Shaikh, Masood Ali
2017-09-01
Assessment of research articles in terms of study designs used, statistical tests applied and the use of statistical analysis programmes help determine research activity profile and trends in the country. In this descriptive study, all original articles published by Journal of Pakistan Medical Association (JPMA) and Journal of the College of Physicians and Surgeons Pakistan (JCPSP), in the year 2015 were reviewed in terms of study designs used, application of statistical tests, and the use of statistical analysis programmes. JPMA and JCPSP published 192 and 128 original articles, respectively, in the year 2015. Results of this study indicate that cross-sectional study design, bivariate inferential statistical analysis entailing comparison between two variables/groups, and use of statistical software programme SPSS to be the most common study design, inferential statistical analysis, and statistical analysis software programmes, respectively. These results echo previously published assessment of these two journals for the year 2014.
Common pitfalls in statistical analysis: Clinical versus statistical significance
Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc
2015-01-01
In clinical research, study results, which are statistically significant are often interpreted as being clinically important. While statistical significance indicates the reliability of the study results, clinical significance reflects its impact on clinical practice. The third article in this series exploring pitfalls in statistical analysis clarifies the importance of differentiating between statistical significance and clinical significance. PMID:26229754
Statistical Power in Meta-Analysis
ERIC Educational Resources Information Center
Liu, Jin
2015-01-01
Statistical power is important in a meta-analysis study, although few studies have examined the performance of simulated power in meta-analysis. The purpose of this study is to inform researchers about statistical power estimation on two sample mean difference test under different situations: (1) the discrepancy between the analytical power and…
General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies
Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong
2013-01-01
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515
Crosta, Fernando; Nishiwaki-Dantas, Maria Cristina; Silvino, Wilmar; Dantas, Paulo Elias Correa
2005-01-01
To verify the frequency of study design, applied statistical analysis and approval by institutional review offices (Ethics Committee) of articles published in the "Arquivos Brasileiros de Oftalmologia" during a 10-year interval, with later comparative and critical analysis by some of the main international journals in the field of Ophthalmology. Systematic review without metanalysis was performed. Scientific papers published in the "Arquivos Brasileiros de Oftalmologia" between January 1993 and December 2002 were reviewed by two independent reviewers and classified according to the applied study design, statistical analysis and approval by the institutional review offices. To categorize those variables, a descriptive statistical analysis was used. After applying inclusion and exclusion criteria, 584 articles for evaluation of statistical analysis and, 725 articles for evaluation of study design were reviewed. Contingency table (23.10%) was the most frequently applied statistical method, followed by non-parametric tests (18.19%), Student's t test (12.65%), central tendency measures (10.60%) and analysis of variance (9.81%). Of 584 reviewed articles, 291 (49.82%) presented no statistical analysis. Observational case series (26.48%) was the most frequently used type of study design, followed by interventional case series (18.48%), observational case description (13.37%), non-random clinical study (8.96%) and experimental study (8.55%). We found a higher frequency of observational clinical studies, lack of statistical analysis in almost half of the published papers. Increase in studies with approval by institutional review Ethics Committee was noted since it became mandatory in 1996.
Li, Gaoming; Yi, Dali; Wu, Xiaojiao; Liu, Xiaoyu; Zhang, Yanqi; Liu, Ling; Yi, Dong
2015-01-01
Background Although a substantial number of studies focus on the teaching and application of medical statistics in China, few studies comprehensively evaluate the recognition of and demand for medical statistics. In addition, the results of these various studies differ and are insufficiently comprehensive and systematic. Objectives This investigation aimed to evaluate the general cognition of and demand for medical statistics by undergraduates, graduates, and medical staff in China. Methods We performed a comprehensive database search related to the cognition of and demand for medical statistics from January 2007 to July 2014 and conducted a meta-analysis of non-controlled studies with sub-group analysis for undergraduates, graduates, and medical staff. Results There are substantial differences with respect to the cognition of theory in medical statistics among undergraduates (73.5%), graduates (60.7%), and medical staff (39.6%). The demand for theory in medical statistics is high among graduates (94.6%), undergraduates (86.1%), and medical staff (88.3%). Regarding specific statistical methods, the cognition of basic statistical methods is higher than of advanced statistical methods. The demand for certain advanced statistical methods, including (but not limited to) multiple analysis of variance (ANOVA), multiple linear regression, and logistic regression, is higher than that for basic statistical methods. The use rates of the Statistical Package for the Social Sciences (SPSS) software and statistical analysis software (SAS) are only 55% and 15%, respectively. Conclusion The overall statistical competence of undergraduates, graduates, and medical staff is insufficient, and their ability to practically apply their statistical knowledge is limited, which constitutes an unsatisfactory state of affairs for medical statistics education. Because the demand for skills in this area is increasing, the need to reform medical statistics education in China has become urgent. PMID:26053876
Wu, Yazhou; Zhou, Liang; Li, Gaoming; Yi, Dali; Wu, Xiaojiao; Liu, Xiaoyu; Zhang, Yanqi; Liu, Ling; Yi, Dong
2015-01-01
Although a substantial number of studies focus on the teaching and application of medical statistics in China, few studies comprehensively evaluate the recognition of and demand for medical statistics. In addition, the results of these various studies differ and are insufficiently comprehensive and systematic. This investigation aimed to evaluate the general cognition of and demand for medical statistics by undergraduates, graduates, and medical staff in China. We performed a comprehensive database search related to the cognition of and demand for medical statistics from January 2007 to July 2014 and conducted a meta-analysis of non-controlled studies with sub-group analysis for undergraduates, graduates, and medical staff. There are substantial differences with respect to the cognition of theory in medical statistics among undergraduates (73.5%), graduates (60.7%), and medical staff (39.6%). The demand for theory in medical statistics is high among graduates (94.6%), undergraduates (86.1%), and medical staff (88.3%). Regarding specific statistical methods, the cognition of basic statistical methods is higher than of advanced statistical methods. The demand for certain advanced statistical methods, including (but not limited to) multiple analysis of variance (ANOVA), multiple linear regression, and logistic regression, is higher than that for basic statistical methods. The use rates of the Statistical Package for the Social Sciences (SPSS) software and statistical analysis software (SAS) are only 55% and 15%, respectively. The overall statistical competence of undergraduates, graduates, and medical staff is insufficient, and their ability to practically apply their statistical knowledge is limited, which constitutes an unsatisfactory state of affairs for medical statistics education. Because the demand for skills in this area is increasing, the need to reform medical statistics education in China has become urgent.
NASA Astrophysics Data System (ADS)
Hendikawati, P.; Arifudin, R.; Zahid, M. Z.
2018-03-01
This study aims to design an android Statistics Data Analysis application that can be accessed through mobile devices to making it easier for users to access. The Statistics Data Analysis application includes various topics of basic statistical along with a parametric statistics data analysis application. The output of this application system is parametric statistics data analysis that can be used for students, lecturers, and users who need the results of statistical calculations quickly and easily understood. Android application development is created using Java programming language. The server programming language uses PHP with the Code Igniter framework, and the database used MySQL. The system development methodology used is the Waterfall methodology with the stages of analysis, design, coding, testing, and implementation and system maintenance. This statistical data analysis application is expected to support statistical lecturing activities and make students easier to understand the statistical analysis of mobile devices.
A note on generalized Genome Scan Meta-Analysis statistics
Koziol, James A; Feng, Anne C
2005-01-01
Background Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies. Results We provide an Edgeworth approximation to the null distribution of the weighted GSMA statistic, and, we examine the limiting distribution of the GSMA statistics under the order statistic formulation, and quantify the relevance of the pairwise correlations of the GSMA statistics across different bins on this limiting distribution. We also remark on aggregate criteria and multiple testing for determining significance of GSMA results. Conclusion Theoretical considerations detailed herein can lead to clarification and simplification of testing criteria for generalizations of the GSMA statistic. PMID:15717930
Statistical power analysis of cardiovascular safety pharmacology studies in conscious rats.
Bhatt, Siddhartha; Li, Dingzhou; Flynn, Declan; Wisialowski, Todd; Hemkens, Michelle; Steidl-Nichols, Jill
2016-01-01
Cardiovascular (CV) toxicity and related attrition are a major challenge for novel therapeutic entities and identifying CV liability early is critical for effective derisking. CV safety pharmacology studies in rats are a valuable tool for early investigation of CV risk. Thorough understanding of data analysis techniques and statistical power of these studies is currently lacking and is imperative for enabling sound decision-making. Data from 24 crossover and 12 parallel design CV telemetry rat studies were used for statistical power calculations. Average values of telemetry parameters (heart rate, blood pressure, body temperature, and activity) were logged every 60s (from 1h predose to 24h post-dose) and reduced to 15min mean values. These data were subsequently binned into super intervals for statistical analysis. A repeated measure analysis of variance was used for statistical analysis of crossover studies and a repeated measure analysis of covariance was used for parallel studies. Statistical power analysis was performed to generate power curves and establish relationships between detectable CV (blood pressure and heart rate) changes and statistical power. Additionally, data from a crossover CV study with phentolamine at 4, 20 and 100mg/kg are reported as a representative example of data analysis methods. Phentolamine produced a CV profile characteristic of alpha adrenergic receptor antagonism, evidenced by a dose-dependent decrease in blood pressure and reflex tachycardia. Detectable blood pressure changes at 80% statistical power for crossover studies (n=8) were 4-5mmHg. For parallel studies (n=8), detectable changes at 80% power were 6-7mmHg. Detectable heart rate changes for both study designs were 20-22bpm. Based on our results, the conscious rat CV model is a sensitive tool to detect and mitigate CV risk in early safety studies. Furthermore, these results will enable informed selection of appropriate models and study design for early stage CV studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems
1990-11-01
147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a
Tuuli, Methodius G; Odibo, Anthony O
2011-08-01
The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.
Harari, Gil
2014-01-01
Statistic significance, also known as p-value, and CI (Confidence Interval) are common statistics measures and are essential for the statistical analysis of studies in medicine and life sciences. These measures provide complementary information about the statistical probability and conclusions regarding the clinical significance of study findings. This article is intended to describe the methodologies, compare between the methods, assert their suitability for the different needs of study results analysis and to explain situations in which each method should be used.
Austin, Peter C; Schuster, Tibor; Platt, Robert W
2015-10-15
Estimating statistical power is an important component of the design of both randomized controlled trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described and can be implemented simply. In observational studies, statistical methods must be used to remove the effects of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting (IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational data. However, sample size and power calculations have not been adequately described for these methods. We used an extensive series of Monte Carlo simulations to compare the statistical power of an IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence of treatment, the marginal hazard ratio, and the strength of the treatment-selection process. We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection model increased. The statistical power of an IPTW analysis tended to be lower than the statistical power of a similarly-structured RCT.
Willis, Brian H; Riley, Richard D
2017-09-20
An important question for clinicians appraising a meta-analysis is: are the findings likely to be valid in their own practice-does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity-where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple ('leave-one-out') cross-validation technique, we demonstrate how we may test meta-analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta-analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta-analysis and a tailored meta-regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within-study variance, between-study variance, study sample size, and the number of studies in the meta-analysis. Finally, we apply Vn to two published meta-analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta-analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Parsons, Nick R; Price, Charlotte L; Hiskens, Richard; Achten, Juul; Costa, Matthew L
2012-04-25
The application of statistics in reported research in trauma and orthopaedic surgery has become ever more important and complex. Despite the extensive use of statistical analysis, it is still a subject which is often not conceptually well understood, resulting in clear methodological flaws and inadequate reporting in many papers. A detailed statistical survey sampled 100 representative orthopaedic papers using a validated questionnaire that assessed the quality of the trial design and statistical analysis methods. The survey found evidence of failings in study design, statistical methodology and presentation of the results. Overall, in 17% (95% confidence interval; 10-26%) of the studies investigated the conclusions were not clearly justified by the results, in 39% (30-49%) of studies a different analysis should have been undertaken and in 17% (10-26%) a different analysis could have made a difference to the overall conclusions. It is only by an improved dialogue between statistician, clinician, reviewer and journal editor that the failings in design methodology and analysis highlighted by this survey can be addressed.
Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume
2014-06-28
Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical observational studies published in medical versus surgical journals. Secondary outcomes will pertain to individual domains of analysis. Sensitivity analyses will be conducted. This study will explore the reporting and quality of statistical analyses in surgical observational studies published in the most referenced surgical and medical journals in 2013 and examine whether variables (including the type of journal) can predict high-quality reporting.
Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS).
Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M; Khan, Ajmal
2016-01-01
This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher's exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher's exact test, logistic regression, epidemiological statistics, and non-parametric tests. This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design.
ERIC Educational Resources Information Center
Karadag, Engin
2010-01-01
To assess research methods and analysis of statistical techniques employed by educational researchers, this study surveyed unpublished doctoral dissertation from 2003 to 2007. Frequently used research methods consisted of experimental research; a survey; a correlational study; and a case study. Descriptive statistics, t-test, ANOVA, factor…
Quantifying the impact of between-study heterogeneity in multivariate meta-analyses
Jackson, Dan; White, Ian R; Riley, Richard D
2012-01-01
Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950
Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arul Kumar, M.; Wroński, M.; McCabe, Rodney James
In this study, a detailed statistical analysis is performed using Electron Back Scatter Diffraction (EBSD) to establish the effect of microstructure on twin nucleation and growth in deformed commercial purity hexagonal close packed (HCP) titanium. Rolled titanium samples are compressed along rolling, transverse and normal directions to establish statistical correlations for {10–12}, {11–21}, and {11–22} twins. A recently developed automated EBSD-twinning analysis software is employed for the statistical analysis. Finally, the analysis provides the following key findings: (I) grain size and strain dependence is different for twin nucleation and growth; (II) twinning statistics can be generalized for the HCP metalsmore » magnesium, zirconium and titanium; and (III) complex microstructure, where grain shape and size distribution is heterogeneous, requires multi-point statistical correlations.« less
Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study
Arul Kumar, M.; Wroński, M.; McCabe, Rodney James; ...
2018-02-01
In this study, a detailed statistical analysis is performed using Electron Back Scatter Diffraction (EBSD) to establish the effect of microstructure on twin nucleation and growth in deformed commercial purity hexagonal close packed (HCP) titanium. Rolled titanium samples are compressed along rolling, transverse and normal directions to establish statistical correlations for {10–12}, {11–21}, and {11–22} twins. A recently developed automated EBSD-twinning analysis software is employed for the statistical analysis. Finally, the analysis provides the following key findings: (I) grain size and strain dependence is different for twin nucleation and growth; (II) twinning statistics can be generalized for the HCP metalsmore » magnesium, zirconium and titanium; and (III) complex microstructure, where grain shape and size distribution is heterogeneous, requires multi-point statistical correlations.« less
How Many Studies Do You Need? A Primer on Statistical Power for Meta-Analysis
ERIC Educational Resources Information Center
Valentine, Jeffrey C.; Pigott, Therese D.; Rothstein, Hannah R.
2010-01-01
In this article, the authors outline methods for using fixed and random effects power analysis in the context of meta-analysis. Like statistical power analysis for primary studies, power analysis for meta-analysis can be done either prospectively or retrospectively and requires assumptions about parameters that are unknown. The authors provide…
The Empirical Review of Meta-Analysis Published in Korea
ERIC Educational Resources Information Center
Park, Sunyoung; Hong, Sehee
2016-01-01
Meta-analysis is a statistical method that is increasingly utilized to combine and compare the results of previous primary studies. However, because of the lack of comprehensive guidelines for how to use meta-analysis, many meta-analysis studies have failed to consider important aspects, such as statistical programs, power analysis, publication…
Statistical analysis of the national crash severity study data
DOT National Transportation Integrated Search
1980-08-01
This is the Final Report on a two-year statistical analysis of the data collected in the National Crash Severity Study (NCSS). The analysis presented is primarily concerned with the relationship between occupant injury severity and the crash conditio...
Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS)
Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M.; Khan, Ajmal
2016-01-01
Objective: This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Methods: Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. Results: A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher’s exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher’s exact test, logistic regression, epidemiological statistics, and non-parametric tests. Conclusion: This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design. PMID:27022365
Riley, Richard D.
2017-01-01
An important question for clinicians appraising a meta‐analysis is: are the findings likely to be valid in their own practice—does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity—where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple (‘leave‐one‐out’) cross‐validation technique, we demonstrate how we may test meta‐analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta‐analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta‐analysis and a tailored meta‐regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within‐study variance, between‐study variance, study sample size, and the number of studies in the meta‐analysis. Finally, we apply Vn to two published meta‐analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta‐analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28620945
The Importance of Statistical Modeling in Data Analysis and Inference
ERIC Educational Resources Information Center
Rollins, Derrick, Sr.
2017-01-01
Statistical inference simply means to draw a conclusion based on information that comes from data. Error bars are the most commonly used tool for data analysis and inference in chemical engineering data studies. This work demonstrates, using common types of data collection studies, the importance of specifying the statistical model for sound…
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.
ERIC Educational Resources Information Center
Glass, Gene V.; And Others
Integrative analysis, or what is coming to be known as meta-analysis, is the integration of the findings of many empirical research studies of a topic. Meta-analysis differs from traditional narrative forms of research reviewing in that it is more quantitative and statistical. Thus, the methods of meta-analysis are merely statistical methods,…
An Analysis of the Navy’s Voluntary Education Program
2007-03-01
NAVAL ANALYSIS VOLED STUDY .........11 1. Data .........................................11 2. Statistical Models ...........................12 3...B. EMPLOYER FINANCED GENERAL TRAINING ................31 1. Data .........................................32 2. Statistical Model...37 1. Data .........................................38 2. Statistical Model ............................38 3. Findings
A new u-statistic with superior design sensitivity in matched observational studies.
Rosenbaum, Paul R
2011-09-01
In an observational or nonrandomized study of treatment effects, a sensitivity analysis indicates the magnitude of bias from unmeasured covariates that would need to be present to alter the conclusions of a naïve analysis that presumes adjustments for observed covariates suffice to remove all bias. The power of sensitivity analysis is the probability that it will reject a false hypothesis about treatment effects allowing for a departure from random assignment of a specified magnitude; in particular, if this specified magnitude is "no departure" then this is the same as the power of a randomization test in a randomized experiment. A new family of u-statistics is proposed that includes Wilcoxon's signed rank statistic but also includes other statistics with substantially higher power when a sensitivity analysis is performed in an observational study. Wilcoxon's statistic has high power to detect small effects in large randomized experiments-that is, it often has good Pitman efficiency-but small effects are invariably sensitive to small unobserved biases. Members of this family of u-statistics that emphasize medium to large effects can have substantially higher power in a sensitivity analysis. For example, in one situation with 250 pair differences that are Normal with expectation 1/2 and variance 1, the power of a sensitivity analysis that uses Wilcoxon's statistic is 0.08 while the power of another member of the family of u-statistics is 0.66. The topic is examined by performing a sensitivity analysis in three observational studies, using an asymptotic measure called the design sensitivity, and by simulating power in finite samples. The three examples are drawn from epidemiology, clinical medicine, and genetic toxicology. © 2010, The International Biometric Society.
Comparing Visual and Statistical Analysis of Multiple Baseline Design Graphs.
Wolfe, Katie; Dickenson, Tammiee S; Miller, Bridget; McGrath, Kathleen V
2018-04-01
A growing number of statistical analyses are being developed for single-case research. One important factor in evaluating these methods is the extent to which each corresponds to visual analysis. Few studies have compared statistical and visual analysis, and information about more recently developed statistics is scarce. Therefore, our purpose was to evaluate the agreement between visual analysis and four statistical analyses: improvement rate difference (IRD); Tau-U; Hedges, Pustejovsky, Shadish (HPS) effect size; and between-case standardized mean difference (BC-SMD). Results indicate that IRD and BC-SMD had the strongest overall agreement with visual analysis. Although Tau-U had strong agreement with visual analysis on raw values, it had poorer agreement when those values were dichotomized to represent the presence or absence of a functional relation. Overall, visual analysis appeared to be more conservative than statistical analysis, but further research is needed to evaluate the nature of these disagreements.
Statistical Considerations of Food Allergy Prevention Studies.
Bahnson, Henry T; du Toit, George; Lack, Gideon
Clinical studies to prevent the development of food allergy have recently helped reshape public policy recommendations on the early introduction of allergenic foods. These trials are also prompting new research, and it is therefore important to address the unique design and analysis challenges of prevention trials. We highlight statistical concepts and give recommendations that clinical researchers may wish to adopt when designing future study protocols and analysis plans for prevention studies. Topics include selecting a study sample, addressing internal and external validity, improving statistical power, choosing alpha and beta, analysis innovations to address dilution effects, and analysis methods to deal with poor compliance, dropout, and missing data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Smith, Paul F.
2017-01-01
Effective inferential statistical analysis is essential for high quality studies in neuroscience. However, recently, neuroscience has been criticised for the poor use of experimental design and statistical analysis. Many of the statistical issues confronting neuroscience are similar to other areas of biology; however, there are some that occur more regularly in neuroscience studies. This review attempts to provide a succinct overview of some of the major issues that arise commonly in the analyses of neuroscience data. These include: the non-normal distribution of the data; inequality of variance between groups; extensive correlation in data for repeated measurements across time or space; excessive multiple testing; inadequate statistical power due to small sample sizes; pseudo-replication; and an over-emphasis on binary conclusions about statistical significance as opposed to effect sizes. Statistical analysis should be viewed as just another neuroscience tool, which is critical to the final outcome of the study. Therefore, it needs to be done well and it is a good idea to be proactive and seek help early, preferably before the study even begins. PMID:29371855
Smith, Paul F
2017-01-01
Effective inferential statistical analysis is essential for high quality studies in neuroscience. However, recently, neuroscience has been criticised for the poor use of experimental design and statistical analysis. Many of the statistical issues confronting neuroscience are similar to other areas of biology; however, there are some that occur more regularly in neuroscience studies. This review attempts to provide a succinct overview of some of the major issues that arise commonly in the analyses of neuroscience data. These include: the non-normal distribution of the data; inequality of variance between groups; extensive correlation in data for repeated measurements across time or space; excessive multiple testing; inadequate statistical power due to small sample sizes; pseudo-replication; and an over-emphasis on binary conclusions about statistical significance as opposed to effect sizes. Statistical analysis should be viewed as just another neuroscience tool, which is critical to the final outcome of the study. Therefore, it needs to be done well and it is a good idea to be proactive and seek help early, preferably before the study even begins.
Zhang, Harrison G; Ying, Gui-Shuang
2018-02-09
The aim of this study is to evaluate the current practice of statistical analysis of eye data in clinical science papers published in British Journal of Ophthalmology ( BJO ) and to determine whether the practice of statistical analysis has improved in the past two decades. All clinical science papers (n=125) published in BJO in January-June 2017 were reviewed for their statistical analysis approaches for analysing primary ocular measure. We compared our findings to the results from a previous paper that reviewed BJO papers in 1995. Of 112 papers eligible for analysis, half of the studies analysed the data at an individual level because of the nature of observation, 16 (14%) studies analysed data from one eye only, 36 (32%) studies analysed data from both eyes at ocular level, one study (1%) analysed the overall summary of ocular finding per individual and three (3%) studies used the paired comparison. Among studies with data available from both eyes, 50 (89%) of 56 papers in 2017 did not analyse data from both eyes or ignored the intereye correlation, as compared with in 60 (90%) of 67 papers in 1995 (P=0.96). Among studies that analysed data from both eyes at an ocular level, 33 (92%) of 36 studies completely ignored the intereye correlation in 2017, as compared with in 16 (89%) of 18 studies in 1995 (P=0.40). A majority of studies did not analyse the data properly when data from both eyes were available. The practice of statistical analysis did not improve in the past two decades. Collaborative efforts should be made in the vision research community to improve the practice of statistical analysis for ocular data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Development of Composite Materials with High Passive Damping Properties
2006-05-15
frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies
Primary, Secondary, and Meta-Analysis of Research
ERIC Educational Resources Information Center
Glass, Gene V.
1976-01-01
Examines data analysis at three levels: analysis of data; secondary analysis is the re-analysis of data for the purpose of answering the original research question with better statistical techniques, or answering new questions with old data; and, meta-analysis refers to the statistical analysis of many analysis results from individual studies for…
[Statistical analysis using freely-available "EZR (Easy R)" software].
Kanda, Yoshinobu
2015-10-01
Clinicians must often perform statistical analyses for purposes such evaluating preexisting evidence and designing or executing clinical studies. R is a free software environment for statistical computing. R supports many statistical analysis functions, but does not incorporate a statistical graphical user interface (GUI). The R commander provides an easy-to-use basic-statistics GUI for R. However, the statistical function of the R commander is limited, especially in the field of biostatistics. Therefore, the author added several important statistical functions to the R commander and named it "EZR (Easy R)", which is now being distributed on the following website: http://www.jichi.ac.jp/saitama-sct/. EZR allows the application of statistical functions that are frequently used in clinical studies, such as survival analyses, including competing risk analyses and the use of time-dependent covariates and so on, by point-and-click access. In addition, by saving the script automatically created by EZR, users can learn R script writing, maintain the traceability of the analysis, and assure that the statistical process is overseen by a supervisor.
Shadish, William R; Hedges, Larry V; Pustejovsky, James E
2014-04-01
This article presents a d-statistic for single-case designs that is in the same metric as the d-statistic used in between-subjects designs such as randomized experiments and offers some reasons why such a statistic would be useful in SCD research. The d has a formal statistical development, is accompanied by appropriate power analyses, and can be estimated using user-friendly SPSS macros. We discuss both advantages and disadvantages of d compared to other approaches such as previous d-statistics, overlap statistics, and multilevel modeling. It requires at least three cases for computation and assumes normally distributed outcomes and stationarity, assumptions that are discussed in some detail. We also show how to test these assumptions. The core of the article then demonstrates in depth how to compute d for one study, including estimation of the autocorrelation and the ratio of between case variance to total variance (between case plus within case variance), how to compute power using a macro, and how to use the d to conduct a meta-analysis of studies using single-case designs in the free program R, including syntax in an appendix. This syntax includes how to read data, compute fixed and random effect average effect sizes, prepare a forest plot and a cumulative meta-analysis, estimate various influence statistics to identify studies contributing to heterogeneity and effect size, and do various kinds of publication bias analyses. This d may prove useful for both the analysis and meta-analysis of data from SCDs. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Lee, Juneyoung; Kim, Kyung Won; Choi, Sang Hyun; Huh, Jimi
2015-01-01
Meta-analysis of diagnostic test accuracy studies differs from the usual meta-analysis of therapeutic/interventional studies in that, it is required to simultaneously analyze a pair of two outcome measures such as sensitivity and specificity, instead of a single outcome. Since sensitivity and specificity are generally inversely correlated and could be affected by a threshold effect, more sophisticated statistical methods are required for the meta-analysis of diagnostic test accuracy. Hierarchical models including the bivariate model and the hierarchical summary receiver operating characteristic model are increasingly being accepted as standard methods for meta-analysis of diagnostic test accuracy studies. We provide a conceptual review of statistical methods currently used and recommended for meta-analysis of diagnostic test accuracy studies. This article could serve as a methodological reference for those who perform systematic review and meta-analysis of diagnostic test accuracy studies. PMID:26576107
Developing Sampling Frame for Case Study: Challenges and Conditions
ERIC Educational Resources Information Center
Ishak, Noriah Mohd; Abu Bakar, Abu Yazid
2014-01-01
Due to statistical analysis, the issue of random sampling is pertinent to any quantitative study. Unlike quantitative study, the elimination of inferential statistical analysis, allows qualitative researchers to be more creative in dealing with sampling issue. Since results from qualitative study cannot be generalized to the bigger population,…
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 3
1988-10-01
N. F. Rieger Statistical Energy Analysis : An Overview of Its Development and Engineering Applications J. E. Manning DATA BASES DOE/DOD Environmental...Vibroacoustic Response Using the Finite Element Method and Statistical Energy Analysis F. L. Gloyna Study of Helium Effect on Spacecraft Random Vibration...Analysis S. A. Wilkerson vi DYNAMIC ANALYSIS Modeling of Vibration Transmission in a Damped Beam Structure Using Statistical Energy Analysis S. S
ERIC Educational Resources Information Center
Green, Jeffrey J.; Stone, Courtenay C.; Zegeye, Abera; Charles, Thomas A.
2009-01-01
Because statistical analysis requires the ability to use mathematics, students typically are required to take one or more prerequisite math courses prior to enrolling in the business statistics course. Despite these math prerequisites, however, many students find it difficult to learn business statistics. In this study, we use an ordered probit…
Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc
2015-01-01
In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ‘P’ value, explain the importance of ‘confidence intervals’ and clarify the importance of including both values in a paper PMID:25878958
Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.
Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias
2016-01-01
To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.
Langan, Dean; Higgins, Julian P T; Gregory, Walter; Sutton, Alexander J
2012-05-01
We aim to illustrate the potential impact of a new study on a meta-analysis, which gives an indication of the robustness of the meta-analysis. A number of augmentations are proposed to one of the most widely used of graphical displays, the funnel plot. Namely, 1) statistical significance contours, which define regions of the funnel plot in which a new study would have to be located to change the statistical significance of the meta-analysis; and 2) heterogeneity contours, which show how a new study would affect the extent of heterogeneity in a given meta-analysis. Several other features are also described, and the use of multiple features simultaneously is considered. The statistical significance contours suggest that one additional study, no matter how large, may have a very limited impact on the statistical significance of a meta-analysis. The heterogeneity contours illustrate that one outlying study can increase the level of heterogeneity dramatically. The additional features of the funnel plot have applications including 1) informing sample size calculations for the design of future studies eligible for inclusion in the meta-analysis; and 2) informing the updating prioritization of a portfolio of meta-analyses such as those prepared by the Cochrane Collaboration. Copyright © 2012 Elsevier Inc. All rights reserved.
Meta-analysis of gene-level associations for rare variants based on single-variant statistics.
Hu, Yi-Juan; Berndt, Sonja I; Gustafsson, Stefan; Ganna, Andrea; Hirschhorn, Joel; North, Kari E; Ingelsson, Erik; Lin, Dan-Yu
2013-08-08
Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Measuring the Success of an Academic Development Programme: A Statistical Analysis
ERIC Educational Resources Information Center
Smith, L. C.
2009-01-01
This study uses statistical analysis to estimate the impact of first-year academic development courses in microeconomics, statistics, accountancy, and information systems, offered by the University of Cape Town's Commerce Academic Development Programme, on students' graduation performance relative to that achieved by mainstream students. The data…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
...] Guidance for Industry on Documenting Statistical Analysis Programs and Data Files; Availability AGENCY... Programs and Data Files.'' This guidance is provided to inform study statisticians of recommendations for documenting statistical analyses and data files submitted to the Center for Veterinary Medicine (CVM) for the...
2014-01-01
In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878
Kratochwill, Thomas R; Levin, Joel R
2014-04-01
In this commentary, we add to the spirit of the articles appearing in the special series devoted to meta- and statistical analysis of single-case intervention-design data. Following a brief discussion of historical factors leading to our initial involvement in statistical analysis of such data, we discuss: (a) the value added by including statistical-analysis recommendations in the What Works Clearinghouse Standards for single-case intervention designs; (b) the importance of visual analysis in single-case intervention research, along with the distinctive role that could be played by single-case effect-size measures; and (c) the elevated internal validity and statistical-conclusion validity afforded by the incorporation of various forms of randomization into basic single-case design structures. For the future, we envision more widespread application of quantitative analyses, as critical adjuncts to visual analysis, in both primary single-case intervention research studies and literature reviews in the behavioral, educational, and health sciences. Copyright © 2014 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2011-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.
Olavarría, Verónica V; Arima, Hisatomi; Anderson, Craig S; Brunser, Alejandro; Muñoz-Venturelli, Paula; Billot, Laurent; Lavados, Pablo M
2017-02-01
Background The HEADPOST Pilot is a proof-of-concept, open, prospective, multicenter, international, cluster randomized, phase IIb controlled trial, with masked outcome assessment. The trial will test if lying flat head position initiated in patients within 12 h of onset of acute ischemic stroke involving the anterior circulation increases cerebral blood flow in the middle cerebral arteries, as measured by transcranial Doppler. The study will also assess the safety and feasibility of patients lying flat for ≥24 h. The trial was conducted in centers in three countries, with ability to perform early transcranial Doppler. A feature of this trial was that patients were randomized to a certain position according to the month of admission to hospital. Objective To outline in detail the predetermined statistical analysis plan for HEADPOST Pilot study. Methods All data collected by participating researchers will be reviewed and formally assessed. Information pertaining to the baseline characteristics of patients, their process of care, and the delivery of treatments will be classified, and for each item, appropriate descriptive statistical analyses are planned with comparisons made between randomized groups. For the outcomes, statistical comparisons to be made between groups are planned and described. Results This statistical analysis plan was developed for the analysis of the results of the HEADPOST Pilot study to be transparent, available, verifiable, and predetermined before data lock. Conclusions We have developed a statistical analysis plan for the HEADPOST Pilot study which is to be followed to avoid analysis bias arising from prior knowledge of the study findings. Trial registration The study is registered under HEADPOST-Pilot, ClinicalTrials.gov Identifier NCT01706094.
Zhu, Xiaofeng; Feng, Tao; Tayo, Bamidele O; Liang, Jingjing; Young, J Hunter; Franceschini, Nora; Smith, Jennifer A; Yanek, Lisa R; Sun, Yan V; Edwards, Todd L; Chen, Wei; Nalls, Mike; Fox, Ervin; Sale, Michele; Bottinger, Erwin; Rotimi, Charles; Liu, Yongmei; McKnight, Barbara; Liu, Kiang; Arnett, Donna K; Chakravati, Aravinda; Cooper, Richard S; Redline, Susan
2015-01-08
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Statistical Learning in Specific Language Impairment: A Meta-Analysis
ERIC Educational Resources Information Center
Lammertink, Imme; Boersma, Paul; Wijnen, Frank; Rispens, Judith
2017-01-01
Purpose: The current meta-analysis provides a quantitative overview of published and unpublished studies on statistical learning in the auditory verbal domain in people with and without specific language impairment (SLI). The database used for the meta-analysis is accessible online and open to updates (Community-Augmented Meta-Analysis), which…
The Heuristics of Statistical Argumentation: Scaffolding at the Postsecondary Level
ERIC Educational Resources Information Center
Pardue, Teneal Messer
2017-01-01
Language plays a key role in statistics and, by extension, in statistics education. Enculturating students into the practice of statistics requires preparing them to communicate results of data analysis. Statistical argumentation is one way of providing structure to facilitate discourse in the statistics classroom. In this study, a teaching…
Davis, J.C.
2000-01-01
Geologists may feel that geological data are not amenable to statistical analysis, or at best require specialized approaches such as nonparametric statistics and geostatistics. However, there are many circumstances, particularly in systematic studies conducted for environmental or regulatory purposes, where traditional parametric statistical procedures can be beneficial. An example is the application of analysis of variance to data collected in an annual program of measuring groundwater levels in Kansas. Influences such as well conditions, operator effects, and use of the water can be assessed and wells that yield less reliable measurements can be identified. Such statistical studies have resulted in yearly improvements in the quality and reliability of the collected hydrologic data. Similar benefits may be achieved in other geological studies by the appropriate use of classical statistical tools.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-07-01
A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-01-01
Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689
Internet Data Analysis for the Undergraduate Statistics Curriculum
ERIC Educational Resources Information Center
Sanchez, Juana; He, Yan
2005-01-01
Statistics textbooks for undergraduates have not caught up with the enormous amount of analysis of Internet data that is taking place these days. Case studies that use Web server log data or Internet network traffic data are rare in undergraduate Statistics education. And yet these data provide numerous examples of skewed and bimodal…
Diagnosis checking of statistical analysis in RCTs indexed in PubMed.
Lee, Paul H; Tse, Andy C Y
2017-11-01
Statistical analysis is essential for reporting of the results of randomized controlled trials (RCTs), as well as evaluating their effectiveness. However, the validity of a statistical analysis also depends on whether the assumptions of that analysis are valid. To review all RCTs published in journals indexed in PubMed during December 2014 to provide a complete picture of how RCTs handle assumptions of statistical analysis. We reviewed all RCTs published in December 2014 that appeared in journals indexed in PubMed using the Cochrane highly sensitive search strategy. The 2014 impact factors of the journals were used as proxies for their quality. The type of statistical analysis used and whether the assumptions of the analysis were tested were reviewed. In total, 451 papers were included. Of the 278 papers that reported a crude analysis for the primary outcomes, 31 (27·2%) reported whether the outcome was normally distributed. Of the 172 papers that reported an adjusted analysis for the primary outcomes, diagnosis checking was rarely conducted, with only 20%, 8·6% and 7% checked for generalized linear model, Cox proportional hazard model and multilevel model, respectively. Study characteristics (study type, drug trial, funding sources, journal type and endorsement of CONSORT guidelines) were not associated with the reporting of diagnosis checking. The diagnosis of statistical analyses in RCTs published in PubMed-indexed journals was usually absent. Journals should provide guidelines about the reporting of a diagnosis of assumptions. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.
ERIC Educational Resources Information Center
Brossart, Daniel F.; Parker, Richard I.; Olson, Elizabeth A.; Mahadevan, Lakshmi
2006-01-01
This study explored some practical issues for single-case researchers who rely on visual analysis of graphed data, but who also may consider supplemental use of promising statistical analysis techniques. The study sought to answer three major questions: (a) What is a typical range of effect sizes from these analytic techniques for data from…
The Math Problem: Advertising Students' Attitudes toward Statistics
ERIC Educational Resources Information Center
Fullerton, Jami A.; Kendrick, Alice
2013-01-01
This study used the Students' Attitudes toward Statistics Scale (STATS) to measure attitude toward statistics among a national sample of advertising students. A factor analysis revealed four underlying factors make up the attitude toward statistics construct--"Interest & Future Applicability," "Confidence," "Statistical Tools," and "Initiative."…
Ceppi, Marcello; Gallo, Fabio; Bonassi, Stefano
2011-01-01
The most common study design performed in population studies based on the micronucleus (MN) assay, is the cross-sectional study, which is largely performed to evaluate the DNA damaging effects of exposure to genotoxic agents in the workplace, in the environment, as well as from diet or lifestyle factors. Sample size is still a critical issue in the design of MN studies since most recent studies considering gene-environment interaction, often require a sample size of several hundred subjects, which is in many cases difficult to achieve. The control of confounding is another major threat to the validity of causal inference. The most popular confounders considered in population studies using MN are age, gender and smoking habit. Extensive attention is given to the assessment of effect modification, given the increasing inclusion of biomarkers of genetic susceptibility in the study design. Selected issues concerning the statistical treatment of data have been addressed in this mini-review, starting from data description, which is a critical step of statistical analysis, since it allows to detect possible errors in the dataset to be analysed and to check the validity of assumptions required for more complex analyses. Basic issues dealing with statistical analysis of biomarkers are extensively evaluated, including methods to explore the dose-response relationship among two continuous variables and inferential analysis. A critical approach to the use of parametric and non-parametric methods is presented, before addressing the issue of most suitable multivariate models to fit MN data. In the last decade, the quality of statistical analysis of MN data has certainly evolved, although even nowadays only a small number of studies apply the Poisson model, which is the most suitable method for the analysis of MN data.
Primer of statistics in dental research: part I.
Shintani, Ayumi
2014-01-01
Statistics play essential roles in evidence-based dentistry (EBD) practice and research. It ranges widely from formulating scientific questions, designing studies, collecting and analyzing data to interpreting, reporting, and presenting study findings. Mastering statistical concepts appears to be an unreachable goal among many dental researchers in part due to statistical authorities' limitations of explaining statistical principles to health researchers without elaborating complex mathematical concepts. This series of 2 articles aim to introduce dental researchers to 9 essential topics in statistics to conduct EBD with intuitive examples. The part I of the series includes the first 5 topics (1) statistical graph, (2) how to deal with outliers, (3) p-value and confidence interval, (4) testing equivalence, and (5) multiplicity adjustment. Part II will follow to cover the remaining topics including (6) selecting the proper statistical tests, (7) repeated measures analysis, (8) epidemiological consideration for causal association, and (9) analysis of agreement. Copyright © 2014. Published by Elsevier Ltd.
Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.
Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao
2015-08-01
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.
Applications of statistics to medical science (1) Fundamental concepts.
Watanabe, Hiroshi
2011-01-01
The conceptual framework of statistical tests and statistical inferences are discussed, and the epidemiological background of statistics is briefly reviewed. This study is one of a series in which we survey the basics of statistics and practical methods used in medical statistics. Arguments related to actual statistical analysis procedures will be made in subsequent papers.
HYPOTHESIS SETTING AND ORDER STATISTIC FOR ROBUST GENOMIC META-ANALYSIS.
Song, Chi; Tseng, George C
2014-01-01
Meta-analysis techniques have been widely developed and applied in genomic applications, especially for combining multiple transcriptomic studies. In this paper, we propose an order statistic of p-values ( r th ordered p-value, rOP) across combined studies as the test statistic. We illustrate different hypothesis settings that detect gene markers differentially expressed (DE) "in all studies", "in the majority of studies", or "in one or more studies", and specify rOP as a suitable method for detecting DE genes "in the majority of studies". We develop methods to estimate the parameter r in rOP for real applications. Statistical properties such as its asymptotic behavior and a one-sided testing correction for detecting markers of concordant expression changes are explored. Power calculation and simulation show better performance of rOP compared to classical Fisher's method, Stouffer's method, minimum p-value method and maximum p-value method under the focused hypothesis setting. Theoretically, rOP is found connected to the naïve vote counting method and can be viewed as a generalized form of vote counting with better statistical properties. The method is applied to three microarray meta-analysis examples including major depressive disorder, brain cancer and diabetes. The results demonstrate rOP as a more generalizable, robust and sensitive statistical framework to detect disease-related markers.
Statistical analysis of weigh-in-motion data for bridge design in Vermont.
DOT National Transportation Integrated Search
2014-10-01
This study investigates the suitability of the HL-93 live load model recommended by AASHTO LRFD Specifications : for its use in the analysis and design of bridges in Vermont. The method of approach consists in performing a : statistical analysis of w...
DOT National Transportation Integrated Search
2000-06-01
This report uses statistical analysis of community-level characteristics and qualitatively focused case studies to explore what determines the success of local transportation-related tax measures. The report contains both a statistical analysis of lo...
Parallel auto-correlative statistics with VTK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre; Bennett, Janine Camille
2013-08-01
This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.
Two Paradoxes in Linear Regression Analysis.
Feng, Ge; Peng, Jing; Tu, Dongke; Zheng, Julia Z; Feng, Changyong
2016-12-25
Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection.
A Study on Predictive Analytics Application to Ship Machinery Maintenance
2013-09-01
Looking at the nature of the time series forecasting method , it would be better applied to offline analysis . The application for real- time online...other system attributes in future. Two techniques of statistical analysis , mainly time series models and cumulative sum control charts, are discussed in...statistical tool employed for the two techniques of statistical analysis . Both time series forecasting as well as CUSUM control charts are shown to be
Metz, Anneke M
2008-01-01
There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study.
2017-03-01
53 ix LIST OF TABLES Table 1. Descriptive Statistics for Control Variables by... Statistics for Control Variables by Gender (Random Subsample with Complete Survey) ............................................................30 Table...empirical analysis. Chapter IV describes the summary statistics and results. Finally, Chapter V offers concluding thoughts, study limitations, and
A First Assignment to Create Student Buy-In in an Introductory Business Statistics Course
ERIC Educational Resources Information Center
Newfeld, Daria
2016-01-01
This paper presents a sample assignment to be administered after the first two weeks of an introductory business focused statistics course in order to promote student buy-in. This assignment integrates graphical displays of data, descriptive statistics and cross-tabulation analysis through the lens of a marketing analysis study. A marketing sample…
A General Model for Estimating and Correcting the Effects of Nonindependence in Meta-Analysis.
ERIC Educational Resources Information Center
Strube, Michael J.
A general model is described which can be used to represent the four common types of meta-analysis: (1) estimation of effect size by combining study outcomes; (2) estimation of effect size by contrasting study outcomes; (3) estimation of statistical significance by combining study outcomes; and (4) estimation of statistical significance by…
Improved score statistics for meta-analysis in single-variant and gene-level association studies.
Yang, Jingjing; Chen, Sai; Abecasis, Gonçalo
2018-06-01
Meta-analysis is now an essential tool for genetic association studies, allowing them to combine large studies and greatly accelerating the pace of genetic discovery. Although the standard meta-analysis methods perform equivalently as the more cumbersome joint analysis under ideal settings, they result in substantial power loss under unbalanced settings with various case-control ratios. Here, we investigate the power loss problem by the standard meta-analysis methods for unbalanced studies, and further propose novel meta-analysis methods performing equivalently to the joint analysis under both balanced and unbalanced settings. We derive improved meta-score-statistics that can accurately approximate the joint-score-statistics with combined individual-level data, for both linear and logistic regression models, with and without covariates. In addition, we propose a novel approach to adjust for population stratification by correcting for known population structures through minor allele frequencies. In the simulated gene-level association studies under unbalanced settings, our method recovered up to 85% power loss caused by the standard methods. We further showed the power gain of our methods in gene-level tests with 26 unbalanced studies of age-related macular degeneration . In addition, we took the meta-analysis of three unbalanced studies of type 2 diabetes as an example to discuss the challenges of meta-analyzing multi-ethnic samples. In summary, our improved meta-score-statistics with corrections for population stratification can be used to construct both single-variant and gene-level association studies, providing a useful framework for ensuring well-powered, convenient, cross-study analyses. © 2018 WILEY PERIODICALS, INC.
DOT National Transportation Integrated Search
2000-06-01
This report uses statistical analysis of community-level characteristics and qualitatively focused case studies to explore what determines the success of local transportation-related tax measures. The report contains both a statistical analysis of lo...
Unicomb, Rachael; Colyvas, Kim; Harrison, Elisabeth; Hewat, Sally
2015-06-01
Case-study methodology studying change is often used in the field of speech-language pathology, but it can be criticized for not being statistically robust. Yet with the heterogeneous nature of many communication disorders, case studies allow clinicians and researchers to closely observe and report on change. Such information is valuable and can further inform large-scale experimental designs. In this research note, a statistical analysis for case-study data is outlined that employs a modification to the Reliable Change Index (Jacobson & Truax, 1991). The relationship between reliable change and clinical significance is discussed. Example data are used to guide the reader through the use and application of this analysis. A method of analysis is detailed that is suitable for assessing change in measures with binary categorical outcomes. The analysis is illustrated using data from one individual, measured before and after treatment for stuttering. The application of this approach to assess change in categorical, binary data has potential application in speech-language pathology. It enables clinicians and researchers to analyze results from case studies for their statistical and clinical significance. This new method addresses a gap in the research design literature, that is, the lack of analysis methods for noncontinuous data (such as counts, rates, proportions of events) that may be used in case-study designs.
[Application of Stata software to test heterogeneity in meta-analysis method].
Wang, Dan; Mou, Zhen-yun; Zhai, Jun-xia; Zong, Hong-xia; Zhao, Xiao-dong
2008-07-01
To introduce the application of Stata software to heterogeneity test in meta-analysis. A data set was set up according to the example in the study, and the corresponding commands of the methods in Stata 9 software were applied to test the example. The methods used were Q-test and I2 statistic attached to the fixed effect model forest plot, H statistic and Galbraith plot. The existence of the heterogeneity among studies could be detected by Q-test and H statistic and the degree of the heterogeneity could be detected by I2 statistic. The outliers which were the sources of the heterogeneity could be spotted from the Galbraith plot. Heterogeneity test in meta-analysis can be completed by the four methods in Stata software simply and quickly. H and I2 statistics are more robust, and the outliers of the heterogeneity can be clearly seen in the Galbraith plot among the four methods.
Modified Distribution-Free Goodness-of-Fit Test Statistic.
Chun, So Yeon; Browne, Michael W; Shapiro, Alexander
2018-03-01
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
van Gelder, P.H.A.J.M.; Nijs, M.
2011-01-01
Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care. PMID:24753877
van Gelder, P H A J M; Nijs, M
2011-01-01
Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost -importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the -required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper -interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care.
NASA Astrophysics Data System (ADS)
Alekseenko, M. A.; Gendrina, I. Yu.
2017-11-01
Recently, due to the abundance of various types of observational data in the systems of vision through the atmosphere and the need for their processing, the use of various methods of statistical research in the study of such systems as correlation-regression analysis, dynamic series, variance analysis, etc. is actual. We have attempted to apply elements of correlation-regression analysis for the study and subsequent prediction of the patterns of radiation transfer in these systems same as in the construction of radiation models of the atmosphere. In this paper, we present some results of statistical processing of the results of numerical simulation of the characteristics of vision systems through the atmosphere obtained with the help of a special software package.1
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
[Evaluation of using statistical methods in selected national medical journals].
Sych, Z
1996-01-01
The paper covers the performed evaluation of frequency with which the statistical methods were applied in analyzed works having been published in six selected, national medical journals in the years 1988-1992. For analysis the following journals were chosen, namely: Klinika Oczna, Medycyna Pracy, Pediatria Polska, Polski Tygodnik Lekarski, Roczniki Państwowego Zakładu Higieny, Zdrowie Publiczne. Appropriate number of works up to the average in the remaining medical journals was randomly selected from respective volumes of Pol. Tyg. Lek. The studies did not include works wherein the statistical analysis was not implemented, which referred both to national and international publications. That exemption was also extended to review papers, casuistic ones, reviews of books, handbooks, monographies, reports from scientific congresses, as well as papers on historical topics. The number of works was defined in each volume. Next, analysis was performed to establish the mode of finding out a suitable sample in respective studies, differentiating two categories: random and target selections. Attention was also paid to the presence of control sample in the individual works. In the analysis attention was also focussed on the existence of sample characteristics, setting up three categories: complete, partial and lacking. In evaluating the analyzed works an effort was made to present the results of studies in tables and figures (Tab. 1, 3). Analysis was accomplished with regard to the rate of employing statistical methods in analyzed works in relevant volumes of six selected, national medical journals for the years 1988-1992, simultaneously determining the number of works, in which no statistical methods were used. Concurrently the frequency of applying the individual statistical methods was analyzed in the scrutinized works. Prominence was given to fundamental statistical methods in the field of descriptive statistics (measures of position, measures of dispersion) as well as most important methods of mathematical statistics such as parametric tests of significance, analysis of variance (in single and dual classifications). non-parametric tests of significance, correlation and regression. The works, in which use was made of either multiple correlation or multiple regression or else more complex methods of studying the relationship for two or more numbers of variables, were incorporated into the works whose statistical methods were constituted by correlation and regression as well as other methods, e.g. statistical methods being used in epidemiology (coefficients of incidence and morbidity, standardization of coefficients, survival tables) factor analysis conducted by Jacobi-Hotellng's method, taxonomic methods and others. On the basis of the performed studies it has been established that the frequency of employing statistical methods in the six selected national, medical journals in the years 1988-1992 was 61.1-66.0% of the analyzed works (Tab. 3), and they generally were almost similar to the frequency provided in English language medical journals. On a whole, no significant differences were disclosed in the frequency of applied statistical methods (Tab. 4) as well as in frequency of random tests (Tab. 3) in the analyzed works, appearing in the medical journals in respective years 1988-1992. The most frequently used statistical methods in analyzed works for 1988-1992 were the measures of position 44.2-55.6% and measures of dispersion 32.5-38.5% as well as parametric tests of significance 26.3-33.1% of the works analyzed (Tab. 4). For the purpose of increasing the frequency and reliability of the used statistical methods, the didactics should be widened in the field of biostatistics at medical studies and postgraduation training designed for physicians and scientific-didactic workers.
A Review of Meta-Analysis Packages in R
ERIC Educational Resources Information Center
Polanin, Joshua R.; Hennessy, Emily A.; Tanner-Smith, Emily E.
2017-01-01
Meta-analysis is a statistical technique that allows an analyst to synthesize effect sizes from multiple primary studies. To estimate meta-analysis models, the open-source statistical environment R is quickly becoming a popular choice. The meta-analytic community has contributed to this growth by developing numerous packages specific to…
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
NASA Astrophysics Data System (ADS)
Glascock, M. D.; Neff, H.; Vaughn, K. J.
2004-06-01
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
Snell, Kym Ie; Ensor, Joie; Debray, Thomas Pa; Moons, Karel Gm; Riley, Richard D
2017-01-01
If individual participant data are available from multiple studies or clusters, then a prediction model can be externally validated multiple times. This allows the model's discrimination and calibration performance to be examined across different settings. Random-effects meta-analysis can then be used to quantify overall (average) performance and heterogeneity in performance. This typically assumes a normal distribution of 'true' performance across studies. We conducted a simulation study to examine this normality assumption for various performance measures relating to a logistic regression prediction model. We simulated data across multiple studies with varying degrees of variability in baseline risk or predictor effects and then evaluated the shape of the between-study distribution in the C-statistic, calibration slope, calibration-in-the-large, and E/O statistic, and possible transformations thereof. We found that a normal between-study distribution was usually reasonable for the calibration slope and calibration-in-the-large; however, the distributions of the C-statistic and E/O were often skewed across studies, particularly in settings with large variability in the predictor effects. Normality was vastly improved when using the logit transformation for the C-statistic and the log transformation for E/O, and therefore we recommend these scales to be used for meta-analysis. An illustrated example is given using a random-effects meta-analysis of the performance of QRISK2 across 25 general practices.
This analysis updates EPA's standard VSL estimate by using a more comprehensive collection of VSL studies that include studies published between 1992 and 2000, as well as applying a more appropriate statistical method. We provide a pooled effect VSL estimate by applying the empi...
ERIC Educational Resources Information Center
Santos-Delgado, M. J.; Larrea-Tarruella, L.
2004-01-01
The back-titration methods are compared statistically to establish glycine in a nonaqueous medium of acetic acid. Important variations in the mean values of glycine are observed due to the interaction effects between the analysis of variance (ANOVA) technique and a statistical study through a computer software.
Atmospheric statistics for aerospace vehicle operations
NASA Technical Reports Server (NTRS)
Smith, O. E.; Batts, G. W.
1993-01-01
Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.
Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall
2016-01-01
Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.
GWAMA: software for genome-wide association meta-analysis.
Mägi, Reedik; Morris, Andrew P
2010-05-28
Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.
Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art
Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel
2015-01-01
In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802
Comparing the Persuasiveness of Narrative and Statistical Evidence Using Meta-Analysis.
ERIC Educational Resources Information Center
Allen, Mike; Preiss, Raymond W.
1997-01-01
Compares the persuasiveness of using statistical versus narrative evidence (case studies or examples) across 15 investigations. Indicates that when comparing messages, statistical evidence is more persuasive than narrative evidence. (PA)
Zheng, Jie; Harris, Marcelline R; Masci, Anna Maria; Lin, Yu; Hero, Alfred; Smith, Barry; He, Yongqun
2016-09-14
Statistics play a critical role in biological and clinical research. However, most reports of scientific results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in achieving those results because they provide inadequate documentation of the statistical tests and algorithms applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this problem. The terms in OBCS including 'data collection', 'data transformation in statistics', 'data visualization', 'statistical data analysis', and 'drawing a conclusion based on data', cover the major types of statistical processes used in basic biological research and clinical outcome studies. OBCS is aligned with the Basic Formal Ontology (BFO) and extends the Ontology of Biomedical Investigations (OBI), an OBO (Open Biological and Biomedical Ontologies) Foundry ontology supported by over 20 research communities. Currently, OBCS comprehends 878 terms, representing 20 BFO classes, 403 OBI classes, 229 OBCS specific classes, and 122 classes imported from ten other OBO ontologies. We discuss two examples illustrating how the ontology is being applied. In the first (biological) use case, we describe how OBCS was applied to represent the high throughput microarray data analysis of immunological transcriptional profiles in human subjects vaccinated with an influenza vaccine. In the second (clinical outcomes) use case, we applied OBCS to represent the processing of electronic health care data to determine the associations between hospital staffing levels and patient mortality. Our case studies were designed to show how OBCS can be used for the consistent representation of statistical analysis pipelines under two different research paradigms. Other ongoing projects using OBCS for statistical data processing are also discussed. The OBCS source code and documentation are available at: https://github.com/obcs/obcs . The Ontology of Biological and Clinical Statistics (OBCS) is a community-based open source ontology in the domain of biological and clinical statistics. OBCS is a timely ontology that represents statistics-related terms and their relations in a rigorous fashion, facilitates standard data analysis and integration, and supports reproducible biological and clinical research.
2008-01-01
There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study. PMID:18765754
Potential errors and misuse of statistics in studies on leakage in endodontics.
Lucena, C; Lopez, J M; Pulgar, R; Abalos, C; Valderrama, M J
2013-04-01
To assess the quality of the statistical methodology used in studies of leakage in Endodontics, and to compare the results found using appropriate versus inappropriate inferential statistical methods. The search strategy used the descriptors 'root filling' 'microleakage', 'dye penetration', 'dye leakage', 'polymicrobial leakage' and 'fluid filtration' for the time interval 2001-2010 in journals within the categories 'Dentistry, Oral Surgery and Medicine' and 'Materials Science, Biomaterials' of the Journal Citation Report. All retrieved articles were reviewed to find potential pitfalls in statistical methodology that may be encountered during study design, data management or data analysis. The database included 209 papers. In all the studies reviewed, the statistical methods used were appropriate for the category attributed to the outcome variable, but in 41% of the cases, the chi-square test or parametric methods were inappropriately selected subsequently. In 2% of the papers, no statistical test was used. In 99% of cases, a statistically 'significant' or 'not significant' effect was reported as a main finding, whilst only 1% also presented an estimation of the magnitude of the effect. When the appropriate statistical methods were applied in the studies with originally inappropriate data analysis, the conclusions changed in 19% of the cases. Statistical deficiencies in leakage studies may affect their results and interpretation and might be one of the reasons for the poor agreement amongst the reported findings. Therefore, more effort should be made to standardize statistical methodology. © 2012 International Endodontic Journal.
Rare-Variant Association Analysis: Study Designs and Statistical Tests
Lee, Seunggeung; Abecasis, Gonçalo R.; Boehnke, Michael; Lin, Xihong
2014-01-01
Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway to identify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research directions. PMID:24995866
Barber, Julie A; Thompson, Simon G
1998-01-01
Objective To review critically the statistical methods used for health economic evaluations in randomised controlled trials where an estimate of cost is available for each patient in the study. Design Survey of published randomised trials including an economic evaluation with cost values suitable for statistical analysis; 45 such trials published in 1995 were identified from Medline. Main outcome measures The use of statistical methods for cost data was assessed in terms of the descriptive statistics reported, use of statistical inference, and whether the reported conclusions were justified. Results Although all 45 trials reviewed apparently had cost data for each patient, only 9 (20%) reported adequate measures of variability for these data and only 25 (56%) gave results of statistical tests or a measure of precision for the comparison of costs between the randomised groups. Only 16 (36%) of the articles gave conclusions which were justified on the basis of results presented in the paper. No paper reported sample size calculations for costs. Conclusions The analysis and interpretation of cost data from published trials reveal a lack of statistical awareness. Strong and potentially misleading conclusions about the relative costs of alternative therapies have often been reported in the absence of supporting statistical evidence. Improvements in the analysis and reporting of health economic assessments are urgently required. Health economic guidelines need to be revised to incorporate more detailed statistical advice. Key messagesHealth economic evaluations required for important healthcare policy decisions are often carried out in randomised controlled trialsA review of such published economic evaluations assessed whether statistical methods for cost outcomes have been appropriately used and interpretedFew publications presented adequate descriptive information for costs or performed appropriate statistical analysesIn at least two thirds of the papers, the main conclusions regarding costs were not justifiedThe analysis and reporting of health economic assessments within randomised controlled trials urgently need improving PMID:9794854
Egbewale, Bolaji E; Lewis, Martyn; Sim, Julius
2014-04-09
Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. 126 hypothetical trial scenarios were evaluated (126,000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power.
2014-01-01
Background Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. Methods 126 hypothetical trial scenarios were evaluated (126 000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Results Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Conclusions Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power. PMID:24712304
ERIC Educational Resources Information Center
Xia, Tian; Shumin, Zhang; Yifeng, Wu
2016-01-01
We utilized cross tabulation statistics, word frequency counts, and content analysis of research output to conduct a bibliometric study, and used CiteSpace software to depict a knowledge map for research on entrepreneurship education in China from 2004 to 2013. The study shows that, in this duration, the study of Chinese entrepreneurship education…
John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping
2018-06-01
Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.
The Use of a Context-Based Information Retrieval Technique
2009-07-01
provided in context. Latent Semantic Analysis (LSA) is a statistical technique for inferring contextual and structural information, and previous studies...WAIS). 10 DSTO-TR-2322 1.4.4 Latent Semantic Analysis LSA, which is also known as latent semantic indexing (LSI), uses a statistical and...1.4.6 Language Models In contrast, natural language models apply algorithms that combine statistical information with semantic information. Semantic
Targeted On-Demand Team Performance App Development
2016-10-01
from three sites; 6) Preliminary analysis indicates larger than estimate effect size and study is sufficiently powered for generalizable outcomes...statistical analyses, and examine any resulting qualitative data for trends or connections to statistical outcomes. On Schedule 21 Predictive...Preliminary analysis indicates larger than estimate effect size and study is sufficiently powered for generalizable outcomes. What opportunities for
Text grouping in patent analysis using adaptive K-means clustering algorithm
NASA Astrophysics Data System (ADS)
Shanie, Tiara; Suprijadi, Jadi; Zulhanif
2017-03-01
Patents are one of the Intellectual Property. Analyzing patent is one requirement in knowing well the development of technology in each country and in the world now. This study uses the patent document coming from the Espacenet server about Green Tea. Patent documents related to the technology in the field of tea is still widespread, so it will be difficult for users to information retrieval (IR). Therefore, it is necessary efforts to categorize documents in a specific group of related terms contained therein. This study uses titles patent text data with the proposed Green Tea in Statistical Text Mining methods consists of two phases: data preparation and data analysis stage. The data preparation phase uses Text Mining methods and data analysis stage is done by statistics. Statistical analysis in this study using a cluster analysis algorithm, the Adaptive K-Means Clustering Algorithm. Results from this study showed that based on the maximum value Silhouette, generate 87 clusters associated fifteen terms therein that can be utilized in the process of information retrieval needs.
The Australasian Resuscitation in Sepsis Evaluation (ARISE) trial statistical analysis plan.
Delaney, Anthony P; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve
2013-09-01
The Australasian Resuscitation in Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the emergency department with severe sepsis. In keeping with current practice, and considering aspects of trial design and reporting specific to non-pharmacological interventions, our plan outlines the principles and methods for analysing and reporting the trial results. The document is prepared before completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and before completion of the two related international studies. Our statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. We reviewed the data collected by the research team as specified in the study protocol and detailed in the study case report form. We describe information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation, other related therapies and other relevant data with appropriate comparisons between groups. We define the primary, secondary and tertiary outcomes for the study, with description of the planned statistical analyses. We have developed a statistical analysis plan with a trial profile, mock-up tables and figures. We describe a plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies and adverse events. We describe the primary, secondary and tertiary outcomes with identification of subgroups to be analysed. We have developed a statistical analysis plan for the ARISE study, available in the public domain, before the completion of recruitment into the study. This will minimise analytical bias and conforms to current best practice in conducting clinical trials.
Monitoring and Evaluation: Statistical Support for Life-cycle Studies, Annual Report 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalski, John
2003-11-01
The ongoing mission of this project is the development of statistical tools for analyzing fisheries tagging data in the most precise and appropriate manner possible. This mission also includes providing statistical guidance on the best ways to design large-scale tagging studies. This mission continues because the technologies for conducting fish tagging studies continuously evolve. In just the last decade, fisheries biologists have seen the evolution from freeze-brands and coded wire tags (CWT) to passive integrated transponder (PIT) tags, balloon-tags, radiotelemetry, and now, acoustic-tags. With each advance, the technology holds the promise of more detailed and precise information. However, the technologymore » for analyzing and interpreting the data also becomes more complex as the tagging techniques become more sophisticated. The goal of the project is to develop the analytical tools in parallel with the technical advances in tagging studies, so that maximum information can be extracted on a timely basis. Associated with this mission is the transfer of these analytical capabilities to the field investigators to assure consistency and the highest levels of design and analysis throughout the fisheries community. Consequently, this project provides detailed technical assistance on the design and analysis of tagging studies to groups requesting assistance throughout the fisheries community. Ideally, each project and each investigator would invest in the statistical support needed for the successful completion of their study. However, this is an ideal that is rarely if every attained. Furthermore, there is only a small pool of highly trained scientists in this specialized area of tag analysis here in the Northwest. Project 198910700 provides the financial support to sustain this local expertise on the statistical theory of tag analysis at the University of Washington and make it available to the fisheries community. Piecemeal and fragmented support from various agencies and organizations would be incapable of maintaining a center of expertise. The mission of the project is to help assure tagging studies are designed and analyzed from the onset to extract the best available information using state-of-the-art statistical methods. The overarching goals of the project is to assure statistically sound survival studies so that fish managers can focus on the management implications of their findings and not be distracted by concerns whether the studies are statistically reliable or not. Specific goals and objectives of the study include the following: (1) Provide consistent application of statistical methodologies for survival estimation across all salmon life cycle stages to assure comparable performance measures and assessment of results through time, to maximize learning and adaptive management opportunities, and to improve and maintain the ability to responsibly evaluate the success of implemented Columbia River FWP salmonid mitigation programs and identify future mitigation options. (2) Improve analytical capabilities to conduct research on survival processes of wild and hatchery chinook and steelhead during smolt outmigration, to improve monitoring and evaluation capabilities and assist in-season river management to optimize operational and fish passage strategies to maximize survival. (3) Extend statistical support to estimate ocean survival and in-river survival of returning adults. Provide statistical guidance in implementing a river-wide adult PIT-tag detection capability. (4) Develop statistical methods for survival estimation for all potential users and make this information available through peer-reviewed publications, statistical software, and technology transfers to organizations such as NOAA Fisheries, the Fish Passage Center, US Fish and Wildlife Service, US Geological Survey (USGS), US Army Corps of Engineers (USACE), Public Utility Districts (PUDs), the Independent Scientific Advisory Board (ISAB), and other members of the Northwest fisheries community. (5) Provide and maintain statistical software for tag analysis and user support. (6) Provide improvements in statistical theory and software as requested by user groups. These improvements include extending software capabilities to address new research issues, adapting tagging techniques to new study designs, and extending the analysis capabilities to new technologies such as radio-tags and acoustic-tags.« less
Considerations for the design, analysis and presentation of in vivo studies.
Ranstam, J; Cook, J A
2017-03-01
To describe, explain and give practical suggestions regarding important principles and key methodological challenges in the study design, statistical analysis, and reporting of results from in vivo studies. Pre-specifying endpoints and analysis, recognizing the common underlying assumption of statistically independent observations, performing sample size calculations, and addressing multiplicity issues are important parts of an in vivo study. A clear reporting of results and informative graphical presentations of data are other important parts. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Comparative analysis of positive and negative attitudes toward statistics
NASA Astrophysics Data System (ADS)
Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah
2015-02-01
Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.
Periodontal disease and carotid atherosclerosis: A meta-analysis of 17,330 participants.
Zeng, Xian-Tao; Leng, Wei-Dong; Lam, Yat-Yin; Yan, Bryan P; Wei, Xue-Mei; Weng, Hong; Kwong, Joey S W
2016-01-15
The association between periodontal disease and carotid atherosclerosis has been evaluated primarily in single-center studies, and whether periodontal disease is an independent risk factor of carotid atherosclerosis remains uncertain. This meta-analysis aimed to evaluate the association between periodontal disease and carotid atherosclerosis. We searched PubMed and Embase for relevant observational studies up to February 20, 2015. Two authors independently extracted data from included studies, and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for overall and subgroup meta-analyses. Statistical heterogeneity was assessed by the chi-squared test (P<0.1 for statistical significance) and quantified by the I(2) statistic. Data analysis was conducted using the Comprehensive Meta-Analysis (CMA) software. Fifteen observational studies involving 17,330 participants were included in the meta-analysis. The overall pooled result showed that periodontal disease was associated with carotid atherosclerosis (OR: 1.27, 95% CI: 1.14-1.41; P<0.001) but statistical heterogeneity was substantial (I(2)=78.90%). Subgroup analysis of adjusted smoking and diabetes mellitus showed borderline significance (OR: 1.08; 95% CI: 1.00-1.18; P=0.05). Sensitivity and cumulative analyses both indicated that our results were robust. Findings of our meta-analysis indicated that the presence of periodontal disease was associated with carotid atherosclerosis; however, further large-scale, well-conducted clinical studies are needed to explore the precise risk of developing carotid atherosclerosis in patients with periodontal disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chou, C P; Bentler, P M; Satorra, A
1991-11-01
Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.
Conducting Simulation Studies in the R Programming Environment.
Hallgren, Kevin A
2013-10-12
Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.
Swetha, Jonnalagadda Laxmi; Arpita, Ramisetti; Srikanth, Chintalapani; Nutalapati, Rajasekhar
2014-01-01
Biostatistics is an integral part of research protocols. In any field of inquiry or investigation, data obtained is subsequently classified, analyzed and tested for accuracy by statistical methods. Statistical analysis of collected data, thus, forms the basis for all evidence-based conclusions. The aim of this study is to evaluate the cognition, comprehension and application of biostatistics in research among post graduate students in Periodontics, in India. A total of 391 post graduate students registered for a master's course in periodontics at various dental colleges across India were included in the survey. Data regarding the level of knowledge, understanding and its application in design and conduct of the research protocol was collected using a dichotomous questionnaire. A descriptive statistics was used for data analysis. Nearly 79.2% students were aware of the importance of biostatistics in research, 55-65% were familiar with MS-EXCEL spreadsheet for graphical representation of data and with the statistical softwares available on the internet, 26.0% had biostatistics as mandatory subject in their curriculum, 9.5% tried to perform statistical analysis on their own while 3.0% were successful in performing statistical analysis of their studies on their own. Biostatistics should play a central role in planning, conduct, interim analysis, final analysis and reporting of periodontal research especially by the postgraduate students. Indian postgraduate students in periodontics are aware of the importance of biostatistics in research but the level of understanding and application is still basic and needs to be addressed.
Mathysen, Danny G P; Aclimandos, Wagih; Roelant, Ella; Wouters, Kristien; Creuzot-Garcher, Catherine; Ringens, Peter J; Hawlina, Marko; Tassignon, Marie-José
2013-11-01
To investigate whether introduction of item-response theory (IRT) analysis, in parallel to the 'traditional' statistical analysis methods available for performance evaluation of multiple T/F items as used in the European Board of Ophthalmology Diploma (EBOD) examination, has proved beneficial, and secondly, to study whether the overall assessment performance of the current written part of EBOD is sufficiently high (KR-20≥ 0.90) to be kept as examination format in future EBOD editions. 'Traditional' analysis methods for individual MCQ item performance comprise P-statistics, Rit-statistics and item discrimination, while overall reliability is evaluated through KR-20 for multiple T/F items. The additional set of statistical analysis methods for the evaluation of EBOD comprises mainly IRT analysis. These analysis techniques are used to monitor whether the introduction of negative marking for incorrect answers (since EBOD 2010) has a positive influence on the statistical performance of EBOD as a whole and its individual test items in particular. Item-response theory analysis demonstrated that item performance parameters should not be evaluated individually, but should be related to one another. Before the introduction of negative marking, the overall EBOD reliability (KR-20) was good though with room for improvement (EBOD 2008: 0.81; EBOD 2009: 0.78). After the introduction of negative marking, the overall reliability of EBOD improved significantly (EBOD 2010: 0.92; EBOD 2011:0.91; EBOD 2012: 0.91). Although many statistical performance parameters are available to evaluate individual items, our study demonstrates that the overall reliability assessment remains the only crucial parameter to be evaluated allowing comparison. While individual item performance analysis is worthwhile to undertake as secondary analysis, drawing final conclusions seems to be more difficult. Performance parameters need to be related, as shown by IRT analysis. Therefore, IRT analysis has proved beneficial for the statistical analysis of EBOD. Introduction of negative marking has led to a significant increase in the reliability (KR-20 > 0.90), indicating that the current examination format can be kept for future EBOD examinations. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
An audit of the statistics and the comparison with the parameter in the population
NASA Astrophysics Data System (ADS)
Bujang, Mohamad Adam; Sa'at, Nadiah; Joys, A. Reena; Ali, Mariana Mohamad
2015-10-01
The sufficient sample size that is needed to closely estimate the statistics for particular parameters are use to be an issue. Although sample size might had been calculated referring to objective of the study, however, it is difficult to confirm whether the statistics are closed with the parameter for a particular population. All these while, guideline that uses a p-value less than 0.05 is widely used as inferential evidence. Therefore, this study had audited results that were analyzed from various sub sample and statistical analyses and had compared the results with the parameters in three different populations. Eight types of statistical analysis and eight sub samples for each statistical analysis were analyzed. Results found that the statistics were consistent and were closed to the parameters when the sample study covered at least 15% to 35% of population. Larger sample size is needed to estimate parameter that involve with categorical variables compared with numerical variables. Sample sizes with 300 to 500 are sufficient to estimate the parameters for medium size of population.
U.S. Marine Corps Study of Establishing Time Criteria for Logistics Tasks
2004-09-30
STATISTICS FOR REQUESTS PER DAY FOR TWO BATTALIONS II-25 II-6 SUMMARY STATISTICS IN HOURS FOR RESOURCE REQUIREMENTS PER DAY FOR TWO BATTALIONS II-26 II-7...SUMMARY STATISTICS FOR INDIVIDUALS FOR RESOURCE REQUIREMENTS PER DAY FOR TWO BATTALIONS II-27 Study of Establishing Time Criteria for Logistics...developed and run to provide statistical information for analysis. In Task Four, the study team used Task Three findings to determine data requirements
Harris, Alex; Reeder, Rachelle; Hyun, Jenny
2011-01-01
The authors surveyed 21 editors and reviewers from major psychology journals to identify and describe the statistical and design errors they encounter most often and to get their advice regarding prevention of these problems. Content analysis of the text responses revealed themes in 3 major areas: (a) problems with research design and reporting (e.g., lack of an a priori power analysis, lack of congruence between research questions and study design/analysis, failure to adequately describe statistical procedures); (b) inappropriate data analysis (e.g., improper use of analysis of variance, too many statistical tests without adjustments, inadequate strategy for addressing missing data); and (c) misinterpretation of results. If researchers attended to these common methodological and analytic issues, the scientific quality of manuscripts submitted to high-impact psychology journals might be significantly improved.
Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H
2017-05-10
We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value
ERIC Educational Resources Information Center
Maric, Marija; Wiers, Reinout W.; Prins, Pier J. M.
2012-01-01
Despite guidelines and repeated calls from the literature, statistical mediation analysis in youth treatment outcome research is rare. Even more concerning is that many studies that "have" reported mediation analyses do not fulfill basic requirements for mediation analysis, providing inconclusive data and clinical implications. As a result, after…
A Descriptive Study of Individual and Cross-Cultural Differences in Statistics Anxiety
ERIC Educational Resources Information Center
Baloglu, Mustafa; Deniz, M. Engin; Kesici, Sahin
2011-01-01
The present study investigated individual and cross-cultural differences in statistics anxiety among 223 Turkish and 237 American college students. A 2 x 2 between-subjects factorial multivariate analysis of covariance (MANCOVA) was performed on the six dependent variables which are the six subscales of the Statistical Anxiety Rating Scale.…
Dai, Mingwei; Ming, Jingsi; Cai, Mingxuan; Liu, Jin; Yang, Can; Wan, Xiang; Xu, Zongben
2017-09-15
Results from genome-wide association studies (GWAS) suggest that a complex phenotype is often affected by many variants with small effects, known as 'polygenicity'. Tens of thousands of samples are often required to ensure statistical power of identifying these variants with small effects. However, it is often the case that a research group can only get approval for the access to individual-level genotype data with a limited sample size (e.g. a few hundreds or thousands). Meanwhile, summary statistics generated using single-variant-based analysis are becoming publicly available. The sample sizes associated with the summary statistics datasets are usually quite large. How to make the most efficient use of existing abundant data resources largely remains an open question. In this study, we propose a statistical approach, IGESS, to increasing statistical power of identifying risk variants and improving accuracy of risk prediction by i ntegrating individual level ge notype data and s ummary s tatistics. An efficient algorithm based on variational inference is developed to handle the genome-wide analysis. Through comprehensive simulation studies, we demonstrated the advantages of IGESS over the methods which take either individual-level data or summary statistics data as input. We applied IGESS to perform integrative analysis of Crohns Disease from WTCCC and summary statistics from other studies. IGESS was able to significantly increase the statistical power of identifying risk variants and improve the risk prediction accuracy from 63.2% ( ±0.4% ) to 69.4% ( ±0.1% ) using about 240 000 variants. The IGESS software is available at https://github.com/daviddaigithub/IGESS . zbxu@xjtu.edu.cn or xwan@comp.hkbu.edu.hk or eeyang@hkbu.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ERIC Educational Resources Information Center
Meijer, Rob R.; van Krimpen-Stoop, Edith M. L. A.
In this study a cumulative-sum (CUSUM) procedure from the theory of Statistical Process Control was modified and applied in the context of person-fit analysis in a computerized adaptive testing (CAT) environment. Six person-fit statistics were proposed using the CUSUM procedure, and three of them could be used to investigate the CAT in online test…
Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM
NASA Astrophysics Data System (ADS)
Köylü, Ü.; Geymen, A.
2016-10-01
Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.
Tips and Tricks for Successful Application of Statistical Methods to Biological Data.
Schlenker, Evelyn
2016-01-01
This chapter discusses experimental design and use of statistics to describe characteristics of data (descriptive statistics) and inferential statistics that test the hypothesis posed by the investigator. Inferential statistics, based on probability distributions, depend upon the type and distribution of the data. For data that are continuous, randomly and independently selected, as well as normally distributed more powerful parametric tests such as Student's t test and analysis of variance (ANOVA) can be used. For non-normally distributed or skewed data, transformation of the data (using logarithms) may normalize the data allowing use of parametric tests. Alternatively, with skewed data nonparametric tests can be utilized, some of which rely on data that are ranked prior to statistical analysis. Experimental designs and analyses need to balance between committing type 1 errors (false positives) and type 2 errors (false negatives). For a variety of clinical studies that determine risk or benefit, relative risk ratios (random clinical trials and cohort studies) or odds ratios (case-control studies) are utilized. Although both use 2 × 2 tables, their premise and calculations differ. Finally, special statistical methods are applied to microarray and proteomics data, since the large number of genes or proteins evaluated increase the likelihood of false discoveries. Additional studies in separate samples are used to verify microarray and proteomic data. Examples in this chapter and references are available to help continued investigation of experimental designs and appropriate data analysis.
Monte Carlo based statistical power analysis for mediation models: methods and software.
Zhang, Zhiyong
2014-12-01
The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.
ERIC Educational Resources Information Center
Jackson, Dan
2013-01-01
Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and…
ERIC Educational Resources Information Center
Shafiq, M. Najeeb; Myers, John P.
2014-01-01
This study examines the Swedish national educational voucher scheme and changes in social cohesion. We conduct a statistical analysis using data from the 1999 and 2009 rounds of the International Association for the Evaluation of Educational Achievement's civic education study of 14-year-old students and their attitudes toward the rights of ethnic…
Liu, Dungang; Liu, Regina; Xie, Minge
2014-01-01
Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a non-negligible loss of information. This paper introduces a metaanalysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and iii) it is robust against misspecification of the working covariance structure of the parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains an unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases. PMID:26190875
Study/experimental/research design: much more than statistics.
Knight, Kenneth L
2010-01-01
The purpose of study, experimental, or research design in scientific manuscripts has changed significantly over the years. It has evolved from an explanation of the design of the experiment (ie, data gathering or acquisition) to an explanation of the statistical analysis. This practice makes "Methods" sections hard to read and understand. To clarify the difference between study design and statistical analysis, to show the advantages of a properly written study design on article comprehension, and to encourage authors to correctly describe study designs. The role of study design is explored from the introduction of the concept by Fisher through modern-day scientists and the AMA Manual of Style. At one time, when experiments were simpler, the study design and statistical design were identical or very similar. With the complex research that is common today, which often includes manipulating variables to create new variables and the multiple (and different) analyses of a single data set, data collection is very different than statistical design. Thus, both a study design and a statistical design are necessary. Scientific manuscripts will be much easier to read and comprehend. A proper experimental design serves as a road map to the study methods, helping readers to understand more clearly how the data were obtained and, therefore, assisting them in properly analyzing the results.
Anderson, Craig S; Woodward, Mark; Arima, Hisatomi; Chen, Xiaoying; Lindley, Richard I; Wang, Xia; Chalmers, John
2015-12-01
The ENhanced Control of Hypertension And Thrombolysis strokE stuDy trial is a 2 × 2 quasi-factorial active-comparison, prospective, randomized, open, blinded endpoint clinical trial that is evaluating in thrombolysis-eligible acute ischemic stroke patients whether: (1) low-dose (0·6 mg/kg body weight) intravenous alteplase has noninferior efficacy and lower risk of symptomatic intracerebral hemorrhage compared with standard-dose (0·9 mg/kg body weight) intravenous alteplase; and (2) early intensive blood pressure lowering (systolic target 130-140 mmHg) has superior efficacy and lower risk of any intracerebral hemorrhage compared with guideline-recommended blood pressure control (systolic target <180 mmHg). To outline in detail the predetermined statistical analysis plan for the 'alteplase dose arm' of the study. All data collected by participating researchers will be reviewed and formally assessed. Information pertaining to the baseline characteristics of patients, their process of care, and the delivery of treatments will be classified, and for each item, appropriate descriptive statistical analyses are planned with appropriate comparisons made between randomized groups. For the trial outcomes, the most appropriate statistical comparisons to be made between groups are planned and described. A statistical analysis plan was developed for the results of the alteplase dose arm of the study that is transparent, available to the public, verifiable, and predetermined before completion of data collection. We have developed a predetermined statistical analysis plan for the ENhanced Control of Hypertension And Thrombolysis strokE stuDy alteplase dose arm which is to be followed to avoid analysis bias arising from prior knowledge of the study findings. © 2015 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.
ERIC Educational Resources Information Center
Martins, Jose Alexandre; Nascimento, Maria Manuel; Estrada, Assumpta
2012-01-01
Teachers' attitudes towards statistics can have a significant effect on their own statistical training, their teaching of statistics, and the future attitudes of their students. The influence of attitudes in teaching statistics in different contexts was previously studied in the work of Estrada et al. (2004, 2010a, 2010b) and Martins et al.…
Luo, Li; Zhu, Yun
2012-01-01
Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812
Luo, Li; Zhu, Yun; Xiong, Momiao
2012-06-01
The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.
ERIC Educational Resources Information Center
O'Bryant, Monique J.
2017-01-01
The aim of this study was to validate an instrument that can be used by instructors or social scientist who are interested in evaluating statistics anxiety. The psychometric properties of the English version of the Statistical Anxiety Scale (SAS) was examined through a confirmatory factor analysis of scores from a sample of 323 undergraduate…
Austin, Peter C
2007-11-01
I conducted a systematic review of the use of propensity score matching in the cardiovascular surgery literature. I examined the adequacy of reporting and whether appropriate statistical methods were used. I examined 60 articles published in the Annals of Thoracic Surgery, European Journal of Cardio-thoracic Surgery, Journal of Cardiovascular Surgery, and the Journal of Thoracic and Cardiovascular Surgery between January 1, 2004, and December 31, 2006. Thirty-one of the 60 studies did not provide adequate information on how the propensity score-matched pairs were formed. Eleven (18%) of studies did not report on whether matching on the propensity score balanced baseline characteristics between treated and untreated subjects in the matched sample. No studies used appropriate methods to compare baseline characteristics between treated and untreated subjects in the propensity score-matched sample. Eight (13%) of the 60 studies explicitly used statistical methods appropriate for the analysis of matched data when estimating the effect of treatment on the outcomes. Two studies used appropriate methods for some outcomes, but not for all outcomes. Thirty-nine (65%) studies explicitly used statistical methods that were inappropriate for matched-pairs data when estimating the effect of treatment on outcomes. Eleven studies did not report the statistical tests that were used to assess the statistical significance of the treatment effect. Analysis of propensity score-matched samples tended to be poor in the cardiovascular surgery literature. Most statistical analyses ignored the matched nature of the sample. I provide suggestions for improving the reporting and analysis of studies that use propensity score matching.
Study Designs and Statistical Analyses for Biomarker Research
Gosho, Masahiko; Nagashima, Kengo; Sato, Yasunori
2012-01-01
Biomarkers are becoming increasingly important for streamlining drug discovery and development. In addition, biomarkers are widely expected to be used as a tool for disease diagnosis, personalized medication, and surrogate endpoints in clinical research. In this paper, we highlight several important aspects related to study design and statistical analysis for clinical research incorporating biomarkers. We describe the typical and current study designs for exploring, detecting, and utilizing biomarkers. Furthermore, we introduce statistical issues such as confounding and multiplicity for statistical tests in biomarker research. PMID:23012528
Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review
Lamb, Karen E.; Thornton, Lukar E.; Cerin, Ester; Ball, Kylie
2015-01-01
Background Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Methods Searches were conducted for articles published from 2000–2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Results Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. Conclusions With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results. PMID:29546115
NASA Astrophysics Data System (ADS)
Palozzi, Jason; Pantopoulos, George; Maravelis, Angelos G.; Nordsvan, Adam; Zelilidis, Avraam
2018-02-01
This investigation presents an outcrop-based integrated study of internal division analysis and statistical treatment of turbidite bed thickness applied to a Carboniferous deep-water channel-levee complex in the Myall Trough, southeast Australia. Turbidite beds of the studied succession are characterized by a range of sedimentary structures grouped into two main associations, a thick-bedded and a thin-bedded one, that reflect channel-fill and overbank/levee deposits, respectively. Three vertically stacked channel-levee cycles have been identified. Results of statistical analysis of bed thickness, grain-size and internal division patterns applied on the studied channel-levee succession, indicate that turbidite bed thickness data seem to be well characterized by a bimodal lognormal distribution, which is possibly reflecting the difference between deposition from lower-density flows (in a levee/overbank setting) and very high-density flows (in a channel fill setting). Power law and exponential distributions were observed to hold only for the thick-bedded parts of the succession and cannot characterize the whole bed thickness range of the studied sediments. The succession also exhibits non-random clustering of bed thickness and grain-size measurements. The studied sediments are also characterized by the presence of statistically detected fining-upward sandstone packets. A novel quantitative approach (change-point analysis) is proposed for the detection of those packets. Markov permutation statistics also revealed the existence of order in the alternation of internal divisions in the succession expressed by an optimal internal division cycle reflecting two main types of gravity flow events deposited within both thick-bedded conglomeratic and thin-bedded sandstone associations. The analytical methods presented in this study can be used as additional tools for quantitative analysis and recognition of depositional environments in hydrocarbon-bearing research of ancient deep-water channel-levee settings.
A study of the feasibility of statistical analysis of airport performance simulation
NASA Technical Reports Server (NTRS)
Myers, R. H.
1982-01-01
The feasibility of conducting a statistical analysis of simulation experiments to study airport capacity is investigated. First, the form of the distribution of airport capacity is studied. Since the distribution is non-Gaussian, it is important to determine the effect of this distribution on standard analysis of variance techniques and power calculations. Next, power computations are made in order to determine how economic simulation experiments would be if they are designed to detect capacity changes from condition to condition. Many of the conclusions drawn are results of Monte-Carlo techniques.
Statistical innovations in the medical device world sparked by the FDA.
Campbell, Gregory; Yue, Lilly Q
2016-01-01
The world of medical devices while highly diverse is extremely innovative, and this facilitates the adoption of innovative statistical techniques. Statisticians in the Center for Devices and Radiological Health (CDRH) at the Food and Drug Administration (FDA) have provided leadership in implementing statistical innovations. The innovations discussed include: the incorporation of Bayesian methods in clinical trials, adaptive designs, the use and development of propensity score methodology in the design and analysis of non-randomized observational studies, the use of tipping-point analysis for missing data, techniques for diagnostic test evaluation, bridging studies for companion diagnostic tests, quantitative benefit-risk decisions, and patient preference studies.
Jiang, Wei; Yu, Weichuan
2017-02-15
In genome-wide association studies (GWASs) of common diseases/traits, we often analyze multiple GWASs with the same phenotype together to discover associated genetic variants with higher power. Since it is difficult to access data with detailed individual measurements, summary-statistics-based meta-analysis methods have become popular to jointly analyze datasets from multiple GWASs. In this paper, we propose a novel summary-statistics-based joint analysis method based on controlling the joint local false discovery rate (Jlfdr). We prove that our method is the most powerful summary-statistics-based joint analysis method when controlling the false discovery rate at a certain level. In particular, the Jlfdr-based method achieves higher power than commonly used meta-analysis methods when analyzing heterogeneous datasets from multiple GWASs. Simulation experiments demonstrate the superior power of our method over meta-analysis methods. Also, our method discovers more associations than meta-analysis methods from empirical datasets of four phenotypes. The R-package is available at: http://bioinformatics.ust.hk/Jlfdr.html . eeyu@ust.hk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Predicting juvenile recidivism: new method, old problems.
Benda, B B
1987-01-01
This prediction study compared three statistical procedures for accuracy using two assessment methods. The criterion is return to a juvenile prison after the first release, and the models tested are logit analysis, predictive attribute analysis, and a Burgess procedure. No significant differences are found between statistics in prediction.
Secondary Analysis of Qualitative Data.
ERIC Educational Resources Information Center
Turner, Paul D.
The reanalysis of data to answer the original research question with better statistical techniques or to answer new questions with old data is not uncommon in quantitative studies. Meta analysis and research syntheses have increased with the increase in research using similar statistical analyses, refinements of analytical techniques, and the…
ERIC Educational Resources Information Center
Meletiou-Mavrotheris, Maria
2004-01-01
While technology has become an integral part of introductory statistics courses, the programs typically employed are professional packages designed primarily for data analysis rather than for learning. Findings from several studies suggest that use of such software in the introductory statistics classroom may not be very effective in helping…
Guo, Hui; Zhang, Zhen; Yao, Yuan; Liu, Jialin; Chang, Ruirui; Liu, Zhao; Hao, Hongyuan; Huang, Taohong; Wen, Jun; Zhou, Tingting
2018-08-30
Semen sojae praeparatum with homology of medicine and food is a famous traditional Chinese medicine. A simple and effective quality fingerprint analysis, coupled with chemometrics methods, was developed for quality assessment of Semen sojae praeparatum. First, similarity analysis (SA) and hierarchical clusting analysis (HCA) were applied to select the qualitative markers, which obviously influence the quality of Semen sojae praeparatum. 21 chemicals were selected and characterized by high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF-MS). Subsequently, principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to select the quantitative markers of Semen sojae praeparatum samples from different origins. Moreover, 11 compounds with statistical significance were determined quantitatively, which provided an accurate and informative data for quality evaluation. This study proposes a new strategy for "statistic analysis-based fingerprint establishment", which would be a valuable reference for further study. Copyright © 2018 Elsevier Ltd. All rights reserved.
RooStatsCms: A tool for analysis modelling, combination and statistical studies
NASA Astrophysics Data System (ADS)
Piparo, D.; Schott, G.; Quast, G.
2010-04-01
RooStatsCms is an object oriented statistical framework based on the RooFit technology. Its scope is to allow the modelling, statistical analysis and combination of multiple search channels for new phenomena in High Energy Physics. It provides a variety of methods described in literature implemented as classes, whose design is oriented to the execution of multiple CPU intensive jobs on batch systems or on the Grid.
Statistical assessment of the learning curves of health technologies.
Ramsay, C R; Grant, A M; Wallace, S A; Garthwaite, P H; Monk, A F; Russell, I T
2001-01-01
(1) To describe systematically studies that directly assessed the learning curve effect of health technologies. (2) Systematically to identify 'novel' statistical techniques applied to learning curve data in other fields, such as psychology and manufacturing. (3) To test these statistical techniques in data sets from studies of varying designs to assess health technologies in which learning curve effects are known to exist. METHODS - STUDY SELECTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): For a study to be included, it had to include a formal analysis of the learning curve of a health technology using a graphical, tabular or statistical technique. METHODS - STUDY SELECTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): For a study to be included, it had to include a formal assessment of a learning curve using a statistical technique that had not been identified in the previous search. METHODS - DATA SOURCES: Six clinical and 16 non-clinical biomedical databases were searched. A limited amount of handsearching and scanning of reference lists was also undertaken. METHODS - DATA EXTRACTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): A number of study characteristics were abstracted from the papers such as study design, study size, number of operators and the statistical method used. METHODS - DATA EXTRACTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): The new statistical techniques identified were categorised into four subgroups of increasing complexity: exploratory data analysis; simple series data analysis; complex data structure analysis, generic techniques. METHODS - TESTING OF STATISTICAL METHODS: Some of the statistical methods identified in the systematic searches for single (simple) operator series data and for multiple (complex) operator series data were illustrated and explored using three data sets. The first was a case series of 190 consecutive laparoscopic fundoplication procedures performed by a single surgeon; the second was a case series of consecutive laparoscopic cholecystectomy procedures performed by ten surgeons; the third was randomised trial data derived from the laparoscopic procedure arm of a multicentre trial of groin hernia repair, supplemented by data from non-randomised operations performed during the trial. RESULTS - HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW: Of 4571 abstracts identified, 272 (6%) were later included in the study after review of the full paper. Some 51% of studies assessed a surgical minimal access technique and 95% were case series. The statistical method used most often (60%) was splitting the data into consecutive parts (such as halves or thirds), with only 14% attempting a more formal statistical analysis. The reporting of the studies was poor, with 31% giving no details of data collection methods. RESULTS - NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH: Of 9431 abstracts assessed, 115 (1%) were deemed appropriate for further investigation and, of these, 18 were included in the study. All of the methods for complex data sets were identified in the non-clinical literature. These were discriminant analysis, two-stage estimation of learning rates, generalised estimating equations, multilevel models, latent curve models, time series models and stochastic parameter models. In addition, eight new shapes of learning curves were identified. RESULTS - TESTING OF STATISTICAL METHODS: No one particular shape of learning curve performed significantly better than another. The performance of 'operation time' as a proxy for learning differed between the three procedures. Multilevel modelling using the laparoscopic cholecystectomy data demonstrated and measured surgeon-specific and confounding effects. The inclusion of non-randomised cases, despite the possible limitations of the method, enhanced the interpretation of learning effects. CONCLUSIONS - HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW: The statistical methods used for assessing learning effects in health technology assessment have been crude and the reporting of studies poor. CONCLUSIONS - NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH: A number of statistical methods for assessing learning effects were identified that had not hitherto been used in health technology assessment. There was a hierarchy of methods for the identification and measurement of learning, and the more sophisticated methods for both have had little if any use in health technology assessment. This demonstrated the value of considering fields outside clinical research when addressing methodological issues in health technology assessment. CONCLUSIONS - TESTING OF STATISTICAL METHODS: It has been demonstrated that the portfolio of techniques identified can enhance investigations of learning curve effects. (ABSTRACT TRUNCATED)
Pathway analysis with next-generation sequencing data.
Zhao, Jinying; Zhu, Yun; Boerwinkle, Eric; Xiong, Momiao
2015-04-01
Although pathway analysis methods have been developed and successfully applied to association studies of common variants, the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data. The developed statistic has the ability to capture position-level variant information and account for gametic phase disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.
The statistical analysis of global climate change studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, J.W.
1992-01-01
The focus of this work is to contribute to the enhancement of the relationship between climatologists and statisticians. The analysis of global change data has been underway for many years by atmospheric scientists. Much of this analysis includes a heavy reliance on statistics and statistical inference. Some specific climatological analyses are presented and the dependence on statistics is documented before the analysis is undertaken. The first problem presented involves the fluctuation-dissipation theorem and its application to global climate models. This problem has a sound theoretical niche in the literature of both climate modeling and physics, but a statistical analysis inmore » which the data is obtained from the model to show graphically the relationship has not been undertaken. It is under this motivation that the author presents this problem. A second problem concerning the standard errors in estimating global temperatures is purely statistical in nature although very little materials exists for sampling on such a frame. This problem not only has climatological and statistical ramifications, but political ones as well. It is planned to use these results in a further analysis of global warming using actual data collected on the earth. In order to simplify the analysis of these problems, the development of a computer program, MISHA, is presented. This interactive program contains many of the routines, functions, graphics, and map projections needed by the climatologist in order to effectively enter the arena of data visualization.« less
Swetha, Jonnalagadda Laxmi; Arpita, Ramisetti; Srikanth, Chintalapani; Nutalapati, Rajasekhar
2014-01-01
Background: Biostatistics is an integral part of research protocols. In any field of inquiry or investigation, data obtained is subsequently classified, analyzed and tested for accuracy by statistical methods. Statistical analysis of collected data, thus, forms the basis for all evidence-based conclusions. Aim: The aim of this study is to evaluate the cognition, comprehension and application of biostatistics in research among post graduate students in Periodontics, in India. Materials and Methods: A total of 391 post graduate students registered for a master's course in periodontics at various dental colleges across India were included in the survey. Data regarding the level of knowledge, understanding and its application in design and conduct of the research protocol was collected using a dichotomous questionnaire. A descriptive statistics was used for data analysis. Results: Nearly 79.2% students were aware of the importance of biostatistics in research, 55-65% were familiar with MS-EXCEL spreadsheet for graphical representation of data and with the statistical softwares available on the internet, 26.0% had biostatistics as mandatory subject in their curriculum, 9.5% tried to perform statistical analysis on their own while 3.0% were successful in performing statistical analysis of their studies on their own. Conclusion: Biostatistics should play a central role in planning, conduct, interim analysis, final analysis and reporting of periodontal research especially by the postgraduate students. Indian postgraduate students in periodontics are aware of the importance of biostatistics in research but the level of understanding and application is still basic and needs to be addressed. PMID:24744547
MetaGenyo: a web tool for meta-analysis of genetic association studies.
Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro
2017-12-16
Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .
Consequences of common data analysis inaccuracies in CNS trauma injury basic research.
Burke, Darlene A; Whittemore, Scott R; Magnuson, David S K
2013-05-15
The development of successful treatments for humans after traumatic brain or spinal cord injuries (TBI and SCI, respectively) requires animal research. This effort can be hampered when promising experimental results cannot be replicated because of incorrect data analysis procedures. To identify and hopefully avoid these errors in future studies, the articles in seven journals with the highest number of basic science central nervous system TBI and SCI animal research studies published in 2010 (N=125 articles) were reviewed for their data analysis procedures. After identifying the most common statistical errors, the implications of those findings were demonstrated by reanalyzing previously published data from our laboratories using the identified inappropriate statistical procedures, then comparing the two sets of results. Overall, 70% of the articles contained at least one type of inappropriate statistical procedure. The highest percentage involved incorrect post hoc t-tests (56.4%), followed by inappropriate parametric statistics (analysis of variance and t-test; 37.6%). Repeated Measures analysis was inappropriately missing in 52.0% of all articles and, among those with behavioral assessments, 58% were analyzed incorrectly. Reanalysis of our published data using the most common inappropriate statistical procedures resulted in a 14.1% average increase in significant effects compared to the original results. Specifically, an increase of 15.5% occurred with Independent t-tests and 11.1% after incorrect post hoc t-tests. Utilizing proper statistical procedures can allow more-definitive conclusions, facilitate replicability of research results, and enable more accurate translation of those results to the clinic.
Watanabe, Hiroshi
2012-01-01
Procedures of statistical analysis are reviewed to provide an overview of applications of statistics for general use. Topics that are dealt with are inference on a population, comparison of two populations with respect to means and probabilities, and multiple comparisons. This study is the second part of series in which we survey medical statistics. Arguments related to statistical associations and regressions will be made in subsequent papers.
A Bifactor Approach to Model Multifaceted Constructs in Statistical Mediation Analysis
ERIC Educational Resources Information Center
Gonzalez, Oscar; MacKinnon, David P.
2018-01-01
Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to…
Assessment of statistical methods used in library-based approaches to microbial source tracking.
Ritter, Kerry J; Carruthers, Ethan; Carson, C Andrew; Ellender, R D; Harwood, Valerie J; Kingsley, Kyle; Nakatsu, Cindy; Sadowsky, Michael; Shear, Brian; West, Brian; Whitlock, John E; Wiggins, Bruce A; Wilbur, Jayson D
2003-12-01
Several commonly used statistical methods for fingerprint identification in microbial source tracking (MST) were examined to assess the effectiveness of pattern-matching algorithms to correctly identify sources. Although numerous statistical methods have been employed for source identification, no widespread consensus exists as to which is most appropriate. A large-scale comparison of several MST methods, using identical fecal sources, presented a unique opportunity to assess the utility of several popular statistical methods. These included discriminant analysis, nearest neighbour analysis, maximum similarity and average similarity, along with several measures of distance or similarity. Threshold criteria for excluding uncertain or poorly matched isolates from final analysis were also examined for their ability to reduce false positives and increase prediction success. Six independent libraries used in the study were constructed from indicator bacteria isolated from fecal materials of humans, seagulls, cows and dogs. Three of these libraries were constructed using the rep-PCR technique and three relied on antibiotic resistance analysis (ARA). Five of the libraries were constructed using Escherichia coli and one using Enterococcus spp. (ARA). Overall, the outcome of this study suggests a high degree of variability across statistical methods. Despite large differences in correct classification rates among the statistical methods, no single statistical approach emerged as superior. Thresholds failed to consistently increase rates of correct classification and improvement was often associated with substantial effective sample size reduction. Recommendations are provided to aid in selecting appropriate analyses for these types of data.
Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka
2018-05-05
To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Clerc, F.; Njiki-Menga, G.-H.; Witschger, O.
2013-04-01
Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a quantitative estimation of the airborne particles released at the source when the task is performed. Beyond obtained results, this exploratory study indicates that the analysis of the results requires specific experience in statistics.
Rákosi, Csilla
2018-01-22
This paper proposes the use of the tools of statistical meta-analysis as a method of conflict resolution with respect to experiments in cognitive linguistics. With the help of statistical meta-analysis, the effect size of similar experiments can be compared, a well-founded and robust synthesis of the experimental data can be achieved, and possible causes of any divergence(s) in the outcomes can be revealed. This application of statistical meta-analysis offers a novel method of how diverging evidence can be dealt with. The workability of this idea is exemplified by a case study dealing with a series of experiments conducted as non-exact replications of Thibodeau and Boroditsky (PLoS ONE 6(2):e16782, 2011. https://doi.org/10.1371/journal.pone.0016782 ).
Design and analysis of multiple diseases genome-wide association studies without controls.
Chen, Zhongxue; Huang, Hanwen; Ng, Hon Keung Tony
2012-11-15
In genome-wide association studies (GWAS), multiple diseases with shared controls is one of the case-control study designs. If data obtained from these studies are appropriately analyzed, this design can have several advantages such as improving statistical power in detecting associations and reducing the time and cost in the data collection process. In this paper, we propose a study design for GWAS which involves multiple diseases but without controls. We also propose corresponding statistical data analysis strategy for GWAS with multiple diseases but no controls. Through a simulation study, we show that the statistical association test with the proposed study design is more powerful than the test with single disease sharing common controls, and it has comparable power to the overall test based on the whole dataset including the controls. We also apply the proposed method to a real GWAS dataset to illustrate the methodologies and the advantages of the proposed design. Some possible limitations of this study design and testing method and their solutions are also discussed. Our findings indicate that the proposed study design and statistical analysis strategy could be more efficient than the usual case-control GWAS as well as those with shared controls. Copyright © 2012 Elsevier B.V. All rights reserved.
Advances in Statistical Methods for Substance Abuse Prevention Research
MacKinnon, David P.; Lockwood, Chondra M.
2010-01-01
The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467
Kuretzki, Carlos Henrique; Campos, Antônio Carlos Ligocki; Malafaia, Osvaldo; Soares, Sandramara Scandelari Kusano de Paula; Tenório, Sérgio Bernardo; Timi, Jorge Rufino Ribas
2016-03-01
The use of information technology is often applied in healthcare. With regard to scientific research, the SINPE(c) - Integrated Electronic Protocols was created as a tool to support researchers, offering clinical data standardization. By the time, SINPE(c) lacked statistical tests obtained by automatic analysis. Add to SINPE(c) features for automatic realization of the main statistical methods used in medicine . The study was divided into four topics: check the interest of users towards the implementation of the tests; search the frequency of their use in health care; carry out the implementation; and validate the results with researchers and their protocols. It was applied in a group of users of this software in their thesis in the strict sensu master and doctorate degrees in one postgraduate program in surgery. To assess the reliability of the statistics was compared the data obtained both automatically by SINPE(c) as manually held by a professional in statistics with experience with this type of study. There was concern for the use of automatic statistical tests, with good acceptance. The chi-square, Mann-Whitney, Fisher and t-Student were considered as tests frequently used by participants in medical studies. These methods have been implemented and thereafter approved as expected. The incorporation of the automatic SINPE (c) Statistical Analysis was shown to be reliable and equal to the manually done, validating its use as a research tool for medical research.
Multi-trait analysis of genome-wide association summary statistics using MTAG.
Turley, Patrick; Walters, Raymond K; Maghzian, Omeed; Okbay, Aysu; Lee, James J; Fontana, Mark Alan; Nguyen-Viet, Tuan Anh; Wedow, Robbee; Zacher, Meghan; Furlotte, Nicholas A; Magnusson, Patrik; Oskarsson, Sven; Johannesson, Magnus; Visscher, Peter M; Laibson, David; Cesarini, David; Neale, Benjamin M; Benjamin, Daniel J
2018-02-01
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
Fu, Wenjiang J.; Stromberg, Arnold J.; Viele, Kert; Carroll, Raymond J.; Wu, Guoyao
2009-01-01
Over the past two decades, there have been revolutionary developments in life science technologies characterized by high throughput, high efficiency, and rapid computation. Nutritionists now have the advanced methodologies for the analysis of DNA, RNA, protein, low-molecular-weight metabolites, as well as access to bioinformatics databases. Statistics, which can be defined as the process of making scientific inferences from data that contain variability, has historically played an integral role in advancing nutritional sciences. Currently, in the era of systems biology, statistics has become an increasingly important tool to quantitatively analyze information about biological macromolecules. This article describes general terms used in statistical analysis of large, complex experimental data. These terms include experimental design, power analysis, sample size calculation, and experimental errors (type I and II errors) for nutritional studies at population, tissue, cellular, and molecular levels. In addition, we highlighted various sources of experimental variations in studies involving microarray gene expression, real-time polymerase chain reaction, proteomics, and other bioinformatics technologies. Moreover, we provided guidelines for nutritionists and other biomedical scientists to plan and conduct studies and to analyze the complex data. Appropriate statistical analyses are expected to make an important contribution to solving major nutrition-associated problems in humans and animals (including obesity, diabetes, cardiovascular disease, cancer, ageing, and intrauterine fetal retardation). PMID:20233650
Pike, Katie; Nash, Rachel L; Murphy, Gavin J; Reeves, Barnaby C; Rogers, Chris A
2015-02-22
The Transfusion Indication Threshold Reduction (TITRe2) trial is the largest randomized controlled trial to date to compare red blood cell transfusion strategies following cardiac surgery. This update presents the statistical analysis plan, detailing how the study will be analyzed and presented. The statistical analysis plan has been written following recommendations from the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, prior to database lock and the final analysis of trial data. Outlined analyses are in line with the Consolidated Standards of Reporting Trials (CONSORT). The study aims to randomize 2000 patients from 17 UK centres. Patients are randomized to either a restrictive (transfuse if haemoglobin concentration <7.5 g/dl) or liberal (transfuse if haemoglobin concentration <9 g/dl) transfusion strategy. The primary outcome is a binary composite outcome of any serious infectious or ischaemic event in the first 3 months following randomization. The statistical analysis plan details how non-adherence with the intervention, withdrawals from the study, and the study population will be derived and dealt with in the analysis. The planned analyses of the trial primary and secondary outcome measures are described in detail, including approaches taken to deal with multiple testing, model assumptions not being met and missing data. Details of planned subgroup and sensitivity analyses and pre-specified ancillary analyses are given, along with potential issues that have been identified with such analyses and possible approaches to overcome such issues. ISRCTN70923932 .
Ramagopalan, Sreeram V; Skingsley, Andrew P; Handunnetthi, Lahiru; Magnus, Daniel; Klingel, Michelle; Pakpoor, Julia; Goldacre, Ben
2015-01-01
We and others have shown a significant proportion of interventional trials registered on ClinicalTrials.gov have their primary outcomes altered after the listed study start and completion dates. The objectives of this study were to investigate whether changes made to primary outcomes are associated with the likelihood of reporting a statistically significant primary outcome on ClinicalTrials.gov. A cross-sectional analysis of all interventional clinical trials registered on ClinicalTrials.gov as of 20 November 2014 was performed. The main outcome was any change made to the initially listed primary outcome and the time of the change in relation to the trial start and end date. 13,238 completed interventional trials were registered with ClinicalTrials.gov that also had study results posted on the website. 2555 (19.3%) had one or more statistically significant primary outcomes. Statistical analysis showed that registration year, funding source and primary outcome change after trial completion were associated with reporting a statistically significant primary outcome . Funding source and primary outcome change after trial completion are associated with a statistically significant primary outcome report on clinicaltrials.gov.
An Analysis of Attitudes toward Statistics: Gender Differences among Advertising Majors.
ERIC Educational Resources Information Center
Fullerton, Jami A.; Umphrey, Don
This study measures advertising students' attitudes toward statistics. Subjects, 275 undergraduate advertising students from two southwestern United States universities, completed a questionnaire used to gauge students' attitudes toward statistics by measuring 6 underlying factors: (1) students' interest and future applicability; (2) relationship…
How to Perform a Systematic Review and Meta-analysis of Diagnostic Imaging Studies.
Cronin, Paul; Kelly, Aine Marie; Altaee, Duaa; Foerster, Bradley; Petrou, Myria; Dwamena, Ben A
2018-05-01
A systematic review is a comprehensive search, critical evaluation, and synthesis of all the relevant studies on a specific (clinical) topic that can be applied to the evaluation of diagnostic and screening imaging studies. It can be a qualitative or a quantitative (meta-analysis) review of available literature. A meta-analysis uses statistical methods to combine and summarize the results of several studies. In this review, a 12-step approach to performing a systematic review (and meta-analysis) is outlined under the four domains: (1) Problem Formulation and Data Acquisition, (2) Quality Appraisal of Eligible Studies, (3) Statistical Analysis of Quantitative Data, and (4) Clinical Interpretation of the Evidence. This review is specifically geared toward the performance of a systematic review and meta-analysis of diagnostic test accuracy (imaging) studies. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Study/Experimental/Research Design: Much More Than Statistics
Knight, Kenneth L.
2010-01-01
Abstract Context: The purpose of study, experimental, or research design in scientific manuscripts has changed significantly over the years. It has evolved from an explanation of the design of the experiment (ie, data gathering or acquisition) to an explanation of the statistical analysis. This practice makes “Methods” sections hard to read and understand. Objective: To clarify the difference between study design and statistical analysis, to show the advantages of a properly written study design on article comprehension, and to encourage authors to correctly describe study designs. Description: The role of study design is explored from the introduction of the concept by Fisher through modern-day scientists and the AMA Manual of Style. At one time, when experiments were simpler, the study design and statistical design were identical or very similar. With the complex research that is common today, which often includes manipulating variables to create new variables and the multiple (and different) analyses of a single data set, data collection is very different than statistical design. Thus, both a study design and a statistical design are necessary. Advantages: Scientific manuscripts will be much easier to read and comprehend. A proper experimental design serves as a road map to the study methods, helping readers to understand more clearly how the data were obtained and, therefore, assisting them in properly analyzing the results. PMID:20064054
Australasian Resuscitation In Sepsis Evaluation trial statistical analysis plan.
Delaney, Anthony; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve
2013-10-01
The Australasian Resuscitation In Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the ED with severe sepsis. In keeping with current practice, and taking into considerations aspects of trial design and reporting specific to non-pharmacologic interventions, this document outlines the principles and methods for analysing and reporting the trial results. The document is prepared prior to completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and prior to completion of the two related international studies. The statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. The data collected by the research team as specified in the study protocol, and detailed in the study case report form were reviewed. Information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation and other related therapies, and other relevant data are described with appropriate comparisons between groups. The primary, secondary and tertiary outcomes for the study are defined, with description of the planned statistical analyses. A statistical analysis plan was developed, along with a trial profile, mock-up tables and figures. A plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies, along with adverse events are described. The primary, secondary and tertiary outcomes are described along with identification of subgroups to be analysed. A statistical analysis plan for the ARISE study has been developed, and is available in the public domain, prior to the completion of recruitment into the study. This will minimise analytic bias and conforms to current best practice in conducting clinical trials. © 2013 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Shardell, Michelle; Harris, Anthony D; El-Kamary, Samer S; Furuno, Jon P; Miller, Ram R; Perencevich, Eli N
2007-10-01
Quasi-experimental study designs are frequently used to assess interventions that aim to limit the emergence of antimicrobial-resistant pathogens. However, previous studies using these designs have often used suboptimal statistical methods, which may result in researchers making spurious conclusions. Methods used to analyze quasi-experimental data include 2-group tests, regression analysis, and time-series analysis, and they all have specific assumptions, data requirements, strengths, and limitations. An example of a hospital-based intervention to reduce methicillin-resistant Staphylococcus aureus infection rates and reduce overall length of stay is used to explore these methods.
Mathematical problem solving ability of sport students in the statistical study
NASA Astrophysics Data System (ADS)
Sari, E. F. P.; Zulkardi; Putri, R. I. I.
2017-12-01
This study aims to determine the problem-solving ability of sport students of PGRI Palembang semester V in the statistics course. Subjects in this study were sport students of PGRI Palembang semester V which amounted to 31 people. The research method used is quasi experiment type one case shoot study. Data collection techniques in this study use the test and data analysis used is quantitative descriptive statistics. The conclusion of this study shown that the mathematical problem solving ability of PGRI Palembang sport students of V semester in the statistical course is categorized well with the average of the final test score of 80.3.
Students' Appreciation of Expectation and Variation as a Foundation for Statistical Understanding
ERIC Educational Resources Information Center
Watson, Jane M.; Callingham, Rosemary A.; Kelly, Ben A.
2007-01-01
This study presents the results of a partial credit Rasch analysis of in-depth interview data exploring statistical understanding of 73 school students in 6 contextual settings. The use of Rasch analysis allowed the exploration of a single underlying variable across contexts, which included probability sampling, representation of temperature…
ERIC Educational Resources Information Center
Hendrix, Dean
2010-01-01
This study analyzed 2005-2006 Web of Science bibliometric data from institutions belonging to the Association of Research Libraries (ARL) and corresponding ARL statistics to find any associations between indicators from the two data sets. Principal components analysis on 36 variables from 103 universities revealed obvious associations between…
Telecommunication market research processing
NASA Astrophysics Data System (ADS)
Dupont, J. F.
1983-06-01
The data processing in two telecommunication market investigations is described. One of the studies concerns the office applications of communication and the other the experiences with a videotex terminal. Statistical factorial analysis was performed on a large mass of data. A comparison between utilization intentions and effective utilization is made. Extensive rewriting of statistical analysis computer programs was required.
Investigation of trends in flooding in the Tug Fork basin of Kentucky, Virginia, and West Virginia
Hirsch, Robert M.; Scott, Arthur G.; Wyant, Timothy
1982-01-01
Statistical analysis indicates that the average size of annual-flood peaks of the Tug Fork (Ky., Va., and W. Va.) has been increasing. However, additional statistical analysis does not indicate that the flood levels that were exceeded typically once or twice a year in the period 1947-79 are any more likely to be exceeded now than in 1947. Possible trends in streamchannel size also are investigated at three locations. No discernible trends in channel size are noted. Further statistical analysis of the trend in the size of annual-flood peaks shows that much of the annual variation is related to local rainfall and to the 'natural' hydrologic response in a relatively undisturbed subbasin. However, some statistical indication of trend persists after accounting for these natural factors, though it is of borderline statistical significance. Further study in the basin may relate flood magnitudes to both rainfall and to land use.
Ignjatović, Aleksandra; Stojanović, Miodrag; Milošević, Zoran; Anđelković Apostolović, Marija
2017-12-02
The interest in developing risk models in medicine not only is appealing, but also associated with many obstacles in different aspects of predictive model development. Initially, the association of biomarkers or the association of more markers with the specific outcome was proven by statistical significance, but novel and demanding questions required the development of new and more complex statistical techniques. Progress of statistical analysis in biomedical research can be observed the best through the history of the Framingham study and development of the Framingham score. Evaluation of predictive models comes from a combination of the facts which are results of several metrics. Using logistic regression and Cox proportional hazards regression analysis, the calibration test, and the ROC curve analysis should be mandatory and eliminatory, and the central place should be taken by some new statistical techniques. In order to obtain complete information related to the new marker in the model, recently, there is a recommendation to use the reclassification tables by calculating the net reclassification index and the integrated discrimination improvement. Decision curve analysis is a novel method for evaluating the clinical usefulness of a predictive model. It may be noted that customizing and fine-tuning of the Framingham risk score initiated the development of statistical analysis. Clinically applicable predictive model should be a trade-off between all abovementioned statistical metrics, a trade-off between calibration and discrimination, accuracy and decision-making, costs and benefits, and quality and quantity of patient's life.
Statistical issues on the analysis of change in follow-up studies in dental research.
Blance, Andrew; Tu, Yu-Kang; Baelum, Vibeke; Gilthorpe, Mark S
2007-12-01
To provide an overview to the problems in study design and associated analyses of follow-up studies in dental research, particularly addressing three issues: treatment-baselineinteractions; statistical power; and nonrandomization. Our previous work has shown that many studies purport an interacion between change (from baseline) and baseline values, which is often based on inappropriate statistical analyses. A priori power calculations are essential for randomized controlled trials (RCTs), but in the pre-test/post-test RCT design it is not well known to dental researchers that the choice of statistical method affects power, and that power is affected by treatment-baseline interactions. A common (good) practice in the analysis of RCT data is to adjust for baseline outcome values using ancova, thereby increasing statistical power. However, an important requirement for ancova is there to be no interaction between the groups and baseline outcome (i.e. effective randomization); the patient-selection process should not cause differences in mean baseline values across groups. This assumption is often violated for nonrandomized (observational) studies and the use of ancova is thus problematic, potentially giving biased estimates, invoking Lord's paradox and leading to difficulties in the interpretation of results. Baseline interaction issues can be overcome by use of statistical methods; not widely practiced in dental research: Oldham's method and multilevel modelling; the latter is preferred for its greater flexibility to deal with more than one follow-up occasion as well as additional covariates To illustrate these three key issues, hypothetical examples are considered from the fields of periodontology, orthodontics, and oral implantology. Caution needs to be exercised when considering the design and analysis of follow-up studies. ancova is generally inappropriate for nonrandomized studies and causal inferences from observational data should be avoided.
Dexter, Franklin; Shafer, Steven L
2017-03-01
Considerable attention has been drawn to poor reproducibility in the biomedical literature. One explanation is inadequate reporting of statistical methods by authors and inadequate assessment of statistical reporting and methods during peer review. In this narrative review, we examine scientific studies of several well-publicized efforts to improve statistical reporting. We also review several retrospective assessments of the impact of these efforts. These studies show that instructions to authors and statistical checklists are not sufficient; no findings suggested that either improves the quality of statistical methods and reporting. Second, even basic statistics, such as power analyses, are frequently missing or incorrectly performed. Third, statistical review is needed for all papers that involve data analysis. A consistent finding in the studies was that nonstatistical reviewers (eg, "scientific reviewers") and journal editors generally poorly assess statistical quality. We finish by discussing our experience with statistical review at Anesthesia & Analgesia from 2006 to 2016.
Becker, Betsy Jane; Aloe, Ariel M; Duvendack, Maren; Stanley, T D; Valentine, Jeffrey C; Fretheim, Atle; Tugwell, Peter
2017-09-01
To outline issues of importance to analytic approaches to the synthesis of quasi-experiments (QEs) and to provide a statistical model for use in analysis. We drew on studies of statistics, epidemiology, and social-science methodology to outline methods for synthesis of QE studies. The design and conduct of QEs, effect sizes from QEs, and moderator variables for the analysis of those effect sizes were discussed. Biases, confounding, design complexities, and comparisons across designs offer serious challenges to syntheses of QEs. Key components of meta-analyses of QEs were identified, including the aspects of QE study design to be coded and analyzed. Of utmost importance are the design and statistical controls implemented in the QEs. Such controls and any potential sources of bias and confounding must be modeled in analyses, along with aspects of the interventions and populations studied. Because of such controls, effect sizes from QEs are more complex than those from randomized experiments. A statistical meta-regression model that incorporates important features of the QEs under review was presented. Meta-analyses of QEs provide particular challenges, but thorough coding of intervention characteristics and study methods, along with careful analysis, should allow for sound inferences. Copyright © 2017 Elsevier Inc. All rights reserved.
Multivariate meta-analysis: a robust approach based on the theory of U-statistic.
Ma, Yan; Mazumdar, Madhu
2011-10-30
Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.
Multi-reader ROC studies with split-plot designs: a comparison of statistical methods.
Obuchowski, Nancy A; Gallas, Brandon D; Hillis, Stephen L
2012-12-01
Multireader imaging trials often use a factorial design, in which study patients undergo testing with all imaging modalities and readers interpret the results of all tests for all patients. A drawback of this design is the large number of interpretations required of each reader. Split-plot designs have been proposed as an alternative, in which one or a subset of readers interprets all images of a sample of patients, while other readers interpret the images of other samples of patients. In this paper, the authors compare three methods of analysis for the split-plot design. Three statistical methods are presented: the Obuchowski-Rockette method modified for the split-plot design, a newly proposed marginal-mean analysis-of-variance approach, and an extension of the three-sample U-statistic method. A simulation study using the Roe-Metz model was performed to compare the type I error rate, power, and confidence interval coverage of the three test statistics. The type I error rates for all three methods are close to the nominal level but tend to be slightly conservative. The statistical power is nearly identical for the three methods. The coverage of 95% confidence intervals falls close to the nominal coverage for small and large sample sizes. The split-plot multireader, multicase study design can be statistically efficient compared to the factorial design, reducing the number of interpretations required per reader. Three methods of analysis, shown to have nominal type I error rates, similar power, and nominal confidence interval coverage, are available for this study design. Copyright © 2012 AUR. All rights reserved.
[Notes on vital statistics for the study of perinatal health].
Juárez, Sol Pía
2014-01-01
Vital statistics, published by the National Statistics Institute in Spain, are a highly important source for the study of perinatal health nationwide. However, the process of data collection is not well-known and has implications both for the quality and interpretation of the epidemiological results derived from this source. The aim of this study was to present how the information is collected and some of the associated problems. This study is the result of an analysis of the methodological notes from the National Statistics Institute and first-hand information obtained from hospitals, the Central Civil Registry of Madrid, and the Madrid Institute for Statistics. Greater integration between these institutions is required to improve the quality of birth and stillbirth statistics. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Rodríguez-Arias, Miquel Angel; Rodó, Xavier
2004-03-01
Here we describe a practical, step-by-step primer to scale-dependent correlation (SDC) analysis. The analysis of transitory processes is an important but often neglected topic in ecological studies because only a few statistical techniques appear to detect temporary features accurately enough. We introduce here the SDC analysis, a statistical and graphical method to study transitory processes at any temporal or spatial scale. SDC analysis, thanks to the combination of conventional procedures and simple well-known statistical techniques, becomes an improved time-domain analogue of wavelet analysis. We use several simple synthetic series to describe the method, a more complex example, full of transitory features, to compare SDC and wavelet analysis, and finally we analyze some selected ecological series to illustrate the methodology. The SDC analysis of time series of copepod abundances in the North Sea indicates that ENSO primarily is the main climatic driver of short-term changes in population dynamics. SDC also uncovers some long-term, unexpected features in the population. Similarly, the SDC analysis of Nicholson's blowflies data locates where the proposed models fail and provides new insights about the mechanism that drives the apparent vanishing of the population cycle during the second half of the series.
Adams, James; Kruger, Uwe; Geis, Elizabeth; Gehn, Eva; Fimbres, Valeria; Pollard, Elena; Mitchell, Jessica; Ingram, Julie; Hellmers, Robert; Quig, David; Hahn, Juergen
2017-01-01
Introduction A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD. Methods In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results. Results and Discussion Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate Speech), but significant associations were found for UTM with all eleven autism-related assessments with cross-validation R2 values ranging from 0.12–0.48. PMID:28068407
Marateb, Hamid Reza; Mansourian, Marjan; Adibi, Peyman; Farina, Dario
2014-01-01
Background: selecting the correct statistical test and data mining method depends highly on the measurement scale of data, type of variables, and purpose of the analysis. Different measurement scales are studied in details and statistical comparison, modeling, and data mining methods are studied based upon using several medical examples. We have presented two ordinal–variables clustering examples, as more challenging variable in analysis, using Wisconsin Breast Cancer Data (WBCD). Ordinal-to-Interval scale conversion example: a breast cancer database of nine 10-level ordinal variables for 683 patients was analyzed by two ordinal-scale clustering methods. The performance of the clustering methods was assessed by comparison with the gold standard groups of malignant and benign cases that had been identified by clinical tests. Results: the sensitivity and accuracy of the two clustering methods were 98% and 96%, respectively. Their specificity was comparable. Conclusion: by using appropriate clustering algorithm based on the measurement scale of the variables in the study, high performance is granted. Moreover, descriptive and inferential statistics in addition to modeling approach must be selected based on the scale of the variables. PMID:24672565
An issue of literacy on pediatric arterial hypertension
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena; Romana, Andreia; Simão, Carla
2017-11-01
Arterial hypertension in pediatric age is a public health problem, whose prevalence has increased significantly over time. Pediatric arterial hypertension (PAH) is under-diagnosed in most cases, a highly prevalent disease, appears without notice with multiple consequences on the children's health and future adults. Children caregivers and close family must know the PAH existence, the negative consequences associated with it, the risk factors and, finally, must do prevention. In [12, 13] can be found a statistical data analysis using a simpler questionnaire introduced in [4] under the aim of a preliminary study about PAH caregivers acquaintance. A continuation of such analysis is detailed in [14]. An extension of such questionnaire was built and applied to a distinct population and it was filled online. The statistical approach is partially reproduced in the present work. Some statistical models were estimated using several approaches, namely multivariate analysis (factorial analysis), also adequate methods to analyze the kind of data in study.
ERIC Educational Resources Information Center
Horn, Laura; Nevill, Stephanie; Griffith, James
2006-01-01
This report is the fifth in a series of reports that provide a statistical snapshot of the undergraduate population. The reports accompany the newly released data from the National Postsecondary Student Aid Study (NPSAS), and each one includes a focused analysis on a particular topic. This report focuses on community college students, who…
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Profile Of 'Original Articles' Published In 2016 By The Journal Of Ayub Medical College, Pakistan.
Shaikh, Masood Ali
2018-01-01
Journal of Ayub Medical College (JAMC) is the only Medline indexed biomedical journal of Pakistan that is edited and published by a medical college. Assessing the trends of study designs employed, statistical methods used, and statistical analysis software used in the articles of medical journals help understand the sophistication of research published. The objectives of this descriptive study were to assess all original articles published by JAMC in the year 2016. JAMC published 147 original articles in the year 2016. The most commonly used study design was crosssectional studies, with 64 (43.5%) articles reporting its use. Statistical tests involving bivariate analysis were most common and reported by 73 (49.6%) articles. Use of SPSS software was reported by 109 (74.1%) of articles. Most 138 (93.9%) of the original articles published were based on studies conducted in Pakistan. The number and sophistication of analysis reported in JAMC increased from year 2014 to 2016.
Thompson, Cheryl Bagley
2009-01-01
This 13th article of the Basics of Research series is first in a short series on statistical analysis. These articles will discuss creating your statistical analysis plan, levels of measurement, descriptive statistics, probability theory, inferential statistics, and general considerations for interpretation of the results of a statistical analysis.
Park, Ji Eun; Han, Kyunghwa; Sung, Yu Sub; Chung, Mi Sun; Koo, Hyun Jung; Yoon, Hee Mang; Choi, Young Jun; Lee, Seung Soo; Kim, Kyung Won; Shin, Youngbin; An, Suah; Cho, Hyo-Min
2017-01-01
Objective To evaluate the frequency and adequacy of statistical analyses in a general radiology journal when reporting a reliability analysis for a diagnostic test. Materials and Methods Sixty-three studies of diagnostic test accuracy (DTA) and 36 studies reporting reliability analyses published in the Korean Journal of Radiology between 2012 and 2016 were analyzed. Studies were judged using the methodological guidelines of the Radiological Society of North America-Quantitative Imaging Biomarkers Alliance (RSNA-QIBA), and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) initiative. DTA studies were evaluated by nine editorial board members of the journal. Reliability studies were evaluated by study reviewers experienced with reliability analysis. Results Thirty-one (49.2%) of the 63 DTA studies did not include a reliability analysis when deemed necessary. Among the 36 reliability studies, proper statistical methods were used in all (5/5) studies dealing with dichotomous/nominal data, 46.7% (7/15) of studies dealing with ordinal data, and 95.2% (20/21) of studies dealing with continuous data. Statistical methods were described in sufficient detail regarding weighted kappa in 28.6% (2/7) of studies and regarding the model and assumptions of intraclass correlation coefficient in 35.3% (6/17) and 29.4% (5/17) of studies, respectively. Reliability parameters were used as if they were agreement parameters in 23.1% (3/13) of studies. Reproducibility and repeatability were used incorrectly in 20% (3/15) of studies. Conclusion Greater attention to the importance of reporting reliability, thorough description of the related statistical methods, efforts not to neglect agreement parameters, and better use of relevant terminology is necessary. PMID:29089821
Kaneta, Tomohiro; Nakatsuka, Masahiro; Nakamura, Kei; Seki, Takashi; Yamaguchi, Satoshi; Tsuboi, Masahiro; Meguro, Kenichi
2016-01-01
SPECT is an important diagnostic tool for dementia. Recently, statistical analysis of SPECT has been commonly used for dementia research. In this study, we evaluated the accuracy of visual SPECT evaluation and/or statistical analysis for the diagnosis (Dx) of Alzheimer disease (AD) and other forms of dementia in our community-based study "The Osaki-Tajiri Project." Eighty-nine consecutive outpatients with dementia were enrolled and underwent brain perfusion SPECT with 99mTc-ECD. Diagnostic accuracy of SPECT was tested using 3 methods: visual inspection (SPECT Dx), automated diagnostic tool using statistical analysis with easy Z-score imaging system (eZIS Dx), and visual inspection plus eZIS (integrated Dx). Integrated Dx showed the highest sensitivity, specificity, and accuracy, whereas eZIS was the second most accurate method. We also observed that a higher than expected rate of SPECT images indicated false-negative cases of AD. Among these, 50% showed hypofrontality and were diagnosed as frontotemporal lobar degeneration. These cases typically showed regional "hot spots" in the primary sensorimotor cortex (ie, a sensorimotor hot spot sign), which we determined were associated with AD rather than frontotemporal lobar degeneration. We concluded that the diagnostic abilities were improved by the integrated use of visual assessment and statistical analysis. In addition, the detection of a sensorimotor hot spot sign was useful to detect AD when hypofrontality is present and improved the ability to properly diagnose AD.
Methodologies for the Statistical Analysis of Memory Response to Radiation
NASA Astrophysics Data System (ADS)
Bosser, Alexandre L.; Gupta, Viyas; Tsiligiannis, Georgios; Frost, Christopher D.; Zadeh, Ali; Jaatinen, Jukka; Javanainen, Arto; Puchner, Helmut; Saigné, Frédéric; Virtanen, Ari; Wrobel, Frédéric; Dilillo, Luigi
2016-08-01
Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study [1].
34 CFR Appendix A to Subpart N of... - Sample Default Prevention Plan
Code of Federal Regulations, 2010 CFR
2010-07-01
... relevant default prevention statistics, including a statistical analysis of the borrowers who default on...'s delinquency status by obtaining reports from data managers and FFEL Program lenders. 5. Enhance... academic study. III. Statistics for Measuring Progress 1. The number of students enrolled at your...
Technical Note: The Initial Stages of Statistical Data Analysis
Tandy, Richard D.
1998-01-01
Objective: To provide an overview of several important data-related considerations in the design stage of a research project and to review the levels of measurement and their relationship to the statistical technique chosen for the data analysis. Background: When planning a study, the researcher must clearly define the research problem and narrow it down to specific, testable questions. The next steps are to identify the variables in the study, decide how to group and treat subjects, and determine how to measure, and the underlying level of measurement of, the dependent variables. Then the appropriate statistical technique can be selected for data analysis. Description: The four levels of measurement in increasing complexity are nominal, ordinal, interval, and ratio. Nominal data are categorical or “count” data, and the numbers are treated as labels. Ordinal data can be ranked in a meaningful order by magnitude. Interval data possess the characteristics of ordinal data and also have equal distances between levels. Ratio data have a natural zero point. Nominal and ordinal data are analyzed with nonparametric statistical techniques and interval and ratio data with parametric statistical techniques. Advantages: Understanding the four levels of measurement and when it is appropriate to use each is important in determining which statistical technique to use when analyzing data. PMID:16558489
Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom; Elbekai, Reem H
2014-01-01
Carcinogenicity studies have been performed in conventional 2-year rodent studies for at least 3 decades, whereas the short-term carcinogenicity studies in transgenic mice, such as Tg.rasH2, have only been performed over the last decade. In the 2-year conventional rodent studies, interlinked problems, such as increasing trends in the initial body weights, increased body weight gains, high incidence of spontaneous tumors, and low survival, that complicate the interpretation of findings have been well established. However, these end points have not been evaluated in the short-term carcinogenicity studies involving the Tg.rasH2 mice. In this article, we present retrospective analysis of data obtained from control groups in 26-week carcinogenicity studies conducted in Tg.rasH2 mice since 2004. Our analysis showed statistically significant decreasing trends in initial body weights of both sexes. Although the terminal body weights did not show any significant trends, there was a statistically significant increasing trend toward body weight gains, more so in males than in females, which correlated with increasing trends in the food consumption. There were no statistically significant alterations in mortality trends. In addition, the incidence of all common spontaneous tumors remained fairly constant with no statistically significant differences in trends. © The Author(s) 2014.
Brix, Tobias Johannes; Bruland, Philipp; Sarfraz, Saad; Ernsting, Jan; Neuhaus, Philipp; Storck, Michael; Doods, Justin; Ständer, Sonja; Dugas, Martin
2018-01-01
A required step for presenting results of clinical studies is the declaration of participants demographic and baseline characteristics as claimed by the FDAAA 801. The common workflow to accomplish this task is to export the clinical data from the used electronic data capture system and import it into statistical software like SAS software or IBM SPSS. This software requires trained users, who have to implement the analysis individually for each item. These expenditures may become an obstacle for small studies. Objective of this work is to design, implement and evaluate an open source application, called ODM Data Analysis, for the semi-automatic analysis of clinical study data. The system requires clinical data in the CDISC Operational Data Model format. After uploading the file, its syntax and data type conformity of the collected data is validated. The completeness of the study data is determined and basic statistics, including illustrative charts for each item, are generated. Datasets from four clinical studies have been used to evaluate the application's performance and functionality. The system is implemented as an open source web application (available at https://odmanalysis.uni-muenster.de) and also provided as Docker image which enables an easy distribution and installation on local systems. Study data is only stored in the application as long as the calculations are performed which is compliant with data protection endeavors. Analysis times are below half an hour, even for larger studies with over 6000 subjects. Medical experts have ensured the usefulness of this application to grant an overview of their collected study data for monitoring purposes and to generate descriptive statistics without further user interaction. The semi-automatic analysis has its limitations and cannot replace the complex analysis of statisticians, but it can be used as a starting point for their examination and reporting.
Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy
NASA Astrophysics Data System (ADS)
Limandri, S.; Robledo, J.; Tirao, G.
2018-06-01
High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.
Zhu, Yun; Fan, Ruzong; Xiong, Momiao
2017-01-01
Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274
ERIC Educational Resources Information Center
Martin, James L.
This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…
Evaluating the statistical methodology of randomized trials on dentin hypersensitivity management.
Matranga, Domenica; Matera, Federico; Pizzo, Giuseppe
2017-12-27
The present study aimed to evaluate the characteristics and quality of statistical methodology used in clinical studies on dentin hypersensitivity management. An electronic search was performed for data published from 2009 to 2014 by using PubMed, Ovid/MEDLINE, and Cochrane Library databases. The primary search terms were used in combination. Eligibility criteria included randomized clinical trials that evaluated the efficacy of desensitizing agents in terms of reducing dentin hypersensitivity. A total of 40 studies were considered eligible for assessment of quality statistical methodology. The four main concerns identified were i) use of nonparametric tests in the presence of large samples, coupled with lack of information about normality and equality of variances of the response; ii) lack of P-value adjustment for multiple comparisons; iii) failure to account for interactions between treatment and follow-up time; and iv) no information about the number of teeth examined per patient and the consequent lack of cluster-specific approach in data analysis. Owing to these concerns, statistical methodology was judged as inappropriate in 77.1% of the 35 studies that used parametric methods. Additional studies with appropriate statistical analysis are required to obtain appropriate assessment of the efficacy of desensitizing agents.
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B; Neyer, Franz J; van Aken, Marcel AG
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are introduced using a simplified example. Thereafter, the advantages and pitfalls of the specification of prior knowledge are discussed. To illustrate Bayesian methods explained in this study, in a second example a series of studies that examine the theoretical framework of dynamic interactionism are considered. In the Discussion the advantages and disadvantages of using Bayesian statistics are reviewed, and guidelines on how to report on Bayesian statistics are provided. PMID:24116396
Meta-analysis: An Approach to the Synthesis of Research Results.
ERIC Educational Resources Information Center
Glass, Gene V.
1982-01-01
Discusses three general characteristics and four criticisms of meta-analysis (statistical analysis of the summary findings of many research studies). Illustrates application of meta-analysis on research studies relating to school class size and achievement and inquiry teaching of biology. (JN)
Statistical analysis of vehicle crashes in Mississippi based on crash data from 2010 to 2014.
DOT National Transportation Integrated Search
2017-08-15
Traffic crash data from 2010 to 2014 were collected by Mississippi Department of Transportation (MDOT) and extracted for the study. Three tasks were conducted in this study: (1) geographic distribution of crashes; (2) descriptive statistics of crash ...
Categorical data processing for real estate objects valuation using statistical analysis
NASA Astrophysics Data System (ADS)
Parygin, D. S.; Malikov, V. P.; Golubev, A. V.; Sadovnikova, N. P.; Petrova, T. M.; Finogeev, A. G.
2018-05-01
Theoretical and practical approaches to the use of statistical methods for studying various properties of infrastructure objects are analyzed in the paper. Methods of forecasting the value of objects are considered. A method for coding categorical variables describing properties of real estate objects is proposed. The analysis of the results of modeling the price of real estate objects using regression analysis and an algorithm based on a comparative approach is carried out.
A d-statistic for single-case designs that is equivalent to the usual between-groups d-statistic.
Shadish, William R; Hedges, Larry V; Pustejovsky, James E; Boyajian, Jonathan G; Sullivan, Kristynn J; Andrade, Alma; Barrientos, Jeannette L
2014-01-01
We describe a standardised mean difference statistic (d) for single-case designs that is equivalent to the usual d in between-groups experiments. We show how it can be used to summarise treatment effects over cases within a study, to do power analyses in planning new studies and grant proposals, and to meta-analyse effects across studies of the same question. We discuss limitations of this d-statistic, and possible remedies to them. Even so, this d-statistic is better founded statistically than other effect size measures for single-case design, and unlike many general linear model approaches such as multilevel modelling or generalised additive models, it produces a standardised effect size that can be integrated over studies with different outcome measures. SPSS macros for both effect size computation and power analysis are available.
Students' attitudes towards learning statistics
NASA Astrophysics Data System (ADS)
Ghulami, Hassan Rahnaward; Hamid, Mohd Rashid Ab; Zakaria, Roslinazairimah
2015-05-01
Positive attitude towards learning is vital in order to master the core content of the subject matters under study. This is unexceptional in learning statistics course especially at the university level. Therefore, this study investigates the students' attitude towards learning statistics. Six variables or constructs have been identified such as affect, cognitive competence, value, difficulty, interest, and effort. The instrument used for the study is questionnaire that was adopted and adapted from the reliable instrument of Survey of Attitudes towards Statistics(SATS©). This study is conducted to engineering undergraduate students in one of the university in the East Coast of Malaysia. The respondents consist of students who were taking the applied statistics course from different faculties. The results are analysed in terms of descriptive analysis and it contributes to the descriptive understanding of students' attitude towards the teaching and learning process of statistics.
el Galta, Rachid; Uitte de Willige, Shirley; de Visser, Marieke C H; Helmer, Quinta; Hsu, Li; Houwing-Duistermaat, Jeanine J
2007-09-24
In this paper, we propose a one degree of freedom test for association between a candidate gene and a binary trait. This method is a generalization of Terwilliger's likelihood ratio statistic and is especially powerful for the situation of one associated haplotype. As an alternative to the likelihood ratio statistic, we derive a score statistic, which has a tractable expression. For haplotype analysis, we assume that phase is known. By means of a simulation study, we compare the performance of the score statistic to Pearson's chi-square statistic and the likelihood ratio statistic proposed by Terwilliger. We illustrate the method on three candidate genes studied in the Leiden Thrombophilia Study. We conclude that the statistic follows a chi square distribution under the null hypothesis and that the score statistic is more powerful than Terwilliger's likelihood ratio statistic when the associated haplotype has frequency between 0.1 and 0.4 and has a small impact on the studied disorder. With regard to Pearson's chi-square statistic, the score statistic has more power when the associated haplotype has frequency above 0.2 and the number of variants is above five.
Zhang, Ying; Sun, Jin; Zhang, Yun-Jiao; Chai, Qian-Yun; Zhang, Kang; Ma, Hong-Li; Wu, Xiao-Ke; Liu, Jian-Ping
2016-10-21
Although Traditional Chinese Medicine (TCM) has been widely used in clinical settings, a major challenge that remains in TCM is to evaluate its efficacy scientifically. This randomized controlled trial aims to evaluate the efficacy and safety of berberine in the treatment of patients with polycystic ovary syndrome. In order to improve the transparency and research quality of this clinical trial, we prepared this statistical analysis plan (SAP). The trial design, primary and secondary outcomes, and safety outcomes were declared to reduce selection biases in data analysis and result reporting. We specified detailed methods for data management and statistical analyses. Statistics in corresponding tables, listings, and graphs were outlined. The SAP provided more detailed information than trial protocol on data management and statistical analysis methods. Any post hoc analyses could be identified via referring to this SAP, and the possible selection bias and performance bias will be reduced in the trial. This study is registered at ClinicalTrials.gov, NCT01138930 , registered on 7 June 2010.
Effect of the absolute statistic on gene-sampling gene-set analysis methods.
Nam, Dougu
2017-06-01
Gene-set enrichment analysis and its modified versions have commonly been used for identifying altered functions or pathways in disease from microarray data. In particular, the simple gene-sampling gene-set analysis methods have been heavily used for datasets with only a few sample replicates. The biggest problem with this approach is the highly inflated false-positive rate. In this paper, the effect of absolute gene statistic on gene-sampling gene-set analysis methods is systematically investigated. Thus far, the absolute gene statistic has merely been regarded as a supplementary method for capturing the bidirectional changes in each gene set. Here, it is shown that incorporating the absolute gene statistic in gene-sampling gene-set analysis substantially reduces the false-positive rate and improves the overall discriminatory ability. Its effect was investigated by power, false-positive rate, and receiver operating curve for a number of simulated and real datasets. The performances of gene-set analysis methods in one-tailed (genome-wide association study) and two-tailed (gene expression data) tests were also compared and discussed.
2007-01-01
Background The US Food and Drug Administration approved the Charité artificial disc on October 26, 2004. This approval was based on an extensive analysis and review process; 20 years of disc usage worldwide; and the results of a prospective, randomized, controlled clinical trial that compared lumbar artificial disc replacement to fusion. The results of the investigational device exemption (IDE) study led to a conclusion that clinical outcomes following lumbar arthroplasty were at least as good as outcomes from fusion. Methods The author performed a new analysis of the Visual Analog Scale pain scores and the Oswestry Disability Index scores from the Charité artificial disc IDE study and used a nonparametric statistical test, because observed data distributions were not normal. The analysis included all of the enrolled subjects in both the nonrandomized and randomized phases of the study. Results Subjects from both the treatment and control groups improved from the baseline situation (P < .001) at all follow-up times (6 weeks to 24 months). Additionally, these pain and disability levels with artificial disc replacement were superior (P < .05) to the fusion treatment at all follow-up times including 2 years. Conclusions The a priori statistical plan for an IDE study may not adequately address the final distribution of the data. Therefore, statistical analyses more appropriate to the distribution may be necessary to develop meaningful statistical conclusions from the study. A nonparametric statistical analysis of the Charité artificial disc IDE outcomes scores demonstrates superiority for lumbar arthroplasty versus fusion at all follow-up time points to 24 months. PMID:25802574
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-05-28
Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-01-01
Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045
Statistical principle and methodology in the NISAN system.
Asano, C
1979-01-01
The NISAN system is a new interactive statistical analysis program package constructed by an organization of Japanese statisticans. The package is widely available for both statistical situations, confirmatory analysis and exploratory analysis, and is planned to obtain statistical wisdom and to choose optimal process of statistical analysis for senior statisticians. PMID:540594
Nonoccupant Fatalities Associated with Backing Crashes
DOT National Transportation Integrated Search
1997-02-01
National Highway Traffic Safety Administration's National Center for Statistics : and Analysis (NCSA) recently completed a study of data from the National Center : Health Statistics (NCHS) to obtain an estimate of the number of nonoccupant : fataliti...
The value of a statistical life: a meta-analysis with a mixed effects regression model.
Bellavance, François; Dionne, Georges; Lebeau, Martin
2009-03-01
The value of a statistical life (VSL) is a very controversial topic, but one which is essential to the optimization of governmental decisions. We see a great variability in the values obtained from different studies. The source of this variability needs to be understood, in order to offer public decision-makers better guidance in choosing a value and to set clearer guidelines for future research on the topic. This article presents a meta-analysis based on 39 observations obtained from 37 studies (from nine different countries) which all use a hedonic wage method to calculate the VSL. Our meta-analysis is innovative in that it is the first to use the mixed effects regression model [Raudenbush, S.W., 1994. Random effects models. In: Cooper, H., Hedges, L.V. (Eds.), The Handbook of Research Synthesis. Russel Sage Foundation, New York] to analyze studies on the value of a statistical life. We conclude that the variability found in the values studied stems in large part from differences in methodologies.
Chae, Su Jin; Jeong, So Mi; Chung, Yoon-Sok
2017-09-01
This study is aimed at identifying the relationships between medical school students' academic burnout, empathy, and calling, and determining whether their calling has a mediating effect on the relationship between academic burnout and empathy. A mixed method study was conducted. One hundred twenty-seven medical students completed a survey. Scales measuring academic burnout, medical students' empathy, and calling were utilized. For statistical analysis, correlation analysis, descriptive statistics analysis, and hierarchical multiple regression analyses were conducted. For qualitative approach, eight medical students participated in a focus group interview. The study found that empathy has a statistically significant, negative correlation with academic burnout, while having a significant, positive correlation with calling. Sense of calling proved to be an effective mediator of the relationship between academic burnout and empathy. This result demonstrates that calling is a key variable that mediates the relationship between medical students' academic burnout and empathy. As such, this study provides baseline data for an education that could improve medical students' empathy skills.
NASA Technical Reports Server (NTRS)
1989-01-01
An assessment of quantitative methods and measures for measuring launch commit criteria (LCC) performance measurement trends is made. A statistical performance trending analysis pilot study was processed and compared to STS-26 mission data. This study used four selected shuttle measurement types (solid rocket booster, external tank, space shuttle main engine, and range safety switch safe and arm device) from the five missions prior to mission 51-L. After obtaining raw data coordinates, each set of measurements was processed to obtain statistical confidence bounds and mean data profiles for each of the selected measurement types. STS-26 measurements were compared to the statistical data base profiles to verify the statistical capability of assessing occurrences of data trend anomalies and abnormal time-varying operational conditions associated with data amplitude and phase shifts.
2011-01-01
Background This study aims to identify the statistical software applications most commonly employed for data analysis in health services research (HSR) studies in the U.S. The study also examines the extent to which information describing the specific analytical software utilized is provided in published articles reporting on HSR studies. Methods Data were extracted from a sample of 1,139 articles (including 877 original research articles) published between 2007 and 2009 in three U.S. HSR journals, that were considered to be representative of the field based upon a set of selection criteria. Descriptive analyses were conducted to categorize patterns in statistical software usage in those articles. The data were stratified by calendar year to detect trends in software use over time. Results Only 61.0% of original research articles in prominent U.S. HSR journals identified the particular type of statistical software application used for data analysis. Stata and SAS were overwhelmingly the most commonly used software applications employed (in 46.0% and 42.6% of articles respectively). However, SAS use grew considerably during the study period compared to other applications. Stratification of the data revealed that the type of statistical software used varied considerably by whether authors were from the U.S. or from other countries. Conclusions The findings highlight a need for HSR investigators to identify more consistently the specific analytical software used in their studies. Knowing that information can be important, because different software packages might produce varying results, owing to differences in the software's underlying estimation methods. PMID:21977990
Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events.
Li, Qiuju; Pan, Jianxin; Belcher, John
2016-12-01
In medical studies, repeated measurements of continuous, binary and ordinal outcomes are routinely collected from the same patient. Instead of modelling each outcome separately, in this study we propose to jointly model the trivariate longitudinal responses, so as to take account of the inherent association between the different outcomes and thus improve statistical inferences. This work is motivated by a large cohort study in the North West of England, involving trivariate responses from each patient: Body Mass Index, Depression (Yes/No) ascertained with cut-off score not less than 8 at the Hospital Anxiety and Depression Scale, and Pain Interference generated from the Medical Outcomes Study 36-item short-form health survey with values returned on an ordinal scale 1-5. There are some well-established methods for combined continuous and binary, or even continuous and ordinal responses, but little work was done on the joint analysis of continuous, binary and ordinal responses. We propose conditional joint random-effects models, which take into account the inherent association between the continuous, binary and ordinal outcomes. Bayesian analysis methods are used to make statistical inferences. Simulation studies show that, by jointly modelling the trivariate outcomes, standard deviations of the estimates of parameters in the models are smaller and much more stable, leading to more efficient parameter estimates and reliable statistical inferences. In the real data analysis, the proposed joint analysis yields a much smaller deviance information criterion value than the separate analysis, and shows other good statistical properties too. © The Author(s) 2014.
Use of check lists in assessing the statistical content of medical studies.
Gardner, M J; Machin, D; Campbell, M J
1986-01-01
Two check lists are used routinely in the statistical assessment of manuscripts submitted to the "BMJ." One is for papers of a general nature and the other specifically for reports on clinical trials. Each check list includes questions on the design, conduct, analysis, and presentation of studies, and answers to these contribute to the overall statistical evaluation. Only a small proportion of submitted papers are assessed statistically, and these are selected at the refereeing or editorial stage. Examination of the use of the check lists showed that most papers contained statistical failings, many of which could easily be remedied. It is recommended that the check lists should be used by statistical referees, editorial staff, and authors and also during the design stage of studies. PMID:3082452
The Effect of Using Case Studies in Business Statistics
ERIC Educational Resources Information Center
Pariseau, Susan E.; Kezim, Boualem
2007-01-01
The authors evaluated the effect on learning of using case studies in business statistics courses. The authors divided students into 3 groups: a control group, a group that completed 1 case study, and a group that completed 3 case studies. Results evidenced that, on average, students whom the authors required to complete a case analysis received…
The Importance of Teaching Power in Statistical Hypothesis Testing
ERIC Educational Resources Information Center
Olinsky, Alan; Schumacher, Phyllis; Quinn, John
2012-01-01
In this paper, we discuss the importance of teaching power considerations in statistical hypothesis testing. Statistical power analysis determines the ability of a study to detect a meaningful effect size, where the effect size is the difference between the hypothesized value of the population parameter under the null hypothesis and the true value…
Writing to Learn Statistics in an Advanced Placement Statistics Course
ERIC Educational Resources Information Center
Northrup, Christian Glenn
2012-01-01
This study investigated the use of writing in a statistics classroom to learn if writing provided a rich description of problem-solving processes of students as they solved problems. Through analysis of 329 written samples provided by students, it was determined that writing provided a rich description of problem-solving processes and enabled…
Simulation Study of Evacuation Control Center Operations Analysis
2011-06-01
28 4.3 Baseline Manning (Runs 1, 2, & 3) . . . . . . . . . . . . 30 4.3.1 Baseline Statistics Interpretation...46 Appendix B. Key Statistic Matrix: Runs 1-12 . . . . . . . . . . . . . 48 Appendix C. Blue Dart...Completion Time . . . 33 11. Paired T result - Run 5 v. Run 6: ECC Completion Time . . . 35 12. Key Statistics : Run 3 vs. Run 9
Statistical analysis of Skylab 3. [endocrine/metabolic studies of astronauts
NASA Technical Reports Server (NTRS)
Johnston, D. A.
1974-01-01
The results of endocrine/metabolic studies of astronauts on Skylab 3 are reported. One-way analysis of variance, contrasts, two-way unbalanced analysis of variance, and analysis of periodic changes in flight are included. Results for blood tests, and urine tests are presented.
NASA Astrophysics Data System (ADS)
Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha
2015-01-01
Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.
Babu, Giridhara R; Murthy, G V S; Ana, Yamuna; Patel, Prital; Deepa, R; Neelon, Sara E Benjamin; Kinra, Sanjay; Reddy, K Srinath
2018-01-01
AIM To perform a meta-analysis of the association of obesity with hypertension and type 2 diabetes mellitus (T2DM) in India among adults. METHODS To conduct meta-analysis, we performed comprehensive, electronic literature search in the PubMed, CINAHL Plus, and Google Scholar. We restricted the analysis to studies with documentation of some measure of obesity namely; body mass index, waist-hip ratio, waist circumference and diagnosis of hypertension or diagnosis of T2DM. By obtaining summary estimates of all included studies, the meta-analysis was performed using both RevMan version 5 and “metan” command STATA version 11. Heterogeneity was measured by I2 statistic. Funnel plot analysis has been done to assess the study publication bias. RESULTS Of the 956 studies screened, 18 met the eligibility criteria. The pooled odds ratio between obesity and hypertension was 3.82 (95%CI: 3.39 to 4.25). The heterogeneity around this estimate (I2 statistic) was 0%, indicating low variability. The pooled odds ratio from the included studies showed a statistically significant association between obesity and T2DM (OR = 1.14, 95%CI: 1.04 to 1.24) with a high degree of variability. CONCLUSION Despite methodological differences, obesity showed significant, potentially plausible association with hypertension and T2DM in studies conducted in India. Being a modifiable risk factor, our study informs setting policy priority and intervention efforts to prevent debilitating complications. PMID:29359028
Babu, Giridhara R; Murthy, G V S; Ana, Yamuna; Patel, Prital; Deepa, R; Neelon, Sara E Benjamin; Kinra, Sanjay; Reddy, K Srinath
2018-01-15
To perform a meta-analysis of the association of obesity with hypertension and type 2 diabetes mellitus (T2DM) in India among adults. To conduct meta-analysis, we performed comprehensive, electronic literature search in the PubMed, CINAHL Plus, and Google Scholar. We restricted the analysis to studies with documentation of some measure of obesity namely; body mass index, waist-hip ratio, waist circumference and diagnosis of hypertension or diagnosis of T2DM. By obtaining summary estimates of all included studies, the meta-analysis was performed using both RevMan version 5 and "metan" command STATA version 11. Heterogeneity was measured by I 2 statistic. Funnel plot analysis has been done to assess the study publication bias. Of the 956 studies screened, 18 met the eligibility criteria. The pooled odds ratio between obesity and hypertension was 3.82 (95%CI: 3.39 to 4.25). The heterogeneity around this estimate (I2 statistic) was 0%, indicating low variability. The pooled odds ratio from the included studies showed a statistically significant association between obesity and T2DM (OR = 1.14, 95%CI: 1.04 to 1.24) with a high degree of variability. Despite methodological differences, obesity showed significant, potentially plausible association with hypertension and T2DM in studies conducted in India. Being a modifiable risk factor, our study informs setting policy priority and intervention efforts to prevent debilitating complications.
Research methodology in dentistry: Part II — The relevance of statistics in research
Krithikadatta, Jogikalmat; Valarmathi, Srinivasan
2012-01-01
The lifeline of original research depends on adept statistical analysis. However, there have been reports of statistical misconduct in studies that could arise from the inadequate understanding of the fundamental of statistics. There have been several reports on this across medical and dental literature. This article aims at encouraging the reader to approach statistics from its logic rather than its theoretical perspective. The article also provides information on statistical misuse in the Journal of Conservative Dentistry between the years 2008 and 2011 PMID:22876003
NASA Astrophysics Data System (ADS)
Mercer, Gary J.
This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.
Statistical Analysis of Sport Movement Observations: the Case of Orienteering
NASA Astrophysics Data System (ADS)
Amouzandeh, K.; Karimipour, F.
2017-09-01
Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.
Waites, Anthony B; Mannfolk, Peter; Shaw, Marnie E; Olsrud, Johan; Jackson, Graeme D
2007-02-01
Clinical functional magnetic resonance imaging (fMRI) occasionally fails to detect significant activation, often due to variability in task performance. The present study seeks to test whether a more flexible statistical analysis can better detect activation, by accounting for variance associated with variable compliance to the task over time. Experimental results and simulated data both confirm that even at 80% compliance to the task, such a flexible model outperforms standard statistical analysis when assessed using the extent of activation (experimental data), goodness of fit (experimental data), and area under the operator characteristic curve (simulated data). Furthermore, retrospective examination of 14 clinical fMRI examinations reveals that in patients where the standard statistical approach yields activation, there is a measurable gain in model performance in adopting the flexible statistical model, with little or no penalty in lost sensitivity. This indicates that a flexible model should be considered, particularly for clinical patients who may have difficulty complying fully with the study task.
ERIC Educational Resources Information Center
Zhou, Ping; Wang, Qinwen; Yang, Jie; Li, Jingqiu; Guo, Junming; Gong, Zhaohui
2015-01-01
This study aimed to investigate the statuses on the publishing and usage of college biochemistry textbooks in China. A textbook database was constructed and the statistical analysis was adopted to evaluate the textbooks. The results showed that there were 945 (~57%) books for theory teaching, 379 (~23%) books for experiment teaching and 331 (~20%)…
The Other Twenty Percent: A Statistical Analysis of Poverty in the South.
ERIC Educational Resources Information Center
MacLachlan, Gretchen
Of the 27 million poor people in the United States in 1970, 10 million lived in the 11 Southern states. This was 38% of the nation's poverty population, making the South's poverty rate twice that of the remaining 39 states. This study, essentially a statistical analysis of regional poverty data derived from the 1970 Census, identifies the South's…
DNA Damage and Genetic Instability as Harbingers of Prostate Cancer
2013-01-01
incidence of prostate cancer as compared to placebo. Primary analysis of this trial indicated no statistically significant effect of selenium...Identification, isolation, staining, processing, and statistical analysis of slides for ERG and PTEN markers (aim 1) and interpretation of these results...participating in this study being conducted under Investigational New Drug #29829 from the Food and Drug Administration. STANDARD TREATMENT Patients
Stanzel, Sven; Weimer, Marc; Kopp-Schneider, Annette
2013-06-01
High-throughput screening approaches are carried out for the toxicity assessment of a large number of chemical compounds. In such large-scale in vitro toxicity studies several hundred or thousand concentration-response experiments are conducted. The automated evaluation of concentration-response data using statistical analysis scripts saves time and yields more consistent results in comparison to data analysis performed by the use of menu-driven statistical software. Automated statistical analysis requires that concentration-response data are available in a standardised data format across all compounds. To obtain consistent data formats, a standardised data management workflow must be established, including guidelines for data storage, data handling and data extraction. In this paper two procedures for data management within large-scale toxicological projects are proposed. Both procedures are based on Microsoft Excel files as the researcher's primary data format and use a computer programme to automate the handling of data files. The first procedure assumes that data collection has not yet started whereas the second procedure can be used when data files already exist. Successful implementation of the two approaches into the European project ACuteTox is illustrated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Performance of Between-Study Heterogeneity Measures in the Cochrane Library.
Ma, Xiaoyue; Lin, Lifeng; Qu, Zhiyong; Zhu, Motao; Chu, Haitao
2018-05-29
The growth in comparative effectiveness research and evidence-based medicine has increased attention to systematic reviews and meta-analyses. Meta-analysis synthesizes and contrasts evidence from multiple independent studies to improve statistical efficiency and reduce bias. Assessing heterogeneity is critical for performing a meta-analysis and interpreting results. As a widely used heterogeneity measure, the I statistic quantifies the proportion of total variation across studies that is due to real differences in effect size. The presence of outlying studies can seriously exaggerate the I statistic. Two alternative heterogeneity measures, the Ir and Im, have been recently proposed to reduce the impact of outlying studies. To evaluate these measures' performance empirically, we applied them to 20,599 meta-analyses in the Cochrane Library. We found that the Ir and Im have strong agreement with the I, while they are more robust than the I when outlying studies appear.
Rivoirard, Romain; Duplay, Vianney; Oriol, Mathieu; Tinquaut, Fabien; Chauvin, Franck; Magne, Nicolas; Bourmaud, Aurelie
2016-01-01
Quality of reporting for Randomized Clinical Trials (RCTs) in oncology was analyzed in several systematic reviews, but, in this setting, there is paucity of data for the outcomes definitions and consistency of reporting for statistical tests in RCTs and Observational Studies (OBS). The objective of this review was to describe those two reporting aspects, for OBS and RCTs in oncology. From a list of 19 medical journals, three were retained for analysis, after a random selection: British Medical Journal (BMJ), Annals of Oncology (AoO) and British Journal of Cancer (BJC). All original articles published between March 2009 and March 2014 were screened. Only studies whose main outcome was accompanied by a corresponding statistical test were included in the analysis. Studies based on censored data were excluded. Primary outcome was to assess quality of reporting for description of primary outcome measure in RCTs and of variables of interest in OBS. A logistic regression was performed to identify covariates of studies potentially associated with concordance of tests between Methods and Results parts. 826 studies were included in the review, and 698 were OBS. Variables were described in Methods section for all OBS studies and primary endpoint was clearly detailed in Methods section for 109 RCTs (85.2%). 295 OBS (42.2%) and 43 RCTs (33.6%) had perfect agreement for reported statistical test between Methods and Results parts. In multivariable analysis, variable "number of included patients in study" was associated with test consistency: aOR (adjusted Odds Ratio) for third group compared to first group was equal to: aOR Grp3 = 0.52 [0.31-0.89] (P value = 0.009). Variables in OBS and primary endpoint in RCTs are reported and described with a high frequency. However, statistical tests consistency between methods and Results sections of OBS is not always noted. Therefore, we encourage authors and peer reviewers to verify consistency of statistical tests in oncology studies.
Rivoirard, Romain; Duplay, Vianney; Oriol, Mathieu; Tinquaut, Fabien; Chauvin, Franck; Magne, Nicolas; Bourmaud, Aurelie
2016-01-01
Background Quality of reporting for Randomized Clinical Trials (RCTs) in oncology was analyzed in several systematic reviews, but, in this setting, there is paucity of data for the outcomes definitions and consistency of reporting for statistical tests in RCTs and Observational Studies (OBS). The objective of this review was to describe those two reporting aspects, for OBS and RCTs in oncology. Methods From a list of 19 medical journals, three were retained for analysis, after a random selection: British Medical Journal (BMJ), Annals of Oncology (AoO) and British Journal of Cancer (BJC). All original articles published between March 2009 and March 2014 were screened. Only studies whose main outcome was accompanied by a corresponding statistical test were included in the analysis. Studies based on censored data were excluded. Primary outcome was to assess quality of reporting for description of primary outcome measure in RCTs and of variables of interest in OBS. A logistic regression was performed to identify covariates of studies potentially associated with concordance of tests between Methods and Results parts. Results 826 studies were included in the review, and 698 were OBS. Variables were described in Methods section for all OBS studies and primary endpoint was clearly detailed in Methods section for 109 RCTs (85.2%). 295 OBS (42.2%) and 43 RCTs (33.6%) had perfect agreement for reported statistical test between Methods and Results parts. In multivariable analysis, variable "number of included patients in study" was associated with test consistency: aOR (adjusted Odds Ratio) for third group compared to first group was equal to: aOR Grp3 = 0.52 [0.31–0.89] (P value = 0.009). Conclusion Variables in OBS and primary endpoint in RCTs are reported and described with a high frequency. However, statistical tests consistency between methods and Results sections of OBS is not always noted. Therefore, we encourage authors and peer reviewers to verify consistency of statistical tests in oncology studies. PMID:27716793
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.
Lin, Johnny; Bentler, Peter M
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.
Multiple Phenotype Association Tests Using Summary Statistics in Genome-Wide Association Studies
Liu, Zhonghua; Lin, Xihong
2017-01-01
Summary We study in this paper jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. PMID:28653391
Multiple phenotype association tests using summary statistics in genome-wide association studies.
Liu, Zhonghua; Lin, Xihong
2018-03-01
We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. © 2017, The International Biometric Society.
Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali
2012-01-01
Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Richard O.
The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Somemore » statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.« less
Analysis and meta-analysis of single-case designs: an introduction.
Shadish, William R
2014-04-01
The last 10 years have seen great progress in the analysis and meta-analysis of single-case designs (SCDs). This special issue includes five articles that provide an overview of current work on that topic, including standardized mean difference statistics, multilevel models, Bayesian statistics, and generalized additive models. Each article analyzes a common example across articles and presents syntax or macros for how to do them. These articles are followed by commentaries from single-case design researchers and journal editors. This introduction briefly describes each article and then discusses several issues that must be addressed before we can know what analyses will eventually be best to use in SCD research. These issues include modeling trend, modeling error covariances, computing standardized effect size estimates, assessing statistical power, incorporating more accurate models of outcome distributions, exploring whether Bayesian statistics can improve estimation given the small samples common in SCDs, and the need for annotated syntax and graphical user interfaces that make complex statistics accessible to SCD researchers. The article then discusses reasons why SCD researchers are likely to incorporate statistical analyses into their research more often in the future, including changing expectations and contingencies regarding SCD research from outside SCD communities, changes and diversity within SCD communities, corrections of erroneous beliefs about the relationship between SCD research and statistics, and demonstrations of how statistics can help SCD researchers better meet their goals. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa
NASA Technical Reports Server (NTRS)
Dalsted, K. J.; Harlan, J. C.
1983-01-01
Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.
Which statistics should tropical biologists learn?
Loaiza Velásquez, Natalia; González Lutz, María Isabel; Monge-Nájera, Julián
2011-09-01
Tropical biologists study the richest and most endangered biodiversity in the planet, and in these times of climate change and mega-extinctions, the need for efficient, good quality research is more pressing than in the past. However, the statistical component in research published by tropical authors sometimes suffers from poor quality in data collection; mediocre or bad experimental design and a rigid and outdated view of data analysis. To suggest improvements in their statistical education, we listed all the statistical tests and other quantitative analyses used in two leading tropical journals, the Revista de Biología Tropical and Biotropica, during a year. The 12 most frequent tests in the articles were: Analysis of Variance (ANOVA), Chi-Square Test, Student's T Test, Linear Regression, Pearson's Correlation Coefficient, Mann-Whitney U Test, Kruskal-Wallis Test, Shannon's Diversity Index, Tukey's Test, Cluster Analysis, Spearman's Rank Correlation Test and Principal Component Analysis. We conclude that statistical education for tropical biologists must abandon the old syllabus based on the mathematical side of statistics and concentrate on the correct selection of these and other procedures and tests, on their biological interpretation and on the use of reliable and friendly freeware. We think that their time will be better spent understanding and protecting tropical ecosystems than trying to learn the mathematical foundations of statistics: in most cases, a well designed one-semester course should be enough for their basic requirements.
Descriptive and inferential statistical methods used in burns research.
Al-Benna, Sammy; Al-Ajam, Yazan; Way, Benjamin; Steinstraesser, Lars
2010-05-01
Burns research articles utilise a variety of descriptive and inferential methods to present and analyse data. The aim of this study was to determine the descriptive methods (e.g. mean, median, SD, range, etc.) and survey the use of inferential methods (statistical tests) used in articles in the journal Burns. This study defined its population as all original articles published in the journal Burns in 2007. Letters to the editor, brief reports, reviews, and case reports were excluded. Study characteristics, use of descriptive statistics and the number and types of statistical methods employed were evaluated. Of the 51 articles analysed, 11(22%) were randomised controlled trials, 18(35%) were cohort studies, 11(22%) were case control studies and 11(22%) were case series. The study design and objectives were defined in all articles. All articles made use of continuous and descriptive data. Inferential statistics were used in 49(96%) articles. Data dispersion was calculated by standard deviation in 30(59%). Standard error of the mean was quoted in 19(37%). The statistical software product was named in 33(65%). Of the 49 articles that used inferential statistics, the tests were named in 47(96%). The 6 most common tests used (Student's t-test (53%), analysis of variance/co-variance (33%), chi(2) test (27%), Wilcoxon & Mann-Whitney tests (22%), Fisher's exact test (12%)) accounted for the majority (72%) of statistical methods employed. A specified significance level was named in 43(88%) and the exact significance levels were reported in 28(57%). Descriptive analysis and basic statistical techniques account for most of the statistical tests reported. This information should prove useful in deciding which tests should be emphasised in educating burn care professionals. These results highlight the need for burn care professionals to have a sound understanding of basic statistics, which is crucial in interpreting and reporting data. Advice should be sought from professionals in the fields of biostatistics and epidemiology when using more advanced statistical techniques. Copyright 2009 Elsevier Ltd and ISBI. All rights reserved.
Statistical Analysis of Research Data | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data. The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.
Secondary Analysis of National Longitudinal Transition Study 2 Data
ERIC Educational Resources Information Center
Hicks, Tyler A.; Knollman, Greg A.
2015-01-01
This review examines published secondary analyses of National Longitudinal Transition Study 2 (NLTS2) data, with a primary focus upon statistical objectives, paradigms, inferences, and methods. Its primary purpose was to determine which statistical techniques have been common in secondary analyses of NLTS2 data. The review begins with an…
ERIC Educational Resources Information Center
Wiggins, Lyna; Nower, Lia; Mayers, Raymond Sanchez; Peterson, N. Andrew
2010-01-01
This study examines the density of lottery outlets within ethnically concentrated neighborhoods in Middlesex County, New Jersey, using geospatial statistical analyses. No prior studies have empirically examined the relationship between lottery outlet density and population demographics. Results indicate that lottery outlets were not randomly…
Crown, William; Chang, Jessica; Olson, Melvin; Kahler, Kristijan; Swindle, Jason; Buzinec, Paul; Shah, Nilay; Borah, Bijan
2015-09-01
Missing data, particularly missing variables, can create serious analytic challenges in observational comparative effectiveness research studies. Statistical linkage of datasets is a potential method for incorporating missing variables. Prior studies have focused upon the bias introduced by imperfect linkage. This analysis uses a case study of hepatitis C patients to estimate the net effect of statistical linkage on bias, also accounting for the potential reduction in missing variable bias. The results show that statistical linkage can reduce bias while also enabling parameter estimates to be obtained for the formerly missing variables. The usefulness of statistical linkage will vary depending upon the strength of the correlations of the missing variables with the treatment variable, as well as the outcome variable of interest.
Preparing for the first meeting with a statistician.
De Muth, James E
2008-12-15
Practical statistical issues that should be considered when performing data collection and analysis are reviewed. The meeting with a statistician should take place early in the research development before any study data are collected. The process of statistical analysis involves establishing the research question, formulating a hypothesis, selecting an appropriate test, sampling correctly, collecting data, performing tests, and making decisions. Once the objectives are established, the researcher can determine the characteristics or demographics of the individuals required for the study, how to recruit volunteers, what type of data are needed to answer the research question(s), and the best methods for collecting the required information. There are two general types of statistics: descriptive and inferential. Presenting data in a more palatable format for the reader is called descriptive statistics. Inferential statistics involve making an inference or decision about a population based on results obtained from a sample of that population. In order for the results of a statistical test to be valid, the sample should be representative of the population from which it is drawn. When collecting information about volunteers, researchers should only collect information that is directly related to the study objectives. Important information that a statistician will require first is an understanding of the type of variables involved in the study and which variables can be controlled by researchers and which are beyond their control. Data can be presented in one of four different measurement scales: nominal, ordinal, interval, or ratio. Hypothesis testing involves two mutually exclusive and exhaustive statements related to the research question. Statisticians should not be replaced by computer software, and they should be consulted before any research data are collected. When preparing to meet with a statistician, the pharmacist researcher should be familiar with the steps of statistical analysis and consider several questions related to the study to be conducted.
Variation in reaction norms: Statistical considerations and biological interpretation.
Morrissey, Michael B; Liefting, Maartje
2016-09-01
Analysis of reaction norms, the functions by which the phenotype produced by a given genotype depends on the environment, is critical to studying many aspects of phenotypic evolution. Different techniques are available for quantifying different aspects of reaction norm variation. We examine what biological inferences can be drawn from some of the more readily applicable analyses for studying reaction norms. We adopt a strongly biologically motivated view, but draw on statistical theory to highlight strengths and drawbacks of different techniques. In particular, consideration of some formal statistical theory leads to revision of some recently, and forcefully, advocated opinions on reaction norm analysis. We clarify what simple analysis of the slope between mean phenotype in two environments can tell us about reaction norms, explore the conditions under which polynomial regression can provide robust inferences about reaction norm shape, and explore how different existing approaches may be used to draw inferences about variation in reaction norm shape. We show how mixed model-based approaches can provide more robust inferences than more commonly used multistep statistical approaches, and derive new metrics of the relative importance of variation in reaction norm intercepts, slopes, and curvatures. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Low statistical power in biomedical science: a review of three human research domains.
Dumas-Mallet, Estelle; Button, Katherine S; Boraud, Thomas; Gonon, Francois; Munafò, Marcus R
2017-02-01
Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0-10% or 11-20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation.
Low statistical power in biomedical science: a review of three human research domains
Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois
2017-01-01
Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation. PMID:28386409
NASA Astrophysics Data System (ADS)
Ohyanagi, S.; Dileonardo, C.
2013-12-01
As a natural phenomenon earthquake occurrence is difficult to predict. Statistical analysis of earthquake data was performed using candlestick chart and Bollinger Band methods. These statistical methods, commonly used in the financial world to analyze market trends were tested against earthquake data. Earthquakes above Mw 4.0 located on shore of Sanriku (37.75°N ~ 41.00°N, 143.00°E ~ 144.50°E) from February 1973 to May 2013 were selected for analysis. Two specific patterns in earthquake occurrence were recognized through the analysis. One is a spread of candlestick prior to the occurrence of events greater than Mw 6.0. A second pattern shows convergence in the Bollinger Band, which implies a positive or negative change in the trend of earthquakes. Both patterns match general models for the buildup and release of strain through the earthquake cycle, and agree with both the characteristics of the candlestick chart and Bollinger Band analysis. These results show there is a high correlation between patterns in earthquake occurrence and trend analysis by these two statistical methods. The results of this study agree with the appropriateness of the application of these financial analysis methods to the analysis of earthquake occurrence.
Determination of apparent coupling factors for adhesive bonded acrylic plates using SEAL approach
NASA Astrophysics Data System (ADS)
Pankaj, Achuthan. C.; Shivaprasad, M. V.; Murigendrappa, S. M.
2018-04-01
Apparent coupling loss factors (CLF) and velocity responses has been computed for two lap joined adhesive bonded plates using finite element and experimental statistical energy analysis like approach. A finite element model of the plates has been created using ANSYS software. The statistical energy parameters have been computed using the velocity responses obtained from a harmonic forced excitation analysis. Experiments have been carried out for two different cases of adhesive bonded joints and the results have been compared with the apparent coupling factors and velocity responses obtained from finite element analysis. The results obtained from the studies signify the importance of modeling of adhesive bonded joints in computation of the apparent coupling factors and its further use in computation of energies and velocity responses using statistical energy analysis like approach.
The use and misuse of statistical methodologies in pharmacology research.
Marino, Michael J
2014-01-01
Descriptive, exploratory, and inferential statistics are necessary components of hypothesis-driven biomedical research. Despite the ubiquitous need for these tools, the emphasis on statistical methods in pharmacology has become dominated by inferential methods often chosen more by the availability of user-friendly software than by any understanding of the data set or the critical assumptions of the statistical tests. Such frank misuse of statistical methodology and the quest to reach the mystical α<0.05 criteria has hampered research via the publication of incorrect analysis driven by rudimentary statistical training. Perhaps more critically, a poor understanding of statistical tools limits the conclusions that may be drawn from a study by divorcing the investigator from their own data. The net result is a decrease in quality and confidence in research findings, fueling recent controversies over the reproducibility of high profile findings and effects that appear to diminish over time. The recent development of "omics" approaches leading to the production of massive higher dimensional data sets has amplified these issues making it clear that new approaches are needed to appropriately and effectively mine this type of data. Unfortunately, statistical education in the field has not kept pace. This commentary provides a foundation for an intuitive understanding of statistics that fosters an exploratory approach and an appreciation for the assumptions of various statistical tests that hopefully will increase the correct use of statistics, the application of exploratory data analysis, and the use of statistical study design, with the goal of increasing reproducibility and confidence in the literature. Copyright © 2013. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Widiana, I. Wayan; Jampel, I. Nyoman
2016-01-01
This study aimed to find out the effect of learning model and form of assessment toward inferential statistical achievement after controlling numeric thinking skills. This study was quasi experimental study with 130 students as the sample. The data analysis used ANCOVA. After controlling numeric thinking skills, the result of this study show that:…
MetaboLyzer: A Novel Statistical Workflow for Analyzing Post-Processed LC/MS Metabolomics Data
Mak, Tytus D.; Laiakis, Evagelia C.; Goudarzi, Maryam; Fornace, Albert J.
2014-01-01
Metabolomics, the global study of small molecules in a particular system, has in the last few years risen to become a primary –omics platform for the study of metabolic processes. With the ever-increasing pool of quantitative data yielded from metabolomic research, specialized methods and tools with which to analyze and extract meaningful conclusions from these data are becoming more and more crucial. Furthermore, the depth of knowledge and expertise required to undertake a metabolomics oriented study is a daunting obstacle to investigators new to the field. As such, we have created a new statistical analysis workflow, MetaboLyzer, which aims to both simplify analysis for investigators new to metabolomics, as well as provide experienced investigators the flexibility to conduct sophisticated analysis. MetaboLyzer’s workflow is specifically tailored to the unique characteristics and idiosyncrasies of postprocessed liquid chromatography/mass spectrometry (LC/MS) based metabolomic datasets. It utilizes a wide gamut of statistical tests, procedures, and methodologies that belong to classical biostatistics, as well as several novel statistical techniques that we have developed specifically for metabolomics data. Furthermore, MetaboLyzer conducts rapid putative ion identification and putative biologically relevant analysis via incorporation of four major small molecule databases: KEGG, HMDB, Lipid Maps, and BioCyc. MetaboLyzer incorporates these aspects into a comprehensive workflow that outputs easy to understand statistically significant and potentially biologically relevant information in the form of heatmaps, volcano plots, 3D visualization plots, correlation maps, and metabolic pathway hit histograms. For demonstration purposes, a urine metabolomics data set from a previously reported radiobiology study in which samples were collected from mice exposed to gamma radiation was analyzed. MetaboLyzer was able to identify 243 statistically significant ions out of a total of 1942. Numerous putative metabolites and pathways were found to be biologically significant from the putative ion identification workflow. PMID:24266674
NASA Astrophysics Data System (ADS)
Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.
2016-05-01
Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.
[A Review on the Use of Effect Size in Nursing Research].
Kang, Hyuncheol; Yeon, Kyupil; Han, Sang Tae
2015-10-01
The purpose of this study was to introduce the main concepts of statistical testing and effect size and to provide researchers in nursing science with guidance on how to calculate the effect size for the statistical analysis methods mainly used in nursing. For t-test, analysis of variance, correlation analysis, regression analysis which are used frequently in nursing research, the generally accepted definitions of the effect size were explained. Some formulae for calculating the effect size are described with several examples in nursing research. Furthermore, the authors present the required minimum sample size for each example utilizing G*Power 3 software that is the most widely used program for calculating sample size. It is noted that statistical significance testing and effect size measurement serve different purposes, and the reliance on only one side may be misleading. Some practical guidelines are recommended for combining statistical significance testing and effect size measure in order to make more balanced decisions in quantitative analyses.
Advantages of Social Network Analysis in Educational Research
ERIC Educational Resources Information Center
Ushakov, K. M.; Kukso, K. N.
2015-01-01
Currently one of the main tools for the large scale studies of schools is statistical analysis. Although it is the most common method and it offers greatest opportunities for analysis, there are other quantitative methods for studying schools, such as network analysis. We discuss the potential advantages that network analysis has for educational…
SSD for R: A Comprehensive Statistical Package to Analyze Single-System Data
ERIC Educational Resources Information Center
Auerbach, Charles; Schudrich, Wendy Zeitlin
2013-01-01
The need for statistical analysis in single-subject designs presents a challenge, as analytical methods that are applied to group comparison studies are often not appropriate in single-subject research. "SSD for R" is a robust set of statistical functions with wide applicability to single-subject research. It is a comprehensive package…
ERIC Educational Resources Information Center
Williams, Amanda S.
2015-01-01
Statistics anxiety is a common problem for graduate students. This study explores the multivariate relationship between a set of worry-related variables and six types of statistics anxiety. Canonical correlation analysis indicates a significant relationship between the two sets of variables. Findings suggest that students who are more intolerant…
ERIC Educational Resources Information Center
Dancer, Diane; Morrison, Kellie; Tarr, Garth
2015-01-01
Peer-assisted study session (PASS) programs have been shown to positively affect students' grades in a majority of studies. This study extends that analysis in two ways: controlling for ability and other factors, with focus on international students, and by presenting results for PASS in business statistics. Ordinary least squares, random effects…
NASA Astrophysics Data System (ADS)
Erfanifard, Y.; Rezayan, F.
2014-10-01
Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.
Singh, Ajai; Kumar, Vineet; Ali, Sabir; Mahdi, Abbas Ali; Srivastava, Rajeshwer Nath
2017-01-01
Aims: The aim of this study is to analyze the serial estimation of phosphorylated neurofilament heavy (pNF-H) in blood plasma that would act as a potential biomarker for early prediction of the neurological severity of acute spinal cord injuries (SCI) in adults. Settings and Design: Pilot study/observational study. Subjects and Methods: A total of 40 patients (28 cases and 12 controls) of spine injury were included in this study. In the enrolled cases, plasma level of pNF-H was evaluated in blood samples and neurological evaluation was performed by the American Spinal Injury Association Injury Scale at specified period. Serial plasma neurofilament heavy values were then correlated with the neurological status of these patients during follow-up visits and were analyzed statistically. Statistical Analysis Used: Statistical analysis was performed using GraphPad InStat software (version 3.05 for Windows, San Diego, CA, USA). The correlation analysis between the clinical progression and pNF-H expression was done using Spearman's correlation. Results: The mean baseline level of pNF-H in cases was 6.40 ± 2.49 ng/ml, whereas in controls it was 0.54 ± 0.27 ng/ml. On analyzing the association between the two by Mann–Whitney U–test, the difference in levels was found to be statistically significant. The association between the neurological progression and pNF-H expression was determined using correlation analysis (Spearman's correlation). At 95% confidence interval, the correlation coefficient was found to be 0.64, and the correlation was statistically significant. Conclusions: Plasma pNF-H levels were elevated in accordance with the severity of SCI. Therefore, pNF-H may be considered as a potential biomarker to determine early the severity of SCI in adult patients. PMID:29291173
Knowledge and utilization of computer-software for statistics among Nigerian dentists.
Chukwuneke, F N; Anyanechi, C E; Obiakor, A O; Amobi, O; Onyejiaka, N; Alamba, I
2013-01-01
The use of computer soft ware for generation of statistic analysis has transformed health information and data to simplest form in the areas of access, storage, retrieval and analysis in the field of research. This survey therefore was carried out to assess the level of knowledge and utilization of computer software for statistical analysis among dental researchers in eastern Nigeria. Questionnaires on the use of computer software for statistical analysis were randomly distributed to 65 practicing dental surgeons of above 5 years experience in the tertiary academic hospitals in eastern Nigeria. The focus was on: years of clinical experience; research work experience; knowledge and application of computer generated software for data processing and stastistical analysis. Sixty-two (62/65; 95.4%) of these questionnaires were returned anonymously, which were used in our data analysis. Twenty-nine (29/62; 46.8%) respondents fall within those with 5-10 years of clinical experience out of which none has completed the specialist training programme. Practitioners with above 10 years clinical experiences were 33 (33/62; 53.2%) out of which 15 (15/33; 45.5%) are specialists representing 24.2% (15/62) of the total number of respondents. All the 15 specialists are actively involved in research activities and only five (5/15; 33.3%) can utilize software statistical analysis unaided. This study has i dentified poor utilization of computer software for statistic analysis among dental researchers in eastern Nigeria. This is strongly associated with lack of exposure on the use of these software early enough especially during the undergraduate training. This call for introduction of computer training programme in dental curriculum to enable practitioners develops the attitude of using computer software for their research.
Sadeghi, Fatemeh; Nasseri, Simin; Mosaferi, Mohammad; Nabizadeh, Ramin; Yunesian, Masud; Mesdaghinia, Alireza
2017-05-01
In this research, probable arsenic contamination in drinking water in the city of Ardabil was studied in 163 samples during four seasons. In each season, sampling was carried out randomly in the study area. Results were analyzed statistically applying SPSS 19 software, and the data was also modeled by Arc GIS 10.1 software. The maximum permissible arsenic concentration in drinking water defined by the World Health Organization and Iranian national standard is 10 μg/L. Statistical analysis showed 75, 88, 47, and 69% of samples in autumn, winter, spring, and summer, respectively, had concentrations higher than the national standard. The mean concentrations of arsenic in autumn, winter, spring, and summer were 19.89, 15.9, 10.87, and 14.6 μg/L, respectively, and the overall average in all samples through the year was 15.32 μg/L. Although GIS outputs indicated that the concentration distribution profiles changed in four consecutive seasons, variance analysis of the results showed that statistically there is no significant difference in arsenic levels in four seasons.
Otwombe, Kennedy N.; Petzold, Max; Martinson, Neil; Chirwa, Tobias
2014-01-01
Background Research in the predictors of all-cause mortality in HIV-infected people has widely been reported in literature. Making an informed decision requires understanding the methods used. Objectives We present a review on study designs, statistical methods and their appropriateness in original articles reporting on predictors of all-cause mortality in HIV-infected people between January 2002 and December 2011. Statistical methods were compared between 2002–2006 and 2007–2011. Time-to-event analysis techniques were considered appropriate. Data Sources Pubmed/Medline. Study Eligibility Criteria Original English-language articles were abstracted. Letters to the editor, editorials, reviews, systematic reviews, meta-analysis, case reports and any other ineligible articles were excluded. Results A total of 189 studies were identified (n = 91 in 2002–2006 and n = 98 in 2007–2011) out of which 130 (69%) were prospective and 56 (30%) were retrospective. One hundred and eighty-two (96%) studies described their sample using descriptive statistics while 32 (17%) made comparisons using t-tests. Kaplan-Meier methods for time-to-event analysis were commonly used in the earlier period (n = 69, 76% vs. n = 53, 54%, p = 0.002). Predictors of mortality in the two periods were commonly determined using Cox regression analysis (n = 67, 75% vs. n = 63, 64%, p = 0.12). Only 7 (4%) used advanced survival analysis methods of Cox regression analysis with frailty in which 6 (3%) were used in the later period. Thirty-two (17%) used logistic regression while 8 (4%) used other methods. There were significantly more articles from the first period using appropriate methods compared to the second (n = 80, 88% vs. n = 69, 70%, p-value = 0.003). Conclusion Descriptive statistics and survival analysis techniques remain the most common methods of analysis in publications on predictors of all-cause mortality in HIV-infected cohorts while prospective research designs are favoured. Sophisticated techniques of time-dependent Cox regression and Cox regression with frailty are scarce. This motivates for more training in the use of advanced time-to-event methods. PMID:24498313
Ranganathan, Priya; Pramesh, C. S.; Aggarwal, Rakesh
2016-01-01
In the previous article in this series on common pitfalls in statistical analysis, we looked at the difference between risk and odds. Risk, which refers to the probability of occurrence of an event or outcome, can be defined in absolute or relative terms. Understanding what these measures represent is essential for the accurate interpretation of study results. PMID:26952180
NASA Astrophysics Data System (ADS)
Yan, Wang-Ji; Ren, Wei-Xin
2018-01-01
This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.
Multivariate statistical analysis of low-voltage EDS spectrum images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.M.
1998-03-01
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
Analysis of Variance: What Is Your Statistical Software Actually Doing?
ERIC Educational Resources Information Center
Li, Jian; Lomax, Richard G.
2011-01-01
Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…
Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei
2016-02-01
Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.
Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei
2015-01-01
Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979
Heritability of and mortality prediction with a longevity phenotype: the healthy aging index.
Sanders, Jason L; Minster, Ryan L; Barmada, M Michael; Matteini, Amy M; Boudreau, Robert M; Christensen, Kaare; Mayeux, Richard; Borecki, Ingrid B; Zhang, Qunyuan; Perls, Thomas; Newman, Anne B
2014-04-01
Longevity-associated genes may modulate risk for age-related diseases and survival. The Healthy Aging Index (HAI) may be a subphenotype of longevity, which can be constructed in many studies for genetic analysis. We investigated the HAI's association with survival in the Cardiovascular Health Study and heritability in the Long Life Family Study. The HAI includes systolic blood pressure, pulmonary vital capacity, creatinine, fasting glucose, and Modified Mini-Mental Status Examination score, each scored 0, 1, or 2 using approximate tertiles and summed from 0 (healthy) to 10 (unhealthy). In Cardiovascular Health Study, the association with mortality and accuracy predicting death were determined with Cox proportional hazards analysis and c-statistics, respectively. In Long Life Family Study, heritability was determined with a variance component-based family analysis using a polygenic model. Cardiovascular Health Study participants with unhealthier index scores (7-10) had 2.62-fold (95% confidence interval: 2.22, 3.10) greater mortality than participants with healthier scores (0-2). The HAI alone predicted death moderately well (c-statistic = 0.643, 95% confidence interval: 0.626, 0.661, p < .0001) and slightly worse than age alone (c-statistic = 0.700, 95% confidence interval: 0.684, 0.717, p < .0001; p < .0001 for comparison of c-statistics). Prediction increased significantly with adjustment for demographics, health behaviors, and clinical comorbidities (c-statistic = 0.780, 95% confidence interval: 0.765, 0.794, p < .0001). In Long Life Family Study, the heritability of the HAI was 0.295 (p < .0001) overall, 0.387 (p < .0001) in probands, and 0.238 (p = .0004) in offspring. The HAI should be investigated further as a candidate phenotype for uncovering longevity-associated genes in humans.
Heritability of and Mortality Prediction With a Longevity Phenotype: The Healthy Aging Index
2014-01-01
Background. Longevity-associated genes may modulate risk for age-related diseases and survival. The Healthy Aging Index (HAI) may be a subphenotype of longevity, which can be constructed in many studies for genetic analysis. We investigated the HAI’s association with survival in the Cardiovascular Health Study and heritability in the Long Life Family Study. Methods. The HAI includes systolic blood pressure, pulmonary vital capacity, creatinine, fasting glucose, and Modified Mini-Mental Status Examination score, each scored 0, 1, or 2 using approximate tertiles and summed from 0 (healthy) to 10 (unhealthy). In Cardiovascular Health Study, the association with mortality and accuracy predicting death were determined with Cox proportional hazards analysis and c-statistics, respectively. In Long Life Family Study, heritability was determined with a variance component–based family analysis using a polygenic model. Results. Cardiovascular Health Study participants with unhealthier index scores (7–10) had 2.62-fold (95% confidence interval: 2.22, 3.10) greater mortality than participants with healthier scores (0–2). The HAI alone predicted death moderately well (c-statistic = 0.643, 95% confidence interval: 0.626, 0.661, p < .0001) and slightly worse than age alone (c-statistic = 0.700, 95% confidence interval: 0.684, 0.717, p < .0001; p < .0001 for comparison of c-statistics). Prediction increased significantly with adjustment for demographics, health behaviors, and clinical comorbidities (c-statistic = 0.780, 95% confidence interval: 0.765, 0.794, p < .0001). In Long Life Family Study, the heritability of the HAI was 0.295 (p < .0001) overall, 0.387 (p < .0001) in probands, and 0.238 (p = .0004) in offspring. Conclusion. The HAI should be investigated further as a candidate phenotype for uncovering longevity-associated genes in humans. PMID:23913930
Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun
2018-01-01
To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.
Single-case research design in pediatric psychology: considerations regarding data analysis.
Cohen, Lindsey L; Feinstein, Amanda; Masuda, Akihiko; Vowles, Kevin E
2014-03-01
Single-case research allows for an examination of behavior and can demonstrate the functional relation between intervention and outcome in pediatric psychology. This review highlights key assumptions, methodological and design considerations, and options for data analysis. Single-case methodology and guidelines are reviewed with an in-depth focus on visual and statistical analyses. Guidelines allow for the careful evaluation of design quality and visual analysis. A number of statistical techniques have been introduced to supplement visual analysis, but to date, there is no consensus on their recommended use in single-case research design. Single-case methodology is invaluable for advancing pediatric psychology science and practice, and guidelines have been introduced to enhance the consistency, validity, and reliability of these studies. Experts generally agree that visual inspection is the optimal method of analysis in single-case design; however, statistical approaches are becoming increasingly evaluated and used to augment data interpretation.
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Alsaggaf, Rotana; O'Hara, Lyndsay M; Stafford, Kristen A; Leekha, Surbhi; Harris, Anthony D
2018-02-01
OBJECTIVE A systematic review of quasi-experimental studies in the field of infectious diseases was published in 2005. The aim of this study was to assess improvements in the design and reporting of quasi-experiments 10 years after the initial review. We also aimed to report the statistical methods used to analyze quasi-experimental data. DESIGN Systematic review of articles published from January 1, 2013, to December 31, 2014, in 4 major infectious disease journals. METHODS Quasi-experimental studies focused on infection control and antibiotic resistance were identified and classified based on 4 criteria: (1) type of quasi-experimental design used, (2) justification of the use of the design, (3) use of correct nomenclature to describe the design, and (4) statistical methods used. RESULTS Of 2,600 articles, 173 (7%) featured a quasi-experimental design, compared to 73 of 2,320 articles (3%) in the previous review (P<.01). Moreover, 21 articles (12%) utilized a study design with a control group; 6 (3.5%) justified the use of a quasi-experimental design; and 68 (39%) identified their design using the correct nomenclature. In addition, 2-group statistical tests were used in 75 studies (43%); 58 studies (34%) used standard regression analysis; 18 (10%) used segmented regression analysis; 7 (4%) used standard time-series analysis; 5 (3%) used segmented time-series analysis; and 10 (6%) did not utilize statistical methods for comparisons. CONCLUSIONS While some progress occurred over the decade, it is crucial to continue improving the design and reporting of quasi-experimental studies in the fields of infection control and antibiotic resistance to better evaluate the effectiveness of important interventions. Infect Control Hosp Epidemiol 2018;39:170-176.
Clesse, Christophe; Lighezzolo-Alnot, Joëlle; De Lavergne, Sylvie; Hamlin, Sandrine; Scheffler, Michèle
2018-06-01
The authors' purpose for this article is to identify, review and interpret all publications about the episiotomy rates worldwide. Based on the criteria from the PRISMA guidelines, twenty databases were scrutinized. All studies which include national statistics related to episiotomy were selected, as well as studies presenting estimated data. Sixty-one papers were selected with publication dates between 1995 and 2016. A static and dynamic analysis of all the results was carried out. The assumption for the decline in the number of episiotomies is discussed and confirmed, recalling that nowadays high rates of episiotomy remain in less industrialized countries and East Asia. Finally, our analysis aims to investigate the potential determinants which influence apparent statistical disparities.
Modern Empirical Statistical Spectral Analysis.
1980-05-01
716-723. Akaike, H. (1977). On entropy maximization principle, Applications of Statistics, P.R. Krishnaiah , ed., North-Holland, Amsterdam, 27-41...by P. Krishnaiah , North Holland: Amsterdam, 283-295. Parzen, E. (1979). Forecasting and whitening filter estimation, TIMS Studies in the Management
Higher Education: Gaps in Access and Persistence Study. Statistical Analysis Report. NCES 2012-046
ERIC Educational Resources Information Center
Ross, Terris; Kena, Grace; Rathbun, Amy; KewalRamani, Angelina; Zhang, Jijun; Kristapovich, Paul; Manning, Eileen
2012-01-01
Numerous studies, including those of the National Center for Education Statistics (NCES), have documented persistent gaps between the educational attainment of White males and that of Black, Hispanic, American Indian/Alaska Native, and Native Hawaiian/Pacific Islander males. Further, there is evidence of growing gaps by sex within these…
Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies
ERIC Educational Resources Information Center
Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre
2018-01-01
Purpose: Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. Method: We propose a…
History of water quality parameters - a study on the Sinos River/Brazil.
Konzen, G B; Figueiredo, J A S; Quevedo, D M
2015-05-01
Water is increasingly becoming a valuable resource, constituting one of the central themes of environmental, economic and social discussions. The Sinos River, located in southern Brazil, is the main river from the Sinos River Basin, representing a source of drinking water supply for a highly populated region. Considering its size and importance, it becomes necessary to conduct a study to follow up the water quality of this river, which is considered by some experts as one of the most polluted rivers in Brazil. As for this study, its great importance lies in the historical analysis of indicators. In this sense, we sought to develop aspects related to the management of water resources by performing a historical analysis of the Water Quality Index (WQI) of the Sinos River, using statistical methods. With regard to the methodological procedures, it should be pointed out that this study performs a time analysis of monitoring data on parameters related to a punctual measurement that is variable in time, using statistical tools. The data used refer to analyses of the water quality of the Sinos River (WQI) from the State Environmental Protection Agency Henrique Luiz Roessler (Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler, FEPAM) covering the period between 2000 and 2008, as well as to a theoretical analysis focusing on the management of water resources. The study of WQI and its parameters by statistical analysis has shown to be effective, ensuring its effectiveness as a tool for the management of water resources. The descriptive analysis of the WQI and its parameters showed that the water quality of the Sinos River is concerning low, which reaffirms that it is one of the most polluted rivers in Brazil. It should be highlighted that there was an overall difficulty in obtaining data with the appropriate periodicity, as well as a long complete series, which limited the conduction of statistical studies such as the present one.
ERIC Educational Resources Information Center
Unicomb, Rachael; Colyvas, Kim; Harrison, Elisabeth; Hewat, Sally
2015-01-01
Purpose: Case-study methodology studying change is often used in the field of speech-language pathology, but it can be criticized for not being statistically robust. Yet with the heterogeneous nature of many communication disorders, case studies allow clinicians and researchers to closely observe and report on change. Such information is valuable…
Uncertainty Analysis for DAM Projects.
1987-09-01
overwhelming majority of articles published on the use of statistical methodology for geotechnical engineering focus on performance predictions and design ...Results of the present study do not support the adoption of more esoteric statistical procedures except on a special case basis or in research ...influence that recommended statistical procedures might have had on the Carters Project, had they been applied during planning and design phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Janine Camille; Thompson, David; Pebay, Philippe Pierre
Statistical analysis is typically used to reduce the dimensionality of and infer meaning from data. A key challenge of any statistical analysis package aimed at large-scale, distributed data is to address the orthogonal issues of parallel scalability and numerical stability. Many statistical techniques, e.g., descriptive statistics or principal component analysis, are based on moments and co-moments and, using robust online update formulas, can be computed in an embarrassingly parallel manner, amenable to a map-reduce style implementation. In this paper we focus on contingency tables, through which numerous derived statistics such as joint and marginal probability, point-wise mutual information, information entropy,more » and {chi}{sup 2} independence statistics can be directly obtained. However, contingency tables can become large as data size increases, requiring a correspondingly large amount of communication between processors. This potential increase in communication prevents optimal parallel speedup and is the main difference with moment-based statistics (which we discussed in [1]) where the amount of inter-processor communication is independent of data size. Here we present the design trade-offs which we made to implement the computation of contingency tables in parallel. We also study the parallel speedup and scalability properties of our open source implementation. In particular, we observe optimal speed-up and scalability when the contingency statistics are used in their appropriate context, namely, when the data input is not quasi-diffuse.« less
Shitara, Kohei; Matsuo, Keitaro; Oze, Isao; Mizota, Ayako; Kondo, Chihiro; Nomura, Motoo; Yokota, Tomoya; Takahari, Daisuke; Ura, Takashi; Muro, Kei
2011-08-01
We performed a systematic review and meta-analysis to determine the impact of neutropenia or leukopenia experienced during chemotherapy on survival. Eligible studies included prospective or retrospective analyses that evaluated neutropenia or leukopenia as a prognostic factor for overall survival or disease-free survival. Statistical analyses were conducted to calculate a summary hazard ratio and 95% confidence interval (CI) using random-effects or fixed-effects models based on the heterogeneity of the included studies. Thirteen trials were selected for the meta-analysis, with a total of 9,528 patients. The hazard ratio of death was 0.69 (95% CI, 0.64-0.75) for patients with higher-grade neutropenia or leukopenia compared to patients with lower-grade or lack of cytopenia. Our analysis was also stratified by statistical method (any statistical method to decrease lead-time bias; time-varying analysis or landmark analysis), but no differences were observed. Our results indicate that neutropenia or leukopenia experienced during chemotherapy is associated with improved survival in patients with advanced cancer or hematological malignancies undergoing chemotherapy. Future prospective analyses designed to investigate the potential impact of chemotherapy dose adjustment coupled with monitoring of neutropenia or leukopenia on survival are warranted.
ERIC Educational Resources Information Center
Trueman, Mark
1985-01-01
Critically reviews the influential study "Malnutrition and Environmental Enrichment" by Winick et al. (1975) and highlights what are considered to be statistical flaws in its analysis. Data in the classic study of height, weight, and IQ changes in three groups of adopted, malnourished Korean girls are reanalysed and conclusions…
Source apportionment of groundwater pollution around landfill site in Nagpur, India.
Pujari, Paras R; Deshpande, Vijaya
2005-12-01
The present work attempts statistical analysis of groundwater quality near a Landfill site in Nagpur, India. The objective of the present work is to figure out the impact of different factors on the quality of groundwater in the study area. Statistical analysis of the data has been attempted by applying Factor Analysis concept. The analysis brings out the effect of five different factors governing the groundwater quality in the study area. Based on the contribution of the different parameters present in the extracted factors, the latter are linked to the geological setting, the leaching from the host rock, leachate of heavy metals from the landfill as well as the bacterial contamination from landfill site and other anthropogenic activities. The analysis brings out the vulnerability of the unconfined aquifer to contamination.
Mixed-Methods Research in the Discipline of Nursing.
Beck, Cheryl Tatano; Harrison, Lisa
2016-01-01
In this review article, we examined the prevalence and characteristics of 294 mixed-methods studies in the discipline of nursing. Creswell and Plano Clark's typology was most frequently used along with concurrent timing. Bivariate statistics was most often the highest level of statistics reported in the results. As for qualitative data analysis, content analysis was most frequently used. The majority of nurse researchers did not specifically address the purpose, paradigm, typology, priority, timing, interaction, or integration of their mixed-methods studies. Strategies are suggested for improving the design, conduct, and reporting of mixed-methods studies in the discipline of nursing.
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis
Lin, Johnny; Bentler, Peter M.
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne’s asymptotically distribution-free method and Satorra Bentler’s mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler’s statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby’s study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic. PMID:23144511
A Handbook of Sound and Vibration Parameters
1978-09-18
fixed in space. (Reference 1.) no motion atay node Static Divergence: (See Divergence.) Statistical Energy Analysis (SEA): Statistical energy analysis is...parameters of the circuits come from statistics of the vibrational characteristics of the structure. Statistical energy analysis is uniquely successful
2017-01-01
Purpose This study is aimed at identifying the relationships between medical school students’ academic burnout, empathy, and calling, and determining whether their calling has a mediating effect on the relationship between academic burnout and empathy. Methods A mixed method study was conducted. One hundred twenty-seven medical students completed a survey. Scales measuring academic burnout, medical students’ empathy, and calling were utilized. For statistical analysis, correlation analysis, descriptive statistics analysis, and hierarchical multiple regression analyses were conducted. For qualitative approach, eight medical students participated in a focus group interview. Results The study found that empathy has a statistically significant, negative correlation with academic burnout, while having a significant, positive correlation with calling. Sense of calling proved to be an effective mediator of the relationship between academic burnout and empathy. Conclusion This result demonstrates that calling is a key variable that mediates the relationship between medical students’ academic burnout and empathy. As such, this study provides baseline data for an education that could improve medical students’ empathy skills. PMID:28870019
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
2011-01-01
Background Meta-analysis is a popular methodology in several fields of medical research, including genetic association studies. However, the methods used for meta-analysis of association studies that report haplotypes have not been studied in detail. In this work, methods for performing meta-analysis of haplotype association studies are summarized, compared and presented in a unified framework along with an empirical evaluation of the literature. Results We present multivariate methods that use summary-based data as well as methods that use binary and count data in a generalized linear mixed model framework (logistic regression, multinomial regression and Poisson regression). The methods presented here avoid the inflation of the type I error rate that could be the result of the traditional approach of comparing a haplotype against the remaining ones, whereas, they can be fitted using standard software. Moreover, formal global tests are presented for assessing the statistical significance of the overall association. Although the methods presented here assume that the haplotypes are directly observed, they can be easily extended to allow for such an uncertainty by weighting the haplotypes by their probability. Conclusions An empirical evaluation of the published literature and a comparison against the meta-analyses that use single nucleotide polymorphisms, suggests that the studies reporting meta-analysis of haplotypes contain approximately half of the included studies and produce significant results twice more often. We show that this excess of statistically significant results, stems from the sub-optimal method of analysis used and, in approximately half of the cases, the statistical significance is refuted if the data are properly re-analyzed. Illustrative examples of code are given in Stata and it is anticipated that the methods developed in this work will be widely applied in the meta-analysis of haplotype association studies. PMID:21247440
Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
2013-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Bassari, Jinous; Triantafyllopoulos, Spiros
1984-01-01
The University of Southwestern Louisiana (USL) NASA PC R and D statistical analysis support package is designed to be a three-level package to allow statistical analysis for a variety of applications within the USL Data Base Management System (DBMS) contract work. The design addresses usage of the statistical facilities as a library package, as an interactive statistical analysis system, and as a batch processing package.
Advanced statistical methods for improved data analysis of NASA astrophysics missions
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.
1992-01-01
The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.
Statistical Tutorial | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018. The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean
Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali
2012-01-01
Objective: Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. Methods: A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Results: Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. Conclusion: These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction. PMID:24644468
A random-sum Wilcoxon statistic and its application to analysis of ROC and LROC data.
Tang, Liansheng Larry; Balakrishnan, N
2011-01-01
The Wilcoxon-Mann-Whitney statistic is commonly used for a distribution-free comparison of two groups. One requirement for its use is that the sample sizes of the two groups are fixed. This is violated in some of the applications such as medical imaging studies and diagnostic marker studies; in the former, the violation occurs since the number of correctly localized abnormal images is random, while in the latter the violation is due to some subjects not having observable measurements. For this reason, we propose here a random-sum Wilcoxon statistic for comparing two groups in the presence of ties, and derive its variance as well as its asymptotic distribution for large sample sizes. The proposed statistic includes the regular Wilcoxon rank-sum statistic. Finally, we apply the proposed statistic for summarizing location response operating characteristic data from a liver computed tomography study, and also for summarizing diagnostic accuracy of biomarker data.
ERIC Educational Resources Information Center
Liu, Leping; Maddux, Cleborne D.
2008-01-01
This article presents a study of Web 2.0 articles intended to (a) analyze the content of what is written and (b) develop a statistical model to predict whether authors' write about the need for new instructional design strategies and models. Eighty-eight technology articles were subjected to lexical analysis and a logistic regression model was…
Fatalities Associated with Carbon Monoxide Poisoning from Motor Vehicles in 1993
DOT National Transportation Integrated Search
1996-12-01
National Highway Traffic Safety Administration's National Center for Statistics : and Analysis (NCSA) recently completed a study of data from the National Center : for Health Statistics (NCHS) to obtain an estimate of the number of persons : killed a...
Statistical models and NMR analysis of polymer microstructure
USDA-ARS?s Scientific Manuscript database
Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...
78 FR 57822 - Lease and Interchange of Vehicles; Motor Carriers of Passengers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
... evaluation develops a threshold analysis. There are no statistical or empirical studies that directly link... divided by the value of a statistical life (VSL) of $9.1 million results in 5.8 lives prevented over ten...
An overview of meta-analysis for clinicians.
Lee, Young Ho
2018-03-01
The number of medical studies being published is increasing exponentially, and clinicians must routinely process large amounts of new information. Moreover, the results of individual studies are often insufficient to provide confident answers, as their results are not consistently reproducible. A meta-analysis is a statistical method for combining the results of different studies on the same topic and it may resolve conflicts among studies. Meta-analysis is being used increasingly and plays an important role in medical research. This review introduces the basic concepts, steps, advantages, and caveats of meta-analysis, to help clinicians understand it in clinical practice and research. A major advantage of a meta-analysis is that it produces a precise estimate of the effect size, with considerably increased statistical power, which is important when the power of the primary study is limited because of a small sample size. A meta-analysis may yield conclusive results when individual studies are inconclusive. Furthermore, meta-analyses investigate the source of variation and different effects among subgroups. In summary, a meta-analysis is an objective, quantitative method that provides less biased estimates on a specific topic. Understanding how to conduct a meta-analysis aids clinicians in the process of making clinical decisions.
Materials of acoustic analysis: sustained vowel versus sentence.
Moon, Kyung Ray; Chung, Sung Min; Park, Hae Sang; Kim, Han Su
2012-09-01
Sustained vowel is a widely used material of acoustic analysis. However, vowel phonation does not sufficiently demonstrate sentence-based real-life phonation, and biases may occur depending on the test subjects intent during pronunciation. The purpose of this study was to investigate the differences between the results of acoustic analysis using each material. An individual prospective study. Two hundred two individuals (87 men and 115 women) with normal findings in videostroboscopy were enrolled. Acoustic analysis was done using the speech pattern element acquisition and display program. Fundamental frequency (Fx), amplitude (Ax), contact quotient (Qx), jitter, and shimmer were measured with sustained vowel-based acoustic analysis. Average fundamental frequency (FxM), average amplitude (AxM), average contact quotient (QxM), Fx perturbation (CFx), and amplitude perturbation (CAx) were measured with sentence-based acoustic analysis. Corresponding data of the two methods were compared with each other. SPSS (Statistical Package for the Social Sciences, Version 12.0; SPSS, Inc., Chicago, IL) software was used for statistical analysis. FxM was higher than Fx in men (Fx, 124.45 Hz; FxM, 133.09 Hz; P=0.000). In women, FxM seemed to be lower than Fx, but the results were not statistically significant (Fx, 210.58 Hz; FxM, 208.34 Hz; P=0.065). There was no statistical significance between Ax and AxM in both the groups. QxM was higher than Qx in men and women. Jitter was lower in men, but CFx was lower in women. Both Shimmer and CAx were higher in men. Sustained vowel phonation could not be a complete substitute for real-time phonation in acoustic analysis. Characteristics of acoustic materials should be considered when choosing the material for acoustic analysis and interpreting the results. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
GWAR: robust analysis and meta-analysis of genome-wide association studies.
Dimou, Niki L; Tsirigos, Konstantinos D; Elofsson, Arne; Bagos, Pantelis G
2017-05-15
In the context of genome-wide association studies (GWAS), there is a variety of statistical techniques in order to conduct the analysis, but, in most cases, the underlying genetic model is usually unknown. Under these circumstances, the classical Cochran-Armitage trend test (CATT) is suboptimal. Robust procedures that maximize the power and preserve the nominal type I error rate are preferable. Moreover, performing a meta-analysis using robust procedures is of great interest and has never been addressed in the past. The primary goal of this work is to implement several robust methods for analysis and meta-analysis in the statistical package Stata and subsequently to make the software available to the scientific community. The CATT under a recessive, additive and dominant model of inheritance as well as robust methods based on the Maximum Efficiency Robust Test statistic, the MAX statistic and the MIN2 were implemented in Stata. Concerning MAX and MIN2, we calculated their asymptotic null distributions relying on numerical integration resulting in a great gain in computational time without losing accuracy. All the aforementioned approaches were employed in a fixed or a random effects meta-analysis setting using summary data with weights equal to the reciprocal of the combined cases and controls. Overall, this is the first complete effort to implement procedures for analysis and meta-analysis in GWAS using Stata. A Stata program and a web-server are freely available for academic users at http://www.compgen.org/tools/GWAR. pbagos@compgen.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Tilson, Julie K; Marshall, Katie; Tam, Jodi J; Fetters, Linda
2016-04-22
A primary barrier to the implementation of evidence based practice (EBP) in physical therapy is therapists' limited ability to understand and interpret statistics. Physical therapists demonstrate limited skills and report low self-efficacy for interpreting results of statistical procedures. While standards for physical therapist education include statistics, little empirical evidence is available to inform what should constitute such curricula. The purpose of this study was to conduct a census of the statistical terms and study designs used in physical therapy literature and to use the results to make recommendations for curricular development in physical therapist education. We conducted a bibliometric analysis of 14 peer-reviewed journals associated with the American Physical Therapy Association over 12 months (Oct 2011-Sept 2012). Trained raters recorded every statistical term appearing in identified systematic reviews, primary research reports, and case series and case reports. Investigator-reported study design was also recorded. Terms representing the same statistical test or concept were combined into a single, representative term. Cumulative percentage was used to identify the most common representative statistical terms. Common representative terms were organized into eight categories to inform curricular design. Of 485 articles reviewed, 391 met the inclusion criteria. These 391 articles used 532 different terms which were combined into 321 representative terms; 13.1 (sd = 8.0) terms per article. Eighty-one representative terms constituted 90% of all representative term occurrences. Of the remaining 240 representative terms, 105 (44%) were used in only one article. The most common study design was prospective cohort (32.5%). Physical therapy literature contains a large number of statistical terms and concepts for readers to navigate. However, in the year sampled, 81 representative terms accounted for 90% of all occurrences. These "common representative terms" can be used to inform curricula to promote physical therapists' skills, competency, and confidence in interpreting statistics in their professional literature. We make specific recommendations for curriculum development informed by our findings.
Westfall, Jacob; Kenny, David A; Judd, Charles M
2014-10-01
Researchers designing experiments in which a sample of participants responds to a sample of stimuli are faced with difficult questions about optimal study design. The conventional procedures of statistical power analysis fail to provide appropriate answers to these questions because they are based on statistical models in which stimuli are not assumed to be a source of random variation in the data, models that are inappropriate for experiments involving crossed random factors of participants and stimuli. In this article, we present new methods of power analysis for designs with crossed random factors, and we give detailed, practical guidance to psychology researchers planning experiments in which a sample of participants responds to a sample of stimuli. We extensively examine 5 commonly used experimental designs, describe how to estimate statistical power in each, and provide power analysis results based on a reasonable set of default parameter values. We then develop general conclusions and formulate rules of thumb concerning the optimal design of experiments in which a sample of participants responds to a sample of stimuli. We show that in crossed designs, statistical power typically does not approach unity as the number of participants goes to infinity but instead approaches a maximum attainable power value that is possibly small, depending on the stimulus sample. We also consider the statistical merits of designs involving multiple stimulus blocks. Finally, we provide a simple and flexible Web-based power application to aid researchers in planning studies with samples of stimuli.
2015-08-01
the nine questions. The Statistical Package for the Social Sciences ( SPSS ) [11] was used to conduct statistical analysis on the sample. Two types...constructs. SPSS was again used to conduct statistical analysis on the sample. This time factor analysis was conducted. Factor analysis attempts to...Business Research Methods and Statistics using SPSS . P432. 11 IBM SPSS Statistics . (2012) 12 Burns, R.B., Burns, R.A. (2008) ‘Business Research
Patounakis, George; Hill, Micah J
2018-06-01
The purpose of the current review is to describe the common pitfalls in design and statistical analysis of reproductive medicine studies. It serves to guide both authors and reviewers toward reducing the incidence of spurious statistical results and erroneous conclusions. The large amount of data gathered in IVF cycles leads to problems with multiplicity, multicollinearity, and over fitting of regression models. Furthermore, the use of the word 'trend' to describe nonsignificant results has increased in recent years. Finally, methods to accurately account for female age in infertility research models are becoming more common and necessary. The pitfalls of study design and analysis reviewed provide a framework for authors and reviewers to approach clinical research in the field of reproductive medicine. By providing a more rigorous approach to study design and analysis, the literature in reproductive medicine will have more reliable conclusions that can stand the test of time.
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
Excoffier, L; Smouse, P E; Quattro, J M
1992-06-01
We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.
Liem, Franziskus; Mérillat, Susan; Bezzola, Ladina; Hirsiger, Sarah; Philipp, Michel; Madhyastha, Tara; Jäncke, Lutz
2015-03-01
FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power. Copyright © 2014 Elsevier Inc. All rights reserved.
ParallABEL: an R library for generalized parallelization of genome-wide association studies.
Sangket, Unitsa; Mahasirimongkol, Surakameth; Chantratita, Wasun; Tandayya, Pichaya; Aulchenko, Yurii S
2010-04-29
Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors. Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL.
Trends in study design and the statistical methods employed in a leading general medicine journal.
Gosho, M; Sato, Y; Nagashima, K; Takahashi, S
2018-02-01
Study design and statistical methods have become core components of medical research, and the methodology has become more multifaceted and complicated over time. The study of the comprehensive details and current trends of study design and statistical methods is required to support the future implementation of well-planned clinical studies providing information about evidence-based medicine. Our purpose was to illustrate study design and statistical methods employed in recent medical literature. This was an extension study of Sato et al. (N Engl J Med 2017; 376: 1086-1087), which reviewed 238 articles published in 2015 in the New England Journal of Medicine (NEJM) and briefly summarized the statistical methods employed in NEJM. Using the same database, we performed a new investigation of the detailed trends in study design and individual statistical methods that were not reported in the Sato study. Due to the CONSORT statement, prespecification and justification of sample size are obligatory in planning intervention studies. Although standard survival methods (eg Kaplan-Meier estimator and Cox regression model) were most frequently applied, the Gray test and Fine-Gray proportional hazard model for considering competing risks were sometimes used for a more valid statistical inference. With respect to handling missing data, model-based methods, which are valid for missing-at-random data, were more frequently used than single imputation methods. These methods are not recommended as a primary analysis, but they have been applied in many clinical trials. Group sequential design with interim analyses was one of the standard designs, and novel design, such as adaptive dose selection and sample size re-estimation, was sometimes employed in NEJM. Model-based approaches for handling missing data should replace single imputation methods for primary analysis in the light of the information found in some publications. Use of adaptive design with interim analyses is increasing after the presentation of the FDA guidance for adaptive design. © 2017 John Wiley & Sons Ltd.
STRengthening analytical thinking for observational studies: the STRATOS initiative.
Sauerbrei, Willi; Abrahamowicz, Michal; Altman, Douglas G; le Cessie, Saskia; Carpenter, James
2014-12-30
The validity and practical utility of observational medical research depends critically on good study design, excellent data quality, appropriate statistical methods and accurate interpretation of results. Statistical methodology has seen substantial development in recent times. Unfortunately, many of these methodological developments are ignored in practice. Consequently, design and analysis of observational studies often exhibit serious weaknesses. The lack of guidance on vital practical issues discourages many applied researchers from using more sophisticated and possibly more appropriate methods when analyzing observational studies. Furthermore, many analyses are conducted by researchers with a relatively weak statistical background and limited experience in using statistical methodology and software. Consequently, even 'standard' analyses reported in the medical literature are often flawed, casting doubt on their results and conclusions. An efficient way to help researchers to keep up with recent methodological developments is to develop guidance documents that are spread to the research community at large. These observations led to the initiation of the strengthening analytical thinking for observational studies (STRATOS) initiative, a large collaboration of experts in many different areas of biostatistical research. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies. The guidance is intended for applied statisticians and other data analysts with varying levels of statistical education, experience and interests. In this article, we introduce the STRATOS initiative and its main aims, present the need for guidance documents and outline the planned approach and progress so far. We encourage other biostatisticians to become involved. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
1980-01-01
MATHPAC image-analysis library is collection of general-purpose mathematical and statistical routines and special-purpose data-analysis and pattern-recognition routines for image analysis. MATHPAC library consists of Linear Algebra, Optimization, Statistical-Summary, Densities and Distribution, Regression, and Statistical-Test packages.
Coordinate based random effect size meta-analysis of neuroimaging studies.
Tench, C R; Tanasescu, Radu; Constantinescu, C S; Auer, D P; Cottam, W J
2017-06-01
Low power in neuroimaging studies can make them difficult to interpret, and Coordinate based meta-analysis (CBMA) may go some way to mitigating this issue. CBMA has been used in many analyses to detect where published functional MRI or voxel-based morphometry studies testing similar hypotheses report significant summary results (coordinates) consistently. Only the reported coordinates and possibly t statistics are analysed, and statistical significance of clusters is determined by coordinate density. Here a method of performing coordinate based random effect size meta-analysis and meta-regression is introduced. The algorithm (ClusterZ) analyses both coordinates and reported t statistic or Z score, standardised by the number of subjects. Statistical significance is determined not by coordinate density, but by a random effects meta-analyses of reported effects performed cluster-wise using standard statistical methods and taking account of censoring inherent in the published summary results. Type 1 error control is achieved using the false cluster discovery rate (FCDR), which is based on the false discovery rate. This controls both the family wise error rate under the null hypothesis that coordinates are randomly drawn from a standard stereotaxic space, and the proportion of significant clusters that are expected under the null. Such control is necessary to avoid propagating and even amplifying the very issues motivating the meta-analysis in the first place. ClusterZ is demonstrated on both numerically simulated data and on real data from reports of grey matter loss in multiple sclerosis (MS) and syndromes suggestive of MS, and of painful stimulus in healthy controls. The software implementation is available to download and use freely. Copyright © 2017 Elsevier Inc. All rights reserved.
Biometric Analysis – A Reliable Indicator for Diagnosing Taurodontism using Panoramic Radiographs
Hegde, Veda; Anegundi, Rajesh Trayambhak; Pravinchandra, K.R.
2013-01-01
Background: Taurodontism is a clinical entity with a morpho–anatomical change in the shape of the tooth, which was thought to be absent in modern man. Taurodontism is mostly observed as an isolated trait or a component of a syndrome. Various techniques have been devised to diagnose taurodontism. Aim: The aim of this study was to analyze whether a biometric analysis was useful in diagnosing taurodontism, in radiographs which appeared to be normal on cursory observations. Setting and Design: This study was carried out in our institution by using radiographs which were taken for routine procedures. Material and Methods: In this retrospective study, panoramic radiographs were obtained from dental records of children who were aged between 9–14 years, who did not have any abnormality on cursory observations. Biometric analyses were carried out on permanent mandibular first molar(s) by using a novel biometric method. The values were tabulated and analysed. Statistics: Fischer exact probability test, Chi square test and Chi-square test with Yates correction were used for statistical analysis of the data. Results: Cursory observation did not yield us any case of taurodontism. In contrast, the biometric analysis yielded us a statistically significant number of cases of taurodontism. However, there was no statistically significant difference in the number of cases with taurodontism, which was obtained between the genders and the age group which was considered. Conclusion: Thus, taurodontism was diagnosed on a biometric analysis, which was otherwise missed on a cursory observation. It is therefore necessary from the clinical point of view, to diagnose even the mildest form of taurodontism by using metric analysis rather than just relying on a visual radiographic assessment, as its occurrence has many clinical implications and a diagnostic importance. PMID:24086912
ERIC Educational Resources Information Center
Vaessen, Bram E.; van den Beemt, Antoine; van de Watering, Gerard; van Meeuwen, Ludo W.; Lemmens, Lex; den Brok, Perry
2017-01-01
This pilot study measures university students' perceptions of graded frequent assessments in an obligatory statistics course using a novel questionnaire. Relations between perceptions of frequent assessments, intrinsic motivation and grades were also investigated. A factor analysis of the questionnaire revealed four factors, which were labelled…
Ensor, Joie; Riley, Richard D.
2016-01-01
Meta‐analysis using individual participant data (IPD) obtains and synthesises the raw, participant‐level data from a set of relevant studies. The IPD approach is becoming an increasingly popular tool as an alternative to traditional aggregate data meta‐analysis, especially as it avoids reliance on published results and provides an opportunity to investigate individual‐level interactions, such as treatment‐effect modifiers. There are two statistical approaches for conducting an IPD meta‐analysis: one‐stage and two‐stage. The one‐stage approach analyses the IPD from all studies simultaneously, for example, in a hierarchical regression model with random effects. The two‐stage approach derives aggregate data (such as effect estimates) in each study separately and then combines these in a traditional meta‐analysis model. There have been numerous comparisons of the one‐stage and two‐stage approaches via theoretical consideration, simulation and empirical examples, yet there remains confusion regarding when each approach should be adopted, and indeed why they may differ. In this tutorial paper, we outline the key statistical methods for one‐stage and two‐stage IPD meta‐analyses, and provide 10 key reasons why they may produce different summary results. We explain that most differences arise because of different modelling assumptions, rather than the choice of one‐stage or two‐stage itself. We illustrate the concepts with recently published IPD meta‐analyses, summarise key statistical software and provide recommendations for future IPD meta‐analyses. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:27747915
Liu, Yan; Salvendy, Gavriel
2009-05-01
This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.
Applied statistics in agricultural, biological, and environmental sciences.
USDA-ARS?s Scientific Manuscript database
Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...
Australia 31-GHz brightness temperature exceedance statistics
NASA Technical Reports Server (NTRS)
Gary, B. L.
1988-01-01
Water vapor radiometer measurements were made at DSS 43 during an 18 month period. Brightness temperatures at 31 GHz were subjected to a statistical analysis which included correction for the effects of occasional water on the radiometer radome. An exceedance plot was constructed, and the 1 percent exceedance statistics occurs at 120 K. The 5 percent exceedance statistics occurs at 70 K, compared with 75 K in Spain. These values are valid for all of the three month groupings that were studied.
Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.
2016-01-01
Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147
Rock, Adam J; Coventry, William L; Morgan, Methuen I; Loi, Natasha M
2016-01-01
Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.
ERIC Educational Resources Information Center
Marchionini, Gary
2002-01-01
Describes how user interfaces for the Bureau of Labor Statistics (BLS) web site evolved over a 5-year period along with the larger organizational interface and how this co-evolution has influenced the institution. Interviews with BLS staff and transaction log analysis are the foci of this study, as well as user information-seeking studies and user…
ERIC Educational Resources Information Center
Kaufman, Phillip; Bradbury, Denise
1992-01-01
The National Education Longitudinal Study of 1988 (NELS:88) is a large-scale, national longitudinal study designed and sponsored by the National Center for Education Statistics (NCES), with support from other government agencies. Beginning in the spring of 1988 with a cohort of eighth graders (25,000) attending public and private schools across…
Pereira, Tiago Veiga; Rudnicki, Martina; Pereira, Alexandre Costa; Pombo-de-Oliveira, Maria S; Franco, Rendrik França
2006-01-01
Meta-analysis has become an important statistical tool in genetic association studies, since it may provide more powerful and precise estimates. However, meta-analytic studies are prone to several potential biases not only because the preferential publication of "positive'' studies but also due to difficulties in obtaining all relevant information during the study selection process. In this letter, we point out major problems in meta-analysis that may lead to biased conclusions, illustrating an empirical example of two recent meta-analyses on the relation between MTHFR polymorphisms and risk of acute lymphoblastic leukemia that, despite the similarity in statistical methods and period of study selection, provided partially conflicting results.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.
Use of Statistical Analyses in the Ophthalmic Literature
Lisboa, Renato; Meira-Freitas, Daniel; Tatham, Andrew J.; Marvasti, Amir H.; Sharpsten, Lucie; Medeiros, Felipe A.
2014-01-01
Purpose To identify the most commonly used statistical analyses in the ophthalmic literature and to determine the likely gain in comprehension of the literature that readers could expect if they were to sequentially add knowledge of more advanced techniques to their statistical repertoire. Design Cross-sectional study Methods All articles published from January 2012 to December 2012 in Ophthalmology, American Journal of Ophthalmology and Archives of Ophthalmology were reviewed. A total of 780 peer-reviewed articles were included. Two reviewers examined each article and assigned categories to each one depending on the type of statistical analyses used. Discrepancies between reviewers were resolved by consensus. Main Outcome Measures Total number and percentage of articles containing each category of statistical analysis were obtained. Additionally we estimated the accumulated number and percentage of articles that a reader would be expected to be able to interpret depending on their statistical repertoire. Results Readers with little or no statistical knowledge would be expected to be able to interpret the statistical methods presented in only 20.8% of articles. In order to understand more than half (51.4%) of the articles published, readers were expected to be familiar with at least 15 different statistical methods. Knowledge of 21 categories of statistical methods was necessary to comprehend 70.9% of articles, while knowledge of more than 29 categories was necessary to comprehend more than 90% of articles. Articles in retina and glaucoma subspecialties showed a tendency for using more complex analysis when compared to cornea. Conclusions Readers of clinical journals in ophthalmology need to have substantial knowledge of statistical methodology to understand the results of published studies in the literature. The frequency of use of complex statistical analyses also indicates that those involved in the editorial peer-review process must have sound statistical knowledge in order to critically appraise articles submitted for publication. The results of this study could provide guidance to direct the statistical learning of clinical ophthalmologists, researchers and educators involved in the design of courses for residents and medical students. PMID:24612977
Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil
2015-12-07
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.
Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil
2015-01-01
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190
Geoffrey H. Donovan; David T. Butry; Megan Y. Mao
2016-01-01
Past research has examined the effect of urban trees, and other vegetation, on stormwater runoff using hydrological models or small-scale experiments. However, there has been no statistical analysis of the influence of vegetation on runoff in an intact urban watershed, and it is not clear how results from small-scale studies scale up to the city level. Researchers...
Impact of Using History of Mathematics on Students' Mathematics Attitude: A Meta-Analysis Study
ERIC Educational Resources Information Center
Bütüner, Suphi Onder
2015-01-01
The main objective of hereby study is to unearth the big picture, reaching studies about influence of using history of mathematics on attitude of mathematics among students. 6 studies with a total effect size of 14 that comply with coding protocol and comprise statistical values necessary for meta-analysis are combined via meta-analysis method…
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes.
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
AIM To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. METHODS Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. RESULTS The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). CONCLUSION The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes. PMID:27366694
MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M
2016-01-01
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
NASA Technical Reports Server (NTRS)
Hyde, G.
1976-01-01
The 13/18 GHz COMSAT Propagation Experiment (CPE) was performed to measure attenuation caused by hydrometeors along slant paths from transmitting terminals on the ground to the ATS-6 satellite. The effectiveness of site diversity in overcoming this impairment was also studied. Problems encountered in assembling a valid data base of rain induced attenuation data for statistical analysis are considered. The procedures used to obtain the various statistics are then outlined. The graphs and tables of statistical data for the 15 dual frequency (13 and 18 GHz) site diversity locations are discussed. Cumulative rain rate statistics for the Fayetteville and Boston sites based on point rainfall data collected are presented along with extrapolations of the attenuation and point rainfall data.
ERIC Educational Resources Information Center
Shintani, Natsuko; Li, Shaofeng; Ellis, Rod
2013-01-01
This article reports a meta-analysis of studies that investigated the relative effectiveness of comprehension-based instruction (CBI) and production-based instruction (PBI). The meta-analysis only included studies that featured a direct comparison of CBI and PBI in order to ensure methodological and statistical robustness. A total of 35 research…
Statistical Analysis on the Mechanical Properties of Magnesium Alloys
Liu, Ruoyu; Jiang, Xianquan; Zhang, Hongju; Zhang, Dingfei; Wang, Jingfeng; Pan, Fusheng
2017-01-01
Knowledge of statistical characteristics of mechanical properties is very important for the practical application of structural materials. Unfortunately, the scatter characteristics of magnesium alloys for mechanical performance remain poorly understood until now. In this study, the mechanical reliability of magnesium alloys is systematically estimated using Weibull statistical analysis. Interestingly, the Weibull modulus, m, of strength for magnesium alloys is as high as that for aluminum and steels, confirming the very high reliability of magnesium alloys. The high predictability in the tensile strength of magnesium alloys represents the capability of preventing catastrophic premature failure during service, which is essential for safety and reliability assessment. PMID:29113116
Hashim, Muhammad Jawad
2010-09-01
Post-hoc secondary data analysis with no prespecified hypotheses has been discouraged by textbook authors and journal editors alike. Unfortunately no single term describes this phenomenon succinctly. I would like to coin the term "sigsearch" to define this practice and bring it within the teaching lexicon of statistics courses. Sigsearch would include any unplanned, post-hoc search for statistical significance using multiple comparisons of subgroups. It would also include data analysis with outcomes other than the prespecified primary outcome measure of a study as well as secondary data analyses of earlier research.
Lee, Ellen E; Della Selva, Megan P; Liu, Anson; Himelhoch, Seth
2015-01-01
Given the significant disability, morbidity and mortality associated with depression, the promising recent trials of ketamine highlight a novel intervention. A meta-analysis was conducted to assess the efficacy of ketamine in comparison with placebo for the reduction of depressive symptoms in patients who meet criteria for a major depressive episode. Two electronic databases were searched in September 2013 for English-language studies that were randomized placebo-controlled trials of ketamine treatment for patients with major depressive disorder or bipolar depression and utilized a standardized rating scale. Studies including participants receiving electroconvulsive therapy and adolescent/child participants were excluded. Five studies were included in the quantitative meta-analysis. The quantitative meta-analysis showed that ketamine significantly reduced depressive symptoms. The overall effect size at day 1 was large and statistically significant with an overall standardized mean difference of 1.01 (95% confidence interval 0.69-1.34) (P<.001), with the effects sustained at 7 days postinfusion. The heterogeneity of the studies was low and not statistically significant, and the funnel plot showed no publication bias. The large and statistically significant effect of ketamine on depressive symptoms supports a promising, new and effective pharmacotherapy with rapid onset, high efficacy and good tolerability. Copyright © 2015. Published by Elsevier Inc.
Usman, Mohammad N.; Umar, Muhammad D.
2018-01-01
Background: Recent studies have revealed that pharmacists have interest in conducting research. However, lack of confidence is a major barrier. Objective: This study evaluated pharmacists’ self-perceived competence and confidence to plan and conduct health-related research. Method: This cross sectional study was conducted during the 89th Annual National Conference of the Pharmaceutical Society of Nigeria in November 2016. An adapted questionnaire was validated and administered to 200 pharmacist delegates during the conference. Result: Overall, 127 questionnaires were included in the analysis. At least 80% of the pharmacists had previous health-related research experience. Pharmacist’s competence and confidence scores were lowest for research skills such as: using software for statistical analysis, choosing and applying appropriate inferential statistical test and method, and outlining detailed statistical plan to be used in data analysis. Highest competence and confidence scores were observed for conception of research idea, literature search and critical appraisal of literature. Pharmacists with previous research experience had higher competence and confidence scores than those with no previous research experience (p<0.05). The only predictor of moderate-to-extreme self-competence and confidence was having at least one journal article publication during the last 5 years. Conclusion: Nigerian pharmacists indicated interest to participate in health-related research. However, self-competence and confidence to plan and conduct research were low. This was particularly so for skills related to statistical analysis. Training programs and building of Pharmacy Practice Research Network are recommended to enhance pharmacist’s research capacity. PMID:29619141
Chua, Felicia H Z; Thien, Ady; Ng, Lee Ping; Seow, Wan Tew; Low, David C Y; Chang, Kenneth T E; Lian, Derrick W Q; Loh, Eva; Low, Sharon Y Y
2017-03-01
Posterior fossa syndrome (PFS) is a serious complication faced by neurosurgeons and their patients, especially in paediatric medulloblastoma patients. The uncertain aetiology of PFS, myriad of cited risk factors and therapeutic challenges make this phenomenon an elusive entity. The primary objective of this study was to identify associative factors related to the development of PFS in medulloblastoma patient post-tumour resection. This is a retrospective study based at a single institution. Patient data and all related information were collected from the hospital records, in accordance to a list of possible risk factors associated with PFS. These included pre-operative tumour volume, hydrocephalus, age, gender, extent of resection, metastasis, ventriculoperitoneal shunt insertion, post-operative meningitis and radiological changes in MRI. Additional variables included molecular and histological subtypes of each patient's medulloblastoma tumour. Statistical analysis was employed to determine evidence of each variable's significance in PFS permanence. A total of 19 patients with appropriately complete data was identified. Initial univariate analysis did not show any statistical significance. However, multivariate analysis for MRI-specific changes reported bilateral DWI restricted diffusion changes involving both right and left sides of the surgical cavity was of statistical significance for PFS permanence. The authors performed a clinical study that evaluated possible risk factors for permanent PFS in paediatric medulloblastoma patients. Analysis of collated results found that post-operative DWI restriction in bilateral regions within the surgical cavity demonstrated statistical significance as a predictor of PFS permanence-a novel finding in the current literature.
Meta-analysis and The Cochrane Collaboration: 20 years of the Cochrane Statistical Methods Group
2013-01-01
The Statistical Methods Group has played a pivotal role in The Cochrane Collaboration over the past 20 years. The Statistical Methods Group has determined the direction of statistical methods used within Cochrane reviews, developed guidance for these methods, provided training, and continued to discuss and consider new and controversial issues in meta-analysis. The contribution of Statistical Methods Group members to the meta-analysis literature has been extensive and has helped to shape the wider meta-analysis landscape. In this paper, marking the 20th anniversary of The Cochrane Collaboration, we reflect on the history of the Statistical Methods Group, beginning in 1993 with the identification of aspects of statistical synthesis for which consensus was lacking about the best approach. We highlight some landmark methodological developments that Statistical Methods Group members have contributed to in the field of meta-analysis. We discuss how the Group implements and disseminates statistical methods within The Cochrane Collaboration. Finally, we consider the importance of robust statistical methodology for Cochrane systematic reviews, note research gaps, and reflect on the challenges that the Statistical Methods Group faces in its future direction. PMID:24280020
Majid, Kamran; Crowder, Terence; Baker, Erin; Baker, Kevin; Koueiter, Denise; Shields, Edward; Herkowitz, Harry N
2011-12-01
One hundred eighteen patients retrieved 316L stainless steel thoracolumbar plates, of 3 different designs, used for fusion in 60 patients were examined for evidence of corrosion. A medical record review and statistical analysis were also carried out. This study aims to identify types of corrosion and examine preferential metal ion release and the possibility of statistical correlation to clinical effects. Earlier studies have found that stainless steel spine devices showed evidence of mild-to-severe corrosion; fretting and crevice corrosion were the most commonly reported types. Studies have also shown the toxicity of metal ions released from stainless steel corrosion and how the ions may adversely affect bone formation and/or induce granulomatous foreign body responses. The retrieved plates were visually inspected and graded based on the degree of corrosion. The plates were then analyzed with optical microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy. A retrospective medical record review was performed and statistical analysis was carried out to determine any correlations between experimental findings and patient data. More than 70% of the plates exhibited some degree of corrosion. Both fretting and crevice corrosion mechanisms were observed, primarily at the screw plate interface. Energy dispersive x-ray spectroscopy analysis indicated reductions in nickel content in corroded areas, suggestive of nickel ion release to the surrounding biological environment. The incidence and severity of corrosion was significantly correlated with the design of the implant. Stainless steel thoracolumbar plates show a high incidence of corrosion, with statistical dependence on device design.
Zaki, Rafdzah; Bulgiba, Awang; Nordin, Noorhaire; Azina Ismail, Noor
2013-06-01
Reliability measures precision or the extent to which test results can be replicated. This is the first ever systematic review to identify statistical methods used to measure reliability of equipment measuring continuous variables. This studyalso aims to highlight the inappropriate statistical method used in the reliability analysis and its implication in the medical practice. In 2010, five electronic databases were searched between 2007 and 2009 to look for reliability studies. A total of 5,795 titles were initially identified. Only 282 titles were potentially related, and finally 42 fitted the inclusion criteria. The Intra-class Correlation Coefficient (ICC) is the most popular method with 25 (60%) studies having used this method followed by the comparing means (8 or 19%). Out of 25 studies using the ICC, only 7 (28%) reported the confidence intervals and types of ICC used. Most studies (71%) also tested the agreement of instruments. This study finds that the Intra-class Correlation Coefficient is the most popular method used to assess the reliability of medical instruments measuring continuous outcomes. There are also inappropriate applications and interpretations of statistical methods in some studies. It is important for medical researchers to be aware of this issue, and be able to correctly perform analysis in reliability studies.
Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.
Gao, Yi; Bouix, Sylvain
2016-05-01
Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.
van der Krieke, Lian; Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith Gm; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter
2015-08-07
Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher's tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use.
O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M; Mankoff, David M; O'Sullivan, Janet N; Fitzgerald, Niall; Newman, George C; Krohn, Kenneth A
2009-06-01
Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis-critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence-largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%-4%. The general advantage of the nonparametric residue analysis is the ability to provide a valid kinetic quantitation in the context of studies where there may be heterogeneity or other uncertainty about the accuracy of a compartmental model approximation of the tissue residue.
Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith GM; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter
2015-01-01
Background Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. Objective This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. Methods We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher’s tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). Results An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Conclusions Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use. PMID:26254160
Microscopic saw mark analysis: an empirical approach.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2015-01-01
Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.
Statistical analysis of heavy truck loads using Wisconsin weigh-in-motion data
DOT National Transportation Integrated Search
2009-09-01
This study involved statistical evaluation of heavy truck loads that were recorded in 2007 using Weigh-In-Motion : stations located throughout the State of Wisconsin. The heaviest 5% of all trucks in each class and axle groupings were : selected for ...
Su, Cheng; Zhou, Lei; Hu, Zheng; Weng, Winnie; Subramani, Jayanthi; Tadkod, Vineet; Hamilton, Kortney; Bautista, Ami; Wu, Yu; Chirmule, Narendra; Zhong, Zhandong Don
2015-10-01
Biotherapeutics can elicit immune responses, which can alter the exposure, safety, and efficacy of the therapeutics. A well-designed and robust bioanalytical method is critical for the detection and characterization of relevant anti-drug antibody (ADA) and the success of an immunogenicity study. As a fundamental criterion in immunogenicity testing, assay cut points need to be statistically established with a risk-based approach to reduce subjectivity. This manuscript describes the development of a validated, web-based, multi-tier customized assay statistical tool (CAST) for assessing cut points of ADA assays. The tool provides an intuitive web interface that allows users to import experimental data generated from a standardized experimental design, select the assay factors, run the standardized analysis algorithms, and generate tables, figures, and listings (TFL). It allows bioanalytical scientists to perform complex statistical analysis at a click of the button to produce reliable assay parameters in support of immunogenicity studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Statistical analysis and interpolation of compositional data in materials science.
Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M
2015-02-09
Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.
The impact of mother's literacy on child dental caries: Individual data or aggregate data analysis?
Haghdoost, Ali-Akbar; Hessari, Hossein; Baneshi, Mohammad Reza; Rad, Maryam; Shahravan, Arash
2017-01-01
To evaluate the impact of mother's literacy on child dental caries based on a national oral health survey in Iran and to investigate the possibility of ecological fallacy in aggregate data analysis. Existing data were from second national oral health survey that was carried out in 2004, which including 8725 6 years old participants. The association of mother's literacy with caries occurrence (DMF (Decayed, Missing, Filling) total score >0) of her child was assessed using individual data by logistic regression model. Then the association of the percentages of mother's literacy and the percentages of decayed teeth in each 30 provinces of Iran was assessed using aggregated data retrieved from the data of second national oral health survey of Iran and alternatively from census of "Statistical Center of Iran" using linear regression model. The significance level was set at 0.05 for all analysis. Individual data analysis showed a statistically significant association between mother's literacy and decayed teeth of children ( P = 0.02, odds ratio = 0.83). There were not statistical significant association between mother's literacy and child dental caries in aggregate data analysis of oral health survey ( P = 0.79, B = 0.03) and census of "Statistical Center of Statistics" ( P = 0.60, B = 0.14). Literate mothers have a preventive effect on occurring dental caries of children. According to the high percentage of illiterate parents in Iran, it's logical to consider suitable methods of oral health education which do not need reading or writing. Aggregate data analysis and individual data analysis had completely different results in this study.
Hamel, Jean-Francois; Saulnier, Patrick; Pe, Madeline; Zikos, Efstathios; Musoro, Jammbe; Coens, Corneel; Bottomley, Andrew
2017-09-01
Over the last decades, Health-related Quality of Life (HRQoL) end-points have become an important outcome of the randomised controlled trials (RCTs). HRQoL methodology in RCTs has improved following international consensus recommendations. However, no international recommendations exist concerning the statistical analysis of such data. The aim of our study was to identify and characterise the quality of the statistical methods commonly used for analysing HRQoL data in cancer RCTs. Building on our recently published systematic review, we analysed a total of 33 published RCTs studying the HRQoL methods reported in RCTs since 1991. We focussed on the ability of the methods to deal with the three major problems commonly encountered when analysing HRQoL data: their multidimensional and longitudinal structure and the commonly high rate of missing data. All studies reported HRQoL being assessed repeatedly over time for a period ranging from 2 to 36 months. Missing data were common, with compliance rates ranging from 45% to 90%. From the 33 studies considered, 12 different statistical methods were identified. Twenty-nine studies analysed each of the questionnaire sub-dimensions without type I error adjustment. Thirteen studies repeated the HRQoL analysis at each assessment time again without type I error adjustment. Only 8 studies used methods suitable for repeated measurements. Our findings show a lack of consistency in statistical methods for analysing HRQoL data. Problems related to multiple comparisons were rarely considered leading to a high risk of false positive results. It is therefore critical that international recommendations for improving such statistical practices are developed. Copyright © 2017. Published by Elsevier Ltd.
RADSS: an integration of GIS, spatial statistics, and network service for regional data mining
NASA Astrophysics Data System (ADS)
Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing
2005-10-01
Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.
The problem of pseudoreplication in neuroscientific studies: is it affecting your analysis?
2010-01-01
Background Pseudoreplication occurs when observations are not statistically independent, but treated as if they are. This can occur when there are multiple observations on the same subjects, when samples are nested or hierarchically organised, or when measurements are correlated in time or space. Analysis of such data without taking these dependencies into account can lead to meaningless results, and examples can easily be found in the neuroscience literature. Results A single issue of Nature Neuroscience provided a number of examples and is used as a case study to highlight how pseudoreplication arises in neuroscientific studies, why the analyses in these papers are incorrect, and appropriate analytical methods are provided. 12% of papers had pseudoreplication and a further 36% were suspected of having pseudoreplication, but it was not possible to determine for certain because insufficient information was provided. Conclusions Pseudoreplication can undermine the conclusions of a statistical analysis, and it would be easier to detect if the sample size, degrees of freedom, the test statistic, and precise p-values are reported. This information should be a requirement for all publications. PMID:20074371
Zeng, Irene Sui Lan; Lumley, Thomas
2018-01-01
Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.
Multi-Reader ROC studies with Split-Plot Designs: A Comparison of Statistical Methods
Obuchowski, Nancy A.; Gallas, Brandon D.; Hillis, Stephen L.
2012-01-01
Rationale and Objectives Multi-reader imaging trials often use a factorial design, where study patients undergo testing with all imaging modalities and readers interpret the results of all tests for all patients. A drawback of the design is the large number of interpretations required of each reader. Split-plot designs have been proposed as an alternative, in which one or a subset of readers interprets all images of a sample of patients, while other readers interpret the images of other samples of patients. In this paper we compare three methods of analysis for the split-plot design. Materials and Methods Three statistical methods are presented: Obuchowski-Rockette method modified for the split-plot design, a newly proposed marginal-mean ANOVA approach, and an extension of the three-sample U-statistic method. A simulation study using the Roe-Metz model was performed to compare the type I error rate, power and confidence interval coverage of the three test statistics. Results The type I error rates for all three methods are close to the nominal level but tend to be slightly conservative. The statistical power is nearly identical for the three methods. The coverage of 95% CIs fall close to the nominal coverage for small and large sample sizes. Conclusions The split-plot MRMC study design can be statistically efficient compared with the factorial design, reducing the number of interpretations required per reader. Three methods of analysis, shown to have nominal type I error rate, similar power, and nominal CI coverage, are available for this study design. PMID:23122570
MWASTools: an R/bioconductor package for metabolome-wide association studies.
Rodriguez-Martinez, Andrea; Posma, Joram M; Ayala, Rafael; Neves, Ana L; Anwar, Maryam; Petretto, Enrico; Emanueli, Costanza; Gauguier, Dominique; Nicholson, Jeremy K; Dumas, Marc-Emmanuel
2018-03-01
MWASTools is an R package designed to provide an integrated pipeline to analyse metabonomic data in large-scale epidemiological studies. Key functionalities of our package include: quality control analysis; metabolome-wide association analysis using various models (partial correlations, generalized linear models); visualization of statistical outcomes; metabolite assignment using statistical total correlation spectroscopy (STOCSY); and biological interpretation of metabolome-wide association studies results. The MWASTools R package is implemented in R (version > =3.4) and is available from Bioconductor: https://bioconductor.org/packages/MWASTools/. m.dumas@imperial.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Statistical Tutorial | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018. The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.
Stanisavljevic, Dejana; Trajkovic, Goran; Marinkovic, Jelena; Bukumiric, Zoran; Cirkovic, Andja; Milic, Natasa
2014-01-01
Background Medical statistics has become important and relevant for future doctors, enabling them to practice evidence based medicine. Recent studies report that students’ attitudes towards statistics play an important role in their statistics achievements. The aim of the study was to test the psychometric properties of the Serbian version of the Survey of Attitudes Towards Statistics (SATS) in order to acquire a valid instrument to measure attitudes inside the Serbian educational context. Methods The validation study was performed on a cohort of 417 medical students who were enrolled in an obligatory introductory statistics course. The SATS adaptation was based on an internationally accepted methodology for translation and cultural adaptation. Psychometric properties of the Serbian version of the SATS were analyzed through the examination of factorial structure and internal consistency. Results Most medical students held positive attitudes towards statistics. The average total SATS score was above neutral (4.3±0.8), and varied from 1.9 to 6.2. Confirmatory factor analysis validated the six-factor structure of the questionnaire (Affect, Cognitive Competence, Value, Difficulty, Interest and Effort). Values for fit indices TLI (0.940) and CFI (0.961) were above the cut-off of ≥0.90. The RMSEA value of 0.064 (0.051–0.078) was below the suggested value of ≤0.08. Cronbach’s alpha of the entire scale was 0.90, indicating scale reliability. In a multivariate regression model, self-rating of ability in mathematics and current grade point average were significantly associated with the total SATS score after adjusting for age and gender. Conclusion Present study provided the evidence for the appropriate metric properties of the Serbian version of SATS. Confirmatory factor analysis validated the six-factor structure of the scale. The SATS might be reliable and a valid instrument for identifying medical students’ attitudes towards statistics in the Serbian educational context. PMID:25405489
Stanisavljevic, Dejana; Trajkovic, Goran; Marinkovic, Jelena; Bukumiric, Zoran; Cirkovic, Andja; Milic, Natasa
2014-01-01
Medical statistics has become important and relevant for future doctors, enabling them to practice evidence based medicine. Recent studies report that students' attitudes towards statistics play an important role in their statistics achievements. The aim of the study was to test the psychometric properties of the Serbian version of the Survey of Attitudes Towards Statistics (SATS) in order to acquire a valid instrument to measure attitudes inside the Serbian educational context. The validation study was performed on a cohort of 417 medical students who were enrolled in an obligatory introductory statistics course. The SATS adaptation was based on an internationally accepted methodology for translation and cultural adaptation. Psychometric properties of the Serbian version of the SATS were analyzed through the examination of factorial structure and internal consistency. Most medical students held positive attitudes towards statistics. The average total SATS score was above neutral (4.3±0.8), and varied from 1.9 to 6.2. Confirmatory factor analysis validated the six-factor structure of the questionnaire (Affect, Cognitive Competence, Value, Difficulty, Interest and Effort). Values for fit indices TLI (0.940) and CFI (0.961) were above the cut-off of ≥0.90. The RMSEA value of 0.064 (0.051-0.078) was below the suggested value of ≤0.08. Cronbach's alpha of the entire scale was 0.90, indicating scale reliability. In a multivariate regression model, self-rating of ability in mathematics and current grade point average were significantly associated with the total SATS score after adjusting for age and gender. Present study provided the evidence for the appropriate metric properties of the Serbian version of SATS. Confirmatory factor analysis validated the six-factor structure of the scale. The SATS might be reliable and a valid instrument for identifying medical students' attitudes towards statistics in the Serbian educational context.
LaBudde, Robert A; Harnly, James M
2012-01-01
A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.
OSPAR standard method and software for statistical analysis of beach litter data.
Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit
2017-09-15
The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.
Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
2010-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.
Kurtuluş-Ulküer, M; Ulküer, U; Kesici, T; Menevşe, S
2002-09-01
In this study, the phenotype and allele frequencies of five enzyme systems were determined in a total of 611 unrelated Turkish individuals and analyzed by using the exact and the chi 2 test. The following five red cell enzymes were identified by cellulose acetate electrophoresis: phosphoglucomutase (PGM), adenosine deaminase (ADA), phosphoglucose isomerase (PGI), adenylate kinase (AK), and 6-phosphogluconate dehydrogenase (6-PGD). The ADA, PGM and AK enzymes were found to be polymorphic in the Turkish population. The results of the statistical analysis showed, that the phenotype frequencies of the five enzyme under study are in Hardy-Weinberg equilibrium. Statistical analysis was performed in order to examine whether there are significant differences in the phenotype frequencies between the Turkish population and four American population groups. This analysis showed, that there are some statistically significant differences between the Turkish and the other groups. Moreover, the observed phenotype and allele frequencies were compared with those obtained in other population groups of Turkey.
NASA Astrophysics Data System (ADS)
Broothaerts, Nils; López-Sáez, José Antonio; Verstraeten, Gert
2017-04-01
Reconstructing and quantifying human impact is an important step to understand human-environment interactions in the past. Quantitative measures of human impact on the landscape are needed to fully understand long-term influence of anthropogenic land cover changes on the global climate, ecosystems and geomorphic processes. Nevertheless, quantifying past human impact is not straightforward. Recently, multivariate statistical analysis of fossil pollen records have been proposed to characterize vegetation changes and to get insights in past human impact. Although statistical analysis of fossil pollen data can provide useful insights in anthropogenic driven vegetation changes, still it cannot be used as an absolute quantification of past human impact. To overcome this shortcoming, in this study fossil pollen records were included in a multivariate statistical analysis (cluster analysis and non-metric multidimensional scaling (NMDS)) together with modern pollen data and modern vegetation data. The information on the modern pollen and vegetation dataset can be used to get a better interpretation of the representativeness of the fossil pollen records, and can result in a full quantification of human impact in the past. This methodology was applied in two contrasting environments: SW Turkey and Central Spain. For each region, fossil pollen data from different study sites were integrated, together with modern pollen data and information on modern vegetation. In this way, arboreal cover, grazing pressure and agricultural activities in the past were reconstructed and quantified. The data from SW Turkey provides new integrated information on changing human impact through time in the Sagalassos territory, and shows that human impact was most intense during the Hellenistic and Roman Period (ca. 2200-1750 cal a BP) and decreased and changed in nature afterwards. The data from central Spain shows for several sites that arboreal cover decreases bellow 5% from the Feudal period onwards (ca. 850 cal a BP) related to increasing human impact in the landscape. At other study sites arboreal cover remained above 25% beside significant human impact. Overall, the presented examples from two contrasting environments shows how cluster analysis and NMDS of modern and fossil pollen data can help to provide quantitative insights in anthropogenic land cover changes. Our study extensively discuss and illustrate the possibilities and limitations of statistical analysis of pollen data to quantify human induced land use changes.
Neurological Outcomes Following Suicidal Hanging: A Prospective Study of 101 Patients
Jawaid, Mohammed Turab; Amalnath, S. Deepak; Subrahmanyam, D. K. S.
2017-01-01
Context: Survivors of suicidal hanging can have variable neurological outcomes – from complete recovery to irreversible brain damage. Literature on the neurological outcomes in these patients is confined to retrospective studies and case series. Hence, this prospective study was carried out. Aims: The aim is to study the neurological outcomes in suicidal hanging. Settings and Design: This was a prospective observational study carried out from July 2014 to July 2016. Subjects and Methods: Consecutive patients admitted to the emergency and medicine wards were included in the study. Details of the clinical and radiological findings, course in hospital and at 1 month postdischarge were analyzed. Statistical Analysis Used: Statistical analysis was performed using IBM SPSS advanced statistics 20.0 (SPSS Inc., Chicago, USA). Univariate analysis was performed using Chi-square test for significance and Odd's ratio was calculated. Results: Of the 101 patients, 6 died and 4 had residual neuro deficits. Cervical spine injury was seen in 3 patients. Interestingly, 39 patients could not remember the act of hanging (retrograde amnesia). Hypotension, pulmonary edema, Glasgow coma scale (GCS) score <8 at admission, need for mechanical ventilation, and cerebral edema on plain computed tomography were more in those with amnesia as compared to those with normal memory and these findings were statistically significant. Conclusions: Majority of patients recovered without any sequelae. Routine imaging of cervical spine may not be warranted in all patients, even in those with poor GCS. Retrograde amnesia might be more common than previously believed and further studies are needed to analyze this peculiar feature. PMID:28584409
ERIC Educational Resources Information Center
Dong, Nianbo; Spybrook, Jessaca; Kelcey, Ben
2016-01-01
The purpose of this study is to propose a general framework for power analyses to detect the moderator effects in two- and three-level cluster randomized trials (CRTs). The study specifically aims to: (1) develop the statistical formulations for calculating statistical power, minimum detectable effect size (MDES) and its confidence interval to…
Data Acquisition and Preprocessing in Studies on Humans: What Is Not Taught in Statistics Classes?
Zhu, Yeyi; Hernandez, Ladia M; Mueller, Peter; Dong, Yongquan; Forman, Michele R
2013-01-01
The aim of this paper is to address issues in research that may be missing from statistics classes and important for (bio-)statistics students. In the context of a case study, we discuss data acquisition and preprocessing steps that fill the gap between research questions posed by subject matter scientists and statistical methodology for formal inference. Issues include participant recruitment, data collection training and standardization, variable coding, data review and verification, data cleaning and editing, and documentation. Despite the critical importance of these details in research, most of these issues are rarely discussed in an applied statistics program. One reason for the lack of more formal training is the difficulty in addressing the many challenges that can possibly arise in the course of a study in a systematic way. This article can help to bridge this gap between research questions and formal statistical inference by using an illustrative case study for a discussion. We hope that reading and discussing this paper and practicing data preprocessing exercises will sensitize statistics students to these important issues and achieve optimal conduct, quality control, analysis, and interpretation of a study.
Markov Logic Networks in the Analysis of Genetic Data
Sakhanenko, Nikita A.
2010-01-01
Abstract Complex, non-additive genetic interactions are common and can be critical in determining phenotypes. Genome-wide association studies (GWAS) and similar statistical studies of linkage data, however, assume additive models of gene interactions in looking for genotype-phenotype associations. These statistical methods view the compound effects of multiple genes on a phenotype as a sum of influences of each gene and often miss a substantial part of the heritable effect. Such methods do not use any biological knowledge about underlying mechanisms. Modeling approaches from the artificial intelligence (AI) field that incorporate deterministic knowledge into models to perform statistical analysis can be applied to include prior knowledge in genetic analysis. We chose to use the most general such approach, Markov Logic Networks (MLNs), for combining deterministic knowledge with statistical analysis. Using simple, logistic regression-type MLNs we can replicate the results of traditional statistical methods, but we also show that we are able to go beyond finding independent markers linked to a phenotype by using joint inference without an independence assumption. The method is applied to genetic data on yeast sporulation, a complex phenotype with gene interactions. In addition to detecting all of the previously identified loci associated with sporulation, our method identifies four loci with smaller effects. Since their effect on sporulation is small, these four loci were not detected with methods that do not account for dependence between markers due to gene interactions. We show how gene interactions can be detected using more complex models, which can be used as a general framework for incorporating systems biology with genetics. PMID:20958249
Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.
2016-01-01
Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078
Singh, Shikha; Deshmukh, Sonali; Merani, Varsha; Rejintal, Neeta
2016-01-01
The aim of this article is to evaluate the mean cephalometric values for Arnett's soft tissue analysis in the Maratha ethnic (Indian) population. Lateral cephalograms of 60 patients (30 males and 30 females) aged 18-26 years were obtained with the patients in the Natural Head Position (NHP), with teeth in maximum intercuspation and lips in the rest position. Moreover, hand tracings were also done. The statistical analysis was performed with the help of a statistical software, the Statistical Package for the Social Sciences version 16, and Microsoft word and Excel (Microsoft office 2007) were used to generate the analytical data. Statistical significance was tested atP level (1% and 5% level of significance). Statistical analysis using student's unpaired t-test were performed. Various cephalometric values for the Maratha ethnic (Indian) population differed from Caucasian cephalometric values such as nasolabial inclination, incisor proclination, and exposure, which may affect the outcome of the orthodontic and orthognathic treatment. Marathas have more proclined maxillary incisors, less prominent chin, less facial length, acute nasolabial angle, and all soft tissue thickness are greater in Marathas except lower lip thickness (in Maratha males and females) and upper lip angle (in Maratha males) than those of the Caucasian population. It is a fact that all different ethnic races have different facial characters. The variability of the soft tissue integument in people with different ethnic origin makes it necessary to study the soft tissue standards of a particular community and consider those norms when planning an orthodontic and orthognathic treatment for particular racial and ethnic patients.
The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method
NASA Astrophysics Data System (ADS)
Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad
2018-04-01
Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.
Zhang, Chunmei; Liu, Xiangjuan; Wang, Xiaomeng; Wang, Qi; Zhang, Yun; Ge, Zhiming
2015-11-01
A growing number of patients with chronic artery disease suffer from angina, despite the optimal medical management (ie, β-blockers, calcium channel blockers, and long-acting nitrates) and revascularization. Currently, enhanced external counterpulsation (EECP) therapy has been verified as a noninvasive, safe therapy for refractory angina. The study was designed to evaluate the efficacy of EECP in patients with chronic refractory angina according to Canadian Cardiovascular Society (CCS) angina class.We identified systematic literature through MEDLINE, EMBASE, the Cochrane Clinical Trials Register Database, and the ClinicalTrials. gov Website from 1990 to 2015. Studies were considered eligible if they were prospective and reported data on CCS class before and after EECP treatment. Meta-analysis was performed to assess the efficacy of EECP therapy by at least 1 CCS angina class improvement, and proportion along with the 95% confidence interval (CI) was calculated. Statistical heterogeneity was calculated by I statistic and the Q statistic. Sensitivity analysis was addressed to test the influence of trials on the overall pooled results. Subgroup analysis was applied to explore potential reasons for heterogeneity.Eighteen studies were enrolled in our meta-analysis. Pooled analysis showed 85% of patients underwent EECP had a reduction by at least one CCS class (95%CI 0.81-0.88, I = 58.5%, P < 0.001). The proportion of patients enrolled at primarily different studies with chronic heart failure (CHF) improved by at least 1 CCS class was about 84% after EECP (95%CI 0.81-0.88, I = 32.7%, P = 0.1668). After 3 large studies were excluded, the pooled proportion was 82% (95%CI 0.79-0.86, I = 18%, P = 0.2528). Funnel plot indicated that some asymmetry while the Begg and Egger bias statistic showed no publication bias (P = 0.1495 and 0.2859, respectively).Our study confirmed that EECP provided an effective treatment for patients who were unresponsive to medical management and/or invasive therapy. However, the long-term benefits of EECP therapy needed further studies to evaluate in the management of chronic refractory angina.
2016-11-15
participants who were followed for the development of back pain for an average of 3.9 years. Methods. Descriptive statistics and longitudinal...health, military personnel, occupational health, outcome assessment, statistics, survey methodology . Level of Evidence: 3 Spine 2016;41:1754–1763ack...based on the National Health and Nutrition Examination Survey.21 Statistical Analysis Descriptive and univariate analyses compared character- istics
1988-12-09
Measurement of Second Order Statistics .... .............. .54 5.4 Measurement of Triple Products ...... ................. .58 5.6 Uncertainty Analysis...deterministic fluctuations, u/ 2 , were 25 times larger than the mean fluctuations, u, there were no significant variations in the mean statistical ...input signals, the three velocity components are cal- culated, Awn in ,i-;dual phase ensembles are collected for the appropriate statistical 3
STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative
Sauerbrei, Willi; Abrahamowicz, Michal; Altman, Douglas G; le Cessie, Saskia; Carpenter, James
2014-01-01
The validity and practical utility of observational medical research depends critically on good study design, excellent data quality, appropriate statistical methods and accurate interpretation of results. Statistical methodology has seen substantial development in recent times. Unfortunately, many of these methodological developments are ignored in practice. Consequently, design and analysis of observational studies often exhibit serious weaknesses. The lack of guidance on vital practical issues discourages many applied researchers from using more sophisticated and possibly more appropriate methods when analyzing observational studies. Furthermore, many analyses are conducted by researchers with a relatively weak statistical background and limited experience in using statistical methodology and software. Consequently, even ‘standard’ analyses reported in the medical literature are often flawed, casting doubt on their results and conclusions. An efficient way to help researchers to keep up with recent methodological developments is to develop guidance documents that are spread to the research community at large. These observations led to the initiation of the strengthening analytical thinking for observational studies (STRATOS) initiative, a large collaboration of experts in many different areas of biostatistical research. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies. The guidance is intended for applied statisticians and other data analysts with varying levels of statistical education, experience and interests. In this article, we introduce the STRATOS initiative and its main aims, present the need for guidance documents and outline the planned approach and progress so far. We encourage other biostatisticians to become involved. PMID:25074480
Molenaar, Peter C M
2008-01-01
It is argued that general mathematical-statistical theorems imply that standard statistical analysis techniques of inter-individual variation are invalid to investigate developmental processes. Developmental processes have to be analyzed at the level of individual subjects, using time series data characterizing the patterns of intra-individual variation. It is shown that standard statistical techniques based on the analysis of inter-individual variation appear to be insensitive to the presence of arbitrary large degrees of inter-individual heterogeneity in the population. An important class of nonlinear epigenetic models of neural growth is described which can explain the occurrence of such heterogeneity in brain structures and behavior. Links with models of developmental instability are discussed. A simulation study based on a chaotic growth model illustrates the invalidity of standard analysis of inter-individual variation, whereas time series analysis of intra-individual variation is able to recover the true state of affairs. (c) 2007 Wiley Periodicals, Inc.
Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam
2017-01-01
The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t -test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis.
Interfaces between statistical analysis packages and the ESRI geographic information system
NASA Technical Reports Server (NTRS)
Masuoka, E.
1980-01-01
Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.
Introductory Statistics Students' Conceptual Understanding of Study Design and Conclusions
NASA Astrophysics Data System (ADS)
Fry, Elizabeth Brondos
Recommended learning goals for students in introductory statistics courses include the ability to recognize and explain the key role of randomness in designing studies and in drawing conclusions from those studies involving generalizations to a population or causal claims (GAISE College Report ASA Revision Committee, 2016). The purpose of this study was to explore introductory statistics students' understanding of the distinct roles that random sampling and random assignment play in study design and the conclusions that can be made from each. A study design unit lasting two and a half weeks was designed and implemented in four sections of an undergraduate introductory statistics course based on modeling and simulation. The research question that this study attempted to answer is: How does introductory statistics students' conceptual understanding of study design and conclusions (in particular, unbiased estimation and establishing causation) change after participating in a learning intervention designed to promote conceptual change in these areas? In order to answer this research question, a forced-choice assessment called the Inferences from Design Assessment (IDEA) was developed as a pretest and posttest, along with two open-ended assignments, a group quiz and a lab assignment. Quantitative analysis of IDEA results and qualitative analysis of the group quiz and lab assignment revealed that overall, students' mastery of study design concepts significantly increased after the unit, and the great majority of students successfully made the appropriate connections between random sampling and generalization, and between random assignment and causal claims. However, a small, but noticeable portion of students continued to demonstrate misunderstandings, such as confusion between random sampling and random assignment.
ERIC Educational Resources Information Center
Hamburg, Morris; And Others
The long-term goal of this investigation is to design and establish a national model for a system of library statistical data. This is a report on The Preliminary Study which was carried out over an 11-month period ending May, 1969. The objective of The Preliminary Study was to design and delimit The Research Investigation in the most efficient…
Patil, Prasad; Peng, Roger D; Leek, Jeffrey T
2016-07-01
A recent study of the replicability of key psychological findings is a major contribution toward understanding the human side of the scientific process. Despite the careful and nuanced analysis reported, the simple narrative disseminated by the mass, social, and scientific media was that in only 36% of the studies were the original results replicated. In the current study, however, we showed that 77% of the replication effect sizes reported were within a 95% prediction interval calculated using the original effect size. Our analysis suggests two critical issues in understanding replication of psychological studies. First, researchers' intuitive expectations for what a replication should show do not always match with statistical estimates of replication. Second, when the results of original studies are very imprecise, they create wide prediction intervals-and a broad range of replication effects that are consistent with the original estimates. This may lead to effects that replicate successfully, in that replication results are consistent with statistical expectations, but do not provide much information about the size (or existence) of the true effect. In this light, the results of the Reproducibility Project: Psychology can be viewed as statistically consistent with what one might expect when performing a large-scale replication experiment. © The Author(s) 2016.
Power-up: A Reanalysis of 'Power Failure' in Neuroscience Using Mixture Modeling
Wood, John
2017-01-01
Recently, evidence for endemically low statistical power has cast neuroscience findings into doubt. If low statistical power plagues neuroscience, then this reduces confidence in the reported effects. However, if statistical power is not uniformly low, then such blanket mistrust might not be warranted. Here, we provide a different perspective on this issue, analyzing data from an influential study reporting a median power of 21% across 49 meta-analyses (Button et al., 2013). We demonstrate, using Gaussian mixture modeling, that the sample of 730 studies included in that analysis comprises several subcomponents so the use of a single summary statistic is insufficient to characterize the nature of the distribution. We find that statistical power is extremely low for studies included in meta-analyses that reported a null result and that it varies substantially across subfields of neuroscience, with particularly low power in candidate gene association studies. Therefore, whereas power in neuroscience remains a critical issue, the notion that studies are systematically underpowered is not the full story: low power is far from a universal problem. SIGNIFICANCE STATEMENT Recently, researchers across the biomedical and psychological sciences have become concerned with the reliability of results. One marker for reliability is statistical power: the probability of finding a statistically significant result given that the effect exists. Previous evidence suggests that statistical power is low across the field of neuroscience. Our results present a more comprehensive picture of statistical power in neuroscience: on average, studies are indeed underpowered—some very seriously so—but many studies show acceptable or even exemplary statistical power. We show that this heterogeneity in statistical power is common across most subfields in neuroscience. This new, more nuanced picture of statistical power in neuroscience could affect not only scientific understanding, but potentially policy and funding decisions for neuroscience research. PMID:28706080
Climate drivers on malaria transmission in Arunachal Pradesh, India.
Upadhyayula, Suryanaryana Murty; Mutheneni, Srinivasa Rao; Chenna, Sumana; Parasaram, Vaideesh; Kadiri, Madhusudhan Rao
2015-01-01
The present study was conducted during the years 2006 to 2012 and provides information on prevalence of malaria and its regulation with effect to various climatic factors in East Siang district of Arunachal Pradesh, India. Correlation analysis, Principal Component Analysis and Hotelling's T² statistics models are adopted to understand the effect of weather variables on malaria transmission. The epidemiological study shows that the prevalence of malaria is mostly caused by the parasite Plasmodium vivax followed by Plasmodium falciparum. It is noted that, the intensity of malaria cases declined gradually from the year 2006 to 2012. The transmission of malaria observed was more during the rainy season, as compared to summer and winter seasons. Further, the data analysis study with Principal Component Analysis and Hotelling's T² statistic has revealed that the climatic variables such as temperature and rainfall are the most influencing factors for the high rate of malaria transmission in East Siang district of Arunachal Pradesh.
A Vehicle for Bivariate Data Analysis
ERIC Educational Resources Information Center
Roscoe, Matt B.
2016-01-01
Instead of reserving the study of probability and statistics for special fourth-year high school courses, the Common Core State Standards for Mathematics (CCSSM) takes a "statistics for all" approach. The standards recommend that students in grades 6-8 learn to summarize and describe data distributions, understand probability, draw…
Giambartolomei, Claudia; Vukcevic, Damjan; Schadt, Eric E; Franke, Lude; Hingorani, Aroon D; Wallace, Chris; Plagnol, Vincent
2014-05-01
Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to target disease pathways.
Statistical issues in the design, conduct and analysis of two large safety studies.
Gaffney, Michael
2016-10-01
The emergence, post approval, of serious medical events, which may be associated with the use of a particular drug or class of drugs, is an important public health and regulatory issue. The best method to address this issue is through a large, rigorously designed safety study. Therefore, it is important to elucidate the statistical issues involved in these large safety studies. Two such studies are PRECISION and EAGLES. PRECISION is the primary focus of this article. PRECISION is a non-inferiority design with a clinically relevant non-inferiority margin. Statistical issues in the design, conduct and analysis of PRECISION are discussed. Quantitative and clinical aspects of the selection of the composite primary endpoint, the determination and role of the non-inferiority margin in a large safety study and the intent-to-treat and modified intent-to-treat analyses in a non-inferiority safety study are shown. Protocol changes that were necessary during the conduct of PRECISION are discussed from a statistical perspective. Issues regarding the complex analysis and interpretation of the results of PRECISION are outlined. EAGLES is presented as a large, rigorously designed safety study when a non-inferiority margin was not able to be determined by a strong clinical/scientific method. In general, when a non-inferiority margin is not able to be determined, the width of the 95% confidence interval is a way to size the study and to assess the cost-benefit of relative trial size. A non-inferiority margin, when able to be determined by a strong scientific method, should be included in a large safety study. Although these studies could not be called "pragmatic," they are examples of best real-world designs to address safety and regulatory concerns. © The Author(s) 2016.
Transit safety & security statistics & analysis 2003 annual report (formerly SAMIS)
DOT National Transportation Integrated Search
2005-12-01
The Transit Safety & Security Statistics & Analysis 2003 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...
Transit safety & security statistics & analysis 2002 annual report (formerly SAMIS)
DOT National Transportation Integrated Search
2004-12-01
The Transit Safety & Security Statistics & Analysis 2002 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...
Doppler and speckle methods for diagnostics in dentistry
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey S.; Lepilin, Alexander V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Kharish, Natalia A.; Osipova, Yulia; Karpovich, Alexander
2002-02-01
The results of statistical analysis of Doppler spectra of scattered intensity, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients, are presented. New approach for monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of measuring system on formation of speckle-interferometric signal is studied.
NASA Astrophysics Data System (ADS)
Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.
2010-06-01
The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 80's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The r-largest annual maxima method provides more reliable predictions of the extreme values especially for small return periods (<100 years). Finally, the study statistically proves the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.
Public and patient involvement in quantitative health research: A statistical perspective.
Hannigan, Ailish
2018-06-19
The majority of studies included in recent reviews of impact for public and patient involvement (PPI) in health research had a qualitative design. PPI in solely quantitative designs is underexplored, particularly its impact on statistical analysis. Statisticians in practice have a long history of working in both consultative (indirect) and collaborative (direct) roles in health research, yet their perspective on PPI in quantitative health research has never been explicitly examined. To explore the potential and challenges of PPI from a statistical perspective at distinct stages of quantitative research, that is sampling, measurement and statistical analysis, distinguishing between indirect and direct PPI. Statistical analysis is underpinned by having a representative sample, and a collaborative or direct approach to PPI may help achieve that by supporting access to and increasing participation of under-represented groups in the population. Acknowledging and valuing the role of lay knowledge of the context in statistical analysis and in deciding what variables to measure may support collective learning and advance scientific understanding, as evidenced by the use of participatory modelling in other disciplines. A recurring issue for quantitative researchers, which reflects quantitative sampling methods, is the selection and required number of PPI contributors, and this requires further methodological development. Direct approaches to PPI in quantitative health research may potentially increase its impact, but the facilitation and partnership skills required may require further training for all stakeholders, including statisticians. © 2018 The Authors Health Expectations published by John Wiley & Sons Ltd.
Compositional data analysis for physical activity, sedentary time and sleep research.
Dumuid, Dorothea; Stanford, Tyman E; Martin-Fernández, Josep-Antoni; Pedišić, Željko; Maher, Carol A; Lewis, Lucy K; Hron, Karel; Katzmarzyk, Peter T; Chaput, Jean-Philippe; Fogelholm, Mikael; Hu, Gang; Lambert, Estelle V; Maia, José; Sarmiento, Olga L; Standage, Martyn; Barreira, Tiago V; Broyles, Stephanie T; Tudor-Locke, Catrine; Tremblay, Mark S; Olds, Timothy
2017-01-01
The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
Reese, Sarah E; Archer, Kellie J; Therneau, Terry M; Atkinson, Elizabeth J; Vachon, Celine M; de Andrade, Mariza; Kocher, Jean-Pierre A; Eckel-Passow, Jeanette E
2013-11-15
Batch effects are due to probe-specific systematic variation between groups of samples (batches) resulting from experimental features that are not of biological interest. Principal component analysis (PCA) is commonly used as a visual tool to determine whether batch effects exist after applying a global normalization method. However, PCA yields linear combinations of the variables that contribute maximum variance and thus will not necessarily detect batch effects if they are not the largest source of variability in the data. We present an extension of PCA to quantify the existence of batch effects, called guided PCA (gPCA). We describe a test statistic that uses gPCA to test whether a batch effect exists. We apply our proposed test statistic derived using gPCA to simulated data and to two copy number variation case studies: the first study consisted of 614 samples from a breast cancer family study using Illumina Human 660 bead-chip arrays, whereas the second case study consisted of 703 samples from a family blood pressure study that used Affymetrix SNP Array 6.0. We demonstrate that our statistic has good statistical properties and is able to identify significant batch effects in two copy number variation case studies. We developed a new statistic that uses gPCA to identify whether batch effects exist in high-throughput genomic data. Although our examples pertain to copy number data, gPCA is general and can be used on other data types as well. The gPCA R package (Available via CRAN) provides functionality and data to perform the methods in this article. reesese@vcu.edu
ERIC Educational Resources Information Center
Serebryakova, Tat'yana A.; Morozova, Lyudmila B.; Kochneva, Elena M.; Zharova, Darya V.; Kostyleva, Elena A.; Kolarkova, Oxana G.
2016-01-01
Background/Objectives: The objective of the paper is analysis and description of findings of an empiric study on the issue of social and psychological adaptation of first year students to studying in a higher educational institution. Methods/Statistical analysis: Using the methods of theoretical analysis the paper's authors plan and carry out an…
Time Series Expression Analyses Using RNA-seq: A Statistical Approach
Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P.
2013-01-01
RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis. PMID:23586021
Time series expression analyses using RNA-seq: a statistical approach.
Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P
2013-01-01
RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis.
ERIC Educational Resources Information Center
Petocz, Agnes; Newbery, Glenn
2010-01-01
Statistics education in psychology often falls disappointingly short of its goals. The increasing use of qualitative approaches in statistics education research has extended and enriched our understanding of statistical cognition processes, and thus facilitated improvements in statistical education and practices. Yet conceptual analysis, a…
Time Series Analysis Based on Running Mann Whitney Z Statistics
USDA-ARS?s Scientific Manuscript database
A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...
Analysis of Statistical Methods and Errors in the Articles Published in the Korean Journal of Pain
Yim, Kyoung Hoon; Han, Kyoung Ah; Park, Soo Young
2010-01-01
Background Statistical analysis is essential in regard to obtaining objective reliability for medical research. However, medical researchers do not have enough statistical knowledge to properly analyze their study data. To help understand and potentially alleviate this problem, we have analyzed the statistical methods and errors of articles published in the Korean Journal of Pain (KJP), with the intention to improve the statistical quality of the journal. Methods All the articles, except case reports and editorials, published from 2004 to 2008 in the KJP were reviewed. The types of applied statistical methods and errors in the articles were evaluated. Results One hundred and thirty-nine original articles were reviewed. Inferential statistics and descriptive statistics were used in 119 papers and 20 papers, respectively. Only 20.9% of the papers were free from statistical errors. The most commonly adopted statistical method was the t-test (21.0%) followed by the chi-square test (15.9%). Errors of omission were encountered 101 times in 70 papers. Among the errors of omission, "no statistics used even though statistical methods were required" was the most common (40.6%). The errors of commission were encountered 165 times in 86 papers, among which "parametric inference for nonparametric data" was the most common (33.9%). Conclusions We found various types of statistical errors in the articles published in the KJP. This suggests that meticulous attention should be given not only in the applying statistical procedures but also in the reviewing process to improve the value of the article. PMID:20552071
Kuss, O
2015-03-30
Meta-analyses with rare events, especially those that include studies with no event in one ('single-zero') or even both ('double-zero') treatment arms, are still a statistical challenge. In the case of double-zero studies, researchers in general delete these studies or use continuity corrections to avoid them. A number of arguments against both options has been given, and statistical methods that use the information from double-zero studies without using continuity corrections have been proposed. In this paper, we collect them and compare them by simulation. This simulation study tries to mirror real-life situations as completely as possible by deriving true underlying parameters from empirical data on actually performed meta-analyses. It is shown that for each of the commonly encountered effect estimators valid statistical methods are available that use the information from double-zero studies without using continuity corrections. Interestingly, all of them are truly random effects models, and so also the current standard method for very sparse data as recommended from the Cochrane collaboration, the Yusuf-Peto odds ratio, can be improved on. For actual analysis, we recommend to use beta-binomial regression methods to arrive at summary estimates for the odds ratio, the relative risk, or the risk difference. Methods that ignore information from double-zero studies or use continuity corrections should no longer be used. We illustrate the situation with an example where the original analysis ignores 35 double-zero studies, and a superior analysis discovers a clinically relevant advantage of off-pump surgery in coronary artery bypass grafting. Copyright © 2014 John Wiley & Sons, Ltd.
Statistical Analysis of Zebrafish Locomotor Response.
Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai
2015-01-01
Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.
Statistical Analysis of Zebrafish Locomotor Response
Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai
2015-01-01
Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling’s T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling’s T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure. PMID:26437184
Sampling and Data Analysis for Environmental Microbiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Christopher J.
2001-06-01
A brief review of the literature indicates the importance of statistical analysis in applied and environmental microbiology. Sampling designs are particularly important for successful studies, and it is highly recommended that researchers review their sampling design before heading to the laboratory or the field. Most statisticians have numerous stories of scientists who approached them after their study was complete only to have to tell them that the data they gathered could not be used to test the hypothesis they wanted to address. Once the data are gathered, a large and complex body of statistical techniques are available for analysis ofmore » the data. Those methods include both numerical and graphical techniques for exploratory characterization of the data. Hypothesis testing and analysis of variance (ANOVA) are techniques that can be used to compare the mean and variance of two or more groups of samples. Regression can be used to examine the relationships between sets of variables and is often used to examine the dependence of microbiological populations on microbiological parameters. Multivariate statistics provides several methods that can be used for interpretation of datasets with a large number of variables and to partition samples into similar groups, a task that is very common in taxonomy, but also has applications in other fields of microbiology. Geostatistics and other techniques have been used to examine the spatial distribution of microorganisms. The objectives of this chapter are to provide a brief survey of some of the statistical techniques that can be used for sample design and data analysis of microbiological data in environmental studies, and to provide some examples of their use from the literature.« less
Irani, Morvarid; Amirian, Malihe; Sadeghi, Ramin; Lez, Justine Le; Latifnejad Roudsari, Robab
2017-08-29
To evaluate the effect of folate and folate plus zinc supplementation on endocrine parameters and sperm characteristics in sub fertile men. We conducted a systematic review and meta-analysis. Electronic databases of Medline, Scopus , Google scholar and Persian databases (SID, Iran medex, Magiran, Medlib, Iran doc) were searched from 1966 to December 2016 using a set of relevant keywords including "folate or folic acid AND (infertility, infertile, sterility)".All available randomized controlled trials (RCTs), conducted on a sample of sub fertile men with semen analyses, who took oral folic acid or folate plus zinc, were included. Data collected included endocrine parameters and sperm characteristics. Statistical analyses were done by Comprehensive Meta-analysis Version 2. In total, seven studies were included. Six studies had sufficient data for meta-analysis. "Sperm concentration was statistically higher in men supplemented with folate than with placebo (P < .001)". However, folate supplementation alone did not seem to be more effective than the placebo on the morphology (P = .056) and motility of the sperms (P = .652). Folate plus zinc supplementation did not show any statistically different effect on serum testosterone (P = .86), inhibin B (P = .84), FSH (P = .054), and sperm motility (P = .169) as compared to the placebo. Yet, folate plus zinc showed statistically higher effect on the sperm concentration (P < .001), morphology (P < .001), and serum folate level (P < .001) as compared to placebo. Folate plus zinc supplementation has a positive effect on sperm characteristics in sub fertile men. However, these results should be interpreted with caution due to the important heterogeneity of the studies included in this meta-analysis. Further trials are still needed to confirm the current findings.
Kim, Sung-Min; Choi, Yosoon
2017-01-01
To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH), high content with a low z-score (HL), low content with a high z-score (LH), and low content with a low z-score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required. PMID:28629168
Kim, Sung-Min; Choi, Yosoon
2017-06-18
To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z -score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z -scores: high content with a high z -score (HH), high content with a low z -score (HL), low content with a high z -score (LH), and low content with a low z -score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1-4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.
Mercer, Theresa G; Frostick, Lynne E; Walmsley, Anthony D
2011-10-15
This paper presents a statistical technique that can be applied to environmental chemistry data where missing values and limit of detection levels prevent the application of statistics. A working example is taken from an environmental leaching study that was set up to determine if there were significant differences in levels of leached arsenic (As), chromium (Cr) and copper (Cu) between lysimeters containing preservative treated wood waste and those containing untreated wood. Fourteen lysimeters were setup and left in natural conditions for 21 weeks. The resultant leachate was analysed by ICP-OES to determine the As, Cr and Cu concentrations. However, due to the variation inherent in each lysimeter combined with the limits of detection offered by ICP-OES, the collected quantitative data was somewhat incomplete. Initial data analysis was hampered by the number of 'missing values' in the data. To recover the dataset, the statistical tool of Statistical Multiple Imputation (SMI) was applied, and the data was re-analysed successfully. It was demonstrated that using SMI did not affect the variance in the data, but facilitated analysis of the complete dataset. Copyright © 2011 Elsevier B.V. All rights reserved.
Tsallis statistics and neurodegenerative disorders
NASA Astrophysics Data System (ADS)
Iliopoulos, Aggelos C.; Tsolaki, Magdalini; Aifantis, Elias C.
2016-08-01
In this paper, we perform statistical analysis of time series deriving from four neurodegenerative disorders, namely epilepsy, amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD). The time series are concerned with electroencephalograms (EEGs) of healthy and epileptic states, as well as gait dynamics (in particular stride intervals) of the ALS, PD and HDs. We study data concerning one subject for each neurodegenerative disorder and one healthy control. The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis q-triplet, namely {qstat, qsen, qrel}. The deviation of Tsallis q-triplet from unity indicates non-Gaussian statistics and long-range dependencies for all time series considered. In addition, the results reveal the efficiency of Tsallis statistics in capturing differences in brain dynamics between healthy and epileptic states, as well as differences between ALS, PD, HDs from healthy control subjects. The results indicate that estimations of Tsallis q-indices could be used as possible biomarkers, along with others, for improving classification and prediction of epileptic seizures, as well as for studying the gait complex dynamics of various diseases providing new insights into severity, medications and fall risk, improving therapeutic interventions.
ERIC Educational Resources Information Center
Blanchette, Judith
2012-01-01
The purpose of this empirical study was to determine the extent to which three different objective analytical methods--sequence analysis, surface cohesion analysis, and lexical cohesion analysis--can most accurately identify specific characteristics of online interaction. Statistically significant differences were found in all points of…
Do regional methods really help reduce uncertainties in flood frequency analyses?
NASA Astrophysics Data System (ADS)
Cong Nguyen, Chi; Payrastre, Olivier; Gaume, Eric
2013-04-01
Flood frequency analyses are often based on continuous measured series at gauge sites. However, the length of the available data sets is usually too short to provide reliable estimates of extreme design floods. To reduce the estimation uncertainties, the analyzed data sets have to be extended either in time, making use of historical and paleoflood data, or in space, merging data sets considered as statistically homogeneous to build large regional data samples. Nevertheless, the advantage of the regional analyses, the important increase of the size of the studied data sets, may be counterbalanced by the possible heterogeneities of the merged sets. The application and comparison of four different flood frequency analysis methods to two regions affected by flash floods in the south of France (Ardèche and Var) illustrates how this balance between the number of records and possible heterogeneities plays in real-world applications. The four tested methods are: (1) a local statistical analysis based on the existing series of measured discharges, (2) a local analysis valuating the existing information on historical floods, (3) a standard regional flood frequency analysis based on existing measured series at gauged sites and (4) a modified regional analysis including estimated extreme peak discharges at ungauged sites. Monte Carlo simulations are conducted to simulate a large number of discharge series with characteristics similar to the observed ones (type of statistical distributions, number of sites and records) to evaluate to which extent the results obtained on these case studies can be generalized. These two case studies indicate that even small statistical heterogeneities, which are not detected by the standard homogeneity tests implemented in regional flood frequency studies, may drastically limit the usefulness of such approaches. On the other hand, these result show that the valuation of information on extreme events, either historical flood events at gauged sites or estimated extremes at ungauged sites in the considered region, is an efficient way to reduce uncertainties in flood frequency studies.
Mapping Quantitative Traits in Unselected Families: Algorithms and Examples
Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David
2009-01-01
Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016
Monte Carlo Simulation for Perusal and Practice.
ERIC Educational Resources Information Center
Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.
The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…
Qualitative Meta-Analysis on the Hospital Task: Implications for Research
ERIC Educational Resources Information Center
Noll, Jennifer; Sharma, Sashi
2014-01-01
The "law of large numbers" indicates that as sample size increases, sample statistics become less variable and more closely estimate their corresponding population parameters. Different research studies investigating how people consider sample size when evaluating the reliability of a sample statistic have found a wide range of…
DOT National Transportation Integrated Search
1975-12-01
The primary objective of this study was to review the data generated by projects governed by statistically oriented system of specifications for the control and acceptance of asphaltic concrete and to recommend any revisions that may be deemed necess...
School District Enrollment Projections: A Comparison of Three Methods.
ERIC Educational Resources Information Center
Pettibone, Timothy J.; Bushan, Latha
This study assesses three methods of forecasting school enrollments: the cohort-sruvival method (grade progression), the statistical forecasting procedure developed by the Statistical Analysis System (SAS) Institute, and a simple ratio computation. The three methods were used to forecast school enrollments for kindergarten through grade 12 in a…
Some Conceptual Deficiencies in "Developmental" Behavior Genetics.
ERIC Educational Resources Information Center
Gottlieb, Gilbert
1995-01-01
Criticizes the application of the statistical procedures of the population-genetic approach within evolutionary biology to the study of psychological development. Argues that the application of the statistical methods of population genetics--primarily the analysis of variance--to the causes of psychological development is bound to result in a…
Multiple comparison analysis testing in ANOVA.
McHugh, Mary L
2011-01-01
The Analysis of Variance (ANOVA) test has long been an important tool for researchers conducting studies on multiple experimental groups and one or more control groups. However, ANOVA cannot provide detailed information on differences among the various study groups, or on complex combinations of study groups. To fully understand group differences in an ANOVA, researchers must conduct tests of the differences between particular pairs of experimental and control groups. Tests conducted on subsets of data tested previously in another analysis are called post hoc tests. A class of post hoc tests that provide this type of detailed information for ANOVA results are called "multiple comparison analysis" tests. The most commonly used multiple comparison analysis statistics include the following tests: Tukey, Newman-Keuls, Scheffee, Bonferroni and Dunnett. These statistical tools each have specific uses, advantages and disadvantages. Some are best used for testing theory while others are useful in generating new theory. Selection of the appropriate post hoc test will provide researchers with the most detailed information while limiting Type 1 errors due to alpha inflation.
Brown, Geoffrey W.; Sandstrom, Mary M.; Preston, Daniel N.; ...
2014-11-17
In this study, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency test for small-scale safety and thermal (SSST) testing of homemade explosives (HMEs). Described here are statistical analyses of the results from this test for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of the RDX Class 5 Type II standard. The material was tested as a well-characterized standard several times during the proficiency test to assess differences among participants and the range of results that may arise for well-behaved explosive materials.
NASA Astrophysics Data System (ADS)
Kwon, O.; Kim, W.; Kim, J.
2017-12-01
Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)
Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Derlaga, Joseph M.; Morrison, Joseph H.
2017-01-01
A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
Collagen morphology and texture analysis: from statistics to classification
Mostaço-Guidolin, Leila B.; Ko, Alex C.-T.; Wang, Fei; Xiang, Bo; Hewko, Mark; Tian, Ganghong; Major, Arkady; Shiomi, Masashi; Sowa, Michael G.
2013-01-01
In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage. PMID:23846580
Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin
2015-01-01
The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
IVHS Countermeasures for Rear-End Collisions, Task 1; Vol. II: Statistical Analysis
DOT National Transportation Integrated Search
1994-02-25
This report is from the NHTSA sponsored program, "IVHS Countermeasures for Rear-End Collisions". This Volume, Volume II, Statistical Analysis, presents the statistical analysis of rear-end collision accident data that characterizes the accidents with...
Statistical testing and power analysis for brain-wide association study.
Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng
2018-04-05
The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.
Vahedi, Shahram; Farrokhi, Farahman
2011-01-01
Objective The aim of this study is to explore the confirmatory factor analysis results of the Persian adaptation of Statistics Anxiety Measure (SAM), proposed by Earp. Method The validity and reliability assessments of the scale were performed on 298 college students chosen randomly from Tabriz University in Iran. Confirmatory factor analysis (CFA) was carried out to determine the factor structures of the Persian adaptation of SAM. Results As expected, the second order model provided a better fit to the data than the three alternative models. Conclusions Hence, SAM provides an equally valid measure for use among college students. The study both expands and adds support to the existing body of math anxiety literature. PMID:22952530
NASA Astrophysics Data System (ADS)
Langley, Robin S.
2018-03-01
This work is concerned with the statistical properties of the frequency response function of the energy of a random system. Earlier studies have considered the statistical distribution of the function at a single frequency, or alternatively the statistics of a band-average of the function. In contrast the present analysis considers the statistical fluctuations over a frequency band, and results are obtained for the mean rate at which the function crosses a specified level (or equivalently, the average number of times the level is crossed within the band). Results are also obtained for the probability of crossing a specified level at least once, the mean rate of occurrence of peaks, and the mean trough-to-peak height. The analysis is based on the assumption that the natural frequencies and mode shapes of the system have statistical properties that are governed by the Gaussian Orthogonal Ensemble (GOE), and the validity of this assumption is demonstrated by comparison with numerical simulations for a random plate. The work has application to the assessment of the performance of dynamic systems that are sensitive to random imperfections.
Literature Survey on Weld-Metal Cracking
1952-08-01
quench cracking in cast steel. A statistical investigation was made into the causes of quench cracking in low-alloy-steel gun tubes (FlZ). A definite...decreased with increased pouring temperature, finishing temperature, and forging reduction. Spretnak and Wells(F2O) also made a statistical analysis of...per cent to avoid hot cracks and fissures. Lee(I20) made a statistical study of the bead-cracking susceptibility of weld metal deposited with Type 307
Matysiak, W; Królikowska-Prasał, I; Staszyc, J; Kifer, E; Romanowska-Sarlej, J
1989-01-01
The studies were performed on 44 white female Wistar rats which were intratracheally administered the suspension of the soil dust and the electro-energetic ashes. The electro-energetic ashes were collected from 6 different local heat and power generating plants while the soil dust from several random places of our country. The statistical analysis of the body and the lung mass of the animals subjected to the single dust and ash insufflation was performed. The applied variants proved the statistically significant differences between the body and the lung mass. The observed differences are connected with the kinds of dust and ash used in the experiment.
Inverse statistics and information content
NASA Astrophysics Data System (ADS)
Ebadi, H.; Bolgorian, Meysam; Jafari, G. R.
2010-12-01
Inverse statistics analysis studies the distribution of investment horizons to achieve a predefined level of return. This distribution provides a maximum investment horizon which determines the most likely horizon for gaining a specific return. There exists a significant difference between inverse statistics of financial market data and a fractional Brownian motion (fBm) as an uncorrelated time-series, which is a suitable criteria to measure information content in financial data. In this paper we perform this analysis for the DJIA and S&P500 as two developed markets and Tehran price index (TEPIX) as an emerging market. We also compare these probability distributions with fBm probability, to detect when the behavior of the stocks are the same as fBm.
NASA Astrophysics Data System (ADS)
Barré, Anthony; Suard, Frédéric; Gérard, Mathias; Montaru, Maxime; Riu, Delphine
2014-01-01
This paper describes the statistical analysis of recorded data parameters of electrical battery ageing during electric vehicle use. These data permit traditional battery ageing investigation based on the evolution of the capacity fade and resistance raise. The measured variables are examined in order to explain the correlation between battery ageing and operating conditions during experiments. Such study enables us to identify the main ageing factors. Then, detailed statistical dependency explorations present the responsible factors on battery ageing phenomena. Predictive battery ageing models are built from this approach. Thereby results demonstrate and quantify a relationship between variables and battery ageing global observations, and also allow accurate battery ageing diagnosis through predictive models.
Interpretation of correlations in clinical research.
Hung, Man; Bounsanga, Jerry; Voss, Maren Wright
2017-11-01
Critically analyzing research is a key skill in evidence-based practice and requires knowledge of research methods, results interpretation, and applications, all of which rely on a foundation based in statistics. Evidence-based practice makes high demands on trained medical professionals to interpret an ever-expanding array of research evidence. As clinical training emphasizes medical care rather than statistics, it is useful to review the basics of statistical methods and what they mean for interpreting clinical studies. We reviewed the basic concepts of correlational associations, violations of normality, unobserved variable bias, sample size, and alpha inflation. The foundations of causal inference were discussed and sound statistical analyses were examined. We discuss four ways in which correlational analysis is misused, including causal inference overreach, over-reliance on significance, alpha inflation, and sample size bias. Recent published studies in the medical field provide evidence of causal assertion overreach drawn from correlational findings. The findings present a primer on the assumptions and nature of correlational methods of analysis and urge clinicians to exercise appropriate caution as they critically analyze the evidence before them and evaluate evidence that supports practice. Critically analyzing new evidence requires statistical knowledge in addition to clinical knowledge. Studies can overstate relationships, expressing causal assertions when only correlational evidence is available. Failure to account for the effect of sample size in the analyses tends to overstate the importance of predictive variables. It is important not to overemphasize the statistical significance without consideration of effect size and whether differences could be considered clinically meaningful.
Predicting Success in Psychological Statistics Courses.
Lester, David
2016-06-01
Many students perform poorly in courses on psychological statistics, and it is useful to be able to predict which students will have difficulties. In a study of 93 undergraduates enrolled in Statistical Methods (18 men, 75 women; M age = 22.0 years, SD = 5.1), performance was significantly associated with sex (female students performed better) and proficiency in algebra in a linear regression analysis. Anxiety about statistics was not associated with course performance, indicating that basic mathematical skills are the best correlate for performance in statistics courses and can usefully be used to stream students into classes by ability. © The Author(s) 2016.
Analysis of Statistical Methods Currently used in Toxicology Journals
Na, Jihye; Yang, Hyeri
2014-01-01
Statistical methods are frequently used in toxicology, yet it is not clear whether the methods employed by the studies are used consistently and conducted based on sound statistical grounds. The purpose of this paper is to describe statistical methods used in top toxicology journals. More specifically, we sampled 30 papers published in 2014 from Toxicology and Applied Pharmacology, Archives of Toxicology, and Toxicological Science and described methodologies used to provide descriptive and inferential statistics. One hundred thirteen endpoints were observed in those 30 papers, and most studies had sample size less than 10, with the median and the mode being 6 and 3 & 6, respectively. Mean (105/113, 93%) was dominantly used to measure central tendency, and standard error of the mean (64/113, 57%) and standard deviation (39/113, 34%) were used to measure dispersion, while few studies provide justifications regarding why the methods being selected. Inferential statistics were frequently conducted (93/113, 82%), with one-way ANOVA being most popular (52/93, 56%), yet few studies conducted either normality or equal variance test. These results suggest that more consistent and appropriate use of statistical method is necessary which may enhance the role of toxicology in public health. PMID:25343012
Analysis of Statistical Methods Currently used in Toxicology Journals.
Na, Jihye; Yang, Hyeri; Bae, SeungJin; Lim, Kyung-Min
2014-09-01
Statistical methods are frequently used in toxicology, yet it is not clear whether the methods employed by the studies are used consistently and conducted based on sound statistical grounds. The purpose of this paper is to describe statistical methods used in top toxicology journals. More specifically, we sampled 30 papers published in 2014 from Toxicology and Applied Pharmacology, Archives of Toxicology, and Toxicological Science and described methodologies used to provide descriptive and inferential statistics. One hundred thirteen endpoints were observed in those 30 papers, and most studies had sample size less than 10, with the median and the mode being 6 and 3 & 6, respectively. Mean (105/113, 93%) was dominantly used to measure central tendency, and standard error of the mean (64/113, 57%) and standard deviation (39/113, 34%) were used to measure dispersion, while few studies provide justifications regarding why the methods being selected. Inferential statistics were frequently conducted (93/113, 82%), with one-way ANOVA being most popular (52/93, 56%), yet few studies conducted either normality or equal variance test. These results suggest that more consistent and appropriate use of statistical method is necessary which may enhance the role of toxicology in public health.
Notes on numerical reliability of several statistical analysis programs
Landwehr, J.M.; Tasker, Gary D.
1999-01-01
This report presents a benchmark analysis of several statistical analysis programs currently in use in the USGS. The benchmark consists of a comparison between the values provided by a statistical analysis program for variables in the reference data set ANASTY and their known or calculated theoretical values. The ANASTY data set is an amendment of the Wilkinson NASTY data set that has been used in the statistical literature to assess the reliability (computational correctness) of calculated analytical results.
Computer Automated Ultrasonic Inspection System
1985-02-06
Reports 74 3.1.4 Statistical Analysis Capability 74 3.2 Nondestructive Evaluation Terminal Hardware 76 3.3 Nondestructive Evaluation Terminal Vendor...3.4.2.6 Create a Hold Tape 103 vi TABLE OF CONTENTS SECTION PAGE 3.4.3 System Status 104 3.4.4 Statistical Analysis 105 3.4.4.1 Statistical Analysis...Data Extraction 105 3.4.4.2 Statistical Analysis Report and Display Generation 106 3.4.5 Quality Assurance Reports 106 3.4.6 Nondestructive Inspection
Clinical study of the Erlanger silver catheter--data management and biometry.
Martus, P; Geis, C; Lugauer, S; Böswald, M; Guggenbichler, J P
1999-01-01
The clinical evaluation of venous catheters for catheter-induced infections must conform to a strict biometric methodology. The statistical planning of the study (target population, design, degree of blinding), data management (database design, definition of variables, coding), quality assurance (data inspection at several levels) and the biometric evaluation of the Erlanger silver catheter project are described. The three-step data flow included: 1) primary data from the hospital, 2) relational database, 3) files accessible for statistical evaluation. Two different statistical models were compared: analyzing the first catheter only of a patient in the analysis (independent data) and analyzing several catheters from the same patient (dependent data) by means of the generalized estimating equations (GEE) method. The main result of the study was based on the comparison of both statistical models.
In vivo Comet assay--statistical analysis and power calculations of mice testicular cells.
Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne; Boberg, Julie; Kulahci, Murat
2014-11-01
The in vivo Comet assay is a sensitive method for evaluating DNA damage. A recurrent concern is how to analyze the data appropriately and efficiently. A popular approach is to summarize the raw data into a summary statistic prior to the statistical analysis. However, consensus on which summary statistic to use has yet to be reached. Another important consideration concerns the assessment of proper sample sizes in the design of Comet assay studies. This study aims to identify a statistic suitably summarizing the % tail DNA of mice testicular samples in Comet assay studies. A second aim is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636-97-5, CAS no. 85-28-9, CAS no. 13674-87-8, CAS no. 43100-38-5 and CAS no. 60965-26-6. Testicular cells were examined using the alkaline version of the Comet assay and the DNA damage was quantified as % tail DNA using a fully automatic scoring system. From the raw data 23 summary statistics were examined. A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Angeler, David G; Viedma, Olga; Moreno, José M
2009-11-01
Time lag analysis (TLA) is a distance-based approach used to study temporal dynamics of ecological communities by measuring community dissimilarity over increasing time lags. Despite its increased use in recent years, its performance in comparison with other more direct methods (i.e., canonical ordination) has not been evaluated. This study fills this gap using extensive simulations and real data sets from experimental temporary ponds (true zooplankton communities) and landscape studies (landscape categories as pseudo-communities) that differ in community structure and anthropogenic stress history. Modeling time with a principal coordinate of neighborhood matrices (PCNM) approach, the canonical ordination technique (redundancy analysis; RDA) consistently outperformed the other statistical tests (i.e., TLAs, Mantel test, and RDA based on linear time trends) using all real data. In addition, the RDA-PCNM revealed different patterns of temporal change, and the strength of each individual time pattern, in terms of adjusted variance explained, could be evaluated, It also identified species contributions to these patterns of temporal change. This additional information is not provided by distance-based methods. The simulation study revealed better Type I error properties of the canonical ordination techniques compared with the distance-based approaches when no deterministic component of change was imposed on the communities. The simulation also revealed that strong emphasis on uniform deterministic change and low variability at other temporal scales is needed to result in decreased statistical power of the RDA-PCNM approach relative to the other methods. Based on the statistical performance of and information content provided by RDA-PCNM models, this technique serves ecologists as a powerful tool for modeling temporal change of ecological (pseudo-) communities.
NASA Astrophysics Data System (ADS)
O'Shea, Bethany; Jankowski, Jerzy
2006-12-01
The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright
Rural and Urban Crashes: A Comparative Analysis
DOT National Transportation Integrated Search
1996-08-01
National Highway Traffic Safety Administration's National Center for Statistics : and Analysis (NCSA) recently completed a study comparing the characteristics of : crashes occurring in rural areas to the characteristics of crashes occurring in : urba...
Gene Identification Algorithms Using Exploratory Statistical Analysis of Periodicity
NASA Astrophysics Data System (ADS)
Mukherjee, Shashi Bajaj; Sen, Pradip Kumar
2010-10-01
Studying periodic pattern is expected as a standard line of attack for recognizing DNA sequence in identification of gene and similar problems. But peculiarly very little significant work is done in this direction. This paper studies statistical properties of DNA sequences of complete genome using a new technique. A DNA sequence is converted to a numeric sequence using various types of mappings and standard Fourier technique is applied to study the periodicity. Distinct statistical behaviour of periodicity parameters is found in coding and non-coding sequences, which can be used to distinguish between these parts. Here DNA sequences of Drosophila melanogaster were analyzed with significant accuracy.
Experimental analysis of computer system dependability
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar, K.; Tang, Dong
1993-01-01
This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.
Photon counting statistics analysis of biophotons from hands.
Jung, Hyun-Hee; Woo, Won-Myung; Yang, Joon-Mo; Choi, Chunho; Lee, Jonghan; Yoon, Gilwon; Yang, Jong S; Soh, Kwang-Sup
2003-05-01
The photon counting statistics of biophotons emitted from hands is studied with a view to test its agreement with the Poisson distribution. The moments of observed probability up to seventh order have been evaluated. The moments of biophoton emission from hands are in good agreement while those of dark counts of photomultiplier tube show large deviations from the theoretical values of Poisson distribution. The present results are consistent with the conventional delta-value analysis of the second moment of probability.
Common pitfalls in statistical analysis: “No evidence of effect” versus “evidence of no effect”
Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc
2015-01-01
This article is the first in a series exploring common pitfalls in statistical analysis in biomedical research. The power of a clinical trial is the ability to find a difference between treatments, where such a difference exists. At the end of the study, the lack of difference between treatments does not mean that the treatments can be considered equivalent. The distinction between “no evidence of effect” and “evidence of no effect” needs to be understood. PMID:25657905
Chen, Guangxiang; Hu, Xinyu; Li, Lei; Huang, Xiaoqi; Lui, Su; Kuang, Weihong; Ai, Hua; Bi, Feng; Gu, Zhongwei; Gong, Qiyong
2016-02-24
White matter (WM) abnormalities have long been suspected in major depressive disorder (MDD). Tract-based spatial statistics (TBSS) studies have detected abnormalities in fractional anisotropy (FA) in MDD, but the available evidence has been inconsistent. We performed a quantitative meta-analysis of TBSS studies contrasting MDD patients with healthy control subjects (HCS). A total of 17 studies with 18 datasets that included 641 MDD patients and 581 HCS were identified. Anisotropic effect size-signed differential mapping (AES-SDM) meta-analysis was performed to assess FA alterations in MDD patients compared to HCS. FA reductions were identified in the genu of the corpus callosum (CC) extending to the body of the CC and left anterior limb of the internal capsule (ALIC) in MDD patients relative to HCS. Descriptive analysis of quartiles, sensitivity analysis and subgroup analysis further confirmed these findings. Meta-regression analysis revealed that individuals with more severe MDD were significantly more likely to have FA reductions in the genu of the CC. This study provides a thorough profile of WM abnormalities in MDD and evidence that interhemispheric connections and frontal-striatal-thalamic pathways are the most convergent circuits affected in MDD.
The Hard but Necessary Task of Gathering Order-One Effect Size Indices in Meta-Analysis
ERIC Educational Resources Information Center
Ortego, Carmen; Botella, Juan
2010-01-01
Meta-analysis of studies with two groups and two measurement occasions must employ order-one effect size indices to represent study outcomes. Especially with non-random assignment, non-equivalent control group designs, a statistical analysis restricted to post-treatment scores can lead to severely biased conclusions. The 109 primary studies…
Family Early Literacy Practices Questionnaire: A Validation Study for a Spanish-Speaking Population
ERIC Educational Resources Information Center
Lewis, Kandia
2012-01-01
The purpose of the current study was to evaluate the psychometric validity of a Spanish translated version of a family involvement questionnaire (the FELP) using a mixed-methods design. Thus, statistical analyses (i.e., factor analysis, reliability analysis, and item analysis) and qualitative analyses (i.e., focus group data) were assessed.…
The Practicality of Statistical Physics Handout Based on KKNI and the Constructivist Approach
NASA Astrophysics Data System (ADS)
Sari, S. Y.; Afrizon, R.
2018-04-01
Statistical physics lecture shows that: 1) the performance of lecturers, social climate, students’ competence and soft skills needed at work are in enough category, 2) students feel difficulties in following the lectures of statistical physics because it is abstract, 3) 40.72% of students needs more understanding in the form of repetition, practice questions and structured tasks, and 4) the depth of statistical physics material needs to be improved gradually and structured. This indicates that learning materials in accordance of The Indonesian National Qualification Framework or Kerangka Kualifikasi Nasional Indonesia (KKNI) with the appropriate learning approach are needed to help lecturers and students in lectures. The author has designed statistical physics handouts which have very valid criteria (90.89%) according to expert judgment. In addition, the practical level of handouts designed also needs to be considered in order to be easy to use, interesting and efficient in lectures. The purpose of this research is to know the practical level of statistical physics handout based on KKNI and a constructivist approach. This research is a part of research and development with 4-D model developed by Thiagarajan. This research activity has reached part of development test at Development stage. Data collection took place by using a questionnaire distributed to lecturers and students. Data analysis using descriptive data analysis techniques in the form of percentage. The analysis of the questionnaire shows that the handout of statistical physics has very practical criteria. The conclusion of this study is statistical physics handouts based on the KKNI and constructivist approach have been practically used in lectures.
Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)
NASA Astrophysics Data System (ADS)
Kasibhatla, P.
2004-12-01
In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.
A Statistical Analysis of Brain Morphology Using Wild Bootstrapping
Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.
2008-01-01
Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909
Computers as an Instrument for Data Analysis. Technical Report No. 11.
ERIC Educational Resources Information Center
Muller, Mervin E.
A review of statistical data analysis involving computers as a multi-dimensional problem provides the perspective for consideration of the use of computers in statistical analysis and the problems associated with large data files. An overall description of STATJOB, a particular system for doing statistical data analysis on a digital computer,…
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 1
1988-10-01
Partial contents: The Quest for Omega = sq root(K/M) -- Notes on the development of vibration analysis; An overview of Statistical Energy analysis ; Its...and inplane vibration transmission in statistical energy analysis ; Vibroacoustic response using the finite element method and statistical energy analysis ; Helium
Analysis strategies for longitudinal attachment loss data.
Beck, J D; Elter, J R
2000-02-01
The purpose of this invited review is to describe and discuss methods currently in use to quantify the progression of attachment loss in epidemiological studies of periodontal disease, and to make recommendations for specific analytic methods based upon the particular design of the study and structure of the data. The review concentrates on the definition of incident attachment loss (ALOSS) and its component parts; measurement issues including thresholds and regression to the mean; methods of accounting for longitudinal change, including changes in means, changes in proportions of affected sites, incidence density, the effect of tooth loss and reversals, and repeated events; statistical models of longitudinal change, including the incorporation of the time element, use of linear, logistic or Poisson regression or survival analysis, and statistical tests; site vs person level of analysis, including statistical adjustment for correlated data; the strengths and limitations of ALOSS data. Examples from the Piedmont 65+ Dental Study are used to illustrate specific concepts. We conclude that incidence density is the preferred methodology to use for periodontal studies with more than one period of follow-up and that the use of studies not employing methods for dealing with complex samples, correlated data, and repeated measures does not take advantage of our current understanding of the site- and person-level variables important in periodontal disease and may generate biased results.
ParallABEL: an R library for generalized parallelization of genome-wide association studies
2010-01-01
Background Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Results Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors. Conclusions Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL. PMID:20429914
Bladder cancer among hairdressers: a meta-analysis
Schablon, Anja; Schedlbauer, Grita; Dulon, Madeleine; Nienhaus, Albert
2010-01-01
Background Occupational risks for bladder cancer in hairdressers by using hair products have been examined in many epidemiological studies. But owing to small sample sizes of the studies and the resulting lack of statistical power, the results of these studies have been inconsistent and significant associations have rarely been found. Methods We conducted a meta-analysis to determine summary risk ratios (SRRs) for the risk of bladder cancer among hairdressers. Studies were identified by a MEDLINE, EMBASE, CENTRAL search and by the reference lists of articles/relevant reviews. Statistical tests for publication bias and for heterogeneity as well as sensitivity analysis were applied. In addition, the study quality and the risk of bias were assessed using six criteria. Results 42 studies were included and statistically significantly increased risks around 1.3–1.7 were found for all but one analysis. The SRR increased with duration of employment from 1.30 (95% CI 1.15 to 1.48) for ‘ever registered as hairdresser’ to 1.70 (95% CI 1.01 to 2.88) for ‘job held ≥10 years’. No difference was found between the risk for smoking-adjusted data (SRR 1.35, 95% CI 1.13 to 1.61) and no adjustment (SRR 1.33, 95% CI 1.18 to 1.50). Studies assessed as being of high quality (n=11) and of moderate quality (n=31) showed similar SRRs. There was no evidence of publication bias or heterogeneity in all analyses. Conclusion In summary, our results showed an increased and statistically significant risk for bladder cancer among hairdressers, in particular for hairdressers in jobs held ≥10 years. Residual confounding by smoking cannot be totally ruled out. Because of the long latency times of bladder cancer it remains an open question whether hairdressers working prior to 1980 and after 1980, when some aromatic amines were banned as hair dye ingredients, have the same risk for bladder cancer. PMID:20447989
Effect of open rhinoplasty on the smile line.
Tabrizi, Reza; Mirmohamadsadeghi, Hoori; Daneshjoo, Danadokht; Zare, Samira
2012-05-01
Open rhinoplasty is an esthetic surgical technique that is becoming increasingly popular, and can affect the nose and upper lip compartments. The aim of this study was to evaluate the effect of open rhinoplasty on tooth show and the smile line. The study participants were 61 patients with a mean age of 24.3 years (range, 17.2 to 39.6 years). The surgical procedure consisted of an esthetic open rhinoplasty without alar resection. Analysis of tooth show was limited to pre- and postoperative (at 12 months) tooth show measurements at rest and the maximum smile with a ruler (when participants held their heads naturally). Statistical analyses were performed with SPSS 13.0, and paired-sample t tests were used to compare tooth show means before and after the operation. Analysis of the rest position showed no statistically significant change in tooth show (P = .15), but analysis of participants' maximum smile data showed a statistically significant increase in tooth show after surgery (P < .05). In contrast, Pearson correlation analysis showed a positive relation between rhinoplasty and tooth show increases in maximum smile, especially in subjects with high smile lines. This study shows that the nasolabial compartment is a single unit and any change in 1 part may influence the other parts. Further studies should be conducted to investigate these interactions. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002
Saman, D.M.; Cole, H.P.; Odoi, A.; Myers, M.L.; Carey, D.I.; Westneat, S.C.
2012-01-01
Background: Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns. Methods: A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns. Results: The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001). Conclusions: This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky. ?? 2012 Saman et al.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
NASA Astrophysics Data System (ADS)
Andersson, C. David; Hillgren, J. Mikael; Lindgren, Cecilia; Qian, Weixing; Akfur, Christine; Berg, Lotta; Ekström, Fredrik; Linusson, Anna
2015-03-01
Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.
NASA Astrophysics Data System (ADS)
Ishida, Shigeki; Mori, Atsuo; Shinji, Masato
The main method to reduce the blasting charge noise which occurs in a tunnel under construction is to install the sound insulation door in the tunnel. However, the numerical analysis technique to predict the accurate effect of the transmission loss in the sound insulation door is not established. In this study, we measured the blasting charge noise and the vibration of the sound insulation door in the tunnel with the blasting charge, and performed analysis and modified acoustic feature. In addition, we reproduced the noise reduction effect of the sound insulation door by statistical energy analysis method and confirmed that numerical simulation is possible by this procedure.
Meta-analysis inside and outside particle physics: two traditions that should converge?
Baker, Rose D; Jackson, Dan
2013-06-01
The use of meta-analysis in medicine and epidemiology really took off in the 1970s. However, in high-energy physics, the Particle Data Group has been carrying out meta-analyses of measurements of particle masses and other properties since 1957. Curiously, there has been virtually no interaction between those working inside and outside particle physics. In this paper, we use statistical models to study two major differences in practice. The first is the usefulness of systematic errors, which physicists are now beginning to quote in addition to statistical errors. The second is whether it is better to treat heterogeneity by scaling up errors as do the Particle Data Group or by adding a random effect as does the rest of the community. Besides fitting models, we derive and use an exact test of the error-scaling hypothesis. We also discuss the other methodological differences between the two streams of meta-analysis. Our conclusion is that systematic errors are not currently very useful and that the conventional random effects model, as routinely used in meta-analysis, has a useful role to play in particle physics. The moral we draw for statisticians is that we should be more willing to explore 'grassroots' areas of statistical application, so that good statistical practice can flow both from and back to the statistical mainstream. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
Disutility analysis of oil spills: graphs and trends.
Ventikos, Nikolaos P; Sotiropoulos, Foivos S
2014-04-15
This paper reports the results of an analysis of oil spill cost data assembled from a worldwide pollution database that mainly includes data from the International Oil Pollution Compensation Fund. The purpose of the study is to analyze the conditions of marine pollution accidents and the factors that impact the costs of oil spills worldwide. The accidents are classified into categories based on their characteristics, and the cases are compared using charts to show how the costs are affected under all conditions. This study can be used as a helpful reference for developing a detailed statistical model that is capable of reliably and realistically estimating the total costs of oil spills. To illustrate the differences identified by this statistical analysis, the results are compared with the results of previous studies, and the findings are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Overholser, Brian R; Sowinski, Kevin M
2007-12-01
Biostatistics is the application of statistics to biologic data. The field of statistics can be broken down into 2 fundamental parts: descriptive and inferential. Descriptive statistics are commonly used to categorize, display, and summarize data. Inferential statistics can be used to make predictions based on a sample obtained from a population or some large body of information. It is these inferences that are used to test specific research hypotheses. This 2-part review will outline important features of descriptive and inferential statistics as they apply to commonly conducted research studies in the biomedical literature. Part 1 in this issue will discuss fundamental topics of statistics and data analysis. Additionally, some of the most commonly used statistical tests found in the biomedical literature will be reviewed in Part 2 in the February 2008 issue.
Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup
2010-10-01
We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.
Dong, Nianbo; Lipsey, Mark W
2017-01-01
It is unclear whether propensity score analysis (PSA) based on pretest and demographic covariates will meet the ignorability assumption for replicating the results of randomized experiments. This study applies within-study comparisons to assess whether pre-Kindergarten (pre-K) treatment effects on achievement outcomes estimated using PSA based on a pretest and demographic covariates can approximate those found in a randomized experiment. Data-Four studies with samples of pre-K children each provided data on two math achievement outcome measures with baseline pretests and child demographic variables that included race, gender, age, language spoken at home, and mother's highest education. Research Design and Data Analysis-A randomized study of a pre-K math curriculum provided benchmark estimates of effects on achievement measures. Comparison samples from other pre-K studies were then substituted for the original randomized control and the effects were reestimated using PSA. The correspondence was evaluated using multiple criteria. The effect estimates using PSA were in the same direction as the benchmark estimates, had similar but not identical statistical significance, and did not differ from the benchmarks at statistically significant levels. However, the magnitude of the effect sizes differed and displayed both absolute and relative bias larger than required to show statistical equivalence with formal tests, but those results were not definitive because of the limited statistical power. We conclude that treatment effect estimates based on a single pretest and demographic covariates in PSA correspond to those from a randomized experiment on the most general criteria for equivalence.
Aksamija, Goran; Mulabdic, Adi; Rasic, Ismar; Muhovic, Samir; Gavric, Igor
2011-01-01
Polytrauma is defined as an injury where they are affected by at least two different organ systems or body, with at least one life-threatening injuries. Given the multilevel model care of polytrauma patients within KCUS are inevitable weaknesses in the management of this category of patients. To determine the dynamics of existing procedures in treatment of polytrauma patients on admission to KCUS, and based on statistical analysis of variables applied to determine and define the factors that influence the final outcome of treatment, and determine their mutual relationship, which may result in eliminating the flaws in the approach to the problem. The study was based on 263 polytrauma patients. Parametric and non-parametric statistical methods were used. Basic statistics were calculated, based on the calculated parameters for the final achievement of research objectives, multicoleration analysis, image analysis, discriminant analysis and multifactorial analysis were used. From the universe of variables for this study we selected sample of n = 25 variables, of which the first two modular, others belong to the common measurement space (n = 23) and in this paper defined as a system variable methods, procedures and assessments of polytrauma patients. After the multicoleration analysis, since the image analysis gave a reliable measurement results, we started the analysis of eigenvalues, that is defining the factors upon which they obtain information about the system solve the problem of the existing model and its correlation with treatment outcome. The study singled out the essential factors that determine the current organizational model of care, which may affect the treatment and better outcome of polytrauma patients. This analysis has shown the maximum correlative relationships between these practices and contributed to development guidelines that are defined by isolated factors.
Eagle Plus Air Superiority into the 21st Century
1996-04-01
18 Data Collection Method ....................................................................................... 18 Statistical Trend Analysis...19 Statistical Readiness Analysis.................................................................................... 20 Aging Aircraft...generated by Mr. Jeff Hill served as the foundation of our statistical analysis. Special thanks go out to Mrs. Betsy Mullis, LFLL branch chief, and to
Effectiveness of propolis on oral health: a meta-analysis.
Hwu, Yueh-Juen; Lin, Feng-Yu
2014-12-01
The use of propolis mouth rinse or gel as a supplementary intervention has increased during the last decade in Taiwan. However, the effect of propolis on oral health is not well understood. The purpose of this meta-analysis was to present the best available evidence regarding the effects of propolis use on oral health, including oral infection, dental plaque, and stomatitis. Researchers searched seven electronic databases for relevant articles published between 1969 and 2012. Data were collected using inclusion and exclusion criteria. The Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument was used to evaluate the quality of the identified articles. Eight trials published from 1997 to 2011 with 194 participants had extractable data. The result of the meta-analysis indicated that, although propolis had an effect on reducing dental plaque, this effect was not statistically significant. The results were not statistically significant for oral infection or stomatitis. Although there are a number of promising indications, in view of the limited number and quality of studies and the variation in results among studies, this review highlights the need for additional well-designed trials to draw conclusions that are more robust.
Luster measurements of lips treated with lipstick formulations.
Yadav, Santosh; Issa, Nevine; Streuli, David; McMullen, Roger; Fares, Hani
2011-01-01
In this study, digital photography in combination with image analysis was used to measure the luster of several lipstick formulations containing varying amounts and types of polymers. A weighed amount of lipstick was applied to a mannequin's lips and the mannequin was illuminated by a uniform beam of a white light source. Digital images of the mannequin were captured with a high-resolution camera and the images were analyzed using image analysis software. Luster analysis was performed using Stamm (L(Stamm)) and Reich-Robbins (L(R-R)) luster parameters. Statistical analysis was performed on each luster parameter (L(Stamm) and L(R-R)), peak height, and peak width. Peak heights for lipstick formulation containing 11% and 5% VP/eicosene copolymer were statistically different from those of the control. The L(Stamm) and L(R-R) parameters for the treatment containing 11% VP/eicosene copolymer were statistically different from these of the control. Based on the results obtained in this study, we are able to determine whether a polymer is a good pigment dispersant and contributes to visually detected shine of a lipstick upon application. The methodology presented in this paper could serve as a tool for investigators to screen their ingredients for shine in lipstick formulations.
Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques
NASA Astrophysics Data System (ADS)
Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein
2017-10-01
The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.
A statistical study of EMIC waves observed by Cluster: 1. Wave properties
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-01
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
Howard, David M; Adams, Mark J; Clarke, Toni-Kim; Wigmore, Eleanor M; Zeng, Yanni; Hagenaars, Saskia P; Lyall, Donald M; Thomson, Pippa A; Evans, Kathryn L; Porteous, David J; Nagy, Reka; Hayward, Caroline; Haley, Chris S; Smith, Blair H; Murray, Alison D; Batty, G David; Deary, Ian J; McIntosh, Andrew M
2017-01-01
Cognitive ability is a heritable trait with a polygenic architecture, for which several associated variants have been identified using genotype-based and candidate gene approaches. Haplotype-based analyses are a complementary technique that take phased genotype data into account, and potentially provide greater statistical power to detect lower frequency variants. In the present analysis, three cohort studies (n total = 48,002) were utilised: Generation Scotland: Scottish Family Health Study (GS:SFHS), the English Longitudinal Study of Ageing (ELSA), and the UK Biobank. A genome-wide haplotype-based meta-analysis of cognitive ability was performed, as well as a targeted meta-analysis of several gene coding regions. None of the assessed haplotypes provided evidence of a statistically significant association with cognitive ability in either the individual cohorts or the meta-analysis. Within the meta-analysis, the haplotype with the lowest observed P -value overlapped with the D-amino acid oxidase activator ( DAOA ) gene coding region. This coding region has previously been associated with bipolar disorder, schizophrenia and Alzheimer's disease, which have all been shown to impact upon cognitive ability. Another potentially interesting region highlighted within the current genome-wide association analysis (GS:SFHS: P = 4.09 x 10 -7 ), was the butyrylcholinesterase ( BCHE ) gene coding region. The protein encoded by BCHE has been shown to influence the progression of Alzheimer's disease and its role in cognitive ability merits further investigation. Although no evidence was found for any haplotypes with a statistically significant association with cognitive ability, our results did provide further evidence that the genetic variants contributing to the variance of cognitive ability are likely to be of small effect.
Nateglinide versus repaglinide for type 2 diabetes mellitus in China.
Li, Chanjuan; Xia, Jielai; Zhang, Gaokui; Wang, Suzhen; Wang, Ling
2009-12-01
The purpose of this study is to evaluate efficacy and safety of nateglinide tablet administration in comparison with those of repaglinide tablet as control on treating type 2 diabetes mellitus in China. Pooled-analysis with analysis of covariance (ANCOVA) method was applied to assess the efficacy and safety based on original data collected from four independent randomized clinical trials with similar research protocols. However meta-analysis was applied based on the outcomes of the four studies. The results by meta-analysis were comparable to those obtained by pooled-analysis. The means of HbA(1c), and fasting blood glucose in both the nateglinide and repaglinide groups were reduced significantly after 12 weeks duration but no statistical differences in reduction between the two groups. The adverse reaction rates were 9.89 and 6.51% in the nateglinide and repaglinide groups respectively, with the rate difference showing no statistical significance, and the Odds Ratio of adverse reaction rate (95% confidence interval) was 1.59 (0.99, 2.55). Both nateglinide and repaglinide administration have similarly significant effects on reducing HbA(1c) and FBG. However, the adverse reaction rate in the nateglinide group is higher than that in the latter using repaglinide but no statistical significance difference as revealed in the four clinical trials detailed below.
Wear behavior of AA 5083/SiC nano-particle metal matrix composite: Statistical analysis
NASA Astrophysics Data System (ADS)
Hussain Idrisi, Amir; Ismail Mourad, Abdel-Hamid; Thekkuden, Dinu Thomas; Christy, John Victor
2018-03-01
This paper reports study on statistical analysis of the wear characteristics of AA5083/SiC nanocomposite. The aluminum matrix composites with different wt % (0%, 1% and 2%) of SiC nanoparticles were fabricated by using stir casting route. The developed composites were used in the manufacturing of spur gears on which the study was conducted. A specially designed test rig was used in testing the wear performance of the gears. The wear was investigated under different conditions of applied load (10N, 20N, and 30N) and operation time (30 mins, 60 mins, 90 mins, and 120mins). The analysis carried out at room temperature under constant speed of 1450 rpm. The wear parameters were optimized by using Taguchi’s method. During this statistical approach, L27 Orthogonal array was selected for the analysis of output. Furthermore, analysis of variance (ANOVA) was used to investigate the influence of applied load, operation time and SiC wt. % on wear behaviour. The wear resistance was analyzed by selecting “smaller is better” characteristics as the objective of the model. From this research, it is observed that experiment time and SiC wt % have the most significant effect on the wear performance followed by the applied load.
NASA Astrophysics Data System (ADS)
Meseguer, S.; Sanfeliu, T.; Jordán, M. M.
2009-02-01
The Oliete basin (Early Cretaceous, NE Teruel, Spain) is one of the most important areas for the supply of mine spoils used as ball clays for the production of white and red stoneware in the Spanish ceramic industry of wall and floor tiles. This study corresponds to the second part of the paper published recently by Meseguer et al. (Environ Geol 2008) about the use of mine spoils from Teruel coal mining district. The present study shows a statistical data analysis from chemical data (major, minor and trace elements). The performed statistical analysis of chemical data included descriptive statistics and cluster analysis (with ANOVA and Scheffé methods). The cluster analysis of chemical data provided three main groups: C3 with the highest mean SiO2 content (66%) and lowest mean Al2O3 content (20%); C2 with lower SiO2 content (48%) and higher mean Al2O3 content (28%); and C1 with medium values for the SiO2 and Al2O3 mean content. The main applications of these materials are refractory, white and red ceramics, stoneware, heavy ceramics (including red earthenware, bricks and roof tiles), and components of white Portland cement and aluminous cement. Clays from group 2 are used in refractories (with higher kaolinite content, and constrictions to CaO + MgO and K2O + Na2O contents). All materials can be used in fine ceramics (white or red, according to the Fe2O3 + TiO2 content).