problems in the studies conducted with samples affected by wildfires is that for the evaluation of the fire impact in the soil it is necessary to have control (unburned) soil samples from a similar non-affected near area. The existing spatial variability under field conditions does not allow having comparable samples in some acses to develop a correct assessment. With this idea in mind one of my Ph.D researcher (R. Zornoza) dedicated his thesis to develope soil quality indices capable to assess the impact of soil perturbations without comparing groups of samples, but evaluating the equilibrium among different soil properties within each soil sample (Zornoza et al., 2007, 2008). Key words: wildfire, Mediterranean soils, soil degradation, wàter repellency, aggregate stability References: Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mayoral, A.M., Morales, J., 2007. Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils. Eur. J. Soil Sci. 58, 1254-1259. Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mataix-Beneyto, J., García-Orenes, F., 2008. Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena 74, 219-226. Mataix-Solera, J., Doerr, S.H., 2004. Hydrophobicity and aggregate stability in calcareous topsoil from fire affected pine forests in southeastern Spain. Geoderma 118, 77-88. Mataix-Solera, J., Arcenegui, V., Guerrero, C., Jordán, M., Dlapa, P., Tessler, N., Wittenberg, L. 2008. Can terra rossa become water repellent by burning? A laboratory approach. Geoderma, 147, 178-184. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects on soil aggregation: a review. Earth-Science Reviews 109, 44-60 Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mayoral, A.M., Morales, J. Mataix-Beneyto, J., 2007b. Soil properties under natural forest in the Alicante Province of Spain. Geoderma. 142, 334-341. Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mataix-Beneyto, J., Gómez, I., 2008. Validating the effectiveness and sensitivity of two soil quality indices based on natural forest soils under Mediterranean conditions. Soil Biology & Biochemistry. 40, 2079-2087.

  2. Classification problems of Mount Kenya soils

    NASA Astrophysics Data System (ADS)

    Mutuma, Evans; Csorba, Ádám; Wawire, Amos; Dobos, Endre; Michéli, Erika

    2017-04-01

    Soil sampling on the agricultural lands covering 1200 square kilometers in the Eastern part of Mount Kenya was carried out to assess the status of soil organic carbon (SOC) as a soil fertility indicator, and to create an up-to-date soil classification map. The geology of the area consists of volcanic rocks and recent superficial deposits. The volcanic rocks are related to the Pliocene time; mainly: lahars, phonolites, tuffs, basalt and ashes. A total of 28 open profiles and 49 augered profiles with 269 samples were collected. The samples were analyzed for total carbon, organic carbon, particle size distribution, percent bases, cation exchange capacity and pH among other parameters. The objective of the study was to evaluate the variability of SOC in different Reference Soil Groups (RGS) and to compare the determined classification units with the KENSOTER database. Soil classification was performed based on the World Reference Base (WRB) for Soil Resources 2014. Based on the earlier surveys, geological and environmental setting, Nitisols were expected to be the dominant soils of the sampled area. However, this was not the case. The major differences to earlier survey data (KENSOTER database) are the presence of high activity clays (CEC value range 27.6 cmol/kg - 70 cmol/kg), high silt content (range 32.6 % - 52.4 %) and silt/clay ratio (range of 0.6 - 1.4) keeping these soils out of the Nitisols RSG. There was good accordance in the morphological features with the earlier survey but failed the silt/clay ratio criteria for Nitisols. This observation calls attention to set new classification criteria for Nitisols and other soils of warm, humid regions with variable rate of weathering to avoid difficulties in interpretation. To address the classification problem, this paper further discusses the taxonomic relationships between the studied soils. On the contrary most of the diagnostic elements (like the presence Umbric horizon, Vitric and Andic properties) and the some qualifiers (Humic, Dystric, Clayic, Skeletic, Leptic, etc) represent useful information for land use and management in the area.

  3. State-Space Estimation of Soil Organic Carbon Stock

    NASA Astrophysics Data System (ADS)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  4. Oxygen Isotope Compositions of Meteoric Water Across an Elevation Gradient in Southern Peru

    NASA Astrophysics Data System (ADS)

    Xu, D. R.; White, E.; Cassel, E. J.; Lynch, B.; Yanites, B.; Breecker, D.

    2017-12-01

    The Central Andes is a prime example of elevated topography generated by oceanic plate subduction. Whereas previous stable isotope studies have investigated the paleoelevation of the Andean Eastern Cordillera, little is known about the paleoelevation of the Western Cordillera, where arc volcanism now occurs. As a first step towards studying the paleoelevation of this region, we investigated the change in δ18O values of modern soil waters across an elevation gradient from sea level to about 4725 meters in southern Peru. We sampled soil profiles from 5 to 80 cm in 15-20cm increments, and we sampled water from flowing natural streams at various elevations. We used cryogenic vacuum extraction to quantitatively remove non-structural water from soil samples. The δ18O values of water extracted from soil samples varies with the depth in the soil due to the diminishing effect of seasonality and evaporation. Every high elevation (>3500m) soil profile we measured had nearly constant δ18O values below 5cm and a total range of δ18O values between -12.8‰ and -17.1‰, apart from the Cusco profile. In the Cusco profile, the δ18O values ranged from -7.2 ‰ at 5 cm to -21.8 ‰ at 60 cm, defining a strong monotonic decrease not seen in other soil profiles. The δ18O trend in the Cusco profile may be different due to the impact of evaporation, soil hydrology, and/or seasonality in the δ18O values of precipitation. Further spatial analysis must be conducted to pinpoint a specific cause. Considering only the samples collected below 40cm, which are likely the best estimate of mean annual precipitation, the δ18O values decrease with increasing elevation at a rate higher than the global mean, suggesting that oxygen isotope paleoaltimetry can work in this study region.

  5. Selenium geochemistry in reclaimed phosphate mine soils and its relationship with plant bioavailability

    USDA-ARS?s Scientific Manuscript database

    Background and Aims Selenium contamination and accumulation in vegetation have resulted in Se toxicity in livestock and wildlife in reclaimed phosphate mine soils in Southeastern Idaho. Methods Plant and soil samples were collected from five study sites near phosphate mines. Soil physiochemical pr...

  6. Metatranscriptomics of Soil Eukaryotic Communities.

    PubMed

    Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2016-01-01

    Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.

  7. Wave-current induced erosion of cohesive riverbanks in northern Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, N.; Clark, S.; Ahmari, H.; Hunt, J.

    2015-03-01

    The field of cohesive soil erosion is still not fully understood, in large part due to the many soil parameters that affect cohesive soil erodibility. This study is focused on two channels, 2-Mile and 8-Mile channels in northern Manitoba, Canada, that were built to connect Lake Winnipeg with Playgreen Lake and Playgreen Lake with Kiskikittogisu Lake, respectively. The banks of the channels consist of clay rich soils and alluvial deposits of layered clay, silts and sands. The study of erosion at the sites is further complicated because the flow-induced erosion is combined with the effects of significant wave action due to the large fetch length on the adjacent lakes, particularly Lake Winnipeg that is the seventh largest lake in North America. The study included three main components: field measurements, laboratory experiments and numerical modelling. Field measurements consisted of soil sampling from the banks and bed of the channels, current measurements and water sampling. Grab soil samples were used to measure the essential physical and electrochemical properties of the riverbanks, and standard ASTM Shelby tube samples were used to estimate the critical shear stress and erodibility of the soil samples using an erosion measurement device (EMD). Water samples were taken to estimate the sediment concentration profile and also to monitor changes in sediment concentration along the channels over time. An Acoustic Doppler Current Profiler (ADCP) was used to collect bathymetry and current data, and two water level gauges have been installed to record water levels at the entrance and outlet of the channels. The MIKE 21 NSW model was used to simulate waves using historical winds and measured bathymetry of the channels and lakes. Finally, results from the wave numerical model, laboratory tests and current measurement were used to estimate the effect of each component on erodibility of the cohesive banks.

  8. Measurement of radon exhalation rate in various building materials and soil samples

    NASA Astrophysics Data System (ADS)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  9. Successive DNA extractions improve characterization of soil microbial communities

    PubMed Central

    de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105

  10. Isolation of entomopathogenic fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: prevalence and methods.

    PubMed

    Tuininga, Amy R; Miller, Jessica L; Morath, Shannon U; Daniels, Thomas J; Falco, Richard C; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C

    2009-05-01

    Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment.

  11. What is the role played by organic matter fractions from different sieve-size particles in the development of soil water repellency? A case study using analytical pyrolysis.

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; González-Vila, Francisco J.; Zavala, Lorena M.; Jordán, Antonio; Jiménez-González, Marco A.

    2014-05-01

    1. INTRODUCTION It is known that soil water repellency (WR) is induced by organic substances covering the surface of minerals particles and aggregates or present as interstitial substances in the soil matrix. It has also been suggested that the persistence of WR is largely conditioned by specific chemical characteristics of soil organic matter (SOM). Most of these substances are abundant in ecosystems and are released into soils as exudates of roots, organic residues in decomposition, or secretions by fungi and other microorganisms. Soil free lipids correspond to a diverse collection of hydrophobic substances including complex substances as sterols, terpenes, polynuclear hydrocarbons, chlorophylls, fatty acids, waxes, and resins. Some of these organic substances, responsible of soil water repellency may be studied using analytical pyrolisis (de la Rosa et al., 2011; González-Pérez et al., 2011). This research aims to study the relation between soil WR and SOM quantity and quality, assessing the impact of organic fractions and its distribution in soil particles of different size on soil WR from sandy soils. 2. METHODS Soil samples were collected under selected species growing in sandy soils from the Doñana National Park (SW Spain), cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Soil WR and physical chemical characteristics including SOM content were assessed in fine earth soil samples (< 2mm) and in soil sieve fractions (1-2, 0.25-1, 0.05-0.25 and <0.05 mm). The composition of common hydrophobic substances present in SOM (n-alkane/alkene pairs and n-alkanoic acids) was assessed by analytical pyrolysis. Analytical pyrolysis techniques do not need a pre-treatment, is fast and easily reproducible 3. RESULTS The severity of soil WR (determined using the WDPT test) may be ordered according to the sequence QS>PA>PP>HH. A positive correlation was observed between WR from each sieve size fraction and SOM content. The most severe WR was detected in QS for all sieve size fractions, followed by the finer fractions form PA, PP and HH samples, which that also shows the highest SOM content, ranging between 20.9% (PP) and 46.9% (QS). Coarser soil fractions (1-2 mm) under PA, PP and HH showed the highest long-chain-even C numbered fatty acids (LCE-FA) in the order PP>PA>HH. No fatty acids were detected neither in sieve fractions 0.25-1, 0.05-0.25 and <0.05 mm from HH samples nor in PA and PP (0.25-1 mm samples). A significant relation was observed between SOM content and severity of soil WR in QS samples and finer fractions of other samples, which is in agreement with previous findings (GOrdillo-Rivero et al., 2013; Jordán et al., 2011). In contrast, 1-2 mm sieve fractions from PP, PA and HH soils showed high severity of soil WR and relatively low SOM contents. This could be explained by a low degree of evolution of organic residues with higher alkane/alkene CPI values and to the presence of a higher diversity of fatty acid structures. These results suggest that soil WR appears as a consequence of lipid compounds in soil. Some similarities were found in the organic molecular assemblages in PA and PP samples, suggesting a fingerprint of pine residues in PA samples, resulting from ancient pine forests. This finding may be also explained by the existence of exogenous organic inputs associated to fine soil particles from border areas of pine forests. REFERENCES de la Rosa, J.M., González-Pérez, J.A., González-Vila, F.J., Knicker, H., Araújo, M.F. 2011. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191, 24-30. González-Pérez, J.A., González-Vila, F.J., Arias, M.E., Rodríguez, J., de la Rosa, J.M., Marañón, T., Clemente, L. 2011. Geochemical and ecological significance of soil lipids under Rhododendron ponticum stands. Environmental Chemistry Letters 9, 453-464. Gordillo-Rivero, A.J., García-Moreno, J., Jordán, A., Zavala, L.M. 2013. Monitoring fire impacts in soil water repellency and structure stability during 6 years. Flamma 4, 71-75. Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena 84, 136-147.

  12. Application of laboratory reflectance spectroscopy to target and map expansive soils: example of the western Loiret, France

    NASA Astrophysics Data System (ADS)

    Hohmann, Audrey; Dufréchou, Grégory; Grandjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Based on spatial distribution of infrastructure damages and existing geological maps, the Bureau de Recherches Géologiques et Minières (BRGM, i.e. the French Geological Survey) published in 2010 a 1:50 000 swelling hazard map of France, indexing the territory to low, moderate, or high swelling risk. This study aims to use SWIR (1100-2500 nm) reflectance spectra of soils acquired under laboratory controlled conditions to estimate the swelling potential of soils and improve the swelling risk map of France. 332 samples were collected at the W of Orléans (France) in various geological formations and swelling risk areas. Comparisons of swelling potential of soil samples and swelling risk areas of the map show several inconsistent associations that confirm the necessity to redraw the actual swelling risk map of France. New swelling risk maps of the sampling area were produce from soil samples using three interpolation methods. Maps produce using kriging and Natural neighbour interpolation methods did not permit to show discrete lithological units, introduced unsupported swelling risk zones, and did not appear useful to refine swelling risk map of France. Voronoi polygon was also used to produce map where swelling potential estimated from each samples were extrapolated to a polygon and all polygons were thus supported by field information. From methods tested here, Voronoi polygon appears thus the most adapted method to produce expansive soils maps. However, size of polygon is highly dependent of the samples spacing and samples may not be representative of the entire polygon. More samples are thus needed to provide reliable map at the scale of the sampling area. Soils were also sampled along two sections with a sampling interval of ca. 260 m and ca. 50 m. Sample interval of 50 m appears more adapted for mapping of smallest lithological units. The presence of several samples close to themselves indicating the same swelling potential is a good indication of the presence of a zone with constant swelling potential. Combination of Voronoi method and sampling interval of ca. 50 m appear adapted to produce local swelling potential maps in areas where doubt remain or where infrastructure damages attributed to expansive soils are knew.

  13. What is the story that soil tells us? Environmental and anthropogenic change

    NASA Astrophysics Data System (ADS)

    Shanskiy, Merrit; Kriiska, Aivar; Oras, Ester

    2015-04-01

    The archaeological studies have shown the evidence of human impact on soils functioning. On the other hand, the changed conditions of normal soil functioning will influence the human settlement in specific area. This study is part of a wider archaeological project on the environmental studies of the Kohtla Iron Age sacrificial site. To obtain a data about soil cover around historical finding some 1500 years ago, special sampling and research were carried out at the study site located in Kohtla Vanaküla, northeastern Estonia where a valuable collection of metal weapons and tools was discovered. The aim of current study was to analyze the site-specific soils to find out the connections between soil records and human mediated historical land degradation. Also, the site specific conditions were studied in order to understand its impact on archaeological artefacts and their preservation conditions. For the current investigation the soil sampling was carried out in July, 2014. The soils were described based on 20 soil pits. The site-specific soil morphological description was finalized and chemical analyses were performed at the laboratory of Soil Science and Agrochemistry, Estonian University of Life Science. Soil was air dried and passed through a 2- mm sieve. The chemical elements (P, K, Ca, Mg, Fe) were analyzed by using Mehlich 3 extraction by MP-AES analytical performance. Soil pH was measured from the soil suspension with 1M KCl. Ctot was analysed by dry combustion method in a vario MAX CNS elemental analyser (ELEMENTAR, Germany). Organic C was determined with elemental analyzer. According to World Reference Base for Soil Resources (WRB) classification system (FAO, 1998), the soil in the study area belongs to the soils subgroups of Gley soils on yellowish-grey calcareous till. The study area soil cover has strong anthropogenic influence due to different human activities. First, there are agricultural activities in the area. Although the region is currently exploited as grassland for animal grazing, it is known to have been ploughed in the past, resulting in amelioration of this soil type. Second, a result of surrounding oil-shale mining the status of groundwater has been changed as well.

  14. The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.

  15. The rapid measurement of soil carbon stock using near-infrared technology

    NASA Astrophysics Data System (ADS)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  16. Mapping The Temporal and Spatial Variability of Soil Moisture Content Using Proximal Soil Sensing

    NASA Astrophysics Data System (ADS)

    Virgawati, S.; Mawardi, M.; Sutiarso, L.; Shibusawa, S.; Segah, H.; Kodaira, M.

    2018-05-01

    In studies related to soil optical properties, it has been proven that visual and NIR soil spectral response can predict soil moisture content (SMC) using proper data analysis techniques. SMC is one of the most important soil properties influencing most physical, chemical, and biological soil processes. The problem is how to provide reliable, fast and inexpensive information of SMC in the subsurface from numerous soil samples and repeated measurement. The use of spectroscopy technology has emerged as a rapid and low-cost tool for extensive investigation of soil properties. The objective of this research was to develop calibration models based on laboratory Vis-NIR spectroscopy to estimate the SMC at four different growth stages of the soybean crop in Yogyakarta Province. An ASD Field-spectrophotoradiometer was used to measure the reflectance of soil samples. The partial least square regression (PLSR) was performed to establish the relationship between the SMC with Vis-NIR soil reflectance spectra. The selected calibration model was used to predict the new samples of SMC. The temporal and spatial variability of SMC was performed in digital maps. The results revealed that the calibration model was excellent for SMC prediction. Vis-NIR spectroscopy was a reliable tool for the prediction of SMC.

  17. Classification of andisol soil on robusta coffee plantation in Silima Pungga - Pungga District

    NASA Astrophysics Data System (ADS)

    Marbun, P.; Nasution, Z.; Hanum, H.; Karim, A.

    2018-02-01

    The survey study aims to classify the Inceptisol soil on Robusta coffee plantation in Silima Pugga-Pungga District, from Order level to Sub Group level. The study was conducted on location of sample soil profiles which were determined based on Soil Map Unit (SMU) with the main Andisol Order, i.e. SMU 12, SMU 15 and SMU 17 of 18 existing SMU. The soil profiles were described to determine the morphological characteristics of the soil, while the physical and chemical properties were done by laboratory analysis. The soil samples were taken from each horizon in each profile and analyzed in the laboratory in the form of soil texture, bulk density, pH H2O, pH KCl, pH NaF, C-organic, exchangeable bases (Ca2+, Mg2+, K+, Na+), ZPC (zero point charge), base saturation, cation exchange capasity (CEC), P-retention, Al-Oxalate (Al-O) and Si-Oxalate (Si-O). The results showed that the classification of Andisol soil based on Soil Taxonomy only has one Sub Group namely Typic Hapludand. It is expected that the results of this study can provide information for more appropriate land management in order to increase the production of Robusta coffee plant in Silima Pungga-Pungga Sub district.

  18. Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus

    NASA Astrophysics Data System (ADS)

    Meusel, Hannah; Tamm, Alexandra; Kuhn, Uwe; Wu, Dianming; Lena Leifke, Anna; Fiedler, Sabine; Ruckteschler, Nina; Yordanova, Petya; Lang-Yona, Naama; Pöhlker, Mira; Lelieveld, Jos; Hoffmann, Thorsten; Pöschl, Ulrich; Su, Hang; Weber, Bettina; Cheng, Yafang

    2018-01-01

    Soil and biological soil crusts can emit nitrous acid (HONO) and nitric oxide (NO). The terrestrial ground surface in arid and semiarid regions is anticipated to play an important role in the local atmospheric HONO budget, deemed to represent one of the unaccounted-for HONO sources frequently observed in field studies. In this study HONO and NO emissions from a representative variety of soil and biological soil crust samples from the Mediterranean island Cyprus were investigated under controlled laboratory conditions. A wide range of fluxes was observed, ranging from 0.6 to 264 ng m-2 s-1 HONO-N at optimal soil water content (20-30 % of water holding capacity, WHC). Maximum NO-N fluxes at this WHC were lower (0.8-121 ng m-2 s-1). The highest emissions of both reactive nitrogen species were found from bare soil, followed by light and dark cyanobacteria-dominated biological soil crusts (biocrusts), correlating well with the sample nutrient levels (nitrite and nitrate). Extrapolations of lab-based HONO emission studies agree well with the unaccounted-for HONO source derived previously for the extensive CYPHEX field campaign, i.e., emissions from soil and biocrusts may essentially close the Cyprus HONO budget.

  19. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  20. Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

    PubMed

    Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F

    2017-11-07

    In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil screening values are not available. Our objective in this study was to develop empirical soil-plant models for Cd, Cu, Pb, Ni, and Zn, in order to derive appropriate soil screening values representative of humid tropical regions such as the state of São Paulo (SP), Brazil. Soil and plant samples from 25 vegetable species in the production areas of SP were collected. The concentrations of metals found in these soil samples were relatively low. Therefore, data from temperate regions were included in our study. The soil-plant relations derived had a good performance for SP conditions for 8 out of 10 combinations of metal and vegetable species. The bioconcentration factor (BCF) values for Cd, Cu, Ni, Pb, and Zn in lettuce and for Cd, Cu, Pb, and Zn in carrot were determined under three exposure scenarios at pH 5 and 6. The application of soil-plant models and the BCFs proposed in this study can be an important tool to derive national soil quality criteria. However, this methodological approach includes data assessed under different climatic conditions and soil types and need to be carefully considered.

  1. Investigation of off-site airborne transport of lead from a superfund removal action site using lead isotope ratios and concentrations

    USGS Publications Warehouse

    Pribil, Michael J.; Maddaloni, Mark A.; Staiger, Kimberly; Wilson, Eric; Magriples, Nick; Ali, Mustafa; Santella, Dennis

    2014-01-01

    Lead (Pb) concentration and Pb isotopic composition of surface and subsurface soil samples were used to investigate the potential for off-site air transport of Pb from a former white Pb processing facility to neighboring residential homes in a six block area on Staten Island, NY. Surface and subsurface soil samples collected on the Jewett White Pb site were found to range from 1.122 to 1.138 for 206Pb/207Pb and 2.393 to 2.411 for 208Pb/207Pb. The off-site surface soil samples collected from residential backyards, train trestle, near site grass patches and background areas varied from 1.144 to 1.196 for 206Pb/207Pb and 2.427 to 2.464 for 208Pb/207Pb. Two soil samples collected along Richmond Terrace, where Jewett site soils accumulated after major rain events, varied from 1.136 to 1.147 for 206Pb/207Pb and 2.407 to 2.419 for 208Pb/207Pb. Lead concentration for on-site surface soil samples ranged from 450 to 8000 ug/g, on-site subsurface soil samples ranged from 90,000 to 240,000 ug/g and off-site samples varied from 380 to 3500 ug/g. Lead concentration and isotopic composition for the Staten Island off-site samples were similar to previously published data for other northeastern US cities and reflect re-suspension and re-mobilization of local accumulated Pb. The considerable differences in both the Pb isotopic composition and Pb concentration of on-site and off-site samples resulted in the ability to geochemically trace the transport of particulate Pb. Data in this study indicate minimal off-site surface transport of Pb from the Jewett site into the neighboring residential area.

  2. Implications of the field sampling procedure of the LUCAS Topsoil Survey for uncertainty in soil organic carbon concentrations.

    NASA Astrophysics Data System (ADS)

    Lark, R. M.; Rawlins, B. G.; Lark, T. A.

    2014-05-01

    The LUCAS Topsoil survey is a pan-European Union initiative in which soil data were collected according to standard protocols from 19 967 sites. Any inference about soil variables is subject to uncertainty due to different sources of variability in the data. In this study we examine the likely magnitude of uncertainty due to the field-sampling protocol. The published sampling protocol (LUCAS, 2009) describes a procedure to form a composite soil sample from aliquots collected to a depth of between approximately 15-20. A v-shaped hole to the target depth is cut with a spade, then a slice is cut from one of the exposed surfaces. This methodology gives rather less control of the sampling depth than protocols used in other soil and geochemical surveys, this may be a substantial source of variation in uncultivated soils with strong contrasts between an organic-rich A-horizon and an underlying B-horizon. We extracted all representative profile descriptions from soil series recorded in the memoir of the 1:250 000-scale map of Northern England (Soil Survey of England and Wales, 1984) where the base of the A-horizon is less than 20 cm below the surface. The Soil Associations in which these 14 series are significant members cover approximately 17% of the area of Northern England, and are expected to be the mineral soils with the largest organic content. Soil Organic Carbon content and bulk density were extracted for the A- and B-horizons, along with the thickness of the horizons. Recorded bulk density, or prediction by a pedotransfer function, were also recorded. For any proposed angle of the v-shaped hole, the proportions of A- and B-horizon in the resulting sample may be computed by trigonometry. From the bulk density and SOC concentration of the horizons, the SOC concentration of the sample can be computed. For each Soil Series we drew 1000 random samples from a trapezoidal distribution of angles, with uniform density over the range corresponding to depths 15-20 cm and zero density for angles corresponding to depths larger than 21 cm or less than 14 cm. We computed the corresponding variance of sample SOC contents. We found that the variance in SOC determinations attributable to variation in sample depth for these uncultivated soils was of the same order of magnitude as the estimate of the subsampling + analytical variance component (both on a log scale) that we previously computed for soils in the UK (Rawlins et al., 2009). It seems unnecessary to accept this source of uncertainty, given the effort undertaken to reduce the analytical variation which is no larger (and often smaller) than this variation due to the field protocol. If pan-European soil monitoring is to be based on the LUCAS Topsoil survey, as suggested by an initial report, uncertainty could be reduced if the sampling depth was specified to a unique depth, rather than the current depth range. LUCAS. 2009. Instructions for Surveyors. Technical reference document C-1: General implementation, Land Cover and Use, Water management, Soil, Transect, Photos. European Commission, Eurostat. Rawlins, B.G., Scheib, A.J., Lark, R.M. & Lister, T.R. 2009. Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale. European Journal of Soil Science 60, 740-747

  3. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    NASA Astrophysics Data System (ADS)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik; Saat, Ahmad; Hamzah, Zaini

    2015-04-01

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The Kd values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The Kd values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  4. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik, E-mail: khalik@salam.uitm.edu.my

    2015-04-29

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The K{sub d}more » values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The K{sub d} values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.« less

  5. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant.

    PubMed

    Khan, Sumaira; Kazi, Tasneem Gul; Kolachi, Nida Fatima; Baig, Jameel Ahmed; Afridi, Hassan Imran; Shah, Abdul Qadir; Kumar, Sham; Shah, Faheem

    2011-06-15

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V(5+) species from soil, vegetable and grass samples using Na(2)CO(3) in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V(5+) and V(4+) determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 μg/g in test and control soil samples, respectively. The contents of V(5+) and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 μg/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P<0.01). Statistical evaluations indicate that the sum of concentrations of V(5+) and V(4+) species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The cytotoxic and genetoxic effects of dust and soil samples from E-waste recycling area on L02 cells.

    PubMed

    Wang, Liulin; Hou, Meiling; An, Jing; Zhong, Yufang; Wang, Xuetong; Wang, Yangjun; Wu, Minghong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2011-10-01

    Electrical and electronic waste (E-waste) has now become the fastest growing solid waste around the world. Primitive recycling operations for E-waste have resulted in severe contamination of toxic metals and organic chemicals in the related areas. In this study, six dust and soil samples collected from E-waste recycling workshops and open-burning sites in Longtang were analyzed to investigate their cytotoxicity and genotoxicity on L02 cells. These six samples were: dust No. 1 collected at the gate of the workshop; dust No. 2 collected from air conditioning compressor dismantling site; dust No. 3 collected from where some motors, wires, and aluminium products since the 1980s were dismantled; soil No. 1 collected at the circuit board acid washing site; soil No. 2 collected from a wire open-burning site; soil No. 3 collected near a fiber open-burning site. At the same time, two control soil samples were collected from farmlands approximately 8 km away from the dismantling workshops. The results showed that all of these samples could inhibit cell proliferation and cause cell membrane lesion, among which dust No. 3 and soil No. 2 had the strongest toxicity. Moreover, the comet assay showed that the dust No. 3 had the most significant capability to cause DNA single-strand beaks (SSB), while the road dust (dust No. 1) collected at the gate of the workshop, a relatively farer site, showed the slightest capability to induce DNA SSB. The intracellular reactive oxygen species (ROS) detection showed that ROS level was elevated with the increase of dust and soil samples concentration. Dust No. 3 and soil No. 2 had the highest ROS level, followed by dust No. 2 and 1, soil No. 3 and 1. All of the above results indicated that polluted soil and dust from the E-waste area had cytotoxicity and genotoxicity on L02 cells, the mechanism might involve the increased ROS level and consequent DNA SSB.

  7. Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)

    DOE Data Explorer

    Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1986-01-01

    This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.

  8. Influence of the Soil Genesis on Physical and Mechanical Properties

    PubMed Central

    Marschalko, Marian; Yilmaz, Işık; Fojtová, Lucie; Kubečka, Karel; Bouchal, Tomáš; Bednárik, Martin

    2013-01-01

    The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations. PMID:23844398

  9. Determination of hydrogen abundance in selected lunar soils

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1987-01-01

    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  10. Slumping in the rain - winter soil structure across Scotland and its physical degradation from extreme weather

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca; Hallett, Paul; Raffan, Annette; Lilly, Allan; Baggaley, Nikki; Rowan, John; Crookes, Bill; Ball, Bruce

    2017-04-01

    Scotland is blessed with fertile and resilient soils that produce great cereal yields and whisky. However, there is worrying anecdotal evidence, confirmed by a small body of science, that some farming practices are causing widespread physical degradation of these soils. Studies from other UK regions have identified soil physical degradation by compaction, unstable seedbeds and erosion as a moderate to serious problem, depending on farming practice, soil properties and climate. In 2015/2016 we sampled 120 fields from 4 catchments in Scotland to describe the state of soil structure in the winter. To obtain a rapid assessment, we used the increasingly popular and easily interpretable Visual Evaluations of Soil Structure (VESS) and Subsoil Structure (SubVESS). We found severe soil structural degradation in 18% of topsoils and 9% of subsoils for 120 fields in 4 catchments. The severe 2015/2016 winter precipitation, the worst ever recorded, caused a 30% increase in occurrence of severely degraded topsoils, as determined from sampling some of the same fields before and after this unprecedented weather event. Run-off, erosion and nutrient losses were about 10X from degraded parts of fields such as tramlines than either within the field or at less trafficked boundaries. There was some agreement between areas identified as structurally degraded and those ranked as being susceptible to topsoil compaction using a simple model. Broad scale surveys that incorporate temporal sampling, such as the study reported here, are essential to provide regional assessments of soil degradation and to inform follow-on, targeted studies, where more in-depth analysis would be feasible.

  11. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    NASA Astrophysics Data System (ADS)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded within the first three days in all soils, indicating a fast initial dissipation rate. However, the dissipation rate considerably decreased over time and the degradation kinetics adjusted to a two-compartment kinetic model. No differences were found between tillage practices. Dissipation was not related to the microbial activity measured as soil respiration. The fast decrease in the concentration of glyphosate at the beginning of the dissipation study was not reflected in an increase on the concentration of AMPA. The estimated half-lives for glyphosate ranged between 9 and 38 days. However, glyphosate bioavailability decreases over time as it is strongly adsorbed to the soil matrix. This increases its residence time which may lead to its accumulation in agricultural soils.

  12. CO2 efflux from soil under influence of cadmium and glucose

    NASA Astrophysics Data System (ADS)

    Gilmullina, Aliia; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Soil is the largest pool of organic carbon. Any anthropogenic activity may change the soil organic carbon stock resulting in the atmospheric carbon concentration increase. Organic wastes and sewage sludge are often used for soil fertilization. These amendments often contain not only organic compounds stimulating soil microflora but also toxic compounds e.g. metals inhibiting them. The question about the influence of such amendments on soil carbon stock still remains open. The aim of this study was to evaluate individual glucose and cadmium (Cd) additions and their combined effects on carbon mineralization and microbial community structure in forest soil sampled from different depths (0-20 cm, 20-40 cm and 40-60 cm). We incubated soil samples for 14 days after the addition of: glucose (10000 mg kg-1), Cd (300 mg kg-1) and their mixture. CO2 efflux was measured by CO2 trapping in NaOH, at the 3rd, 7th and 14th days of incubation DNA was extracted from soil samples for assessment of microbial community structure via real-time PCR and Illumina sequencing. Glucose addition induced the increase of soil respiration and fungal-bacterial ratio. However, bacterial alpha-biodiversity decreased as glucose addition caused the dominance of Proteobacteria (0-20 cm, 20-40 cm and 40-60 cm), Actinobacteria (20-40 cm) and Acidobacteria (40-60 cm) phyla. Single Cd addition did not have any effect on parameters studied. In case of simultaneous addition of glucose and Cd, soil respiration and microbial community structure mainly depended more on glucose amendment as compared with metal.

  13. Measurement of N2O and CH4 soil fluxes from garden, agricultural and natural soils using both closed and open chamber systems coupled with high-precision CRDS analyzer

    NASA Astrophysics Data System (ADS)

    He, Yonggang; Jacobson, Gloria; Alexander, Chris; Fleck, Derek; Hoffnagel, John; Del Campo, Bernardo; Rella, Chris

    2013-04-01

    Studying the emission and uptake of greenhouse gases from soil is essential for understanding, adapting to and ultimately mitigating the effects of climate change. To-date, majority of such studies have been focused on carbon dioxide (CO2 ) , however, in 2006 the EPA estimated that "Agricultural activities currently generate the largest share, 63 percent, of the world's anthropogenic non-carbon dioxide (non-CO2) emissions (84 percent of nitrous oxide [N2O] and 52 percent of methane[CH4]), and make up roughly 15 percent of all anthropogenic greenhouse gas emissions" (Prentice et al., 2001). Therefore, enabling accurate N2O and CH4 flux measurements in the field are clearly critical to our ability to better constrain carbon and nitrogen budgets, characterize soil sensitivities, agricultural practices, and microbial processes like denitrification and nitrification. To aide in these studies, Picarro has developed a new analyzer based on its proven, NIR technology platform, which is capable of measuring both N2O and CH4 down to ppb levels in a single, field-deployable analyzer. This analyzer measures N2O with a 1-sigma, precision of 3.5 ppb and CH4 with a 1-sigma precision of 3ppb on a 5 minute average. The instrument also has extremely low drift to enable accurate measurements with infrequent calibrations. The data rate of the analyzer is on the order of 5 seconds in order to capture fast, episodic emission events. One of the keys to making accurate CRDS measurements is to thoroughly characterize and correct for spectral interfering species. This is especially important for closed system soil chambers used on agricultural soils where a variety of soil amendments may be applied and gases not usually present in ambient air could concentrate to high levels. In this work, we present the results of analyzer interference testing and corrections completed for the interference of carbon dioxide, methane, ammonia, ethane, ethylene, acetylene, and water on N2O. In addition, we will present the results of testing done with the analyzer attached to both closed and open chamber systems to quantify fluxes of N2O and CH4 from active soil samples. The soil samples were collected by the University of Iowa from soil test sites used for studying the application of biochar as a soil amendment. Results will compare the two chamber methodologies and results from several soil sample types, garden, agricultural and natural. Preliminary results from laboratory measurements of soil core samples taken from a garden soil sample using the closed-system chamber method show N2O emission to be on the order of 5.67 x 10-2 μg/cm3*hr, which is in good agreement with the open-system chamber method tested on the same soil sample, which yielded fluxes of 6.01 x 10-2 μg/cm3*hr . Additional work presented will verify these initial results and will be compared to literature such as Hutchinsion and Livingston 1993 assessment of the bias of different chamber flux methodologies.

  14. Pore water sampling in acid sulfate soils: a new peeper method.

    PubMed

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  15. Soil and Foliar Guidelines for Phosphorus Fertilization of Loblolly Pine

    Treesearch

    Carol G. Wells; D.M. Crutchfield; N.M. Berenyi; C.B. Davey

    1973-01-01

    Several established studies of phosphorus fertilization in 3-year-old plantations of loblolly pine were measured for tree height and sampled for soil tests and needle analysis in order to relate soil and needle content to response to fertilization. Soil tests with the extractant adopted by the North Carolina Soil Testing Laboratories and percentage of P in needles were...

  16. An evaluation of soil sampling for 137Cs using various field-sampling volumes.

    PubMed

    Nyhan, J W; White, G C; Schofield, T G; Trujillo, G

    1983-05-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.

  17. Chemical speciation and potential mobility of heavy metals in the soil of former tin mining catchment.

    PubMed

    Ashraf, M A; Maah, M J; Yusoff, I

    2012-01-01

    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.

  18. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    PubMed Central

    Ashraf, M. A.; Maah, M. J.; Yusoff, I.

    2012-01-01

    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As. PMID:22566758

  19. Distribution Characteristics and Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Momoge Wetland, China

    PubMed Central

    Xu, Jianling; Wang, Hanxi; Sheng, Lianxi; Liu, Xuejun; Zheng, Xiaoxue

    2017-01-01

    The Momoge Nature Reserve is the research object of this study. Through field sampling, laboratory experiments and analysis, the contents, distribution characteristics, source identification, pollution levels and risk levels of polycyclic aromatic hydrocarbons (PAHs) in wetland soils were studied. The results show that the sum content of 16 types of PAHs (Σ16 PAH) in the wetland soil was within the range (0.029–0.4152) mg/kg. PAHs in wetland soil are primarily 2–3-rings PAHs. PAHs in the Momoge wetland soil have multiple sources: petroleum, combustion of petroleum and coal, and others, of which petroleum and the sum of combustion of petroleum and coal account for 38.0% and 59.3%, respectively. Research, using the standard index and pollution range methods, shows that the content of the PAH labelled Nap, found in the Momoge wetland soil, is excessive; some sampling sites exhibit a low level of pollution. The result of a biotoxicity assessment shows that there are two sampling sites that occasionally present an ecological toxicity hazard. The result of the organic carbon normalization process shows that an ecological risk exists only at sampling site No. 10. PMID:28106776

  20. Empirical and mechanistic evaluation of NH4(+) release kinetic in calcareous soils.

    PubMed

    Ranjbar, F; Jalali, M

    2014-05-01

    Release, fixation, and distribution of ammonium (NH4(+)) as a source of nitrogen can play an important role in soil fertility and plant nutrition. In this study, ten surface soils, after addition of 1,000 mg NH4(+) kg(-1,) were incubated for 1 week at the field capacity moisture and 25 ± 2 °C temperature, and then NH4(+) release kinetic was investigated by sequential extractions with 10 mM CaCl2. Furthermore, NH4(+) distribution among three fractions, including water-soluble, exchangeable, and non-exchangeable, was determined in all soil samples. NH4(+) release was initially rapid followed by a slower reaction, and this was described well with the Elovich equation as an empirical model. The cumulative NH4(+) concentration released in spiked soil samples had a positive significant correlation with sand content and negative ones with pH, exchangeable Ca(2+)m and K(+), cation exchange capacity (CEC), equivalent calcium carbonate (ECC), and clay content. The cation exchange model in the PHREEQC program was successful in mechanistic simulation of the release trend of native and added NH4(+) in all control and spiked soil samples. The results of fractionation experiments showed that the non-exchangeable fraction in control and spiked soil samples was greater than that in water-soluble and exchangeable fractions. Soil properties, such as pH, exchangeable Ca(2+) and K(+), CEC, ECC, and contents of sand and clay, had significant influences on the distribution of NH4(+) among three measured fractions. This study indicated that both native and recently fixed NH4(+), added to soil through the application of fertilizers, were readily available for plant roots during 1 week after exposure.

  1. Effects of slash-and-burn land management on soil spectral properties estimated with VIS-NIR-SWIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rosero-Vlasova, Olga Alexandra; Vlassova, Lidia; Rosero Tufiño, Pedro; Pérez-Cabello, Fernando; Montorio Llovería, Raquel

    2017-04-01

    Slash-and-burn land management is typical for low-income tropical countries, such as Ecuador. It involves conversion of forest into areas used for agriculture. At first trees are cut and the wood debris is burnt. After initial clearing, biomass burning is performed after each production cycle. Usually, cultivation cycles are followed by the fallow period. In the medium and long term, these practices have negative effect on soil fertility and there is the need for clearing more forest for agricultural use. This is one of the reasons for continuing deforestation with the consequent loss of biodiversity. Changes in physico-chemical properties due to periodic burning are accompanied by changes in soil spectral properties and can be determined using VIS-NIR-SWIR spectroscopy, which can be a cost-effective alternative for traditional methods of soil analysis. The purpose of the study is to assess the viability of VIS-NIR-SWIR spectroscopy for characterization of soils from land areas under slash-and-burn management system. Eighteen samples from soil surface layer were collected from two corn fields in the province of Los Rios, Ecuador, in September 2015. One of the areas has experienced six slash-and-burn cycles, while in the other the samples were collected at the end of the first corn cultivation cycle. Spectral measurements of sieved and air-dried samples were performed in the laboratory of the University of Zaragoza using ASD Fieldspec®4 spectroradiometer (350-2500nm spectral range) and ASD Illuminator Lamp as a light source. Statistically significant differences were observed between soil spectra of the samples from two soil groups. Reflectance of repeatedly burnt soils was 20% higher (mean value for the entire spectrum) for 65% of the samples, being especially important in VIS (>45%) and NIR ( 35%), probably due to the lower organic matter (OM) content. OM models built using Partial least Squares Regression demonstrated high predictive capacity (R2>0.8). Thus, the study confirms VIS-NIR-SWIR soil spectroscopy can be used as a tool for monitoring changes in soils in areas of slash-and-burn land management systems.

  2. Visible-near infrared spectroscopy as a tool to improve mapping of soil properties

    NASA Astrophysics Data System (ADS)

    Evgrafova, Alevtina; Kühnel, Anna; Bogner, Christina; Haase, Ina; Shibistova, Olga; Guggenberger, Georg; Tananaev, Nikita; Sauheitl, Leopold; Spielvogel, Sandra

    2017-04-01

    Spectroscopic measurements, which are non-destructive, precise and rapid, can be used to predict soil properties and help estimate the spatial variability of soil properties at the pedon scale. These estimations are required for quantifying soil properties with higher precision, identifying the changes in soil properties and ecosystem response to climate change as well as increasing the estimation accuracy of soil-related models. Our objectives were to (i) predict soil properties for nested samples (n = 296) using the laboratory-based visible-near infrared (vis-NIR) spectra of air-dried (<2 mm) soil samples and values of measured soil properties for gridded samples (n = 174) as calibration and validation sets; (ii) estimate the precision and predictive accuracy of an empirical spectral model using (a) our own spectral library and (b) the global spectral library; (iii) support the global spectral library with obtained vis-NIR spectral data on permafrost-affected soils. The soil samples were collected from three permafrost-affected soil profiles underlain by permafrost at various depths between 23 cm to 57.5 cm below the surface (Cryosols) and one soil profile with no presence of permafrost within the upper 100 cm layer (Cambisol) in order to characterize the spatial distribution and variability of soil properties. The gridded soil samples (n = 174) were collected using an 80 cm wide grid with a mesh size of 10 cm on both axes. In addition, 300 nested soil samples were collected using a grid of 12 cm by 12 cm (25 samples per grid) from a hole of 1 cm in a diameter with a distance from the next sample of 1 cm. Due to a small amount of available soil material (< 1.5 g), 296 nested soil samples were analyzed only using vis-NIR spectroscopy. The air-dried mineral gridded soil samples (n = 174) were sieved through a 2-mm sieve and ground with an agate mortar prior to the elemental analysis. The soil organic carbon and total nitrogen concentrations (in %) were determined using a dry combustion method on the Vario EL cube analyzer (Elementar Analysensysteme GmbH, Germany). Inorganic C was removed from the mineral soil samples with pH values higher than 7 prior to the elemental analysis using the volatilization method (HCl, 6 hours). The pH of soil samples was measured in 0.01 M CaCl2 using a 1:2 soil:solution ratio. However, for soil sample with a high in organic matter content, a 1:10 ratio was applied. We also measured oxalate and dithionite extracted iron, aluminum and manganese oxides and hydroxides using inductively coupled plasma optical emission spectroscopy (Varian Vista MPX ICP-OES, Agilent Technologies, USA). We predicted the above-mentioned soil properties for all nested samples using partial least squares regression, which was performed using R program. We can conclude that vis-NIR spectroscopy can be used effectively in order to describe, estimate and further map the spatial patterns of soil properties using geostatistical methods. This research could also help to improve the global soil spectral library taking into account that only few previous applications of vis-NIR spectroscopy were conducted on permafrost-affected soils of Northern Siberia. Keywords: Visible-near infrared spectroscopy, vis-NIR, permafrost-affected soils, Siberia, partial least squares regression.

  3. 76 FR 50133 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... (NCDOH) collected soil samples from the Site. Analyses of the samples indicated that the soils were... Metcalf and Eddy, Inc. for Commander in 1990. During the RI subsurface soil samples, ground water samples and surface soil samples were collected and analyzed. As part of the ground water investigation...

  4. [Research on bacteria microecology in root rot rhizosphere soil of Coptis chinensis produced in Shizhu city].

    PubMed

    Song, Xu-Hong; Wang, Yu; Li, Long-Yun; Tan, Jun

    2017-04-01

    Illumina Hiseq 2500 high-throughput sequencing platform was used to study the bacteria richness and diversity, the soil enzyme activities, nutrients in unplanted soil, root-rot and healthy rhizophere soil of Coptis chinensis for deeply discussing the mechanism of the root-rot of C. chinensis. The high-throughput sequencing result showed that the artificial cultivation effected the bacteria community richness and diversity. The bacteria community richness in healthy and diseased rhizosphere soil showed significant lower than that of in unplanted soil (P<0.05) and declined bacteria diversity. The bacteria community richness in root-rot rhizosphere soil increased significantly than that of health and unplanted soil and the diversity was lower significant than that of unplanted soil (P<0.05). The results of soil nutrients and enzyme activities detected that the pH value, available phosphorus and urease activity decreased and the sucrase activity increased significantly (P<0.05). The content of organic carbon and alkaline hydrolysis nitrogen the catalase and urease activity in root rot soil samples was significantly lower than that of healthy soil samples (P<0.05). However, the contents of available phosphorus and available potassium were significantly in root-rot sample higher than that of healthy soil samples (P<0.05). Comprehensive analysis showed that the artificial cultivation declined the bacteria community richness and diversity. The bacteria community richness decreased significantly and the decreased diversity may be the cause of the root-rot. Meanwhile, the decrease of carbon and the catalase activity may be another cause of the root-rot in C. chinensis produced in Shizhu city, Chongqing province. Copyright© by the Chinese Pharmaceutical Association.

  5. Soil and plant contamination with Mycobacterium avium subsp. paratuberculosis after exposure to naturally contaminated mouflon feces.

    PubMed

    Pribylova, Radka; Slana, Iva; Kaevska, Marija; Lamka, Jiri; Babak, Vladimir; Jandak, Jiri; Pavlik, Ivo

    2011-05-01

    The aim of this study was to demonstrate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in soil and colonization of different plant parts after deliberate exposure to mouflon feces naturally contaminated with different amounts of MAP. Samples of aerial parts of plants, their roots, and the soil below the roots were collected after 15 weeks and examined using IS900 real-time quantitative PCR (qPCR) and cultivation. Although the presence of viable MAP cells was not demonstrated, almost all samples were found to be positive using qPCR. MAP IS900 was not only found in the upper green parts, but also in the roots and soil samples (from 1.00 × 10(0) to 6.43 × 10(3)). The level of soil and plant contamination was influenced mainly by moisture, clay content, and the depth from which the samples were collected, rather than by the initial concentration of MAP in the feces at the beginning of the experiment.

  6. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils.

    PubMed

    Nejidat, Ali

    2005-03-01

    Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.

  7. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral approaches to either replace or augment traditional lab-based carbon analyses of soils.

  8. Nutrient Characterization of Rainwater, Soil and Groundwater from Two Different Watersheds, Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Thaw, M.; Gao, F.; Yu, Z.; Acharya, K.

    2012-12-01

    Over the past two decades, an increase of nutrients to Lake Taihu, China has resulted in hyper-eutrophication and the production of severe cyanobacterial blooms. While many past studies have focused on how surface water transports nutrients to the lake, this study seeks to characterize the concentration of nutrients in different media, including rainwater, soil and groundwater from two different watersheds. These two watersheds varied in overall land use, and agricultural sites within each watershed varied by crop type and growing method. Samples were collected from the Meilin watershed, a mix of forest and agricultural land and the Zhangjiagang watershed, which consisted of industrial, urban and agricultural lands. Samples included soils, groundwater and rain water. Soils from each site were characterized by aggregate size class and analyzed for total nitrogen and total phosphorus. Rainwater and groundwater samples were analyzed for total nitrogen and total phosphorus.

  9. Measurement of helium isotopes in soil gas as an indicator of tritium groundwater contamination.

    PubMed

    Olsen, Khris B; Dresel, P Evan; Evans, John C; McMahon, William J; Poreda, Robert

    2006-05-01

    The focus of this study was to define the shape and extent of tritium groundwater contamination emanating from a legacy burial ground and to identify vadose zone sources of tritium using helium isotopes (3He and 4He) in soil gas. Helium isotopes were measured in soil-gas samples collected from 70 sampling points around the perimeter and downgradient of a burial ground that contains buried radioactive solid waste. The soil-gas samples were analyzed for helium isotopes using rare gas mass spectrometry. 3He/4He ratios, reported as normalized to the air ratio (RA), were used to locate the tritium groundwater plume emanating from the burial ground. The 3He (excess) suggested that the general location of the tritium source is within the burial ground. This study clearly demonstrated the efficacy of the 3He method for application to similar sites elsewhere within the DOE weapons complex.

  10. Soil-Transmitted Helminth Eggs Are Present in Soil at Multiple Locations within Households in Rural Kenya

    PubMed Central

    Steinbaum, Lauren; Njenga, Sammy M.; Kihara, Jimmy; Boehm, Alexandria B.; Davis, Jennifer; Null, Clair; Pickering, Amy J.

    2016-01-01

    Almost one-quarter of the world’s population is infected with soil-transmitted helminths (STH). We conducted a study to determine the prevalence and location of STH—Ascaris, Trichuris, and hookworm spp.—egg contamination in soil within rural household plots in Kenya. Field staff collected soil samples from July to September 2014 from the house entrance and the latrine entrance of households in Kakamega County; additional spatial sampling was conducted at a subset of households (N = 22 samples from 3 households). We analyzed soil samples using a modified version of the US Environmental Protection Agency (EPA) method for enumerating Ascaris in biosolids. We found 26.8% of households had one or more species of STH eggs present in the soil in at least one household location (n = 18 out of 67 households), and Ascaris was the most commonly detected STH (19.4%, n = 13 out of 67 households). Prevalence of STH eggs in soil was equally likely at the house entrance (19.4%, N = 67) as at the latrine entrance (11.3%, N = 62) (p = 0.41). We also detected STH eggs at bathing and food preparation areas in the three houses revisited for additional spatial sampling, indicating STH exposure can occur at multiple sites within a household plot, not just near the latrine. The highest concentration of eggs in one house occurred in the child’s play area. Our findings suggest interventions to limit child exposure to household soil could complement other STH control strategies. PMID:27341102

  11. Practice-Based Evidence Informs Environmental Health Policy and Regulation: A Case Study of Residential Lead-Soil Contamination in Rhode Island

    PubMed Central

    Thompson, Marcella Remer; Burdon, Andrea; Boekelheide, Kim

    2013-01-01

    Prior to 1978, the exteriors of Rhode Island's municipal water towers were painted with lead-containing paint. Over time, this lead-containing paint either flaked-off or was mechanically removed and deposited on adjacent residential properties. Residents challenged inconsistencies across state agencies and federal requirements for collecting and analyzing soil samples. The purpose of this case study was to evaluate the efficacy of Rhode Island Department of Health (RIDOH) soil sampling regulations in determining the extent of lead contamination on residential properties using real world data. Researchers interviewed key government personnel, reviewed written accounts of events and regulations, and extracted and compiled lead data from environmental soil sampling on 31 residential properties adjacent to six municipal water towers. Data were available for 498 core samples. Approximately 26% of the residential properties had lead soil concentrations >1,000 mg/kg. Overall, lead concentration was inversely related to distance from the water tower. Analysis indicated that surface samples alone were insufficient to classify a property as “lead safe”. Potential for misclassification using RIDOH regulations was 13%. For properties deemed initially “lead free”, the total number of samples was too few to analyze. Post-remediation lead-soil concentrations suggest the extent of lead contamination may have been deeper than initially determined. Additional data would improve the ability to draw more meaningful and generalized conclusions. Inconsistencies among regulatory agencies responsible for environmental health obfuscate transparency and erode the public's trust in the regulatory process. Recommendations for improvement include congruency across departmental regulations and specific modifications to soil sampling regulations reflective of lowered CDC reference blood lead value for children 1 to 5 years old (5μg/dL). While scientific research informed the initial development of these environmental health policies and regulations, practice-based evidence did not support their efficacy in context of real world practice. PMID:24055667

  12. Assessment of airborne heavy metal pollution in soil and lichen in the Meric-Ergene Basin, Turkey.

    PubMed

    Hanedar, Asude

    2015-01-01

    In the present study, accumulations of airborne heavy metals in lichen and soil samples were determined on the basis of pollutant source groups by conducting Zinc (Zn), Lead (Pb), Iron (Fe), Copper (Cu), Chromium (Cr), Cadmium (Cd), Arsenic (As), Cobalt (Co) and Manganese (Mn) analyses on a total of 48 samples collected in the periods of May 2014 and August 2014 from 12 sampling points in a heavily industrialized area, a mixed industrial and residential area, an agricultural area and a background area in the Meric-Ergene Basin, and pH and total organic carbon determination was carried out on soil samples. With the obtained data, heavy metal levels were statistically assessed in detail by being associated with each other and with their probable sources; the accumulations found in soil and lichen samples were compared and spatial variances were set forth. Based on the results, it was observed that heavy metal pollution is at high levels particularly in industrialized areas, and that the differences between the cleanest and most polluted levels determined from soil samples for As, Cr, Cd and Pb reach 10 folds. The highest levels of all heavy metals were determined in both the soil and lichen samples collected from the areas in the south-east part of the region, where industrial activities and particularly leather and chemical industries are concentrated. With the comparison of the indication properties of soil and lichen, it was determined that significant and comparable results can be observed in both matrices.

  13. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana

    2014-09-01

    The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (χlf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the χlf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (κis) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between χlf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier, and hematite. The predominance of superparamagnetic minerals in upper soil layers suggests enrichment in pedogenic minerals. The finer soil particles, the organic matter content and the magnetic susceptibility values are statistically correlated and their spatial variability is related to similar physical processes. Runoff redistributes soil components including magnetic minerals and exports fine particles out the field. This research contributed to further knowledge on the application of soil magnetic properties to derive useful information on soil processes in Mediterranean cultivated soils.

  14. Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies.

    PubMed

    Habtom, Habteab; Demanèche, Sandrine; Dawson, Lorna; Azulay, Chen; Matan, Ofra; Robe, Patrick; Gafny, Ron; Simonet, Pascal; Jurkevitch, Edouard; Pasternak, Zohar

    2017-01-01

    The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Ma; Rudolf Addink; Sehun Yun

    2009-10-01

    In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less

  16. Critical evaluation of distillation procedure for the determination of methylmercury in soil samples.

    PubMed

    Perez, Pablo A; Hintelman, Holger; Quiroz, Waldo; Bravo, Manuel A

    2017-11-01

    In the present work, the efficiency of distillation process for extracting monomethylmercury (MMHg) from soil samples was studied and optimized using an experimental design methodology. The influence of soil composition on MMHg extraction was evaluated by testing of four soil samples with different geochemical characteristics. Optimization suggested that the acid concentration and the duration of the distillation process were most significant and the most favorable conditions, established as a compromise for the studied soils, were determined to be a 70 min distillation using an 0.2 M acid. Corresponding limits of detection (LOD) and quantification (LOQ) were 0.21 and 0.7 pg absolute, respectively. The optimized methodology was applied with satisfactory results to soil samples and was compared to a reference methodology based on isotopic dilution analysis followed by gas chromatography-inductively coupled plasma mass spectrometry (IDA-GC-ICP-MS). Using the optimized conditions, recoveries ranged from 82 to 98%, which is an increase of 9-34% relative to the previously used standard operating procedure. Finally, the validated methodology was applied to quantify MMHg in soils collected from different sites impacted by coal fired power plants in the north-central zone of Chile, measuring MMHg concentrations ranging from 0.091 to 2.8 ng g -1 . These data are to the best of our knowledge the first MMHg measurements reported for Chile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Distler, T. M.; Wong, C. M.

    Runoff-water samples for the first, third, and fourth quarters of 1975 were analyzed for pesticide residues at LLL and independently by the LFE Environmental Analysis Laboratories. For the compounds analyzed, upper limits to possible contamination were placed conservatively at the low parts-per-billion level. In addition, soil samples were also analyzed. Future work will continue to include quarterly sampling and will be broadened in scope to include quantitative analysis of a larger number of compounds. A study of recovery efficiency is planned. Because of the high backgrounds on soil samples together with the uncertainties introduced by the cleanup procedures, there ismore » little hope of evaluating the distribution of a complex mixture of pesticides among the aqueous and solid phases in a drainage sample. No further sampling of soil from the streambed is therefore contemplated.« less

  18. Soils element activities for the period October 1973--September 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E.B.; Essington, E.H.; White, M.G.

    Soils Element activities were conducted on behalf of the U. S. Atomic Energy Commission's Nevada Applied Ecology Group (NAEG) program to provide source term information for the other program elements and maintain continuous cognizance of program requirements for sampling, sample preparation, and analysis. Activities included presentation of papers; participation in workshops; analysis of soil, vegetation, and animal tissue samples for $sup 238$Pu, $sup 239-240$Pu, $sup 241$Am, $sup 137$Cs, $sup 60$Co, and gamma scan for routine and laboratory quality control purposes; preparation and analysis of animal tissue samples for NAEG laboratory certification; studies on a number of analytical, sample preparation, andmore » sample collection procedures; and contributions to the evaluation of procedures for calculation of specialized counting statistics. (auth)« less

  19. Using Remote Sensing Platforms to Estimate Near-Surface Soil Properties

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Rickman, D.; Mask, P. L.; Wersinger, J. M.; Luvall, J.

    2003-01-01

    Evaluation of near-surface soil properties via remote sensing (RS) could facilitate soil survey mapping, erosion prediction, fertilization regimes, and allocation of agrochemicals. The objective of this study was to evaluate the relationship between soil spectral signature and near surface soil properties in conventionally managed row crop systems. High resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor (ATLAS) multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil water content, soil organic carbon (SOC), particle size distribution (PSD), and citrate dithionite extractable iron (Fed) content. Surface roughness, soil water content, and crusting were also measured at sampling. Results showed RS data acquired from lands with less than 4 % surface soil water content best approximated near-surface soil properties at the Coastal Plain site where loamy sand textured surfaces were predominant. Utilizing a combination of band ratios in stepwise regression, Fed (r2 = 0.61), SOC (r2 = 0.36), sand (r2 = 0.52), and clay (r2 = 0.76) were related to RS data at the Coastal Plain site. In contrast, the more clayey Ridge and Valley soils had r-squares of 0.50, 0.36, 0.17, and 0.57. for Fed, SOC, sand and clay, respectively. Use of estimated eEmissivity did not generally improve estimates of near-surface soil attributes.

  20. Persistent Organic Pollutants and Heavy Metal Concentrations in Soil from the Metropolitan Area of Monterrey, Nuevo Leon, Mexico.

    PubMed

    Orta-García, Sandra Teresa; Ochoa-Martinez, Angeles Catalina; Carrizalez-Yáñez, Leticia; Varela-Silva, José Antonio; Pérez-Vázquez, Francisco Javier; Pruneda-Álvarez, Lucia Guadalupe; Torres-Dosal, Arturo; Guzmán-Mar, Jorge Luis; Pérez-Maldonado, Iván N

    2016-04-01

    The purpose of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDE), and four heavy metals (arsenic, cadmium, and lead) in outdoor surface soils (50 samples) collected from the metropolitan area of Monterrey in Mexico. Total PBDEs levels ranged from 1.80 to 127 µg/kg, with mean total PBDEs level of 14.2 ± 21.5 µg/kg (geometric mean ± standard deviation). For PCBs, the mean total level in the studied soils was 23.5 ± 20.2 µg/kg (range 4.0-65.5 µg/kg). An important finding in our study was that all soil samples (100%) had detectable levels of the metabolite p,p'-DDE. Moreover, the mean total DDT level (∑p'p-DDT and p'p-DDE) was approximately 132 ± 175 µg/kg. The mean levels for arsenic, cadmium, and lead in soil were 5.30 ± 1.35 (range 1.55-7.85) mg/kg, 2.20 ± 1.20 (range 0.65-6.40) mg/kg, and 455 ± 204 (range 224-1230) mg/kg, respectively. Our study has several limitations, the most notable of which is the small sample of soils evaluated. However, this screening study provided concentration data for the occurrence of POPs and four heavy metals in soil from the metropolitan area of Monterrey, Nuevo Leon, Mexico, and taking into consideration that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the metropolitan area of Monterrey, Nuevo Leon is deemed necessary.

  1. Effects of middle-term land reclamation on nickel soil-water interaction: a case study from reclaimed salt marshes of Po River Delta, Italy.

    PubMed

    Di Giuseppe, Dario; Melchiorre, Massimiliano; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2017-09-26

    Reclaimed salt marshes are fragile environments where water salinization and accumulation of heavy metals can easily occur. This type of environment constitutes a large part of the Po River Delta (Italy), where intensive agricultural activities take place. Given the higher Ni background of Po River Delta soils and its water-soluble nature, the main aim of this contribution is to understand if reclamation can influence the Ni behavior over time. In this study, we investigated the geochemical features of 40 soils sampled in two different localities from the Po River Delta with different reclamation ages. Samples of salt marsh soils reclaimed in 1964 were taken from Valle del Mezzano while soils reclaimed in 1872 were taken nearby Codigoro town. Batch solubility tests and consecutive determination of Ni in pore-water were compared to bulk physicochemical compositions of soils. Bulk Ni content of the studied soils is naturally high, since these soils originated from Po River sediments derived from the erosion of ultramafic rocks. Moreover, it seems that Ni concentration increases during soil evolution, being probably related to the degradation of serpentine. Instead, the water-soluble Ni measured in the leaching tests is greater in soils recently reclaimed compared to the oldest soils. Soil properties of two soil profiles from a reclaimed wetland area were examined to determine soil evolution over one century. Following reclamation, pedogenic processes of the superficial horizons resulted in organic matter mineralization, pH buffer, and a decrease of Ni water solubility from recently to evolved reclaimed soil.

  2. Variability of 137Cs inventory at a reference site in west-central Iran.

    PubMed

    Bazshoushtari, Nasim; Ayoubi, Shamsollah; Abdi, Mohammad Reza; Mohammadi, Mohammad

    2016-12-01

    137 Cs technique has been widely used for the evaluation rates and patterns of soil erosion and deposition. This technique requires an accurate estimate of the values of 137 Cs inventory at the reference site. This study was conducted to evaluate the variability of the inventory of 137 Cs regarding to the sampling program including sample size, distance and sampling method at a reference site located in vicinity of Fereydan district in Isfahan province, west-central Iran. Two 3 × 8 grids were established comprising large grid (35 m length and 8 m width), and small grid (24 m length and 6 m width). At each grid intersection two soil samples were collected from 0 to 15 cm and 15-30 cm depths, totally 96 soil samples from 48 sampling points. Coefficients of variation for 137 Cs inventory in the soil samples was relatively low (CV = 15%), and the sampling distance and methods used did not significantly affect the 137 Cs inventories across the studied reference site. To obtain a satisfactory estimate of the mean 137 Cs activity in the reference sites, particularly those located in the semiarid regions, it is recommended to collect at least four samples along in a grid pattern 3 m apart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gamma-Ray Attenuation to Evaluate Soil Porosity: An Analysis of Methods

    PubMed Central

    Pires, Luiz F.; Pereira, André B.

    2014-01-01

    Soil porosity (ϕ) is of a great deal for environmental studies due to the fact that water infiltrates and suffers redistribution in the soil pore space. Many physical and biochemical processes related to environmental quality occur in the soil porous system. Representative determinations of ϕ are necessary due to the importance of this physical property in several fields of natural sciences. In the current work, two methods to evaluate ϕ were analyzed by means of gamma-ray attenuation technique. The first method uses the soil attenuation approach through dry soil and saturated samples, whereas the second one utilizes the same approach but taking into account dry soil samples to assess soil bulk density and soil particle density to determine ϕ. The results obtained point out a good correlation between both methods. However, when ϕ is obtained through soil water content at saturation and a 4 mm collimator is used to collimate the gamma-ray beam the first method also shows good correlations with the traditional one. PMID:24616640

  4. Statistical process control applied to mechanized peanut sowing as a function of soil texture.

    PubMed

    Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.

  5. Statistical process control applied to mechanized peanut sowing as a function of soil texture

    PubMed Central

    Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095

  6. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    PubMed

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  7. Soil quality of a degraded urban area

    NASA Astrophysics Data System (ADS)

    Panico, Speranza; Memoli, Valeria; Maisto, Giulia; De Marco, Anna

    2017-04-01

    Human activities cause modifications of the soil characteristics, leading to a significant reduction of the soil fertility and quality. The aim of this study was to evaluate the relationships between microbial activity or biomass and chemical characteristics (i.e. heavy metal and organic matter contents) of a degraded urban soil. The study area is located in an urban park (about 10 ha, called Quarantena) near to the Fusaro Lake of Campi Flegrei (Southern Italy); the Park was established in 1953 to shelter animals coming from any place of the Planet and execute veterinary checks before their delivery to different European zoos. In 1997, the park was abandoned and nowadays in it a large amount of urban wastes accumulates. Surface soils (0-10 cm) were sampled at three points: two of them covered by Holm Oak specimens (P1 and P2) and one covered by herbaceous species, particularly legumes (P3). P1 was localized at the border of the park and next to a busy road; P2 at the centre of the Quarantena Park; P3 at a gap area near the Fusaro Lake. The results showed that the soil sampled at P1 showed the highest Cr and Ni concentrations; the soil sampled at P3 had high levels of Cu and Pb, exceeding the threshold values of 100 µg g-1 d.w. fixed by the Italian law for urban soils, probably due to boat traffic, fishing practice and agricultural activities; the soil sampled at P2 had intermediate values of metal concentrations but the highest amount of organic matter (more than 20% d.w.). Despite of metal contamination, P1 and P3 showed higher soil microbial biomass and activity as compared to P2. Therefore, at this site, the organic matter accumulation could be due to the scarce litter degradation. In conclusion, although the studied area was not too large, a wide heterogeneity of soil quality (in terms of the investigated chemical and biological characteristics) was detected, depending on the local human impact.

  8. Characterization of the spatial variability of soil available zinc at various sampling densities using grouped soil type information.

    PubMed

    Song, Xiao-Dong; Zhang, Gan-Lin; Liu, Feng; Li, De-Cheng; Zhao, Yu-Guo

    2016-11-01

    The influence of anthropogenic activities and natural processes involved high uncertainties to the spatial variation modeling of soil available zinc (AZn) in plain river network regions. Four datasets with different sampling densities were split over the Qiaocheng district of Bozhou City, China. The difference of AZn concentrations regarding soil types was analyzed by the principal component analysis (PCA). Since the stationarity was not indicated and effective ranges of four datasets were larger than the sampling extent (about 400 m), two investigation tools, namely F3 test and stationarity index (SI), were employed to test the local non-stationarity. Geographically weighted regression (GWR) technique was performed to describe the spatial heterogeneity of AZn concentrations under the non-stationarity assumption. GWR based on grouped soil type information (GWRG for short) was proposed so as to benefit the local modeling of soil AZn within each soil-landscape unit. For reference, the multiple linear regression (MLR) model, a global regression technique, was also employed and incorporated the same predictors as in the GWR models. Validation results based on 100 times realization demonstrated that GWRG outperformed MLR and can produce similar or better accuracy than the GWR approach. Nevertheless, GWRG can generate better soil maps than GWR for limit soil data. Two-sample t test of produced soil maps also confirmed significantly different means. Variogram analysis of the model residuals exhibited weak spatial correlation, rejecting the use of hybrid kriging techniques. As a heuristically statistical method, the GWRG was beneficial in this study and potentially for other soil properties.

  9. Effects of fire on organic matter content and aggregate stability of soils in South of Spain.

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Ruiz-Sinoga, José D.; Jiménez-Donaire, Virginia; Hueso-González, Paloma; Gabarrón-Galeote, Miguel A.

    2014-05-01

    Wildfires affect dramatically to soil physical, chemical and biological properties, which changes the hydrological and erosive soil response. The objectives of this study are to compare some soil properties affected by fire in field conditions. The experimental area is located in the South of Spain, 32 km western of the city of Málaga. In general, the area is characterized by a sub-humid Mediterranean climate (mean annual precipitation: 699 mm year-1; mean annual temperature: 17°C), with a substratum of alkaline metamorphic rocks. Vegetation cover consists on a mixed open wood of Quercus spp. and Pinus spp. with typical degraded Mediterranean scrub, where the dominant genus are Ulex spp. and Cistus spp. This area was partially affected by a wildfire on September 11th 2011. Soil samples were taken in burned and unburned areas: soil covered by shrubs, trees and bare soils. Unburned area was adjacent to the burned one and both of them had the same general conditions. On each microenvironment samples of the first 5 cm of soil were collected on September 19th 2011. The analyzed properties in the laboratory were organic matter (OM) and aggregate stability (AS). In general, fire affected mainly to OM (p<0.01). When we performed the analyses dividing the samples according to vegetal cover, the ANOVA showed that the wildfire only affected the OM content in soil covered by shrubs. In soil covered by trees and bare soil OM decreased, but it was insignificant. AS were not affected in any sampled environment.

  10. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.

    PubMed

    Somenahally, Anil C; Hollister, Emily B; Yan, Wengui; Gentry, Terry J; Loeppert, Richard H

    2011-10-01

    Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized. Total-As concentrations in rhizosphere and grain were significantly lower in intermittently flooded compared to the continuously flooded plots (86% lower in pore-water, 55% lower in root-plaque and 41% lower in grain samples). iAs(V), iAs(III), and DMAs(V) were the predominant As species detected in rhizosphere-soil and root-plaque, pore-water and grain samples, respectively. Relative proportions of Archaea and iron-reducing bacteria (FeRB) were higher in rhizosphere soil compared to root-plaque. In rhizosphere soil, the relative abundance of FeRB was lower in intermittently flooded compared to continuously flooded plots, but there were no differences between root-plaque samples. This study has demonstrated that reductions in dissolved As concentrations in the rhizosphere and subsequent decreases in grain-As concentration can be attained through water management.

  11. NH4NO3 extractable trace element contents of soil samples prepared for proficiency testing--a stability study.

    PubMed

    Traub, H; Scharf, H

    2001-06-01

    In view of its intended use as a sample for proficiency testing or as a reference material the stability of the extractable trace element contents of a soil from an irrigation field was tested using the extraction with 1 mol/L ammonium nitrate solution according to DIN 19730. Therefore, changes of the extractability of sterilized and non sterilized soil samples stored at different temperatures were evaluated over a period of 18 months. Sets of bottles were kept at -20 degrees C, +4 degrees C, about +20 degrees C and +40 degrees C, respectively. The NH4NO3 extractable contents of Cd, Cr, Cu, Ni, Pb and Zn were determined immediately after bottling and then after 3, 6, 12 and 18 months with ICP-AES or ETAAS. Appropriate storage conditions are of utmost importance to prevent deterioration of soil samples prepared for the determination of NH4NO3 extractable trace element contents. Temperatures above +20 degrees C must be avoided. The observed changes in the extractability of the metals (especially for Cr and Cu) most likely could be related to thermal degradation of the organic matter of the soil. There is no need to sterilize dry soil samples, because microbiological activity in soils with a low moisture content appears to be negligible with regard to trace element mobilization.

  12. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon densities (in kg/m²) were estimated for the mineral soil layer. The results indicate a large spatial variability of the carbon contents, the soil volume and depths across the landscape. In general, topography exerts a strong control on the carbon contents and the soil depths in the study site. Lowest carbon contents are apparent at the hillslope tops with increasing contents downslope. Because of the significantly larger carbon content at the northern exposed slope, we suggest that solar radiation driven differences of soil moisture content major controls SOC. Regarding the soil depths, the differences are not that clear. Soil depths seem to be higher at the southern exposed slope, but differences with respect to the slope position are not significant. Concerning the total amount of carbon storage in the study area, the results show that soil carbon may not be neglected in arid areas. Our results should provide an indication that carbon contents in dynamic environments are more affected and controlled by surface properties (soil volume) than by climate. Concluding that hint, climate is less important than surface processes in dryland ecosystems.

  13. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.

    PubMed

    Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.

  14. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Devleena, E-mail: devleenatiwari@ngri.res.in; Kumar, T. Satish; Rasheed, M. A.

    2011-03-15

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospectivemore » for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.« less

  15. The effects of landscape cover on surface soils in a low density residential neighborhood in Baltimore, Maryland

    Treesearch

    Ian D. Yesilonis; R. V. Pouyat; J. Russell-Anelli; E. Powell

    2016-01-01

    Previous studies at the scale of a city have shown that surface soil nutrients, pH, and soil organic matter (SOM) can vary by land cover, land use, and management. This study was conducted in Baltimore County, Maryland, to quantify the differences in characteristics of soil in a residential neighborhood and adjacent forest patch sampling at a fine scale. The first...

  16. BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites

    NASA Technical Reports Server (NTRS)

    Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.

  17. Mercury content in soils on the territory of Mezhdurechensk

    NASA Astrophysics Data System (ADS)

    Nicolaenko, A. N.; Osipova, N. A.; Yazikov, E. G.; Matveenko, I. A.

    2016-09-01

    The geochemical features of mercury content and distribution in the zone of coal producers have been studied (Mezhdurechensk town). Mercury content in soil (30 samples) was determined by atomic absorption method using mercury analyzer PA-915+ with pyrolytic device. Mercury content in soil samples changed from 0.12 to 0.17 mg/kg, the average value being 0.057 mg/kg. Within the town territory five zones with mercury elevated concentrations in soil were distinguished. 25-year observation period showed a 2.8 time decrease in average mercury content in soil. The major contribution to soil pollution in the urban territory was made by the two factors: local and regional. The mercury content in soil is affected by the emissions from boilers operating on coal as well as coal dust from the open pits near the town.

  18. Determination of naturally occurring radionuclides in soil samples of Ayranci, Turkey

    NASA Astrophysics Data System (ADS)

    Agar, Osman; Eke, Canel; Boztosun, Ismail; Emin Korkmaz, M.

    2015-04-01

    The specific activity, radiation hazard index and the annual effective dose of the naturally occurring radioactive elements (238U, 232Th and 40K) were determined in soil samples collected from 12 different locations in Ayranci region by using a NaI(Tl) gamma-ray spectrometer. The measured activity concentrations of the natural radionuclides in studied soil samples were compared with the corresponding results of different countries and the internationally reported values. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  19. Occurrence of Hydrocarbon Degrading Genes in the Soils of the Republic of Tatarstan (Russia)

    NASA Astrophysics Data System (ADS)

    Biktasheva, L. R.; Shalyamova, R. P.; Guseva, U. A.; Galitskaya, P. Yu

    2018-01-01

    Oil pollution is one of the most serious environmental problems nowadays. The ability of soils for self-restoration is important, when choosing the strategy of pollution control. This ability depends on the pull of microbes able to decompose hydrocarbons that were present in the nonpolluted soil prior to pollution. In this study, the occurrence of alkane degrading genes in the soils of the Republic of Tatarstan being one of the oil processing regions in Russia, was investigated. It was found that alkane degrading genes belonging to group I were present in 20 of the 25 soil samples, and their abundances ranged between 0.01 and 0.07%. Alkane degrading genes belonging to group II were not detected in the samples investigated, and those belonging to group III were present in all the samples, and their abundances ranged between 0.06 and 7.25%. No correlation between the alkane degrading gene copy numbers and pH and organic carbon content in soils was revealed.

  20. Identification of residues of sulfosulfuron and its metabolites in subsoil-dissipation kinetics and factors influencing the stability and degradation of residues from topsoil to subsoil under predominant cropping conditions.

    PubMed

    Atmakuru, Ramesh; Perumal Elumalai, Thirugnanam; Sivanandam, Sathiyanarayanan

    2007-07-01

    Long term stability of sulfosulfuron was investigated in subsoil under the natural wheat cropping conditions. Experiments were conducted by applying a commercial formulation of sulfosulfuron on soil at 50 g/ha and 100 g/ha. To understand the factors influencing the persistence of residues two different experiments were conducted. In one experiment wheat crop was cultivated once at the beginning of the two years study period and subsequently the plots were kept undisturbed for the remaining period. In another experiment cultivation of subsequent crops were continued during the study period. In both the cases sulfosulfuron was applied only once at the beginning of the study. Representative soil samples were collected from the depths viz., 0-5, 15, 30, 45, 60 and 90 cm on different pre determined sampling occasions 50, 100, 200, 300, 400, 500 and 600 days after the application of the herbicide. The collected soil samples were analyzed for the residues of sulfosulfuron. Under the influence of continuous cropping conditions residues of sulfosulfuron were found to be relatively low when compared with the soil samples collected from the agriculture plots maintained without any cultivation. The residues detected are in the range 0.001 to 0.017 microg/g. Samples collected from the depth, at 30 to 45 cm showed higher residual concentrations. Soil samples were also showed the presence of break down products. The data has been confirmed by LC-MS/MS. The relation between residue content of sulfosulfuron and the factors contributing the stability of herbicide concentration were also studied.

  1. Visible and infrared spectroscopy to evaluate soil quality in degraded sites: an applicative study in southern Italy

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Matarrese, Raffaella; Salvatori, Rosamaria; Salzano, Roberto; Regano, Simona; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Land degradation processes like organic matter impoverishment and contamination are growing increasingly all over the world due to a non-rational and often sustainable spread of human activities on the territory. Consequently the need to characterize and monitor degraded sites is becoming very important, with the aim to hinder such main threats, which could compromise drastically, soil quality. Visible and infrared spectroscopy is a well-known technique/tool to study soil properties. Vis-NIR spectral reflectance, in fact, can be used to characterize spatial and temporal variation in soil constituents (Brown et al., 2006; Viscarra Rossel et al., 2006), and potentially its surface structure (Chappell et al., 2006, 2007). It is a rapid, non-destructive, reproducible and cost-effective analytical method to analyse soil properties and therefore, it can be a useful method to study land degradation phenomena. In this work, we present the results of proximal sensing investigations of three degraded sites (one affected by organic and inorganic contamination and two affected by soil organic matter decline) situated southern Italy close to Taranto city (in Apulia Region). A portable spectroradiometer (ASD-FieldSpec) was used to measure the reflectance properties in the spectral range between 350-2500 nm of the soil, in the selected sites, before and after a recovery treatment by using compost (organic fertilizer). For each measurement point the soil was sampled in order to perform chemical analyses to evaluate soil quality status. Three in-situ campaigns have been carried out (September 2012, June 2013, and September 2013), collecting about 20 soil samples for each site and for each campaign. Chemical and spectral analyses have been focused on investigating soil organic carbon, carbonate content, texture and, in the case of polluted site, heavy metals and organic toxic compounds. Statistical analyses have been carried out to test a prediction model of different soil quality indicators based on the spectral signatures behaviour of each sample ranging.

  2. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  3. The use of Vacutainer tubes for collection of soil samples for helium analysis

    USGS Publications Warehouse

    Hinkle, Margaret E.; Kilburn, James E.

    1979-01-01

    Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.

  4. Study of the acid-base properties of mineral soil horizons using pK spectroscopy

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.

    2007-11-01

    The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.

  5. Correlation of unsupported ²¹⁰Pb activity in soil and moss.

    PubMed

    Krmar, M; Radnović, D; Hansman, J

    2014-03-01

    The activities of unsupported (210)Pb, a naturally occurring radionuclide, were measured in samples of soil and terrestrial mosses collected in Serbia. Considering that clay particles in soil have a high affinity for Pb adsorption, and that mosses usually capture aerosol particles to obtain necessary nutrients, measurable amounts of airborne (210)Pb, the daughter of (222)Rn, can be registered in both soil and mosses. The objective of the present study was to determine if it is possible to compare the activity of unsupported (210)Pb in soil and moss collected at the same sampling site, and to establish if a correlation exists between these measured values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The significance of visitors' pressure for soil status in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Zhevelev, Helena; Sarah, Pariente; Oz, Atar

    2010-05-01

    A park is one of the most important elements of sustainable development and optimization of the urban environment. The equilibrium within the complex of natural and anthropogenic factors defines the status of a park's ecosystem. The seasonal dynamics and spatial variations of soil properties in areas under differing levels of visitors' pressure were studied in a park in Tel-Aviv. Soil was sampled twice a year, in wet (March) and dry (July) seasons, from three types of areas, subjected to differing levels of visitors' pressure: high, low and none (control). In each type of area samples were taken from two depths (0-2 cm and 5-10 cm), at 14-39 points. In total, 268 soil samples were taken. Before the soil sampling, penetration depth was determined at each point. In addition, the numbers of barbecue fires in each of the three areas were counted. Gravimetric soil moisture, organic matter, pH, electrical conductivity, and soluble ions were measured in 1:1 water extraction. Penetration depth and electrical conductivity, and organic matter, sodium, potassium and chlorite contents differed under differing levels of visitors' pressure, whereas soil moisture, pH and calcium content exhibited only minor differences. Soil moisture, electrical conductivity, and magnesium and chlorite contents exhibited strong seasonal changes, whereas the organic matter, potassium and pH levels were unaffected by seasonal dynamics. Calcium, organic matter, magnesium and chlorite contents, and electrical conductivity were significantly affected by the depth of soil sampling, whereas pH was not so affected. The seasonal changes in soil properties in the area subjected to high visitors' pressure were higher than in the one under low visitors' pressure. In most cases, visitors' pressure led to increases in variance and coefficient of variation. Different soil properties were differently affected by visitors' pressure, seasonal dynamics and soil depth. The surface of the soil was more sensitive to both seasonal dynamics and visitors' pressure, than the deeper layer. Visitors' pressure increased seasonal changes in the studied soil properties, and also increased the spatial heterogeneity of the soil. The differences in organic matter, electrical conductivity and soluble ions among the areas under differing visitors' pressure are attributed to anthropogenic additions, which accompanied the recreational activities in the urban parks: remnants of barbecue fires and meals, and excreta of urban animals. Addition of urban dust, enriched in CaCO3, minimized the effect of visitors' pressure on soil calcium content. All the above anthropogenic additions enhance the differentiation in soil layers. The notable effect of visitors' pressure on variations in soil properties highlighted its high significance for urban parks.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.

    Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Nur Shahidah Abdul; Sarmani, Sukiman; Majid, Amran Ab.

    238U radionuclide is a naturally occuring radioactive material that can be found in soil. In this study, the solubility of 238U radionuclide obtained from various types of soil in synthetic gastrointestinal fluids was analysed by “US P in vitro” digestion method. The synthetic gastrointestinal fluids were added to the samples with well-ordered, mixed throughly and incubated according to the human physiology digestive system. The concentration of 238U radionuclide in the solutions extracted from the soil was measured using Induced Coupling Plasma Mass Spectrometer (ICP-MS). The concentration of 238U radionuclide from the soil samples in synthetic gastrointestinal fluids showed different valuesmore » due to different homogenity of soil types and chemical reaction of 238U radionuclide. In general, the solubility of 238U radionuclide in gastric fluid was higher (0.050 – 0.209 ppm) than gastrointestinal fluids (0.024 – 0.050 ppm). It could be concluded that the US P in vitro digestion method is practicle for estimating the solubility of 238U radionuclide from soil materials and could be useful for monitoring and risk assessment purposes applying to environmental, health and contaminated soil samples.« less

  9. Toxocara (Nematoda: Ascaridida) and Other Soil-Transmitted Helminth Eggs Contaminating Soils in Selected Urban and Rural Areas in the Philippines

    PubMed Central

    Paller, Vachel Gay V.; de Chavez, Emmanuel Ryan C.

    2014-01-01

    The extent of contamination of soils with soil transmitted helminthes (STH) eggs, particularly Toxocara, was determined in selected urban and rural towns of Laguna, Philippines. Soil samples were collected from public schools, house yards, and empty lots. Results revealed that, of the 1480 soil samples collected, 460 (31%) were positive for STH eggs. Toxocara sp. was the most prevalent (77%), followed by Ascaris sp. (11%), hookworms/strongyles/free-living nematodes (7%), and Trichuris sp. (5%). Some soil physicochemical parameters were also determined and associated with Toxocara eggs prevalence and density in soil. Results revealed that Toxocara sp. eggs were most prevalent in less acidic, relatively high temperature and high moisture soil conditions. They were also prevalent in sandy, silty, and loamy soil textures but less prevalent in clayey. No significant differences were found between depth 1 (0–5 cm) and depth 2 (6–10 cm). This study revealed that Toxocara sp. eggs are ubiquitous and the extent of contamination in soils from the selected towns of Laguna is relatively high. Hence, the data generated in this study can be used in promoting public awareness, particularly for pet owners and local health officials, for effective prevention and control of this parasitosis. PMID:25383372

  10. What shapes edaphic communities in mineral and ornithogenic soils of Cierva Point, Antarctic Peninsula?

    NASA Astrophysics Data System (ADS)

    Mataloni, G.; Garraza, G. González; Bölter, M.; Convey, P.; Fermani, P.

    2010-08-01

    Three mineral soil and four ornithogenic soil sites were sampled during summer 2006 at Cierva Point (Antarctic Peninsula) to study their bacterial, microalgal and faunal communities in relation to abiotic and biotic features. Soil moisture, pH, conductivity, organic matter and nutrient contents were consistently lower and more homogeneous in mineral soils. Ornithogenic soils supported larger and more variable bacterial abundances than mineral ones. Algal communities from mineral soils were more diverse than those from ornithogenic soils, although chlorophyll- a concentrations were significantly higher in the latter. This parameter and bacterial abundance were correlated with nutrient and organic matter contents. The meiofauna obtained from mineral soils was homogeneous, with one nematode species dominating all samples. The fauna of ornithogenic soils varied widely in composition and abundance. Tardigrades and rotifers dominated the meiofauna at eutrophic O2, where they supported a large population of the predatory nematode Coomansus gerlachei. At site O3, high bacterial abundance was consistent with high densities of the bacterivorous nematodes Plectus spp. This study provides evidence that Antarctic soils are complex and diverse systems, and suggests that biotic interactions (e.g. competition and predation) may have a stronger and more direct influence on community variability in space and time than previously thought.

  11. Effect of irrigation on soil health: a case study of the Ikere irrigation project in Oyo State, southwest Nigeria.

    PubMed

    Adejumobi, M A; Awe, G O; Abegunrin, T P; Oyetunji, O M; Kareem, T S

    2016-12-01

    Irrigated agriculture is one of the significant contributors to the food security of the millennium development goals (MDGs); however, the modification of soil matrix by irrigation could alter the overall soil health due to changes in soil properties and processes. The objective of the study was to evaluate the effect of irrigation on soil quality status of the Ikere center pivot irrigation project site in Oyo State, southwest Nigeria. Disturbed soil samples were collected from 0 to 30, 30 to 60, and 60 to 90-cm layers from four different sites in three replicates, within the project location for the determination of soil bio-chemical properties. The average values of sodium adsorption ratio (SAR) < 13, electrical conductivity (EC) <4 μS/cm, and pH < 8.5 showed that the soil condition is normal in relation to salinity and sodicity hazards. The effective cation exchange capacity (ECEC), soil organic matter (SOM), total nitrogen (TN), and calcium ion (Ca 2+ ) concentrations were low while the available phosphorus (P) was moderate. The principal component analysis showed EC, ECEC, SAR, SOM, and TN as the minimum data set (MDS) for monitoring and assessing the soil quality status of this irrigation field. In terms of bio-chemical properties, the soil quality index (SQI) of the field was average (about 0.543) while the sampling locations were ranked as site 2 > site 4 > site 3 > site 1 in terms of SQI. The results of this study are designated as baseline for future evaluation of soil quality status of this irrigation field and further studies should incorporate soil physical and more biological properties when considering overall soil quality status.

  12. Structural changes of green roof growing substrate layer studied by X-ray CT

    NASA Astrophysics Data System (ADS)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within National Sustainability Programme I, project number LO1605 and with financial support from the Czech Science Foundation under project number GAČR 17-21011S.

  13. Application of Bioassays for the Ecotoxicity Assessment of Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Fernández, María D.; Babín, Mar; Tarazona, José V.

    The use of bioassays for soil characterization is receiving significant attention as a complementary tool to chemical analysis. Bioassays consist of direct toxicity assays of environmental samples that are transferred to the laboratory and analyzed for toxicity against selected organisms. Such soil samples contain the combination of the different pollutants present in situ and enable factors such as the bioavailability of contaminants or the interactions (synergic and antagonic) between them to be simultaneously studied.

  14. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    NASA Astrophysics Data System (ADS)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  15. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to the common practice of soil grid sampling every 1 ha.

  16. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modern Timber Harvesting Practices Have Little Short-Term Effect on Soil Carbon Stores in Industrial Forests of Western Oregon and Washington, U.S.A.

    NASA Astrophysics Data System (ADS)

    Holub, S. M.; Hatten, J. A.

    2017-12-01

    Soil carbon represents a large, but slowly changing pool of carbon in forests and understanding its response to forest management, including harvesting, is critical for determining overall stand/landscape carbon balance. Past studies have observed mixed effects of harvesting on soil carbon possibly due, in part, to imprecise sampling methods and high variability within soils. Weyerhaeuser Company has led a major effort to examine the effect of conventional timber harvesting on long-term soil carbon stores in western Oregon and Washington Douglas-fir forests using a highly-replicated longitudinal study design that enables precise estimation of variability found in these systems. In 2010, we randomly selected nine harvest units from Weyerhaeuser's 2012 harvest plan. At each non-harvested unit, a uniform, non-rocky area of about 3-6 hectares was selected for the study. Pre-harvest soil samples were collected at 300 sample points from each unit on a fixed square grid, targeting an intensity that would allow detection of >5% change in soil carbon stores. We measured soil carbon concentration and soil bulk density in depth increments to 1 m to allow for the calculation of total soil carbon per hectare. Other ecosystem pools of carbon, such as trees and downed wood, also have been measured to complete the whole-site carbon budget. All units were harvested from late 2011 through mid-year 2012. In 2015, 3-3.5 years post-harvest, we resampled the same areas in an identical manner as the pre-harvest collection to evaluate changes in soil carbon following harvest. Across all sites combined, we estimated a +2% change (-2% to +6%, 95% confidence interval) in mineral soil carbon following harvest, which is consistent with small-to-no change. Individual sites varied in direction of response; only one site showed evidence of a slight decrease in soil carbon, while two sites showed slight gains. These early results indicate that Weyerhaeuser's conventional timber harvesting methods in the Pacific Northwest do not cause substantial short-term losses in soil carbon. Continued monitoring is necessary, however, to document the longer-term trajectory of soil carbon levels through stand development.

  18. Differences on soil organic carbon stock estimation according to sampling type in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014. Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain). Solid Earth, 5, 299-311 (2014). http://dx.doi.org/10.5194/se-5-299-2014. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015a. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219-228. http://dx.doi.org/10.1016/j.jenvman.2015.03.039. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015b. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections. Geophysical Research Abstracts. Vol. 17, 986. EGU General Assembly 2015.

  19. Laboratory study on subgrade soil stabilization using RBI grade 81

    NASA Astrophysics Data System (ADS)

    Cynthia, J. Bernadette; Kamalambikai, B.; Prasanna Kumar, R.; Dharini, K.

    2017-07-01

    The present study investigates the effect of reinforcing the sub grade soils with RBI 81 material. A soil nearby was collected and preliminary tests were conducted to classify the soil and it was found from the results that the sample collected was a poorly graded clay. Subsequently Tests such as Proctor Compaction, CBR, and UCC were conducted to study the various engineering properties of the identified soil. In addition to the above tests were also conducted on the soil by reinforcing with varying percentages of RBI 81. From the analysis of test results it was found that this material (RBI 81) will significantly improve the CBR value of the soil.

  20. DNA-based detection of the fungal pathogen Geomyces destructans in soil from bat hibernacula

    USGS Publications Warehouse

    Lindner, Daniel L.; Gargas, Andrea; Lorch, Jeffrey M.; Banik, Mark T.; Glaeser, Jessie; Kunz, Thomas H.; Blehert, David S.

    2011-01-01

    White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples.

Top