Western Wind and Solar Integration Study | Grid Modernization | NREL
Western Wind and Solar Integration Study Western Wind and Solar Integration Study Can we integrate large amounts of wind and solar energy into the electric power system of the West? That's the question explored by the Western Wind and Solar Integration Study, one of the largest such regional studies to date
A study of the solar wind deceleration in the Earth's foreshock region
NASA Technical Reports Server (NTRS)
Zhang, T.-L.; Schwingenschuh, K.; Russell, C. T.
1995-01-01
Previous observations have shown that the solar wind is decelerated and deflected in the earth's upstream region populated by long-period waves. This deceleration is corelated with the 'diffuse' but not with the 'reflected' ion population. The speed of the solar wind may decrease tens of km/s in the foreshock region. The solar wind dynamic pressure exerted on the magnetopause may vary due to the fluctuation of the solar wind speed and density in the foreshock region. In this study, we examine this solar wind deceleration and determine how the solar wind deceleration varies in the foreshock region.
On the Origins of the Intercorrelations Between Solar Wind Variables
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.
2018-01-01
It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.
Hawaii Solar and Wind Integration Studies | Grid Modernization | NREL
Solar Integration Study and Oahu Wind Integration and Transmission Study investigated the effects of high penetrations of renewables on island grids. Hawaii Solar Integration Study The Hawaii Solar Integration Study was a detailed technical examination of the effects of high penetrations of solar and wind
NASA Technical Reports Server (NTRS)
Richardson, Ian G.; Cane, Hilary V.
2012-01-01
In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.
NASA Astrophysics Data System (ADS)
Kopf, A. J.; Morgan, D. D.; Halekas, J. S.; Ruhunusiri, S.; Gurnett, D. A.; Connerney, J. E. P.
2017-12-01
The synthesis of observations by the Mars Express and Mars Atmosphere and Volatiles Evolution (MAVEN) spacecraft allows for a unique opportunity to study variability in the Martian ionosphere from multiple perspectives. One major source for this variability is the solar wind. Due to its elliptical orbit which precesses over time, MAVEN periodically spends part of its orbit outside the Martian bow shock, allowing for direct measurements of the solar wind impacting the Martian plasma environment. When the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument aboard Mars Express is simultaneously sounding the ionosphere, the influence from changes in the solar wind can be observed. Previous studies have suggested a positive correlation, connecting ionospheric density to the solar wind proton flux, but depended on Earth-based measurements for solar wind conditions. More recently, research has indicated that observations of ionospheric variability from these two spacecraft can be connected in special cases, such as shock wave impacts or specific solar wind magnetic field orientations. Here we extend this to more general solar wind conditions and examine how changes in the solar wind properties measured by MAVEN instruments correlate with ionospheric structure and dynamics observed simultaneously in MARSIS remote and local measurements.
Numerical simulation of wind loads on solar panels
NASA Astrophysics Data System (ADS)
Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung
2018-05-01
Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.
High-quality weather data for grid integration studies
NASA Astrophysics Data System (ADS)
Draxl, C.
2016-12-01
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.
Does the magnetic expansion factor play a role in solar wind acceleration?
NASA Astrophysics Data System (ADS)
Wallace, S.; Arge, C. N.; Pihlstrom, Y.
2017-12-01
For the past 25+ years, the magnetic expansion factor (fs) has been a parameter used in the calculation of terminal solar wind speed (vsw) in the Wang-Sheeley-Arge (WSA) coronal and solar wind model. The magnetic expansion factor measures the rate of flux tube expansion in cross section between the photosphere out to 2.5 solar radii (i.e., source surface), and is inversely related to vsw (Wang & Sheeley, 1990). Since the discovery of this inverse relationship, the physical role that fs plays in solar wind acceleration has been debated. In this study, we investigate whether fs plays a causal role in determining terminal solar wind speed or merely serves as proxy. To do so, we study pseudostreamers, which occur when coronal holes of the same polarity are near enough to one another to limit field line expansion. Pseudostreamers are of particular interest because despite having low fs, spacecraft observations show that solar wind emerging from these regions have slow to intermediate speeds of 350-550 km/s (Wang et al., 2012). In this work, we develop a methodology to identify pseudostreamers that are magnetically connected to satellites using WSA output produced with ADAPT input maps. We utilize this methodology to obtain the spacecraft-observed solar wind speed from the exact parcel of solar wind that left the pseudostreamer. We then compare the pseudostreamer's magnetic expansion factor with the observed solar wind speed from multiple spacecraft (i.e., ACE, STEREO-A & B, Ulysses) magnetically connected to the region. We will use this methodology to identify several cases ( 20) where spacecraft are magnetically connected to pseudostreamers, and perform a statistical analysis to determine the correlation of fs within pseudostreamers and the terminal speed of the solar wind emerging from them. This work will help determine if fs plays a physical role in the speed of solar wind originating from regions that typically produce slow wind. This work compliments previous case studies of solar wind originating from pseudostreamers (Riley et al., 2015, Riley & Luhmann 2012) and will contribute to identifying the physical properties of solar wind from these regions. Future work will explore the role of fs in modulating the fast solar wind and will involve a similar analysis for cases where spacecraft are deep within coronal holes.
Improvement of background solar wind predictions
NASA Astrophysics Data System (ADS)
Dálya, Zsuzsanna; Opitz, Andrea
2016-04-01
In order to estimate the solar wind properties at any heliospheric positions propagation tools use solar measurements as input data. The ballistic method extrapolates in-situ solar wind observations to the target position. This works well for undisturbed solar wind, while solar wind disturbances such as Corotating Interaction Regions (CIRs) and Coronal Mass Ejections (CMEs) need more consideration. We are working on dedicated ICME lists to clean these signatures from the input data in order to improve our prediction accuracy. These ICME lists are created from several heliospheric spacecraft measurements: ACE, WIND, STEREO, SOHO, MEX and VEX. As a result, we are able to filter out these events from the time series. Our corrected predictions contribute to the investigation of the quiet solar wind and space weather studies.
NASA Technical Reports Server (NTRS)
Habbal, Shadia Rifai
2005-01-01
Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored: (1) the role of proton temperature anisotropy in the expansion of the solar (2) the role of plasma parameters at the coronal base in the formation of high (3) a three-fluid model of the slow solar wind (4) the heating of coronal loops (5) a newly developed hybrid code for the study of ion cyclotron resonance in wind, speed solar wind streams at mid-latitudes, the solar wind.
Studying Solar Wind Properties Around CIRs and Their Effects on GCR Modulation
NASA Astrophysics Data System (ADS)
Ghanbari, K.; Florinski, V. A.
2017-12-01
Corotating interaction region (CIR) events occur when a fast solar wind stream overtakes slow solar wind, forming a compression region ahead and a rarefaction region behind in the fast solar wind. Usually this phenomena occurs along with a crossing of heliospheric current sheet which is the surface separating solar magnetic fields of opposing polarities. In this work, the solar plasma data provided by the ACE science center are utilized to do a superposed epoch analysis on solar parameters including proton density, proton temperature, solar wind speed and solar magnetic field in order to study how the variations of these parameters affect the modulation of galactic cosmic rays. Magnetic fluctuation variances in different parts a of CIR are computed and analyzed using similar techniques in order to understand the cosmic-ray diffusive transport in these regions.
NASA Technical Reports Server (NTRS)
Mcfadden, Lucy-Ann
1991-01-01
The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2001-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2000-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.
Solar wind classification from a machine learning perspective
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.
2017-12-01
It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.
NASA Technical Reports Server (NTRS)
Tam, S. W. Y.; Chang, T.
2002-01-01
Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)
2003-01-01
Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.
The average solar wind in the inner heliosphere: Structures and slow variations
NASA Technical Reports Server (NTRS)
Schwenn, R.
1983-01-01
Measurements from the HELIOS solar probes indicated that apart from solar activity related disturbances there exist two states of the solar wind which might result from basic differences in the acceleration process: the fast solar wind (v 600 kms(-)1) emanating from magnetically open regions in the solar corona and the "slow" solar wind (v 400 kms(-)1) correlated with the more active regions and its mainly closed magnetic structures. In a comprehensive study using all HELIOS data taken between 1974 and 1982 the average behavior of the basic plasma parameters were analyzed as functions of the solar wind speed. The long term variations of the solar wind parameters along the solar cycle were also determined and numerical estimates given. These modulations appear to be distinct though only minor. In agreement with earlier studies it was concluded that the major modulations are in the number and size of high speed streams and in the number of interplanetary shock waves caused by coronal transients. The latter ones usually cause huge deviations from the averages of all parameters.
Heavy ion composition in the inner heliosphere: Predictions for Solar Orbiter
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Livi, S. A.; Galvin, A. B.; Kistler, L. M.; Raines, J. M.; Allegrini, F.; Collier, M. R.; Zurbuchen, T.
2014-12-01
The Heavy Ion Sensor (HIS) on SO, with its high time resolution, will provide the first ever solar wind and surpathermal heavy ion composition and 3D velocity distribution function measurements inside the orbit of Mercury. These measurements will provide us the most in depth examination of the origin, structure and evolution of the solar wind. The near co-rotation phases of the orbiter will enable the most accurate mapping of in-situ structures back to their solar sources. Measurements of solar wind composition and heavy ion kinetic properties enable characterization of the sources, transport mechanisms and acceleration processes of the solar wind. This presentation will focus on the current state of in-situ studies of heavy ions in the solar wind and their implications for the sources of the solar wind, the nature of structure and variability in the solar wind, and the acceleration of particles. Additionally, we will also discuss opportunities for coordinated measurements across the payloads of Solar Orbiter and Solar Probe in order to answer key outstanding science questions of central interest to the Solar and Heliophysics communities.
Integrating Wind and Solar on the Grid-NREL Analysis Leads the Way -
shown in color, but not including pink/IESO area.) Map provided by NREL Integrating Wind and Solar on the Grid-NREL Analysis Leads the Way NREL studies confirm big wind, solar potential for grid integration To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much
NASA Astrophysics Data System (ADS)
Stakhiv, Mark
The solar wind is a hot tenuous plasma that continuously streams off of the Sun into the heliosphere. The solar wind is the medium through which coronal mass ejections (CMEs) travel from the Sun to the Earth, where they can disrupt vital space-based technologies and wreak havoc on terrestrial infrastructure. Understanding the solar wind can lead to improved predications of CME arrival time as well as their geoeffectiveness. The solar wind is studied in this thesis through in situ measurements of heavy ions. Several outstanding questions about the solar wind are addressed in this thesis: What is the origin of the solar wind? How is the solar wind heated and accelerated? The charge state distribution and abundance of heavy ions in the solar wind record information about their source location and heating mechanism. This information is largely unchanged from the Sun to the Earth, where it is collected in situ with spacecraft. In this thesis we use data from the Solar Wind Ion Composition Spectrometer (SWICS) that flew on two spacecraft: Ulysses (1990 - 2009) and ACE (1998 - present). We analyze the kinetic and compositional properties of the solar wind with heavy ion data and lay out a unified wind scenario, which states that the solar wind originates from two different sources and regardless of its release mechanism the solar wind is then accelerated by waves. The data from these instruments are the best available to date but still lack the measurement cadence and distribution resolution to fully answer all of the solar wind questions. To address these issues a new heavy ion sensor is being developed to be the next generation of in situ heavy ion measurements. This thesis supports the development of this instrument through the analysis of the sensors measurement properties and the characterization of its geometric factor and efficiencies.
Analysis of Wind Forces on Roof-Top Solar Panel
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Kudav, Ganesh
2011-03-01
Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).
Solar wind and magnetosphere interactions
NASA Technical Reports Server (NTRS)
Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.
1979-01-01
The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.
Wave Modeling of the Solar Wind.
Ofman, Leon
The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.
NASA Astrophysics Data System (ADS)
Venzmer, M. S.; Bothmer, V.
2018-03-01
Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner heliosphere confined to the ecliptic region is derived, accounting for solar activity and for solar distance through adequate shifts of the lognormal distributions. Finally, the inclusion of SSN predictions and the extrapolation down to PSPs perihelion region enables us to estimate the solar-wind environment for PSPs planned trajectory during its mission duration. Results: The CGAUSS empirical solar-wind model for PSP yields dependencies on solar activity and solar distance for the solar-wind parameters' frequency distributions. The estimated solar-wind median values for PSPs first perihelion in 2018 at a solar distance of 0.16 au are 87 nT, 340 km s-1, 214 cm-3, and 503 000 K. The estimates for PSPs first closest perihelion, occurring in 2024 at 0.046 au (9.86 R⊙), are 943 nT, 290 km s-1, 2951 cm-3, and 1 930 000 K. Since the modeled velocity and temperature values below approximately 20 R⊙appear overestimated in comparison with existing observations, this suggests that PSP will directly measure solar-wind acceleration and heating processes below 20 R⊙ as planned.
NASA Technical Reports Server (NTRS)
Newkirk, G., Jr.
1975-01-01
Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.
NASA Technical Reports Server (NTRS)
Paularena, Karolen I.; Richardson, John D.; Zastenker, Georgy N.
2002-01-01
The foundation of this Project is use of the opportunity available during the ISTP (International Solar-Terrestrial Physics) era to compare solar wind measurements obtained simultaneously by three spacecraft - IMP 8, WIND and INTERBALL-1 at wide-separated points. Using these data allows us to study three important topics: (1) the size and dynamics of near-Earth mid-scale (with dimension about 1-10 million km) and small-scale (with dimension about 10-100 thousand km) solar wind structures; (2) the reliability of the common assumption that solar wind conditions at the upstream Lagrangian (L1) point accurately predict the conditions affecting Earth's magnetosphere; (3) modification of the solar wind plasma and magnetic field in the regions near the Earth magnetosphere, the foreshock and the magnetosheath. Our Project was dedicated to these problems. Our research has made substantial contributions to the field and has lead others to undertake similar work.
Properties of Minor Ions In the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Wagner, William (Technical Monitor)
2002-01-01
Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. The goal of the proposal is to determine coronal plasma conditions that produce the in situ observed charge states. This study is carried out using solar wind models, coronal observations, ion fraction calculations and in situ observations.
Elemental abundances in corotating events
NASA Technical Reports Server (NTRS)
Vonrosenvinge, T. T.; Mcguire, R. E.
1985-01-01
Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) was remarkably constant at a value (22 + or 5) equal to that in the solar wind (21 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results were presented from a similar study approximately 11 years (i.e., one solar cycle) later. Corotating events have been identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. It is flund that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.
Missing pressure in the dayside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Stewart, B. K.; Taylor, H. A., Jr.
1992-01-01
Data obtained by various instruments on the Pioneer-Venus spacecraft were used to study the conservation of momentum flux from the solar wind through the dayside ionopause into the thermal Venus ionosphere. A consistent pressure deficit was found below the ionopause, with a strong dependence on solar wind pressure. Independent of solar wind pressure, the pressure deficit was found to decrease with decreasing altitude below the ionopause. Measurements of this pressure deficit (missing pressure) are presented as a function of altitude for various solar wind conditions. The identity of the missing pressure component and the correlation with solar wind pressure are discussed.
Measurements of the properties of solar wind plasma relevant to studies of its coronal sources
NASA Technical Reports Server (NTRS)
Neugebauer, M.
1982-01-01
Interplanetary measurements of the speeds, densities, abundances, and charge states of solar wind ions are diagnostic of conditions in the source region of the solar wind. The absolute values of the mass, momentum, and energy fluxes in the solar wind are not known to an accuracy of 20%. The principal limitations on the absolute accuracies of observations of solar wind protons and alpha particles arise from uncertain instrument calibrations, from the methods used to reduce the data, and from sampling biases. Sampling biases are very important in studies of alpha particles. Instrumental resolution and measurement ambiguities are additional major problems for the observation of ions heavier than helium. Progress in overcoming some of these measurement inadequacies is reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, R. W.; Dayeh, M. A.; Desai, M. I.
2013-05-10
We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF betweenmore » {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.« less
Reduction and Analysis of Data from the IMP 8 Spacecraft
NASA Technical Reports Server (NTRS)
2003-01-01
The IMP 8 spacecraft was launched in 1973 and the MIT solar wind Faraday Cup experiment continues to produce excellent data except for a slightly increased noise level. Those data have been important for determining the solar wind interaction with Earth's magnetic field; studies of interplanetary shocks; studies of the correlation lengths of solar wind features through comparisons with other spacecraft; and more recently, especially important for determination of the regions in which the Wind spacecraft was taking data as it passed through Earth's magnetotail and for understanding the propagation of solar wind features from near 1 AU to the two Voyager spacecraft.
Propagation of Interplanetary Disturbances in the Outer Heliosphere
NASA Technical Reports Server (NTRS)
Wang, Chi
2005-01-01
Contents include the following: 1. We have developed a one-dimensional, spherically symmetric, multi-fluid MHD model that includes solar wind protons and electrons, pickup ions, and interstellar neutral hydrogen. This model advances the existing solar wind models for the outer heliosphere in two important ways: one is that it distinguishes solar wind protons from pickup ions, and the other is that it allows for energy transfer from pickup ions to the solar wind protons. Model results compare favorably with the Voyager 2 observations. 2. 2. Solar wind slowdown and interstellar neutral density. The solar wind in the outer heliosphere is fundamentally different from that in the inner heliosphere since the effects of interstellar neutrals become significant. 3. ICME propagation from the inner to outer heliosphere. Large coronal mass ejections (CMEs) have major effects on the structure of the solar wind and the heliosphere. The plasma and magnetic field can be compressed ahead of interplanetary CMEs. 4. During the current solar cycle (Cycle 23), several major CMEs associated with solar flares produced large transient shocks which were observed by widely-separated spacecraft such as Wind at Earth and Voyager 2 beyond 60 AU. Using data from these spacecraft, we use the multi-fluid model to investigate shock propagation and interaction in the heliosphere. Specifically, we studied the Bastille Day 2000, April 2001 and Halloween 2003 events. 5. Statistical properties of the solar wind in the outer heliosphere. In a collaboration with L.F. Burlaga of GSFC, it is shown that the basic statistical properties of the solar wind in the outer heliosphere can be well produced by our model. We studied the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, using our numerical model with observations made at 1 AU during 1995 as input. 6. Radial heliospheric magnetic field events. The heliospheric magnetic field (HMF) direction, on average, conforms well to the Parker spiral.
NASA Technical Reports Server (NTRS)
Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.
2006-01-01
We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.
Potential for a Danish power system using wind energy generators, solar cells and storage
NASA Astrophysics Data System (ADS)
Blegaa, S.; Christiansen, G.
1981-10-01
Performance characteristics of a combined solar/wind power system equipped with storage and an unspecified back-up power source are studied on the basis of meteorological data in Denmark from 1959-1972. A model for annual production and storage from wind/solar installations is presented, assuming 12% efficiency for the solar cells and various power coefficients of the windmills, in addition to long and short-term storage. Noting that no correlation between wind and solar energy availability was found, and a constant ratio of 60% wind/40% solar was determined to be the optimum mix for large scale power production without taking into consideration the variations among years. It is concluded that 80-90% of the total Danish electrical load can be covered by solar/wind systems, and 100% may be possible with the addition of pumped hydroelectric storage.
Taking Venus models to new dimensions.
NASA Astrophysics Data System (ADS)
Murawski, K.
1997-11-01
Space plasma physicists in Poland and Japan have gained new insights into the interaction between the solar wind and Venus. Computer simulations of this 3D global interaction between the solar wind and nonmagnetized bodies have enabled greater understanding of the large-scale processes involved in such phenomena. A model that offers improved understanding of the solar wind interaction with Venus (as well as other nonmagnetized bodies impacted by the solar wind) has been developed. In this model, the interaction of the solar wind with the ionosphere of Venus is studied by calculating numerical solutions of the 3D MHD equations for two-component, chemically reactive plasma. The author describes the innovative model.
Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission
NASA Technical Reports Server (NTRS)
Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry
1991-01-01
The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.
Solar-Planetary Relationships: Magnetospheric Physics
NASA Technical Reports Server (NTRS)
Barnes, Aaron
1979-01-01
The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.
Propagation of Interplanetary Disturbances in the Outer Heliosphere
NASA Technical Reports Server (NTRS)
Wang, Chi
2002-01-01
Work finished during 2002 included: (1) Finished a multi-fluid solar wind model; (2) Determined the solar wind slowdown and interstellar neutral density; (3) Studied shock propagation and evolution in the outer heliosphere; (4) Investigated statistical properties of the solar wind in the outer heliosphere.
NASA Technical Reports Server (NTRS)
Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro
2001-01-01
Single-station observations of interplanetary scintillation UPS) at three microwave frequencies 2, 8, and 22GHz, were carried out between 1989 and 1998 using a large (34-micro farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations was to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars, 3C279 and 3C273B, were used for the Kashima IPS observations at 2 and 8GHz, and a water-vapor maser source, IRC20431, was used for the IPS observations at 22GHz. Solar wind speeds derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (Rs) from the sun. The properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from the Kashima data were found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with the coronal holes were found to develop significantly at high latitudes as the solar activity declined. Nevertheless, the Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.
NASA Technical Reports Server (NTRS)
Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro
2001-01-01
Single-station observations of interplanetary scintillation (IPS) at three microwave frequencies; 2 GHz, 8 GHz and 22 GHz have been carried out between 1989 and 1998 using a large (34 m farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations is to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars; 3C279 and 3C273B were used for Kashima IPS observations at 2 GHz and 8 GHz, and a water vapor maser source, IRC20431 was used for the IPS observations at 22 GHz. Solar wind velocities derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (R(sub s)) from the sun. Properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from Kashima data are found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with coronal holes are found to develop significantly at high latitudes as the solar activity declines. Nevertheless, Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.
Effects of the Solar Wind Pressure on Mercury's Exosphere: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.
2017-12-01
We study effects of the changed solar wind pressure on the precipitation of hydrogen on the Mercury's surface and on the formation of Mercury's magnetosphere. We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the equatorial plane. We change the solar wind pressure by changing the velocity of injected solar wind plasma (vsw = 2 vA,sw; vsw = 4 vA,sw; vsw = 6 vA,sw). For each of the cases we examine proton and electron precipitation on Mercury's surface and calculate yields of heavy ions released from Mercury's surface via various processes (namely: Photo-Stimulated Desorption, Solar Wind Sputtering, and Electron Stimulated Desorption). We study circulation of the released ions within the Mercury's magnetosphere for the three cases.
The Third Solar Wind Conference: A summary
NASA Technical Reports Server (NTRS)
Russell, C. T.
1974-01-01
The Third Solar Wind Conference consisted of nine sessions. The following subjects were discussed: (1) solar abundances; (2) the history and evolution of the solar wind; (3) the structure and dynamics of the solar corona; (4) macroscopic and microscopic properties of the solar wind; (5) cosmic rays as a probe of the solar wind; (6) the structure and dynamics of the solar wind; (7) spatial gradients; (8) stellar winds; and (9) interactions with objects in the solar wind. The invited and contributed talks presented at the conference are summarized.
Physics of the inner heliosphere 1-10R sub O plasma diagnostics and models
NASA Technical Reports Server (NTRS)
Withbroe, G. L.
1984-01-01
The physics of solar wind flow in the acceleration region and impulsive phenomena in the solar corona is studied. The study of magnetohydrodynamic wave propagation in the corona and the solutions for steady state and time dependent solar wind equations gives insights concerning the physics of the solar wind acceleration region, plasma heating and plasma acceleration processes and the formation of shocks. Also studied is the development of techniques for placing constraints on the mechanisms responsible for coronal heating.
Wind and solar resource data sets: Wind and solar resource data sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline
The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solarmore » resource data sets is then presented, followed by areas for future research.« less
Solar wind influence on Jupiter's magnetosphere and aurora
NASA Astrophysics Data System (ADS)
Vogt, Marissa; Gyalay, Szilard; Withers, Paul
2016-04-01
Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.
Recent Insights into the Nature of Turbulence in the Solar Wind
NASA Technical Reports Server (NTRS)
Goldstein, Melvun L.
2008-01-01
During the past several years, studies of solar wind turbulence using data from Cluster and other spacecraft, and results from new numerical simulations, have revealed new aspects of solar wind turbulence. I will try to highlight some of that research. At the shortest length scales and highest frequencies, there is renewed interest in determining how the turbulence dissipates, e.g., whether by kinetic Alfven waves or whistler turbulence. Finding observational evidence for exponential damping of solar wind fluctuations has proven challenging. New studies using a combination of flux gate and search coil magnetometer data from Cluster have extended this search (in the spacecraft frame of reference) to more than 10 Hertz. New models and simulations are also being used to study the dissipation. A detailed study of fluctuations in the magnetosheath suggests that turbulent dissipation could be occurring at very thin current sheets as had been suggested by two-dimensional MHD simulations more than 20 years ago. Data from the four Cluster spacecraft, now at their maximum separation of 10,000 km provide new opportunities to investigate the symmetry properties, scale lengths, and the relative proportion of magnetic energy in parallel and perpendicular wave numbers of solar wind turbulence. By utilizing well-calibrated electron data, it has been possible to take advantage of the tetrahedral separation of Cluster in the solar wind near apogee to measure directly the compressibility and vorticity of the solar wind plasma.
NASA Astrophysics Data System (ADS)
Ramanjooloo, Y.; Jones, G. H.; Coates, A.; Owens, M. J.; Battams, K.
2014-07-01
Since the mid-20th century, comets' plasma (type I) tails have been studied as natural probes of the solar wind [1]. Comets have induced magnetotails, formed through the draping of the heliospheric magnetic field by the velocity shear in the mass-loaded solar wind. These can be easily observed remotely as the comets' plasma tails, which generally point away from the Sun. Local solar-wind conditions directly influence the morphology and dynamics of a comet's plasma tail. During ideal observing geometries, the orientation and structure of the plasma tail can reveal large-scale and small-scale variations in the local solar-wind structure. These variations can be manifested as tail condensations, kinks, and disconnection events. Over 50 % of observed catalogued comets are sungrazing comets [2], fragments of three different parent comets. Since 2011, two bright new comets, C/2011 W3 [3] (from hereon comet Lovejoy) and C/2012 S1 [4] (hereon comet ISON) have experienced extreme solar-wind conditions and insolation of their nucleus during their perihelion passages, approaching to within 8.3×10^5 km (1.19 solar radii) and 1.9×10^6 km (2.79 solar radii) of the solar centre. They each displayed a prominent plasma tail, proving to be exceptions amongst the observed group of sungrazing comets. These bright sungrazers provide unprecedented access to study the solar wind in the heretofore unprobed innermost region of the solar corona. The closest spacecraft in-situ sampling of the solar wind by the Helios probes reached 0.29 au. For this study, we define a sungrazing comet as one with its perihelion within the solar Roche limit (3.70 solar radii). We also extend this study to include C/2011 L4 [5] (comet Pan-STARRS), a comet with a much further perihelion distance of 0.302 au. The technique employed in this study was first established by analysing geocentric amateur observations of comets C/2001 Q4 (NEAT) and C/2004 Q2 (Machholz) [7]. These amateur images, obtained with modern equipment and sensors, rival and sometimes arguably exceed the quality of professional images obtained only 2--3 decades ago. Multiple solar-wind velocity estimates were derived from each image and the results compared to observed and modelled near-Earth solar-wind data. Our unique analysis technique [Ramanjooloo et al., in preparation] allows us to determine the latitudinal variations of the solar wind, heliospheric current-sheet sector boundaries and the boundaries of transient features as a comet with an observable plasma tail probes the inner heliosphere. We present solar-wind velocity measurements derived from multiple observing locations of comets Lovejoy from the 14th -- 19th December 2011, comet Pan-STARRS during 11th -- 16th March 2013 and comet ISON from 12th -- 29th November 2013. Observations were gathered from multiple resources, from the SECCHI heliospheric imagers aboard STEREO A and B [8], the LASCO coronagraphs aboard SOHO [9], as well as ground-based amateur and professional observations coordinated by the CIOC. Overlapping observation sessions from the three spacecraft and ground-based efforts provided the perfect opportunity to use these comets as a diagnostic tool to understand solar-wind variability close to the Sun. We plan to compare our observations to results of suitable simulations [10] of plasma conditions in the corona and inner heliosphere during each of the comets' perihelion passage. The correlation of the solar-wind velocity distribution from different observing locations can provide clues towards the morphology and orientation of the plasma tail. We also attempt to determine the difficult-to-determine non-radial components of the measured solar-wind velocities.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Wagner, William (Technical Monitor); Esser, Ruth
2004-01-01
The scope of the investigation is to extract information on the properties of the bulk solar wind from the minor ion observations that are provided by instruments on board NASA space craft and theoretical model studies. Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. This study is carried out using solar wind models, coronal observations, and ion calculations in conjunction with the in situ observations.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Astrophysics Data System (ADS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.
2010-12-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
Radioactivites in returned lunar materials and in meteorites
NASA Technical Reports Server (NTRS)
Fireman, E. L.
1983-01-01
The cosmic-ray, solar-flare, and solar-wind bombardments of lunar rocks and soils and meteorites were studied by measurements of tritium, carbon-14 and argon radioactivity. The radioactivity integrates the bombardment for a time period equal to several half-lines. H-3, Ar-37, Ar-39, C-14. For the interior samples of lunar rocks and for deep lunar soil samples, the amounts of the radioactivities were equal to those calculated for galactic cosmic-ray interactions. The top near-surface samples of lunar rocks and the shallow lunar soil samples show excess amounts of the radioactivities attributable to solar flares. Lunar soil fines contain a large amount of hydrogen due to implanted solar wind. Studies of the H-3 in lunar soils and in recovered Surveyor-3 materials gave an upper limit for the H-3/H ratio in the solar wind of 10 to the -11th power. Solar wind carbon is also implanted on lunar soil fines. Lunar soils collected on the surface contained a 0.14 component attributable to implanted solar wind C-14. The C-14/H ratio attributed to the solar wind from this C-14 excess is approximately 4 x 10 to the -11th power.
A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Forman, M. A. (Technical Monitor)
2001-01-01
Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO (Solar and Heliospheric Observatory) observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. Its uniqueness stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s) of the solar surface over the poles and 3 - 9 R(sub s) at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. In support of this mission, we fulfilled the following two long-term projects: (1) Study of the evolution of waves and turbulence in the solar wind (2) Exploration of signatures of physical processes and structures in the corona. A summary of the tasks achieved in support of these projects are given below. In addition, funds were provided to support the Solar Wind 9 International Conference which was held in October 1998. A brief report on the conference is also described in what follows.
Evidence of active region imprints on the solar wind structure
NASA Technical Reports Server (NTRS)
Hick, P.; Jackson, B. V.
1995-01-01
A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics
NASA Astrophysics Data System (ADS)
Li, G.; Arnold, L.; Miao, B.; Yan, Y.
2011-12-01
G. Li (1,2), L. Arnold (1), B. Miao (3) and Y. Yan (4) (1) Department of Physics, University of Alabama in Huntsville Huntsville, AL, 35899 (2) CSPAR, University of Alabama in Huntsville Huntsville, AL, 35899 (3) School of Earth and Space Sciences, University of Science and Technology of CHINA, Hefei, China (4) Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China Current sheets is a common structure in the solar wind and is a significant source of solar wind MHD turbulence intermittency. The origin of these structure is presently unknown. Non-linear interactions of the solar wind MHD turbulence can spontaneously generate these structures. On the other hand, there are proposals that these structures may represent relic structures having solar origins. Using a technique developed in [1], we examine current sheets in the solar wind from multiple spacecraft. We identify the "single-peak" and "double-peak" events in the solar wind and discuss possible scenarios for these events and its implication of the origin of the current sheets. [1] Li, G., "Identify current-sheet-like structures in the solar wind", ApJL 672, L65, 2008.
Statistical validation of a solar wind propagation model from 1 to 10 AU
NASA Astrophysics Data System (ADS)
Zieger, Bertalan; Hansen, Kenneth C.
2008-08-01
A one-dimensional (1-D) numerical magnetohydrodynamic (MHD) code is applied to propagate the solar wind from 1 AU through 10 AU, i.e., beyond the heliocentric distance of Saturn's orbit, in a non-rotating frame of reference. The time-varying boundary conditions at 1 AU are obtained from hourly solar wind data observed near the Earth. Although similar MHD simulations have been carried out and used by several authors, very little work has been done to validate the statistical accuracy of such solar wind predictions. In this paper, we present an extensive analysis of the prediction efficiency, using 12 selected years of solar wind data from the major heliospheric missions Pioneer, Voyager, and Ulysses. We map the numerical solution to each spacecraft in space and time, and validate the simulation, comparing the propagated solar wind parameters with in-situ observations. We do not restrict our statistical analysis to the times of spacecraft alignment, as most of the earlier case studies do. Our superposed epoch analysis suggests that the prediction efficiency is significantly higher during periods with high recurrence index of solar wind speed, typically in the late declining phase of the solar cycle. Among the solar wind variables, the solar wind speed can be predicted to the highest accuracy, with a linear correlation of 0.75 on average close to the time of opposition. We estimate the accuracy of shock arrival times to be as high as 10-15 hours within ±75 d from apparent opposition during years with high recurrence index. During solar activity maximum, there is a clear bias for the model to predicted shocks arriving later than observed in the data, suggesting that during these periods, there is an additional acceleration mechanism in the solar wind that is not included in the model.
A study of the relationship between micropulsations and solar wind properties
NASA Technical Reports Server (NTRS)
Yedidia, B. A.; Lazarus, A. J.; Vellante, M.; Villante, U.
1991-01-01
A year-long comparison between daily averages of solar wind parameters obtained from the MIT experiment on IMP-8 and micropulsation measurements made by the Universita dell'Aquila has shown a correlation between solar wind speed and micropulsation power with peaks of the correlation coefficient greater than 0.8 in the period range from 20 to 40 s. Different behavior observed for different period bands suggests that the shorter period activity tends to precede the highest values of the solar wind speed while the longer period activity tends to persist for longer intervals within high velocity solar wind streams. A comparison with simultaneous interplanetary magnetic field measurements supports the upstream origin of the observed ground pulsations.
Comparison of Density Measurements on ACE and WIND
NASA Astrophysics Data System (ADS)
Fowler, G.; Russell, C. T.
2001-12-01
In studying the compression of the magnetosphere by the solar wind we have used data publically available on the CDA Web site and the ACE website. The solar wind velocities measured by these two spacecraft agree well but the densities do not. The density reported by WIND is on average only 75% of that reported by ACE. This ratio does not appear to be a constant, however. It seems to vary with the solar wind velocity.
Elemental abundances in corotating events
NASA Technical Reports Server (NTRS)
Vonrosenvinge, T. T.; Mcguire, R. E.
1986-01-01
Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.
Upstream proton cyclotron waves at Venus near solar maximum
NASA Astrophysics Data System (ADS)
Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.
2015-01-01
magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of observable proton cyclotron waves near solar maximum.
RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com
Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electronmore » temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.« less
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
NASA Astrophysics Data System (ADS)
Whittaker, Ian C.; Sembay, Steve
2016-07-01
Solar wind charge exchange occurs at Earth between the neutral planetary exosphere and highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the interaction efficiency, known as the α value. This study produces experimental α values at the Earth, for oxygen emission in the range of 0.5-0.7 keV. Thirteen years of data from the Advanced Composition Explorer are examined, comparing O7+ and O8+ abundances, as well as O/H to other solar wind parameters allowing all parameters in the αO7,8+ calculation to be estimated based on solar wind velocity. Finally, a table is produced for a range of solar wind speeds giving average O7+ and O8+ abundances, O/H, and αO7,8+ values.
NASA Astrophysics Data System (ADS)
Ebert, Robert; Bagenal, Fran; McComas, David; Fowler, Christopher
2014-09-01
We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 - 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013), Jupiter’s bow shock and magnetopause is expected to be at least 8 - 12% further from Jupiter, if these trends continue.
The solar cycle variation of coronal mass ejections and the solar wind mass flux
NASA Technical Reports Server (NTRS)
Webb, David F.; Howard, Russell A.
1994-01-01
Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.
Dynamics of Magnetopause Reconnection in Response to Variable Solar Wind Conditions
NASA Astrophysics Data System (ADS)
Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.
2017-12-01
Quantifying the dynamics of magnetopause reconnection in response to variable solar wind driving is essential to advancing our predictive understanding of the interaction of the solar wind/IMF with the magnetosphere. To this end we have carried out numerical studies that combine global magnetohydrodynamic (MHD) and Large-Scale Kinetic (LSK) simulations to identify and understand the effects of solar wind/IMF variations. The use of the low dissipation, high resolution UCLA MHD code incorporating a non-linear local resistivity allows the representation of the global configuration of the dayside magnetosphere while the use of LSK ion test particle codes with distributed particle detectors allows us to compare the simulation results with spacecraft observations such as ion dispersion signatures observed by the Cluster spacecraft. We present the results of simulations that focus on the impacts of relatively simple solar wind discontinuities on the magnetopause and examine how the recent history of the interaction of the magnetospheric boundary with solar wind discontinuities can modify the dynamics of magnetopause reconnection in response to the solar wind input.
Some remarks on waves in the solar wind
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.
1995-01-01
Waves are significant to the solar wind in two ways as modifiers of the particle distribution functions, and as diagnostics. In addition, the solar wind serves as an important laboratory for the study of plasma wave processes, as it is possible to make detailed measurements of phenomena which are too small to be easily measured by laboratory sized sensors. There are two areas where waves (we include discontinuities under this heading) must make important modifications of the distribution functions: in accelerating the alpha particles to higher speeds than the protons (Marsch et al.) and in accelerating the solar wind itself. A third area is possibly in maintaining the relative isotropy of the solar wind ion distribution in the solar wind rest frame. As the solar wind is nearly collisionless, the ions should conserve magnetic moment in rushing out from the sun, and therefore Tperp/B should be relatively constant, but it is obviously not. This has not received much attention. The waves, both electromagnetic and electrostatic, which are pan of the solar Type 111 burst phenomenon, have been extensively studied as examples of nonlinear plasma phenomena, and also used as remote sensors to trace the solar magnetic field. The observations made by Ulysses show that the field can be traced in this way out to perhaps a little more than an A.U., but then the electromagnetic pan of the type 111 burst fades out. Nevertheless, sometimes Langmuir waves appear at Ulysses at an appropriate extrapolated time. This seems to support the picture in which the electromagnetic waves at the fundamental plasma frequency are trapped in density fluctuations. Langmuir waves in the solar wind are usually in quasi-thermal equilibrium quasi because the solar wind itself is not isothermal. The Observatory of Paris group (Steinberg. Meyer-Vernet, Hoang) has exploited this with an experiment on WIND which is capable of providing density and temperature on a faster time scale than hitherto. Recently it has been found that Langmuir waves are associated with magnetic holes. This may help to elucidate the nature of magnetic holes. Nonlinear processes are important in the transformation of wave energy to panicle energy. Some recent examples from WIND data will be shown.
Pluto-Charon solar wind interaction dynamics
NASA Astrophysics Data System (ADS)
Hale, J. P. M.; Paty, C. S.
2017-05-01
This work studies Charon's effects on the Pluto-solar wind interaction using a multifluid MHD model which simulates the interactions of Pluto and Charon with the solar wind as well as with each other. Specifically, it investigates the ionospheric dynamics of a two body system in which either one or both bodies possess an ionosphere. Configurations in which Charon is directly upstream and directly downstream of Pluto are considered. Depending on ionospheric and solar wind conditions, Charon could periodically pass into the solar wind flow upstream of Pluto. The results of this study demonstrate that in these circumstances Charon modifies the upstream flow, both in the case in which Charon possesses an ionosphere, and in the case in which Charon is without an ionosphere. This modification amounts to a change in the gross structure of the interaction region when Charon possesses an ionosphere but is more localized when Charon lacks an ionosphere. Furthermore, evidence is shown that supports Charon acting to partially shield Pluto from the solar wind when it is upstream of Pluto, resulting in a decrease in ionospheric loss by Pluto.
The dispersion analysis of drift velocity in the study of solar wind flows
NASA Astrophysics Data System (ADS)
Olyak, Maryna
2013-09-01
In this work I consider a method for the study of the solar wind flows at distances from the Sun more than 1 AU. The method is based on the analysis of drift velocity dispersion that was obtained from the simultaneous scintillation observations in two antennas. I considered dispersion dependences for different models of the solar wind, and I defined its specificity for each model. I have determined that the presence of several solar wind flows significantly affects the shape and the slope of the dispersion curve. The maximum slope angle is during the passage of the fast solar wind flow near the Earth. If a slow flow passes near the Earth, the slope of the dispersion curve decreases. This allows a more precise definition of the velocity and flow width compared to the traditional scintillation method. Using the comparison of experimental and theoretical dispersion curves, I calculated the velocity and width of solar wind flows and revealed the presence of significant velocity fluctuations which accounted for about 60% of the average velocity.
NASA Astrophysics Data System (ADS)
Lue, C.; Halekas, J. S.
2017-12-01
Particle sensors on the MAVEN spacecraft (SWIA, SWEA, STATIC) observe precipitating solar wind ions during MAVEN's periapsis passes in the Martian atmosphere (at 120-250 km altitude). The signature is observed as positive and negative particles at the solar wind energy, traveling away from the Sun. The observations can be explained by the solar wind penetrating the Martian magnetic barrier in the form of energetic neutral atoms (ENAs) due to charge-exchange with the Martian hydrogen corona, and then being reionized in positive or negative form upon impact with the atmosphere (1). These findings have elucidated solar wind precipitation dynamics at Mars, and can also be used to monitor the solar wind even when MAVEN is at periapsis (2). In the present study, we focus on a SWIA instrument background signal that has been interpreted as spacecraft/instrument-scattered ions (2). We aim to model and subtract the scattered ion signal from the observations including those of reionized solar wind. We also aim to use the scattered ion signal to track hydrogen ENAs impacting the spacecraft above the reionization altitude. We characterize the energy spectrum and directional scattering function for solar wind scattering off the SWIA aperture structure, the radome and the spacecraft body. We find a broad scattered-ion energy spectrum up to the solar wind energy, displaying increased energy loss and reduced flux with increasing scattering angle, allowing correlations with the solar wind direction, energy, and flux. We develop models that can be used to predict the scattered signal based on the direct solar wind observations or to infer the solar wind properties based on the observed scattered signal. We then investigate deviations to the models when the spacecraft is in the Martian atmosphere and evaluate the plausibility of that these are caused by ENAs. We also perform SIMION modeling of the scattering process and the resulting signal detection by SWIA, to study the results from an instrument point-of-view and evaluate the instrument sensitivity to ENAs. 1. Halekas, J. S., et al. (2015), Geophys. Res. Lett., 42, doi:10.1002/2015GL064693 2. Halekas, J. S., et al. (2017), J. Geophys. Res., 122, doi:10.1002/2016JA023167
SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepri, S. T.; Landi, E.; Zurbuchen, T. H.
2013-05-01
Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun movedmore » from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a {approx}50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.« less
FIP effect for minor heavy solar wind ions as seen with SOHO/CELIAS/MTOF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidrich-Meisner, Verena, E-mail: heidrich@physik.uni-kiel.de; Berger, Lars; Wimmer-Schweingruber, Robert F.
A recent paper [Shearer et al., 2014] reported that during solar maximum Ne showed a surprisingly low abundance. This leads to the question whether other elements show the same behavior. The good mass resolution of Mass-Time-Of-Flight (MTOF) as part of the Charge ELement and Isotope Analysis System (CELIAS) on the Solar Helioshperic Observatory (SOHO) allows to investigate the composition of heavy minor elements in different types of solar wind. We restrict this study to slow solar wind, where the characterisation of slow solar wind is taken from Xu and Borovsky, 2014. This classification scheme requires magnet field information. Since SOHOmore » does not carry a magnetometer, we use the Magnetometer (MAG) of the Advanced Composition Explorer (ACE) instead. The Solar Wind Ion Composition Spectrometer (ACE/SWICS) also provides composition data for cross-calibration and charge-state distributions as input for the transmission function of MTOF whenever the two spacecraft can be expected to observe the same type of wind. We illustrate the MTOF’s capability to determine the solar wind abundance compared to the photospheric abundance (called the FIP ratio in the following) for rare elements like Ti or Cr on long-time scales as a proof of concept for our analysis. And in this brief study, measurements with both ACE/SWICS indicate that the observed elements exhibit a (weak) dependence on the solar cycle, whereas the MTOF measurements are inconclusive.« less
NASA Technical Reports Server (NTRS)
Geiss, J.; Ogilvie, K. W.; Von Steiger, R.; Mall, U.; Gloeckler, G.; Galvin, A. B.; Ipavich, F.; Wilken, B.; Gliem, F.
1992-01-01
We present new data on rare ions in the solar wind. Using the Ulysses-SWICS instrument with its very low background we have searched for low-charge ions during a 6-d period of low-speed solar wind and established sensitive upper limits for many species. In the solar wind, we found He(1+)/He(2+) of less than 5 x 10 exp -4. This result and the charge state distributions of heavier elements indicate that all components of the investigated ion population went through a regular coronal expansion and experienced the typical electron temperatures of 1 to 2 million Kelvin. We argue that the virtual absence of low-charge ions demonstrates a very low level of nonsolar contamination in the source region of the solar wind sample we studied. Since this sample showed the FlP effect typical for low-speed solar wind, i.e., an enhancement in the abundances of elements with low first ionization potential, we conclude that this enhancement was caused by an ion-atom separation mechanism operating near the solar surface and not by foreign material in the corona.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-109-000] Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development, Inc.; Notice of Petition for Declaratory...
Were chondrites magnetized by the early solar wind?
NASA Astrophysics Data System (ADS)
Oran, Rona; Weiss, Benjamin P.; Cohen, Ofer
2018-06-01
Chondritic meteorites have been traditionally thought to be samples of undifferentiated bodies that never experienced large-scale melting. This view has been challenged by the existence of post-accretional, unidirectional natural remanent magnetization (NRM) in CV carbonaceous chondrites. The relatively young inferred NRM age [∼10 million years (My) after solar system formation] and long duration of NRM acquisition (1-106 y) have been interpreted as evidence that the magnetizing field was that of a core dynamo within the CV parent body. This would imply that CV chondrites represent the primitive crust of a partially differentiated body. However, an alternative hypothesis is that the NRM was imparted by the early solar wind. Here we demonstrate that the solar wind scenario is unlikely due to three main factors: 1) the magnitude of the early solar wind magnetic field is estimated to be <0.1 μT in the terrestrial planet-forming region, 2) the resistivity of chondritic bodies limits field amplification due to pile-up of the solar wind to less than a factor of 3.5 times that of the instantaneous solar wind field, and 3) the solar wind field likely changed over timescales orders of magnitude shorter than the timescale of NRM acquisition. Using analytical arguments, numerical simulations and astronomical observations of the present-day solar wind and magnetic fields of young stars, we show that the maximum mean field the ancient solar wind could have imparted on an undifferentiated CV parent body is <3.5 nT, which is 3-4 and 3 orders of magnitude weaker than the paleointensities recorded by the CV chondrites Allende and Kaba, respectively. Therefore, the solar wind is highly unlikely to be the source of the NRM in CV chondrites. Nevertheless, future high sensitivity paleomagnetic studies of rapidly-cooled meteorites with high magnetic recording fidelity could potentially trace the evolution of the solar wind field in time.
The Interaction Between the Magnetosphere of Mars and that of Comet Siding Spring
NASA Astrophysics Data System (ADS)
Holmstrom, M.; Futaana, Y.; Barabash, S. V.
2015-12-01
On 19 October 2014 the comet Siding Spring flew by Mars. This was a unique opportunity to study the interaction between a cometary and a planetary magnetosphere. Here we model the magnetosphere of the comet using a hybrid plasma solver (ions as particles, electrons as a fluid). The undisturbed upstream solar wind ion conditions are estimated from observations by ASPERA-3/IMA on Mars Express during several orbits. It is found that Mars probably passed through a solar wind that was disturbed by the comet during the flyby. The uncertainty derives from that the size of the disturbed solar wind region in the comet simulation is sensitive to the assumed upstream solar wind conditions, especially the solar wind proton density.
Measurements of lunar magnetic field interaction with the solar wind.
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Snyder, C. W.; Clay, D. R.
1972-01-01
Study of the compression of the remanent lunar magnetic field by the solar wind, based on measurements of remanent magnetic fields at four Apollo landing sites and of the solar wind at two of these sites. Available data show that the remanent magnetic field at the lunar surface is compressed as much as 40% above its initial value by the solar wind, but the total remanent magnetic pressure is less than the stagnation pressure by a factor of six, implying that a local shock is not formed.
NASA Technical Reports Server (NTRS)
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2012-01-01
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.
Comparison of solar wind driving of the aurora in the two hemispheres due to the solar wind dynamo
NASA Astrophysics Data System (ADS)
Reistad, Jone Peter; Østgaard, Nikolai; Magnus Laundal, Karl; Haaland, Stein; Tenfjord, Paul; Oksavik, Kjellmar
2014-05-01
Event studies of simultaneous global imaging of the aurora in both hemispheres have suggested that an asymmetry of the solar wind driving between the two hemispheres could explain observations of non-conjugate aurora during specific driving conditions. North-South asymmetries in energy transfer from the solar wind across the magnetopause is believed to depend upon the dipole tilt angle and the x-component of the interplanetary magnetic field (IMF). Both negative tilt (winter North) and negative IMF Bx is expected to enhance the efficiency of the solar wind dynamo in the Northern Hemisphere. By the same token, positive tilt and IMF Bx is expected to enhance the solar wind dynamo efficiency in the Southern Hemisphere. We show a statistical study of the auroral response from both hemispheres using global imaging where we compare results during both favourable and not favourable conditions in each hemisphere. By this study we will address the question of general impact on auroral hemispheric asymmetries by this mechanism - the asymmetric solar wind dynamo. We use data from the Wideband Imaging Camera on the IMAGE spacecraft which during its lifetime from 2000-2005 covered both hemispheres. To ease comparison of the two hemispheres, seasonal differences in auroral brightness is removed as far as data coverage allows by only using events having small dipole tilt angles. Hence, the IMF Bx is expected to be the controlling parameter for the hemispheric preference of strongest solar wind dynamo efficiency in our dataset. Preliminary statistical results indicate the expected opposite behaviour in the two hemispheres, however, the effect is believed to be weak.
Statistical Methods for Quantifying the Variability of Solar Wind Transients of All Sizes
NASA Astrophysics Data System (ADS)
Tindale, E.; Chapman, S. C.
2016-12-01
The solar wind is inherently variable across a wide range of timescales, from small-scale turbulent fluctuations to the 11-year periodicity induced by the solar cycle. Each solar cycle is unique, and this change in overall cycle activity is coupled from the Sun to Earth via the solar wind, leading to long-term trends in space weather. Our work [Tindale & Chapman, 2016] applies novel statistical methods to solar wind transients of all sizes, to quantify the variability of the solar wind associated with the solar cycle. We use the same methods to link solar wind observations with those on the Sun and Earth. We use Wind data to construct quantile-quantile (QQ) plots comparing the statistical distributions of multiple commonly used solar wind-magnetosphere coupling parameters between the minima and maxima of solar cycles 23 and 24. We find that in each case the distribution is multicomponent, ranging from small fluctuations to extreme values, with the same functional form at all phases of the solar cycle. The change in PDF is captured by a simple change of variables, which is independent of the PDF model. Using this method we can quantify the quietness of the cycle 24 maximum, identify which variable drives the changing distribution of composite parameters such as ɛ, and we show that the distribution of ɛ is less sensitive to changes in its extreme values than that of its constituents. After demonstrating the QQ method on solar wind data, we extend the analysis to include solar and magnetospheric data spanning the same time period. We focus on GOES X-ray flux and WDC AE index data. Finally, having studied the statistics of transients across the full distribution, we apply the same method to time series of extreme bursts in each variable. Using these statistical tools, we aim to track the solar cycle-driven variability from the Sun through the solar wind and into the Earth's magnetosphere. Tindale, E. and S.C. Chapman (2016), Geophys. Res. Lett., 43(11), doi: 10.1002/2016GL068920.
A parameter study of the two-fluid solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil; Holzer, Thomas E.
1992-01-01
A two-fluid model of the solar wind was introduced by Sturrock and Hartle (1966) and Hartle and Sturrock (1968). In these studies the proton energy equation was integrated neglecting the heat conductive term. Later several authors solved the equations for the two-fluid solar wind model keeping the proton heat conductive term. Methods where the equations are integrated simultaneously outward and inward from the critical point were used. The equations were also integrated inward from a large heliocentric distance. These methods have been applied to cases with low coronal base electron densities and high base temperatures. In this paper we present a method of integrating the two-fluid solar wind equations using an iteration procedure where the equations are integrated separately and the proton flux is kept constant during the integrations. The technique is applicable for a wide range of coronal base densities and temperatures. The method is used to carry out a parameter study of the two-fluid solar wind.
Flow Sources of The Solar Wind Stream Structieres
NASA Astrophysics Data System (ADS)
Lotova, N. A.; Obridko, V. N.; Vladimirskii, K. V.
The large-scale stream structure of the solar wind flow was studied at the main acceler- ation area of 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomy observations of radio wave scattering on near-solar plasmas (large radio telescopes of the P.N.Lebedev Physical Institute were used); mor- phology of the WLC as revealed by the SOHO optical solar corona observations; solar magnetic field strength and configuration computed using the Wilcox Solar Observa- tory data. Experimental data of 1997-1998 years on the position of the transition, tran- sonic region of the solar wind flow were used as a parameter reflecting the intensity of the solar plasmas acceleration process. Correlation studies of these data combined with the magnetic field strength at the solar corona level revealed several types of the solar wind streams differing in the final result, the velocity at large distances from the Sun. Besides of the well-known flows stemming from the polar coronal holes, high-speed streams were observed arising in lateral areas of the streamer structures in contrast to the main body of the streamers, being a known source of the slow solar wind. The slowest streams arise at areas of mixed magnetic field structure compris- ing both open and closed (loop-like) filed lines. In the white-light corona images this shows extensive areas of bright amorphous luminosity.
Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Riley, Pete
2001-01-01
Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which pressure disturbances propagate in the wind.
NASA Astrophysics Data System (ADS)
Gyalay, S.; Vogt, M.; Withers, P.
2015-12-01
Previous studies have mapped locations from the magnetic equator to the ionosphere in order to understand how auroral features relate to magnetospheric sources. Vogt et al. (2011) in particular mapped equatorial regions to the ionosphere by using a method of flux equivalence—requiring that the magnetic flux in a specified region at the equator is equal to the magnetic flux in the region to which it maps in the ionosphere. This is preferred to methods relying on tracing field lines from global Jovian magnetic field models, which are inaccurate beyond 30 Jupiter radii from the planet. That previous study produced a two-dimensional model—accounting for changes with radial distance and local time—of the normal component of the magnetic field in the equatorial region. However, this two-dimensional fit—which aggregated all equatorial data from Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Ulysses, and Galileo—did not account for temporal variability resulting from changing solar wind conditions. Building off of that project, this study aims to map the Jovian aurora to the magnetosphere for two separate cases: with a nominal magnetosphere, and with a magnetosphere compressed by high solar wind dynamic pressure. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, intervals of high solar wind dynamic pressure were separated from intervals of low solar wind dynamic pressure—thus creating two datasets of magnetometer measurements to be used for two separate 2D fits, and two separate mappings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisenfeld, D. B.; Wiens, R. C.; Barraclough, B. L.
2005-01-01
The NASA Genesis mission collected solar wind on ultrapure materials between November 30, 2001 and April 1, 2004. The samples were returned to Earth September 8, 2004. Despite the hard landing that resulted from a failure of the avionics to deploy the parachute, many samples were returned in a condition that will permit analyses. Sample analyses of these samples should give a far better understanding of the solar elemental and isotopic composition (Burnett et al. 2003). Further, the photospheric composition is thought to be representative of the solar nebula, so that the Genesis mission will provide a new baseline formore » the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. Sample analysis is currently underway. The Genesis samples must be placed in the context of the solar and solar wind conditions under which they were collected. Solar wind is fractionated from the photosphere by the forces that accelerate the ions off of the Sun. This fractionation appears to be ordered by the first ionization potential (FIP) of the elements, with the tendency for low-FIP elements to be over-abundant in the solar wind relative to the photosphere, and high-FIP elements to be under-abundant (e.g. Geiss, 1982; von Steiger et al., 2000). In addition, the extent of elemental fractionation differs across different solarwind regimes. Therefore, Genesis collected solar wind samples sorted into three regimes: 'fast wind' or 'coronal hole' (CH), 'slow wind' or 'interstream' (IS), and 'coronal mass ejection' (CME). To carry this out, plasma ion and electron spectrometers (Barraclough et al., 2003) continuously monitored the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons, and those parameters were in turn used in a rule-based algorithm that assigned the most probable solar wind regime (Neugebauer et al., 2003). At any given time, only one of three regime-specific collectors (CH, IS, or CME) was exposed to the solar wind. Here we report on the regime-specific solar wind conditions from in-situ instruments over the course of the collection period. Further, we use composition data from the SWICS (Solar Wind Ion Composition Spectrometer) instrument on ACE (McComas et al., 1998) to examine the FIP fractionation between solar wind regimes, and make a preliminary comparison of these to the FIP analysis of Ulysses/SWICS composition data (von Steiger et al. 2000). Our elemental fractionation study includes a reevaluation of the Ulysses FIP analysis in light of newly reported photospheric abundance data (Asplund, Grevesse & Sauval, 2005). The new abundance data indicate a metallicity (Z/X) for the Sun almost a factor of two lower than that reported in the widely used compilation of Anders & Grevesse (1989). The new photospheric abundances suggest a lower degree of solar wind fractionation than previously reported by von Steiger et al. (2000) for the first Ulysses polar orbit (1991-1998).« less
Solar wind parameters and magnetospheric coupling studies
NASA Technical Reports Server (NTRS)
King, Joseph H.
1986-01-01
This paper presents distributions, means, and standard deviations of the fluxes of solar wind protons, momentum, and energy as observed near earth during the solar quiet and active years 1976 and 1979. Distributions of ratios of energies (Alfven Mach number, plasma beta) and distributions of interplanetary magnetic field orientations are also given. Finally, the uncertainties associated with the use of the libration point orbiting ISEE-3 spacecraft as a solar wind monitor are discussed.
Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft
NASA Astrophysics Data System (ADS)
Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.
2018-04-01
It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.
Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind
NASA Technical Reports Server (NTRS)
Strachan, Leonard
2005-01-01
NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.
Acceleration region of the slow solar wind in corona
NASA Astrophysics Data System (ADS)
Abbo, L.; Antonucci, E.; Mikić, Z.; Riley, P.; Dodero, M. A.; Giordano, S.
We present the results of a study concerning the physical parameters of the plasma of the extended corona in the low-latitude and equatorial regions, in order to investigate the sources of the slow solar wind during the minimum of solar activity. The equatorial streamer belt has been observed with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO from August 19 to September 1, 1996. The spectroscopic diagnostic technique applied in this study, based on the OVI 1032, 1037 Ålines, allows us to determine both the solar wind velocity and the electron density of the extended corona. The main result of the analysis is the identification of the acceleration region of the slow wind, whose outflow velocity is measured in the range from 1.7 up to 3.5 solar radii.
A Possible Cause of the Diminished Solar Wind During the Solar Cycle 23 - 24 Minimum
NASA Astrophysics Data System (ADS)
Liou, Kan; Wu, Chin-Chun
2016-12-01
Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23 - 24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth's orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6 - 1995.8) and third (2006.9 - 2008.2) Ulysses' perihelion ({˜} 1.4 AU) crossings, was about the same speed, but significantly less dense ({˜} 34 %) and cooler ({˜} 20 %), and the total magnetic field was {˜} 30 % weaker during the third compared to the first crossing. It is also found that the SWR was {˜} 50 % wider in the third ({˜} 68.5^deg; in heliographic latitude) than in the first ({˜} 44.8°) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses' perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.
Impacts of wind stilling on solar radiation variability in China
Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong
2015-01-01
Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748
Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert
The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.« less
NASA Astrophysics Data System (ADS)
Russell, C. T.; Zhao, C.; Qi, Y.; Lai, H.; Strangeway, R. J.; Paterson, W. R.; Giles, B. L.; Baumjohann, W.; Torbert, R. B.; Burch, J.
2017-12-01
The nature of the solar wind interaction with the Earth's magnetic field depends on the balance between magnetic and plasma forces at the magnetopause. This balance is controlled by the magnetosonic Mach number of the bow shock standing in front of the magnetosphere. We have used measurements of the solar wind obtained in the near Earth solar wind to calculate this Mach number whenever MMS was near the magnetopause and in the subsolar region. In particular, we examine two intervals of magnetopause encounters when the solar wind Mach number was close to 2.0, one when the IMF was nearly due southward and one when it was due northward. The due southward magnetic field produced a rapidly oscillating boundary. The northward magnetic field produced a much more stable boundary but with a hot low density boundary layer between the magnetospheric and magnetosheath plasmas. These magnetopause crossings are quite different than those studied earlier under high solar wind Mach number conditions.
On the history of the solar wind discovery
NASA Astrophysics Data System (ADS)
Obridko, V. N.; Vaisberg, O. L.
2017-03-01
The discovery of the solar wind has been an outstanding achievement in heliophysics and space physics. The solar wind plays a crucial role in the processes taking place in the Solar System. In recent decades, it has been recognized as the main factor that controls the terrestrial effects of space weather. The solar wind is an unusual plasma laboratory of giant scale with a fantastic diversity of parameters and operating modes, and devoid of influence from the walls of laboratory plasma systems. It is also the only kind of stellar wind accessible for direct study. The history of this discovery is quite dramatic. Like many remarkable discoveries, it had several predecessors. However, the honor of a discovery usually belongs to a scientist who was able to more fully explain the phenomenon. Such a man is deservedly considered the US theorist Eugene Parker, who discovered the solar wind, as we know it today, almost "with the point of his pen". In 2017, we will celebrate the 90th anniversary birthday of Eugene Parker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchak, David; Cochran, Jaquelin; Deshmukh, Ranjit
The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established an installed capacity target of 175 gigawatts (GW) RE by 2022 that includes 60 GW of wind and 100 GW of solar, up from current capacities of 29 GW wind and 9 GW solar. India’s contribution to global efforts on climate mitigation extends this ambition to 40% non-fossil-based generation capacity by 2030. Global experience demonstrates that power systems can integrate wind and solar at this scale; however, evidence-based planning is important tomore » achieve wind and solar integration at least cost. The purpose of this analysis is to evaluate the operation of India’s power grid with 175 GW of RE in order to identify potential cost and operational concerns and actions needed to efficiently integrate this level of wind and solar generation.« less
Solar Illumination Control of the Polar Wind
NASA Astrophysics Data System (ADS)
Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.
2017-11-01
Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.
Solar wind and extreme ultraviolet modulation of the lunar ionosphere/exosphere
NASA Technical Reports Server (NTRS)
Freeman, J. W.
1976-01-01
The ALSEP/SIDE detectors routinely monitor the dayside lunar ionosphere. Variations in the ionosphere are found to correlate with both the 2800 MHz radio index which can be related to solar EUV and with the solar wind proton flux. For the solar wind, the ionospheric variation is proportionately greater than that of the solar wind. This suggests an amplification effect on the lunar atmosphere due perhaps to sputtering of the surface or, less probably, an inordinate enhancement of noble gases in the solar wind. The surface neutral number density is calculated under the assumption of neon gas. During a quiet solar wind this number agrees with or is slightly above that expected for neon accreted from the solar wind. During an enhanced solar wind the neutral number density is much higher.
Self-Consistent and Time-Dependent Solar Wind Models
NASA Technical Reports Server (NTRS)
Ong, K. K.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Sulkanen, M. E.
1997-01-01
We describe the first results from a self-consistent study of Alfven waves for the time-dependent, single-fluid magnetohydrodynamic (MHD) solar wind equations, using a modified version of the ZEUS MHD code. The wind models we examine are radially symmetrical and magnetized; the initial outflow is described by the standard Parker wind solution. Our study focuses on the effects of Alfven waves on the outflow and is based on solving the full set of the ideal nonlinear MHD equations. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; thus, the models naturally account for the back-reaction of the wind on the waves, as well as for the nonlinear interaction between different types of MHD waves. Our results clearly demonstrate when momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast streams in solar coronal holes; we discuss the range of wave amplitudes required to obtained such fast stream solutions.
Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.
1995-01-01
The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.
Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona
NASA Astrophysics Data System (ADS)
Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.
2013-08-01
The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.
Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind
Lugaz, Noé; Farrugia, Charles J.; Huang, Chia-Lin; Winslow, Reka M.; Spence, Harlan E.; Schwadron, Nathan A.
2016-01-01
The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000–100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets. PMID:27694887
Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind.
Lugaz, Noé; Farrugia, Charles J; Huang, Chia-Lin; Winslow, Reka M; Spence, Harlan E; Schwadron, Nathan A
2016-10-03
The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000-100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.
1981-01-01
An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.
Solar Corona/Wind Composition and Origins of the Solar Wind
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.
2014-12-01
Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.
Study of seismic activity during the ascending and descending phases of solar activity
NASA Astrophysics Data System (ADS)
Sukma, Indriani; Abidin, Zamri Zainal
2017-06-01
The study of the solar cycle and geomagnetic index associated with the seismic activity from the year 1901 to the end of 2015 has been done for an area that covers the majority of China and its bordering countries. Data of sunspot number, solar wind speed, daily storm time index and earthquake number are collected from NOAA, NASA, WDC, OMNI and USGS databases and websites. The earthquakes are classified into small (M < 5) and large (M ≥ 5) magnitudes (in Richter scale). We investigated the variation of earthquake activities with the geomagnetic storm index due to the solar wind. We focused on their variation in the ascending and descending phases of solar cycle. From our study, we conclude that there is a correlation between the phases' geomagnetic index and solar wind speed. We have also suggested that there is a certain degree of correlation between solar activity and seismicity in these phases. For every solar cycle, we find that there is a trend for earthquakes to occur in greater numbers during the descending phase. This can be explained by the increment in the solar wind speed and geomagnetic storm index during this phase.
Intermittency of solar wind on scale 0.01-16 Hz.
NASA Astrophysics Data System (ADS)
Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel
Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.
The Interplanetary Magnetic Field and Magnetospheric Current Systems
NASA Technical Reports Server (NTRS)
El-Alaoui, Mostafa
2003-01-01
We have performed systematic global magnetohydrodynamic (MHD) simulation studies driven by an idealized time series of solar wind parameters to establish basic cause and effect relationships between the solar wind variations and the ionosphere parameters. We studied six cases in which the interplanetary magnetic field (IMF) rotated from southward to northward in one minute. In three cases (cases A, B, and C) we ran five hours of southward IMF with Beta(sub Zeta) = 5 nT, followed by five hours of northward IMF with Beta(sub Zeta) = 5 nT. In the other three cases (cases D, E, and F) the magnetic field magnitude was increased to 10 nT. The solar wind parameters were: For cases A and D a density of 5 cm(exp -3), a thermal pressure of 3.3 nPa, and a solar wind speed 375 km/s, for cases B and E a density of 10 cm(exp -3), a thermal pressure of 9.9 nPa, and a solar wind speed 420 km/s, while for cases C and F a density of 15 cm(exp -3), a thermal pressure of 14.9 nPa, and a solar wind speed of 600 km/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov
2012-07-20
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfermore » from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons. We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 Degree-Sign -90 Degree-Sign and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.« less
Cleaning Study of Genesis Sample 60487
NASA Technical Reports Server (NTRS)
Kuhlman, Kim R.; Rodriquez, M. C.; Gonzalez, C. P.; Allton, J. H.; Burnett, D. S.
2013-01-01
The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind were stopped in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. Particles of Genesis wafers, brine from the Utah Testing Range and an organic film have deleterious effects on many of the high-resolution instruments that have been developed to analyze the implanted solar wind. We have conducted a correlative microscopic study of the efficacy of cleaning Genesis samples with megasonically activated ultrapure water and UV/ozone cleaning. Sample 60487, the study sample, is a piece of float-zone silicon from the B/C array approximately 4.995mm x 4.145 mm in size
Renewable Energy Zones for Balancing Siting Trade-offs in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Ranjit; Wu, Grace C.; Phadke, Amol
India’s targets of 175 GW of renewable energy capacity by 2022, and 40% generation capacity from non-fossil fuel sources by 2030 will require a rapid and dramatic increase in solar and wind capacity deployment and overcoming its associated economic, siting, and power system challenges. The objective of this study was to spatially identify the amount and quality of wind and utility-scale solar resource potential in India, and the possible siting-related constraints and opportunities for development of renewable resources. Using the Multi-criteria Analysis for Planning Renewable Energy (MapRE) methodological framework, we estimated several criteria valuable for the selection of sites formore » development for each identified potential "zone", such as the levelized cost of electricity, distance to nearest substation, capacity value (or the temporal matching of renewable energy generation to demand), and the type of land cover. We find that high quality resources are spatially heterogeneous across India, with most wind and solar resources concentrated in the southern and western states, and the northern state of Rajasthan. Assuming India's Central Electricity Regulatory Commission's norms, we find that the range of levelized costs of generation of wind and solar PV resources overlap, but concentrated solar power (CSP) resources can be approximately twice as expensive. Further, the levelized costs of generation vary much more across wind zones than those across solar zones because of greater heterogeneity in the quality of wind resources compared to that of solar resources. When considering transmission accessibility, we find that about half of all wind zones (47%) and two-thirds of all solar PV zones (66%) are more than 25 km from existing 220 kV and above substations, suggesting potential constraints in access to high voltage transmission infrastructure and opportunities for preemptive transmission planning to scale up RE development. Additionally and importantly, we find that about 84% of all wind zones are on agricultural land, which provide opportunities for multiple-uses of land but may also impose constraints on land availability. We find that only 29% of suitable solar PV sites and 15% of CSP sites are within 10 km of a surface water body suggesting water availability as a significant siting constraint for solar plants. Availability of groundwater resources was not analyzed as part of this study. Lastly, given the possible economic benefits of transmission extensions or upgrades that serve both wind and solar generators, we quantified the co-location opportunities between the two technologies and find that about a quarter (28%) of all solar PV zones overlap with wind zones. Using the planning tools made available as part of this study, these multiple siting constraints and opportunities can be systematically compared and weighted to prioritize development that achieves a particular technology target. Our results are limited by the uncertainties associated with the input datasets, in particular the geospatial wind and solar resource, transmission, and land use land cover datasets. As input datasets get updated and improved, the methodology and tools developed through this study can be easily adapted and applied to these new datasets to improve upon the results presented in this study. India is on a path to significantly decarbonize its electricity grid through wind and solar development. A stakeholder-driven, systematic, and integrated planning approach using data and tools such as those highlighted in this study is essential to not only meet the country's RE targets, but to meet them in a cost-effective, and socially and environmentally sustainable way.« less
Small is different: RPC observations of a small scale comet interacting with the solar wind
NASA Astrophysics Data System (ADS)
Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team
2016-10-01
Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind - comet atmosphere interaction region is smaller than the pickup ion gyroradius in the undisturbed solar wind.
Solar wind structure out of the ecliptic plane over solar cycles
NASA Astrophysics Data System (ADS)
Sokol, J. M.; Bzowski, M.; Tokumaru, M.
2017-12-01
Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.
The interaction of the solar wind with the interstellar medium
NASA Technical Reports Server (NTRS)
Axford, W. I.
1972-01-01
The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.
Magnetic Fields and Flows in Open Magnetic Structures
NASA Technical Reports Server (NTRS)
Jones, Harrlson P.
2004-01-01
Open magnetic structures connect the solar surface to the heliosphere and are thus of great interest in solar-terrestrial physics. This talk is primarily an observational review of what is known about magnetic fields and particularly flows in such regions with special focus on coronal holes and origins of the fast solar wind. First evidence of the connection between these two features was seen in correlations of Skylab data with in situ measurements of the solar wind soon after the discovery of coronal holes, which are now known to emanate from unipolar magnetic regions at the photosphere. Subsequently many observations of have been made, ranging from oscillations in the underlying photosphere and chromosphere, to possible beginnings of the solar wind as observed by Doppler shifts in high chromospheric and transition-region lines, to coronagraphic time-lapse studies of outward-moving blobs of material which perhaps trace elements of solar-wind plasma. Some of the many unresolved and controversial issues regarding details of these observations and their association with the solar wind will be discussed.
Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.
2007-01-01
We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.
Foreshock and magnetosheath transients, origin and connection to the magnetopause.
NASA Astrophysics Data System (ADS)
Blanco-Cano, X.
2014-12-01
The solar wind interaction with earths's magnetosphere begins well ahead of the magnetopause when the solar wind encounters the foreshock, bow shock and magnetosheath. In these regions a variety of waves and magnetic structures exist and modify the solar wind. The foreshock is permeated by a variety of ultra low frequency (ULF) waves and magnetic transient structures such as shocklets, SLAMs, and cavitons. These structures are very compressive and are generated by the solar wind interaction with backstreaming particles plus non linear processes. Other structures such as hot flow anomalies (HFA), and spontaneous hot flow anomalies (SHFA) can also exist in the foreshock. HFAs are generated by discontinuities that arrive to the bow shock. Recent studies show that SHFA have the same profiles as HFA, but form by the interaction of foreshock cavitons with the bowshock. Foreshock bubbles can form when energetic ions upstream of the quasi-parallel bow shock interact with rotational discontinuities in the solar wind. All these structures can merge with the bow shock and be convected into the magnetosheath. The magnetosheath is both a place for rich plasma physical processes and a filter between solar wind and the magnetospheric plasma and magnetic field environments. It is permeated by the superposition of upstream convected structures plus locally generated waves (ion cyclotron and mirror mode). Recent studies have shown that jets and magnetosheath filamentary structures (MFS) can be observed downstream from the bow shock. Jets are associated to shock rippling efects and MFS to acceleration of particles at and near the shock. Due to the presence of the foreshock, bow shock and magnetosheath transients, the solar wind arriving to the magnetopause is very different to the pristine solar wind. In this talk we will address the main characteristics of these transients, discuss their origin, and how they can modify the solar wind, the bow shock, the magnetosheath and the magnetopause.
Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae.
Crary, F J; Clarke, J T; Dougherty, M K; Hanlon, P G; Hansen, K C; Steinberg, J T; Barraclough, B L; Coates, A J; Gérard, J-C; Grodent, D; Kurth, W S; Mitchell, D G; Rymer, A M; Young, D T
2005-02-17
The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).
Solar Cycle Variation and Multipoint Studies of ICME Properties
NASA Technical Reports Server (NTRS)
Russell, C. T.
2005-01-01
The goal of the Living With a Star program is to understand the Sun-Earth connection sufficiently well that we can solve problems critical to life and society. This can most effectively be done in the short term using observations from our past and on-going programs. Not only can this approach solve some of the pressing issues but also it can provide ideas for the deployment of future spacecraft in the LWS program. The proposed effort uses data from NEAR, SOHO, Wind, ACE and Pioneer Venus in quadrature, multipoint, and solar cycle studies to study the interplanetary coronal mass ejection and its role in the magnetic flux cycle of the Sun. ICMEs are most important to the LWS objectives because the solar wind conditions associated with these structures are the most geoeffective of any solar wind phenomena. Their ability to produce strong geomagnetic disturbances arises first because of their high speed. This high speed overtakes the ambient solar wind producing a bow shock wave similar to the terrestrial bow shock. In the new techniques we develop as part of this effort we exploit this feature of ICMEs. This shocked plasma has a greater velocity, higher density and stronger magnetic field than the ambient solar wind, conditions that can enhance geomagnetic activity. The driving ICME is a large magnetic structure expanding outward in the solar wind [Gosling, 19961. The ICMEs magnetic field is generally much higher than that in the ambient solar wind and the velocity is high. The twisted nature of the magnetic field in an ICME almost ensures that sometime during the ICME conditions favorable for geomagnetic storm initiation will occur.
Western Wind and Solar Integration Study: Phase 2 (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, D.; Brinkman, G.; Ibanez, E.
This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.
Saptio-temporal complementarity of wind and solar power in India
NASA Astrophysics Data System (ADS)
Lolla, Savita; Baidya Roy, Somnath; Chowdhury, Sourangshu
2015-04-01
Wind and solar power are likely to be a part of the solution to the climate change problem. That is why they feature prominently in the energy policies of all industrial economies including India. One of the major hindrances that is preventing an explosive growth of wind and solar energy is the issue of intermittency. This is a major problem because in a rapidly moving economy, energy production must match the patterns of energy demand. Moreover, sudden increase and decrease in energy supply may destabilize the power grids leading to disruptions in power supply. In this work we explore if the patterns of variability in wind and solar energy availability can offset each other so that a constant supply can be guaranteed. As a first step, this work focuses on seasonal-scale variability for each of the 5 regional power transmission grids in India. Communication within each grid is better than communication between grids. Hence, it is assumed that the grids can switch sources relatively easily. Wind and solar resources are estimated using the MERRA Reanalysis data for the 1979-2013 period. Solar resources are calculated with a 20% conversion efficiency. Wind resources are estimated using a 2 MW turbine power curve. Total resources are obtained by optimizing location and number of wind/solar energy farms. Preliminary results show that the southern and western grids are more appropriate for cogeneration than the other grids. Many studies on wind-solar cogeneration have focused on temporal complementarity at local scale. However, this is one of the first studies to explore spatial complementarity over regional scales. This project may help accelerate renewable energy penetration in India by identifying regional grid(s) where the renewable energy intermittency problem can be minimized.
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.
Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M
2014-06-01
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.
Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, D.; Brinkman, G.; Kumar, N.
2012-08-01
High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less
Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain
2016-04-01
Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.
BMSW - Fast Solar Wind Monitor - three years in orbit: Status and prospects
NASA Astrophysics Data System (ADS)
Prech, Lubomir; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Vaverka, Jakub; Cermak, Ivo; Chesalin, Lev S.; Gavrilova, Elena
Fast Solar Wind Monitor BMSW is an instrument flown as a part of the PLASMA-F complex onboard the Russian Spektr-R radioastronomical spacecraft. The spacecraft was launched on July 18, 2011. During the COSPAR-2014 Assembly meeting, the instrument is supposed to celebrate three successful years in operation. With a set of 6 Faraday’s cups, the instrument has a unique time resolution --- 0.5--1 s for a full energy spectrum (96 energy steps) and 31~ms for basic solar wind plasma parameters directing the instrument to study of fast solar wind discontinuities including interplanetary shocks, a fast variability of proton and alpha particle parameters, and to study of solar wind turbulence up to the ion kinetic scales. The measurement technique, its implementation, and ground data processing are discussed in the contribution. The performance of the instrument design and electronics are presented. We discuss heritage of this instrument utilized in design of future instruments being prepared for the further projects as Luna-Glob.
The application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling
NASA Technical Reports Server (NTRS)
Bargatze, L. F.; Mcpherron, R. L.; Baker, D. N.; Hones, E. W., Jr.
1984-01-01
The constraints imposed by dimensional analysis are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and UT from three 10-day intervals during the International Magnetospheric Study. Simple linear regression and histogram techniques are used to find the value of the magnetohydrodynamic coupling exponent, alpha, which is consistent with observations of magnetospheric response. Once alpha is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon alpha.
On the integration of wind and solar energy to provide a total energy supply in the USA
NASA Astrophysics Data System (ADS)
Archer, Cristina; Mills, David; Cheng, Weili; Sloggy, Matthew; Liebig, Edwin; Rhoades, Alan
2010-05-01
This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary source of energy in the USA, under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar or wind alone can power the present U.S. grid on average. Other studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the U.S. national load on a monthly basis. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from the year 2006 are used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental U.S. using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all suitable locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra's model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly and yearly energy consumption data from the Energy Information Administration. Using different scenarios of wind power penetration (between 10% and 120% of the average national electricity and/or energy demand), the remaining hourly electricity and/or energy load was covered by solar thermal electricity produced via the Ausra's innovative linear reflective system, with various amounts of storage. With a 20% redundancy (i.e., an average production of 120% of the demand), a match of ~98% for electric load and ~96% for total energy load were found for the 60%wind-60%solar combination and with 12-hr storage. Work is continuing on improving that match through more sophisticated storage usage strategies and by looking at other options for the few days in the year for which wind and solar might be insufficient.
Factors Controlling the Position of the Martian Magnetic Pileup Boundary
NASA Technical Reports Server (NTRS)
Crider, D. H.; Acuna, M.; Vignes, D.; Krymskii, A.; Breus, T.; Ness, N.
2003-01-01
The magnetic pileup boundary (MPB) at Mars is the position where the dominant ion of the plasma changes from solar wind protons to heavy ions of planetary origin. As such, it is the obstacle to solar wind ions. We investigate the factors that influence the shape and position of the magnetic pileup boundary at Mars in order to better understand the Martian obstacle to the solar wind. Employing MGS data, we determine how the Martian MPB moves in response to factors including solar wind pressure and crustal magnetic fields. We also study the factors affecting the thickness of the MPB. Further, we compare the magnetic pileup boundary to the magnetic barrier at Venus. Direct comparison aids in our interpretation of the physics involved in the solar wind interaction with planets lacking a significant intrinsic magnetic field.
NASA Astrophysics Data System (ADS)
Cao, X.; Du, A.
2014-12-01
We statistically studied the response time of the SYMH to the solar wind energy input ɛ by using the RFA approach. The average response time was 64 minutes. There was no clear trend among these events concerning to the minimum SYMH and storm type. It seems that the response time of magnetosphere to the solar wind energy input is independent on the storm intensity and the solar wind condition. The response function shows one peak even when the solar wind energy input and the SYMH have multi-peak. The response time exhibits as the intrinsic property of the magnetosphere that stands for the typical formation time of the ring current. This may be controlled by magnetospheric temperature, average number density, the oxygen abundance et al.
NASA Astrophysics Data System (ADS)
Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.
2017-11-01
Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
...] Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC, Mesquite Solar 1, LLC, Copper Crossing Solar LLC, Copper Mountain Solar 1, LLC, Pinnacle Wind, LLC, Bellevue Solar, LLC, Yamhill Solar, LLC, Osage Wind, LLC, Minco Wind II, LLC Take notice that during the month of...
High Quality Data for Grid Integration Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less
Number density structures in the inner heliosphere
NASA Astrophysics Data System (ADS)
Stansby, D.; Horbury, T. S.
2018-06-01
Aims: The origins and generation mechanisms of the slow solar wind are still unclear. Part of the slow solar wind is populated by number density structures, discrete patches of increased number density that are frozen in to and move with the bulk solar wind. In this paper we aimed to provide the first in-situ statistical study of number density structures in the inner heliosphere. Methods: We reprocessed in-situ ion distribution functions measured by Helios in the inner heliosphere to provide a new reliable set of proton plasma moments for the entire mission. From this new data set we looked for number density structures measured within 0.5 AU of the Sun and studied their properties. Results: We identified 140 discrete areas of enhanced number density. The structures occurred exclusively in the slow solar wind and spanned a wide range of length scales from 50 Mm to 2000 Mm, which includes smaller scales than have been previously observed. They were also consistently denser and hotter that the surrounding plasma, but had lower magnetic field strengths, and therefore remained in pressure balance. Conclusions: Our observations show that these structures are present in the slow solar wind at a wide range of scales, some of which are too small to be detected by remote sensing instruments. These structures are rare, accounting for only 1% of the slow solar wind measured by Helios, and are not a significant contribution to the mass flux of the solar wind.
On the Integration of Wind and Solar Energy to Provide a Total Energy Supply in the U.S
NASA Astrophysics Data System (ADS)
Liebig, E. C.; Rhoades, A.; Sloggy, M.; Mills, D.; Archer, C. L.
2009-12-01
This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary sources of energy in the U.S., under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the US national load on a monthly basis. Other studies have shown that solar or wind alone can power the present US grid on average. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from a particular year will be used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hydro and geothermal generation can provide additional controllable output, when needed, to fulfill the hourly electricity and/or energy needs. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental US using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra’s model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly energy consumption data from the Energy Information Administration. Using different scenarios of wind power penetration (10%, 20%, 30%, 50%, 80%, 100% of the average national electricity and/or energy demand), the remaining hourly electricity and/or energy load was covered by various combinations of solar, hydro, and geothermal generation. Statistics of the reliability of the various scenarios, as well as details on the area covered by wind and solar farms per each scenario, will be analyzed and presented.
Gaussianity versus intermittency in solar system plasma turbulence
NASA Astrophysics Data System (ADS)
Echim, M.
2014-12-01
Statistical properties of plasma and magnetic field fluctuations exhibit features linked with the dynamics of the targeted system and sometimes with the physical processes that are at the origin of these fluctuations. Intermittency is sometimes discussed in terms of non-Gaussianity of the Probability Distribution Functions (PDFs) of fluctuations for ranges of spatio/temporal scales. Some examples of self-similarity have been however shown for PDFs whose wings are not Gaussian. In this study we discuss intermittency in terms of non-Gaussianity as well as scale dependence of the higher order moments of PDFs, in particular the flatness. We use magnetic field and plasma data from several space missions, in the solar wind (Ulysses, Cluster, and Venus Express), and in the planetary magnetosheaths (Cluster and Venus Express). We analyze Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We investigate Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We study Cluster data in the solar wind (for time intervals not affected by planetary ions effects), and the magnetosheath. We organize our results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PDFs obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PDFs obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the statistical properties of fluctuations for the minimum and maximum of the solar cycle we also analyze the similarities and differences between fast and slow wind. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence and complexity, and the exploitation of data bases and as a first step towards developing a (virtual) laboratory for studying solar system plasma turbulence and intermittency. Research supported by the European FP7 Programme (grant agreement 313038/STORM), and a grant of the Romanian CNCS -UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.
High Time-Resolved Kinetic Temperatures of Solar Wind Minor Ions Measured with SOHO/CELIAS/CTOF
NASA Astrophysics Data System (ADS)
Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.
2017-12-01
Solar wind heavy ions with an atomic number Z > 2 are referred to as minor ions since they represent a fraction of less than one percent of all solar wind ions. They can be therefore regarded as test particles, only reacting to but not driving the dynamics of the solar wind plasma, which makes them a unique diagnostic tool for plasma wave phenomena both in the solar atmosphere and the extended heliosphere. In the past, several studies have investigated the kinetic temperatures of minor ions, but due to low counting statistics these studies are based on ion velocity distribution functions (VDFs) recorded over time periods of several hours. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) provides solar wind heavy ion 1D radial VDFs with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In our study, based on CTOF measurements at Langrangian point L1 between DOY 150 and DOY 220 in 1996, we investigate systematically the influence of the VDF time resolution on the derived kinetic temperatures for solar wind silicon and iron ions. The selected ion set spans a wide range of mass-per-charge from 3 amu/e < m/q < 8 amu/e. Therefore, it is suitable for the search of signatures of gyrofrequency-dependent heating processes resulting from the resonant interaction of heavy ions with ion-cyclotron waves.
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2014-05-01
In the framework of the European FP7 project STORM ("Solar system plasma Turbulence: Observations, inteRmittency and Multifractals") we analyze the properties of turbulence in various regions of the solar system, for the minimum and respectively maximum of the solar activity. The main scientific objective of STORM is to advance the understanding of the turbulent energy transfer, intermittency and multifractals in space plasmas. Specific analysis methods are applied on magnetic field and plasma data provided by Ulysses, Venus Express and Cluster, as well as other solar system missions (e.g. Giotto, Cassini). In this paper we provide an overview of the spectral properties of turbulence derived from Power Spectral Densities (PSD) computed in the solar wind (from Ulysses, Cluster, Venus Express) and at the interface of planetary magnetospheres with the solar wind (from Venus Express, Cluster). Ulysses provides data in the solar wind between 1992 and 2008, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. We selected only those Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We analyzed Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We investigated Cluster data in the solar wind (for time intervals not affected by planetary ions effects), the magnetosheath and few crossings of other key magnetospheric regions (cusp, plasma sheet). We organize our PSD results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSD obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PSD obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the properties of turbulence for the minimum and maximum of the solar cycle we also analyze the spectral similarities and differences between fast and slow wind turbulence. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence, the exploitation of data bases and as a first step towards developing a (virtual) laboratory for studying solar system plasma turbulence. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.
Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.
Pérez-De-Tejada
1999-11-01
A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics.
NASA Astrophysics Data System (ADS)
Roy, P. C.; Majumder, A.; Chakraborty, N.
2010-10-01
An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.
Pioneer and Voyager observations of the solar wind at large heliocentric distances and latitudes
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Mihalov, J. D.; Barnes, A.; Lazarus, A. J.; Smith, E. J.
1989-01-01
Data obtained from the electrostatic analyzers aboard the Pioneer 10 and 11 spacecraft and from the Faraday cup aboard Voyager 2 were used to study spatial gradients in the distant solar wind. Prior to mid-1985, both spacecraft observed nearly identical solar wind structures. After day 150 of 1985, the velocity structure at Voyager 2 became flatter, and the Voyager 2 velocities were smaller than those observed by Pioneer 11. It is suggested that these changes in the solar wind at low latitudes may be related to a change which occurred in the coronal hole structure in early 1985.
NASA Technical Reports Server (NTRS)
Niedner, M. B., Jr.; Brandt, J. C.; Zwickl, R. D.; Bame, S. J.
1983-01-01
Solar-wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined in order to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979l on 1980 February 6. An earlier study conducted before the availability of in situ solar-wind data (Brandt et al., 1980) suggested that the tail position angle change occurred in response to a solar-wind velocity shear across the polar component changed by approximately 50 km/s. The present contribution confirms this result and further suggests that the comet-tail activity was caused by non-corotating, disturbed plasma flows probably associated with an Importance 1B solar flare.
Intermittency Statistics in the Expanding Solar Wind
NASA Astrophysics Data System (ADS)
Cuesta, M. E.; Parashar, T. N.; Matthaeus, W. H.
2017-12-01
The solar wind is observed to be turbulent. One of the open questions in solar wind research is how the turbulence evolves as the solar wind expands to great distances. Some studies have focused on evolution of the outer scale but not much has been done to understand how intermittency evolves in the expanding wind beyond 1 AU (see [1,2]). We use magnetic field data from Voyager I spacecraft from 1 to 10AU to study the evolution of statistics of magnetic discontinuities. We perform various statistical tests on these discontinuities and make connections to the physical processes occurring in the expanding wind.[1] Tsurutani, Bruce T., and Edward J. Smith. "Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU." Journal of Geophysical Research: Space Physics 84.A6 (1979): 2773-2787.[2] Greco, A., et al. "Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere." The Astrophysical Journal 749.2 (2012): 105.
A Study of the Solar Wind-Magnetosphere Coupling Using Neural Networks
NASA Astrophysics Data System (ADS)
Wu, Jian-Guo; Lundstedt, Henrik
1996-12-01
The interaction between solar wind plasma and interplanetary magnetic field (IMF) and Earth's magnetosphere induces geomagnetic activity. Geomagnetic storms can cause many adverse effects on technical systems in space and on the Earth. It is therefore of great significance to accurately predict geomagnetic activity so as to minimize the amount of disruption to these operational systems and to allow them to work as efficiently as possible. Dynamic neural networks are powerful in modeling the dynamics encoded in time series of data. In this study, we use partially recurrent neural networks to study the solar wind-magnetosphere coupling by predicting geomagnetic storms (as measured by the Dstindex) from solar wind measurements. The solar wind, the IMF and the geomagnetic index Dst data are hourly averaged and read from the National Space Science Data Center's OMNI database. We selected these data from the period 1963 to 1992, which cover 10552h and contain storm time periods 9552h and quiet time periods 1000h. The data are then categorized into three data sets: a training set (6634h), across-validation set (1962h), and a test set (1956h). The validation set is used to determine where the training should be stopped whereas the test set is used for neural networks to get the generalization capability (the out-of-sample performance). Based on the correlation analysis between the Dst index and various solar wind parameters (including various combinations of solar wind parameters), the best coupling functions can be found from the out-of-sample performance of trained neural networks. The coupling functions found are then used to forecast geomagnetic storms one to several hours in advance. The comparisons are made on iterating the single-step prediction several times and on making a non iterated, direct prediction. Thus, we will present the best solar wind-magnetosphere coupling functions and the corresponding prediction results. Interesting Links: Lund Space Weather and AI Center
NASA Astrophysics Data System (ADS)
Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.
2018-02-01
Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.
Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing
NASA Astrophysics Data System (ADS)
Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew
2011-03-01
This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.
Plasma-field Coupling at Small Length Scales in Solar Wind Near 1 AU
NASA Astrophysics Data System (ADS)
Livadiotis, G.; Desai, M. I.
2016-10-01
In collisionless plasmas such as the solar wind, the coupling between plasma constituents and the embedded magnetic field occurs on various temporal and spatial scales, and is primarily responsible for the transfer of energy between waves and particles. Recently, it was shown that the transfer of energy between solar wind plasma particles and waves is governed by a new and unique relationship: the ratio between the magnetosonic energy and the plasma frequency is constant, E ms/ω pl ˜ ℏ*. This paper examines the variability and substantial departure of this ratio from ℏ* observed at ˜1 au, which is caused by a dispersion of fast magnetosonic (FMS) waves. In contrast to the efficiently transferred energy in the fast solar wind, the lower efficiency of the slow solar wind can be caused by this dispersion, whose relation and characteristics are derived and studied. In summary, we show that (I) the ratio E ms/ω pl transitions continuously from the slow to the fast solar wind, tending toward the constant ℏ* (II) the transition is more efficient for larger thermal, Alfvén, or FMS speeds; (III) the fast solar wind is almost dispersionless, characterized by quasi-constant values of the FMS speed, while the slow wind is subject to dispersion that is less effective for larger wind or magnetosonic speeds; and (IV) the constant ℏ* is estimated with the best known precision, ℏ* ≈ (1.160 ± 0.083) × 10-22 Js.
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting
Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M
2014-01-01
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518
Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data
NASA Astrophysics Data System (ADS)
Perschke, C.; Narita, Y.
2012-12-01
Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.
XMM-Newton Observations of Solar Wind Charge Exchange Emission
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Collier, M. R.; Kuntz, K. D.
2004-01-01
We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
... Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of...
Physics of the Inner Heliosphere 1-10 R(sub s): Plasma Diagnostics and Models
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Wagner, William J. (Technical Monitor)
2001-01-01
While the mechanisms responsible for heating the solar corona and accelerating the fast and slow solar wind streams are still unknown, model computations offer the only means for exploring and predicting the properties of such mechanisms in light of the empirical constraints currently available. During the time covered by this grant, modeling and data analysis efforts were aimed at: 1) the study of the propagation and damping of ion-cyclotron waves in the fast solar wind 2) the exploration of the role of instabilities in the development of temperature anisotropies in the inner corona 3) the coupling of neutral hydrogen and protons in the fast solar wind 4) the morphology of the source region of the solar wind. Summarized are some of the highlights of these studies. Two PhD theses by Xing Li and Lorraine Allen were partially supported by this grant.
Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Observations and modelling
NASA Astrophysics Data System (ADS)
Behar, E.; Lindkvist, J.; Nilsson, H.; Holmström, M.; Stenberg-Wieser, G.; Ramstad, R.; Götz, C.
2016-11-01
Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft. Aims: Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind. Methods: We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere. Results: The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind. Conclusions: The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Landi, E.; Zurbuchen, T. H.
2014-09-20
The solar wind can be categorized into three types based on its 'freeze-in' temperature (T {sub freeze-in}) in the coronal source: low T {sub freeze-in} wind mostly from coronal holes, high T {sub freeze-in} wind mostly from regions outside of coronal holes, including streamers (helmet streamer and pseudostreamer), active regions, etc., and transient interplanetary coronal mass ejections (ICMEs) usually possessing the hottest T {sub freeze-in}. The global distribution of these three types of wind has been investigated by examining the most effective T {sub freeze-in} indicator, the O{sup 7+}/O{sup 6+} ratio, as measured by the Solar Wind Ion Composition Spectrometermore » on board the Advanced Composition Explorer (ACE) during 1998-2008 by Zhao et al. In this study, we extend the previous investigation to 2011 June, covering the unusual solar minimum between solar cycles 23 and 24 (2007-2010) and the beginning of solar cycle 24. We find that during the entire solar cycle, from the ascending phase of cycle 23 in 1998 to the ascending phase of cycle 24 in 2011, the average fractions of the low O{sup 7+}/O{sup 6+} ratio (LOR) wind, the high O{sup 7+}/O{sup 6+} ratio (HOR) wind, and ICMEs at 1 AU are 50.3%, 39.4%, and 10.3%, respectively; the contributions of the three types of wind evolve with time in very different ways. In addition, we compare the evolution of the HOR wind with two heliospheric current sheet (HCS) parameters, which indicate the latitudinal standard deviation (SD) and the slope (SL) of the HCS on the synoptic Carrington maps at 2.5 solar radii surface. We find that the fraction of HOR wind correlates with SD and SL very well (slightly better with SL than with SD), especially after 2005. This result verifies the link between the production of HOR wind and the morphology of the HCS, implying that at least one of the major sources of the HOR wind must be associated with the HCS.« less
Overview of the HELCATS project
NASA Astrophysics Data System (ADS)
Harrison, Richard; Davies, Jackie; Perry, Chris; Moestl, Christian; Rouillard, Alexis; Bothmer, Volker; Rodriguez, Luciano; Eastwood, Jonathan; Kilpua, Emilia; Gallagher, Peter; Odstrcil, Dusan
2017-04-01
Understanding solar wind evolution is fundamental to advancing our knowledge of energy and mass transport in the solar system, whilst also being crucial to space weather and its prediction. The advent of truly wide-angle heliospheric imaging has revolutionised the study of solar wind evolution, by enabling direct and continuous observation of both transient and background components of the solar wind as they propagate from the Sun to 1 AU and beyond. The EU-funded FP7 Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project combines European expertise in heliospheric imaging, built up over the last decade in particular through lead involvement in NASA's STEREO mission, with expertise in solar and coronal imaging as well as the interpretation of in-situ and radio diagnostic measurements of solar wind phenomena. HELCATS involves: (1) cataloguing of transient (coronal mass ejections) and background (stream/corotating interaction regions) solar wind structures observed by the STEREO/Heliospheric Imagers, including estimates of their kinematic properties based on a variety of modelling techniques; (2) verifying these kinematic properties through comparison with solar source observations and in-situ measurements at multiple points throughout the heliosphere; (3) assessing the potential for initialising numerical models based on the derived kinematic properties of transient and background solar wind components; (4) assessing the complementarity of radio observations (Type II radio bursts and interplanetary scintillation) in the detection and analysis of heliospheric structure in combination with heliospheric imaging observations. We provide an overview of the achievements of the HELCATS project, as it reaches its conclusion, and present selected results that seek to illustrate the value and legacy of this unprecedented, coordinated study of structures in the heliosphere.
Integrating Multiple Approaches to Solving Solar Wind Turbulence Problems (Invited)
NASA Astrophysics Data System (ADS)
Karimabadi, H.; Roytershteyn, V.
2013-12-01
The ultimate understanding of the solar wind turbulence must explain the physical process and their connection at all scales ranging from the largest down to electron kinetic scales. This is a daunting task and as a result a more piecemeal approach to the problem has been followed. For example, the role of each wave has been explored in isolation and in simulations with scales limited to those of the underlying waves. In this talk, we present several issues with this approach and offer an alternative with an eye towards more realistic simulations of solar wind turbulence. The main simulation techniques used have been MHD, Hall MHD, hybrid, fully kinetic, and gyrokinetic. We examine the limitations of each approach and their viability for studies of solar wind turbulence. Finally, the effect of initial conditions on the resulting turbulence and their comparison with solar wind are demonstrated through several kinetic simulations.
Transient Stability of the US Western Interconnection with High Wind and Solar Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Wagner, William (Technical Monitor)
2003-01-01
Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. The goal of the proposal is to make use of ion fractions observed in situ in the solar wind to learn about both, the plasma conditions in the inner corona and the expansion and ion formation itself. This study is carried out using solar wind models, coronal observations, and ion fraction calculations in conjunction with the in situ observations.
NASA Technical Reports Server (NTRS)
Stahara, S. S.
1984-01-01
The investigations undertaken in this report relate to studies of various solar wind interaction phenomena with Venus, Earth, Mars, Jupiter and Saturn. A computational model is developed for the determination of the detailed plasma and magnetic field properties associated with various planetary obstacles throughout the solar system.
11- and 22-year variations of the cosmic ray density and of the solar wind speed
NASA Technical Reports Server (NTRS)
Chirkov, N. P.
1985-01-01
Cosmic ray density variations for 17-21 solar activity cycles and the solar wind speed for 20-21 events are investigated. The 22-year solar wind speed recurrence was found in even and odd cycles. The 22-year variations of cosmic ray density were found to be opposite that of solar wind speed and solar activity. The account of solar wind speed in 11-year variations significantly decreases the modulation region of cosmic rays when E = 10-20 GeV.
NASA Astrophysics Data System (ADS)
Salem, C. S.; Sundkvist, D. J.; Bale, S.
2009-12-01
Electromagnetic fluctuations in the inertial range of solar wind MHD turbulence and beyond (up to frequencies of 10Hz) have been studied for the first time using both magnetic field and electric field measurements on Cluster [Bale et al., 2005]. It has been shown that at frequencies above the spectral breakpoint at ~0.4Hz, in the dissipation range, the wave modes become dispersive and are consistent with Kinetic Alfven Waves (KAW). This interpretation, consistent with findings from recent theoretical studies, is based on the simple assumption that the measured frequency spectrum is actually a Doppler shifted wave number spectrum (ω ≈ k Vsw), commonly used in the solar wind and known as Taylor's hypothesis. While Taylor's hypothesis is valid in the inertial range of solar wind turbulence, it may break down in the dissipation range where temporal fluctuations can become important. We recently analyzed the effect of Doppler shift on KAW as well as compressional proton whistler waves [Salem et al., 2009]. The dispersive properties of the KAW and the whistler wave modes, as well as the electric to magnetic field (E/B) ratio, have been determined both analytically and numerically in the plasma and the spacecraft frame, with the goal of directly comparing those analytical/numerical estimates in the spacecraft frame with the data as measured. We revisit here Cluster electric field and magnetic field data in the solar wind using this approach. We focus our analysis on several ambient solar wind intervals with varying plasma parameters, allowing for a statistical study. We show that this technique provides an efficient diagnostics for wave-mode identification in the dissipation/dispersion range of solar wind turbulence.
Correlations between solar wind parameters and auroral kilometric radiation intensity
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Dangelo, N.
1981-01-01
The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.
Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates
NASA Technical Reports Server (NTRS)
Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.
1997-01-01
Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.
Interplanetary magnetic flux - Measurement and balance
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.
1992-01-01
A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.
Role of Ambient Solar Wind Conditions in CME evolution (P21)
NASA Astrophysics Data System (ADS)
Jadav, R.; Jadeja, A. K.; Iyer, K. N.
2006-11-01
ipsraj@yahoo.com Solar events are mainly responsible for producing storms at the Earth. Coronal Mass Ejection (CME) is a major cause for this. In this paper, Coronal Mass Ejections occurred during 1998-2004 are studied. Ambient solar wind does play some role in determining the effect of a CME. The effects produced at the Earth during the period 1999 2004 are considered and an attempt has been made to understand the role of ambient solar wind. This is to draw some conclusion about how some of the events become geo- effective.
NASA Astrophysics Data System (ADS)
Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M.
2017-01-01
In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He2+, C6+, N7+, O8+, Mg12+), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.
NASA Astrophysics Data System (ADS)
Viall, N. M.; Kepko, L.; Antiochos, S. K.; Lepri, S. T.; Vourlidas, A.; Linker, J.
2017-12-01
Connecting the structure and variability in the solar corona to the Heliosphere and solar wind is one of the main goals of Heliophysics and space weather research. The instrumentation and viewpoints of the Parker Solar Probe and Solar Orbiter missions will provide an unprecedented opportunity to combine remote sensing with in situ data to determine how the corona drives the Heliosphere, especially as it relates to the origin of the slow solar wind. We present analysis of STEREO coronagraph and heliospheric imager observations and of in situ ACE and Wind measurements that reveal an important connection between the dynamics of the corona and of the solar wind. We show observations of quasi-periodic release of plasma into the slow solar wind occurring throughout the corona - including regions away from the helmet streamer and heliospheric current sheet - and demonstrate that these observations place severe constraints on the origin of the slow solar wind. We build a comprehensive picture of the dynamic evolution by combining remote imaging data, in situ composition and magnetic connectivity information, and MHD models of the solar wind. Our results have critical implications for the magnetic topology involved in slow solar wind formation and magnetic reconnection dynamics. Crucially, this analysis pushes the limits of current instrument resolution and sensitivity, showing the enormous potential science to be accomplished with the Parker Solar Probe and Solar Orbiter missions.
Coronal holes as sources of solar wind
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Krieger, A. S.; Timothy, A. F.; Gold, R. E.; Roelof, E. C.; Vaiana, G.; Lazarus, A. J.; Sullivan, J. D.; Mcintosh, P. S.
1976-01-01
We investigate the association of high-speed solar wind with coronal holes during the Skylab mission by: (1) direct comparison of solar wind and coronal X-ray data; (2) comparison of near-equatorial coronal hole area with maximum solar wind velocity in the associated streams; and (3) examination of the correlation between solar and interplanetary magnetic polarities. We find that all large near-equatorial coronal holes seen during the Skylab period were associated with high-velocity solar wind streams observed at 1 AU.
NASA Technical Reports Server (NTRS)
Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris
2013-01-01
A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.
NASA Astrophysics Data System (ADS)
Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.
2010-09-01
A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.
Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis
Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...
2015-01-01
The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less
NASA Astrophysics Data System (ADS)
Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou
2018-01-01
In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.
NASA Astrophysics Data System (ADS)
Ehrke, Elizabeth
Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a solar thermal array or wind turbine. The model is meant to aide in the planning stages of a renewable energy project, and advanced investigation will be needed to move forward with that project.
Wind Observations of Anomalous Cosmic Rays from Solar Minimum to Maximum
NASA Technical Reports Server (NTRS)
Reames, D. V.; McDonald, F. B.
2003-01-01
We report the first observation near Earth of the time behavior of anomalous cosmic-ray N, O, and Ne ions through the period surrounding the maximum of the solar cycle. These observations were made by the Wind spacecraft during the 1995-2002 period spanning times from solar minimum through solar maximum. Comparison of anomalous and galactic cosmic rays provides a powerful tool for the study of the physics of solar modulation throughout the solar cycle.
The Solar Wind Ion Composition Spectrometer
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Geiss, J.; Balsiger, H.; Bedini, P.; Cain, J. C.; Fisher, J.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.
1992-01-01
The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is designed to determine uniquely the elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 km/s (protons) to 1280 km/s (Fe(8+)). The instrument, which covers an energy per charge range from 0.16 to 59.6 keV/e in about 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. The measurements made by SWICS will have an impact on many areas of solar and heliospheric physics, in particular providing essential and unique information on: (1) conditions and processes in the region of the corona where the solar wind is accelerated; (2) the location of the source regions of the solar wind in the corona; (3) coronal heating processes; (4) the extent and causes of variations in the composition of the solar atmosphere; (5) plasma processes in the solar wind; (6) the acceleration of energetic particles in the solar wind; (7) the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and (8) the composition, charge states, and behavior of the plasma in various regions of the Jovian magnetosphere.
Kinetic Properties of Solar Wind Silicon and Iron Ions
NASA Astrophysics Data System (ADS)
Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.
2017-12-01
Heavy ions with atomic numbers Z>2 account for less than one percent of the solar wind ions. However, serving as test particles with differing mass and charge, they provide a unique experimental approach to major questions of solar and fundamental plasma physics such as coronal heating, the origin and acceleration of the solar wind and wave-particle interaction in magnetized plasma. Yet the low relative abundances of the heavy ions pose substantial challenges to the instrumentation measuring these species with reliable statistics and sufficient time resolution. As a consequence the numbers of independent measurements and studies are small. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is a linear time-of-flight mass spectrometer which was operated at Lagrangian point L1 in 1996 for a few months only, before it suffered an instrument failure. Despite its short operation time, the CTOF sensor measured solar wind heavy ions with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In contrast to earlier CTOF studies which were based on reduced onboard post-processed data, in our current studies we use raw Pulse Height Analysis (PHA) data providing a significantly increased mass, mass-per-charge and velocity resolution. Focussing on silicon and iron ion measurements, we present an overview of our findings on (1) short time behavior of heavy ion 1D radial velocity distribution functions, (2) differential streaming between heavy ions and solar wind bulk protons, (3) kinetic temperatures of heavy ions. Finally, we compare the CTOF results with measurements of the Solar Wind Ion Composition Spectrometer (SWICS) instrument onboard the Advanced Composition Explorer (ACE).
Diamagnetic effect in the foremoon solar wind observed by Kaguya
NASA Astrophysics Data System (ADS)
Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Miyake, Y.; Harada, Y.; Yokota, S.; Takahashi, F.; Matsushima, M.; Shibuya, H.; Shimizu, H.
2016-12-01
Interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the lunar plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE and WIND with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such diamagnetic effect would be prominent in the high-beta solar wind environment, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.
Hybrid simulations of Venus' ionospheric magnetization states
NASA Astrophysics Data System (ADS)
Wiehle, Stefan; Motschmann, Uwe; Fränz, Markus
2013-04-01
The solar wind interaction with the plasma environment of Venus is studied with focus on ionospheric magnetization states using a 3D hybrid simulation code. The plasma environment of Venus was investigated mainly by Pioneer Venus Orbiter (PVO) and the still ongoing Venus Express (VEX) mission. Unlike many other planets, Venus' ionosphere is not shielded by a strong magnetosphere. Hence, data measured by spacecraft like PVO and VEX close to the planet are highly sensitive to solar wind and IMF upstream conditions, which cannot be measured while the spacecraft is inside the magnetosheath region about one hour before and after the closest approach. However, solar wind and IMF are known to change within minutes; ionospheric magnetization states, found by PVO and VEX, are highly dependent on the solar wind upstream pressure and also the magnetic field direction may change rapidly in case of a magnetic sector boundary crossing. When these solar wind induced transition effects occur, the causal change in the solar wind cannot be determined from ionospheric in-situ data. Additionally, with an orbital period of 24 hours, measuring transition timescales of solar wind triggered events is not possible. Our self-consistent simulations aim to provide a global picture of the solar wind interaction with Venus focusing on the effects of upstream fluctuations to the magnetic field in the vicinity of the planet. We use the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) 3D hybrid simulation code to model the entire Venus plasma environment. The simulation grid is refined within the ionosphere in order to resolve strong small-scale gradients of the magnetic field and ion density, a necessity to describe the magnetic field depletion inside the Venus' ionosphere. In contrast to other simulation studies, we apply no boundary conditions for the magnetic field at the planetary surface. Furthermore, we include varying upstream conditions like solar wind velocity and density as well as IMF strength and direction by adjusting these parameters after a first, quasi-stationary state has been reached. This allows for a simulation of dynamic processes like the transition between the magnetized and unmagnetized ionospheric state and fossil fields.
NASA Astrophysics Data System (ADS)
Nykyri, K.; Chu, C.; Dimmock, A. P.
2017-12-01
Previous studies have shown that plasma sheet in tenuous and hot during southward IMF, whereas northward IMF conditions are associated with cold, dense plasma. The cold, dense plasma sheet (CDPS) has strong influence on magnetospheric dynamics. Closer to Earth, the CDPS could be formed via double high-latitude reconnection, while at increasing tailward distance reconnection, diffusion and kinetic Alfven waves in association with Kelvin-Helmholtz Instability are suggested as dominant source for cold-dense plasma sheet formation. In this paper we present statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet density dependence on IMF orientation and other solar wind properties.
NASA Technical Reports Server (NTRS)
Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.
2006-01-01
We present techniques for comparing measurements of velocity, temperature, and density with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar Wind Experiment Faraday Cup instruments on the Wind spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar wind intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number densities are compared with the electron density inferred from observations of the local electron plasma frequency as a function of solar wind speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and density methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar wind where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar wind ion instrument.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Ling, James (Technical Monitor)
2001-01-01
Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona where these ion charge states are formed. The goal of the proposed research was to determine solar wind models and coronal observations that are necessary tools for the interpretation of the ion charge state observations made in situ in the solar wind.
NASA Astrophysics Data System (ADS)
Réville, Victor; Brun, Allan Sacha
2017-11-01
The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .
The Genesis Mission Solar Wind Collection: Solar-Wind Statistics over the Period of Collection
NASA Technical Reports Server (NTRS)
Barraclough, B. L.; Wiens, R. C.; Steinberg, J. E.; Reisenfeld, D. B.; Neugebauer, M.; Burnett, D. S.; Gosling, J.; Bremmer, R. R.
2004-01-01
The NASA Genesis spacecraft was launched August 8, 2001 on a mission to collect samples of solar wind for 2 years and return them to earth September 8, 2004. Detailed analyses of the solar wind ions implanted into high-purity collection substrates will be carried out using various mass spectrometry techniques. These analyses are expected to determine key isotopic ratios and elemental abundances in the solar wind, and by extension, in the solar photosphere. Further, the photospheric composition is thought to be representative of the solar nebula with a few exceptions, so that the Genesis mission will provide a baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. The collection of solar wind samples is almost complete. Collection began for most substrates in early December, 2001, and is scheduled to be complete on April 2 of this year. It is critical to understand the solar-wind conditions during the collection phase of the mission. For this reason, plasma ion and electron spectrometers are continuously monitoring the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons. Here we report on the solar-wind conditions as observed by these in-situ instruments during the first half of the collection phase of the mission, from December, 2001 to present.
Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.
1995-01-01
Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.
Transient flows of the solar wind associated with small-scale solar activity in solar minimum
NASA Astrophysics Data System (ADS)
Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid
The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project n° 284461, www.eheroes.eu).
Large-scale density structures in the outer heliosphere
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.
1993-01-01
The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.
Global Acceleration of Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Lara, Alejandro; Lepping, Ronald; Kaiser, Michael; Berdichevsky, Daniel; St. Cyr, O. Chris; Lazarus, Al
1999-01-01
Using the observed relation between speeds of coronal mass ejections (CMEs) near the Sun and in the solar wind, we estimate a global acceleration acting on the CMEs. Our study quantifies the qualitative results of Gosling [1997] and numerical simulations that CMEs at 1 AU with speeds closer to the solar wind. We found a linear relation between the global acceleration and the initial speed of the CMEs and the absolute value of the acceleration is similar to the slow solar wind acceleration. Our study naturally divides CMEs into fast and slow ones, the dividing line being the solar wind speed. Our results have important implications to space weather prediction models which need to incorporate this effect in estimating the CME arrival time at 1 AU. We show that the arrival times of CMEs at 1 AU are drastically different from the zero acceleration case.
NASA Technical Reports Server (NTRS)
Witt, N.; Blum, P. W.; Ajello, J. M.
1981-01-01
The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.
Three-dimensional global MHD modeling of a coronal mass ejection interacting with the solar wind
NASA Astrophysics Data System (ADS)
An, J.; Inoue, S.; Magara, T.; Lee, H.; Kang, J.; Hayashi, K.; Tanaka, T.; Den, M.
2013-12-01
We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to reproduce the structure of the solar wind, the propagation of a coronal mass ejection (CME), and the interaction between them. This MHD code is based on the finite volume method and total diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in the spherical coordinate system (Tanaka 1995). In this study, we constructed a model of the solar wind driven by the physical values at 50 solar radii obtained from the MHD tomographic method (Hayashi et al. 2003) where an interplanetary scintillation (IPS) observational data is used. By comparing the result to the observational data obtained from the near-Earth OMNI dataset, we confirmed that our simulation reproduces the velocity, temperature and density profiles obtained from the near-Earth OMNI dataset. We then insert a spheromak-type CME (Kataoka et al. 2009) into our solar-wind model and investigate the propagation process of the CME interacting with the solar wind. In particular, we discuss how the magnetic twist accumulated in a CME affects the CME-solar wind interaction.
The solar wind-magnetosphere-ionosphere system
Lyon
2000-06-16
The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.
NASA Astrophysics Data System (ADS)
Leroy, Matthieu; Keppens, Rony
2016-04-01
The transfer of matter from the solar-wind to the Earth's magnetosphere during southward solar wind is mostly well understood but the processes governing the same phenomenon during northward solar wind remains to be fully apprehended. Numerous numerical studies have investigated the topic with many interesting results but most of these were considering two-dimensional situations with simplified magnetic configuration and often neglecting the inhomogeneities for the sake of clarity. Given the typical parameters at the magnetosphere-solar wind interface, the situation must be considered in the frame of Hall-MHD, due to the fact that the current layers widths and the gradient lengths can be in the order of the ion inertial length. As a consequence of Hall-MHD creating a third vector component from two planar ones, and also because magnetic perturbations can affect the field configuration at a distance in all directions and not only locally, three-dimensional treatment is necessary. In this spirit three-dimensional simulations of a configuration approaching the conditions leading to the development of Kelvin-Helmholtz instabilities at the flank of the magnetosphere during northward oriented solar-wind are performed as means to study the entry of solar-wind matter into Earth's magnetic field. In the scope of assessing the effect of the Hall-term in the physical processes, the simulations are also performed in the MHD frame. Furthermore the influence of the density and velocity jump through the shear layer on the rate of mass entering the magnetosphere is explored. Indeed, depending on the exact values of the physical quantities, the Kelvin-Helmholtz instability may have to compete with secondary instabilities and the non-linear phase may exhibit vortex merging and large-scale structures reorganisation, creating very different mixing layers, or generate different reconnection sites, locally and at a distance. These different configurations may have discernible signatures that can be identified by spacecraft diagnostics.
Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change
NASA Astrophysics Data System (ADS)
Shi, Q.
2017-12-01
Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res., 122, doi:10.1002/2016JA023351.
2014-05-15
13. SUPPLEMENTARY NOTES 14. ABSTRACT This study focused on the investigation of how solar wind energy is deposited into the magnetosphere- ionosphere ...system during sudden enhancements of solar wind dynamic pressure (Psw), using the coupled OpenGGCM-CTIM 3D global magnetosphere – ionosphere ...CPCP), a proxy of ionospheric plasma convection strength, were quantified. The modeled CPCP increased after a Psw enhancement in all three cases, which
NASA Astrophysics Data System (ADS)
Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.
2007-08-01
We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.
Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)
2002-01-01
We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.
Solar wind: Internal parameters driven by external source
NASA Technical Reports Server (NTRS)
Chertkov, A. D.
1995-01-01
A new concept interpreting solar wind parameters is suggested. The process of increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. Thus, the solar wind is unique from the point of view of thermodynamics of irreversible processes. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of interplanetary plasma must be very far from the thermodynamic equilibrium. Plasma internal energy is contained mainly in non-degenerate forms (plasma waves, resonant plasma oscillations, electric currents). Microscopic oscillating electric fields in the solar wind plasma should be about 1 V/m. It allows one to describe the solar wind by simple dissipative MHD equations with small effective mean free path (required for hydrodynamical description), low value of electrical conductivity combined with very big apparent thermal conductivity (required for observed solar wind acceleration). These internal parameters are interrelated only due to their origin: they are externally driven. Their relation can change during the interaction of solar wind plasma with an obstacle (planet, spacecraft). The concept proposed can be verified by the special electric field measurements, not ruining the primordial plasma state.
Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices.
Hasegawa, H; Fujimoto, M; Phan, T-D; Rème, H; Balogh, A; Dunlop, M W; Hashimoto, C; Tandokoro, R
2004-08-12
Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.
On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Edmondson, J. K.
2012-11-01
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.
Solar Polar ORbit Telescope (SPORT): A Potential Space Weather Mission of China
NASA Astrophysics Data System (ADS)
Liu, Y. D.; Xiong, M.; Wu, J.; Liu, H.; Zheng, J.; Li, B.; Zhang, C.; Sun, W.
2013-12-01
We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun, the first mission that could image interplanetary CMEs at radio wavelengths from space, and the first mission that could measure solar high-latitude magnetism leading to eruptions and the fast solar wind. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.
Global map of solar power production efficiency, considering micro climate factors
NASA Astrophysics Data System (ADS)
Hassanpour Adeh, E.; Higgins, C. W.
2017-12-01
Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.
NASA Astrophysics Data System (ADS)
Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.
2016-12-01
We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Gonzalez, C. P.; Allums, K. K.
2017-01-01
Recent refinement of analysis of ACE/SWICS data (Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer) and of onboard data for Genesis Discovery Mission of 3 regimes of solar wind at Earth-Sun L1 make it an appropriate time to update the availability and condition of Genesis samples specifically collected in these three regimes and currently curated at Johnson Space Center. ACE/SWICS spacecraft data indicate that solar wind flow types emanating from the interstream regions, from coronal holes and from coronal mass ejections are elementally and isotopically fractionated in different ways from the solar photosphere, and that correction of solar wind values to photosphere values is non-trivial. Returned Genesis solar wind samples captured very different kinds of information about these three regimes than spacecraft data. Samples were collected from 11/30/2001 to 4/1/2004 on the declining phase of solar cycle 23. Meshik, et al is an example of precision attainable. Earlier high precision laboratory analyses of noble gases collected in the interstream, coronal hole and coronal mass ejection regimes speak to degree of fractionation in solar wind formation and models that laboratory data support. The current availability and condition of samples captured on collector plates during interstream slow solar wind, coronal hole high speed solar wind and coronal mass ejections are de-scribed here for potential users of these samples.
Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2016-04-01
So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J. Geophys. Res., 2012]), (6) the first-ever observation of backscattered solar wind helium (Vorburger et al. [J. Geophys. Res., 2012]), and (7) the determination of the scattering properties of backscattered solar wind hydrogen measured when the Moon transversed Earth's magneto-sheath (Lue et al. [J. Geophys. Res., 2016]). All findings above are based on measurements from the sun-lit side of the Moon's surface, where solar wind particles can impinge freely onto the lunar surface. On the night-side, in contrast, a large scale wake structure is formed as a result of the high absorption of solar wind plasma on the lunar day-side. Very recent ion measurements of Chandrayaan-1's Solar Wind Monitor (SWIM) have revealed the presence of protons in the near-lunar wake, though (Dhanya et al., [Icarus 2016 (submitted)]). The presence of protons in the near lunar wake implies that there is also some sort of solar wind - lunar surface interaction on the lunar night-side. A complete analysis of this interaction will be presented herein.
Implications of L1 Observations for Slow Solar Wind Formation by Solar Reconnection
NASA Technical Reports Server (NTRS)
Kepko, L.; Viall, N. M.; Antiochos, S. K.; Lepri, S. T.; Kasper, J. C.; Weberg, M.
2016-01-01
While the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasi periodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slowwind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near-constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition-velocity correlations do not hold on short, approximately hour long, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun's atmosphere.
Evolution of Multiscale Multifractal Turbulence in the Heliosphere
NASA Astrophysics Data System (ADS)
Macek, W. M.; Wawrzaszek, A.
2009-04-01
The aim of this study is to examine the question of scaling properties of intermittent turbulence in the space environment. We analyze time series of velocities of the slow and fast speed streams of the solar wind measured in situ by Helios 2, Advanced Composition Explorer and Voyager 2 spacecraft in the inner and outer heliosphere during solar minimum and maximum at various distances from the Sun. To quantify asymmetric scaling of solar wind turbulence, we consider a generalized two-scale weighted Cantor set with two different scales describing nonuniform distribution of the kinetic energy flux between cascading eddies of various sizes. We investigate the resulting spectrum of generalized dimensions and the corresponding multifractal singularity spectrum depending on one probability measure parameter and two rescaling parameters, demonstrating that the multifractal scaling is often rather asymmetric. In particular, we show that the degree of multifractality for the solar wind during solar minimum is greater for fast streams velocity fluctuations than that for the slow streams; the fast wind during solar minimum may exhibit strong asymmetric scaling. Moreover, we observe the evolution of multifractal scaling of the solar wind in the outer heliosphere. It is worth noting that for the model with two different scaling parameters a much better agreement with the solar wind data is obtained, especially for the negative index of the generalized dimensions. Therefore we argue that there is a need to use a two-scale cascade model. Hence we propose this new more general model as a useful tool for analysis of intermittent turbulence in various environments. References [1] W. M. Macek and A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence, Geophys. Res. Lett., 35, L02108, doi:10.1029/2007GL032263 (2008). [2] A. Szczepaniak and W. M. Macek, Asymmetric multifractal model for solar wind intermittent turbulence, Nonlin. Processes Geophys., 15, 615-620 (2008), http://www.nonlin-processes-geophys.net/15/615/2008/. [3] W. M. Macek and A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., A013795, doi:10.1029/2008JA013795, in press.
The Solar Connections Observatory for Planetary Environments (SCOPE):
NASA Astrophysics Data System (ADS)
Oliversen, R.; Harris, W.; Ballester, G.; Bougher, S.; Broadfoot, L.; Combi, M.; Cravens, T.; Gombosi, T.; Herbert, F.; Joseph, C.; Kozyra, J.; Limaye, S.; Morgenthaler, J.; Paxton, L.; Roesler, F.; Sandel, W.; Ben Jaffel, L.
2001-12-01
The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets and local interstellar medium (LISM) interact with and respond to changes in the solar wind and UV radiation field. Each planet interaction is unique and defined by solar input and local conditions of magnetic field strength and orientation, rotation rate, heliocentric distance, internal plasma, and ionospheric conductivity and circulation. Because the different elements of the environment respond to external and internal influences that are variable on many temporal and spatial scales, the study of a planetary system requires simultaneous understanding of the solar wind and diagnostics of the sun-planet interaction including auroral intensity and variation, upper atmospheric circulation and composition, and the distribution of neutrals and plasmas near the planet. The Solar Connections Observatory for Planetary Environments (SCOPE) is a mission to study Solar interactions from the level of planetary upper atmospheres to the heliopause. SCOPE consists of a binocular EUV/FUV telescope that provides high spatial resolution imaging, broadband spectro-imaging, and high-resolution H Ly-alpha line spectroscopy between 55-290 nm. SCOPE will study planetary environments as examples of the solar connection and map the distribution of interplanetary H and the interaction of LISM plasma with the solar wind at the heliopause. A key to the SCOPE approach is to include Earth in its research objectives. SCOPE will monitor terrestrial auroral energy deposition and leverage local measurements of the solar wind and propagation models to derive the expected conditions at Superior planets that will be observed in annual opposition campaigns. This will permit direct comparison of planetary and terrestrial responses to the same solar wind stream. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Solar and Wind Forecasting | Grid Modernization | NREL
and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry
NASA Technical Reports Server (NTRS)
Lennartsson, W.
1992-01-01
Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.
Influence of the solar wind/interplanetary medium on Saturnian kilometric radiation
NASA Technical Reports Server (NTRS)
Rucker, Helmut O.; Desch, M. D.
1990-01-01
Previous studies on the periodicities of the Saturnian kilometric radiation (SKR) suggested a considerable solar wind influence on the occurrence of SKR, so it was obvious to investigate the relationship between parameters of the solar wind/interplanetary medium and this Saturnian radio component. Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the external control of SKR. Out of the examined quantities known to be important in controlling magnetospheric processes this investigation yielded a dominance of the solar wind momentum, ram pressure and kinetic energy flux, in stimulating SKR and controlling its activity and emitted energy, and confirmed the results of the Voyager 1 analysis.
Deceleration of the solar wind in the earth's foreshock region - Isee 2 and Imp 8 observations
NASA Technical Reports Server (NTRS)
Bonifazi, C.; Moreno, G.; Lazarus, A. J.; Sullivan, J. D.
1980-01-01
The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the earth's bow shock and associated waves is studied using a two-spacecraft technique. This deceleration depends on the solar wind bulk velocity; at low velocities (below 300 km/s) the velocity decrease is about 5 km/s, while at higher velocities (above 400 km/s) the decrease may be as large as 30 km/s. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind; therefore at least part of this energy must go into waves and/or into the backstreaming ions.
Solar system plasma turbulence and intermittency at the maximum and minimum of the solar cycle
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2015-04-01
We report on the analysis of turbulence properties of the solar wind and the planetary magnetosheaths of Venus and Earth at solar maximum (2000-2001) and minimum (1997-1998, 2007-2008) as revealed by Ulysses, Cluster and Venus Express. We provide an overview of the spectral and scaling properties of turbulence during the targeted time periods. A selection of Ulysses data reveals the spectral properties of the "pure" slow and "pure" fast solar wind turbulence, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. Venus Express and Cluster data contribute to the description of the solar wind turbulence at 0.72 AU and respectively 1 AU. The spectral analysis of magnetosheath data from Venus Express and Cluster reveals the properties of turbulence to be compared to solar wind turbulence. The statistical properties of plasma and magnetic field fluctuations exhibit features linked with intermittency revealed as non-Gaussian Probability Distribution Functions (PDFs) and scale dependent kurtosis. PDFs are computed for the solar wind data from Ulysses, Venus Express and Cluster, and complement the analysis based on second order corrrelation function. The same strategy is applied to study the intermittency of the magnetosheath turbulence of Venus and the Earth. The results of our thorough survey of data bases are organized in catalogues available on line: PSD and PDFs results are stored in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSDs and PDFs obtained in the terrestrial magnetosheath, and one for the solar minimum, 2007-2008, that includes PSDs and PDFs obtained in the terrestrial and Venus magnetosheaths). As an example of higher order analysis resulting from these results we discuss the similarities and differences between fast and slow wind turbulence and intermittency. We also discuss how the exploitation of data bases produced by the FP7 project STORM contribute to developing a (virtual) laboratory for studying solar system plasma turbulence and intermittency. Research supported by the European FP7 Programme (grant agreement 313038/STORM), and a national grant CNCS -UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.
Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Volwerk, M.; Richter, I.; Tsurutani, B.; Götz, C.; Altwegg, K.; Broiles, T.; Burch, J.; Carr, C.; Cupido, E.; Delva, M.; Dósa, M.; Edberg, N. J. T.; Eriksson, A.; Henri, P.; Koenders, C.; Lebreton, J.-P.; Mandt, K. E.; Nilsson, H.; Opitz, A.; Rubin, M.; Schwingenschuh, K.; Stenberg Wieser, G.; Szegö, K.; Vallat, C.; Vallieres, X.; Glassmeier, K.-H.
2016-01-01
The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.
Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Volwerk, Martin
2016-04-01
The data from all Rosetta Plasma Consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.
Magnetosheath Propagation Time of Solar Wind Directional Discontinuities
NASA Astrophysics Data System (ADS)
Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.
2018-05-01
Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrationsmore » of wind and solar generation. The main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
NASA Astrophysics Data System (ADS)
Tanaka, T.; Washimi, H.
1999-06-01
The global structure of the solar wind/very local interstellar medium interaction is studied from a fully three-dimensional time-dependent magnetohydrodynamic model, in which the solar wind speed increases from 400 to 800 km/s in going from the ecliptic to pole and the heliolatitude of the low-high-speed boundary changes from 30° to 80° in going from the solar minimum to solar maximum. In addition, the interplanetary magnetic field (IMF) changes its polarity at the solar maximum. As a whole, the shapes of the terminal shock (TS) and heliopause (HP) are elongated along the solar polar axis owing to a high solar wind ram pressure over the poles. In the ecliptic plane, the heliospheric structure changes little throughout a solar cycle. The TS in this plane shows a characteristic bullet-shaped structure. In the polar plane, on the other hand, the shape of the TS exhibits many specific structures according to the stage of the solar cycle. These structures include the polygonal configuration of the polar TS seen around the solar minimum, the mesa- and terrace-shaped TSs in the high- and low-speed solar wind regions seen around the ascending phase, and the chimney-shaped TS in the high-speed solar wind region seen around the solar maximum. These structures are formed from different combinations of right-angle shock, oblique shock, and steep oblique shock so as to transport the heliosheath plasma most efficiently toward the heliotail (HT). In the HT, the hot and weakly-magnetized plasma from the high-heliolatitude TS invades as far as the ecliptic plane. A weakly time-dependent recirculation flow in the HT is a manifestation of invading flow. Distributions of magnetic field in the HT, which are a pile-up of the compressed MF over several solar cycles, are modified by the flow from high-heliolatitude.
Magnetopause Standoff Position Changes and Geosynchronous Orbit Crossings: Models and Observations
NASA Astrophysics Data System (ADS)
Collado-Vega, Y. M.; Rastaetter, L.; Sibeck, D. G.
2017-12-01
The Earth's magnetopause is the boundary that mostly separates the solar wind with the Earth's magnetosphere. Its location has been studied and estimated via simulation models, observational data and empirical models. This research aims to study the changes of the magnetopause standoff location due to different solar wind conditions using a combination of all the different methods. We will use the Run-On-Request capabilities within the MHD models available from the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center, specifically BATS-R-US (SWMF), OpenGGCM, LFM and GUMICS models. The magnetopause standoff position prediction and response time to the solar wind changes will then be compared to results from available empirical models (e.g. Shue et al. 1998), and to THEMIS, Cluster, Geotail and MMS missions magnetopause crossing observations. We will also use times of extreme solar wind conditions where magnetopause crossings have been observed by the GOES satellites. Rigorous analysis/comparison of observations and empirical models is critical in determining magnetosphere dynamics for model validation. This research goes also hand in hand with the efforts of the working group at the CCMC/LWS International Forum for Space Weather Capabilities Assessment workshop that aims to analyze different events to define metrics for model-data comparison. Preliminary results of this particular research show that there are some discrepancies between the MHD models standoff positions of the dayside magnetopause for the same solar wind conditions that include an increase in solar wind dynamic pressure and a step function in the IMF Bz component. In cases of nominal solar wind conditions, it has been observed that the models do mostly agree with the observational data from the different satellite missions.
NASA Astrophysics Data System (ADS)
Réville, V.; Velli, M.; Brun, S.
2017-12-01
The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.
Transport equations for low-energy solar particles in evolving interplanetary magnetic fields
NASA Technical Reports Server (NTRS)
Ng, C. K.
1988-01-01
Two new forms of a simplified Fokker-Planck equation are derived for the transport of low-energy solar energetic particles in an evolving interplanetary magnetic field, carried by a variable radial solar wind. An idealized solution suggests that the 'invariant' anisotropy direction reported by Allum et al. (1974) may be explained within the conventional theoretical framework. The equations may be used to relate studies of solar particle propagation to solar wind transients, and vice versa.
Ion kinetic scale in the solar wind observed.
Śafránková, Jana; Němeček, Zdeněk; Přech, Lubomír; Zastenker, Georgy N
2013-01-11
This Letter shows the first results from the solar wind monitor onboard the Spektr-R spacecraft which measures plasma moments with a time resolution of 31 ms. This high-time resolution allows us to make direct observations of solar wind turbulence below ion kinetic length scales. We present examples of the frequency spectra of the density, velocity, and thermal velocity. Our study reveals that although these parameters exhibit the same behavior at the magnetohydrodynamic scale, their spectra are remarkably different at the kinetic scale.
Variations of Strahl Properties with Fast and Slow Solar Wind
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris
2008-01-01
The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.
Coherence Analysis of the Solar Wind Between l1 and the Lunar Orbit
NASA Astrophysics Data System (ADS)
Crane, S. O.; Fuqua, H.; Poppe, A. R.; Harada, Y.; Fatemi, S.; Delory, G. T.
2016-12-01
A cross correlation analysis of the lunar and solar wind interaction was performed to understand coherence length scales. This is mandatory for conducting tests in electromagnetic sounding of the moon with two measurement probes. Signal processing and data analysis methods encompass the study of the lunar electromagnetic plasma environment with properties of the solar wind at key positions outside of Earth's magnetosphere. Variations in solar activity detected by ACE, WIND, Kaguya and Lunar Prospector can be informative regarding how well correlated the magnetic properties of the solar wind are between the 1st Lagrange point (ACE & WIND orbits) and the lunar orbit (Kaguya & Lunar Prospector investigations). The analysis objective is to use cross correlation to understand the solar wind coherence between these positions. This requires mastering concrete analysis tools to filter and use data that yields high (>0.80) or intermediate (0.70-0.80) coherence values, while demonstrating an analysis of up to one month of data, and archiving poor (<0.50) cross correlation coefficients for effects of orbit position and downstream distance. We also consider the impact of high energy events such as Coronal Mass Ejections, Solar Flares, and shocks that may be recorded by `ACE's List of Disturbances and Transients' to the effect that, at the current level of analysis, various expected coefficients between 0.55 and 0.85 have been generated for up to 3 months of data, 2008-02-01 through 2008-05-03.
Diamagnetic effect in the foremoon solar wind observed by Kaguya
NASA Astrophysics Data System (ADS)
Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi
2017-04-01
Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.
India RE Grid Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M
The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India's RE targets and identify actions that may be favorable for integration.
Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind
NASA Astrophysics Data System (ADS)
Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.
2009-06-01
The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrows, Clayton P.; Katz, Jessica R.; Cochran, Jaquelin M.
The Republic of the Philippines is home to abundant solar, wind, and other renewable energy (RE) resources that contribute to the national government's vision to ensure sustainable, secure, sufficient, accessible, and affordable energy. Because solar and wind resources are variable and uncertain, significant generation from these resources necessitates an evolution in power system planning and operation. To support Philippine power sector planners in evaluating the impacts and opportunities associated with achieving high levels of variable RE penetration, the Department of Energy of the Philippines (DOE) and the United States Agency for International Development (USAID) have spearheaded this study along withmore » a group of modeling representatives from across the Philippine electricity industry, which seeks to characterize the operational impacts of reaching high solar and wind targets in the Philippine power system, with a specific focus on the integrated Luzon-Visayas grids.« less
On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface
NASA Astrophysics Data System (ADS)
Lyu, L.
2012-12-01
A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.
The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, Paul; Raines, Jim M.; Lepri, Susan T.
Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup –1}, we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup –1}, Ne/O ranges from amore » low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.« less
Anomalously low C6+/C5+ ratio in solar wind: ACE/SWICS observation
NASA Astrophysics Data System (ADS)
Zhao, L.; Landi, E.; Kocher, M.; Lepri, S. T.; Fisk, L. A.; Zurbuchen, T. H.
2016-03-01
The Carbon and Oxygen ionization states in the solar wind plasma freeze-in within 2 solar radii (Rs) from the solar surface, and then they do not change as they propagate with the solar wind into the heliosphere. Therefore, the O7+/O6+ and C6+/C5+ charge state ratios measured in situ maintain a record of the thermal properties (electron temperature and density) of the inner corona where the solar wind originates. Since these two ratios freeze-in at very similar height, they are expected to be correlated. However, an investigation of the correlation between these two ratios as measured by ACE/SWICS instrument from 1998 to 201l shows that there is a subset of "Outliers" departing from the expected correlation. We find about 49.4% of these Outliers is related to the Interplanetary Coronal Mass Ejections (ICMEs), while 49.6% of them is slow speed wind (Vp < 500 km/s) and about 1.0% of them is fast solar wind (Vp > 500 km/s). We compare the outlier-slow-speed wind with the normal slow wind (defined as Vp < 500 km/s and O7+/O6+ > 0.2) and find that the reason that causes the Outliers to depart from the correlation is their extremely depleted C6+/C5+ ratio which is decreased by 80% compared to the normal slow wind. We discuss the implication of the Outlier solar wind for the solar wind acceleration mechanism.
The structure of the solar wind in the inner heliosphere
NASA Astrophysics Data System (ADS)
Lee, Christina On-Yee
2010-12-01
This dissertation is devoted to expanding our understanding of the solar wind structure in the inner heliosphere and variations therein with solar activity. Using spacecraft observations and numerical models, the origins of the large-scale structures and long-term trends of the solar wind are explored in order to gain insights on how our Sun determines the space environments of the terrestrial planets. I use long term measurements of the solar wind density, velocity, interplanetary magnetic field, and particles, together with models based on solar magnetic field data, to generate time series of these properties that span one solar rotation (˜27 days). From these time series, I assemble and obtain the synoptic overviews of the solar wind properties. The resulting synoptic overviews show that the solar wind around Mercury, Venus, Earth, and Mars is a complex co-rotating structure with recurring features and occasional transients. During quiet solar conditions, the heliospheric current sheet, which separates the positive interplanetary magnetic field from the negative, usually has a remarkably steady two- or four-sector structure that persists for many solar rotations. Within the sector boundaries are the slow and fast speed solar wind streams that originate from the open coronal magnetic field sources that map to the ecliptic. At the sector boundaries, compressed high-density and the related high-dynamic pressure ridges form where streams from different coronal source regions interact. High fluxes of energetic particles also occur at the boundaries, and are seen most prominently during the quiet solar period. The existence of these recurring features depends on how long-lived are their source regions. In the last decade, 3D numerical solar wind models have become more widely available. They provide important scientific tools for obtaining a more global view of the inner heliosphere and of the relationships between conditions at Mercury, Venus, Earth, and Mars. When I compare the model results with observations for periods outside of solar wind disturbances, I find that the models do a good job of simulating at least the steady, large-scale, ambient solar wind structure. However, it remains a challenge to accurately model the solar wind during active solar conditions. During these times, solar transients such as coronal mass ejections travel through interplanetary space and disturb the ambient solar wind, producing a far less predictable and modelable space environment. However, such conditions may have the greatest impact on the planets - especially on their atmospheres and magnetospheres. I therefore also consider the next steps in modeling, toward including active conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xin; Tu Chuanyi; He Jiansen
The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These resultsmore » confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.« less
Space-based measurements of elemental abundances and their relation to solar abundances
NASA Technical Reports Server (NTRS)
Coplan, M. A.; Ogilvie, K. W.; Bochsler, P.; Geiss, J.
1990-01-01
The Ion Composition Instrument (ICI) aboard the ISEE-3/ICE spacecraft was in the solar wind continuously from August 1978 to December 1982. The results made it possible to establish long-term average solar wind abundance values for helium, oxygen, neon, silicon, and iron. The Charge-Energy-Mass instrument aboard the CCE spacecraft of the AMPTE mission has measured the abundance of these elements in the magnetosheath and has also added carbon, nitrogen, magnesium, and sulfur to the list. There is strong evidence that these magnetosheath abundances are representative of the solar wind. Other sources of solar wind abundances are Solar Energetic Particle experiments and Apollo lunar foils. When comparing the abundances from all of these sources with photospheric abundances, it is clear that helium is depleted in the solar wind while silicon and iron are enhanced. Solar wind abundances for carbon, nitrogen, oxygen, and neon correlate well with the photospheric values. The incorporation of minor ions into the solar wind appears to depend upon both the ionization times for the elements and the Coulomb drag exerted by the outflowing proton flux.
The structure of the inner heliosphere from Pioneer Venus and IMP observations
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.
NASA Technical Reports Server (NTRS)
Woo, Richard; Goldstein, Richard M.
1994-01-01
Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.
Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition
Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H
2014-01-01
To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515
Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.
Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H
2014-04-01
To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study ( B z ≤ -5 nT or E y ≥ 3 mV/m for t ≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME- Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.
Does magnetic storm generation depend on the solar wind type?
NASA Astrophysics Data System (ADS)
Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.; Yermolaev, M. Yu.
2017-09-01
The purpose of this work is to draw the reader's attention to the problem of possible differences in the generation of magnetic storms by different large-scale solar wind types: corotating interaction regions (CIRs), Sheaths, and interplanetary coronal mass ejections (ICMEs), including magnetic clouds (MCs) and Ejecta. We recently showed that the description of relationships between interplanetary conditions and Dst and Dst* indices with the modified formula by Burton et al. gives an 50% higher efficiency of storm generation by Sheath and CIR than that by ICME. Many function couplings (FCs) between different interplanetary parameters and the magnetosphere state have been suggested in the literature; however, they have not been analyzed for different solar wind types. In this work, we study the generation efficiency of the main phase of a storm by different solar wind streams with the use of 12 FCs on the basis of OMNI data for 1976-2000. The results show that the Sheath has the highest efficiency for most FCs, and MC is the least efficient, and this result corresponds to our previous results. The reliability of the results and possible causes of differences for different FCs and solar wind types are to be studied further.
A large ion beam device for laboratory solar wind studies
NASA Astrophysics Data System (ADS)
Ulibarri, Zach; Han, Jia; Horányi, Mihály; Munsat, Tobin; Wang, Xu; Whittall-Scherfee, Guy; Yeo, Li Hsia
2017-11-01
The Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.1 mA/cm2. Chamber pressure can be reduced to 4 × 10-5 Torr under operating conditions to suppress ion-neutral collisions and create a monoenergetic ion beam. The beam profile has been characterized by a Langmuir probe and an ion energy analyzer mounted on a two-dimensional translation stage. The beam profile meets the requirements for planned experiments that will study solar wind interaction with lunar magnetic anomalies, the charging and dynamics of dust in the solar wind, plasma wakes and refilling, and the wakes of topographic features such as craters or boulders. This article describes the technical details of the device, initial operation and beam characterization, and the planned experiments.
Solar wind and the motion of dust grains
NASA Astrophysics Data System (ADS)
Klačka, J.; Petržala, J.; Pástor, P.; Kómar, L.
2012-04-01
In this paper, we investigate the action of solar wind on an arbitrarily shaped interplanetary dust particle. The final relativistically covariant equation of motion of the particle also contains the change of the particle's mass. The non-radial solar wind velocity vector is also included. The covariant equation of motion reduces to the Poynting-Robertson effect in the limiting case when a spherical particle is treated, when the speed of the incident solar wind corpuscles tends to the speed of light and when the corpuscles spread radially from the Sun. The results of quantum mechanics have to be incorporated into the physical considerations, in order to obtain the limiting case. If the solar wind affects the motion of a spherical interplanetary dust particle, then ?. Here, p'in and p'out are the incoming and outgoing radiation momenta (per unit time), respectively, measured in the proper frame of reference of the particle, and ? and ? are the solar wind pressure and the total scattering cross-sections, respectively. An analytical solution of the derived equation of motion yields a qualitative behaviour consistent with numerical calculations. This also holds if we consider a decrease of the particle's mass. Using numerical integration of the derived equation of motion, we confirm our analytical result that the non-radial solar wind (with a constant value of angle between the radial direction and the direction of the solar wind velocity) causes outspiralling of the dust particle from the Sun for large values of the particle's semimajor axis. The non-radial solar wind also increases the time the particle spirals towards the Sun. If we consider the periodical variability of the solar wind with the solar cycle, then there are resonances between the particle's orbital period and the period of the solar cycle.
Solar system plasma Turbulence: Observations, inteRmittency and Multifractals
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2016-04-01
The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a function of the targeted system (solar wind/magnetospheres/geomagnetic indices), solar cycle phase (minimum versus maximum), type of result (PSDs, PDFs, Multifractals). The results catalogues, available online from http://www.storm-fp7.eu, include 4094 PSD spectra, 9566 PDFs and 15633 multifractal spectra (from partition function and respectively Rank Ordered (ROMA) formalisms). These results are obtained at solar maximum (2001-2002, both in the solar wind and the terrestrial magnetosheath) and solar minimum (1997-1998 in the solar wind, 2007-2008 in the solar wind, Venus and Earth magnetosheath and selected regions of the magnetosphere). Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM.
Auroral bright spot in Jupiter’s active region in corresponding to solar wind dynamic
NASA Astrophysics Data System (ADS)
Haewsantati, K.; Wannawichian, S.; Clarke, J. T.; Nichols, J. D.
2017-09-01
Jupiter’s polar emission has brightness whose behavior appears to be unstable. This work focuses on the bright spot in active region which is a section of Jupiter’s polar emission. Images of the aurora were taken by Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (HST). Previously, two bright spots, which were found on 13 th May 2007, were suggested to be fixed on locations described by system III longitude. The bright spot’s origin in equatorial plane was proposed to be at distance 80-90 Jovian radii and probably associated with the solar wind properties. This study analyzes additional data on May 2007 to study long-term variation of brightness and locations of bright spots. The newly modified magnetosphere-ionosphere mapping based on VIP4 and VIPAL model is used to locate the origin of bright spot in magnetosphere. Furthermore, the Michigan Solar Wind Model or mSWiM is also used to study the variation of solar wind dynamic pressure during the time of bright spot’s observation. We found that the bright spots appear in similar locations which correspond to similar origins in magnetosphere. In addition, the solar wind dynamic pressure should probably affect the bright spot’s variation.
X-ray Magnetosheath Emission from Solar Wind Charge Exchange During Two CME Events in 2001
NASA Astrophysics Data System (ADS)
Sembay, S.; Whittaker, I. C.; Read, A.; Carter, J. A.; Milan, S. E.; Palmroth, M.
2016-12-01
Using a combination of the GUMICS-4 MHD model and observed solar wind heavy ion abundances from ACE, we produce case studies looking at X-ray emission from charge exchange in the Earth's magnetosheath. We specifically look in the 0.5-0.7 keV range, which is dominated by highly ionised oxygen emission. Previous studies looking at solar wind charge exchange (SWCX) emission have verified our modelling process via comparison to the XMM-Newton X-ray observatory, and we use the same simulation process here. This study investigates the emission magnitude changes that occur during two coronal mass ejection (CME) events (31 March 2001 and 21 October 2001). As part of this work we also provide a novel masking technique to exclude the plasma of terrestrial origin in the MHD model. As expected the two CME cases examined provide an increased dynamic pressure which pushes the magnetopause closer to the Earth, with a high temporal variation. We show how these changes cause an increase in the peak SWCX emission signature by over an order of magnitude from the quiescent solar wind case. Imaging of this SWCX emission allows a global view of the magnetopause shape and position, a technique planned for future missions such as SMILE (Solar wind Magnetosphere Ionosphere Link Explorer).
Effects of different drivers on ion fluxes at Mars. MARS EXPRESS and MAVEN observations
NASA Astrophysics Data System (ADS)
Dubinin, Eduard; Fraenz, Markus; McFadden, James; Halekas, Jasper; Epavier, Frank; Connerney, Jack; Brain, David; Jakosky, Bruce; Andrews, David; Barabash, Stas
2017-04-01
Recent observations by Mars Express and MAVEN spacecraft have shown that the Martian atmosphere/ionosphere is exposed to the impact of solar wind which results in losses of volatiles from Mars. This erosion is an important factor for the evolution of the Martian atmosphere and its water inventory. To estimate the escape forced by the solar wind during the early Solar System conditions we need to know how the ionosphere of Mars and escape fluxes depend on variations in the strength of the external drivers, in particularly, of solar wind and solar EUV flux. We present multi-instrument observations of the influence of the solar wind and solar irradiance on the Martian ionosphere and escape fluxes. We use data obtained by the ASPERA-3 and MARSIS experiments on Mars Express and by the STATIC, SWIA, MAG and EUV monitor on MAVEN. Observations by Mars Express supplemented by the EUV monitoring at Earth orbit and translated to Mars orbit provide us information about this dependence over more than 10 years whereas the measurements made by MAVEN provide us for the first time the opportunity to study these processes with simultaneous monitoring of the solar wind and ionospheric variations, planetary ion fluxes and solar irradiance. It will be shown that that fluxes of planetary ions through different escape channels (trans-terminator fluxes, ion plume, plasma sheet) respond differently on the variations of the different drivers.
On the dayside mantle region around those nonmagnetic solar system bodies which have ionosphere
NASA Astrophysics Data System (ADS)
Szego, K.; Sagdeev, R. Z.; Shapiro, V. D.; Shevchenko, V. I.
1992-08-01
The properties of the plasma environments close to the dayside obstacle boundary of nonmagnetic planets with ionospheres are compared to study the effects of turbulent wave-particle processes. Data are examined from Pioneer-Venus, Phobos-2, and Giotto/Vega data regarding Venus, Mars, and Comet P/Halley, respectively. The equivalent of the MHD obstacle boundary on the dayside is investigated with attention given to the wave-particle processes. A magnetic cavity is found to exist in observations and theory within the magnetosphere where the solar-wind magnetic field does not penetrate. The ionosphere penetrates the boundary, and a region is defined where the solar wind and the planetary/cometary plasma overlap. The region is called a mantle region in which: (1) the solar wind decelerates and the magnetic field piles up; (2) two counterstreaming ion populations exist; and (3) solar wind and body ions interact via wave-particle interaction.
Jovian Substorms: A Study of Processes Leading to Transient Behavior in the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Russell, C. T.
2000-01-01
Solar system magnetospheres can be divided into two groups: induced and intrinsic. The induced magnetospheres are produced in the solar wind interaction of the magnetized solar wind with planetary obstacles. Examples of these magnetospheres are those of comets, Venus and Mars. Intrinsic magnetospheres are the cavities formed in the solar wind by the magnetic fields produced by dynamo current systems inside the planets: Mercury, Earth, Jupiter, Saturn, Uranus and Neptune are known to have intrinsic magnetospheres. Intrinsic magnetospheres can be further subdivided as to how the circulating plasma is driven by external or internal processes. The magnetospheres of Mercury and Earth are driven by the solar wind. The magnetospheres of Jupiter and possibly of Saturn are principally driven by internal processes. These processes provide the energy for the powerful jovian radio signals that can be detected easily on the surface of the Earth.
Quantifying variability in fast and slow solar wind: From turbulence to extremes
NASA Astrophysics Data System (ADS)
Tindale, E.; Chapman, S. C.; Moloney, N.; Watkins, N. W.
2017-12-01
Fast and slow solar wind exhibit variability across a wide range of spatiotemporal scales, with evolving turbulence producing fluctuations on sub-hour timescales and the irregular solar cycle modulating the system over many years. Here, we apply the data quantile-quantile (DQQ) method [Tindale and Chapman 2016, 2017] to over 20 years of Wind data, to study the time evolution of the statistical distribution of plasma parameters in fast and slow solar wind. This model-independent method allows us to simultaneously explore the evolution of fluctuations across all scales. We find a two-part functional form for the statistical distributions of the interplanetary magnetic field (IMF) magnitude and its components, with each region of the distribution evolving separately over the solar cycle. Up to a value of 8nT, turbulent fluctuations dominate the distribution of the IMF, generating the approximately lognormal shape found by Burlaga [2001]. The mean of this core-turbulence region tracks solar cycle activity, while its variance remains constant, independent of the fast or slow state of the solar wind. However, when we test the lognormality of this core-turbulence component over time, we find the model provides a poor description of the data at solar maximum, where sharp peaks in the distribution dominate over the lognormal shape. At IMF values higher than 8nT, we find a separate, extremal distribution component, whose moments are sensitive to solar cycle phase, the peak activity of the cycle and the solar wind state. We further investigate these `extremal' values using burst analysis, where a burst is defined as a continuous period of exceedance over a predefined threshold. This form of extreme value statistics allows us to study the stochastic process underlying the time series, potentially supporting a probabilistic forecast of high-energy events. Tindale, E., and S.C. Chapman (2016), Geophys. Res. Lett., 43(11) Tindale, E., and S.C. Chapman (2017), submitted Burlaga, L.F. (2001), J. Geophys. Res., 106(A8)
Turbulent Transport in a Three-dimensional Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiota, D.; Zank, G. P.; Adhikari, L.
2017-03-01
Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for themore » temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.« less
NASA Astrophysics Data System (ADS)
Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.
2016-12-01
CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.
Mapping the Solar Wind from its Source Region into the Outer Corona
NASA Technical Reports Server (NTRS)
Esser, Ruth
1997-01-01
Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the proposal was to determine as many plasma parameters in the solar wind acceleration region and beyond as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters were then used to constrain solar wind models.
NASA Technical Reports Server (NTRS)
Gurman, Joseph (Technical Monitor); Habbal, Shadia Rifai
2004-01-01
Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored (1) the role of proton temperature anisotropy in the expansion of the solar wind, (2) the role of plasma parameters at the coronal base in the formation of high speed solar wind streams at mid-latitudes, and (3) the heating of coronal loops.
Agua Caliente Wind/Solar Project at Whitewater Ranch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooks, Todd; Stewart, Royce
2014-12-16
Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly hasmore » excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.« less
NASA Astrophysics Data System (ADS)
Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery
Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean, earthquakes and etc). The study was supported by a grant of RFBR, n 06-05-64998.
MAVEN Upstream Observations of the Cycle 24 Space Weather Conditions at Mars
NASA Astrophysics Data System (ADS)
Lee, C. O.; Hara, T.; Halekas, J. S.; Thiemann, E.; Curry, S.; Lillis, R. J.; Larson, D. E.; Espley, J. R.; Gruesbeck, J.; Eparvier, F. G.; Li, Y.; Jian, L.; Luhmann, J. G.; Jakosky, B. M.
2016-12-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft went into orbit around Mars during the height of the activity phase of Solar Cycle 24. The mission was designed in part to study the response of the upper atmosphere, ionosphere, and magnetosphere of Mars to solar and solar wind inputs. When MAVEN is on the Martian dayside and orbiting around its apoapsis altitude of 6200 km, the suite of instruments onboard can measure the solar wind plasma (density, velocity), interplanetary magnetic field (magnitude and direction), and particle counts of solar energetic particles (SEPs), as well as the EUV solar irradiance. We will present an overview of the upstream conditions observed to date and highlight a number of Mars-impacting space weather events due to ICMEs and SEPs. We will also present events that are triggered by corotating interaction regions (CIRs), which become more prominent beyond 1 AU and are the dominant heliospheric structures during the declining phase of the solar cycle. As part of the discussion, we will compare and contrast observations from MAVEN and ACE/WIND or STEREO-A during periods when Mars and the 1-AU observer were in solar opposition or nearly aligned along the solar wind Parker spiral.
NASA Technical Reports Server (NTRS)
Pyle, K. R.; Simpson, J. A.
1985-01-01
Near solar maximum, a series of large radial solar wind shocks in June and July 1982 provided a unique opportunity to study the solar modulation of galactic cosmic rays with an array of spacecraft widely separated both in heliocentric radius and longitude. By eliminating hysteresis effects it is possible to begin to separate radial and azimuthal effects in the outer heliosphere. On the large scale, changes in modulation (both the increasing and recovery phases) propagate outward at close to the solar wind velocity, except for the near-term effects of solar wind shocks, which may propagate at a significantly higher velocity. In the outer heliosphere, azimuthal effects are small in comparison with radial effects for large-scale modulation at solar maximum.
On the properties of energy transfer in solar wind turbulence.
NASA Astrophysics Data System (ADS)
Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina
2017-04-01
Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.
Solar wind controls on Mercury's magnetospheric cusp
NASA Astrophysics Data System (ADS)
He, Maosheng; Vogt, Joachim; Heyner, Daniel; Zhong, Jun
2017-06-01
This study assesses the response of the cusp to solar wind changes comprehensively, using 2848 orbits of MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observation. The assessment entails four steps: (1) propose and validate an approach to estimate the solar wind magnetic field (interplanetary magnetic field (IMF)) for MESSENGER's cusp transit; (2) define an index σ measuring the intensity of the magnetic disturbance which significantly peaks within the cusp and serves as an indicator of the cusp activity level; (3) construct an empirical model of σ as a function of IMF and Mercury's heliocentric distance rsun, through linear regression; and (4) use the model to estimate and compare the polar distribution of the disturbance σ under different conditions for a systematic comparison. The comparison illustrates that the disturbance peak over the cusp is strongest and widest extending in local time for negative IMF Bx and negative IMF Bz, and when Mercury is around the perihelion. Azimuthal shifts are associated with both IMF By and rsun: the cusp moves toward dawn when IMF By or rsun decrease. These dependences are explained in terms of the IMF Bx-controlled dayside magnetospheric topology, the component reconnection model applied to IMF By and Bz, and the variability of solar wind ram pressure associated with heliocentric distance rsun. The applicability of the component reconnection model on IMF By indicates that at Mercury reconnection occurs at lower shear angles than at Earth.
NASA Astrophysics Data System (ADS)
Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.
2017-12-01
In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.
NASA Astrophysics Data System (ADS)
Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.
2016-12-01
The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.
Three-dimensional exploration of the solar wind using observations of interplanetary scintillation
TOKUMARU, Munetoshi
2013-01-01
The solar wind, a supersonic plasma flow continuously emanating from the Sun, governs the space environment in a vast region extending to the boundary of the heliosphere (∼100 AU). Precise understanding of the solar wind is of importance not only because it will satisfy scientific interest in an enigmatic astrophysical phenomenon, but because it has broad impacts on relevant fields. Interplanetary scintillation (IPS) of compact radio sources at meter to centimeter wavelengths serves as a useful ground-based method for investigating the solar wind. IPS measurements of the solar wind at a frequency of 327 MHz have been carried out regularly since the 1980s using the multi-station system of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. This paper reviews new aspects of the solar wind revealed from our IPS observations. PMID:23391604
Little or no solar wind enters Venus' atmosphere at solar minimum.
Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P
2007-11-29
Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.
Forecast of solar wind parameters according to STOP magnetograph observations
NASA Astrophysics Data System (ADS)
Tlatov, A. G.; Pashchenko, M. P.; Ponyavin, D. I.; Svidskii, P. M.; Peshcherov, V. S.; Demidov, M. L.
2016-12-01
The paper discusses the results of the forecast of solar wind parameters at a distance of 1 AU made according to observations made by the STOP telescope magnetograph during 2014-2015. The Wang-Sheeley-Arge (WSA) empirical model is used to reconstruct the magnetic field topology in the solar corona and estimate the solar wind speed in the interplanetary medium. The proposed model is adapted to STOP magnetograph observations. The results of the calculation of solar wind parameters are compared with ACE satellite measurements. It is shown that the use of STOP observations provides a significant correlation of predicted solar wind speed values with the observed ones.
A comparative study of Venus and Mars - Upper atmospheres, ionospheres and solar wind interactions
NASA Technical Reports Server (NTRS)
Mahajan, K. K.; Kar, J.
1990-01-01
The neutral atmospheres of Mars and Venus are discussed. A comparative study is presented of the upper atmospheres, ionospheres, and solar wind interactions of these two planets. The review is mainly concerned with the region about 100 km above the surface of the planets.
NASA Astrophysics Data System (ADS)
Owens, M. J.; Riley, P.; Horbury, T. S.
2017-05-01
Effective space-weather prediction and mitigation requires accurate forecasting of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar wind, driven by remote solar observations, are gaining skill at forecasting the large-scale solar-wind features that give rise to near-Earth variations over days and weeks. There remains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this study we investigate the analogue ensemble (AnEn), or "similar day", approach that was developed for atmospheric weather forecasting. The central premise of the AnEn is that past variations that are analogous or similar to current conditions can be used to provide a good estimate of future variations. By considering an ensemble of past analogues, the AnEn forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We show that forecasts of solar-wind speed can be improved by considering both speed and density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic field [BN] are improved by also considering the in-ecliptic magnetic-field components. In general, the best forecasts are found by considering only the previous 6 - 12 hours of observations. Using these parameters, the AnEn provides a valuable probabilistic forecast for solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours to around four days. For BN, which is central to space-weather disturbance, the AnEn only provides a valuable forecast out to around six to seven hours. As the inherent predictability of this parameter is low, this is still likely a marked improvement over other forecast methods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp. The AnEn provides a valuable probabilistic forecast of both indices out to around four days. We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind and geomagnetic conditions.
The Interaction of Solar wind Discontinuities with the Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Sibeck, David G.
2000-01-01
Funding from NASA Grant No. NAG54679 was received in three installments. The first year's installment amounted to only one month of salary support and was used to prepare survey plots. The second year's installment allowed us to complete two research papers concerning the interaction of solar wind discontinuities with the Earth's bow shock. In the first (published) paper, we reported that the discontinuities launch slow mode waves into the magnetosheath and the slow mode waves always propagate antisunward through the flank magnetosheath. Because the sunward/antisunward sense of the magnetosheath magnetic field reverses across local noon, so does the (north/south or east/west) sense of the velocity fluctuations associated with the waves. Wind, Geotail, and IMP-8 observations were used for this study. In the second study, we used Wind and Interball-1 observations to demonstrate that pressure pulses in the magnetosheath occur in pairs and that they bound pressure cavities and/or brief intervals of outward magnetopause motion. This paper is now in press. Funding from the third year's installment has been used to investigate the two aspects of the foreshock. Two manuscripts are now in preparation for submission to the Journal of Geophysical Research. The first reports that waves within the foreshock account for many instances of poor correlations between two solar wind monitors. Remaining cases of poor correlation occur during intervals of nearly constant IMF orientations and magnetic field strengths. While the former category pose a significant difficulty for space weather forecasts, the latter do not. The second study surveys IMP-8 observations of the foreshock. We find that diamagnetic cavities are common, particularly during periods of high solar wind velocity and low solar wind density. Plasma densities, temperatures, and magnetic field strengths fall during intervals of enhanced energetic particle fluxes. The cavities are bounded by regions of decelerated solar wind plasma and enhanced densities and magnetic field strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, O. W.; Li, X.; Jeska, L., E-mail: o.wyn.roberts@gmail.com, E-mail: xxl@aber.ac.uk
2015-03-20
Plasma turbulence at ion kinetic scales in the solar wind is investigated using the multi-point magnetometer data from the Cluster spacecraft. By applying the k-filtering method, we are able to estimate the full three-dimensional power spectral density P(ω{sub sc}, k) at a certain spacecraft frequency ω{sub sc} in wavevector (k) space. By using the wavevector at the maximum power in P(ω{sub sc}, k) at each sampling frequency ω{sub sc} and the Doppler shifted frequency ω{sub pla} in the solar wind frame, the dispersion plot ω{sub pla} = ω{sub pla}(k) is found. Previous studies have been limited to very few intervalsmore » and have been hampered by large errors, which motivates a statistical study of 52 intervals of solar wind. We find that the turbulence is predominantly highly oblique to the magnetic field k >> k {sub ∥}, and propagates slowly in the plasma frame with most points having frequencies smaller than the proton gyrofrequency ω{sub pla} < Ω{sub p}. Weak agreement is found that turbulence at the ion kinetic scales consists of kinetic Alfvén waves and coherent structures advected with plasma bulk velocity plus some minor more compressible components. The results suggest that anti-sunward and sunward propagating magnetic fluctuations are of similar nature in both the fast and slow solar wind at ion kinetic scales. The fast wind has significantly more anti-sunward flux than sunward flux and the slow wind appears to be more balanced.« less
A multi-timescale view on the slow solar wind with MTOF
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Verena; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter; Ipavich, Fred M.; Paquette, John A.; Klecker, Bernard
2013-04-01
The solar wind is known to be composed of several different types of wind. Their respective differences in speed gives rise to the somewhat crude categories slow and fast wind. However, slow and fast winds also differ in their composition and plasma properties. While coronal holes are accepted as the origin of the fast wind (e.g. [Tu2005]), slow wind is hypothesized to emanate from different regions and to be caused by different mechanisms, although the average properties of slow wind are remarkably uniform. Models for the origin of the slow solar wind fall in three categories. In the first category, slow wind originates from the edges of coronal holes and is driven by reconnection of open field lines from the coronal hole with closed loops [Schwadron2005]. The second category relies on reconnection as well but places the source regions of the slow solar wind at the boundaries of active regions [Sakao2007]. A topological argument underlies the third group which requires that all coronal holes are connected by the so-called "S-web" as the driver of the slow solar wind [Antiochos2011]. Solar wind composition has been continuously measured by for example SOHO/CELIAS and ACE/SWICS. In this work we focus on the mass time-of-flight instrument of SOHO/CELIAS/MTOF [Hovestadt1995], which has been collecting data from 1996 to the present day. Whereas much attention in previous years has been focused on spectacular features of the solar wind like (interplanetary) coronal mass ejections (ICMEs) our main interest lies in understanding the slow solar wind. Although it is remarkably homogeneous in its average properties (e.g. [vonSteiger2000]) it contains many short term variations. This motivates us to investigate the slow solar wind on multiple timescales with a special focus on identifying individual stream with unusual compositions. A first step in this is to identify individual streams. A useful tool to do this reliably is specific entropy [Pagel2004]. Consequently, this leads to an extensive picture of individual streams from MTOF, which can be combined with observations from other spacecraft in the future. In particular, identifying and understanding short-term variations of the slow solar wind has the potential to help distinguishing between different possible source regions and mechanisms. Further, with the long term goal of identifying possible different source mechanisms or regions, we analyze and compare the properties of individual streams on short time scales to focus on significant deviations from the average properties of slow solar wind. References [Antiochos2011] SK Antiochos, Z. Mikic, VS Titov, R. Lionello, and JA Linker. A model for the sources of the slow solar wind. The Astrophysical Journal, 731(2):112, 2011. [Hovestadt1995] D. Hovestadt, M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, M. Scholer, H. Grünwaldt, WI Axford, S. Livi, E. Marsch, et al. Celias-charge, element and isotope analysis system for soho. Solar Physics, 162(1):441-481, 1995. [Pagel2004] AC Pagel, NU Crooker, TH Zurbuchen, and JT Gosling. Correlation of solar wind entropy and oxygen ion charge state ratio. Journal of geophysical research, 109(A1):A01113, 2004. [Sakao2007] T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E.E. DeLuca, L.L. Lundquist, S. Tsuneta, L.K. Harra, Y. Katsukawa, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science, 318(5856):1585-1588, 2007. [Schwadron2005] NA Schwadron, DJ McComas, HA Elliott, G. Gloeckler, J. Geiss, and R. Von Steiger. Solar wind from the coronal hole boundaries. Journal of geophysical research, 110(A4):A04104, 2005. [Tu2005] C.Y. Tu, C. Zhou, E. Marsch, L.D. Xia, L. Zhao, J.X. Wang, and K. Wilhelm. Solar wind origin in coronal funnels. Science, 308(5721):519-523, 2005. [vonSteiger2000] R. Von Steiger, N. Schwadron, LA Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, RF Wimmer-Schweingruber, and TH Zurbuchen. Composition of quasi-stationary solar wind flows from ulysses/solar wind ion composition spectrometer. Journal of geophysical research, 105:27, 2000.
NASA Astrophysics Data System (ADS)
Roussos, E.; Jackman, C. M.; Thomsen, M. F.; Kurth, W. S.; Badman, S. V.; Paranicas, C.; Kollmann, P.; Krupp, N.; Bučík, R.; Mitchell, D. G.; Krimigis, S. M.; Hamilton, D. C.; Radioti, A.
2018-01-01
The lack of an upstream solar wind monitor poses a major challenge to any study that investigates the influence of the solar wind on the configuration and the dynamics of Saturn's magnetosphere. Here we show how Cassini MIMI/LEMMS observations of Solar Energetic Particle (SEP) and Galactic Cosmic Ray (GCR) transients, that are both linked to energetic processes in the heliosphere such us Interplanetary Coronal Mass Ejections (ICMEs) and Corotating Interaction Regions (CIRs), can be used to trace enhanced solar wind conditions at Saturn's distance. SEP protons can be easily distinguished from magnetospheric ions, particularly at the MeV energy range. Many SEPs are also accompanied by strong GCR Forbush Decreases. GCRs are detectable as a low count-rate noise signal in a large number of LEMMS channels. As SEPs and GCRs can easily penetrate into the outer and middle magnetosphere, they can be monitored continuously, even when Cassini is not situated in the solar wind. A survey of the MIMI/LEMMS dataset between 2004 and 2016 resulted in the identification of 46 SEP events. Most events last more than two weeks and have their lowest occurrence rate around the extended solar minimum between 2008 and 2010, suggesting that they are associated to ICMEs rather than CIRs, which are the main source of activity during the declining phase and the minimum of the solar cycle. We also list of 17 time periods ( > 50 days each) where GCRs show a clear solar periodicity ( ∼ 13 or 26 days). The 13-day period that derives from two CIRs per solar rotation dominates over the 26-day period in only one of the 17 cases catalogued. This interval belongs to the second half of 2008 when expansions of Saturn's electron radiation belts were previously reported to show a similar periodicity. That observation not only links the variability of Saturn's electron belts to solar wind processes, but also indicates that the source of the observed periodicity in GCRs may be local. In this case GCR measurements can be used to provide the phase of CIRs at Saturn. We further demonstrate the utility of our survey results by determining that: (a) Magnetospheric convection induced by solar wind disturbances associated with SEPs is a necessary driver for the formation of transient radiation belts that were observed throughout Saturn's magnetosphere on several occasions during 2005 and on day 105 of 2012. (b) An enhanced solar wind perturbation period that is connected to an SEP of day 332/2013 was the definite source of a strong magnetospheric compression which led to open flux loading in the magnetotail. Finally, we propose how the event lists can define the basis for single case studies or statistical investigations on how Saturn and its moons (particularly Titan) respond to extreme solar wind conditions or on the transport of SEPs and GCRs in the heliosphere.
Imaging the Top of the Solar Corona and the Young Solar Wind
NASA Astrophysics Data System (ADS)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-12-01
We present the first direct visual evidence of the quasi-stationary breakup of solar coronal structure and the rise of turbulence in the young solar wind, directly in the future flight path of Solar Probe. Although the corona and, more recently, the solar wind have both been observed directly with Thomson scattered light, the transition from the corona to the solar wind has remained a mystery. The corona itself is highly structured by the magnetic field and the outflowing solar wind, giving rise to radial "striae" - which comprise the familiar streamers, pseudostreamers, and rays. These striae are not visible in wide-field heliospheric images, nor are they clearly delineated with in-situ measurements of the solar wind. Using careful photometric analysis of the images from STEREO/HI-1, we have, for the first time, directly observed the breakup of radial coronal structure and the rise of nearly-isotropic turbulent structure in the outflowing slow solar wind plasma between 10° (40 Rs) and 20° (80 Rs) from the Sun. These observations are important not only for their direct science value, but for predicting and understanding the conditions expected near SPP as it flies through - and beyond - this final frontier of the heliosphere, the outer limits of the solar corona.
Lunar Solar Origins Exploration (LunaSOX)
NASA Technical Reports Server (NTRS)
Cooper, John F.; King, Joseph H.; Papitashvili, Natasha; Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.
2011-01-01
The Moon offers a unique vantage point from which to investigate the Sun and its interaction via the solar wind magnetic fields, plasma, and energetic particles with the geospace system including the Moon itself. The lunar surface and exosphere provide in part a record of solar coronal plasma material input and resultant space weathering over billions of years. The structure and dynamics of solar wind interactions with the Moon provide an accessible near-Earth laboratory environment for study of general solar wind interactions with the vast multitude of airless asteroidal bodies of the inner solar system. Spacecraft in lunar orbit have the often simultaneous opportunity, except when in the Earth's magnetosphere, to make in-situ compositional measurements of the solar wind plasma and to carry out remote observations from the Moon of the solar corona, potentially enabled by lunar limb occultation of the solar disk. The LunaSOX project at NASA Goddard Space Flight Center is addressing these heliophysical science objectives from and of the Moon with support from NASA's Lunar Advanced Science and Exploration Research (LASER) program: (1) specify history of solar wind parameters at and sunward of the Moon through enhanced access (http://lunasox.gsfc.nasa.gov/) to legacy and operational mission data products from the Apollo era to the present, (2) model field and plasma interactions with the lunar surface, exosphere, and wake, as constrained by the available data, through hybrid kinetic code simulations, and (3) advance mission concepts for heliophysics from and of the Moon.
Geomagnetism during solar cycle 23: Characteristics.
Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric
2013-05-01
On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996-2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.
TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForest, C. E.; Howard, T. A.; Matthaeus, W. H.
2015-10-20
By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysismore » and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.« less
NASA Astrophysics Data System (ADS)
Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.
2018-04-01
Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bz<0, and summed power in number density perturbations δNp. Together, the subordinate parameters Bz and δNp still account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.
Global Network of Slow Solar Wind
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.
2012-01-01
The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.
An MHD Code for the Study of Magnetic Structures in the Solar Wind
NASA Technical Reports Server (NTRS)
Allred, J. C.; MacNeice, P. J.
2015-01-01
We have developed a 2.5D MHD code designed to study how the solar wind influences the evolution of transient events in the solar corona and inner heliosphere. The code includes thermal conduction, coronal heating and radiative cooling. Thermal conduction is assumed to be magnetic field-aligned in the inner corona and transitions to a collisionless formulation in the outer corona. We have developed a stable method to handle field-aligned conduction around magnetic null points. The inner boundary is placed in the upper transition region, and the mass flux across the boundary is determined from 1D field-aligned characteristics and a 'radiative energy balance' condition. The 2.5D nature of this code makes it ideal for parameter studies not yet possible with 3D codes. We have made this code publicly available as a tool for the community. To this end we have developed a graphical interface to aid in the selection of appropriate options and a graphical interface that can process and visualize the data produced by the simulation. As an example, we show a simulation of a dipole field stretched into a helmet streamer by the solar wind. Plasmoids periodically erupt from the streamer, and we perform a parameter study of how the frequency and location of these eruptions changed in response to different levels of coronal heating. As a further example, we show the solar wind stretching a compact multi-polar flux system. This flux system will be used to study breakout coronal mass ejections in the presence of the solar wind.
A hybrid reconfigurable solar and wind energy system
NASA Astrophysics Data System (ADS)
Gadkari, Sagar A.
We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.
The magnetospheric electric field and convective processes as diagnostics of the IMF and solar wind
NASA Technical Reports Server (NTRS)
Kaye, S. M.
1979-01-01
Indirect measurements of the convection field as well as direct of the ionospheric electric field provide a means to at least monitor quanitatively solar wind processes. For instance, asymmetries in the ionospheric electric field and ionospheric Hall currents over the polar cap reflect the solar wind sector polarity. A stronger electric field, and thus convective flow, is found on the side of the polar cap where the y component of the IMF is parallel to the y component of the geomagnetic field. Additionally, the magnitude of the electric field and convective southward B sub Z and/or solar wind velocity, and thus may indicate the arrival at Earth of an interaction region in the solar wind. It is apparent that processes associated with the convention electric field may be used to predict large scale features in the solar wind; however, with present empirical knowledge it is not possible to make quantitative predictions of individual solar wind or IMF parameters.
Substorm occurrence rates, substorm recurrence times, and solar wind structure
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.; Yakymenko, Kateryna
2017-03-01
Two collections of substorms are created: 28,464 substorms identified with jumps in the SuperMAG AL index in the years 1979-2015 and 16,025 substorms identified with electron injections into geosynchronous orbit in the years 1989-2007. Substorm occurrence rates and substorm recurrence-time distributions are examined as functions of the phase of the solar cycle, the season of the year, the Russell-McPherron favorability, the type of solar wind plasma at Earth, the geomagnetic-activity level, and as functions of various solar and solar wind properties. Three populations of substorm occurrences are seen: (1) quasiperiodically occurring substorms with recurrence times (waiting times) of 2-4 h, (2) randomly occurring substorms with recurrence times of about 6-15 h, and (3) long intervals wherein no substorms occur. A working model is suggested wherein (1) the period of periodic substorms is set by the magnetosphere with variations in the actual recurrence times caused by the need for a solar wind driving interval to occur, (2) the mesoscale structure of the solar wind magnetic field triggers the occurrence of the random substorms, and (3) the large-scale structure of the solar wind plasma is responsible for the long intervals wherein no substorms occur. Statistically, the recurrence period of periodically occurring substorms is slightly shorter when the ram pressure of the solar wind is high, when the magnetic field strength of the solar wind is strong, when the Mach number of the solar wind is low, and when the polar-cap potential saturation parameter is high.
NASA Technical Reports Server (NTRS)
Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.
2016-01-01
The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.
NASA Astrophysics Data System (ADS)
Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.
2016-08-01
The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.
Preconditioning of Interplanetary Space Due to Transient CME Disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temmer, M.; Reiss, M. A.; Hofmeister, S. J.
Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less
Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lombard, C. K.
1974-01-01
Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L., E-mail: lzh@umich.edu; Landi, E.; Fisk, L. A.
We analyze the two-hour resolution solar wind proton speed (V{sub p}) and charge state ratio of O{sup 7+}/O{sup 6+} measured by ACE (SWICS and SWEPAM) from 1998 to 2011 at 1 AU. By applying a two-step mapping method, we link the solar wind in-situ observations to the corona images captured by SOHO and STEREO, in which we identify the different plasma structures, such as active regions (ARs), coronal holes (CHs) and quiet Sun regions (QS), using a classification scheme based on pixel brightness. Then we determine from which region in the corona the solar wind originates. We examine the in-situmore » properties of the solar wind streams associated with CHs, ARs and QS regions. We find that more than half of CH associated wind is actually slow wind, and O{sup 7+}/O{sup 6+} ratio has a strong coherent correlation with the location of the solar wind coronal sources. Therefore, we conclude that O{sup 7+}/O{sup 6+} ratio can be used as a much more effective discriminator to identify solar wind coronal sources region than V{sub p}.« less
NASA Astrophysics Data System (ADS)
Alterman, B. L.; Klein, K. G.; Verscharen, D.; Stevens, M. L.; Kasper, J. C.
2017-12-01
Long duration, in situ data sets enable large-scale statistical analysis of free-energy-driven instabilities in the solar wind. The plasma beta and temperature anisotropy plane provides a well-defined parameter space in which a single-fluid plasma's stability can be represented. Because this reduced parameter space can only represent instability thresholds due to the free energy of one ion species - typically the bulk protons - the true impact of instabilities on the solar wind is under estimated. Nyquist's instability criterion allows us to systematically account for other sources of free energy including beams, drifts, and additional temperature anisotropies. Utilizing over 20 years of Wind Faraday cup and magnetic field observations, we have resolved the bulk parameters for three ion populations: the bulk protons, beam protons, and alpha particles. Applying Nyquist's criterion, we calculate the number of linearly growing modes supported by each spectrum and provide a more nuanced consideration of solar wind stability. Using collisional age measurements, we predict the stability of the solar wind close to the sun. Accounting for the free-energy from the three most common ion populations in the solar wind, our approach provides a more complete characterization of solar wind stability.
Solar wind control of auroral zone geomagnetic activity
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Mcpherron, R. L.; Searls, C.; Kivelson, M. G.
1981-01-01
Solar wind magnetosphere energy coupling functions are analyzed using linear prediction filtering with 2.5 minute data. The relationship of auroral zone geomagnetic activity to solar wind power input functions are examined, and a least squares prediction filter, or impulse response function is designed from the data. Computed impulse response functions are observed to have characteristics of a low pass filter with time delay. The AL index is found well related to solar wind energy functions, although the AU index shows a poor relationship. High frequency variations of auroral indices and substorm expansions are not predictable with solar wind information alone, suggesting influence by internal magnetospheric processes. Finally, the epsilon parameter shows a poorer relationship with auroral geomagnetic activity than a power parameter, having a VBs solar wind dependency.
ACE/SWICS OBSERVATIONS OF HEAVY ION DROPOUTS WITHIN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weberg, Micah J.; Zurbuchen, Thomas H.; Lepri, Susan T., E-mail: mjweberg@umich.edu, E-mail: thomasz@umich.edu, E-mail: slepri@umich.edu
2012-11-20
We present the first in situ observations of heavy ion dropouts within the slow solar wind, observed for select elements ranging from helium to iron. For iron, these dropouts manifest themselves as depletions of the Fe/H ratio by factors up to {approx}25. The events often exhibit mass-dependent fractionation and are contained in slow, unsteady wind found within a few days from known stream interfaces. We propose that such dropouts are evidence of gravitational settling within large coronal loops, which later undergo interchange reconnection and become source regions of slow, unsteady wind. Previously, spectroscopic studies by Raymond et al. in 1997more » (and later Feldman et al. in 1999) have yielded strong evidence for gravitational settling within these loops. However, their expected in situ signature plasma with heavy elements fractionated by mass was not observed prior to this study. Using data from the SWICS instrument on board the Advanced Composition Explorer (ACE), we investigate the composition of the solar wind within these dropouts and explore long term trends over most of a solar cycle.« less
Conversion of magnetic field energy into kinetic energy in the solar wind
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1972-01-01
The outflow of the solar magnetic field energy (the radial component of the Poynting vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing function of the heliocentric distance. When the magnetic field effect is included in the one-fluid model of the solar wind, the transformation of magnetic field energy into kinetic energy during the expansion process increases the solar wind velocity at 1 AU by 17 percent.
The solar wind in the third dimension
NASA Technical Reports Server (NTRS)
Neugebauer, M.
1995-01-01
For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind, Because of the highly successful Ulysses mission, the moment of truth is now here. This talk summarizes the principal differences between the high and low latitude solar winds at the declining phase of the solar-activity cycle and between the Ulysses observations and expectations.
In-situ Plasma Analysis of Ion Kinetics in the Solar Wind and Hermean Magnetosphere
NASA Astrophysics Data System (ADS)
Tracy, Patrick J.
The heating of the solar wind and its interaction with the unique planetary magnetosphere of Mercury is the primary focus of this work. The first aspect of this study focused on the heavy ion population of the solar wind (A > 4 amu), and how well the signature of the heating process responsible for creating the solar wind is preserved in this heavy ion population. We found that this signature in the heavy ion population is primarily erased (thermalized) via Coulomb collisional interactions with solar wind protons. The heavy ions observed in collisionally young solar wind reveal a clear, stable dependence on mass, along with non-thermal heating that is not in agreement with current predictions based on turbulent transport and kinetic dissipation. Due to its weak magnetic dipole, the solar wind can impinge on the surface of Mercury, one of the processes contributing to the desorption of neutrals and, through ionization, ions that make up the planet's exosphere. Differentiating between surface mechanisms and analyzing magnetospheric plasma dynamics requires the quantification of a variety of ion species. A detailed forward model and a robust statistical method were created to identify new ion signatures in the measurement space of the FIPS instrument, formerly orbiting Mercury onboard the MESSENGER spacecraft. The recovery of new heavy ions species, including Al, Ne, Si, and Mg, along with tentative recoveries of S, Ar, K, and C, enable in depth studies of the plasma dynamics in the Hermean magnetosphere. The interaction of the solar wind with the bow shock of the Hermean magnetosphere leads to the creation of a foreshock region. New tools and methods were created to enable the analysis of the diffuse and Field Aligned Beam (FAB) populations in unique parameter regime of the Hermean foreshock. One result suggests that the energization process for the observed FABs can be explained by Shock Drift Acceleration, and not limited by the small spatial size of Mercury's bow shock. Analysis of diffuse populations shows that a connection time limited diffusive shock acceleration is likely responsible for the behavior of the observed energy distributions.
A Study of Fermi Acceleration of Suprathermal Solar Wind Ions
NASA Astrophysics Data System (ADS)
Freeman, Theodore James
The Wind spacecraft has observed numerous sunward bursts of ~2 MeV ions upstream of the Earth's bow shock. The bursts typically last several minutes at the highest energies, but they can last for tens of minutes at intermediate energies (tens to hundreds of keV). The MeV ions are not protons or alpha particles, and are probably oxygen ions. There are two possible sources of these particles: Fermi acceleration of solar wind ions, and ring current particles which have escaped from the Earth's magnetosphere. In this dissertation, Wind observations and numerical particle simulations of Fermi acceleration are presented which demonstrate that suprathermal solar wind O6+ ions are the most likely source of these bursts. Since the Fermi mechanism accelerates all ions to approximately the same ratio of energy to charge, H+ and He2+ ions are accelerated to much lower energies than O6+ ions. In this model, suprathermal ions are reflected between the bow shock and rotations in the interplanetary magnetic field (IMF) upstream of the shock, gaining energy due to the relative motion of the reflecting magnetic structures. Each burst either coincides with or is closely followed by a large IMF rotation. By using measured magnetic field data, the timing of the bursts detected by Wind is precisely reproduced in the simulation. The energy spectra observed by Wind are also reproduced by adding H+ , He2+ , and O6+ fluxes together, and assuming that there is an increase of ~2 orders of magnitude in the high energy tail of the solar wind oxygen distribution. An enhancement of this order of magnitude in CNO group ions was measured by the ion composition experiment on Wind in association with these bursts. An examination of the magnetospheric escape model shows that while escaping O+ ions can account for some features of the data, such as the longer bursts of intermediate energy ions, it cannot account for the short duration ~2 MeV bursts themselves, because O+ ions scatter diffusively in the solar wind. This study concludes by predicting that ion composition and charge state measurements will show these bursts to be solar wind O6+ ions.
1977-11-13
Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind
Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions
NASA Astrophysics Data System (ADS)
Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.
2017-12-01
Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.
NASA Astrophysics Data System (ADS)
Davila, J. M.; Reginald, N. L.
2017-12-01
A coronagraph is the tool of choice to understand and observe the structure of the corona from space. The novel coronagraph concept presented her provides a new scientific capability that will allow the measurement of density, temperature, and flow velocity in the solar atmosphere. This instrument will provide the first remote sensing measurement of the global solar wind temperature, density, and flow speed in the regions between 3 and 8 Rsun. It is in this region that the manority of the solar wind acceleration takes place, and where the ion compsition of the solar wind is "frozen in". This is also the region of the corona that links the surface of the Sun to the Parker Solar Probe and to Solar Orbiter. The observations suggested here would dramatically improve our understanding of solar wind formation and evolution in this critical region.
Collisionless solar wind protons: A comparison of kinetic and hydrodynamic descriptions
NASA Technical Reports Server (NTRS)
Leer, E.; Holzer, T. E.
1971-01-01
Kinetic and hydrodynamic descriptions of a collisionless solar wind proton gas are compared. Heat conduction and viscosity are neglected in the hydrodynamic formulation but automatically included in the kinetic formulation. The results of the two models are very nearly the same, indicating that heat conduction and viscosity are not important in the solar wind proton gas beyond about 0.1 AU. It is concluded that the hydrodynamic equations provide a valid description of the collisionless solar wind protons, and hence that future models of the quiet solar wind should be based on a hydrodynamic formulation.
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.
2015-04-01
Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.
IPS analysis on relationship among velocity, density and temperature of the solar wind
NASA Astrophysics Data System (ADS)
Hayashi, K.; Tokumaru, M.; Fujiki, K.
2015-12-01
The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.
NASA Technical Reports Server (NTRS)
Neugebauer, M. (Editor)
1983-01-01
Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.
ION INJECTION AT QUASI-PARALLEL SHOCKS SEEN BY THE CLUSTER SPACECRAFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V.
2016-01-20
Collisionless shocks in space plasma are known to be capable of accelerating ions to very high energies through diffusive shock acceleration (DSA). This process requires an injection of suprathermal ions, but the mechanisms producing such a suprathermal ion seed population are still not fully understood. We study acceleration of solar wind ions resulting from reflection off short large-amplitude magnetic structures (SLAMSs) in the quasi-parallel bow shock of Earth using in situ data from the four Cluster spacecraft. Nearly specularly reflected solar wind ions are observed just upstream of a SLAMS. The reflected ions are undergoing shock drift acceleration (SDA) andmore » obtain energies higher than the solar wind energy upstream of the SLAMS. Our test particle simulations show that solar wind ions with lower energy are more likely to be reflected off the SLAMS, while high-energy ions pass through the SLAMS, which is consistent with the observations. The process of SDA at SLAMSs can provide an effective way of accelerating solar wind ions to suprathermal energies. Therefore, this could be a mechanism of ion injection into DSA in astrophysical plasmas.« less
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Alvarez, K.; Curry, S.; Dong, C.; Ma, Y.; Bougher, S. W.; Benna, M.; Elrod, M. K.; Mahaffy, P. R.; Withers, P.; Girazian, Z.; Connerney, J. E. P.; Brain, D.; Jakosky, B. M.
2016-12-01
Since the two Viking Landers, progress on improving our global knowledge of the Martian ionosphere's characteristics has been limited by the available instrumentation and sampling geometries. In particular, while remote sensing and the lower energy plasma spectrometer observations on missions including MGS and MEX provided insights on the effects of the crustal magnetic fields of Mars and the solar wind interaction, these measurements did not allow the broader thermal ion surveys necessary to test our current understanding of the region between the exobase at 200 km altitude and the solar wind interaction boundary. In this study we use the MAVEN NGIMS thermal ion mass spectrometer observations from the prime mission year 2015 to construct some statistical pictures of the increasingly collisionless region of the ionosphere between 200 and 500 km where crustal field and solar wind interaction effects should begin to dominate its behavior. Comparisons with models of the solar wind interaction with Mars provide important global context for these observations, including the roles of system diversity associated with changing crustal field and interplanetary field orientations.
NASA Astrophysics Data System (ADS)
Jamlongkul, P.; Wannawichian, S.
2017-12-01
Earth's aurora in low latitude region was studied via time variations of oxygen emission spectra, simultaneously with solar wind data. The behavior of spectrum intensity, in corresponding with solar wind condition, could be a trace of aurora in low latitude region including some effects of high energetic auroral particles. Oxygen emission spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) at 2.4-m diameter telescope at Thai National Observatory, Inthanon Mountain, Chiang Mai, Thailand, during 1-5 LT on 5 and 6 February 2017. The observed spectral lines were calibrated via Dech95 - 2D image processing program and Dech-Fits spectra processing program for spectrum image processing and spectrum wavelength calibration, respectively. The variations of observed intensities each day were compared with solar wind parameters, which are magnitude of IMF (|BIMF|) including IMF in RTN coordinate (BR, BT, BN), ion density (ρ), plasma flow pressure (P), and speed (v). The correlation coefficients between oxygen spectral emissions and different solar wind parameters were found to vary in both positive and negative behaviors.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr
2017-03-20
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energymore » cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.« less
Kinetic and Potential Sputtering of Lunar Regolith: Contribution of Solar-Wind Heavy Ions
NASA Technical Reports Server (NTRS)
Meyer, F. W.; Harris, P. R.; Meyer, H. M., III; Hijiazi, H.; Barghouty, A. F.
2013-01-01
Sputtering of lunar regolith by protons as well as solar-wind heavy ions is considered. From preliminary measurements of H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A AGGL lunar regolith simulant at solar wind velocities, and TRIM simulations of kinetic sputtering yields, the relative contributions of kinetic and potential sputtering contributions are estimated. An 80-fold enhancement of oxygen sputtering by Ar+ over same-velocity H+, and an additional x2 increase for Ar+9 over same-velocity Ar+ was measured. This enhancement persisted to the maximum fluences investigated is approximately 1016/cm (exp2). Modeling studies including the enhanced oxygen ejection by potential sputtering due to the minority heavy ion multicharged ion solar wind component, and the kinetic sputtering contribution of all solar wind constituents, as determined from TRIM sputtering simulations, indicate an overall 35% reduction of near-surface oxygen abundance. XPS analyses of simulant samples exposed to singly and multicharged Ar ions show the characteristic signature of reduced (metallic) Fe, consistent with the preferential ejection of oxygen atoms that can occur in potential sputtering of some metal oxides.
Lessons Learned from 10 Years of STEREO Solar Wind Observations
NASA Astrophysics Data System (ADS)
Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.
2017-12-01
We have conducted long-term observations of large-scale solar wind structures since the launch of STEREO spacecraft, specifically interplanetary CMEs (ICMEs), slow-to-fast stream interaction regions (SIRs), and interplanetary shocks. In combination with our previous observations of the same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we have first studied the solar cycle variations of these structures, especially for the same phases of solar cycles 23 and 24. Attributing the shocks to the interplanetary drivers, we have statistically compared the shocks driven by ICMEs and SIRs, and explained the shocks without a clear local driver. In addition, using the longitudinal and latitudinal separations between the twin spacecraft, we have investigated the recurrence and variability of ICMEs and SIRs, and gained the critical implications for the proposed L5 mission. At last, we have associated the heliospheric current sheet (HCS) crossings with the ICMEs and SIRs, and compared the properties of SIRs with and without HCS crossings, which correspond to the helmet streamers and pseudostreamers, respectively. The findings are important constraints on the theories of slow wind origin.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
NASA Technical Reports Server (NTRS)
Jones, Douglas E.
1996-01-01
Analysis and interpretation of data from the Orbiter Retarding Potential Analyzer (ORPA) onboard the Pioneer Venus Orbiter is reported. By comparing ORPA data to proton data from the Orbiter Plasma Analyzer (OPA), it was found that the ORPA suprathermal electron densities taken outside the Venusian ionopause represent solar wind electron densities, thus allowing the high resolution study of Venus bow shocks using both magnetic field and solar wind electron data. A preliminary analysis of 366 bow shock penetrations was completed using the solar wind electron data as determined from ORPA suprathermal electron densities and temperatures, resulting in an estimate of the extent to which mass loading pickup of O+ (UV ionized O atoms flowing out of the Venus atmosphere) upstream of the Venus obstacle occurred. The pickup of O+ averaged 9.95%, ranging from 0.78% to 23.63%. Detailed results are reported in two attached theses: (1) Comparison of ORPA Suprathermal Electron and OPA Solar Wind Proton Data from the Pioneer Venus Orbiter and (2) Pioneer Venus Orbiter Retarding Potential Analyzer Observations of the Electron Component of the Solar Wind, and of the Venus Bow Shock and Magnetosheath.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Zwickl, R. D.; Bame, S. J.; Hones, E. W., Jr.; Tsurutani, B. T.; Smith, E. J.; Akasofu, S.-I.
1983-01-01
The coupling between the solar wind and the geomagnetic disturbances was examined using data from the ISEE-3 spacecraft at an earth-sun libration point and ground-based data. One minute data were used to avoid aliasing in determining the internal magnetospheric response to solar wind conditions. Attention was given to the cross-correlations between the geomagnetic index (AE), the total energy dissipation rate (UT), and the solar wind parameters, as well as the spatial and temporal scales on which the magnetosphere reacts to the solar wind conditions. It was considered necessary to characterize the physics of the solar wind-magnetosphere coupling in order to define the requirements for a spacecraft like the ISEE-3 that could be used as a real time monitoring system for predicting storms and substorms. The correlations among all but one parameter were lower during disturbance intervals; UT was highly correlated with all parameters during the disturbed times. An intrinsic 25-40 min delay was detected between interplanetary activity and magnetospheric response in quite times, diminishing to no more than 15 min during disturbed times.
In situ plasma and magnetic field measurements of SMILE
NASA Astrophysics Data System (ADS)
Dai, L.; Li, L.; Wang, J.; Zhang, A.; Kong, L.; Wang, C.; Branduardi-Raymont, G.; Escoubet, C. P.; Sibeck, D. G.; Zheng, J.; Rebuffat, D.; Raab, W.
2016-12-01
The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a new mission to observe the solar wind-magnetosphere coupling via X-Ray images of the magnetosheath and polar cusps, UV images of global auroral distributions and simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements. As a stand-alone mission, SMILE will provide the in situ solar wind drivers for understanding and interpreting the remote sensing data, obviating past concerns regarding the arrival times and spatial extent of solar wind features that arose in studies employing distant L1 solar wind monitors. The Light Ion Analyser (LIA) is designed to measure the moments of the solar wind and magnetosheath ion distributions. LIA is equipped with a top-hat electrostatic analyser with a FOV deflection system, with an energy range of 0.05-20keV/q, an energy resolution of 8%, an azimuthal angle range (resolution) of 360° (7.5°), and an elevation angle range (resolution) of ±45° (6°), a time cadence of 1s for normal mode and 0.25s for burst mode, and an adjustable geometric factor. The total data volume per orbit is 5.232 Gbit for LIA. The aim of the magnetometer experiment (MAG) is to establish the orientation and magnitude of magnetic field in the solar wind and magnetosheath. The magnetometer will also be used in combination with LIA to detect interplanetary shocks and solar wind discontinuities passing over the spacecraft. The baseline design of MAG is a dual redundant digital fluxgate magnetometer consisting of two individual tri-axial fluxgate sensors mounted on a 2.5m deployable boom, connected by harness to a spacecraft-mounted electronics box. The dynamic range of the instrument is ±12800nT, and the accuracy is 0.1nT, while the sampling rate is 40Hz. The development of LIA and MAG is under the responsibility of The Chinese Academy of Sciences. Now the preliminary design and simulation have begun. The preliminary design reviews of the instruments are scheduled in 2018.
Marsula, K.; Tanskanen, E.; Love, J.J.
2011-01-01
We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.
EVOLUTION OF INTERMITTENCY IN THE SLOW AND FAST SOLAR WIND BEYOND THE ECLIPTIC PLANE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawrzaszek, A.; Macek, W. M.; Echim, M.
2015-12-01
We study intermittency as a departure from self-similarity of the solar wind magnetic turbulence and investigate the evolution with the heliocentric distance and latitude. We use data from the Ulysses spacecraft measured during two solar minima (1997–1998 and 2007–2008) and one solar maximum (1999–2001). In particular, by modeling a multifractal spectrum, we revealed the intermittent character of turbulence in the small-scale fluctuations of the magnetic field embedded in the slow and fast solar wind. Generally, at small distances from the Sun, in both the slow and fast solar wind, we observe the high degree of multifractality (intermittency) that decreases somewhatmore » slowly with distance and slowly with latitude. The obtained results seem to suggest that generally intermittency in the solar wind has a solar origin. However, the fast and slow streams, shocks, and other nonlinear interactions can only be considered as the drivers of the intermittent turbulence. It seems that analysis shows that turbulence beyond the ecliptic plane evolves too slowly to maintain the intermittency with the distance and latitude. Moreover, we confirm that the multifractality and intermittency are at a lower level than in the ecliptic, as well as the existence of symmetry with respect to the ecliptic plane, suggesting that there are similar turbulent properties observed in the two hemispheres.« less
Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
Mars atmospheric losses induced by the solar wind: current knowledge and perspective
NASA Astrophysics Data System (ADS)
Ermakov, Vladimir; Zelenyi, Lev; Vaisberg, Oleg; Sementsov, Egor; Dubinin, Eduard
2017-04-01
Solar wind induced atmospheric losses have been studied since earlier 1970th. Several loss channels have been identified including pick-up of exospheric photo-ions and ionospheric ions escape. Measurements performed during several solar cycles showed variation of these losses by about factor of 10, being largest at maximum solar activity. MAVEN spacecraft equipped with comprehensive set of instruments with high temporal and mass resolution operating at Mars since fall 2014 ensures much better investigation of solar wind enforcing Martian environment, Mars atmospheric losses processes and mass loss rate. These issues are very important for understanding of Martian atmospheric evolution including water loss during cosmogonic time. Simultaneous observations by MAVEN and MEX spacecraft open the new perspective in study of Martian environment. In this report we discuss results of past and current missions and preliminary analysis of heavy ions escape using simultaneous measurements of MEX and MAVEN spacecraft.
Periodic Alpha Signatures and the Origins of the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Blume, Catherine; Kepko, Larry
2017-01-01
The origin of the slow solar wind has puzzled scientists for decades. Both flux tube geometry of field lines open to the heliosphere and magnetic reconnection that opens field lines that were previously closed to the heliosphere have been proposed as explanations (via the expansion factor and S-web models, respectively), but the observations to date have proven an inadequate test for distinguishing between the theories. However, short term (~hours) variability of alpha particles could provide the set of observations that tips the balance. Alpha particles compose about 4% of the solar wind, and its precise composition is determined by dynamics in the solar atmosphere. Therefore, compositional changes in the alpha to proton ratio must have originated at the Sun, making alphs tracer particles of sorts and carrying signatures of their solar creation. We examined in situ alpha density and proton density data from the Wind, ACE, STEREO-B, AND STEREO-A spacecraft, focusing on a pseudostreamer that occurred August 9, 2008. This case study found one clear periodic structure in the slow solar wind preceding the pseudostreamer in Wind/ACE and the same periodic structure in the in situ data at STEREO-B. The existence of this slow wind structure in association with a pseudostreamer directly contradicts the expansion factor model, which predicts that pseudostreamers produce fast wind. The structure's appearance at STEREO-B, which was located 30 degrees behind the Earth-Sun line, further indicates that the mechanism at the Sun is responsible for its formation was active for at least three days. Moreover, an analysis of both helmet streamer and pseudostreamer events between 2007-2009 finds that similar density structures exist in at least 35% of all streamers. This indicates that the same physical process that produces this slow solar wind occurs with a degree of frequency in association with both types of streamers. The clarity, duration, and frequency of these periodic density structures seem to support the S-web model over the expansion factor model and can provide additional constrains to slow solar wind models moving forward.
NASA Technical Reports Server (NTRS)
Ogilvie, K. W.; Coplan, M. A.
1995-01-01
Advances in instrumentation have resulted in the determination of the average abundances of He, C, N, O, Ne, Mg, Si, S, and Fe in the solar wind to approximately 10%. Comparisons with solar energetic particle (SEP) abundances and galactic cosmic ray abundances have revealed many similarities, especially when compared with solar photospheric abundances. It is now well established that fractionation in the corona results in an overabundance (with respect to the photosphere) of elements with first ionization potentials less than 10 eV. These observations have in turn led to the development of fractionation models that are reasonably successful in reproducing the first ionization (FIP) effect. Under some circumstances it has been possible to relate solar wind observations to particular source regions in the corona. The magnetic topologies of the source regions appear to have a strong influence on the fractionation of elements. Comparisons with spectroscopic data are particularly useful in classifying the different topologies. Ions produced from interstellar neutral atoms are also found in the solar wind. These ions are picked up by the solar wind after ionization by solar radiation or charge exchange and can be identified by their velocity in the solar wind. The pick-up ions provide most of the pressure in the interplanetary medium at large distances. Interstellar abundances can be derived from the observed fluxes of solar wind pick-up ions.
High-time resolution measurements of solar wind heavy ions with SOHO/CELIAS/CTOF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janitzek, N. P., E-mail: janitzek@physik.uni-kiel.de; Taut, A.; Berger, L.
2016-03-25
The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is designed to measure the kinetic properties and elemental/ionic composition of solar wind ions heavier than protons, which we refer to as heavy ions. This is achieved by the combined measurements of the energy-per-charge, the time-of-flight and the energy of incident ions. The CTOF instrument combines a remarkable time-of-flight resolution with a large effective area and a high measurement cadence. This allows to determine the Velocity Distribution Functions (VDFs) of a wide range of heavy ionsmore » with 5-minute time resolution which ensures that the complete VDF is measured under nearly identical solar wind and magnetic field conditions. For the measurement period between Day Of Year (DOY) 150 and 220 in 1996, which covers a large part of the instrument’s short life time, we analyzed VDFs of solar wind iron Fe{sup 8+}, Fe{sup 9+} and Fe{sup 10+} for differential streaming relative to the solar wind proton speed measured simultaneously with the CELIAS Proton Monitor (PM). We find an increasing differential streaming with increasing solar wind proton speed for all investigated ions up to ion-proton velocity differences of 30 - 50 km s{sup −1} at proton velocities of 500 km s{sup −1}, which is contradictory to an earlier CTOF study by [7]. We believe this difference is because in this study we used raw Pulse Height Analysis (PHA) data with a significantly increased mass and mass-per-charge resolution compared to the earlier used onboard preprocessed data.« less
Comets as natural laboratories: Interpretations of the structure of the inner heliosphere
NASA Astrophysics Data System (ADS)
Ramanjooloo, Yudish; Jones, Geraint H.; Coates, Andrew J.; Owens, Mathew J.
2015-11-01
Much has been learnt about the heliosphere’s structure from in situ solar wind spacecraft observations. Their coverage is however limited in time and space. Comets can be considered to be natural laboratories of the inner heliosphere, as their ion tails trace the solar wind flow. Solar wind conditions influence comets’ induced magnetotails, formed through the draping of the heliospheric magnetic field by the velocity shear in the mass-loaded solar wind.I present a novel imaging technique and software to exploit the vast catalogues of amateur and professional images of comet ion tails. My projection technique uses the comet’s orbital plane to sample its ion tail as a proxy for determining multi-latitudinal radial solar wind velocities in each comet’s vicinity. Making full use of many observing stations from astrophotography hobbyists to professional observatories and spacecraft, this approach is applied to several comets observed in recent years. This work thus assesses the validity of analysing comets’ ion tails as complementary sources of information on dynamical heliospheric phenomena and the underlying continuous solar wind.Complementary velocities, measured from folding ion rays and a velocity profile map built from consecutive images, are derived as an alternative means of quantifying the solar wind-cometary ionosphere interaction, including turbulent transient phenomena such as coronal mass ejections. I review the validity of these techniques by comparing near-Earth comets to solar wind MHD models (ENLIL) in the inner heliosphere and extrapolated measurements by ACE to the orbit of comet C/2004 Q2 (Machholz), a near-Earth comet. My radial velocities are mapped back to the solar wind source surface to identify sources of the quiescent solar wind and heliospheric current sheet crossings. Comets were found to be good indicators of solar wind structure, but the quality of results is strongly dependent on the observing geometry.
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco
2017-07-01
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.
Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries
NASA Technical Reports Server (NTRS)
Stewart, G. A.; Bravo, S.
1995-01-01
Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.
NASA Astrophysics Data System (ADS)
Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri
2017-11-01
We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function of Kp and for different years are also studied.
Validating a magnetic reconnection model for the magnetopause
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-01-01
Originating in the Sun's million-degree corona, the solar wind flows at supersonic speeds into interplanetary space, carrying with it the solar magnetic field. As the solar wind reaches Earth's orbit, its interaction with the geomagnetic field forms the magnetosphere, a bubble-like structure within the solar wind flow that shields Earth from direct exposure to the solar wind as well as to the highly energetic charged particles produced during solar storms. Under certain orientations, the magnetic field entrained in the solar wind, known as the interplanetary magnetic field (IMF), merges with the geomagnetic field, transferring mass, momentum, and energy to the magnetosphere. The merging of these two distinct magnetic fields occurs through magnetic reconnection, a fundamental plasma-physical process that converts magnetic energy into kinetic energy and heat.
NASA Astrophysics Data System (ADS)
Ozturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A.
2018-04-01
The global magnetosphere-ionosphere-thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large-scale dynamic processes in the magnetosphere-ionosphere-thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of -222 nT. The Wind spacecraft recorded a 10-nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high-resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere-thermosphere model to investigate the ionosphere-thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field-aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field-aligned currents experienced the most significant heating with 1000-K ion temperature increase and 20-K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.
Dynamics of the solar wind and its interaction with bodies in the solar system
NASA Technical Reports Server (NTRS)
Spreiter, J. R.
1971-01-01
A discussion of the solar wind and its interaction with bodies of the solar system is presented. An overall unified account of the role of shock waves in the heating of the solar corona, the transmission of solar disturbances to the solar system, the flow fields of planets and natural satellites, and biological effects are provided. An analysis of magnetometer data from Explorer 33 and Vela 3A satellites to identify characteristics of solar wind shock waves is included.
NASA Astrophysics Data System (ADS)
Di Matteo, Simone; Villante, Umberto
2016-04-01
The possible occurrence of oscillations at discrete frequencies in the solar wind and their possible correspondence with magnetospheric field oscillations represent an interesting aspect of the solar wind/magnetopheric research. We analyze a large set of high velocity streams following interplanetary shocks in order to ascertain the possible occurrence of preferential sets of discrete frequencies in the oscillations of the solar wind pressure in such structures. We evaluate, for each event, the power spectrum of the dynamic pressure by means of two methods (Welch and multitaper windowing) and accept the common spectral peaks that also pass a harmonic F-test at the 95% confidence level. We compare these frequencies with those detected at geosynchronous orbit in the magnetospheric field components soon after the manifestation of the corresponding Sudden Impulses.
Comparing Temporally-Separated Solar Wind Structures at 1 AU (STEREO A and OMNI)
NASA Astrophysics Data System (ADS)
Galvin, A. B.; Farrugia, C. J.; Jian, L. K.
2017-12-01
One may use the longitudinal coverage of different spacecraft assets, or the same asset over sequential Carrington Rotations, to study the solar wind behavior from long-lived structures (coronal holes, active regions), or occasionally observe the extent of transient structures (Farrugia et al., 2011). This is of interest as the evolution of the extent and persistence of interplanetary coronal mass ejections (ICMEs) and of stream interaction regions (SIRs) have implications for space weather forecasting. One challenge is that one must be aware of the temporal evolution of the structure on the Sun and the affect of `sampling' different solar sources due to different solar latitudes of the in-situ spacecraft observations. Here we look at case studies of recent event time intervals during 2015-2017 where solar wind emanating from long-lived coronal-hole structures are observed both at STEREO A and at near-Earth assets (OMNI2). The observations are taken at similar solar latitudes and longitudes but temporally separated by several days or weeks.
Anomalously low C{sup 6+}/C{sup 5+} ratio in solar wind: ACE/SWICS observation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L., E-mail: lzh@umich.edu; Landi, E.; Kocher, M.
The Carbon and Oxygen ionization states in the solar wind plasma freeze-in within 2 solar radii (R{sub s}) from the solar surface, and then they do not change as they propagate with the solar wind into the heliosphere. Therefore, the O{sup 7+}/O{sup 6+} and C{sup 6+}/C{sup 5+} charge state ratios measured in situ maintain a record of the thermal properties (electron temperature and density) of the inner corona where the solar wind originates. Since these two ratios freeze-in at very similar height, they are expected to be correlated. However, an investigation of the correlation between these two ratios as measuredmore » by ACE/SWICS instrument from 1998 to 201l shows that there is a subset of “Outliers” departing from the expected correlation. We find about 49.4% of these Outliers is related to the Interplanetary Coronal Mass Ejections (ICMEs), while 49.6% of them is slow speed wind (V{sub p} < 500 km/s) and about 1.0% of them is fast solar wind (V{sub p} > 500 km/s). We compare the outlier-slow-speed wind with the normal slow wind (defined as V{sub p} < 500 km/s and O{sup 7+}/O{sup 6+} > 0.2) and find that the reason that causes the Outliers to depart from the correlation is their extremely depleted C{sup 6+}/C{sup 5+} ratio which is decreased by 80% compared to the normal slow wind. We discuss the implication of the Outlier solar wind for the solar wind acceleration mechanism.« less
The solar wind - Moon interaction discovered by MAP-PACE on KAGUYA
NASA Astrophysics Data System (ADS)
Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.; Shibuya, H.; Shimizu, H.; Takahashi, F.
2009-12-01
Magnetic field And Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on KAGUYA (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon. SELENE was successfully launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. SELENE was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. The newly observed data showed characteristic ion distributions around the Moon. Besides the solar wind, one of the MAP-PACE sensors MAP-PACE-IMA (Ion Mass Analyzer) discovered four clearly distinguishable ion distributions on the dayside of the Moon: 1) Solar wind ions backscattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are originating from the reflected / backscattered solar wind ions and are pick-up accelerated by the solar wind convection electric field, and 4) Ions originating from the lunar surface / lunar atmosphere. One of the most important discoveries of the ion mass spectrometer (MAP-PACE-IMA) is the first in-situ measurements of the alkali ions originating from the Moon surface / atmosphere. The ions generated on the lunar surface by solar wind sputtering, solar photon stimulated desorption, or micro-meteorite vaporization are accelerated by the solar wind convection electric field and detected by IMA. The mass profiles of these ions show ions including He+, C+, O+, Na+, and K+/Ar+. The heavy ions were also observed when the Moon was in the Earth’s magnetotail where no solar wind ions impinged on the lunar surface. This discovery strongly restricts the possible generation mechanisms of the ionized alkali atmosphere around the Moon. When KAGUYA flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These reflected ions had nearly the same energy as the incident solar wind ions, and their flux was more than 10% of the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. These newly discovered plasma signatures around the Moon are the evidences of the smallest magnetosphere ever observed.
NASA Technical Reports Server (NTRS)
Sittler, E. C., Jr.; Scudder, J. D.
1979-01-01
Empirical evidence is presented that solar wind thermal electrons obey a polytrope law with polytrope index gamma = 1.175 plus or minus 0.03. The Voyager 2 and Mariner 10 data used as evidence are compared and discussed. The theoretical predictions that solar wind thermal electrons in the asymptotic solar wind should obey a polytrope law with polytrope index gamma = 1.16 plus or minus. The widespread impressions in the literature that solar wind electrons behave more like an isothermal than adiabatic gas, and the arguments that Coulomb collisions are the dominant stochastic process shaping observed electron distribution functions in the solar wind are reexamined, reviewed and evaluated. The assignment of the interplanetary potential as equal to approximately seven times the temperature of the thermal electrons is discussed.
2016-06-01
13 Figure 6. Vertical Axis Wind Turbines and Photovoltaic Solar Panels ....................15 Figure 7. Solar Sunny Boy Inverter...16 Figure 8. Wind Turbine Inverters...1. Comparison of Energy Storage. Adapted from [16], [18], [19]. ................10 Table 2. DC Operating Voltage of Wind Turbine Inverters
Analysis of off-grid hybrid wind turbine/solar PV water pumping systems
USDA-ARS?s Scientific Manuscript database
While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...
Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation
NASA Astrophysics Data System (ADS)
Olsen, Espen Lyngdal; Leer, Egil
1996-05-01
In an effort to improve the "classical" solar wind model, we study an eight-moment approximation hydrodynamic solar wind model, in which the full conservation equation for the heat conductive flux is solved together with the conservation equations for mass, momentum, and energy. We consider two different cases: In one model the energy flux needed to drive the solar wind is supplied as heat flux from a hot coronal base, where both the density and temperature are specified. In the other model, the corona is heated. In that model, the coronal base density and temperature are also specified, but the temperature increases outward from the coronal base due to a specified energy flux that is dissipated in the corona. The eight-moment approximation solutions are compared with the results from a "classical" solar wind model in which the collision-dominated gas expression for the heat conductive flux is used. It is shown that the "classical" expression for the heat conductive flux is generally not valid in the solar wind. In collisionless regions of the flow, the eight-moment approximation gives a larger thermalization of the heat conductive flux than the models using the collision-dominated gas approximation for the heat flux, but the heat flux is still larger than the "saturation heat flux." This leads to a breakdown of the electron distribution function, which turns negative in the collisionless region of the flow. By increasing the interaction between the electrons, the heat flux is reduced, and a reasonable shape is obtained on the distribution function. By solving the full set of equations consistent with the eight-moment distribution function for the electrons, we are thus able to draw inferences about the validity of the eight-moment description of the solar wind as well as the validity of the very commonly used collision-dominated gas approximation for the heat conductive flux in the solar wind.
The Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project
NASA Astrophysics Data System (ADS)
Barnes, D.; Harrison, R. A.; Davies, J. A.; Perry, C. H.; Moestl, C.; Rouillard, A.; Bothmer, V.; Rodriguez, L.; Eastwood, J. P.; Kilpua, E.; Gallagher, P.; Odstrcil, D.
2017-12-01
Understanding solar wind evolution is fundamental to advancing our knowledge of energy and mass transport in the solar system, whilst also being crucial to space weather and its prediction. The advent of truly wide-angle heliospheric imaging has revolutionised the study of solar wind evolution, by enabling direct and continuous observation of both transient and background components of the solar wind as they propagate from the Sun to 1 AU and beyond. The recently completed, EU-funded FP7 Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project (1st May 2014 - 30th April 2017) combined European expertise in heliospheric imaging, built up over the last decade in particular through leadership of the Heliospheric Imager (HI) instruments aboard NASA's STEREO mission, with expertise in solar and coronal imaging as well as the interpretation of in-situ and radio diagnostic measurements of solar wind phenomena. HELCATS involved: (1) the cataloguing of transient (coronal mass ejections) and background (stream/corotating interaction regions) solar wind structures observed by the STEREO/HI instruments, including estimates of their kinematic properties based on a variety of modelling techniques; (2) the verification of these kinematic properties through comparison with solar source observations and in-situ measurements at multiple points throughout the heliosphere; (3) the assessment of the potential for initialising numerical models based on the derived kinematic properties of transient and background solar wind components; and (4) the assessment of the complementarity of radio observations (Type II radio bursts and interplanetary scintillation) in the detection and analysis of heliospheric structure in combination with heliospheric imaging observations. In this presentation, we provide an overview of the HELCATS project emphasising, in particular, the principal achievements and legacy of this unprecedented project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Landi, E.; Lepri, S. T.
In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exceptionmore » being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.« less
NASA Astrophysics Data System (ADS)
Woolsey, L. N.; Cranmer, S. R.
2013-12-01
The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.
Evidence for solar wind modulation of lightning
NASA Astrophysics Data System (ADS)
Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.
2014-05-01
The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.
Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock
NASA Astrophysics Data System (ADS)
Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.
2015-12-01
The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.
NASA Astrophysics Data System (ADS)
Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.
2017-12-01
The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.
Study on field-aligned electrons with Cluster observation in the Earth's cusp
NASA Astrophysics Data System (ADS)
Shi, Jiankui; Torkar, Klaus; Cheng, Zhengwei
2017-04-01
Cusp region is very important to the solar wind-magnetosphere coupling. The solar wind particles, through the cusp, can directly entry into the magnetosphere and ionosphere, and transport the mass, momentum and energy. The gyrating charged particles with field-aligned velocity are significant to perform the transportation. In this study, data from Cluster observation are used to study the characteristics of field-aligned electrons (FAE's) including the downward and the upward FAEs in the cusp. We select FAE event to do analysis. The durations of the FAE event covered a wide range from 6 to 475 seconds. The FAE's were found to occur very commonly in a circumpolar zone in the polar region and the MLT and ILAT distributions showed that most of the FAE events were observed around the cusp (70-80°ILAT, 0900-1500MLT). With the FAE flux the contribution of the electrons to the Field-Aligned Current (FAC) is estimated and the result shows that the FAE was the main carrier to the FAC in the cusp. The physical mechanisms of the FAE are analyzed, namely that the downward electrons were mainly from the solar wind and the upward electrons may originated from accelerated ionospheric up-flowing electrons or mirrored solar wind electrons. The energy transportation into the magnetosphere by the solar wind electrons through the cusp is also investigated.
NASA Technical Reports Server (NTRS)
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Coupling of the coronal helium abundance to the solar wind
NASA Technical Reports Server (NTRS)
Hansteen, Viggo H.; Leer, Egil; Holzer, Thomas E.
1994-01-01
Models of the transition region-corona-solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the solar wind proton flux. The thermal force on alpha-particles in the transition region sets the flow of helium into the corona. The frictional coupling between alpha-particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content. The models are constructed by solving the time-dependent population and momentum equations for all species of hydrogen and helium in an atmosphere with a given temperature profile. Several temperature profiles are considered in order to very the roles of frictional coupling and electric polarization field in the solar wind, and the thermal force in the transition region. Steady-state solutions are found for coronae with a hydrogen flux at 1 AU of 1.0 x 10(exp 9)/cm(exp 2)/sec or larger. For coronae with lower hydrogen fluxes, the helium flux into the corona is larger than the flux 'pulled out' by the solar wind protons, and solutions with increasing coronal helium content are found. The timescale for forming a helium-filled corona, that may allow for a steady outflow, is long compared to the mixing time for the corona.
Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations
NASA Astrophysics Data System (ADS)
Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.
2017-12-01
Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.
NASA Technical Reports Server (NTRS)
Calaway, Michael J.; Stansbery, Eileen K.
2006-01-01
The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.
NASA Astrophysics Data System (ADS)
Wilson, R. J.; Bagenal, Fran; Valek, Philip W.; McComas, D. J.; Allegrini, Frederic; Ebert, Robert W.; Kim, Thomas K.; Kurth, W. S.; Szalay, Jamey R.; Thomsen, Michelle F.
2018-04-01
The Jovian Auroral Distributions Experiment ion sensor (JADE-I) on board the National Aeronautics and Space Administration's Juno mission measured solar wind ions for ≈40 days prior to the spacecraft's arrival at Jupiter, simultaneous with numerous telescope observations of the Jovian aurora. JADE-I is a thermal plasma time-of-flight instrument designed to measure Jovian auroral and magnetospheric ions. This study provides a solar wind parameter data set for the approach phase that may be used in coordinated studies with remote measurements of the Jovian aurora, to compare with models that propagate solar wind conditions from Earth and to apply to Jovian bow shock or magnetopause models. While multiple bow shock crossings were predicted during Juno's approach, there was only one observed suggesting a compressed magnetosphere that was shrinking as Juno approached. However, the calculated ram pressure at the bow shock was near the median value of those 40 days, rather than being in an upper percentile.
Multiple Ions Resonant Heating and Acceleration by Alfven/cyclotron Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Xie, H.; Ofman, L.
2003-12-01
We study the interaction between protons, and multiple minor ions (O5+, He++) and a given cyclotron resonant spectra in coronal hole plasma. One-dimensional hybrid simulations are performed in initially homogeneous, collisionless, magnetized plasma with waves propagating parallel to the background magnetic field. The self-consistent hybrid simulations are used to study how multiple minor species may affect the resonance interaction between a spectrum of waves and the solar wind protons. The results of the simulations provide a clear picture of wave-particle interaction under various coronal conditions, which can explain 1) how multiple minor ions affect the resonant heating and the temperature anisotropy of the solar wind protons by a given wave spectrum; 2) how energy is distributed and transferred among waves and different ion species; 3) the growth and damping of different beam microinstability modes, including both inward and outward waves; 4) the formation of proton double-peak distribution in the solar wind.
Interplanetary gas. XX - Does the radial solar wind speed increase with latitude
NASA Technical Reports Server (NTRS)
Brandt, J. C.; Harrington, R. S.; Roosen, R. G.
1975-01-01
The astrometric technique used to derive solar wind speeds from ionic comet-tail orientations has been used to test the suggestion that the radial solar wind speed is higher near the solar poles than near the equator. We find no evidence for the suggested latitude variation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-736] In the Matter of: Certain Wind and Solar... solar-powered light posts and street lamps by reason of infringement of the claimed design of U.S... certain wind and solar- [[Page 59292
NASA Astrophysics Data System (ADS)
Rouillard, A. P.; Lavraud, B.; Génot, V.; Bouchemit, M.; Dufourg, N.; Plotnikov, I.; Pinto, R. F.; Sanchez-Diaz, E.; Lavarra, M.; Penou, M.; Jacquey, C.; André, N.; Caussarieu, S.; Toniutti, J.-P.; Popescu, D.; Buchlin, E.; Caminade, S.; Alingery, P.; Davies, J. A.; Odstrcil, D.; Mays, L.
2017-11-01
The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the 'solar wind laboratory' is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the 'Propagation Tool' that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.
Wave-Particle Interactions As a Driving Mechanism for the Solar Wind
NASA Technical Reports Server (NTRS)
Wagner, William J.
2004-01-01
Our research has been focusing on a highly experimentally relevant issue: intermittency of the fluctuating fields in outflowing plasmas. We have contributed to both the theoretical and experimental research of the topic. In particular, we have developed a theoretical model and data analyzing programs to examine the issue of intermittency in space plasma outflows, including the solar wind. As fluctuating electric fields in the solar wind are likely to provide a heating and acceleration mechanism for the ions, our studies of the intermittency in turbulence in space plasma outflows help us toward achieving the goal of comparing major physical mechanisms that contribute to the driving of the fast solar wind. Our new theoretical model extends the utilities of our global hybrid model, which has allowed us to follow the kinetic evolution of the particle distributions along an inhomogeneous field line while the particles are subjected to various physical mechanisms. The physical effects that were considered in the global hybrid model included wave-particle interactions, an ambipolar electric field that was consistent with the particle distributions themselves, and Coulomb collisions. With an earlier version of the global hybrid model, we examined the overall impact on the solar wind flow due to the combination of these physical effects. In particular, we studied the combined effects of two major mechanisms that had been proposed as the drivers of the fast solar wind: (1) velocity filtration effect due to suprathermal electrons; (2) ion cyclotron resonance. Since the approval of this research grant, we have updated the model such that the effects due to these two driving mechanisms can be examined separately, thereby allowing us to compare their contributions to the acceleration of the solar wind. In the next section, we shall demonstrate that the velocity filtration effect is rather insignificant in comparison with that due to ion cyclotron resonance.
Ion Isotropy and Ion Resonant Waves in the Solar Wind: Cassini Observations
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.; Gurnett, Donald A.; Hospodarsky, George B.; Kurth, William S.
2001-01-01
Electric fields in the solar wind, in the range of one Hertz, are reported for the first time from a 3-axis stabilized spacecraft. The measurements are made with the Radio and Plasma Wave System (RPWS) experiment on the Cassini spacecraft. Kellogg suggested that such waves could be important in maintaining the near-isotropy of solar wind ions and the validity of MHD for the description of the solar wind. The amplitudes found are larger than those estimated by Kellogg from other measurements, and are due to quasi-electrostatic waves. These amplitudes are quite sufficient to maintain isotropy of the solar wind ions.
Heating of Solar Wind Ions via Cyclotron Resonance
NASA Astrophysics Data System (ADS)
Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.
2017-12-01
Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.
NASA Astrophysics Data System (ADS)
Jarvinen, R.
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
NASA Astrophysics Data System (ADS)
Jarvinen, Riku
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
Modeling solar wind with boundary conditions from interplanetary scintillations
Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...
2015-09-30
Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less
Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems
NASA Astrophysics Data System (ADS)
Zhou, Wei
Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.
Solar wind velocity and temperature in the outer heliosphere
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1994-01-01
At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.
The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is amore » polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.« less
Sputtering by the Solar Wind: Effects of Variable Composition
NASA Technical Reports Server (NTRS)
Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.
2011-01-01
It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.
Statistical Behavior of Quasi-Steady Balanced Reconnection in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Kissinger, Jennifer Eileen
Magnetic reconnection between Earth's magnetosphere and the solar wind results in several modes of response, including the impulsive substorm and the quasi-steady mode known as steady magnetospheric convection (SMC). SMC events are theorized to result from balancing the dayside and nightside reconnection rates. The reasons the magnetosphere responds with different modes are not fully known. This dissertation comprises statistical data analysis of the SMC mode to investigate the solar wind conditions and magnetospheric properties during these events. A comprehensive list of SMC events is selected from 1997-2011. In the first of three studies, an association between SMCs and solar wind stream interfaces (SI) is identified in the declining phase of Solar Cycle 23. SMC occurrence peaks 12-24 hours after an SI if the solar wind is geoeffective. The subset of SI-associated SMCs occurs during fast solar wind velocity, in contrast to previous results, but the driving electric field imposed on the magnetosphere (Ey) is the same for SI-associated and unassociated SMC events. Therefore the magnitude and steadiness of E y is the most important solar wind parameter for an SMC to occur. The second study shows that magnetotail convection is significantly different for SMC events, compared to quiet intervals and isolated substorms. Fast flows transporting enhanced magnetic flux are deflected toward the dawn and dusk flanks during SMC. Flow diversion is due to a broad high pressure region in the inner magnetosphere. The interval preceding SMC events is found to set up the magnetotail conditions that assist balanced reconnection. In particular inner magnetosphere pressure before SMCs is enhanced from substorm levels but not as high as SMC levels. The final study shows that nearly all SMCs are preceded by a substorm expansion. In rare cases when an SMC occurs without a preceding substorm, we hypothesize that the distant x-line is able to balance a weak solar wind driver. These results help explain how quasi-steady magnetospheric convection occurs. A southward turning of the solar wind and positive Ey leads to dayside reconnection and a substorm onset occurs. Plasma injections from the near-Earth nightside x-line increase the pressure in the inner magnetosphere. If positive Ey continues to drive dayside reconnection, the nightside x-line will stabilize to match it. Tail flux is diverted towards the flanks by pressure gradients and returns to the dayside. This convection pattern keeps the magnetosphere in its balanced reconnection mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of windmore » and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
NASA Astrophysics Data System (ADS)
Velli, M. M.
2013-12-01
The Solar Probe Plus and Solar Orbiter missions have as part of their goals to understand the source regions of the solar wind and of the heliospheric magnetic field. In the heliosphere, the solar wind is made up of interacting fast and slow solar wind streams as well as a clearly intermittent source of flow and field, arising from coronal mass ejections (CMEs). In this presentation a summary of the questions associated with the distibution of wind speeds and magnetic fields in the inner heliosphere and their origin on the sun will be summarized. Where and how does the sharp gradient in speeds develop close to the Sun? Is the wind source for fast and slow the same, and is there a steady component or is its origin always intermittent in nature? Where does the heliospheric current sheet form and how stable is it close to the Sun? What is the distribution of CME origins and is there a continuum from large CMEs to small blobs of plasma? We will describe our current knowledge and discuss how SPP and SO will contribute to a more comprehensive understanding of the sources of the solar wind and magnetic fields in the heliosphere.
The temperature of quiescent streamers during solar cycles 23 and 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landi, E.; Testa, P.
2014-05-20
Recent in-situ determinations of the temporal evolution of the charge state distribution in the fast and slow solar wind have shown a general decrease in the degree of ionization of all the elements in the solar wind along solar cycles 23 and 24. Such a decrease has been interpreted as a cooling of the solar corona which occurred during the decline and minimum phase of solar cycle 23 from 2000 to 2010. In the present work, we investigate whether spectroscopic determinations of the temperature of the quiescent streamers show signatures of coronal plasma cooling during cycles 23 and 24. Wemore » measure the coronal electron density and thermal structure at the base of 60 quiescent streamers observed from 1996 to 2013 by SOHO/SUMER and Hinode/EIS and find that both quantities do now show any significant dependence on the solar cycle. We argue that if the slow solar wind is accelerated from the solar photosphere or chromosphere, the measured decrease in the in-situ wind charge state distribution might be due to an increased efficiency in the wind acceleration mechanism at low altitudes. If the slow wind originates from the corona, a combination of density and wind acceleration changes may be responsible for the in-situ results.« less
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-06-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-02-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
NASA Astrophysics Data System (ADS)
Ferger, R.; Machens, U.
1985-05-01
A one-family house was equipped with a combined solar and wind energy system plus a night storage heater to measure the seasonal complementary contribution of wind and solar energy to energy demand. Project implementation, problems encountered and modifications to the initial system are described. Meteorological and operational data and house consumption data were recorded on computer-based measuring system. Data on the combined effects of and interdependence between solar collector and wind energy converter are discussed.
77 FR 72439 - Residential, Business, and Wind and Solar Resource Leases on Indian Land
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Affairs 25 CFR Part 162 Residential, Business, and Wind and Solar Resource Leases on Indian Land; Final...-2011-0001] RIN 1076-AE73 Residential, Business, and Wind and Solar Resource Leases on Indian Land... adds new regulations to address residential leases, business leases, wind energy evaluation leases, and...
On Solar Wind Origin and Acceleration: Measurements from ACE
NASA Astrophysics Data System (ADS)
Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico; Tracy, Patrick; Zurbuchen, Thomas H.
2016-10-01
The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed from the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.
ON SOLAR WIND ORIGIN AND ACCELERATION: MEASUREMENTS FROM ACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico
The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed frommore » the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.« less
Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study
NASA Astrophysics Data System (ADS)
Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.
2017-12-01
A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere increase abruptly. To the analogy with electric circuit, dynamo is necessary in the magnetosphere to supply electromagnetic energy to the ionosphere as a load. We will discuss the physical process that may determine the intensity of the electrojet as seen by the SML index in terms of energy flow from the solar wind to the ionosphere and the convection by analyzing the global MHD simulation.
78 FR 67138 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... Solar 1, LLC, Copper Mountain Solar 2, LLC, Energia Sierra Juarez U.S., LLC, Flat Ridge 2 Wind Energy LLC, Fowler Ridge II Wind Farm LLC, Mehoopany Wind Energy LLC, Mesquite Power, LLC, Mesquite Solar 1...
Multifluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, A. V.
2011-01-01
I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. The interstellar pickup protons are treated in the model as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. The simulation assumes that the background magnetic field on the Sun is either a dipole (aligned or tilted with respect to the solar rotation axis) or one that is deduced from solar magnetograms.
Low-energy ion outflow modulated by the solar wind energy input
NASA Astrophysics Data System (ADS)
Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas
2017-04-01
Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.
High coronal structure of high velocity solar wind stream sources
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Krieger, A. S.; Roelof, E. C.; Gold, R. E.
1977-01-01
It is shown analytically that the transition from a high-speed stream source to the ambient coronal conditions is quite rapid in longitude in the high corona. This sharp eastern coronal boundary for the solar wind stream sources is strongly suggested by the solar wind 'dwells' which appear in plots of solar wind velocity against constant-radial-velocity-approximation source longitudes. The possibility of a systematic velocity-dependent effect in the constant-radial-velocity approximation, which would cause this boundary to appear sharper than it is, is investigated. A velocity-dependent interplanetary propagation effect or a velocity-dependent 'source altitude' are two possible sources of such a systematic effect. It is shown that, for at least some dwells, significant interplanetary effects are not likely. The variation of the Alfvenic critical radius in solar wind dwells is calculated, showing that the high-velocity stream originates from a significantly lower altitude than the ambient solar wind.
Contribution of strong discontinuities to the power spectrum of the solar wind.
Borovsky, Joseph E
2010-09-10
Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.
NASA Astrophysics Data System (ADS)
Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui
2018-01-01
Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.
Elsaesser variable analysis of fluctuations in the ion foreshock and undisturbed solar wind
NASA Technical Reports Server (NTRS)
Labelle, James; Treumann, Rudolf A.; Marsch, Eckart
1994-01-01
Magnetohydrodynamics (MHD) fluctuations in the solar wind have been investigated previously by use of Elsaesser variables. In this paper, we present a comparison of the spectra of Elsaesser variables in the undisturbed solar wind at 1 AU and in the ion foreshock in front of the Earth. Both observations take place under relatively strong solar wind flow speed conditions (approximately equal 600 km/s). In the undisturbed solar wind we find that outward propagating Alfven waves dominate, as reported by other observers. In the ion foreshock the situation is more complex, with neither outward nor inward propagation dominating over the entire range investigated (1-10 mHz). Measurements of the Poynting vectors associated with the fluctuations are consistent with the Elsaesser variable analysis. These results generally support interpretations of the Elsaesser variables which have been made based strictly on solar wind data and provide additional insight into the nature of the ion foreshock turbulence.
Costs of solar and wind power variability for reducing CO2 emissions.
Lueken, Colleen; Cohen, Gilbert E; Apt, Jay
2012-09-04
We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.
Solar Coronal Jets: Observations, Theory, and Modeling
NASA Technical Reports Server (NTRS)
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.;
2016-01-01
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.
Solar Coronal Jets: Observations, Theory, and Modeling
NASA Technical Reports Server (NTRS)
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.;
2016-01-01
Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.
Global solar wind variations over the last four centuries.
Owens, M J; Lockwood, M; Riley, P
2017-01-31
The most recent "grand minimum" of solar activity, the Maunder minimum (MM, 1650-1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth's magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima.
PHOTOSPHERIC ABUNDANCES OF POLAR JETS ON THE SUN OBSERVED BY HINODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyoung-Sun; Brooks, David H.; Imada, Shinsuke, E-mail: lksun@solar.isas.jaxa.jp
2015-08-20
Many jets are detected at X-ray wavelengths in the Sun's polar regions, and the ejected plasma along the jets has been suggested to contribute mass to the fast solar wind. From in situ measurements in the magnetosphere, it has been found that the fast solar wind has photospheric abundances while the slow solar wind has coronal abundances. Therefore, we investigated the abundances of polar jets to determine whether they are the same as that of the fast solar wind. For this study, we selected 22 jets in the polar region observed by Hinode/EUV Imaging Spectroscopy (EIS) and X-ray Telescope (XRT)more » simultaneously on 2007 November 1–3. We calculated the First Ionization Potential (FIP) bias factor from the ratio of the intensity between high (S) and low (Si, Fe) FIP elements using the EIS spectra. The values of the FIP bias factors for the polar jets are around 0.7–1.9, and 75% of the values are in the range of 0.7–1.5, which indicates that they have photospheric abundances similar to the fast solar wind. The results are consistent with the reconnection jet model where photospheric plasma emerges and is rapidly ejected into the fast wind.« less
2012-03-05
subsonic corona below the critical point, resulting in an increased scale height and mass flux, while keeping the kinetic energy of the flow fairly...Approved for public release; distribution is unlimited. tubes with small expansion factors the heating occurs in the supersonic corona, where the energy ...goes into the kinetic energy of the solar wind, increasing the flow speed [Leer and Holzer, 1980; Pneuman, 1980]. Using this model and a sim- plified
Elemental and isotopic abundances in the solar wind
NASA Technical Reports Server (NTRS)
Geiss, J.
1972-01-01
The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon.
Geomagnetism during solar cycle 23: Characteristics
Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric
2012-01-01
On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427
Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence
NASA Astrophysics Data System (ADS)
Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.
2018-01-01
The spectral break (fb) of magnetic fluctuations at the ion scale in the solar wind is considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable two are related respectively to proton thermal gyroradius ρi and proton inertial length di. The corresponding frequencies of them are fρi=VSW/(2πρi) and fdi=VSW/(2πdi), respectively, where VSW is the solar wind speed. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar value when plasma beta β ˜ 1. Here we do a statistical study to see if the two ratios fb/fρi and fb/fdi have different dependence on β in the solar wind turbulence with 0.1 < β < 1.3. From magnetic measurements by the Wind spacecraft, we select 141 data sets with each one longer than 13 h. We find that the ratio fb/fdi is statistically not dependent on β, and the average value of it is 0.48 ± 0.06. However, fb/fρi increases with increasing β clearly and is significantly smaller than fb/fdi when β < 0.8. These new results show that fb is statistically 0.48fdi, and the influence of β could be negligible in the studied β range. It indicates a preference of the dissipation mechanism associated with di in the solar wind with 0.1 < β < 0.8. Further theoretical studies are needed to give detailed explanation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin
The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India's RE targets and identify actions that may be favorable for integration.
Inertial Range Turbulence of Fast and Slow Solar Wind at 0.72 AU and Solar Minimum
NASA Astrophysics Data System (ADS)
Teodorescu, Eliza; Echim, Marius; Munteanu, Costel; Zhang, Tielong; Bruno, Roberto; Kovacs, Peter
2015-05-01
We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s-1. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005-0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is -1.60 for fast solar wind and -1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.
76 FR 73783 - Residential, Business, and Wind and Solar Resource Leases on Indian Land
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... Affairs 25 CFR Part 162 Residential, Business, and Wind and Solar Resource Leases on Indian Land; Proposed...-0001] RIN 1076-AE73 Residential, Business, and Wind and Solar Resource Leases on Indian Land AGENCY... leases, and solar resource development leases on Indian land, and would therefore remove the existing...
An empirical model to forecast solar wind velocity through statistical modeling
NASA Astrophysics Data System (ADS)
Gao, Y.; Ridley, A. J.
2013-12-01
The accurate prediction of the solar wind velocity has been a major challenge in the space weather community. Previous studies proposed many empirical and semi-empirical models to forecast the solar wind velocity based on either the historical observations, e.g. the persistence model, or the instantaneous observations of the sun, e.g. the Wang-Sheeley-Arge model. In this study, we use the one-minute WIND data from January 1995 to August 2012 to investigate and compare the performances of 4 models often used in literature, here referred to as the null model, the persistence model, the one-solar-rotation-ago model, and the Wang-Sheeley-Arge model. It is found that, measured by root mean square error, the persistence model gives the most accurate predictions within two days. Beyond two days, the Wang-Sheeley-Arge model serves as the best model, though it only slightly outperforms the null model and the one-solar-rotation-ago model. Finally, we apply the least-square regression to linearly combine the null model, the persistence model, and the one-solar-rotation-ago model to propose a 'general persistence model'. By comparing its performance against the 4 aforementioned models, it is found that the accuracy of the general persistence model outperforms the other 4 models within five days. Due to its great simplicity and superb performance, we believe that the general persistence model can serve as a benchmark in the forecast of solar wind velocity and has the potential to be modified to arrive at better models.
Solar wind temperature observations in the outer heliosphere
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.
Intense Geomagnetic Storms of Solar Cycle 24 and Associated Energetics
NASA Astrophysics Data System (ADS)
Rawat, R.; Echer, E.; Gonzalez, W. D.
2013-12-01
Solar cycle 24 commenced in November 2008 following a deep solar minimum. The solar activity picked up gradually and consequently led to increase in geomagnetic activity during the ascending phase of new cycle. From the start of this cycle till July 2013, only 12 intense geomagnetic storms (Dst < -100 nT) have occurred. We investigate the solar wind-interplanetary drivers for these intense geomagnetic storms using satellite data. Total energy Poynting flux (ɛ) representing the fraction of solar wind energy transferred into the magnetosphere during different storms will be calculated. Solar cycle 24 is weaker as compared to previous solar cycle (23). In this work, a comparative study of solar and geomagnetic signatures during the ascending phase of the two cycles will be carried out.
INTERSTELLAR PICK-UP IONS OBSERVED BETWEEN 11 AND 22 AU BY NEW HORIZONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randol, B. M.; McComas, D. J.; Schwadron, N. A., E-mail: brentrandol@gmail.com
We report new observations by the Solar Wind Around Pluto instrument on the New Horizons spacecraft, which measures energy per charge (E/q) spectra of solar wind and interstellar pick-up ions (PUIs) between 11 AU and 22 AU from the Sun. The data provide an unprecedented look at PUIs as there have been very few measurements of PUIs beyond 10 AU. We analyzed the PUI part of the spectra by comparing them to the classic Vasyliunas and Siscoe PUI model. Our analysis indicates that PUIs are usually well-described by this distribution. We derive parameters relevant to PUI studies, such as themore » ionization rate normalized to 1 AU. Our result for the average ionization rate between 11 and 12 AU agrees with an independently derived average value found during the same time. Later, we find a general increase in the ionization rate, which is consistent with the increase in solar activity. We also calculate the PUI thermal pressure, which appears to be roughly consistent with previous results. Through fitting of the solar wind proton peaks in our spectra, we derive solar wind thermal pressures. Based on our analysis, we predict a ratio of PUI thermal pressure to solar wind thermal pressure just inside the termination shock to be between 100 and >1000.« less
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Zhang, B.; Huang, C.
2017-12-01
Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.
Correlation Between the Magnetic Field and Plasma Parameters at 1 AU
NASA Astrophysics Data System (ADS)
Yang, Zicai; Shen, Fang; Zhang, Jie; Yang, Yi; Feng, Xueshang; Richardson, Ian G.
2018-02-01
The physical parameters of the solar wind observed in-situ near 1 AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature, T, and velocity, V, and the negative correlation between density, N, and velocity, V, are well known. However, the magnetic field intensity, B, does not appear to be well correlated with any individual plasma parameter. In this article, we discuss previously under-reported correlations between B and the combined plasma parameters √{N V2} as well as between B and √{NT}. These two correlations are strong during periods of corotating interaction regions and high-speed streams, and moderate during intervals of slow solar wind. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Haihong; Goddard Space Flight Center, NASA, Greenbelt, MD, 20771
2016-03-25
We summarize our recent studies on the origin of solar wind kinetic scale turbulence and electron halo in the electron velocity distribution function. Increasing observations of nanoflares and microscopic type III radio bursts strongly suggest that nanoflares and accelerated electron beams are common in the corona. Based on particle-in-cell simulations, we show that both the core-halo feature and kinetic scale turbulence observed in the solar wind can be produced by the nonlinear evolution of electron two-stream instability driven by nanoflare accelerated electron beams. The energy exchange between waves and particles reaches equilibrium in the inner corona and the key featuresmore » of the turbulence and velocity distribution are preserved as the solar wind escapes into interplanetary space along open magnetic field lines. Observational tests of the model and future theoretical work are discussed.« less
James, Eric P.; Benjamin, Stanley G.; Marquis, Melinda
2016-10-28
A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides physically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset shows strong similarity to that previously provided by a Department of Energy-funded study, and it includes estimates in southern Canada and northern Mexico. The solar resource dataset represents anmore » initial step towards application-specific fields such as global horizontal and direct normal irradiance. This combined dataset will continue to be augmented with new forecast data from the advanced HRRR atmospheric/land-surface model.« less
Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions
NASA Technical Reports Server (NTRS)
Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.;
2016-01-01
Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Wei, C. Q.
1993-01-01
The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.
Mursula, K.; Tanskanen, E.; Love, J.J.
2011-01-01
We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Marques de Souza, Adriane; Echer, Ezequiel; José Alves Bolzan, Mauricio; Hajra, Rajkumar
2018-02-01
Solar-wind-geomagnetic activity coupling during high-intensity long-duration continuous AE (auroral electrojet) activities (HILDCAAs) is investigated in this work. The 1 min AE index and the interplanetary magnetic field (IMF) Bz component in the geocentric solar magnetospheric (GSM) coordinate system were used in this study. We have considered HILDCAA events occurring between 1995 and 2011. Cross-wavelet and cross-correlation analyses results show that the coupling between the solar wind and the magnetosphere during HILDCAAs occurs mainly in the period ≤ 8 h. These periods are similar to the periods observed in the interplanetary Alfvén waves embedded in the high-speed solar wind streams (HSSs). This result is consistent with the fact that most of the HILDCAA events under present study are related to HSSs. Furthermore, the classical correlation analysis indicates that the correlation between IMF Bz and AE may be classified as moderate (0.4-0.7) and that more than 80 % of the HILDCAAs exhibit a lag of 20-30 min between IMF Bz and AE. This result corroborates with Tsurutani et al. (1990) where the lag was found to be close to 20-25 min. These results enable us to conclude that the main mechanism for solar-wind-magnetosphere coupling during HILDCAAs is the magnetic reconnection between the fluctuating, negative component of IMF Bz and Earth's magnetopause fields at periods lower than 8 h and with a lag of about 20-30 min.
NASA Technical Reports Server (NTRS)
Becker, Richard H.; Pepin, Robert O.
1989-01-01
The solar wind components in two lunar ilmenites are examined. The noble gas and nitrogen elemental and isotopic abundances of lunar regolith breccia sample 79035, assumed to have been exposed to solar winds more than 2 Ga ago, are analyzed using stepwise oxidation and pyrolysis. This sample is compared with the data of Frick et al. (1988) for soil sample 71501, recently exposed to solar winds. It is observed that the two elements differ in terms of xenon abundance, helium and neon isotopic rates, and He/Ar elemental ratios. It is concluded that there have been isotopic and elemental abundance changes in solar wind composition over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenerani, Anna; Velli, Marco
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed,more » most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.« less
Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo
2010-05-01
It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ΔE/q (ΔE : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
Simultaneous Analysis of Recurrent Jovian Electron Increases and Galactic Cosmic Ray Decreases
NASA Astrophysics Data System (ADS)
Kühl, P.; Dresing, N.; Dunzlaff, P.; Fichtner, H.; Gieseler, J.; Gomez-Herrero, R.; Heber, B.; Klassen, A.; Kleimann, J.; Kopp, A.; Potgieter, M. S.; Scherer, K.; Strauss, D. R.
2012-12-01
Since the early 1970's the magnetosphere of Jupiter is known to be a strong source of relativistic electrons. These Jovian electrons are released quasi-continuously from the magnetosphere. Due to Jupiter's favorable orbit, they offer a unique opportunity for studies of the transport of energetic particles in the heliosphere, in which the Jovian magnetosphere acts as a source of "quit time" electron increase. Of central importance for the propagation of Jovian electrons is the solar wind flow and the structure of the embedded heliospheric magnetic field. The solar wind defines the transport environment for the particles as soon as they have left the Jovian magnetosphere. They enter the solar wind flow close to the ecliptic plane and are immediately subject to the processes of spatial diffusion, convection, and adiabatic deceleration in the expanding solar wind plasma. On the time-scale of a solar rotation, especially during the rising and declining phases of the solar cycle the variability is caused mainly by corotating interaction regions. Due to the changing propagation conditions in the intermediate heliosphere, corotating interaction regions, however, can cause recurrent galactic cosmic ray modulation. A detailed analysis of recurrent Jovian electron events and galactic cosmic ray decreases measured by SOHO EPHIN is presented here, clearly showing a change of phase between both phenomena during a year. This phase shift has been analyzed by calculating the correlation coefficient between the galactic component and the Jovian electrons. Furthermore, the data can be ordered such that the 27-day Jovian electron variation vanishes in the sector which does not connect the Earth with Jupiter using observed solar wind speeds.; Electron intensity dependent on the longitudinal angle between SOHO and Jupiter. Jovian electron increases can only be observed in regions, which are magnetically connected to Jupiter via observed solar wind speeds.
The Solar Wind Depletion (SWD) event of 26 April 1999: Triggering of an auroral pseudobreakup event
NASA Technical Reports Server (NTRS)
Zhou, X.; Tsurutani, B.; Gonzalez, W.
2000-01-01
The interplanetary solar wind depletion (SWD) event of 26 April 1999 and its magnetospheric consequences are examined. The SWD event is characterized by a solar wind density decrease from [similar to] 3.0 to 0.7 cm(sup -3) leading to a solar wind ram pressure decrease from [similar to] 2.0 to 0.2 nPa. This SWD onset is followed by a dipolarization of nightside magnetospheric fields.
Solar Wind Earth Exchange Project (SWEEP)
2016-10-28
AFRL-AFOSR-UK-TR-2016-0035 Solar Wind Earth Exchange Project 140200 Steven Sembay UNIVERSITY OF LEICESTER Final Report 10/28/2016 DISTRIBUTION A...To) 01 Sep 2014 to 31 Aug 2016 4. TITLE AND SUBTITLE Solar Wind Earth Exchange Project (SWEEP) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1...SUPPLEMENTARY NOTES 14. ABSTRACT The grant received from AFRL/AOFSR/EOARD funded the Solar Wind Earth Exchange Project (SWEEP) at Leicester University. The goal
The spatial gradients in the solar wind and IMF in the vicinity of the first Lagrangian point
NASA Astrophysics Data System (ADS)
Lai, H.; Russell, C. T.; Riley, P.
2017-12-01
To verify the accuracy of predicted solar wind conditions at L1, we need to know how accurate our measurements are as well as the spatial gradients of solar wind properties since the data are not obtained precisely at the L1 point. With ACE, Wind, and DSCOVR currently taking measurements in the vicinity of L1, we first need to test whether their responses to the solar wind are the same and if not, to determine which data are most accurate. Secondly, we need to study the coherency scales of the solar wind properties, which determine the scale over which the measurements can be accurately extrapolated. By comparing the measurements during large solar wind structures (e.g. CMEs), we find that the magnetic fields from all spacecraft are measured accurately, but the plasma parameters can be significantly different from one spacecraft to another. By examining the sum of magnetic and plasma thermal pressure across tangential discontinuities, we find that the density and temperature measurements from Wind and DSCOVR do show pressure continuity as expected while ACE does not. Since plasma data from DSCOVR have a greater variability about the mean and have many data gaps, we believe that data from Wind should be used whenever available. We find that strength of the magnetic field and zero levels of the various magnetometers are consistent, but the direction of the magnetic field can change significantly in the cross-flow direction. Thus, over the separation distance of spacecraft near L1, large changes in the IMF direction can appear between spacecraft even though the IMF is accurately measured. In contrast, the plasma parameters, when measured accurately, are spatially uniform over about 100Re and may be extrapolated well. Our results can also be applied to improving future space weather mission design. A constellation of cubesats with magnetometers would be needed to determine the IMF impinging on the magnetosphere. Fewer plasma instruments are needed to determine the impinging solar wind conditions, but they should be more accurate than the current detectors.
Solar power. [comparison of costs to wind, nuclear, coal, oil and gas
NASA Technical Reports Server (NTRS)
Walton, A. L.; Hall, Darwin C.
1990-01-01
This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.
Propagation of large amplitude Alfven waves in the solar wind neutral sheet
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poduval, B., E-mail: bpoduval@spacescience.org
2016-08-10
This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significantmore » temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.« less
Dependence of Photochemical Escape of Oxygen at Mars on Solar Radiation and Solar Wind Interaction
NASA Astrophysics Data System (ADS)
Cravens, T.; Rahmati, A.; Lillis, R. J.; Fox, J. L.; Bougher, S. W.; Jakosky, B. M.
2016-12-01
The evolution of the atmosphere of Mars and the loss of volatiles over the life of the solar system is a key topic in planetary science. An important loss process in the ionosphere is photochemical escape. In particular, dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Several theoretical models have been constructed over the years to study hot oxygen and its escape from Mars. These model have a number of uncertainties, particularly for the elastic cross sections of O collisions with target neutral species. Recently, the Mars Atmosphere and Volatile Evolution Mission (MAVEN) mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., the solar wind). The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to: (1) study the role that solar flux and solar wind variations have on escape and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. Not surprisingly, we find, in agreement with more elaborate numerical models, that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The role for atmospheric loss that ion transport plays in the topside ionosphere and how the solar wind interaction drives this will also be discussed.
GPP Webinar: Market Outlook and Innovations in Wind and Solar Power
Green Power Partnership webinar reviewing the state of the renewable energy industry as a whole, with a focus on wind and solar power and exploring recent marketplace innovations in wind and solar power and renewable energy purchases.
Generation of Kappa Distributions in Solar Wind at 1 au
NASA Astrophysics Data System (ADS)
Livadiotis, G.; Desai, M. I.; Wilson, L. B., III
2018-02-01
We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.
Stationarity of extreme bursts in the solar wind
NASA Astrophysics Data System (ADS)
Moloney, N. R.; Davidsen, J.
2014-05-01
Recent results have suggested that the statistics of bursts in the solar wind vary with solar cycle. Here, we show that this variation is basically absent if one considers extreme bursts. These are defined as threshold-exceeding events over the range of high thresholds for which their number decays as a power law. In particular, we find that the distribution of duration times and energies of extreme bursts in the solar wind ɛ parameter and similar observables are independent of the solar cycle and in this sense stationary, and show robust asymptotic power laws with exponents that are independent of the specific threshold. This is consistent with what has been observed for solar flares and, thus, provides evidence in favor of a link between solar flares and extreme bursts in the solar wind.
Leveraging the Polar Cap: Ground-Based Measurements of the Solar Wind
NASA Astrophysics Data System (ADS)
Urban, K. D.; Gerrard, A. J.; Weatherwax, A. T.; Lanzerotti, L. J.; Patterson, J. D.
2016-12-01
In this study, we look at and identify relationships between solar wind quantities that have previously been shown to have direct access into the very high-latitude polar cap as measured by ground-based riometers and magnetometers in Antarctica: ultra-low frequency (ULF) power in the interplanetary magnetic field (IMF) Bz component and solar energetic proton (SEP) flux (Urban [2016] and Patterson et al. [2001], respectively). It is shown that such solar wind and ground-based observations can be used to infer the hydromagnetic structure and magnetospheric mapping of the polar cap region in a data-driven manner, and that high-latitude ground-based instrumentation can be used to infer concurrent various state parameters of the geospace environment.
NASA Technical Reports Server (NTRS)
Roelof, E. C.; Gold, R. E.
1978-01-01
The comparatively well-ordered magnetic structure in the solar corona during the decline of Solar Cycle 20 revealed a characteristic dependence of solar energetic particle injection upon heliographic longitude. When analyzed using solar wind mapping of the large scale interplanetary magnetic field line connection from the corona to the Earth, particle fluxes display an approximately exponential dependence on heliographic longitude. Since variations in the solar wind velocity (and hence the coronal connection longitude) can severely distort the simple coronal injection profile, the use of real-time solar wind velocity measurements can be of great aid in predicting the decay of solar particle events. Although such exponential injection profiles are commonplace during 1973-1975, they have also been identified earlier in Solar Cycle 20, and hence this structure may be present during the rise and maximum of the cycle, but somewhat obscured by greater temporal variations in particle injection.
NASA Technical Reports Server (NTRS)
Suess, S. T.
2007-01-01
The solar wind reflects the composition of the Sun and physical processes in the corona. Analysis produces information on how the solar system was formed and on physical processes in the corona. The analysis can also produce information on the local interstellar medium, galactic evolution, comets in the solar wind, dust in the heliosphere, and matter escaping from planets.
Some characteristics of intense geomagnetic storms and their energy budget
NASA Astrophysics Data System (ADS)
Vichare, Geeta; Alex, S.; Lakhina, G. S.
2005-03-01
The present study analyses nine intense geomagnetic storms (∣Dst∣ > 175 nT) with the aid of ACE satellite measurements and ground magnetic field values at Alibag Magnetic Observatory. The study confirms the crucial role of southward IMF in triggering the storm main phase as well as controlling the magnitude of the storm. The main phase interval shows clear dependence on the duration of southward IMF. An attempt is made to identify the multipeak signature in the ring current energy injection rate during main phase of the storm. In order to quantify the energy budget of magnetic storms, the present paper computes the solar wind energies, magnetospheric coupling energies, auroral and Joule heating energies, and the ring current energies for each storm under examination. Computation of the solar wind- magnetosphere coupling function considers the variation of the size of the magnetosphere by using the measured solar wind ram pressure. During the main phase of the storm, the solar wind kinetic energy ranges from 9 × 1017 to 72 × 1017 J with an average of 30 × 1017 J; the total energy dissipated in the auroral ionosphere varies between 2 × 1015 and 9 × 1015 J, whereas ring current energies range from 8 × 1015 to 19 × 1015 J. For the total storm period, about 3.5% of total solar wind kinetic energy is available for the redistribution in the magnetosphere, and around 20% of this goes into the inner magnetosphere and in the auroral ionosphere of both the hemispheres. It is found that during main phase of the storm, almost 5% of the total solar wind kinetic energy is available for the redistribution in the magnetosphere, whereas during the recovery phase the percentage becomes 2.3%.
Measurement of Damage Profiles from Solar Wind Implantation
NASA Technical Reports Server (NTRS)
McNamara, K. M.; Synowicki, R. A.; Tiwald, T. E.
2007-01-01
NASA's Genesis Mission launched from Cape Canaveral in August of 2001 with the goal of collecting solar wind in ultra-pure materials. The samples were returned to Earth more than three years later for subsequent analysis. Although the solar wind is comprised primarily of protons, it also contains ionized species representing the entire periodic table. The Genesis mission took advantage of the natural momentum of these ionized species to implant themselves in specialized collectors including single crystal Si and SiC. The collectors trapped the solar wind species of interest and sustained significant damage to the surface crystal structure as a result of the ion bombardment. In this work, spectroscopic ellipsometry has been used to evaluate the extent of this damage in Si and SiC samples. These results and models are compared for artificially implanted samples and pristine non-flight material. In addition, the flown samples had accumulated a thin film of molecular contamination as a result of outgassing in flight, and we demonstrate that this layer can be differentiated from the material damage. In addition to collecting bulk solar wind samples (continuous exposure), the Genesis mission actually returned silicon exposed to four different solar wind regimes: bulk, high speed, low speed, and coronal mass ejections. Each of these solar wind regimes varies in energy, but may vary in composition as well. While determining the composition is a primary goal of the mission, we are also interested in the variation in depth and extent of the damage layer as a function of solar wind regime. Here, we examine flight Si from the bulk solar wind regime and compare the results to both pristine and artificially implanted Si. Finally, there were four samples which were mounted in an electrostatic "concentrator" designed to reject a large fraction (>85%) of incoming protons while enhancing the concentration of ions mass 4-28 amu by a factor of at least 20. Two of these samples were single crystal 6H silicon carbide. (The others were polycrystalline CVD diamond and amorphous carbon that were not examined in the work.) The ion damaged SiC samples from the concentrator were studied in comparison to the flight Si from the bulk array to understand differences in the extent of the damage.
Probability Density Functions of the Solar Wind Driver of the Magnetopshere-Ionosphere System
NASA Astrophysics Data System (ADS)
Horton, W.; Mays, M. L.
2007-12-01
The solar-wind driven magnetosphere-ionosphere system is a complex dynamical system in that it exhibits (1) sensitivity to initial conditions; (2) multiple space-time scales; (3) bifurcation sequences with hysteresis in transitions between attractors; and (4) noncompositionality. This system is modeled by WINDMI--a network of eight coupled ordinary differential equations which describe the transfer of power from the solar wind through the geomagnetic tail, the ionosphere, and ring current in the system. The model captures both storm activity from the plasma ring current energy, which yields a model Dst index result, and substorm activity from the region 1 field aligned current, yielding model AL and AU results. The input to the model is the solar wind driving voltage calculated from ACE solar wind parameter data, which has a regular coherent component and broad-band turbulent component. Cross correlation functions of the input-output data time series are computed and the conditional probability density function for the occurrence of substorms given earlier IMF conditions are derived. The model shows a high probability of substorms for solar activity that contains a coherent, rotating IMF with magnetic cloud features. For a theoretical model of the imprint of solar convection on the solar wind we have used the Lorenz attractor (Horton et al., PoP, 1999, doi:10.10631.873683) as a solar wind driver. The work is supported by NSF grant ATM-0638480.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Feng, X. S.
2015-12-01
CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness
Three-Fluid Magnetohydrodynamic Modeling of the Solar Wind in the Outer Heliosphere
NASA Technical Reports Server (NTRS)
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2011-01-01
We have developed a three-fluid, fully three-dimensional magnetohydrodynamic model of the solar wind plasma in the outer heliosphere as a co-moving system of solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Our approach takes into account the effects of electron heat conduction and dissipation of Alfvenic turbulence on the spatial evolution of the solar wind plasma and interplanetary magnetic fields. The turbulence transport model is based on the Reynolds decomposition of physical variables into mean and fluctuating components and uses the turbulent phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. We solve the coupled set of the three-fluid equations for the mean-field solar wind and the turbulence equations for the turbulence energy, cross helicity, and correlation length. The equations are written in the rotating frame of reference and include heating by turbulent dissipation, energy transfer from interstellar pickup protons to solar wind protons, and solar wind deceleration due to the interaction with the interstellar hydrogen. The numerical solution is constructed by the time relaxation method in the region from 0.3 to 100 AU. Initial results from the novel model are presented.
Solar wind speed and He I (1083 nm) absorption line intensity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakamada, Kazuyuki; Kojima, Masayoshi; Kakinuma, Takakiyo
1991-04-01
Since the pattern of the solar wind was relatively steady during Carrington rotations 1,748 through 1,752 in 1984, an average distribution of the solar windspeed on a so-called source surface can be constructed by superposed epoch analysis of the wind values estimated by the interplanetary scintillation observations. The average distribution of the solar wind speed is then projected onto the photosphere along magnetic field lines computed by a so-called potential model with the line-of-sight components of the photospheric magnetic fields. The solar wind speeds projected onto the photosphere are compared with the intensities of the He I (1,083 nm) absorptionmore » line at the corresponding locations in the chromosphere. The authors found that there is a linear relation between the speeds and the intensities. Since the intensity of the He I (1,083 nm) absorption line is coupled with the temperature of the corona, this relation suggests that some physical mechanism in or above the photosphere accelerates coronal plasmas to the solar wind speed in regions where the temperature is low. Further, it is suggested that the efficiency of the solar wind acceleration decreases as the coronal temperature increases.« less
The Effect on the Lunar Exosphere of a Coroual Mass Ejection Passage
NASA Technical Reports Server (NTRS)
Killen, R. M.; Hurley, D. M.; Farrell, W. M.
2011-01-01
Solar wind bombardment onto exposed surfaces in the solar system produces an energetic component to the exospheres about those bodies. The solar wind energy and composition are highly dependent on the origin of the plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into their various components, we have estimated the total sputter yield for each type of solar wind. We show that the heavy ion component, especially the He++ and 0+7 can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. Folding in the flux, we compute the source rate for several species during different types of solar wind. Finally, we use a Monte Carlo model developed to simulate the time-dependent evolution of the lunar exosphere to study the sputtering component of the exosphere under the influence of a CME passage. We simulate the background exosphere of Na, K, Ca, and Mg. Simulations indicate that sputtering increases the mass of those constituents in the exosphere a few to a few tens times the background values. The escalation of atmospheric density occurs within an hour of onset The decrease in atmospheric density after the CME passage is also rapid, although takes longer than the increase, Sputtered neutral particles have a high probability of escaping the moon,by both Jeans escape and photo ionization. Density and spatial distribution of the exosphere can be tested with the LADEE mission.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2004-01-01
We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions of both ICMEs and the ambient solar wind.
25 CFR 162.010 - How do I obtain a lease?
Code of Federal Regulations, 2014 CFR
2014-04-01
... subpart E for wind energy evaluation, wind resource, or solar resource leases; and (3) Prospective lessees..., residential, business, wind energy evaluation, wind resource, and solar resource leases will not be advertised...
25 CFR 162.010 - How do I obtain a lease?
Code of Federal Regulations, 2013 CFR
2013-04-01
... subpart E for wind energy evaluation, wind resource, or solar resource leases; and (3) Prospective lessees..., residential, business, wind energy evaluation, wind resource, and solar resource leases will not be advertised...
Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, P.; Mehos, M.
2015-06-03
As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.
Handbook of solar-terrestrial data systems, version 1
NASA Technical Reports Server (NTRS)
1991-01-01
The interaction between the solar wind and the earth's magnetic field creates a large magnetic cavity which is termed the magnetosphere. Energy derived from the solar wind is ultimately dissipated by particle acceleration-precipitation and Joule heating in the magnetosphere-ionosphere. The rate of energy dissipation is highly variable, with peak levels during geomagnetic storms and substorms. The degree to which solar wind and magnetospheric conditions control the energy dissipation processes remains one of the major outstanding questions in magnetospheric physics. A conference on Solar Wind-Magnetospheric Coupling was convened to discuss these issues and this handbook is the result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov; NASA Goddard Space Flight Center, Greenbelt, MD; Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects ofmore » background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.« less
Tsallis non-extensive statistics and solar wind plasma complexity
NASA Astrophysics Data System (ADS)
Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.
2015-03-01
This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).
Solar wind conditions in the outer heliosphere and the distance to the termination shock
NASA Technical Reports Server (NTRS)
Belcher, John W.; Lazarus, Alan J.; Mcnutt, Ralph L., Jr.; Gordon, George S., Jr.
1993-01-01
The Plasma Science experiment on the Voyager 2 spacecraft has measured the properties of solar wind protons from 1 to 40.4 AU. We use these observations to discuss the probable location and motion of the termination shock of the solar wind. Assuming that the interstellar pressure is due to a 5 micro-G magnetic field draped over the upstream face of the heliopause, the radial variation of ram pressure implies that the termination shock will be located at an average distance near 89 AU. This distance scales inversely as the assumed field strength. There are also large variations in ram pressure on time scales of tens of days, due primarily to large variations in solar wind density at a given radius. Such rapid changes in the solar wind ram pressure can cause large perturbations in the location of the termination shock. We study the nonequilibrium location of the termination shock as it responds to these ram pressure changes. The results of this study suggest that the position of the termination shock can vary by as much as 10 AU in a single year, depending on the nature of variations in the ram pressure, and that multiple crossings of the termination shock by a given outer heliosphere spacecraft are likely. After the first crossing, such models of shock motion will be useful for predicting the timing of subsequent crossings.
The GENESIS Mission: Solar Wind Isotopic and Elemental Compositions and Their Implications
NASA Astrophysics Data System (ADS)
Wiens, R. C.; Burnett, D. S.; McKeegan, K. D.; Kallio, A. P.; Mao, P. H.; Heber, V. S.; Wieler, R.; Meshik, A.; Hohenberg, C. M.; Mabry, J. C.; Gilmour, J.; Crowther, S. A.; Reisenfeld, D. B.; Jurewicz, A.; Marty, B.; Pepin, R. O.; Barraclough, B. L.; Nordholt, J. E.; Olinger, C. T.; Steinberg, J. T.
2008-12-01
The GENESIS mission was a novel NASA experiment to collect solar wind at the Earth's L1 point for two years and return it for analysis. The capsule crashed upon re-entry in 2004, but many of the solar-wind collectors were recovered, including separate samples of coronal hole, interstream, and CME material. Laboratory analyses of these materials have allowed higher isotopic precision than possible with current in-situ detectors. To date GENESIS results have been obtained on isotopes of O, He, Ne, Ar, Kr, and Xe on the order of 1% accuracy and precision, with poorer uncertainty on Xe isotopes and significantly better uncertainties on the lighter noble gases. Elemental abundances are available for the above elements as well as Mg, Si, and Fe. When elemental abundances are compared with other in situ solar wind measurements, agreement is generally quite good. One exception is the Ne elemental abundance, which agrees with Ulysses and Apollo SWC results, but not with ACE. Neon is of particular interest because of the uncertainty in the solar Ne abundance, which has significant implications for the standard solar model. Helium isotopic results of material from the different solar wind regimes collected by GENESIS is consistent with isotopic fractionation predictions of the Coulomb drag model, suggesting that isotopic fractionation corrections need to be applied to heavier elements as well when extrapolating solar wind to solar compositions. Noble gas isotopic compositions from GENESIS are consistent with those obtained for solar wind trapped in lunar grains, but have for the first time yielded a very precise Ar isotopic result. Most interesting for cosmochemistry is a preliminary oxygen isotopic result from GENESIS which indicates a solar enrichment of ~4% in 16O relative to the planets, consistent with a photolytic self-shielding phenomenon during solar system formation. Analyses of solar wind N and C isotopes may further elucidate this phenomenon. Preliminary results from GENESIS have been reported for N, and results are still pending for C.
Mapping the Solar Wind from its Source Region into the Outer Corona
NASA Technical Reports Server (NTRS)
Esser, Ruth
1998-01-01
Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the present proposal is to determine as many plasma parameters in that region as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters are then used to constrain solar wind models.
Wind and Solar Resource Assessment of Sri Lanka and the Maldives (CD-ROM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.; Schwartz, M.; Scott, G.
2003-08-01
The Wind and Solar Resource Assessment of Sri Lanka and the Maldives CD contains an electronic version of Wind Energy Resource Atlas of Sri Lanka and the Maldives (NREL/TP-500-34518), Solar Resource Assessment for Sri Lanka and the Maldives (NREL/TO-710-34645), Sri Lanka Wind Farm Analysis and Site Selection Assistance (NREL/SR-500-34646), GIS Data Viewer (software and data files with a readme file), and Hourly Solar and Typical Meteorological Year Data with a readme file.
2015-04-15
the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non Renewable Energy Sources Energy is a National...Park, NC 27709-2211 Energy Audits, Energy Conservation, Renewable Energy, Solar Energy, Wind Turbine Use, Energy Consumption REPORT DOCUMENTATION PAGE 11...in non peer-reviewed journals: An Analysis of the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non
3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?
NASA Astrophysics Data System (ADS)
Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny
2018-01-01
We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2008-01-01
The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.
1976-01-01
A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.
The Character of the Solar Wind, Surface Interactions, and Water
NASA Technical Reports Server (NTRS)
Farrell, William M.
2011-01-01
We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.
Use of meteorological information in the risk analysis of a mixed wind farm and solar
NASA Astrophysics Data System (ADS)
Mengelkamp, H.-T.; Bendel, D.
2010-09-01
Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it's relation to a climatologically stable long-term reference period. These components of uncertainty are of technical nature and based on subjective estimations rather than on a statistically sound data analysis. And then there is the temporal and spatial variability of the wind speed and radiation. Their influence on the overall risk is determined by the regional distribution of the power plants. These uncertainty components are calculated on the basis of wind speed observations and simulations and satellite derived radiation data. The respective volatility (temporal variability) is calculated from the site specific time series and the influence on the portfolio through regional correlation. For an exemplary portfolio comprising fourteen wind farms and eight solar power plants the annual mean energy production to be expected is calculated, the different components of uncertainty are estimated for each single wind farm and solar power plant and for the portfolio as a whole. The reduction in uncertainty (or risk) through bundling the wind farms and the solar power plants (the portfolio effect) is calculated by Markowitz' Modern Portfolio Theory. This theory is applied separately for the wind farm and the solar power plant bundle and for the combination of both. The combination of wind and photovoltaic assets clearly shows potential for a risk reduction. Even assets with a comparably low expected return can lead to a significant risk reduction depending on their individual characteristics.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Hundhausen, A. J.; Bame, S. J.
1976-01-01
A stream propagation model which neglects all dissipation effects except those occurring at shock interfaces, was used to compare Pioneer-10 solar wind speed observations, during the time when Pioneer 10, the earth, and the sun were coaligned, with near-earth Imp-7 observations of the solar wind structure, and with the theoretical predictions of the solar wind structure at Pioneer 10 derived from the Imp-7 measurements, using the model. The comparison provides a graphic illustration of the phenomenon of stream steepening in the solar wind with the attendant formation of forward-reverse shock pairs and the gradual decay of stream amplitudes with increasing heliocentric distance. The comparison also provides a qualitative test of the stream propagation model.
Global solar wind variations over the last four centuries
Owens, M. J.; Lockwood, M.; Riley, P.
2017-01-01
The most recent “grand minimum” of solar activity, the Maunder minimum (MM, 1650–1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth’s magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima. PMID:28139769
Convective and radiative components of wind chill in sheep: Estimation from meteorological records
NASA Astrophysics Data System (ADS)
Brown, D.; Mount, L. E.
1987-06-01
Wind chill is defined as the excess of sensible heat loss over what would occur at zero wind speed with other conditions unchanged. Wind chill can be broken down into a part that is determined by air temperature and a radiative part that comprises wind-dependent effects on additional long-wave radiative exchange and on solar radiation (by reducing solar warming). Radiative exchange and gain from solar radiation are affected by changes that are produced by wind in both surface and fleece insulations. Coefficients are derived for (a) converting the components of sensible heat exchange (air-temperature-dependent including both convective and associated long-wave radiative, additional long-wave radiative and solar) into the components of the total heat loss that are associated with wind and (b) for calculating equivalent air temperature changes. The coefficients contain terms only in wind speed, wetting of the fleece and fleece depth; these determine the external insulation. Calculation from standard meteorological records, using Plymouth and Aberdeen in 1973 as examples, indicate that in April September 1973 at Plymouth reduction in effective solar warming constituted 28% of the 24-h total wind chill, and 7% in the other months of the year combined; at Aberdeen the corresponding percentages were 25% and 6%. Mean hour-of-day estimates for the months of April and October showed that at midday reduction in solar warming due to wind rose to the order of half the air-temperature-dependent component of wind chill, with a much smaller effect in January. For about six hours at midday in July reduction in solar warming due to wind was similar in magnitude to the air-temperature-dependent component. It is concluded that realistic estimates of wind chill cannot be obtained unless the effect of solar radiation is taken into account. Failure to include solar radiation results not only in omitting solar warming but also in omitting the effects of wind in reducing that warming. The exchange of sensible (non-evaporative) heat loss between a homeothermic animal and its environment can be divided into two parts: one part is due to the temperature difference between the animal and the surrounding air, and the other part is due to additional long-wave radiative exchange between animal and environment and to solar radiation. Both parts of the heat exchange are determined in magnitude by the animal's thermal insulation, which is itself affected by windspeed and wetting. Wind diminishes as animal's external insulation, so increasing heat loss under all conditions when the air temperature is lower than the animal's surface temperature: this effect is termed wind chill. Wind chill has previously been investigated more commonly in relation to man (Burton an Edholm, 1955; Smithson and Baldwin, 1978; Mumford, 1979; Baldwin and Smithson, 1979). This paper is concerned with the separate contributions to wind chill calculated for sheep that can be associated with convective and radiative heat exchanges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin
This fact sheet overviews the Greening the Grid India grid integration study. The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India'smore » RE targets and identify actions that may be favorable for integration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, Aaron; Townsend, Aaron; Palchak, David
Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting bymore » Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.« less
Unintentional Insider Threats: A Review of Phishing and Malware Incidents
2014-07-01
their agency as deliberate, malicious hackers [1]. This research supports the conclusions in the 2013 Verizon Data Breach Report that 47% of...References [1] SolarWinds. SolarWinds Federal Cybersecurity Survey Summary Report. SolarWinds, 2014. [2] Verizon. 2013 Data Breach Investigations
NASA Technical Reports Server (NTRS)
Reames, D. V.; Richardson, I. G.; Barbier, L. M.
1991-01-01
The abundances of energetic ions accelerated from high-speed solar wind streams by shock waves formed at corotating interaction regions (CIRs) where high-speed streams overtake the lower-speed solar wind are examined. The observed element abundances appear to represent those of the high-speed solar wind, unmodified by the shock acceleration. These abundances, relative to those in the solar photosphere, are organized by the first ionization potential (FIP) of the ions in a way that is different from the FIP effect commonly used to describe differences between abundances in the solar photosphere and those in the solar corona, solar energetic particles (SEPs), and the low-speed solar wind. In contrast, the FIP effect of the ion abundances in the CIR events is characterized by a smaller amplitude of the differences between high-FIP and low-FIP ions and by elevated abundances of He, C, and S.
A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.
Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S
2011-06-24
The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.
NASA Technical Reports Server (NTRS)
Dunham, David W.; Jen, Shao-Chiang; Lee, Taesul; Swade, D.; Kawaguchi, Jun'ichiro; Farquhar, Robert W.; Broaddus, S.; Engel, Cheryl
1989-01-01
The ISEE-3 satellite carried out the first extensive exploration of the distant geomagnetic tail during 1983. ISEE-3's orbit was altered with four lunar gravity assists that alternately decreased and increased its orbital energy while keeping the apogees aligned in the antisolar direction. Two spacecraft of the International Solar Terrestrial Physics program will use similar double-lunar swingby orbits to study the solar wind and the geomagnetic environment. Geotail will be built in Japan for the Institute of Space and Astronautical Sciences; its main purpose will be to explore the earth's geomagnetic tail. Wind is a NASA spacecraft that will monitor the solar wind upstream from the earth and will also study the bowshock region of the magnetosphere. Current plans call for launches of both by NASA with expendable launch vehicles during the second half of 1992.
NASA Astrophysics Data System (ADS)
Xu, Guanjun; Song, Zhaohui
2017-04-01
Traveling solar wind disturbances have a significant influence on radio wave characteristics during the superior solar conjunction communication. This paper considers the impact of solar scintillation on phase fluctuations of electromagnetic (EM) wave propagation during the superior solar conjunction. Based on the Geometric Optics approximation, the close-form approximation model for phase fluctuations is developed. Both effects of anisotropic temporal variations function of plasma irregularities and their power spectrum are presented and analyzed numerically. It is found that phase fluctuations rapidly decrease with increasing Sun-Earth-Probe angle and decrease with increasing frequency at the rate of 1/f2. Moreover, the role of various features of the solar wind irregularities and their influence on the EM wave characteristic parameters is studied and discussed. Finally, we study the phase fluctuations of typical cases in order to better understand the impact of phase fluctuations in future deep space communication scenarios during solar conjunction periods.
Possible external sources of terrestrial cloud cover variability: the solar wind
NASA Astrophysics Data System (ADS)
Voiculescu, Mirela; Usoskin, Ilya; Condurache-Bota, Simona
2014-05-01
Cloud cover plays an important role in the terrestrial radiation budget. The possible influence of the solar activity on cloud cover is still an open question with contradictory answers. An extraterrestrial factor potentially affecting the cloud cover is related to fields associated with solar wind. We focus here on a derived quantity, the interplanetary electric field (IEF), defined as the product between the solar wind speed and the meridional component, Bz, of the interplanetary magnetic field (IMF) in the Geocentric Solar Magnetospheric (GSM) system. We show that cloud cover at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Since the IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. We also present results showing that the link between cloud cover and IMF varies depending on composition and altitude of clouds.
NASA Astrophysics Data System (ADS)
Savin, D. W.; Bostick, B. C.; Domingue, D. L.; Ebel, D. S.; Harlow, G. E.; Killen, R. M.
2018-05-01
We aim to improve the interpretation of in-situ and remote-sensing data of Mercury. We will use updated exosphere and spectrophotometric models incorporating new data from lab simulations of solar wind ion irradiation of Mercury’s regolith surface.
Effect of coherent structures on energetic particle intensity in the solar wind
NASA Astrophysics Data System (ADS)
Tessein, Jeffrey A.
Solar energetic particles in the solar wind are accelerated in both solar flares and shocks assocated with fast coronal mass ejections. They follow the interplanetary magnetic field and, upon reaching Earth, have implications for space weather. Space weather affects astronaut health and orbiting equipment through radiation hazard and electrical infrastructure on the ground with ground induced currents. Economic im- pacts include disruption of GPS and redirection of commercial polar flights due to a dangerous radiation environment over the poles. By studying how these particles interact with the magnetic fields we can better predict onset times and diffusion of these events. We find, using superposed epoch analysis and conditional statisitics from spacecraft observations that there is a strong association between energetic particles in the solar wind and magnetic discontinuities. This may be related to turbulent dissipa- tion mechanisms in which coherent structures in the solar wind seem to be preferred sites of heating, plasma instabilites and dissipation. In the case of energetic particles, magnetic reconnection and transport in flux tubes are likely to play a role. Though we focus on data away from large shocks, trapping can occur in the downstream region of shocks due to the preponderance of compressive turbulence in these areas. This thesis lays the ground work for the results described above with an intro- duction to solar wind and heliospheric physics in Chapter 1. Chapter 2 is an intro- duction to the acceleration mechanisms that give rise to observed energetic particle events. Chapter 3 describes various data analysis techniques and statistics that are bread and butter when analyzing spacecraft data for turbulence and energetic particle studies. Chapter 4 is a digression that covers preliminary studies that were done on the side; scale dependent kurtosis, ergodic studies and initial conditions for simulations. Chapter 5 contains that central published results of this thesis, that there is a strong association between energetic particle intensity and magnetic discontinuties and that the correlation is can be attributed to transport and local acceleration.
Four Point Measurements of the Foreshock
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Omidi, N.; Angelopoulos, V.
2008-01-01
Hybrid code numerical simulations accurately predict the properties of the Earth's foreshock, a region populated by solar wind particles heated and reflected by their interaction with the bow shock. The thermal pressures associated with the reflected population suffice to substantially modify the oncoming solar wind, substantially reducing densities, velocities, and magnetic field strengths, but enhance temperatures. Enhanced thermal pressures cause the foreshock to expand at the expense of the ambient solar wind, creating a boundary that extends approx.10 RE upstream which is marked by enhanced densities and magnetic field strengths, and flows deflected away from the foreshock. We present a case study of Cluster plasma and magnetic field observations of this boundary.
Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin
2015-09-15
We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less
Assessment of Predictive Capabilities of L1 Orbiters using Realtime Solar Wind Data
NASA Astrophysics Data System (ADS)
Holmes, J.; Kasper, J. C.; Welling, D. T.
2017-12-01
Realtime measurements of solar wind conditions at L1 point allow us to predict geomagnetic activity at Earth up to an hour in advance. These predictions are quantified in the form of geomagnetic indices such as Kp and Ap, allowing for a concise, standardized prediction and measurement system. For years, the Space Weather Prediction Center used ACE realtime solar wind data to develop its one and four-hour Kp forecasts, but has in the past year switched to using DSCOVR data as its source. In this study, the performance of both orbiters in predicting Kp over the course of one month was assessed in an attempt to determine whether or not switching to DSCOVR data has resulted in improved forecasts. The period of study was chosen to encompass a time when the satellites were close to each other, and when moderate to high activity was observed. Kp predictions were made using the Geospace Model, part of the Space Weather Modeling Framework, to simulate conditions based on observed solar wind parameters. The performance of each satellite was assessed by comparing the model output to observed data.
Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.
Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi
2011-03-01
This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.
Temporal and radial variation of the solar wind temperature-speed relationship
NASA Astrophysics Data System (ADS)
Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.
2012-09-01
The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate radial profile from the solar wind speed and temperature measurements.
A study of density modulation index in the inner heliospheric solar wind during solar cycle 23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.
2014-11-01
The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ε {sub N} ≡ ΔN/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ε {sub N} in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ΔN have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advancedmore » Composition Explorer. Our analysis reveals that 0.001 ≲ ε {sub N} ≲ 0.02 and does not vary appreciably with heliocentric distance. We also find that ε {sub N} declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.« less
NASA Astrophysics Data System (ADS)
Klein, Kristopher; Kasper, Justin; Korreck, Kelly; Alterman, Benjamin
2017-04-01
The role of free-energy driven instabilities in governing heating and acceleration processes in the heliosphere has been studied for over half a century, with significant recent advancements enabled by the statistical analysis of decades worth of observations from missions such as WIND. Typical studies focus on marginal stability boundaries in a reduced parameter space, such as the canonical plasma beta versus temperature anisotropy plane, due to a single source of free energy. We present a more general method of determining stability, accounting for all possible sources of free energy in the constituent plasma velocity distributions. Through this novel implementation, we can efficiently determine if the plasma is linearly unstable, and if so, how many normal modes are growing. Such identification will enabling us to better pinpoint the dominant heating or acceleration processes in solar wind plasma. The theory behind this approach is reviewed, followed by a discussion of our methods for a robust numerical implementation, and an initial application to portions of the WIND data set. Further application of this method to velocity distribution measurements from current missions, including WIND, upcoming missions, including Solar Probe Plus and Solar Orbiter, and missions currently in preliminary phases, such as ESA's THOR and NASA's IMAP, will help elucidate how instabilities shape the evolution of the heliosphere.
Benefits of Colocating Concentrating Solar Power and Wind
Sioshansi, Ramteen; Denholm, Paul
2013-09-16
Here, we analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. Finally,more » we demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment.« less
Solar energy system with wind vane
Grip, Robert E
2015-11-03
A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.
Solar- and wind-powered irrigation systems
NASA Astrophysics Data System (ADS)
Enochian, R. V.
1982-02-01
Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.
2011-01-01
I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.
Wind and solar powered turbine
NASA Technical Reports Server (NTRS)
Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)
1984-01-01
A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.
Energy and Mass Transport of Magnetospheric Plasmas during the November 2003 Magnetic Storm
NASA Technical Reports Server (NTRS)
Fok, Mei-Chging; Moore, Thomas
2008-01-01
Intensive energy and mass transport from the solar wind across the magnetosphere boundary is a trigger of magnetic storms. The storm on 20-21 November 2003 was elicited by a high-speed solar wind and strong southward component of interplanetary magnetic field. This storm attained a minimum Dst of -422 nT. During the storm, some of the solar wind particles enter the magnetosphere and eventually become part of the ring current. At the same time, the fierce solar wind powers strong outflow of H+ and O+ from the ionosphere, as well as from the plasmasphere. We examine the contribution of plasmas from the solar wind, ionosphere and plasmasphere to the storm-time ring current. Our simulation shows, for this particular storm, ionospheric O+ and solar wind ions are the major sources of the ring current particles. The polar wind and plasmaspheric H+ have only minor impacts. In the storm main phase, the strong penetration of solar wind electric field pushes ions from the geosynchronous orbit to L shells of 2 and below. Ring current is greatly intensified during the earthward transport and produces a large magnetic depression in the surface field. When the convection subsides, the deep penetrating ions experience strong charge exchange loss, causing rapid decay of the ring current and fast initial storm recovery. Our simulation reproduces very well the storm development indicated by the Dst index.
NASA Astrophysics Data System (ADS)
Sharma, Swati; Sharma, R. P.; Gaur, Nidhi
2016-01-01
Space provides a vast medium to study turbulence and is accessible to detailed in situ measurements. Alfvén waves (AW) are ubiquitous in space and a main component of magnetohydrodynamic turbulence in heliosphere. The wave interaction with the density fluctuations is considered to be an important driver of nonlinear processes in space plasmas. Present study involves the nonlinear coupling, on the account of the ponderomotive nonlinearity, of the parallel propagating circularly polarized dispersive Alfvén wave (DAW) with the density fluctuations associated with magnetosonic wave propagating in the direction perpendicular to ambient magnetic field. The localization of DAW electric field intensity and the corresponding power spectra has been studied for the case of solar wind at 1 A.U. A breakpoint in power spectrum is seen around ion inertial length and spectra goes steeper at smaller scales which is consistent with the observations reported by CLUSTER in context of solar wind turbulence. Thus nonlinear interaction of DAW with transverse fluctuations causes the transfer of wave energy from larger scales to the smaller scales and may contribute in providing the energy needed to accelerate the solar wind.
The variety of MHD shock waves interactions in the solar wind flow
NASA Technical Reports Server (NTRS)
Grib, S. A.
1995-01-01
Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.
Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system
NASA Astrophysics Data System (ADS)
Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.
2017-12-01
Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.
Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987
NASA Technical Reports Server (NTRS)
Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.
1990-01-01
Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.
NASA Astrophysics Data System (ADS)
Cliver, E. W.; von Steiger, R.
2017-09-01
During the last decade it has been proposed that both the Sun and the solar wind have minimum magnetic states, lowest order levels of magnetism that underlie the 11-yr cycle as well as longer-term variability. Here we review the literature on basal magnetic states at the Sun and in the heliosphere and draw a connection between the two based on the recent deep 2008-2009 minimum between cycles 23 and 24. In particular, we consider the implications of the low solar activity during the recent minimum for the origin of the slow solar wind.
Neutral winds in the polar thermosphere as measured from Dynamics Explorer
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Hays, P. B.; Spencer, N. W.; Wharton, L. E.
1982-01-01
Remote sensing measurements of the meridional thermospheric neutral wind using the Fabry-Perot Interferometer on Dynamics Explorer have been combined with in-situ measurements of the zonal component using the Wind and Temperature Spectrometer on the same spacecraft. The two data sets with appropriate spatial phasing and averaging determine the vector wind along the track of the polar orbiting spacecraft. A study of fifty-eight passes over the Southern (sunlit) pole has enabled the average Universal Time dependence of the wind field to be determined for essentially a single solar local time cut. The results show the presence of a 'back-ground' wind field driven by solar EUV heating upon which is superposed a circulating wind field driven by high latitude momentum and energy sources.
Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview
NASA Technical Reports Server (NTRS)
Kazimirovsky, E. S.
1989-01-01
The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control.
Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind
NASA Technical Reports Server (NTRS)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-01-01
Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.
FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.
Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transitionmore » in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.« less
IPS Space Weather Research: Korea-Japan-UCSD
2015-04-27
SUBJECT TERMS Solar Physics , Solar Wind, interplanetary scintillation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...Institution : Center for Astrophysics and space science (CASS), University of California, San Diego (UCSD) - Mailing Address : 9500 Gilman Dr. #0424...the physical parameters like solar wind velocities and densities. This is the one of the unique way to observer the solar wind from the earth. The
Solar Wind Characteristics from SOHO-Sun-Ulysses Quadrature Observations
NASA Technical Reports Server (NTRS)
Poletto, Giannina; Suess, Steve T.; Six, N. Frank (Technical Monitor)
2002-01-01
Over the past few years, we have been running SOHO (Solar and Heliospheric Observatory)-Sun-Ulysses quadrature campaigns, aimed at comparing the plasma properties at coronal altitudes with plasma properties at interplanetary distances. Coronal plasma has been observed by SOHO experiments: mainly, we used LASCO (Large Angle and Spectrometric Coronagraph Experiment) data to understand the overall coronal configuration at the time of quadratures and analyzed SUMER (Solar Ultraviolet Measurements of Emitted Radiation), CDS (Coronal Diagnostic Spectrometer) and UVCS (Ultraviolet Coronagraph Spectrometer) data to derive its physical characteristics. At interplanetary distances, SWICS (Solar Wind Ion Composition Spectrometer) and SWOOPS (Solar Wind Observation over the Poles of the Sun) aboard Ulysses provided us with interplanetary plasma data. Here we report on results from some of the campaigns. We notice that, depending on the geometry of the quadrature, i.e. on whether the radial to Ulysses traverses the corona at high or low latitudes, we are able to study different kinds of solar wind. In particular, a comparison between low-latitude and high-latitude wind, allowed us to provide evidence for differences in the acceleration of polar, fast plasma and equatorial, slow plasma: the latter occurring at higher levels and through a more extended region than fast wind. These properties are shared by both the proton and heavy ions outflows. Quadrature observations may provide useful information also on coronal vs. in situ elemental composition. To this end, we analyzed spectra taken in the corona, at altitudes ranging between approx. 1.02 and 2.2 solar radii, and derived the abundances of a number of ions, including oxygen and iron. Values of the O/Fe ratio, at coronal levels, have been compared with measurements of this ratio made by SWICS at interplanetary distances. Our results are compared with previous findings and predictions from modeling efforts.
NASA Astrophysics Data System (ADS)
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
AXIOM: Advanced X-ray Imaging of the Magnetosphere
NASA Technical Reports Server (NTRS)
Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.;
2012-01-01
Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.
AXIOM: Advanced X-Ray Imaging of the Magnetosphere
NASA Technical Reports Server (NTRS)
Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.;
2011-01-01
Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.
NASA Technical Reports Server (NTRS)
Cliver, E. W.; Ling, A. G.; Richardson, I. G.
2003-01-01
Using a recent classification of the solar wind at 1 AU into its principal components (slow solar wind, high-speed streams, and coronal mass ejections (CMEs) for 1972-2000, we show that the monthly-averaged galactic cosmic ray intensity is anti-correlated with the percentage of time that the Earth is imbedded in CME flows. We suggest that this correlation results primarily from a CME related change in the tail of the distribution function of hourly-averaged values of the solar wind magnetic field (B) between solar minimum and solar maximum. The number of high-B (square proper subset 10 nT) values increases by a factor of approx. 3 from minimum to maximum (from 5% of all hours to 17%), with about two-thirds of this increase due to CMEs. On an hour-to-hour basis, average changes of cosmic ray intensity at Earth become negative for solar wind magnetic field values square proper subset 10 nT.
A comparison of solar wind and ionospheric ion acoustic waves
NASA Technical Reports Server (NTRS)
Kintner, P. M.; Kelley, M. C.
1980-01-01
Ion acoustic waves produced during the Trigger experiment are compared to ion acoustic waves observed in the solar wind. After normalizing to the Debye length the spectra are nearly identical, although the ionospheric wave relative energy density is 100 times larger than the solar wind case.
Global energy regulation in the solar wind-magnetosphere-ionosphere system
NASA Technical Reports Server (NTRS)
Sato, T.
1985-01-01
Some basic concepts which are essential in the understanding of global energy regulation in the solar wind-magnetosphere-ionosphere system are introduced. The importance of line-tying concept is particularly emphasized in connection with the solar wind energy, energy release in the magnetosphere and energy dissipation in the ionosphere.
Average thermal characteristics of solar wind electrons
NASA Technical Reports Server (NTRS)
Montgomery, M. D.
1972-01-01
Average solar wind electron properties based on a 1 year Vela 4 data sample-from May 1967 to May 1968 are presented. Frequency distributions of electron-to-ion temperature ratio, electron thermal anisotropy, and thermal energy flux are presented. The resulting evidence concerning heat transport in the solar wind is discussed.
A two-fluid model of the solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, O.; Leer, E.; Holzer, T. E.
1992-01-01
A method is presented for the integration of the two-fluid solar-wind equations which is applicable to a wide variety of coronal base densities and temperatures. The method involves proton heat conduction, and may be applied to coronal base conditions for which subsonic-supersonic solar wind solutions exist.
Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner
NASA Technical Reports Server (NTRS)
Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.
2009-01-01
The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.
NASA Technical Reports Server (NTRS)
Meyer, F. W.; Barghouty, A. F.
2012-01-01
Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest
Goldstein, M. L.; Wicks, R. T.; Perri, S.; Sahraoui, F.
2015-01-01
Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics. PMID:25848084
NASA Technical Reports Server (NTRS)
Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.
1987-01-01
The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.
Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki N.; Yamamoto, Tadateru I.; Tsunakawa, Hideo
It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its 1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to 50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of 10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At 50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At 10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ∆E/q (∆E : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
NASA Astrophysics Data System (ADS)
Coppeans, T.; Zou, S.; Weatherwax, A. T.; Coster, A. J.
2017-12-01
Ionospheric scintillation is the random fluctuation in GPS signal radio waves passing through the ionosphere, a phenomenon that can result in the loss of GPS tracking, but can also reveal information about plasma structures in the ionosphere. Sudden compression of the Earth's magnetosphere by a solar wind dynamic pressure enhancement can cause dramatic changes in the E and F region ionospheric plasma. In this study, we investigate the possible ionospheric scintillation induced by solar wind pressure enhancements using ground-based scintillation receivers located at the McMurdo station and the South Pole station in Antarctica. Various studies of scintillation effects have been carried out, mainly in the northern hemisphere, while the southern hemisphere remains less studied. A pool of storm sudden commencements occurring between Jan. 2011 and Dec. 2014 were sorted based on solar wind dynamic pressure enhancement, background conditions, availability of data, and magnitude of scintillation response. Among the 89 events examined, 14 of them exhibited enhanced scintillation and were selected for detailed examination. Besides the scintillation receivers, other datasets have also been used to carry out the above study, including field-aligned currents from AMPERE, and global GPS TEC. Effects of FACs and TEC/TEC gradients on the generation of these scintillations are studied.
Inherent length-scales of periodic solar wind number density structures
NASA Astrophysics Data System (ADS)
Viall, N. M.; Kepko, L.; Spence, H. E.
2008-07-01
We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.
Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun
NASA Astrophysics Data System (ADS)
1999-02-01
"The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds ranging from 30,000 km/h at the surface to over 3 million km/h, the solar wind "grows" much faster than grass". "Looking at the spot where the solar wind actually appears is extremely important", says co-author Dr. Philippe Lemaire of the Institut d'Astrophysique Spatiale in Orsay, France. The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on SOHO detected the solar wind by observing the ultraviolet spectrum over a large area of the solar north polar region. The SUMER instrument was built under the leadership of Dr. Klaus Wilhelm at the Max-Planck-Institut für Aeronomie in Lindau, Germany, with key contributions from the Institut d'Astrophysique Spatiale in Orsay, France, the NASA Goddard Space Flight Center in Greenbelt, Maryland, and the University of California at Berkeley, with financial support from German, French, US and Swiss national agencies. "Identification of the detailed structure of the source region of the fast solar wind is an important step in solving the solar wind acceleration problem. We can now focus our attention on the plasma conditions and the dynamic processes seen in the corners of the magnetic field structures", says Dr. Wilhelm, also co-author of the Science paper. A spectrum results from the separation of light into its component colours, which correspond to different wavelengths. Blue light has a shorter wavelength and is more energetic than red. A spectrum is similar to what is seen when a prism separates white light into a rainbow of distinct colours. By analysing light this way, astronomers learn a great deal about the object emitting the light, such as its temperature, chemical composition, and motion. The ultraviolet light observed by SUMER is actually invisible to the human eye and cannot penetrate the Earth's atmosphere. The hot gas in the solar wind source region emits light at certain ultraviolet wavelengths. When the hot gas flows towards Earth, as it does in the solar wind, the wavelengths of the ultraviolet light emitted become shorter, a phenomenon called Doppler shift. This is similar to the way an ambulance siren appears to change tone as it speeds by. When the ambulance moves towards us, its sound is compressed to a shorter wavelength, resulting in a higher tone. As it moves away, its sound is stretched to a longer wavelength, resulting in a lower tone. Motion towards us, away from the solar surface, was detected as blueshifts and identified as the beginning of the solar wind. SOHO operates at a special vantage point 1.5 million kilometres out in space, on the sunward side of the Earth. The project is an international collaboration between ESA and NASA. SOHO was launched on an Atlas rocket from Cape Canaveral Air Station, Florida, in December 1995 and is operated from the Goddard Space Flight Center in Greenbelt, Maryland.
Renewable Energy Zones for the Africa Clean Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Grace C.; Deshmukh, Ranjit; Ndhlukula, Kudakwashe
Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmental impacts. The Renewable Energy Zones for the Africa Clean Energy Corridor study sought to identify and comprehensively value high-quality wind, solar photovoltaic (PV), and concentrating solar power (CSP) resources in 21 countries in the East andmore » Southern Africa Power Pools to support the prioritization of areas for development through a multi-criteria planning process. These countries include Angola, Botswana, Burundi, Djibouti, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozambique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. The study includes the methodology and the key results including renewable energy potential for each region.« less
Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.
2011-06-01
Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.
2017-06-01
A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.
NASA Astrophysics Data System (ADS)
Pisa, D.; Soucek, J.; Santolik, O.
2016-12-01
Electrostatic plasma waves are commonly observed in the upstream regions of planetary shocks. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and form electron beams. The electron distribution becomes unstable and electrostatic waves are generated inside the foreshock region. The processes of generation and evolution of electrostatic waves significantly depend on the solar wind plasma conditions and generally exhibit complex behavior. Langmuir waves can be identified as intense narrowband emission at the local plasma frequency and weaker broadband beam-mode waves below and above the plasma frequency deeper in the downstream region. We present a long-term survey of Langmuir and beam-mode waves in the vicinity of the plasma frequency observed upstream of the terrestrial bow shock by the Cluster spacecraft. Using solar wind data and bow shock positions from OMNI, as well as in-situ measurements of interplanetary magnetic field, we have mapped all available spacecraft positions into foreshock coordinates. For a study of plasma waves, we have used spectra and local plasma frequencies obtained from a passive and active mode of the WHISPER instrument. We show a spatial distribution of wave frequencies and spectral widths as a function of foreshock positions and solar wind conditions.
Design of Hybrid Solar and Wind Energy Harvester for Fishing Boat
NASA Astrophysics Data System (ADS)
Banjarnahor, D. A.; Hanifan, M.; Budi, E. M.
2017-07-01
In southern beach of West Java, Indonesia, there are many villagers live as fishermen. They use small boats for fishing, in one to three days. Therefore, they need a fish preservation system. Fortunately, the area has high potential of solar and wind energy. This paper presents the design of a hybrid solar and wind energy harvester to power a refrigerator in the fishing boat. The refrigerator should keep the fish in 2 - 4 °C. The energy needed is 720 Wh daily. In the area, the daily average wind velocity is 4.27 m/s and the sun irradiation is 672 W/m2. The design combined two 100W solar panels and a 300W wind turbine. The testing showed that the solar panels can harvest 815 - 817 Wh of energy, while the wind turbine can harvest 43 - 62 Wh of energy daily. Therefore, the system can fulfil the energy requirement in fishing boat, although the solar panels were more dominant. To install the wind turbine on the fishing-boat, a computational design had been conducted. The boat hydrostatic dimension was measured to determine its stability condition. To reach a stable equilibrium condition, the wind turbine should be installed no more than 1.7 m of height.
SWICS/Ulysses and MASS/wind observations of solar wind sulfur charge states
NASA Technical Reports Server (NTRS)
Cohen, C. M. S.; Galvin, A. B.; Hamilton, D. C.; Gloeckler, G.; Geiss, J.; Bochsler, P.
1995-01-01
As Ulysses journeys from the southern to the northern solar pole, the newly launched Wind spacecraft is monitoring the solar wind near 1 AU, slightly upstream of the Earth. Different solar wind structures pass over both spacecraft as coronal holes and other features rotate in and out of view. Ulysses and Wind are presently on opposing sides of the sun allowing us to monitor these streams for extended periods of time. Composition measurements made by instruments on both spacecraft provide information concerning the evolution and properties of these structures. We have combined data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and the high mass resolution spectrometer (MASS) on Wind to determine the charge state distribution of sulfur in the solar wind. Both instruments employ electrostatic deflection with time-of-flight measurement. The high mass resolution of the MASS instrument (M/Delta-M approximately 100) allows sulfur to be isolated easily while the stepping energy/charge selection provides charge state information. SWICS measurements allow the unique identification of heavy ions by their mass and mass/charge with resolutions of M/Delta-M approximately 3 and M/q/Delta(M/q) approximately 20. The two instruments complement each other nicely in that MASS has the greater mass resolution while SWICS has the better mass/charge resolution and better statistics.
Low Energy Electrons in the Mars Plasma Environment
NASA Technical Reports Server (NTRS)
Link, Richard
2001-01-01
The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (< 4 keV) electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.