Sample records for study structural features

  1. Effective Moment Feature Vectors for Protein Domain Structures

    PubMed Central

    Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun

    2013-01-01

    Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828

  2. Feature-to-Feature Inference Under Conditions of Cue Restriction and Dimensional Correlation.

    PubMed

    Lancaster, Matthew E; Homa, Donald

    2017-01-01

    The present study explored feature-to-feature and label-to-feature inference in a category task for different category structures. In the correlated condition, each of the 4 dimensions comprising the category was positively correlated to each other and to the category label. In the uncorrelated condition, no correlation existed between the 4 dimensions comprising the category, although the dimension to category label correlation matched that of the correlated condition. After learning, participants made inference judgments of a missing feature, given 1, 2, or 3 feature cues; on half the trials, the category label was also included as a cue. The results showed superior inference of features following training on the correlated structure, with accurate inference when only a single feature was presented. In contrast, a single-feature cue resulted in chance levels of inference for the uncorrelated structure. Feature inference systematically improved with number of cues after training on the correlated structure. Surprisingly, a similar outcome was obtained for the uncorrelated structure, an outcome that must have reflected mediation via the category label. A descriptive model is briefly introduced to explain the results, with a suggestion that this paradigm might be profitably extended to hierarchical structures where the levels of feature-to-feature inference might vary with the depth of the hierarchy.

  3. Automated discovery of structural features of the optic nerve head on the basis of image and genetic data

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2014-03-01

    Evaluation of optic nerve head (ONH) structure is a commonly used clinical technique for both diagnosis and monitoring of glaucoma. Glaucoma is associated with characteristic changes in the structure of the ONH. We present a method for computationally identifying ONH structural features using both imaging and genetic data from a large cohort of participants at risk for primary open angle glaucoma (POAG). Using 1054 participants from the Ocular Hypertension Treatment Study, ONH structure was measured by application of a stereo correspondence algorithm to stereo fundus images. In addition, the genotypes of several known POAG genetic risk factors were considered for each participant. ONH structural features were discovered using both a principal component analysis approach to identify the major modes of variance within structural measurements and a linear discriminant analysis approach to capture the relationship between genetic risk factors and ONH structure. The identified ONH structural features were evaluated based on the strength of their associations with genotype and development of POAG by the end of the OHTS study. ONH structural features with strong associations with genotype were identified for each of the genetic loci considered. Several identified ONH structural features were significantly associated (p < 0.05) with the development of POAG after Bonferroni correction. Further, incorporation of genetic risk status was found to substantially increase performance of early POAG prediction. These results suggest incorporating both imaging and genetic data into ONH structural modeling significantly improves the ability to explain POAG-related changes to ONH structure.

  4. Accurate facade feature extraction method for buildings from three-dimensional point cloud data considering structural information

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia

    2018-05-01

    Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.

  5. Labyrinths, columns and cavities: new internal features of pollen grain walls in the Acanthaceae detected by FIB-SEM.

    PubMed

    House, Alisoun; Balkwill, Kevin

    2016-03-01

    External pollen grain morphology has been widely used in the taxonomy and systematics of flowering plants, especially the Acanthaceae which are noted for pollen diversity. However internal pollen wall features have received far less attention due to the difficulty of examining the wall structure. Advancing technology in the field of microscopy has made it possible, with the use of a focused ion beam-scanning electron microscope (FIB-SEM), to view the structure of pollen grain walls in far greater detail and in three dimensions. In this study the wall structures of 13 species from the Acanthaceae were investigated for features of potential systematic relevance. FIB-SEM was applied to obtain precise cross sections of pollen grains at selected positions for examining the wall ultrastructure. Exploratory studies of the exine have thus far identified five basic structural types. The investigations also show that similar external pollen wall features may have a distinctly different internal structure. FIB-SEM studies have revealed diverse internal pollen wall features which may now be investigated for their systematic and functional significance.

  6. Learning about the internal structure of categories through classification and feature inference.

    PubMed

    Jee, Benjamin D; Wiley, Jennifer

    2014-01-01

    Previous research on category learning has found that classification tasks produce representations that are skewed toward diagnostic feature dimensions, whereas feature inference tasks lead to richer representations of within-category structure. Yet, prior studies often measure category knowledge through tasks that involve identifying only the typical features of a category. This neglects an important aspect of a category's internal structure: how typical and atypical features are distributed within a category. The present experiments tested the hypothesis that inference learning results in richer knowledge of internal category structure than classification learning. We introduced several new measures to probe learners' representations of within-category structure. Experiment 1 found that participants in the inference condition learned and used a wider range of feature dimensions than classification learners. Classification learners, however, were more sensitive to the presence of atypical features within categories. Experiment 2 provided converging evidence that classification learners were more likely to incorporate atypical features into their representations. Inference learners were less likely to encode atypical category features, even in a "partial inference" condition that focused learners' attention on the feature dimensions relevant to classification. Overall, these results are contrary to the hypothesis that inference learning produces superior knowledge of within-category structure. Although inference learning promoted representations that included a broad range of category-typical features, classification learning promoted greater sensitivity to the distribution of typical and atypical features within categories.

  7. Structure function analysis of two-scale Scalar Ramps. Part II: Coherent structure scaling and surface renewal applications

    USDA-ARS?s Scientific Manuscript database

    Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy a...

  8. A structural SVM approach for reference parsing.

    PubMed

    Zhang, Xiaoli; Zou, Jie; Le, Daniel X; Thoma, George R

    2011-06-09

    Automated extraction of bibliographic data, such as article titles, author names, abstracts, and references is essential to the affordable creation of large citation databases. References, typically appearing at the end of journal articles, can also provide valuable information for extracting other bibliographic data. Therefore, parsing individual reference to extract author, title, journal, year, etc. is sometimes a necessary preprocessing step in building citation-indexing systems. The regular structure in references enables us to consider reference parsing a sequence learning problem and to study structural Support Vector Machine (structural SVM), a newly developed structured learning algorithm on parsing references. In this study, we implemented structural SVM and used two types of contextual features to compare structural SVM with conventional SVM. Both methods achieve above 98% token classification accuracy and above 95% overall chunk-level accuracy for reference parsing. We also compared SVM and structural SVM to Conditional Random Field (CRF). The experimental results show that structural SVM and CRF achieve similar accuracies at token- and chunk-levels. When only basic observation features are used for each token, structural SVM achieves higher performance compared to SVM since it utilizes the contextual label features. However, when the contextual observation features from neighboring tokens are combined, SVM performance improves greatly, and is close to that of structural SVM after adding the second order contextual observation features. The comparison of these two methods with CRF using the same set of binary features show that both structural SVM and CRF perform better than SVM, indicating their stronger sequence learning ability in reference parsing.

  9. Origin of the Hadži ABC structure: An ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-11-14

    Medium and strong hydrogen bonds are well known to give rise to broad features in the vibrational spectrum often spanning several hundred wavenumbers. In some cases, these features can span over 1000 cm{sup −1} and even contain multiple broad peaks. One class of strongly hydrogen-bonded dimers that includes many different phosphinic, phosphoric, sulfinic, and selenic acid homodimers exhibits a three-peaked structure over 1500 cm{sup −1} broad. This unusual feature is often referred to as the Hadži ABC structure. The origin of this feature has been debated since its discovery in the 1950s. Only a couple of theoretical studies have attemptedmore » to interpret the origin of this feature; however, no previous study has been able to reproduce this feature from first principles. Here, we present the first ab initio calculation of the Hadži ABC structure. Using a reduced dimensionality calculation that includes four vibrational modes, we are able to reproduce the three-peak structure and much of the broadness of the feature. Our results indicate that Fermi resonances of the in-plane bend, out-of-plane bend, and combination of these bends play significant roles in explaining this feature. Much of the broadness of the feature and the ability of the OH stretch mode to couple with many overtone bending modes are captured by including an adiabatically separated dimer stretch mode in the model. This mode modulates the distance between the monomer units and accordingly the strength of the hydrogen-bonds causing the OH stretch frequency to shift from 2000 to 3000 cm{sup −1}. Using this model, we were also able to reproduce the vibrational spectrum of the deuterated isotopologue which consists of a single 500 cm{sup −1} broad feature. Whereas previous empirical studies have asserted that Fermi resonances contribute very little to this feature, our study indicates that while not appearing as a separate peak, a Fermi resonance of the in-plane bend contributes substantially to the feature.« less

  10. A combinatorial feature selection approach to describe the QSAR of dual site inhibitors of acetylcholinesterase.

    PubMed

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz; Barkooie, Seyyed Mohsen Hosseini; Jahandideh, Samad; Rezaei, Mohammad Ali

    2009-12-01

    Regarding the great potential of dual binding site inhibitors of acetylcholinesterase as the future potent drugs of Alzheimer's disease, this study was devoted to extraction of the most effective structural features of these inhibitors from among a large number of quantitative descriptors. To do this, we adopted a unique approach in quantitative structure-activity relationships. An efficient feature selection method was emphasized in such an approach, using the confirmative results of different routine and novel feature selection methods. The proposed methods generated quite consistent results ensuring the effectiveness of the selected structural features.

  11. Chinese wine classification system based on micrograph using combination of shape and structure features

    NASA Astrophysics Data System (ADS)

    Wan, Yi

    2011-06-01

    Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.

  12. Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

    Treesearch

    Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott

    2016-01-01

    Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...

  13. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    PubMed

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  14. Structure function analysis of two-scale Scalar Ramps. Part I: Theory and Modeling

    USDA-ARS?s Scientific Manuscript database

    Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy an...

  15. Structural and compositional features of high-rise buildings: experimental design in Yekaterinburg

    NASA Astrophysics Data System (ADS)

    Yankovskaya, Yulia; Lobanov, Yuriy; Temnov, Vladimir

    2018-03-01

    The study looks at the specifics of high-rise development in Yekaterinburg. High-rise buildings are considered in the context of their historical development, structural features, compositional and imaginative design techniques. Experience of Yekaterinburg architects in experimental design is considered and analyzed. Main issues and prospects of high-rise development within the Yekaterinburg structure are studied. The most interesting and significant conceptual approaches to the structural and compositional arrangement of high-rise buildings are discussed.

  16. Structural and Organisational Features of Sensorimotor Intelligence among Retarded Infants and Toddlers.

    ERIC Educational Resources Information Center

    Dunst, C. J.; And Others

    1981-01-01

    The structural features of sensorimotor intelligence were assessed among three groups of retarded infants and toddlers. Hierarchical cluster analysis (HCA) was performed on two measures of relationship (stage congruence and intercorrelations). The potential utility of HCA for studying Piaget's "structure d'ensemble" stage criteria is…

  17. Characteristics of circular features on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Deller, J. F.; Güttler, C.; Tubiana, C.; Hofmann, M.; Sierks, H.

    2017-09-01

    Comet 67P/Churyumov-Gerasimenko shows a large variety of circular structures such as pits, elevated roundish features in Imhotep, and even a single occurrence of a plausible fresh impact crater. Imaging the pits in the Ma'at region, aiming to understand their structure and origin drove the design of the final descent trajectory of the Rosetta spacecraft. The high-resolution images obtained during the last mission phase allow us to study these pits as exemplary circular features. A complete catalogue of circular features gives us the possibility to compare and classify these structures systematically.

  18. Individual MRI and radiographic features of knee OA in subjects with unilateral knee pain: Health ABC study

    PubMed Central

    Javaid, MK; Kiran, A; Guermazi, A; Kwoh, K; Zaim, S; Carbone, L; Harris, T.; McCulloch, C.E.; Arden, NK; Lane, NE; Felson, D; Nevitt, M

    2012-01-01

    Strong associations between radiographic features of knee OA and pain have been demonstrated in persons with unilateral knee symptoms. Our objectives were to compare radiographic with MRI features of knee OA and assess the discrimination between painful and non-painful knees in persons with unilateral symptoms. 283 individuals with unilateral knee pain aged 71 to 80 years from Health ABC, a study of weight-related diseases and mobility, had bilateral knee radiographs, read for KL grade and individual radiographic features, and 1.5T MRIs, read using WORMS. The association of structural features with pain was assessed using a within-person case/control design and conditional logistic regression. Receiver operator characteristics (ROC) were then used to test the discriminatory performance of structural features. In conditional logistic analyses, knee pain was significantly associated with both radiographic (any JSN grade >=1: OR 3.20 (1.79 – 5.71) and MRI (any cartilage defect:>=2: OR 3.67 (1.49 – 9.04)) features. However, most subjects had MR detected osteophytes, cartilage and bone marrow lesions in both knees and no individual structural feature discriminated well between painful and non-painful knees using ROC. The best performing MRI feature (synovitis/effusion) was not significantly more informative than KL grade >=2 (p=0.42). In persons with unilateral knee pain, MR and radiographic features were associated with knee pain confirming an important role in the etiology of pain. However, no single MRI or radiographic finding performed well in discriminating painful from non-painful knees. Further work is needed to examine how structural and non-structural factors influence knee pain. PMID:22736267

  19. a Clustering-Based Approach for Evaluation of EO Image Indexing

    NASA Astrophysics Data System (ADS)

    Bahmanyar, R.; Rigoll, G.; Datcu, M.

    2013-09-01

    The volume of Earth Observation data is increasing immensely in order of several Terabytes a day. Therefore, to explore and investigate the content of this huge amount of data, developing more sophisticated Content-Based Information Retrieval (CBIR) systems are highly demanded. These systems should be able to not only discover unknown structures behind the data, but also provide relevant results to the users' queries. Since in any retrieval system the images are processed based on a discrete set of their features (i.e., feature descriptors), study and assessment of the structure of feature space, build by different feature descriptors, is of high importance. In this paper, we introduce a clustering-based approach to study the content of image collections. In our approach, we claim that using both internal and external evaluation of clusters for different feature descriptors, helps to understand the structure of feature space. Moreover, the semantic understanding of users about the images also can be assessed. To validate the performance of our approach, we used an annotated Synthetic Aperture Radar (SAR) image collection. Quantitative results besides the visualization of feature space demonstrate the applicability of our approach.

  20. Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2016-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. We present a case study of the temporal evolution of H+, He+, and O+ spectral structures throughout the geomagnetic storm of 2 October 2013. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer onboard Van Allen Probe A to analyze the spectral structures in the energy range of 1- 50 keV. We find that the characteristics of the ion structures follow a cyclic pattern, the observed features changing dramatically as the storm starts and then returning to its initial pre-storm state. Quiet, pre-storm times are characterized by multiple and often complex flux structures at narrow energy bands. During the storm main phase, the observed features become simple, with no nose structures or only one nose structure present in the energy-time spectrograms. As the inner magnetosphere recovers from the storm, more complex structures appear once again. Additionally, the heavy ion spectral features are generally more complex than the H+ features, with multiple noses being observed more often in the heavy ion spectra. We use a model of ion drift and losses due to charge exchange to understand the formation of the spectral features and their species dependence.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan

    We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that themore » abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A} < 0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for M M{sub c}) the enhancement in variance induced from anomalous feature decreases (increases) the abundance of dark matter structures in Universe.« less

  2. Students' Demand for Smartphones: Structural Relationships of Product Features, Brand Name, Product Price and Social Infuence

    ERIC Educational Resources Information Center

    Suki, Norazah Mohd

    2013-01-01

    Purpose: The study aims to examine structural relationships of product features, brand name, product price and social influence with demand for Smartphones among Malaysian students'. Design/methodology/approach: Data collected from 320 valid pre-screened university students studying at the pubic higher learning institution in Federal Territory of…

  3. On the structural context and identification of enzyme catalytic residues.

    PubMed

    Chien, Yu-Tung; Huang, Shao-Wei

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  4. Process Features in Writing: Internal Structure and Incremental Value over Product Features. Research Report. ETS RR-15-27

    ERIC Educational Resources Information Center

    Zhang, Mo; Deane, Paul

    2015-01-01

    In educational measurement contexts, essays have been evaluated and formative feedback has been given based on the end product. In this study, we used a large sample collected from middle school students in the United States to investigate the factor structure of the writing process features gathered from keystroke logs and the association of that…

  5. Features of Inner Structure of Placer Gold of the North-Eastern Part Siberian Platform

    NASA Astrophysics Data System (ADS)

    Gerasimov, Boris; Zhuravlev, Anatolii; Ivanov, Alexey

    2017-12-01

    Mineral and raw material base of placer and ore gold is based on prognosis evaluation, which allows to define promising areas regarding gold-bearing deposit prospecting. But there are some difficulties in gold primary source predicting and prospecting at the North-east Siberian platform, because the studied area is overlapped by thick cover of the Cenozoic deposits, where traditional methods of gold deposit prospecting are ineffective. In this connection, detailed study of typomorphic features of placer gold is important, because it contains key genetic information, necessary for development of mineralogical criteria of prognosis evaluation of ore gold content. Authors studied mineralogical-geochemical features of placer gold of the Anabar placer area for 15 years, with a view to identify indicators of gold, typical for different formation types of primary sources. This article presents results of these works. In placer regions, where primary sources of gold are not identified, there is need to study typomorphic features of placer gold, because it contains important genetic information, necessary for the development of mineralogical criteria of prognosis evaluation of ore gold content. Inner structures of gold from the Anabar placer region are studied, as one of the diagnostic typomorphic criteria as described in prominent method, developed by N.V. Petrovskaya [1980]. Etching of gold was carried out using reagent: HCl + HNO3 + FeCl3 × 6H2O + CrO3 +thioureat + water. Identified inner structures wer studied in details by means of scanning electron microscope JEOL JSM-6480LV. Two types of gold are identified according to the features of inner structure of placer gold of the Anabar region. First type - medium-high karat fine, well processed gold with significantly changed inner structure. This gold is allochthonous, which was redeposited many times from ancient intermediate reservoirs to younger deposits. Second type - low-medium karat, poorly rounded gold with unchanged inner structure. Poor roundness of gold particles and preservation of their primary inner structures indicate close proximity of primary source.

  6. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  7. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen; So, Peter T. C.; Yu, Hanry

    2014-07-01

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  8. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg; Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007; Yan, Jie

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlativemore » with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.« less

  9. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features.

    PubMed

    Jongin Kim; Boreom Lee

    2017-07-01

    The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.

  10. THE STRUCTURE OF RIFF.

    ERIC Educational Resources Information Center

    APPLEGATE, JOSEPH R.

    THE PURPOSE OF THIS DESCRIPTIVE STUDY IS TO DEFINE THE MAJOR STRUCTURAL FEATURES OF RIFF, A BERBER LANGUAGE SPOKEN BY THE BERBER TRIBESMEN OF THE RIF IN NORTHERN MOROCCO. THE DESCRIPTION IS PRESENTED IN THREE PARTS--PHONOLOGY, MORPHOLOGY, AND SYNTAX. THE PHONEMES ARE DESCRIBED IN TERMS OF DISTINCTIVE FEATURES. PHARYNGEALIZATION AND TENSION ARE…

  11. AN OUTLINE OF THE STRUCTURE OF KABYLE.

    ERIC Educational Resources Information Center

    APPLEGATE, JOSEPH R.

    THE PURPOSE OF THIS DESCRIPTIVE STUDY IS TO DEFINE THE MAJOR STRUCTURAL FEATURES OF KABYLE, A GROUP OF BERBER DIALECTS SPOKEN CHIEFLY IN NORTHERN AND CENTRAL ALGERIA. THE DESCRIPTION IS PRESENTED IN THREE PARTS--PHONOLOGY, MORPHOLOGY, AND SYNTAX. THE PHONEMES ARE DESCRIBED IN TERMS OF DISTINCTIVE FEATURES. PHARYNGEALIZATION AND GEMINATION ARE…

  12. Influence of Embedded Fibers and an Epithelium Layer on the Glottal Closure Pattern in a Physical Vocal Fold Model

    ERIC Educational Resources Information Center

    Xuan, Yue; Zhang, Zhaoyan

    2014-01-01

    Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…

  13. Dermoscopy of accessory nipples in authors’ own study

    PubMed Central

    Szymszal, Jan; Silny, Wojciech

    2014-01-01

    Introduction The accessory nipple (AN) is characterised by its network-like structures, which may suggest the diagnosis of a melanocytic lesion. The knowledge about additional dermoscopic features of AN may greatly minimise the risk of unnecessary surgical excisions. Aim To analyse and present different clinical and dermoscopic forms, in which the AN may appear. Material and methods Ninety AN with dermoscopic features were evaluated in the study, detected in 14 patients between the years 2008 and 2014. Results The most common dermoscopic features of the AN were central, scar-like areas (15/19) and peripheral network-like structures (12/19). A number of cleft-like appearances (8/19) and central network-like structures (7/19) had also been observed. Moreover, among the dermoscopic features, white cobblestone-like structures (7/19), a central round dimpling with a plug (6/19) and fisheye-like structures resembling comedo-like openings (9/19) have all also been noted. There is a statistical significance in the occurrence of white cobblestone-like structures with central network-like structures (Fisher's exact test p = 0.0449). The presence of peripheral network-like structures with the occurrence of central scar-like areas was statistically highly significant (p = 0.0091). The central round dimpling was never observed alongside any central network-like structures in any of the lesions (p = 0.0436). Conclusions Accessory nipples are most commonly characterised by the occurrence of a peripheral network-like structure accompanied by the presence of a scar-like area. PMID:25097482

  14. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  15. Detection of fibrils associated with Rickettsia rickettsii.

    PubMed

    Todd, W J; Burgdorfer, W; Wray, G P

    1983-09-01

    The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells.

  16. Detection of fibrils associated with Rickettsia rickettsii.

    PubMed Central

    Todd, W J; Burgdorfer, W; Wray, G P

    1983-01-01

    The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells. Images PMID:6411620

  17. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats

    PubMed Central

    Rosselli, Federica B.; Alemi, Alireza; Ansuini, Alessio; Zoccolan, Davide

    2015-01-01

    In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness). In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant) to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: (i) smaller and more scattered; (ii) only partially preserved across object views; and (iii) only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning. PMID:25814936

  18. Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Vanessa A.; Kothari, Ninad; Bhagia, Samarthya

    Populus natural variants have been shown to realize a broad range of sugar yields during saccharification, however, the structural features responsible for higher sugar release from natural variants are not clear. In addition, the sugar release patterns resulting from digestion with two distinct biological systems, fungal enzymes and Clostridium thermocellum, have yet to be evaluated and compared. This study evaluates the effect of structural features of three natural variant Populus lines, which includes the line BESC standard, with respect to the overall process of sugar release for two different biological systems.

  19. Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems

    DOE PAGES

    Thomas, Vanessa A.; Kothari, Ninad; Bhagia, Samarthya; ...

    2017-11-30

    Populus natural variants have been shown to realize a broad range of sugar yields during saccharification, however, the structural features responsible for higher sugar release from natural variants are not clear. In addition, the sugar release patterns resulting from digestion with two distinct biological systems, fungal enzymes and Clostridium thermocellum, have yet to be evaluated and compared. This study evaluates the effect of structural features of three natural variant Populus lines, which includes the line BESC standard, with respect to the overall process of sugar release for two different biological systems.

  20. The Features of Female Managers' Personality Traits in Organization

    ERIC Educational Resources Information Center

    Gabdreeva, Guzel Sh.; Khalfieva, Alisa R.

    2016-01-01

    The relevance of the "female" management features study is driven by the active penetration of women to management in various fields and the emergence of a new social category "Business-women". The article contains the results of a study aimed to identify the features of personal properties and structure of low-level,…

  1. New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants.

    PubMed

    Yang, Xiaofei; Yang, Minglei; Deng, Hongjing; Ding, Yiliang

    2018-01-01

    The dynamic structure of RNA plays a central role in post-transcriptional regulation of gene expression such as RNA maturation, degradation, and translation. With the rise of next-generation sequencing, the study of RNA structure has been transformed from in vitro low-throughput RNA structure probing methods to in vivo high-throughput RNA structure profiling. The development of these methods enables incremental studies on the function of RNA structure to be performed, revealing new insights of novel regulatory mechanisms of RNA structure in plants. Genome-wide scale RNA structure profiling allows us to investigate general RNA structural features over 10s of 1000s of mRNAs and to compare RNA structuromes between plant species. Here, we provide a comprehensive and up-to-date overview of: (i) RNA structure probing methods; (ii) the biological functions of RNA structure; (iii) genome-wide RNA structural features corresponding to their regulatory mechanisms; and (iv) RNA structurome evolution in plants.

  2. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  3. Volcanology and morphology

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.

    1976-01-01

    Apollo 15 photographs of the southern parts of Serenitatis and Imbrium were used for a study of the morphology and distribution of wrinkle ridges. Volcanic and structural features along the south margin of Serenitatis were also studied, including the Dawes basalt cinder cones. Volcanic and structural features in crater Aitken were investigated as well. Study of crater Goclenius showed a close relationship between morphology of the impact crater and grabens which tend to parallel directions of the lunar grid. Similar trends were observed in the walls of crater Tsiolkovsky and other linear structures. Small craters of possible volcanic origin were also studied. Possible cinder cones were found associated with the Dawes basalt and in the floor of craters Aitken and Goclenius. Small pit craters were observed in the floors of these craters. Attempts were made to obtain contour maps of specific small features and to compare Orbiter and Apollo photographs to determine short term changes associated with other processes.

  4. Iris-based medical analysis by geometric deformation features.

    PubMed

    Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan

    2013-01-01

    Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis.

  5. The future of primordial features with large-scale structure surveys

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Dvorkin, Cora; Huang, Zhiqi; Namjoo, Mohammad Hossein; Verde, Licia

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  6. The future of primordial features with large-scale structure surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xingang; Namjoo, Mohammad Hossein; Dvorkin, Cora

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopicmore » and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.« less

  7. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  8. Effects of Spatial and Feature Attention on Disparity-Rendered Structure-From-Motion Stimuli in the Human Visual Cortex

    PubMed Central

    Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.

    2014-01-01

    An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974

  9. Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features.

    PubMed

    Fraga, Irene; Coutinho, João; Bezerra, Rui M; Dias, Albino A; Marques, Guilhermina; Nunes, Fernando M

    2014-10-13

    In this work the effect of carbon and nitrogen levels and initial pH of the wheat extract culture medium of submerged culture of Ganoderma lucidum on the amount, purity and structural features of exopolysaccharides (EPS) were studied. A low peptone level (1.65 g L(-1)) favored mycelium biomass, EPS purity, but a higher supply of peptone (4.80 g L(-1)) is needed for maximum EPS production. The carbohydrate composition of the EPS and structural features also changed significantly according to the different growing conditions, being observed significant differences in the (1 → 3)/(1 → 4)-Glcp ratio and also on the branching degree of EPS. As the biological activities of EPS are highly dependent on the polysaccharide structural features, this variability can have implications on the EPS biological activities, but can also be used advantageously to produce tailor made polysaccharides with specific applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang

    2017-08-01

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  11. The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz

    USGS Publications Warehouse

    French, B.M.; Cordua, W.S.; Plescia, J.B.

    2004-01-01

    The Rock Elm structure in southwest Wisconsin is an anomalous circular area of highly deformed rocks, ???6.5 km in diameter, located in a region of virtually horizontal undeformed sedimentary rocks. Shock-produced planar microstructures (PMs) have been identified in quartz grains in several lithologies associated with the structure: sandstones, quartzite pebbles, and breccia. Two distinct types of PMs are present: P1 features, which appear identical to planar fractures (PFs or cleavage), and P2 features, which are interpreted as possible incipient planar deformation features (PDFs). The latter are uniquely produced by the shock waves associated with meteorite impact events. Both types of PMs are oriented parallel to specific crystallographic planes in the quartz, most commonly to c(0001), ??112??2, and r/z101??1. The association of unusual, structurally deformed strata with distinct shock-produced microdeformation features in their quartz-bearing rocks establishes Rock Elm as a meteorite impact structure and supports the view that the presence of multiple parallel cleavages in quartz may be used independently as a criterion for meteorite impact. Preliminary paleontological studies indicate a minimum age of Middle Ordovician for the Rock Elm structure. A similar age estimate (450-400 Ma) is obtained independently by combining the results of studies of the general morphology of complex impact structures with estimated rates of sedimentation for the region. Such methods may be applicable to dating other old and deeply eroded impact structures formed in sedimentary target rocks.

  12. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree.

    PubMed

    Jin, Mingwu; Deng, Weishu

    2018-05-15

    There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Systematic Review of Behavioral Interventions to Reduce Condomless Sex and Increase HIV Testing for Latino MSM.

    PubMed

    Pérez, Ashley; Santamaria, E Karina; Operario, Don

    2017-12-15

    Latino men who have sex with men (MSM) in the United States are disproportionately affected by HIV, and there have been calls to improve availability of culturally sensitive HIV prevention programs for this population. This article provides a systematic review of intervention programs to reduce condomless sex and/or increase HIV testing among Latino MSM. We searched four electronic databases using a systematic review protocol, screened 1777 unique records, and identified ten interventions analyzing data from 2871 Latino MSM. Four studies reported reductions in condomless anal intercourse, and one reported reductions in number of sexual partners. All studies incorporated surface structure cultural features such as bilingual study recruitment, but the incorporation of deep structure cultural features, such as machismo and sexual silence, was lacking. There is a need for rigorously designed interventions that incorporate deep structure cultural features in order to reduce HIV among Latino MSM.

  14. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.

    PubMed

    Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong

    2017-09-01

    While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.

  15. Phenomenological features of dreams: Results from dream log studies using the Subjective Experiences Rating Scale (SERS).

    PubMed

    Kahan, Tracey L; Claudatos, Stephanie

    2016-04-01

    Self-ratings of dream experiences were obtained from 144 college women for 788 dreams, using the Subjective Experiences Rating Scale (SERS). Consistent with past studies, dreams were characterized by a greater prevalence of vision, audition, and movement than smell, touch, or taste, by both positive and negative emotion, and by a range of cognitive processes. A Principal Components Analysis of SERS ratings revealed ten subscales: four sensory, three affective, one cognitive, and two structural (events/actions, locations). Correlations (Pearson r) among subscale means showed a stronger relationship among the process-oriented features (sensory, cognitive, affective) than between the process-oriented and content-centered (structural) features--a pattern predicted from past research (e.g., Bulkeley & Kahan, 2008). Notably, cognition and positive emotion were associated with a greater number of other phenomenal features than was negative emotion; these findings are consistent with studies of the qualitative features of waking autobiographical memory (e.g., Fredrickson, 2001). Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    NASA Astrophysics Data System (ADS)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  17. A sampling-based method for ranking protein structural models by integrating multiple scores and features.

    PubMed

    Shi, Xiaohu; Zhang, Jingfen; He, Zhiquan; Shang, Yi; Xu, Dong

    2011-09-01

    One of the major challenges in protein tertiary structure prediction is structure quality assessment. In many cases, protein structure prediction tools generate good structural models, but fail to select the best models from a huge number of candidates as the final output. In this study, we developed a sampling-based machine-learning method to rank protein structural models by integrating multiple scores and features. First, features such as predicted secondary structure, solvent accessibility and residue-residue contact information are integrated by two Radial Basis Function (RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are synthesized by a sampling method. At last, another integrated RBF model ranks the structural models according to the features of sampling distribution. We tested the proposed method by using two different datasets, including the CASP server prediction models of all CASP8 targets and a set of models generated by our in-house software MUFOLD. The test result shows that our method outperforms any individual scoring function on both best model selection, and overall correlation between the predicted ranking and the actual ranking of structural quality.

  18. Guiding Students through Expository Text with Text Feature Walks

    ERIC Educational Resources Information Center

    Kelley, Michelle J.; Clausen-Grace, Nicki

    2010-01-01

    The Text Feature Walk is a structure created and employed by the authors that guides students in the reading of text features in order to access prior knowledge, make connections, and set a purpose for reading expository text. Results from a pilot study are described in order to illustrate the benefits of using the Text Feature Walk over…

  19. A Review of the Structural Characteristics of Family Meals with Children in the United States12

    PubMed Central

    McCullough, Mary Beth; Robson, Shannon M; Stark, Lori J

    2016-01-01

    Family meals are associated with a range of positive outcomes among children and adolescents. There is inconsistency, however, in the way in which studies have defined and measured family meals. Therefore, a systematic review of the literature was conducted to determine how studies describe family meals with the use of structural characteristics. The current review focused on studies in the United States that included children ages 2–18 y. A total of 33 studies were identified that characterized family meals with the use of ≥1 of the following structural features: frequency or mean number of family meals per week, length of family meal, people present at meal, and where meals occurred. No study characterized family meals by using all 4 family meal features, whereas most studies (81%) characterized family meals by using frequency or mean number of meals per week. Findings not only provide an initial understanding of the structural features used to define family meals but also point to the importance of developing a more comprehensive, sensitive assessment that can accurately capture the complex and multidimensional nature of family meals. PMID:27422500

  20. A Review of the Structural Characteristics of Family Meals with Children in the United States.

    PubMed

    McCullough, Mary Beth; Robson, Shannon M; Stark, Lori J

    2016-07-01

    Family meals are associated with a range of positive outcomes among children and adolescents. There is inconsistency, however, in the way in which studies have defined and measured family meals. Therefore, a systematic review of the literature was conducted to determine how studies describe family meals with the use of structural characteristics. The current review focused on studies in the United States that included children ages 2-18 y. A total of 33 studies were identified that characterized family meals with the use of ≥1 of the following structural features: frequency or mean number of family meals per week, length of family meal, people present at meal, and where meals occurred. No study characterized family meals by using all 4 family meal features, whereas most studies (81%) characterized family meals by using frequency or mean number of meals per week. Findings not only provide an initial understanding of the structural features used to define family meals but also point to the importance of developing a more comprehensive, sensitive assessment that can accurately capture the complex and multidimensional nature of family meals. © 2016 American Society for Nutrition.

  1. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusualmore » feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.« less

  2. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    PubMed Central

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2006-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166

  3. TRANSAT-- method for detecting the conserved helices of functional RNA structures, including transient, pseudo-knotted and alternative structures.

    PubMed

    Wiebe, Nicholas J P; Meyer, Irmtraud M

    2010-06-24

    The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular environment.

  4. The structure of mushroom polysaccharides and their beneficial role in health.

    PubMed

    Huang, Xiaojun; Nie, Shaoping

    2015-10-01

    Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.

  5. Ligand-based and structure-based approaches in identifying ideal pharmacophore against c-Jun N-terminal kinase-3.

    PubMed

    Kumar, B V S Suneel; Kotla, Rohith; Buddiga, Revanth; Roy, Jyoti; Singh, Sardar Shamshair; Gundla, Rambabu; Ravikumar, Muttineni; Sarma, Jagarlapudi A R P

    2011-01-01

    Structure and ligand based pharmacophore modeling and docking studies carried out using diversified set of c-Jun N-terminal kinase-3 (JNK3) inhibitors are presented in this paper. Ligand based pharmacophore model (LBPM) was developed for 106 inhibitors of JNK3 using a training set of 21 compounds to reveal structural and chemical features necessary for these molecules to inhibit JNK3. Hypo1 consisted of two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), and a hydrophobic (HY) feature with a correlation coefficient (r²) of 0.950. This pharmacophore model was validated using test set containing 85 inhibitors and had a good r² of 0.846. All the molecules were docked using Glide software and interestingly, all the docked conformations showed hydrogen bond interactions with important hinge region amino acids (Gln155 and Met149)and these interactions were compared with Hypo1 features. The results of ligand based pharmacophore model (LBPM)and docking studies are validated each other. The structure based pharmacophore model (SBPM) studies have identified additional features, two hydrogen bond donors and one hydrogen bond acceptor. The combination of these methodologies is useful in designing ideal pharmacophore which provides a powerful tool for the discovery of novel and selective JNK3 inhibitors.

  6. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study

    PubMed Central

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640

  7. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study.

    PubMed

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.

  8. Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS

    PubMed Central

    Li, Bi-Qing; Feng, Kai-Yan; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2012-01-01

    Prediction of protein-protein interaction (PPI) sites is one of the most challenging problems in computational biology. Although great progress has been made by employing various machine learning approaches with numerous characteristic features, the problem is still far from being solved. In this study, we developed a novel predictor based on Random Forest (RF) algorithm with the Minimum Redundancy Maximal Relevance (mRMR) method followed by incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility. We also included five 3D structural features to predict protein-protein interaction sites and achieved an overall accuracy of 0.672997 and MCC of 0.347977. Feature analysis showed that 3D structural features such as Depth Index (DPX) and surface curvature (SC) contributed most to the prediction of protein-protein interaction sites. It was also shown via site-specific feature analysis that the features of individual residues from PPI sites contribute most to the determination of protein-protein interaction sites. It is anticipated that our prediction method will become a useful tool for identifying PPI sites, and that the feature analysis described in this paper will provide useful insights into the mechanisms of interaction. PMID:22937126

  9. Stratigraphic and structural configuration of the Navajo (Jurassic) through Ouray (Mississippian-Devonian) formations in the vicinity of Davis and Lavender Canyons, southeastern Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, J.R.; Romie, J.E.

    1986-04-01

    This study developed a three-dimensional computer model of stratigraphic and structural relationships within a 3497-km/sup 2/ (1350-mi/sup 2/) study area centered on the proposed site for a high-level nuclear waste repository in southeastern Utah. The model consists of a sequence of internally reconciled isopach and structure contour maps horizontally registered and stored in stratigraphic order. This model can be used to display cross sections, perspective block diagrams, or fence diagrams at any orientation; estimate depth of formation contacts and thicknesses for any new stratigraphic or hydrologic boreholes; facilitate ground-water modeling studies; and evaluate the structural and stratigraphic evolution of themore » study area. This study also includes limited evaluations of aquifer continuity in the Elephant Canyon and Honaker Trail Formations, and of salt dissolution and flowage features as interpreted from geophysical logs. The study identified a long history of movement in the fault system in the north-central part of the study area and a major salt flowage feature in the northeastern part. It describes the Elephant Canyon Formation aquifer as laterally limited, the Honaker Trail Formation aquifer as fairly continuous over the area, and Beef Basin in the southern part of the area as a probable dissolution feature. It also concludes that the Shay-Bridger Jack-Salt Creek Graben system is apparently a vertically continuous feature between the basement and ground surface. No stratigraphic or structural discontinuities were detected in the vicinity of Davis Canyon that appear to be detrimental to the siting of a waste repository.« less

  10. Ion spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  11. The Structured Intuitive Model for Product Line Economics (SIMPLE)

    DTIC Science & Technology

    2005-02-01

    units are features and use cases. A feature is just as nebulous as a requirement, but techniques such as feature-oriented domain analysis ( FODA ) [Kang 90...cost avoidance DM design modified DOCU degree of documentation GQM Goal Question Metric FODA feature-oriented domain analysis IM integration effort...Hess, J.; Novak, W.; & Peterson, A. Feature- Oriented Domain Analysis ( FODA ) Feasibility Study (CMU/SEI- 90-TR-02 1, ADA235785). Pittsburgh, PA

  12. The discovery of a new infrared emission feature at 1905 wavenumbers (5.25 microns) in the spectrum of BD + 30 deg 3639 and its relation to the polycyclic aromatic hydrocarbon model

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Bregman, J. D.; Sandford, S. A.; Tielens, A. G. G. M.; Witteborn, F. C.

    1989-01-01

    A new IR emission feature at 1905/cm (5.25 microns) has been discovered in the spectrum of BD + 30 deg 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, '1310', 1160, and 890/cm. The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650/cm region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structures, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains.

  13. Inorganic bromine in organic molecular crystals: Database survey and four case studies

    NASA Astrophysics Data System (ADS)

    Nemec, Vinko; Lisac, Katarina; Stilinović, Vladimir; Cinčić, Dominik

    2017-01-01

    We present a Cambridge Structural Database and experimental study of multicomponent molecular crystals containing bromine. The CSD study covers supramolecular behaviour of bromide and tribromide anions as well as halogen bonded dibromine molecules in crystal structures of organic salts and cocrystals, and a study of the geometries and complexities in polybromide anion systems. In addition, we present four case studies of organic structures with bromide, tribromide and polybromide anions as well as the neutral dibromine molecule. These include the first observed crystal with diprotonated phenazine, a double salt of phenazinium bromide and tribromide, a cocrystal of 4-methoxypyridine with the neutral dibromine molecule as a halogen bond donor, as well as bis(4-methoxypyridine)bromonium polybromide. Structural features of the four case studies are in the most part consistent with the statistically prevalent behaviour indicated by the CSD study for given bromine species, although they do exhibit some unorthodox structural features and in that indicate possible supramolecular causes for aberrations from the statistically most abundant (and presumably most favourable) geometries.

  14. Structural and phylogenetic analysis of Rhodobacter capsulatus NifF: uncovering general features of nitrogen-fixation (nif)-flavodoxins.

    PubMed

    Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A

    2013-01-09

    Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.

  15. Does skull shape mediate the relationship between objective features and subjective impressions about the face?

    PubMed

    Marečková, Klára; Chakravarty, M Mallar; Huang, Mei; Lawrence, Claire; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš

    2013-10-01

    In our previous work, we described facial features associated with a successful recognition of the sex of the face (Marečková et al., 2011). These features were based on landmarks placed on the surface of faces reconstructed from magnetic resonance (MR) images; their position was therefore influenced by both soft tissue (fat and muscle) and bone structure of the skull. Here, we ask whether bone structure has dissociable influences on observers' identification of the sex of the face. To answer this question, we used a novel method of studying skull morphology using MR images and explored the relationship between skull features, facial features, and sex recognition in a large sample of adolescents (n=876; including 475 adolescents from our original report). To determine whether skull features mediate the relationship between facial features and identification accuracy, we performed mediation analysis using bootstrapping. In males, skull features mediated fully the relationship between facial features and sex judgments. In females, the skull mediated this relationship only after adjusting facial features for the amount of body fat (estimated with bioimpedance). While body fat had a very slight positive influence on correct sex judgments about male faces, there was a robust negative influence of body fat on the correct sex judgments about female faces. Overall, these results suggest that craniofacial bone structure is essential for correct sex judgments about a male face. In females, body fat influences negatively the accuracy of sex judgments, and craniofacial bone structure alone cannot explain the relationship between facial features and identification of a face as female. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. SU-E-J-264: Using Magnetic Resonance Imaging-Derived Features to Quantify Radiotherapy-Induced Normal Tissue Morbidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thor, M; Tyagi, N; Deasy, J

    2015-06-15

    Purpose: The aim of this study was to explore the use of Magnetic Resonance Imaging (MRI)-derived features as indicators of Radiotherapy (RT)-induced normal tissue morbidity. We also investigate the relationship between these features and RT dose in four critical structures. Methods: We demonstrate our approach for four patients treated with RT for base of tongue cancer in 2005–2007. For each patient, two MRI scans (T1-weighted pre (T1pre) and post (T1post) gadolinium contrast-enhancement) were acquired within the first six months after RT. The assessed morbidity endpoint observed in 2/4 patients was Grade 2+ CTCAEv.3 trismus. Four ipsilateral masticatory-related structures (masseter, lateralmore » and medial pterygoid, and the temporal muscles) were delineated on both T1pre and T1post and these scans were co-registered to the treatment planning CT using a deformable demons algorithm. For each structure, the maximum and mean RT dose, and six MRI-derived features (the second order texture features entropy and homogeneity, and the first order mean, median, kurtosis, and skewness) were extracted and compared structure-wise between patients with and without trismus. All MRI-derived features were calculated as the difference between T1pre and T1post, ΔS. Results: For 5/6 features and all structures, ΔS diverged between trismus and non-trismus patients particularly for the masseter, lateral pterygoid, and temporal muscles using the kurtosis feature (−0.2 vs. 6.4 for lateral pterygoid). Both the maximum and mean RT dose in all four muscles were higher amongst the trismus patients (with the maximum dose being up to 25 Gy higher). Conclusion: Using MRI-derived features to quantify RT-induced normal tissue complications is feasible. We showed that several features are different between patients with and without morbidity and that the RT dose in all investigated structures are higher amongst patients with morbidity. MRI-derived features, therefore, has the potential to improve predictions of normal tissue morbidity.« less

  17. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  18. Discourse-Pragmatic Features in English and Spanish among Bilinguals

    ERIC Educational Resources Information Center

    Kern, Joseph

    2017-01-01

    A great amount of sociolinguistic research in contact situations has centered on phonological and morphosyntactic variables, but studies of discourse-pragmatic features in contact situations are scarce and incipient. Discourse-pragmatic features are syntactically optional elements that are used to guide, structure, or express a stance towards…

  19. Structural features based genome-wide characterization and prediction of nucleosome organization

    PubMed Central

    2012-01-01

    Background Nucleosome distribution along chromatin dictates genomic DNA accessibility and thus profoundly influences gene expression. However, the underlying mechanism of nucleosome formation remains elusive. Here, taking a structural perspective, we systematically explored nucleosome formation potential of genomic sequences and the effect on chromatin organization and gene expression in S. cerevisiae. Results We analyzed twelve structural features related to flexibility, curvature and energy of DNA sequences. The results showed that some structural features such as DNA denaturation, DNA-bending stiffness, Stacking energy, Z-DNA, Propeller twist and free energy, were highly correlated with in vitro and in vivo nucleosome occupancy. Specifically, they can be classified into two classes, one positively and the other negatively correlated with nucleosome occupancy. These two kinds of structural features facilitated nucleosome binding in centromere regions and repressed nucleosome formation in the promoter regions of protein-coding genes to mediate transcriptional regulation. Based on these analyses, we integrated all twelve structural features in a model to predict more accurately nucleosome occupancy in vivo than the existing methods that mainly depend on sequence compositional features. Furthermore, we developed a novel approach, named DLaNe, that located nucleosomes by detecting peaks of structural profiles, and built a meta predictor to integrate information from different structural features. As a comparison, we also constructed a hidden Markov model (HMM) to locate nucleosomes based on the profiles of these structural features. The result showed that the meta DLaNe and HMM-based method performed better than the existing methods, demonstrating the power of these structural features in predicting nucleosome positions. Conclusions Our analysis revealed that DNA structures significantly contribute to nucleosome organization and influence chromatin structure and gene expression regulation. The results indicated that our proposed methods are effective in predicting nucleosome occupancy and positions and that these structural features are highly predictive of nucleosome organization. The implementation of our DLaNe method based on structural features is available online. PMID:22449207

  20. Mimas: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.

  1. Novel chromatin texture features for the classification of pap smears

    NASA Astrophysics Data System (ADS)

    Bejnordi, Babak E.; Moshavegh, Ramin; Sujathan, K.; Malm, Patrik; Bengtsson, Ewert; Mehnert, Andrew

    2013-03-01

    This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into bloblike texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed structural texture features and a range of different cytology features drawn from the literature, show that two of the four top ranking features are structural texture features. They also show that a combination of structural and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment, using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy associated changes (MACs) in Papanicoloau stain.

  2. Changes in quantitative 3D shape features of the optic nerve head associated with age

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.

  3. Indel PDB: a database of structural insertions and deletions derived from sequence alignments of closely related proteins.

    PubMed

    Hsing, Michael; Cherkasov, Artem

    2008-06-25

    Insertions and deletions (indels) represent a common type of sequence variations, which are less studied and pose many important biological questions. Recent research has shown that the presence of sizable indels in protein sequences may be indicative of protein essentiality and their role in protein interaction networks. Examples of utilization of indels for structure-based drug design have also been recently demonstrated. Nonetheless many structural and functional characteristics of indels remain less researched or unknown. We have created a web-based resource, Indel PDB, representing a structural database of insertions/deletions identified from the sequence alignments of highly similar proteins found in the Protein Data Bank (PDB). Indel PDB utilized large amounts of available structural information to characterize 1-, 2- and 3-dimensional features of indel sites. Indel PDB contains 117,266 non-redundant indel sites extracted from 11,294 indel-containing proteins. Unlike loop databases, Indel PDB features more indel sequences with secondary structures including alpha-helices and beta-sheets in addition to loops. The insertion fragments have been characterized by their sequences, lengths, locations, secondary structure composition, solvent accessibility, protein domain association and three dimensional structures. By utilizing the data available in Indel PDB, we have studied and presented here several sequence and structural features of indels. We anticipate that Indel PDB will not only enable future functional studies of indels, but will also assist protein modeling efforts and identification of indel-directed drug binding sites.

  4. Controlling the intermediate structure of an ionic liquid for f-block element separations

    DOE PAGES

    Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...

    2017-04-19

    Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less

  5. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  6. An empirical assessment of which inland floods can be managed

    USGS Publications Warehouse

    Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul

    2016-01-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that investments in flood management are made wisely after considering the limitations of landscape features to regulate floods.

  7. Designing attractive gamification features for collaborative storytelling websites.

    PubMed

    Hsu, Shang Hwa; Chang, Jen-Wei; Lee, Chun-Chia

    2013-06-01

    Gamification design is considered as the predictor of collaborative storytelling websites' success. Although aforementioned studies have mentioned a broad range of factors that may influence gamification, they neither depicted the actual design features nor relative attractiveness among them. This study aims to identify attractive gamification features for collaborative storytelling websites. We first constructed a hierarchical system structure of gamification design of collaborative storytelling websites and conducted a focus group interview with eighteen frequent users to identify 35gamification features. After that, this study determined the relative attractiveness of these gamification features by administrating an online survey to 6333 collaborative storytelling websites users. The results indicated that the top 10 most attractive gamification features could account for more than 50% of attractiveness among these 35 gamification features. The feature of unpredictable time pressure is important to website users, yet not revealed in previous relevant studies. Implications of the findings were discussed.

  8. Venusian arachnoids revisited

    NASA Astrophysics Data System (ADS)

    Kostama, V.-P.; Tormanen, T.

    The Venusian volcano-tectonic structures have been subject to many classification and characterisation schemes. Several structure-types have been identified (e.g. coronae, novae, arachnoids, calderas, and corona-novae). Of these groups, the relationship of arachnoids and coronae has been complicated, and is a subject to much debate. Some previous works and studies have fused these two categories together, and even promoted the view of non-existence of arachnoids at times. However, based on the recognisable differences in morphology and other characteristics (e.g. size, topography, volcanism), they should be treated as a separate class of structures. In our first global study of the volcano-tectonic features, we found 96 arachnoids [1, 2]. During the reanalysis of the features as a by-product of another study, the arachnoid population was re-evalueted, and more importantly, the identification criteria was rechecked. The revised population increases the arachnoid number to 130 features. The work also produced many examples of features that can be considered as transitional forms between different morphological groups. [1] Kostama, V.-P., M. Aittola, LPSC XXXII, Abstract#1185, 2001a. [2] Kostama, V.-P., M. Aittola, The Catalogue of Venusian Arachnoids, Coronae and Novae, http://cc.oulu.fi/tati/JR/Venus/volcanotectonics/catalogue.html, 2001b.

  9. Predicting film genres with implicit ideals.

    PubMed

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  10. Compressive strain in Lunae Planum-shortening across wrinkle ridges

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1991-01-01

    Wrinkle ridges have long been considered to be structural or structurally controlled features. Most, but not all, recent studies have converged on a model in which wrinkle ridges are structural features formed under compressive stress; the deformation being accommodated by faulting and folding. Given that wrinkle ridges are compressive tectonic features, an analysis of the associated shortening and strain provides important quantitative information about local and regional deformation. Lunae Planum is dominated by north-south trending ridges extending from Kasei Valles in the north to Valles Marineris in the south. To quantify the morphometric character, a photoclinometric study was undertaken for ridges on Lunae Planum using the Davis and Soderblom. More than 25 ridges were examined between long. 57 and 80 deg, lat. 5 to 25 deg N. For each ridge, several profiles were obtained along its length. Ridge width, total relief, and elevation offset were measured for each ridge. Analyses are given.

  11. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.

    PubMed

    Ni, Qianwu; Chen, Lei

    2017-01-01

    Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Conserved and variable domains of RNase MRP RNA.

    PubMed

    Dávila López, Marcela; Rosenblad, Magnus Alm; Samuelsson, Tore

    2009-01-01

    Ribonuclease MRP is a eukaryotic ribonucleoprotein complex consisting of one RNA molecule and 7-10 protein subunits. One important function of MRP is to catalyze an endonucleolytic cleavage during processing of rRNA precursors. RNase MRP is evolutionary related to RNase P which is critical for tRNA processing. A large number of MRP RNA sequences that now are available have been used to identify conserved primary and secondary structure features of the molecule. MRP RNA has structural features in common with P RNA such as a conserved catalytic core, but it also has unique features and is characterized by a domain highly variable between species. Information regarding primary and secondary structure features is of interest not only in basic studies of the function of MRP RNA, but also because mutations in the RNA give rise to human genetic diseases such as cartilage-hair hypoplasia.

  13. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  14. A prototype analysis of forgiveness.

    PubMed

    Kearns, Jill N; Fincham, Frank D

    2004-07-01

    Many definitions of forgiveness currently exist in the literature. The current research adds to this discussion by utilizing a prototype approach to examine lay conceptions of forgiveness. A prototype approach involves categorizing objects or events in terms of their similarity to a good example, whereas a classical approach requires that there are essential elements that must be present. In Study 1, participants listed the features of forgiveness. Study 2 obtained centrality ratings for these features. In Studies 3 and 4, central features were found to be more salient in memory than peripheral features. Study 5 showed that feature centrality influenced participants' ratings of victims involved in hypothetical transgressions. Thus, the two criteria for demonstrating prototype structure (that participants find it meaningful to judge features in terms of their centrality and that centrality affects cognition) were met.

  15. Features of Online Health Communities for Adolescents With Type 1 Diabetes

    PubMed Central

    Ho, Yun-Xian; O’Connor, Brendan H.; Mulvaney, Shelagh A.

    2014-01-01

    The aim of this exploratory study was to examine diabetes online health communities (OHCs) available to adolescents with type 1 diabetes (T1D). We sought to identify and classify site features and relate them to evidence-based processes for improving self-management. We reviewed 18 OHCs and identified the following five feature categories: social learning and networking, information, guidance, engagement, and personal health data sharing. While features that have been associated with improved self-management were present, such as social learning, results suggest that more guidance or structure would be helpful to ensure that those processes were focused on promoting positive beliefs and behaviors. Enhancing guidance-related features and structure to existing OHCs could provide greater opportunity for effective diabetes self-management support. To support clinical recommendations, more research is needed to quantitatively relate features and participation in OHCs to patient outcomes. PMID:24473058

  16. Impact of roadway geometric features on crash severity on rural two-lane highways.

    PubMed

    Haghighi, Nima; Liu, Xiaoyue Cathy; Zhang, Guohui; Porter, Richard J

    2018-02-01

    This study examines the impact of a wide range of roadway geometric features on the severity outcomes of crashes occurred on rural two-lane highways. We argue that crash data have a hierarchical structure which needs to be addressed in modeling procedure. Moreover, most of previous studies ignored the impact of geometric features on crash types when developing crash severity models. We hypothesis that geometric features are more likely to determine crash type, and crash type together with other occupant, environmental and vehicle characteristics determine crash severity outcome. This paper presents an application of multilevel models to successfully capture both hierarchical structure of crash data and indirect impact of geometric features on crash severity. Using data collected in Illinois from 2007 to 2009, multilevel ordered logit model is developed to quantify the impact of geometric features and environmental conditions on crash severity outcome. Analysis results revealed that there is a significant variation in severity outcomes of crashes occurred across segments which verifies the presence of hierarchical structure. Lower risk of severe crashes is found to be associated with the presence of 10-ft lane and/or narrow shoulders, lower roadside hazard rate, higher driveway density, longer barrier length, and shorter barrier offset. The developed multilevel model offers greater consistency with data generating mechanism and can be utilized to evaluate safety effects of geometric design improvement projects. Published by Elsevier Ltd.

  17. Cross Flow Parameter Calculation for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.

  18. What are the structural features that drive partitioning of proteins in aqueous two-phase systems?

    PubMed

    Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N

    2017-01-01

    Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis

    PubMed Central

    Baydil, Banu; Daley, William P.; Larsen, Melinda; Yener, Bülent

    2012-01-01

    Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues. PMID:22403724

  20. Effects of achievement contexts on the meaning structure of emotion words.

    PubMed

    Gentsch, Kornelia; Loderer, Kristina; Soriano, Cristina; Fontaine, Johnny R J; Eid, Michael; Pekrun, Reinhard; Scherer, Klaus R

    2018-03-01

    Little is known about the impact of context on the meaning of emotion words. In the present study, we used a semantic profiling instrument (GRID) to investigate features representing five emotion components (appraisal, bodily reaction, expression, action tendencies, and feeling) of 11 emotion words in situational contexts involving success or failure. We compared these to the data from an earlier study in which participants evaluated the typicality of features out of context. Profile analyses identified features for which typicality changed as a function of context for all emotion words, except contentment, with appraisal features being most frequently affected. Those context effects occurred for both hypothesised basic and non-basic emotion words. Moreover, both data sets revealed a four-dimensional structure. The four dimensions were largely similar (valence, power, arousal, and novelty). The results suggest that context may not change the underlying dimensionality but affects facets of the meaning of emotion words.

  1. A Comparison of Hyporheic Transport at a Cross-Vane Structure and Natural Riffle.

    PubMed

    Smidt, Samuel J; Cullin, Joseph A; Ward, Adam S; Robinson, Jesse; Zimmer, Margaret A; Lautz, Laura K; Endreny, Theodore A

    2015-01-01

    While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce comparable hyporheic exchange to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, we were able to quantify hyporheic extent and transport beneath the cross-vane structure and the riffle. We interpret from the geophysical data that the cross-vane and the natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-h injection was detected along flowpaths for 4.6 h at the cross-vane and 4.2 h at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than that at the riffle. We compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and the riffle and differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and timescales of transport to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize these benefits. © 2014, National Ground Water Association.

  2. Features of structure-phase transformations and segregation processes under irradiation of austenitic and ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Voyevodin, V. N.

    1994-09-01

    The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.

  3. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is highly conserved in these four fossil specimens. Finally, the results of this study indicate that bioapatite can be preserved in even the most ancient vertebrate specimens, further supporting the idea that fossilization is a preservational process. This work also underlines the importance of using appropriately selected characterization and analytical techniques for the study of fossil bone, especially from the perspective of spatial resolution and the scale of the bone structural features in question.

  4. Impact of Online Instructional Game Features on College Students' Perceived Motivational Support and Cognitive Investment: A Structural Equation Modeling Study

    ERIC Educational Resources Information Center

    Huang, Wenhao David; Johnson, Tristan E.; Han, Seung-Hyun Caleb

    2013-01-01

    Colleges and universities have begun to understand the instructional potential of digital game-based learning (DGBL) due to digital games' immersive features. These features, however, might overload learners as excessive motivational and cognitive stimuli thus impeding intended learning. Current research, however, lacks empirical evidences to…

  5. Multi-threshold white matter structural networks fusion for accurate diagnosis of Tourette syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Li, Zuoyong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. To date, TS is still misdiagnosed due to its varied presentation and lacking of obvious clinical symptoms. Therefore, studies of objective imaging biomarkers are of great importance for early TS diagnosis. As tic generation has been linked to disturbed structural networks, and many efforts have been made recently to investigate brain functional or structural networks using machine learning methods, for the purpose of disease diagnosis. However, few studies were related to TS and some drawbacks still existed in them. Therefore, we propose a novel classification framework integrating a multi-threshold strategy and a network fusion scheme to address the preexisting drawbacks. Here we used diffusion MRI probabilistic tractography to construct the structural networks of 44 TS children and 48 healthy children. We ameliorated the similarity network fusion algorithm specially to fuse the multi-threshold structural networks. Graph theoretical analysis was then implemented, and nodal degree, nodal efficiency and nodal betweenness centrality were selected as features. Finally, support vector machine recursive feature extraction (SVM-RFE) algorithm was used for feature selection, and then optimal features are fed into SVM to automatically discriminate TS children from controls. We achieved a high accuracy of 89.13% evaluated by a nested cross validation, demonstrated the superior performance of our framework over other comparison methods. The involved discriminative regions for classification primarily located in the basal ganglia and frontal cortico-cortical networks, all highly related to the pathology of TS. Together, our study may provide potential neuroimaging biomarkers for early-stage TS diagnosis.

  6. Crystallographic features of the approximant H (Mn7Si2V) phase in the Mn-Si-V alloy system

    NASA Astrophysics Data System (ADS)

    Nakayama, Kei; Komatsuzaki, Takumi; Koyama, Yasumasa

    2018-07-01

    The intermetallic compound H (Mn7Si2V) phase in the Mn-Si-V alloy system can be regarded as an approximant phase of the dodecagonal quasicrystal as one of the two-dimensional quasicrystals. To understand the features of the approximant H phase, in this study, the crystallographic features of both the H phase and the (σ → H) reaction in Mn-Si-V alloy samples were investigated, mainly by transmission electron microscopy. It was found that, in the H phase, there were characteristic structural disorders with respect to an array of a dodecagonal structural unit consisting of 19 dodecagonal atomic columns. Concretely, penetrated structural units consisting of two dodecagonal structural units were presumed to be typical of such disorders. An interesting feature of the (σ → H) reaction was that regions with a rectangular arrangement of penetrated structural units (RAPU) first appeared in the σ matrix as the initial state, and H regions were then nucleated in contact with RAPU regions. The subsequent conversion of RAPU regions into H regions eventually resulted in the formation of the approximant H state as the final state. Furthermore, atomic positions in both the H structure and the dodecagonal quasicrystal were examined using a simple plane-wave model with 12 plane waves.

  7. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids.

    PubMed

    Van Hoozen, Brian L; Petersen, Poul B

    2018-04-07

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm -1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pK A values. Dimers with large pK A differences are found to have features that can extend to frequencies below 1000 cm -1 . The relationships between mean OH/NH frequency, aqueous pK A , and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm -1 . Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pK A and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  8. A combination of feature extraction methods with an ensemble of different classifiers for protein structural class prediction problem.

    PubMed

    Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul

    2013-01-01

    Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.

  9. Cathodoluminescence studies of chevron features in semi-polar (11 2 ¯ 2 ) InGaN/GaN multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Brasser, C.; Bruckbauer, J.; Gong, Y.; Jiu, L.; Bai, J.; Warzecha, M.; Edwards, P. R.; Wang, T.; Martin, R. W.

    2018-05-01

    Epitaxial overgrowth of semi-polar III-nitride layers and devices often leads to arrowhead-shaped surface features, referred to as chevrons. We report on a study into the optical, structural, and electrical properties of these features occurring in two very different semi-polar structures, a blue-emitting multiple quantum well structure, and an amber-emitting light-emitting diode. Cathodoluminescence (CL) hyperspectral imaging has highlighted shifts in their emission energy, occurring in the region of the chevron. These variations are due to different semi-polar planes introduced in the chevron arms resulting in a lack of uniformity in the InN incorporation across samples, and the disruption of the structure which could cause a narrowing of the quantum wells (QWs) in this region. Atomic force microscopy has revealed that chevrons can penetrate over 150 nm into the sample and quench light emission from the active layers. The dominance of non-radiative recombination in the chevron region was exposed by simultaneous measurement of CL and the electron beam-induced current. Overall, these results provide an overview of the nature and impact of chevrons on the luminescence of semi-polar devices.

  10. Cointegration as a data normalization tool for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2012-04-01

    The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.

  11. Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.

    PubMed

    Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D

    2018-01-01

    In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.

  12. Detection and analysis of diamond fingerprinting feature and its application

    NASA Astrophysics Data System (ADS)

    Li, Xin; Huang, Guoliang; Li, Qiang; Chen, Shengyi

    2011-01-01

    Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the "Diamond ID" and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.

  13. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  14. Predicting Film Genres with Implicit Ideals

    PubMed Central

    Olney, Andrew McGregor

    2013-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories. PMID:23423823

  15. Effects of geometry on blast-induced loadings

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Dyer

    Simulations of blasts in an urban environment were performed using Loci/BLAST, a full-featured fluid dynamics simulation code, and analyzed. A two-structure urban environment blast case was used to perform a mesh refinement study. Results show that mesh spacing on and around the structure must be 12.5 cm or less to resolve fluid dynamic features sufficiently to yield accurate results. The effects of confinement were illustrated by analyzing a blast initiated from the same location with and without the presence of a neighboring structure. Analysis of extreme pressures and impulses on structures showed that confinement can increase blast loading by more than 200 percent.

  16. Fungal prion HET-s as a model for structural complexity and self-propagation in prions.

    PubMed

    Wan, William; Stubbs, Gerald

    2014-04-08

    The highly ordered and reproducible structure of the fungal prion HET-s makes it an excellent model system for studying the inherent properties of prions, self-propagating infectious proteins that have been implicated in a number of fatal diseases. In particular, the HET-s prion-forming domain readily folds into a relatively complex two-rung β-solenoid amyloid. The faithful self-propagation of this fold involves a diverse array of inter- and intramolecular structural features. These features include a long flexible loop connecting the two rungs, buried polar residues, salt bridges, and asparagine ladders. We have used site-directed mutagenesis and X-ray fiber diffraction to probe the relative importance of these features for the formation of β-solenoid structure, as well as the cumulative effects of multiple mutations. Using fibrillization kinetics and chemical stability assays, we have determined the biophysical effects of our mutations on the assembly and stability of the prion-forming domain. We have found that a diversity of structural features provides a level of redundancy that allows robust folding and stability even in the face of significant sequence alterations and suboptimal environmental conditions. Our findings provide fundamental insights into the structural interactions necessary for self-propagation. Propagation of prion structure seems to require an obligatory level of complexity that may not be reproducible in short peptide models.

  17. Advances in the REDCAT software package

    PubMed Central

    2013-01-01

    Background Residual Dipolar Couplings (RDCs) have emerged in the past two decades as an informative source of experimental restraints for the study of structure and dynamics of biological macromolecules and complexes. The REDCAT software package was previously introduced for the analysis of molecular structures using RDC data. Here we report additional features that have been included in this software package in order to expand the scope of its analyses. We first discuss the features that enhance REDCATs user-friendly nature, such as the integration of a number of analyses into one single operation and enabling convenient examination of a structural ensemble in order to identify the most suitable structure. We then describe the new features which expand the scope of RDC analyses, performing exercises that utilize both synthetic and experimental data to illustrate and evaluate different features with regard to structure refinement and structure validation. Results We establish the seamless interaction that takes place between REDCAT, VMD, and Xplor-NIH in demonstrations that utilize our newly developed REDCAT-VMD and XplorGUI interfaces. These modules enable visualization of RDC analysis results on the molecular structure displayed in VMD and refinement of structures with Xplor-NIH, respectively. We also highlight REDCAT’s Error-Analysis feature in reporting the localized fitness of a structure to RDC data, which provides a more effective means of recognizing local structural anomalies. This allows for structurally sound regions of a molecule to be identified, and for any refinement efforts to be focused solely on locally distorted regions. Conclusions The newly engineered REDCAT software package, which is available for download via the WWW from http://ifestos.cse.sc.edu, has been developed in the Object Oriented C++ environment. Our most recent enhancements to REDCAT serve to provide a more complete RDC analysis suite, while also accommodating a more user-friendly experience, and will be of great interest to the community of researchers and developers since it hides the complications of software development. PMID:24098943

  18. Network Ecology and Adolescent Social Structure

    PubMed Central

    McFarland, Daniel A.; Moody, James; Diehl, David; Smith, Jeffrey A.; Thomas, Reuben J.

    2014-01-01

    Adolescent societies—whether arising from weak, short-term classroom friendships or from close, long-term friendships—exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time. PMID:25535409

  19. Network Ecology and Adolescent Social Structure.

    PubMed

    McFarland, Daniel A; Moody, James; Diehl, David; Smith, Jeffrey A; Thomas, Reuben J

    2014-12-01

    Adolescent societies-whether arising from weak, short-term classroom friendships or from close, long-term friendships-exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time.

  20. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-05-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.

  1. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    USGS Publications Warehouse

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-01-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.

  2. Longitudinal Validation of General and Specific Structural Features of Personality Pathology

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Skodol, Andrew E.; Morey, Leslie C.

    2016-01-01

    Theorists have long argued that personality disorder (PD) is best understood in terms of general impairments shared across the disorders as well as more specific instantiations of pathology. A model based on this theoretical structure was proposed as part of the DSM-5 revision process. However, only recently has this structure been subjected to formal quantitative evaluation, with little in the way of validation efforts via external correlates or prospective longitudinal prediction. We used the Collaborative Longitudinal Study of Personality Disorders dataset to: (1) estimate structural models that parse general from specific variance in personality disorder features, (2) examine patterns of growth in general and specific features over the course of 10 years, and (3) establish concurrent and dynamic longitudinal associations in PD features and a host of external validators including basic personality traits and psychosocial functioning scales. We found that general PD exhibited much lower absolute stability and was most strongly related to broad markers of psychosocial functioning, concurrently and longitudinally, whereas specific features had much higher mean stability and exhibited more circumscribed associations with functioning. However, both general and specific factors showed recognizable associations with normative and pathological traits. These results can inform efforts to refine the conceptualization and diagnosis of personality pathology. PMID:27819472

  3. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.

    PubMed

    Joshuva, A; Sugumaran, V

    2017-03-01

    Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Influence of Perceptual Saliency Hierarchy on Learning of Language Structures: An Artificial Language Learning Experiment

    PubMed Central

    Gong, Tao; Lam, Yau W.; Shuai, Lan

    2016-01-01

    Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages. PMID:28066281

  5. Influence of Perceptual Saliency Hierarchy on Learning of Language Structures: An Artificial Language Learning Experiment.

    PubMed

    Gong, Tao; Lam, Yau W; Shuai, Lan

    2016-01-01

    Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages.

  6. An empirical assessment of which inland floods can be managed.

    PubMed

    Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L

    2016-02-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that investments in flood management are made wisely after considering the limitations of landscape features to regulate floods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Structured Sensory Trauma Interventions

    ERIC Educational Resources Information Center

    Steele, William; Kuban, Caelan

    2010-01-01

    This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…

  8. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  9. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    NASA Astrophysics Data System (ADS)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  10. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach

    PubMed Central

    Gavião Neto, Wilson P.; Roveri, Maria Isabel; Oliveira, Wagner R.

    2017-01-01

    Background Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Methods Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). Results The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. Discussion The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the stance phase of running. Biomechanical changes due to shoe midsole resilience seemed to be subject-dependent, while those due to upper structure seemed to be subject-independent. PMID:28265506

  11. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach.

    PubMed

    Onodera, Andrea N; Gavião Neto, Wilson P; Roveri, Maria Isabel; Oliveira, Wagner R; Sacco, Isabel Cn

    2017-01-01

    Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the stance phase of running. Biomechanical changes due to shoe midsole resilience seemed to be subject-dependent, while those due to upper structure seemed to be subject-independent.

  12. DNA Based Molecular Scale Nanofabrication

    DTIC Science & Technology

    2015-12-04

    structure. We developed a method to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer...to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer substrates. Developed a high... imprinting using DNA nanostructure templates. Soft lithography uses polymeric stamps with certain features to transfer the pattern for printing

  13. Determining crystal structures through crowdsourcing and coursework

    NASA Astrophysics Data System (ADS)

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Silveira Belo Nascimento Roque, Paulo Sergio; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K.; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  14. Determining crystal structures through crowdsourcing and coursework.

    PubMed

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A

    2016-09-16

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  15. Structural features that predict real-value fluctuations of globular proteins.

    PubMed

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-05-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. Copyright © 2012 Wiley Periodicals, Inc.

  16. Structural features that predict real-value fluctuations of globular proteins

    PubMed Central

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-01-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics trajectories of non-homologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real-value of residue fluctuations using the support vector regression. It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in molecular dynamics trajectories. Moreover, support vector regression that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson’s correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed for the prediction by the Gaussian network model. An advantage of the developed method over the Gaussian network models is that the former predicts the real-value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. PMID:22328193

  17. Designing Professional Development That Works.

    ERIC Educational Resources Information Center

    Birman, Beatrice F.; Desimone, Laura; Porter, Andrew C.; Garet, Michael S.

    2000-01-01

    By studying survey data from 1,000 teachers participating in a Title II workshop, researchers identified three structural features (form, duration, and collective participation) that set a proper context for professional development. Three core features of professional-development learning experience include content focus, active learning, and…

  18. Ion Spectral Structures Observed by the Van Allen Probes and Cluster

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Luo, H.; Kistler, L. M.; Spence, H. E.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Reeves, G. D.

    2014-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have revealed single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). In this study we also include signatures of new types of ion structure, namely "trunk-like" and "tusk-like" structures. All the ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Multi-spacecraft analysis of these structures is important to understand their spatial distribution and temporal evolution. Mass spectrometers onboard Cluster (in a polar orbit) and the Van Allen Probes (in an equatorial orbit) measure energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of the ion structures, using >1-year measurements from the two missions during the Van Allen Probes era. The results provide important details about the spatial distribution (dependence on geocentric distance and magnetic local time), spectral features of the structures (e.g., characteristic energy and differences among species), and geomagnetic and solar wind conditions under which these structures occur.

  19. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.

    PubMed

    Sun, Ming-An; Zhang, Qing; Wang, Yejun; Ge, Wei; Guo, Dianjing

    2016-08-24

    Reactive oxygen species can modify the structure and function of proteins and may also act as important signaling molecules in various cellular processes. Cysteine thiol groups of proteins are particularly susceptible to oxidation. Meanwhile, their reversible oxidation is of critical roles for redox regulation and signaling. Recently, several computational tools have been developed for predicting redox-sensitive cysteines; however, those methods either only focus on catalytic redox-sensitive cysteines in thiol oxidoreductases, or heavily depend on protein structural data, thus cannot be widely used. In this study, we analyzed various sequence-based features potentially related to cysteine redox-sensitivity, and identified three types of features for efficient computational prediction of redox-sensitive cysteines. These features are: sequential distance to the nearby cysteines, PSSM profile and predicted secondary structure of flanking residues. After further feature selection using SVM-RFE, we developed Redox-Sensitive Cysteine Predictor (RSCP), a SVM based classifier for redox-sensitive cysteine prediction using primary sequence only. Using 10-fold cross-validation on RSC758 dataset, the accuracy, sensitivity, specificity, MCC and AUC were estimated as 0.679, 0.602, 0.756, 0.362 and 0.727, respectively. When evaluated using 10-fold cross-validation with BALOSCTdb dataset which has structure information, the model achieved performance comparable to current structure-based method. Further validation using an independent dataset indicates it is robust and of relatively better accuracy for predicting redox-sensitive cysteines from non-enzyme proteins. In this study, we developed a sequence-based classifier for predicting redox-sensitive cysteines. The major advantage of this method is that it does not rely on protein structure data, which ensures more extensive application compared to other current implementations. Accurate prediction of redox-sensitive cysteines not only enhances our understanding about the redox sensitivity of cysteine, it may also complement the proteomics approach and facilitate further experimental investigation of important redox-sensitive cysteines.

  20. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio

    2007-02-09

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface.

  1. Activity Structures and the Unfolding of Problem-Solving Actions in High-School Chemistry Classrooms

    NASA Astrophysics Data System (ADS)

    Criswell, Brett A.; Rushton, Greg T.

    2014-02-01

    In this paper, we argue for a more systematic approach for studying the relationship between classroom practices and scientific practices—an approach that will likely better support the systemic reforms being promoted in the Next Generation Science Standards in the USA and similar efforts in other countries. One component of that approach is looking at how the nature of the activity structure may influence the relative alignment between classroom and scientific practices. To that end, we build on previously published research related to the practices utilized by five high-school chemistry teachers as they enacted problem-solving activities in which students were likely to generate proposals that were not aligned with normative scientific understandings. In that prior work, our analysis had emphasized micro-level features of the talk interactions and how they related to the way students' ideas were explored; in the current paper, the analysis zooms out to consider the macro-level nature of the enactments associated with the activity structure of each lesson examined. Our data show that there were two general patterns to the activity structure across the 14 lessons scrutinized, and that each pattern had associated with it a constellation of features that impinged on the way the problem space was navigated. A key finding is that both activity structures (the expansive and the open) had features that aligned with scientific practices espoused in the Next Generation Science Standards—and both had features that were not aligned with those practices. We discuss the nature of these two structures, evidence of the relationship of each structure to key features of how the lessons unfolded, and the implications of these findings for both future research and the training of teachers.

  2. Elemental, morphological, structural, optical, and magnetic properties of erbium doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun

    2018-03-01

    The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.

  3. The relationship between structured and free play in the development of a mentally handicapped child: a case study.

    PubMed

    Hewson, S; McConkey, R; Jeffree, D

    1980-01-01

    This case study provides an individual illustration of the work of the Parental Involvement Project. A key feature of the approach used was the structured play situation. Thus, the case study also serves to demonstrate the role of structured play, and its relation to free play, in the development of a young, mentally handicapped child.

  4. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  5. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    PubMed

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  6. A deep learning framework for modeling structural features of RNA-binding protein targets

    PubMed Central

    Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang

    2016-01-01

    RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp. PMID:26467480

  7. Medial Demons Registration Localizes The Degree of Genetic Influence Over Subcortical Shape Variability: An N= 1480 Meta-Analysis

    PubMed Central

    Gutman, Boris A.; Jahanshad, Neda; Ching, Christopher R.K.; Wang, Yalin; Kochunov, Peter V.; Nichols, Thomas E.; Thompson, Paul M.

    2015-01-01

    We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens. Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies. PMID:26413211

  8. Medial Demons Registration Localizes The Degree of Genetic Influence Over Subcortical Shape Variability: An N= 1480 Meta-Analysis.

    PubMed

    Gutman, Boris A; Jahanshad, Neda; Ching, Christopher R K; Wang, Yalin; Kochunov, Peter V; Nichols, Thomas E; Thompson, Paul M

    2015-04-01

    We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens . Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies.

  9. The discovery of a new infrared emission feature at 1905 wavenumbers (5.25 microns) in the spectrum of BD +30 degrees 3639 and its relation to the polycyclic aromatic hydrocarbon model

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Bregman, J. D.; Sandford, S. A.; Tielens, A. G.; Witteborn, F. C.; Wooden, D. H.; Rank, D.

    1989-01-01

    We have discovered a new IR emission feature at 1905 cm-1 (5.25 microns) in the spectrum of BD +30 degrees 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, "1310," 1160, and 890 cm-1 (3.3, 3.4, 5.7, 6.2, "7.7," 8.6, and 11.2 microns). The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650 cm-1 (5.0-6.1 microns) region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structure, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains. Larger species are likely to be the source of the broad underlying "plateaus" seen in many of the spectra.

  10. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  11. Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants

    PubMed Central

    Endress, Peter K.; Davis, Charles C.; Matthews, Merran L.

    2013-01-01

    Background and Aims Malpighiales are one of the largest angiosperm orders and have undergone radical systematic restructuring based on molecular phylogenetic studies. The clade has been recalcitrant to molecular phylogenetic reconstruction, but has become much more resolved at the suprafamilial level. It now contains so many newly identified clades that there is an urgent need for comparative studies to understand their structure, biology and evolution. This is especially true because the order contains a disproportionally large diversity of rain forest species and includes numerous agriculturally important plants. This study is a first broad systematic step in this endeavour. It focuses on a comparative structural overview of the flowers across all recently identified suprafamilial clades of Malpighiales, and points towards areas that desperately need attention. Methods The phylogenetic comparative analysis of floral structure for the order is based on our previously published studies on four suprafamilial clades of Malpighiales, including also four related rosid orders (Celastrales, Crossosomatales, Cucurbitales, Oxalidales). In addition, the results are compiled from a survey of over 3000 publications on macrosystematics, floral structure and embryology across all orders of the core eudicots. Key Results Most new suprafamilial clades within Malpighiales are well supported by floral structural features. Inner morphological structures of the gynoecium (i.e. stigmatic lobes, inner shape of the locules, placentation, presence of obturators) and ovules (i.e. structure of the nucellus, thickness of the integuments, presence of vascular bundles in the integuments, presence of an endothelium in the inner integument) appear to be especially suitable for characterizing suprafamilial clades within Malpighiales. Conclusions Although the current phylogenetic reconstruction of Malpighiales is much improved compared with earlier versions, it is incomplete, and further focused phylogenetic and morphological studies are needed. Once all major subclades of Malpighiales are elucidated, more in-depth studies on promising structural features can be conducted. In addition, once the phylogenetic tree of Malpighiales, including closely related orders, is more fully resolved, character optimization studies will be possible to reconstruct evolution of structural and biological features within the order. PMID:23486341

  12. Use cases and DEMO: aligning functional features of ICT-infrastructure to business processes.

    PubMed

    Maij, E; Toussaint, P J; Kalshoven, M; Poerschke, M; Zwetsloot-Schonk, J H M

    2002-11-12

    The proper alignment of functional features of the ICT-infrastructure to business processes is a major challenge in health care organisations. This alignment takes into account that the organisational structure not only shapes the ICT-infrastructure, but that the inverse also holds. To solve the alignment problem, relevant features of the ICT-infrastructure should be derived from the organisational structure and the influence of this envisaged ICT to the work practices should be pointed out. The objective of our study was to develop a method to solve this alignment problem. In a previous study we demonstrated the appropriateness of the business process modelling methodology Dynamic Essential Modelling of Organizations (DEMO). A proven and widely used modelling language for expressing functional features is Unified Modelling Language (UML). In the context of a specific case study at the University Medical Centre Utrecht in the Netherlands we investigated if the combined use of DEMO and UML could solve the alignment problem. The study demonstrated that the DEMO models were suited as a starting point in deriving system functionality by using the use case concept of UML. Further, the case study demonstrated that in using this approach for the alignment problem, insight is gained into the mutual influence of ICT-infrastructure and organisation structure: (a) specification of independent, re-usable components-as a set of related functionalities-is realised, and (b) a helpful representation of the current and future work practice is provided for in relation to the envisaged ICT support.

  13. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The pattern of linear systems within the project area has been extended into the western foothill belt of the Sierra Nevada. The chief pattern of linear features in the western Sierran foothill belt trends about N. 10 - 15 deg W., but in the vicinity of the Feather River the trend of the features abruptly changes to about N. 50-60 deg W and appears to be contiguous across the Sacramento Valley with a similar system of linear features in the Coast Ranges. The linear features in the Modoc Plateau and Klamath Mt. areas appear unrelated to the systems detected in the Coast Ranges of Sierran foothill belt. Although the change in trend of the Sierran structural features has been previously suggested and the interrelationship of the Klamath Mt. region with the northern Sierra Nevadas has been postulated, the data obtained from the ERTS-1 imagery strengthens these notions and provides for the first time evidence of a direct connection of the structural trends within the alluviated part of the Sacramento Valley. In addition rocks of Pleistocene and Holocene age are offset by some of the linear features seen on ERTS-1 imagery and hence may record the latest episode of geologic deformation in north-central California.

  14. Effect of structural distortion on the electronic band structure of NaOsO3 studied within density functional theory and a three-orbital model

    NASA Astrophysics Data System (ADS)

    Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash

    2018-04-01

    Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.

  15. The structure of people's hair.

    PubMed

    Yang, Fei-Chi; Zhang, Yuchen; Rheinstädter, Maikel C

    2014-01-01

    Hair is a filamentous biomaterial consisting mainly of proteins in particular keratin. The structure of human hair is well known: the medulla is a loosely packed, disordered region near the centre of the hair surrounded by the cortex, which contains the major part of the fibre mass, mainly consisting of keratin proteins and structural lipids. The cortex is surrounded by the cuticle, a layer of dead, overlapping cells forming a protective layer around the hair. The corresponding structures have been studied extensively using a variety of different techniques, such as light, electron and atomic force microscopes, and also X-ray diffraction. We were interested in the question how much the molecular hair structure differs from person to person, between male and female hair, hair of different appearances such as colour and waviness. We included hair from parent and child, identical and fraternal twins in the study to see if genetically similar hair would show similar structural features. The molecular structure of the hair samples was studied using high-resolution X-ray diffraction, which covers length scales from molecules up to the organization of secondary structures. Signals due to the coiled-coil phase of α-helical keratin proteins, intermediate keratin filaments in the cortex and from the lipid layers in the cell membrane complex were observed in the specimen of all individuals, with very small deviations. Despite the relatively small number of individuals (12) included in this study, some conclusions can be drawn. While the general features were observed in all individuals and the corresponding molecular structures were almost identical, additional signals were observed in some specimen and assigned to different types of lipids in the cell membrane complex. Genetics seem to play a role in this composition as identical patterns were observed in hair from father and daughter and identical twins, however, not for fraternal twins. Identification and characterization of these features is an important step towards the detection of abnormalities in the molecular structure of hair as a potential diagnostic tool for certain diseases.

  16. Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    2018-01-01

    Ring, dome and crater features on the Australian continent and shelf include (A) 38 structures of confirmed or probable asteroid and meteorite impact origin and (B) numerous buried and exposed ring, dome and crater features of undefined origin. A large number of the latter include structural and geophysical elements consistent with impact structures, pending test by field investigations and/or drilling. This paper documents and briefly describes 43 ring and dome features with the aim of appraising their similarities and differences from those of impact structures. Discrimination between impact structures and igneous plugs, volcanic caldera and salt domes require field work and/or drilling. Where crater-like morphological patterns intersect pre-existing linear structural features and contain central morphological highs and unique thrust and fault patterns an impact connection needs to tested in the field. Hints of potential buried impact structures may be furnished by single or multi-ring TMI patterns, circular TMI quiet zones, corresponding gravity patterns, low velocity and non-reflective seismic zones.

  17. A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series

    NASA Astrophysics Data System (ADS)

    Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz

    2014-03-01

    Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.

  18. First principles and experimental study of the electronic structure and phase stability of bulk thallium bromide

    NASA Astrophysics Data System (ADS)

    Smith, Holland M.; Zhou, Yuzhi; Ciampi, Guido; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Haller, E. E.; Chrzan, D. C.

    2013-08-01

    We apply state-of-art first principle calculations to study the polymorphism and electronic structure of three previously reported phases of TlBr. The calculated band structures of NaCl-structure phase and orthorhombic-structure phase have different features than that of commonly observed CsCl-structure phase. We further interpret photoluminescence spectra based on our calculations. Several peaks close to calculated band gap values of the NaCl-structure phase and the orthorhombic-structure phase are found in unpolished TlBr samples.

  19. Characterizing microstructural features of biomedical samples by statistical analysis of Mueller matrix images

    NASA Astrophysics Data System (ADS)

    He, Honghui; Dong, Yang; Zhou, Jialing; Ma, Hui

    2017-03-01

    As one of the salient features of light, polarization contains abundant structural and optical information of media. Recently, as a comprehensive description of polarization property, the Mueller matrix polarimetry has been applied to various biomedical studies such as cancerous tissues detections. In previous works, it has been found that the structural information encoded in the 2D Mueller matrix images can be presented by other transformed parameters with more explicit relationship to certain microstructural features. In this paper, we present a statistical analyzing method to transform the 2D Mueller matrix images into frequency distribution histograms (FDHs) and their central moments to reveal the dominant structural features of samples quantitatively. The experimental results of porcine heart, intestine, stomach, and liver tissues demonstrate that the transformation parameters and central moments based on the statistical analysis of Mueller matrix elements have simple relationships to the dominant microstructural properties of biomedical samples, including the density and orientation of fibrous structures, the depolarization power, diattenuation and absorption abilities. It is shown in this paper that the statistical analysis of 2D images of Mueller matrix elements may provide quantitative or semi-quantitative criteria for biomedical diagnosis.

  20. Guided wave crack detection and size estimation in stiffened structures

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor

    2018-03-01

    Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.

  1. Correlation of HIV protease structure with Indinavir resistance: a data mining and neural networks approach

    NASA Astrophysics Data System (ADS)

    Draghici, Sorin; Cumberland, Lonnie T., Jr.; Kovari, Ladislau C.

    2000-04-01

    This paper presents some results of data mining HIV genotypic and structural data. Our aim is to try to relate structural features of HIV enzymes essential to its reproductive abilities to the drug resistance phenomenon. This paper concentrates on the HIV protease enzyme and Indinavir which is one of the FDA approved protease inhibitors. Our starting point was the current list of HIV mutations related to drug resistance. We used the fact that some molecular structures determined through high resolution X-ray crystallography were available for the protease-Indinavir complex. Starting with these structures and the known mutations, we modelled the mutant proteases and studied the pattern of atomic contacts between the protease and the drug. After suitable pre- processing, these patterns have been used as the input of our data mining process. We have used both supervised and unsupervised learning techniques with the aim of understanding the relationship between structural features at a molecular level and resistance to Indinavir. The supervised learning was aimed at predicting IC90 values for arbitrary mutants. The SOFM was aimed at identifying those structural features that are important for drug resistance and discovering a classifier based on such features. We have used validation and cross validation to test the generalization abilities of the learning paradigm we have designed. The straightforward supervised learning was able to learn very successfully but validation results are less than satisfactory. This is due to the insufficient number of patterns in the training set which in turn is due to the scarcity of the available data. The data mining using SOFM was very successful. We have managed to distinguish between resistant and non-resistant mutants using structural features. We have been able to divide all reported HIV mutants into several categories based on their 3- dimensional molecular structures and the pattern of contacts between the mutant protease and Indinavir. Our classifier shows reasonably good prediction performance being able to predict the drug resistance of previously unseen mutants with an accuracy of between 60% and 70%. We believe that this performance can be greatly improved once more data becomes available. The results presented here support the hypothesis that structural features of the molecular structure can be used in antiviral drug treatment selection and drug design.

  2. The role of emotion in musical improvisation: an analysis of structural features.

    PubMed

    McPherson, Malinda J; Lopez-Gonzalez, Monica; Rankin, Summer K; Limb, Charles J

    2014-01-01

    One of the primary functions of music is to convey emotion, yet how music accomplishes this task remains unclear. For example, simple correlations between mode (major vs. minor) and emotion (happy vs. sad) do not adequately explain the enormous range, subtlety or complexity of musically induced emotions. In this study, we examined the structural features of unconstrained musical improvisations generated by jazz pianists in response to emotional cues. We hypothesized that musicians would not utilize any universal rules to convey emotions, but would instead combine heterogeneous musical elements together in order to depict positive and negative emotions. Our findings demonstrate a lack of simple correspondence between emotions and musical features of spontaneous musical improvisation. While improvisations in response to positive emotional cues were more likely to be in major keys, have faster tempos, faster key press velocities and more staccato notes when compared to negative improvisations, there was a wide distribution for each emotion with components that directly violated these primary associations. The finding that musicians often combine disparate features together in order to convey emotion during improvisation suggests that structural diversity may be an essential feature of the ability of music to express a wide range of emotion.

  3. The Role of Emotion in Musical Improvisation: An Analysis of Structural Features

    PubMed Central

    McPherson, Malinda J.; Lopez-Gonzalez, Monica; Rankin, Summer K.; Limb, Charles J.

    2014-01-01

    One of the primary functions of music is to convey emotion, yet how music accomplishes this task remains unclear. For example, simple correlations between mode (major vs. minor) and emotion (happy vs. sad) do not adequately explain the enormous range, subtlety or complexity of musically induced emotions. In this study, we examined the structural features of unconstrained musical improvisations generated by jazz pianists in response to emotional cues. We hypothesized that musicians would not utilize any universal rules to convey emotions, but would instead combine heterogeneous musical elements together in order to depict positive and negative emotions. Our findings demonstrate a lack of simple correspondence between emotions and musical features of spontaneous musical improvisation. While improvisations in response to positive emotional cues were more likely to be in major keys, have faster tempos, faster key press velocities and more staccato notes when compared to negative improvisations, there was a wide distribution for each emotion with components that directly violated these primary associations. The finding that musicians often combine disparate features together in order to convey emotion during improvisation suggests that structural diversity may be an essential feature of the ability of music to express a wide range of emotion. PMID:25144200

  4. Foot Structure in Japanese Speech Errors: Normal vs. Pathological

    ERIC Educational Resources Information Center

    Miyakoda, Haruko

    2008-01-01

    Although many studies of speech errors have been presented in the literature, most have focused on errors occurring at either the segmental or feature level. Few, if any, studies have dealt with the prosodic structure of errors. This paper aims to fill this gap by taking up the issue of prosodic structure in Japanese speech errors, with a focus on…

  5. Extracting and identifying concrete structural defects in GPR images

    NASA Astrophysics Data System (ADS)

    Ye, Qiling; Jiao, Liangbao; Liu, Chuanxin; Cao, Xuehong; Huston, Dryver; Xia, Tian

    2018-03-01

    Traditionally most GPR data interpretations are performed manually. With the advancement of computing technologies, how to automate GPR data interpretation to achieve high efficiency and accuracy has become an active research subject. In this paper, analytical characterizations of major defects in concrete structures, including delamination, air void and moisture in GPR images, are performed. In the study, the image features of different defects are compared. Algorithms are developed for defect feature extraction and identification. For validations, both simulation results and field test data are utilized.

  6. Determination of Structural Parameters from EXAFS (Extended X-Ray Absorption Fine Structure): Application to Solutions and Catalysts.

    DTIC Science & Technology

    1984-05-23

    the disorder was accurately known. Inverse Transform To isolate the EAFS contribution due to a single feature in the Fourier transform, the inverse ...is associated with setting the "fold" components to 27 zero in r-space. An inverse transform (real part) of the major feature of the Fig. 4 Fourier...phase of the resulting inverse transform represents only any differences between the material being studied and the reference. This residual is

  7. Cortical Gray Matter in Attention-Deficit/Hyperactivity Disorder: A Structural Magnetic Resonance Imaging Study

    ERIC Educational Resources Information Center

    Batty, Martin J.; Liddle, Elizabeth B.; Pitiot, Alain; Toro, Roberto; Groom, Madeleine J.; Scerif, Gaia; Liotti, Mario; Liddle, Peter F.; Paus, Tomas; Hollis, Chris

    2010-01-01

    Objective: Previous studies have shown smaller brain volume and less gray matter in children with attention-deficit/hyperactivity disorder (ADHD). Relatively few morphological studies have examined structures thought to subserve inhibitory control, one of the diagnostic features of ADHD. We examined one such region, the pars opercularis,…

  8. Molecular-Scale Features that Govern the Effects of O-Glycosylation on a Carbohydrate-Binding Module

    DOE PAGES

    Guan, Xiaoyang; Chaffey, Patrick K.; Zeng, Chen; ...

    2015-09-21

    The protein glycosylation is a ubiquitous post-translational modification in all kingdoms of life. Despite its importance in molecular and cellular biology, the molecular-level ramifications of O-glycosylation on biomolecular structure and function remain elusive. Here, we took a small model glycoprotein and changed the glycan structure and size, amino acid residues near the glycosylation site, and glycosidic linkage while monitoring any corresponding changes to physical stability and cellulose binding affinity. The results of this study reveal the collective importance of all the studied features in controlling the most pronounced effects of O-glycosylation in this system. This study suggests the possibility ofmore » designing proteins with multiple improved properties by simultaneously varying the structures of O-glycans and amino acids local to the glycosylation site.« less

  9. Comprehensive comparative analysis and identification of RNA-binding protein domains: multi-class classification and feature selection.

    PubMed

    Jahandideh, Samad; Srinivasasainagendra, Vinodh; Zhi, Degui

    2012-11-07

    RNA-protein interaction plays an important role in various cellular processes, such as protein synthesis, gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by RNA viruses. In this study, using Gene Ontology Annotated (GOA) and Structural Classification of Proteins (SCOP) databases an automatic procedure was designed to capture structurally solved RNA-binding protein domains in different subclasses. Subsequently, we applied tuned multi-class SVM (TMCSVM), Random Forest (RF), and multi-class ℓ1/ℓq-regularized logistic regression (MCRLR) for analysis and classifying RNA-binding protein domains based on a comprehensive set of sequence and structural features. In this study, we compared prediction accuracy of three different state-of-the-art predictor methods. From our results, TMCSVM outperforms the other methods and suggests the potential of TMCSVM as a useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On the other hand, MCRLR by elucidating importance of features for their contribution in predictive accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights into the roles of sequences and structures in protein-RNA interactions.

  10. A Comparative Study on Selective PPAR Modulators through Quantitative Structure-activity Relationship, Pharmacophore and Docking Analyses.

    PubMed

    Nandy, Ashis; Roy, Kunal; Saha, Achintya

    2018-01-01

    Metabolic syndrome is a matrix of different metabolic disorders which are the leading cause of death in human beings. Peroxysome proliferated activated receptor (PPAR) is a nuclear receptor involved in metabolism of fats and glucose. In order to explore structural requirements for selective PPAR modulators to control lipid and carbohydrate metabolism, the multi-cheminformatics studies have been performed. In silico modeling studies have been performed on a diverse set of PPAR modulators through quantitative structure-activity relationship (QSAR), pharmacophore mapping and docking studies. It is observed that the presence of an amide fragment (-CONHRPh) has a detrimental effect while an aliphatic ether linkage has a beneficial effect on PPARα modulation. On the other hand, the presence of an amide fragment has a positive effect on PPARδ modulation, but the aliphatic ether linkage and substituted aromatic ring in the molecular scaffold are very much essential for imparting potent and selective PPARγ modulation. Negative ionizable features (i.e. polar fragments) must be present in PPARδ and α modulators, but a hydrophobic feature is the prime requirement for PPARγ modulation. Here, the essential structural features have been explored for selective modulation of each subtype of PPAR in order to design new modulators with improved activity/selectivity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Features of the Correlation Structure of Price Indices

    PubMed Central

    Gao, Xiangyun; An, Haizhong; Zhong, Weiqiong

    2013-01-01

    What are the features of the correlation structure of price indices? To answer this question, 5 types of price indices, including 195 specific price indices from 2003 to 2011, were selected as sample data. To build a weighted network of price indices each price index is represented by a vertex, and a positive correlation between two price indices is represented by an edge. We studied the features of the weighted network structure by applying economic theory to the analysis of complex network parameters. We found that the frequency of the price indices follows a normal distribution by counting the weighted degrees of the nodes, and we identified the price indices which have an important impact on the network's structure. We found out small groups in the weighted network by the methods of k-core and k-plex. We discovered structure holes in the network by calculating the hierarchy of the nodes. Finally, we found that the price indices weighted network has a small-world effect by calculating the shortest path. These results provide a scientific basis for macroeconomic control policies. PMID:23593399

  12. Numerical Simulation of Flow Features and Energy Exchange Physics in Near-Wall Region with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lixiang; Wang, Wenquan; Guo, Yakun

    Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.

  13. Damage classification and estimation in experimental structures using time series analysis and pattern recognition

    NASA Astrophysics Data System (ADS)

    de Lautour, Oliver R.; Omenzetter, Piotr

    2010-07-01

    Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.

  14. Are History Textbooks More "Considerate" after 20 Years?

    ERIC Educational Resources Information Center

    Berkeley, Sheri; King-Sears, Margaret E.; Hott, Brittany L.; Bradley-Black, Katherine

    2014-01-01

    Features of eighth-grade history textbooks were examined through replication of a 20-year-old study that investigated "considerateness" of textbooks. Considerate texts provide clear, coherent information and include features that promote students' comprehension, such as explicit use of organizational structures, a range of question types…

  15. Determining crystal structures through crowdsourcing and coursework

    PubMed Central

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Roque, Paulo Sergio Silveira Belo Nascimento; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552

  16. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    NASA Astrophysics Data System (ADS)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  17. Structural Mapping and Geomorphology of Ireland's Southwest Continental Shelf Using High Resolution Sonar

    NASA Astrophysics Data System (ADS)

    Bowden, S.; Wireman, R.

    2016-02-01

    Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.

  18. Structural analysis of oligomeric and protofibrillar Aβ amyloid pair structures considering F20L mutation effects using molecular dynamics simulations.

    PubMed

    Lee, Myeongsang; Chang, Hyun Joon; Baek, Inchul; Na, Sungsoo

    2017-04-01

    Aβ amyloid proteins are involved in neuro-degenerative diseases such as Alzheimer's, Parkinson's, and so forth. Because of its structurally stable feature under physiological conditions, Aβ amyloid protein disrupts the normal cell function. Because of these concerns, understanding the structural feature of Aβ amyloid protein in detail is crucial. There have been some efforts on lowering the structural stabilities of Aβ amyloid fibrils by decreasing the aromatic residues characteristic and hydrophobic effect. Yet, there is a lack of understanding of Aβ amyloid pair structures considering those effects. In this study, we provide the structural characteristics of wildtype (WT) and phenylalanine residue mutation to leucine (F20L) Aβ amyloid pair structures using molecular dynamics simulation in detail. We also considered the polymorphic feature of F20L and WT Aβ pair amyloids based on the facing β-strand directions between the amyloid pairs. As a result, we were able to observe the varying effects of mutation, polymorphism, and protofibril lengths on the structural stability of pair amyloids. Furthermore, we have also found that opposite structural stability exists on a certain polymorphic Aβ pair amyloids depending on its oligomeric or protofibrillar state, which can be helpful for understanding the amyloid growth mechanism via repetitive fragmentation and elongation mechanism. Proteins 2017; 85:580-592. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Breccia dikes from the Beaverhead Impact structure, southwest Montana

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Hougen, S. B.; Hargraves, R. B.

    1992-01-01

    While shatter cones are generally accepted as indicators of meteorite impact, older petrologic features are not widely recognized in the geologic community. Breccia dikes are one such feature. They are found in many large impact structures occurring over an area at least as extensively as shatter cones. Breccia dikes will survive moderate degrees of metamorphism and tectonism, unlike many other microscopic features (shocked quartz grains, high-pressure polymorphs, etc.) and even large-scale features such as annular or bowl-shaped topographic features. Thus, they are important diagnostic criteria, especially for large, poorly preserved impact structures. The Beaverhead Impact structure is a recently discovered, deeply eroded impact structure in southwestern Montana. The remains of the structure are delineated by the occurrence of shatter cones, found in an area greater than 200 sq km, occurring within the Cabin thrust plate, part of the Cretaceous Sevier fold and thrust system. The distribution of shatter cones is further truncated by Tertiary normal faults. The present remains represent an allochthonous fragment of a larger structure.

  20. Visualizing impact structures using high-resolution LiDAR-derived DEMs: A case study of two structures in Missouri

    USGS Publications Warehouse

    Finn, Michael P.; Krizanich, Gary W.; Evans, Kevin R.; Cox, Melissa R.; Yamamoto, Kristina H.

    2015-01-01

    Evidence suggests that a crypto-explosive hypothesis and a meteorite impact hypothesis may be partly correct in explaining several anomalous geological features in the middle of the United States. We used a primary geographic information science (GIScience) technique of creating a digital elevation model (DEM) of two of these features that occur in Missouri. The DEMs were derived from airborne light detection and ranging, or LiDAR. Using these DEMs, we characterized the Crooked Creek structure in southern Crawford County and the Weaubleau structure in southeastern St. Clair County, Missouri. The mensuration and study of exposed and buried impact craters implies that the craters may have intrinsic dimensions which could only be produced by collision. The results show elevations varying between 276 and 348 m for Crooked Creek and between 220 and 290 m for Weaubleau structure. These new high- resolution DEMs are accurate enough to allow for precise measurements and better interpretations of geological structures, particularly jointing in the carbonate rocks, and they show greater definition of the central uplift area in the Weaubleau structure than publicly available DEMs.

  1. A symmetry measure for damage detection with mode shapes

    NASA Astrophysics Data System (ADS)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  2. Investigating Molecular Structures of Bio-Fuel and Bio-Oil Seeds as Predictors To Estimate Protein Bioavailability for Ruminants by Advanced Nondestructive Vibrational Molecular Spectroscopy.

    PubMed

    Ban, Yajing; L Prates, Luciana; Yu, Peiqiang

    2017-10-18

    This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.

  3. Exploratory and Confirmatory Factor Analyses of the Structured Interview for Disorders of Extreme Stress

    ERIC Educational Resources Information Center

    Scoboria, Alan; Ford, Julian; Lin, Hsiu-ju; Frisman, Linda

    2008-01-01

    Two studies were conducted to provide the first empirical examination of the factor structure of a revised version of the clinically derived Structured Interview for Disorders of Extreme Stress, a structured interview designed to assess associated features of posttraumatic stress disorder (PTSD) thought to be related to early onset, interpersonal,…

  4. Using a Word Association Test for the Assessment of High School Students' Cognitive Structures on Dissolution

    ERIC Educational Resources Information Center

    Derman, Aysegul; Eilks, Ingo

    2016-01-01

    Understanding students' cognitive structures in a specific knowledge domain helps to determine the ''what, how and why'' features of such knowledge, so that we can take these structures into consideration in teaching. The purpose of the present study was to identify students' cognitive structures about solution and dissolution concepts. The study…

  5. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method

    PubMed Central

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470

  6. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method.

    PubMed

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.

  7. Building theory-based concepts: four-year-olds preferentially seek explanations for features of kinds.

    PubMed

    Cimpian, Andrei; Petro, Gina

    2014-05-01

    Is the structure of human concepts continuous across development, or does it undergo qualitative transformations? Extensive evidence with adults has demonstrated that they are motivated to understand why categories have the features they do. To investigate whether young children display a similar motivation-an issue that bears on the question of continuity vs. transformation in conceptual structure-we conducted three studies involving 4-year-olds (N=90) and adults (N=124). Experiments 1 and 2 suggested that 4-year-olds indeed display a strong motivation to explain why categories have the features they do. Specifically, when provided with the option of asking "why?" about features of novel categories vs. features of individuals from other novel categories, children preferred to ask "why?" about the category features. Moreover, children's explanatory preference was specific to facts about categories per se and did not extend to facts that were merely presented in the context of multiple category instances. Experiment 3 also ruled out the possibility that the category facts were preferred because these facts were more surprising. In sum, these three studies reveal an early-emerging motivation to make sense of the categories encountered in the world and, more generally, speak to the richness of children's conceptual representations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Emergence of structural patterns out of synchronization in networks with competitive interactions

    NASA Astrophysics Data System (ADS)

    Assenza, Salvatore; Gutiérrez, Ricardo; Gómez-Gardeñes, Jesús; Latora, Vito; Boccaletti, Stefano

    2011-09-01

    Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the interaction topology on the emergence of synchronized states. However, most of these studies neglect that real world systems change their interaction patterns in time. Here, we analyze synchronization features in networks in which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with other correlated units in the graph) and homeostasis (preserving the value of the input strength received by each unit). The competition between these two adaptive principles leads to the emergence of key structural properties observed in real world networks, such as modular and scale-free structures, together with a striking enhancement of local synchronization in systems with no global order.

  9. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study.

    PubMed

    A Santos, Jose C; Nassif, Houssam; Page, David; Muggleton, Stephen H; E Sternberg, Michael J

    2012-07-11

    There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. In addition to confirming literature results, ProGolem's model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners.

  10. The Scope and Design of Structured Group Learning Experiences at Community Colleges

    ERIC Educational Resources Information Center

    Hatch, Deryl K.; Bohlig, E. Michael

    2015-01-01

    This study explores through descriptive analysis the similarities of structured group learning experiences such as first-year seminars, learning communities, orientation, success courses, and accelerated developmental education programs, in terms of their design features and implementation at community colleges. The study takes as its conceptual…

  11. An Eye-Tracking Study of Multiple Feature Value Category Structure Learning: The Role of Unique Features

    PubMed Central

    Liu, Zhiya; Song, Xiaohong; Seger, Carol A.

    2015-01-01

    We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting. PMID:26274332

  12. An Eye-Tracking Study of Multiple Feature Value Category Structure Learning: The Role of Unique Features.

    PubMed

    Liu, Zhiya; Song, Xiaohong; Seger, Carol A

    2015-01-01

    We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting.

  13. Specific features of the structural and magnetic states of a Zn1 - x Ni x Se crystal ( x = 0.0025) at low temperatures

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.

    2008-12-01

    The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.

  14. Dynamic response of underpasses for high-speed train lines

    NASA Astrophysics Data System (ADS)

    Vega, J.; Fraile, A.; Alarcon, E.; Hermanns, L.

    2012-11-01

    Underpasses are common in modern railway lines. Wildlife corridors and drainage conduits often fall into this category of partially buried structures. Their dynamic behavior has received far less attention than that of other structures such as bridges, but their large number makes their study an interesting challenge from the viewpoint of safety and cost savings. Here, we present a complete study of a culvert, including on-site measurements and numerical modeling. The studied structure belongs to the high-speed railway line linking Segovia and Valladolid in Spain. The line was opened to traffic in 2004. On-site measurements were performed for the structure by recording the dynamic response at selected points of the structure during the passage of high-speed trains at speeds ranging between 200 and 300 km/h. The measurements provide not only reference values suitable for model fitting, but also a good insight into the main features of the dynamic behavior of this structure. Finite element techniques were used to model the dynamic behavior of the structure and its key features. Special attention is paid to vertical accelerations, the values of which should be limited to avoid track instability according to Eurocode. This study furthers our understanding of the dynamic response of railway underpasses to train loads.

  15. Initial evaluation of the geologic applications of ERTS-1 imagery for New Mexico

    NASA Technical Reports Server (NTRS)

    Vonderlinden, K.; Kottlowski, F. E.

    1973-01-01

    Coverage of approximately one-third of the test site, the state of New Mexico, had been received by January 31, 1973 and all of the images received were MSS products. Features noted during visual inspection of 91/2 x 91/2 prints include major structural forms, vegetation patterns, drainage patterns and outcrops of geologic formations having marked color contrasts. The Border Hills Structural Zone and the Y-O Structural Zone are prominently reflected in coverage of the Pecos Valley. A study of available maps and remote sensing material covering the Deming-Columbus area indicated that the limit of detection and the resolution of MSS products are not as good as those of aerial photographs, geologic maps, and manned-satellite photographs. The limit of detection of high contrast features on MSS prints in approximately 1000 feet or 300 meters for linear features and about 18 acres for roughly circular areas.

  16. Separation of alkylphenols by normal-phase and reversed-phase high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schabron, J.F.; Hurtubise, R.J.; Silver, H.F.

    1978-11-01

    Empirical correlation factors were developed which relate log k' values for alkylphenols, the naphthols, and two phenylphenols to structural features. Both normal-phase and reversed-phase chromatographic systems were studied. The stationary phases employed in the normal-phase work were ..mu..-Bondapak CN, ..mu..-Bondapak NH/sub 2/, and ..mu..-Porasil. The structural features which affect retention in the normal-phase chromatographic systems are the number of ortho substituents, the number of aliphatic carbons, and the number of aromatic rings. The stationary phases employed in the reversed-phase work were ..mu..-Bondapak C/sub 18/ and ..mu..-Bondapak CN. The structural features which affect retention in the reversed-phase chromatographic systems are themore » number of aliphatic carbons and the number of aromatic double bonds. On ..mu..-Bondapak C/sub 18/, the presence or absence of a nonaromatic ring is of added importance.« less

  17. LANDSAT image studies as applied to petroleum exploration in Kenya

    NASA Technical Reports Server (NTRS)

    Miller, J. B.

    1975-01-01

    The Chevron-Kenya oil license, acquired in 1972, covers an area at the north end of the Lamu Embayment. Immediately after acquisition, a photogeologic study of the area was made followed by a short field inspection. An interpretation of LANDSAT-1 images as a separate attempt to improve geological knowledge was completed. The method used in the image study, the multispectral characteristics of rock units and terrain, and the observed anomalous features as seen in the LANDSAT imagery are described. It was found that the study helped to define the relationship of the Lamu Embayment and its internal structure with surrounding regional features, such as the East Africa rifting, the Rudolf Trough, the Bur Acaba structural ridge, and the Ogaden Basin.

  18. New Features in the Lipid A Structure of Brucella suis and Brucella abortus Lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Casabuono, Adriana C.; Czibener, Cecilia; Del Giudice, Mariela G.; Valguarnera, Ezequiel; Ugalde, Juan E.; Couto, Alicia S.

    2017-12-01

    Brucellaceae are Gram-negative bacteria that cause brucellosis, one of the most distributed worldwide zoonosis, transmitted to humans by contact with either infected animals or their products. The lipopolysaccharide exposed on the cell surface has been intensively studied and is considered a major virulence factor of Brucella. In the last years, structural studies allowed the determination of new structures in the core oligosaccharide and the O-antigen of this lipopolysaccharide. In this work, we have reinvestigated the lipid A structure isolated from B. suis and B. abortus lipopolysaccharides. A detailed study by MALDI-TOF mass spectrometry in the positive and negative ion modes of the lipid A moieties purified from both species was performed. Interestingly, a new feature was detected: the presence of a pyrophosphorylethanolamine residue substituting the backbone. LID-MS/MS analysis of some of the detected ions allowed assurance that the Lipid A structure composed by the diGlcN3N disaccharide, mainly hexa-acylated and penta-acylated, bearing one phosphate and one pyrophosphorylethanolamine residue. [Figure not available: see fulltext.

  19. New Features in the Lipid A Structure of Brucella suis and Brucella abortus Lipopolysaccharide.

    PubMed

    Casabuono, Adriana C; Czibener, Cecilia; Del Giudice, Mariela G; Valguarnera, Ezequiel; Ugalde, Juan E; Couto, Alicia S

    2017-12-01

    Brucellaceae are Gram-negative bacteria that cause brucellosis, one of the most distributed worldwide zoonosis, transmitted to humans by contact with either infected animals or their products. The lipopolysaccharide exposed on the cell surface has been intensively studied and is considered a major virulence factor of Brucella. In the last years, structural studies allowed the determination of new structures in the core oligosaccharide and the O-antigen of this lipopolysaccharide. In this work, we have reinvestigated the lipid A structure isolated from B. suis and B. abortus lipopolysaccharides. A detailed study by MALDI-TOF mass spectrometry in the positive and negative ion modes of the lipid A moieties purified from both species was performed. Interestingly, a new feature was detected: the presence of a pyrophosphorylethanolamine residue substituting the backbone. LID-MS/MS analysis of some of the detected ions allowed assurance that the Lipid A structure composed by the diGlcN3N disaccharide, mainly hexa-acylated and penta-acylated, bearing one phosphate and one pyrophosphorylethanolamine residue. Graphical abstract ᅟ.

  20. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    PubMed

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K

    2014-01-01

    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

  1. Prediction of near-term breast cancer risk using local region-based bilateral asymmetry features in mammography

    NASA Astrophysics Data System (ADS)

    Li, Yane; Fan, Ming; Li, Lihua; Zheng, Bin

    2017-03-01

    This study proposed a near-term breast cancer risk assessment model based on local region bilateral asymmetry features in Mammography. The database includes 566 cases who underwent at least two sequential FFDM examinations. The `prior' examination in the two series all interpreted as negative (not recalled). In the "current" examination, 283 women were diagnosed cancers and 283 remained negative. Age of cancers and negative cases completely matched. These cases were divided into three subgroups according to age: 152 cases among the 37-49 age-bracket, 220 cases in the age-bracket 50- 60, and 194 cases with the 61-86 age-bracket. For each image, two local regions including strip-based regions and difference-of-Gaussian basic element regions were segmented. After that, structural variation features among pixel values and structural similarity features were computed for strip regions. Meanwhile, positional features were extracted for basic element regions. The absolute subtraction value was computed between each feature of the left and right local-regions. Next, a multi-layer perception classifier was implemented to assess performance of features for prediction. Features were then selected according stepwise regression analysis. The AUC achieved 0.72, 0.75 and 0.71 for these 3 age-based subgroups, respectively. The maximum adjustable odds ratios were 12.4, 20.56 and 4.91 for these three groups, respectively. This study demonstrate that the local region-based bilateral asymmetry features extracted from CC-view mammography could provide useful information to predict near-term breast cancer risk.

  2. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  3. Characterization of protein and carbohydrate mid-IR spectral features in crop residues.

    PubMed

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-14

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    PubMed

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  5. Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches.

    PubMed

    Chen, Xi; Kopsaftopoulos, Fotis; Wu, Qi; Ren, He; Chang, Fu-Kuo

    2018-04-29

    In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles.

  6. Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development.

    PubMed

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1987-09-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.

  7. The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR lymphography CAD system

    NASA Astrophysics Data System (ADS)

    Meijs, M.; Debats, O.; Huisman, H.

    2015-03-01

    In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.

  8. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images.

    PubMed

    Lu, Xiaobing; Yang, Yongzhe; Wu, Fengchun; Gao, Minjian; Xu, Yong; Zhang, Yue; Yao, Yongcheng; Du, Xin; Li, Chengwei; Wu, Lei; Zhong, Xiaomei; Zhou, Yanling; Fan, Ni; Zheng, Yingjun; Xiong, Dongsheng; Peng, Hongjun; Escudero, Javier; Huang, Biao; Li, Xiaobo; Ning, Yuping; Wu, Kai

    2016-07-01

    Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.

  9. Self-organization in precipitation reactions far from the equilibrium

    PubMed Central

    Nakouzi, Elias; Steinbock, Oliver

    2016-01-01

    Far from the thermodynamic equilibrium, many precipitation reactions create complex product structures with fascinating features caused by their unusual origins. Unlike the dissipative patterns in other self-organizing reactions, these features can be permanent, suggesting potential applications in materials science and engineering. We review four distinct classes of precipitation reactions, describe similarities and differences, and discuss related challenges for theoretical studies. These classes are hollow micro- and macrotubes in chemical gardens, polycrystalline silica carbonate aggregates (biomorphs), Liesegang bands, and propagating precipitation-dissolution fronts. In many cases, these systems show intricate structural hierarchies that span from the nanometer scale into the macroscopic world. We summarize recent experimental progress that often involves growth under tightly regulated conditions by means of wet stamping, holographic heating, and controlled electric, magnetic, or pH perturbations. In this research field, progress requires mechanistic insights that cannot be derived from experiments alone. We discuss how mesoscopic aspects of the product structures can be modeled by reaction-transport equations and suggest important targets for future studies that should also include materials features at the nanoscale. PMID:27551688

  10. Applying the LANL Statistical Pattern Recognition Paradigm for Structural Health Monitoring to Data from a Surface-Effect Fast Patrol Boat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoon Sohn; Charles Farrar; Norman Hunter

    2001-01-01

    This report summarizes the analysis of fiber-optic strain gauge data obtained from a surface-effect fast patrol boat being studied by the staff at the Norwegian Defense Research Establishment (NDRE) in Norway and the Naval Research Laboratory (NRL) in Washington D.C. Data from two different structural conditions were provided to the staff at Los Alamos National Laboratory. The problem was then approached from a statistical pattern recognition paradigm. This paradigm can be described as a four-part process: (1) operational evaluation, (2) data acquisition & cleansing, (3) feature extraction and data reduction, and (4) statistical model development for feature discrimination. Given thatmore » the first two portions of this paradigm were mostly completed by the NDRE and NRL staff, this study focused on data normalization, feature extraction, and statistical modeling for feature discrimination. The feature extraction process began by looking at relatively simple statistics of the signals and progressed to using the residual errors from auto-regressive (AR) models fit to the measured data as the damage-sensitive features. Data normalization proved to be the most challenging portion of this investigation. A novel approach to data normalization, where the residual errors in the AR model are considered to be an unmeasured input and an auto-regressive model with exogenous inputs (ARX) is then fit to portions of the data exhibiting similar waveforms, was successfully applied to this problem. With this normalization procedure, a clear distinction between the two different structural conditions was obtained. A false-positive study was also run, and the procedure developed herein did not yield any false-positive indications of damage. Finally, the results must be qualified by the fact that this procedure has only been applied to very limited data samples. A more complete analysis of additional data taken under various operational and environmental conditions as well as other structural conditions is necessary before one can definitively state that the procedure is robust enough to be used in practice.« less

  11. Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine.

    PubMed

    Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T

    2016-05-15

    Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Structural insight into the binding interactions of modeled structure of Arabidopsis thaliana urease with urea: an in silico study.

    PubMed

    Yata, Vinod Kumar; Thapa, Arun; Mattaparthi, Venkata Satish Kumar

    2015-01-01

    Urease (EC 3.5.1.5., urea amidohydrolase) catalyzes the hydrolysis of urea to ammonia and carbon dioxide. Urease is present to a greater abundance in plants and plays significant role related to nitrogen recycling from urea. But little is known about the structure and function of the urease derived from the Arabidopsis thaliana, the model system of choice for research in plant biology. In this study, a three-dimensional structural model of A. thaliana urease was constructed using computer-aided molecular modeling technique. The characteristic structural features of the modeled structure were then studied using atomistic molecular dynamics simulation. It was observed that the modeled structure was stable and regions between residues index (50-80, 500-700) to be significantly flexible. From the docking studies, we detected the possible binding interactions of modeled urease with urea. Ala399, Ile675, Thr398, and Thr679 residues of A. thaliana urease were observed to be significantly involved in binding with the substrate urea. We also compared the docking studies of ureases from other sources such as Canavalia ensiformis, Helicobacter pylori, and Bacillus pasteurii. In addition, we carried out mutation analysis to find the highly mutable amino acid residues of modeled A. thaliana urease. In this particular study, we observed Met485, Tyr510, Ser786, Val426, and Lys765 to be highly mutable amino acids. These results are significant for the mutagenesis analysis. As a whole, this study expounds the salient structural features as well the binding interactions of the modeled structure of A. thaliana urease.

  13. Subsurface structures of buried features in the lunar Procellarum region

    NASA Astrophysics Data System (ADS)

    Wang, Wenrui; Heki, Kosuke

    2017-07-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.

  14. Arguing in L2: Discourse Structure and Textual Metadiscourse in Philippine Newspaper Editorials

    ERIC Educational Resources Information Center

    Tarrayo, Veronico N.; Duque, Marie Claire T.

    2011-01-01

    This study described the discourse structure and textual metadiscourse in newspaper editorials in the Philippines where English is used as a second language or L2. Specifically, it sought answers to the following questions: (1) What discourse features characterize the structure of the following parts of Philippine newspaper editorials--orientation…

  15. Teaching Text Structure: Examining the Affordances of Children's Informational Texts

    ERIC Educational Resources Information Center

    Jones, Cindy D.; Clark, Sarah K.; Reutzel, D. Ray

    2016-01-01

    This study investigated the affordances of informational texts to serve as model texts for teaching text structure to elementary school children. Content analysis of a random sampling of children's informational texts from top publishers was conducted on text structure organization and on the inclusion of text features as signals of text…

  16. The study of features of the structural organization of the au-tomated information processing system of the collective type

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. N.; Titov, D. V.; Syryamkin, V. I.

    2018-05-01

    The comparative assessment of the level of channel capacity of different variants of the structural organization of the automated information processing systems is made. The information processing time assessment model depending on the type of standard elements and their structural organization is developed.

  17. Altai Empathy Culture: Ontological Design of Altai Cognitive Environment

    ERIC Educational Resources Information Center

    Voronin, Maksim; Belousova, Valeria; Khalina, Natalya

    2016-01-01

    This study considers the features of Altai cultural semantics through the cognitive materialism of culture basing on the assumption that the linguistic structures are part of culture, and the metaphorical linguistic use is the basis for cultural cognitive structures forming. Altai text is considered as a structural unit of Altai cognitive…

  18. REPDOSE: A database on repeated dose toxicity studies of commercial chemicals--A multifunctional tool.

    PubMed

    Bitsch, A; Jacobi, S; Melber, C; Wahnschaffe, U; Simetska, N; Mangelsdorf, I

    2006-12-01

    A database for repeated dose toxicity data has been developed. Studies were selected by data quality. Review documents or risk assessments were used to get a pre-screened selection of available valid data. The structure of the chemicals should be rather simple for well defined chemical categories. The database consists of three core data sets for each chemical: (1) structural features and physico-chemical data, (2) data on study design, (3) study results. To allow consistent queries, a high degree of standardization categories and glossaries were developed for relevant parameters. At present, the database consists of 364 chemicals investigated in 1018 studies which resulted in a total of 6002 specific effects. Standard queries have been developed, which allow analyzing the influence of structural features or PC data on LOELs, target organs and effects. Furthermore, it can be used as an expert system. First queries have shown that the database is a very valuable tool.

  19. Structural Peculiarities of Social Mental Abilities of Future Teachers

    ERIC Educational Resources Information Center

    Yermentayevaa, Ardakh Rizabekovna; Kenzhebayeva, Kundyz Serikovna; Umirbekova, Akerke Nurlanbekovna; Aubakirova, Zhanat Kanashovna; Iskakova, Akmaral Bakytbekovna

    2016-01-01

    The problem of social intelligence of researchers has attracted attention in recent years. Social intelligence is one of the most important characteristics of teachers. The aim of this research was to study features of structure of social intelligence of future teachers. The respondents in this study were selected 360 students of pedagogical…

  20. The Latent Structure of Psychopathy in Youth: A Taxometric Investigation

    ERIC Educational Resources Information Center

    Vasey, Michael W.; Kotov, Roman; Frick, Paul J.; Loney, Bryan R.

    2005-01-01

    Using taxometric procedures, the latent structure of psychopathy was investigated in two studies of children and adolescents. Prior studies have identified a taxon (i.e., a natural category) associated with antisocial behavior in adults as well as children and adolescents. However, features of this taxon suggest that it is not psychopathy but…

  1. Structural and spectroscopic features of proton hydrates in the crystalline state. Solid-state DFT study on HCl and triflic acid hydrates

    NASA Astrophysics Data System (ADS)

    Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.

    2018-01-01

    Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.

  2. Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

    PubMed

    Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina

    2015-04-01

    An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

  3. Movement of feeder-using songbirds: the influence of urban features.

    PubMed

    Cox, Daniel T C; Inger, Richard; Hancock, Steven; Anderson, Karen; Gaston, Kevin J

    2016-11-23

    Private gardens provide vital opportunities for people to interact with nature. The most popular form of interaction is through garden bird feeding. Understanding how landscape features and seasons determine patterns of movement of feeder-using songbirds is key to maximising the well-being benefits they provide. To determine these patterns we established three networks of automated data loggers along a gradient of greenspace fragmentation. Over a 12-month period we tracked 452 tagged blue tits Cyantistes caeruleus and great tits Parus major moving between feeder pairs 9,848 times, to address two questions: (i) Do urban features within different forms, and season, influence structural (presence-absence of connections between feeders by birds) and functional (frequency of these connections) connectivity? (ii) Are there general patterns of structural and functional connectivity across forms? Vegetation cover increased connectivity in all three networks, whereas the presence of road gaps negatively affected functional but not structural connectivity. Across networks structural connectivity was lowest in the summer when birds maintain breeding territories, however patterns of functional connectivity appeared to vary with habitat fragmentation. Using empirical data this study shows how key urban features and season influence movement of feeder-using songbirds, and we provide evidence that this is related to greenspace fragmentation.

  4. Efficient enumeration of monocyclic chemical graphs with given path frequencies

    PubMed Central

    2014-01-01

    Background The enumeration of chemical graphs (molecular graphs) satisfying given constraints is one of the fundamental problems in chemoinformatics and bioinformatics because it leads to a variety of useful applications including structure determination and development of novel chemical compounds. Results We consider the problem of enumerating chemical graphs with monocyclic structure (a graph structure that contains exactly one cycle) from a given set of feature vectors, where a feature vector represents the frequency of the prescribed paths in a chemical compound to be constructed and the set is specified by a pair of upper and lower feature vectors. To enumerate all tree-like (acyclic) chemical graphs from a given set of feature vectors, Shimizu et al. and Suzuki et al. proposed efficient branch-and-bound algorithms based on a fast tree enumeration algorithm. In this study, we devise a novel method for extending these algorithms to enumeration of chemical graphs with monocyclic structure by designing a fast algorithm for testing uniqueness. The results of computational experiments reveal that the computational efficiency of the new algorithm is as good as those for enumeration of tree-like chemical compounds. Conclusions We succeed in expanding the class of chemical graphs that are able to be enumerated efficiently. PMID:24955135

  5. Carabelli's trait revisited: an examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars.

    PubMed

    Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques

    2012-10-01

    Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Special Features of Structure Formation in an Explosion-Welded Magnesium-Aluminum Composite Under Deformation and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Gurevich, L. M.; Arisova, V. N.; Trykov, Yu. P.; Ponomareva, I. A.; Trudov, A. F.

    2016-07-01

    The effect of bending deformation and subsequent heat treatment on the variation of microhardness and structure of explosion-welded magnesium-aluminum layered composite material MA2-1 - AD1 is studied.

  7. Caveolae structure and function

    PubMed Central

    Thomas, Candice M; Smart, Eric J

    2008-01-01

    Abstract Studies on the structure and function of caveolae have revealed how this versatile subcellular organelle can influence numerous signalling pathways. This brief review will discuss a few of the key features of caveolae as it relates to signalling and disease processes. PMID:18315571

  8. Feature and Statistical Model Development in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns. Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.

  9. Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States

    USGS Publications Warehouse

    Tuttle, M.P.; Schweig, E.S.

    1996-01-01

    The New Madrid seismic zone (NMSZ), which experienced severe liquefaction during the great New Madrid, Missouri, earthquakes of 1811 and 1812 as well as during several prehistoric earthquakes, is a superb laboratory for the study of world-class, arthquake-induced liquefaction features and their use in paleoseismology. In seismically active regions like the NMSZ, frequent large earthquakes can produce a complex record of liquefaction events that is difficult to interpret. Lessons learned studying liquefaction features in the NMSZ may help to unravel the paleoseismic record in other seismically active regions. Soil characteristics of liquefaction features, as well as their structural and sratigraphic relations to Native American occupation horizons and other cultural features, an help to distinguish prehistoric liquefaction features from historic features. In addition, analyses of artifact assemblages and botanical content of cultural horizons can help to narrow the age ranges of liquefaction features. Future research should focus on methods for defining source areas and estimating magnitudes of prehistoric earthquakes from liquefaction features. Also, new methods for dating liquefaction features are needed.

  10. Exploring How Different Features of Animations of Sodium Chloride Dissolution Affect Students' Explanations

    ERIC Educational Resources Information Center

    Kelly, Resa M.; Jones, Loretta L.

    2007-01-01

    Animations of molecular structure and dynamics are often used to help students understand the abstract ideas of chemistry. This qualitative study investigated how the features of two different styles of molecular-level animation affected students' explanations of how sodium chloride dissolves in water. In small group sessions 18 college-level…

  11. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus.

    PubMed

    Ekins, Sean; Freundlich, Joel S; Coffee, Megan

    2014-01-01

    We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested.

  12. Structural geologic interpretations from radar imagery

    USGS Publications Warehouse

    Reeves, Robert G.

    1969-01-01

    Certain structural geologic features may be more readily recognized on sidelooking airborne radar (SLAR) images than on conventional aerial photographs, other remote sensor imagery, or by ground observations. SLAR systems look obliquely to one or both sides and their images resemble aerial photographs taken at low sun angle with the sun directly behind the camera. They differ from air photos in geometry, resolution, and information content. Radar operates at much lower frequencies than the human eye, camera, or infrared sensors, and thus "sees" differently. The lower frequency enables it to penetrate most clouds and some precipitation, haze, dust, and some vegetation. Radar provides its own illumination, which can be closely controlled in intensity and frequency. It is narrow band, or essentially monochromatic. Low relief and subdued features are accentuated when viewed from the proper direction. Runs over the same area in significantly different directions (more than 45° from each other), show that images taken in one direction may emphasize features that are not emphasized on those taken in the other direction; optimum direction is determined by those features which need to be emphasized for study purposes. Lineaments interpreted as faults stand out on radar imagery of central and western Nevada; folded sedimentary rocks cut by faults can be clearly seen on radar imagery of northern Alabama. In these areas, certain structural and stratigraphic features are more pronounced on radar images than on conventional photographs; thus radar imagery materially aids structural interpretation.

  13. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus

    PubMed Central

    Ekins, Sean; Freundlich, Joel S.; Coffee, Megan

    2014-01-01

    We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested. PMID:25653841

  14. Studies of planetary upper atmospheres through occultations

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1982-01-01

    The structure, composition, dynamics and energy balance of planetary upper atmospheres through interpretation of steller occultation data from Uranus is discussed. The wave-optical problem of modelling strong scintillation for arbitrary turbulent atmospheres is studied, as well as influence of turbulence. It was concluded that quasi-global features of atmospheric structure are accurately determined by numerical inversion. Horizontally inhomogeneous structures are filtered out and have little effect on temperature profiles.

  15. High-resolution AFM structure of DNA G-wires in aqueous solution.

    PubMed

    Bose, Krishnashish; Lech, Christopher J; Heddi, Brahim; Phan, Anh Tuân

    2018-05-17

    We investigate the self-assembly of short pieces of the Tetrahymena telomeric DNA sequence d[G 4 T 2 G 4 ] in physiologically relevant aqueous solution using atomic force microscopy (AFM). Wire-like structures (G-wires) of 3.0 nm height with well-defined surface periodic features were observed. Analysis of high-resolution AFM images allowed their classification based on the periodicity of these features. A major species is identified with periodic features of 4.3 nm displaying left-handed ridges or zigzag features on the molecular surface. A minor species shows primarily left-handed periodic features of 2.2 nm. In addition to 4.3 and 2.2 nm ridges, background features with periodicity of 0.9 nm are also observed. Using molecular modeling and simulation, we identify a molecular structure that can explain both the periodicity and handedness of the major G-wire species. Our results demonstrate the potential structural diversity of G-wire formation and provide valuable insight into the structure of higher-order intermolecular G-quadruplexes. Our results also demonstrate how AFM can be combined with simulation to gain insight into biomolecular structure.

  16. Ultrastructural changes of goat corpus luteum during the estrous cycle.

    PubMed

    Jiang, Yi-Fan; Hsu, Meng-Chieh; Cheng, Chiung-Hsiang; Tsui, Kuan-Hao; Chiu, Chih-Hsien

    2016-07-01

    The present study was designed to study the ultrastructure of goat corpora lutea (CL, n=10) and structural changes as related to steroidogenic functions during the estrous cycle. The reproduction status of goats was estimated by analyzing serum progesterone concentrations. The CL at various stages was surgically collected. To characterize ultrastructural features associated with steroidogenesis, tissue and cellular structures were studied. Blood supplies were examined based on features of the endothelial cells and capillary structures in the CL. Activated endothelial cells and developing vessels were observed in the early stage, whereas mature endothelial cells, accumulating extracellular matrix fibers, and stabilized vessels were observed in the middle and late stages of assessment. In the late stage of assessment, shrunken goat luteal cells scattered around the capillaries were detected and formed circular regression areas. Features of autophagy and luteal cell apoptosis were noted. In large luteal cells, steroidogenic organelles were present, including microvillar channels, endoplasmic reticulum, and mitochondria. Conformational changes in the endoplasmic reticulum and increased mitochondria with tubular cristae were observed in the early-middle CL transitions. In contrast, mitochondria swelled and the cristae transformed to the lamellar type in the late stage, suggesting that organelle plasticity could contribute to steroidogenesis in goat CL. In conclusion, results suggest angiogenesis occurs in early developing CL and programmed cell death occurred in the late stage of CL assessment in the present study. Structures and quantiles of steroidogenic organelles are correlated with the steroidogenic functions in goats. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Solution structure of Syrian hamster prion protein rPrP(90-231).

    PubMed

    Liu, H; Farr-Jones, S; Ulyanov, N B; Llinas, M; Marqusee, S; Groth, D; Cohen, F E; Prusiner, S B; James, T L

    1999-04-27

    NMR has been used to refine the structure of Syrian hamster (SHa) prion protein rPrP(90-231), which is commensurate with the infectious protease-resistant core of the scrapie prion protein PrPSc. The structure of rPrP(90-231), refolded to resemble the normal cellular isoform PrPC spectroscopically and immunologically, has been studied using multidimensional NMR; initial results were published [James et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 10086-10091]. We now report refinement with better definition revealing important structural and dynamic features which can be related to biological observations pertinent to prion diseases. Structure refinement was based on 2778 unambiguously assigned nuclear Overhauser effect (NOE) connectivities, 297 ambiguous NOE restraints, and 63 scalar coupling constants (3JHNHa). The structure is represented by an ensemble of 25 best-scoring structures from 100 structures calculated using ARIA/X-PLOR and further refined with restrained molecular dynamics using the AMBER 4.1 force field with an explicit shell of water molecules. The rPrP(90-231) structure features a core domain (residues 125-228), with a backbone atomic root-mean-square deviation (RMSD) of 0.67 A, consisting of three alpha-helices (residues 144-154, 172-193, and 200-227) and two short antiparallel beta-strands (residues 129-131 and 161-163). The N-terminus (residues 90-119) is largely unstructured despite some sparse and weak medium-range NOEs implying the existence of bends or turns. The transition region between the core domain and flexible N-terminus, i.e., residues 113-128, consists of hydrophobic residues or glycines and does not adopt any regular secondary structure in aqueous solution. There are about 30 medium- and long-range NOEs within this hydrophobic cluster, so it clearly manifests structure. Multiple discrete conformations are evident, implying the possible existence of one or more metastable states, which may feature in conversion of PrPC to PrPSc. To obtain a more comprehensive picture of rPrP(90-231), dynamics have been studied using amide hydrogen-deuterium exchange and 15N NMR relaxation times (T1 and T2) and 15N{1H} NOE measurements. Comparison of the structure with previous reports suggests sequence-dependent features that may be reflected in a species barrier to prion disease transmission.

  18. Domain-specific learning of grammatical structure in musical and phonological sequences.

    PubMed

    Bly, Benjamin Martin; Carrión, Ricardo E; Rasch, Björn

    2009-01-01

    Artificial grammar learning depends on acquisition of abstract structural representations rather than domain-specific representational constraints, or so many studies tell us. Using an artificial grammar task, we compared learning performance in two stimulus domains in which respondents have differing tacit prior knowledge. We found that despite grammatically identical sequence structures, learning was better for harmonically related chord sequences than for letter name sequences or harmonically unrelated chord sequences. We also found transfer effects within the musical and letter name tasks, but not across the domains. We conclude that knowledge acquired in implicit learning depends not only on abstract features of structured stimuli, but that the learning of regularities is in some respects domain-specific and strongly linked to particular features of the stimulus domain.

  19. The crustal tectonics and history of Europa: A structural, morphological, and comparative analysis. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenk, P. M.

    1984-01-01

    An evaluation of surface features and structures on the Galilean moon Europa is made using the available high resolution Voyager imagery, low resolution support imaging, and what understanding of ice structure and mechanical behavior science has that is applicable to the problem. A general discussion of the history of Europa studies and the fundamental global morphology is undertaken. The visible lineament and terrain patterns are described, and possible origins discussed. Observations of faulting and block rotation previously described are amplified. A comparison of Europa's structures to terrestrial sea ice and lava lake crust features is also included. Finally, an attempt is made at synthesizing a unified model for the evolution of Europa's crust is presented which is compared with models developed by others.

  20. Geological and Structural Patterns on Titan Enhanced Through Cassini's SAR PCA and High-Resolution Radiometry

    NASA Astrophysics Data System (ADS)

    Paganelli, F.; Schubert, G.; Lopes, R. M. C.; Malaska, M.; Le Gall, A. A.; Kirk, R. L.

    2016-12-01

    The current SAR data coverage on Titan encompasses several areas in which multiple radar passes are present and overlapping, providing additional information to aid the interpretation of geological and structural features. We exploit the different combinations of look direction and variable incidence angle to examine Cassini Synthetic Aperture RADAR (SAR) data using the Principal Component Analysis (PCA) technique and high-resolution radiometry, as a tool to aid in the interpretation of geological and structural features. Look direction and variable incidence angle is of particular importance in the analysis of variance in the images, which aid in the perception and identification of geological and structural features, as extensively demonstrated in Earth and planetary examples. The PCA enhancement technique uses projected non-ortho-rectified SAR imagery in order to maintain the inherent differences in scattering and geometric properties due to the different look directions, while enhancing the geometry of surface features. The PC2 component provides a stereo view of the areas in which complex surface features and structural patterns can be enhanced and outlined. We focus on several areas of interest, in older and recently acquired flybys, in which evidence of geological and structural features can be enhanced and outlined in the PC1 and PC2 components. Results of this technique provide enhanced geometry and insights into the interpretation of the observed geological and structural features, thus allowing a better understanding towards the geology and tectonics on Titan.

  1. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  2. Structural classification of proteins using texture descriptors extracted from the cellular automata image.

    PubMed

    Kavianpour, Hamidreza; Vasighi, Mahdi

    2017-02-01

    Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods. In this work, a binary representation of protein sequences is introduced based on reduced amino acids alphabets according to surrounding hydrophobicity index. Many important features which are hidden in these long binary sequences can be clearly displayed through their cellular automata images. The extracted features from these images are used to build a classification model by support vector machine. Comparing to previous studies on the several benchmark datasets, the promising classification rates obtained by tenfold cross-validation imply that the current approach can help in revealing some inherent features deeply hidden in protein sequences and improve the quality of predicting protein structural class.

  3. Classification of AB O 3 perovskite solids: a machine learning study

    DOE PAGES

    Pilania, G.; Balachandran, P. V.; Gubernatis, J. E.; ...

    2015-07-23

    Here we explored the use of machine learning methods for classifying whether a particularABO 3chemistry forms a perovskite or non-perovskite structured solid. Starting with three sets of feature pairs (the tolerance and octahedral factors, theAandBionic radii relative to the radius of O, and the bond valence distances between theAandBions from the O atoms), we used machine learning to create a hyper-dimensional partial dependency structure plot using all three feature pairs or any two of them. Doing so increased the accuracy of our predictions by 2–3 percentage points over using any one pair. We also included the Mendeleev numbers of theAandBatomsmore » to this set of feature pairs. Moreover, doing this and using the capabilities of our machine learning algorithm, the gradient tree boosting classifier, enabled us to generate a new type of structure plot that has the simplicity of one based on using just the Mendeleev numbers, but with the added advantages of having a higher accuracy and providing a measure of likelihood of the predicted structure.« less

  4. Implicit Learning of Recursive Context-Free Grammars

    PubMed Central

    Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan

    2012-01-01

    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning. PMID:23094021

  5. Some design constraints required for the assembly of software components: The incorporation of atomic abstract types into generically structured abstract types

    NASA Technical Reports Server (NTRS)

    Johnson, Charles S.

    1986-01-01

    It is nearly axiomatic, that to take the greatest advantage of the useful features available in a development system, and to avoid the negative interactions of those features, requires the exercise of a design methodology which constrains their use. A major design support feature of the Ada language is abstraction: for data, functions processes, resources, and system elements in general. Atomic abstract types can be created in packages defining those private types and all of the overloaded operators, functions, and hidden data required for their use in an application. Generically structured abstract types can be created in generic packages defining those structured private types, as buildups from the user-defined data types which are input as parameters. A study is made of the design constraints required for software incorporating either atomic or generically structured abstract types, if the integration of software components based on them is to be subsequently performed. The impact of these techniques on the reusability of software and the creation of project-specific software support environments is also discussed.

  6. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    PubMed

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  7. Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features.

    PubMed

    Li, Hongyang; Panwar, Bharat; Omenn, Gilbert S; Guan, Yuanfang

    2018-02-01

    The olfactory stimulus-percept problem has been studied for more than a century, yet it is still hard to precisely predict the odor given the large-scale chemoinformatic features of an odorant molecule. A major challenge is that the perceived qualities vary greatly among individuals due to different genetic and cultural backgrounds. Moreover, the combinatorial interactions between multiple odorant receptors and diverse molecules significantly complicate the olfaction prediction. Many attempts have been made to establish structure-odor relationships for intensity and pleasantness, but no models are available to predict the personalized multi-odor attributes of molecules. In this study, we describe our winning algorithm for predicting individual and population perceptual responses to various odorants in the DREAM Olfaction Prediction Challenge. We find that random forest model consisting of multiple decision trees is well suited to this prediction problem, given the large feature spaces and high variability of perceptual ratings among individuals. Integrating both population and individual perceptions into our model effectively reduces the influence of noise and outliers. By analyzing the importance of each chemical feature, we find that a small set of low- and nondegenerative features is sufficient for accurate prediction. Our random forest model successfully predicts personalized odor attributes of structurally diverse molecules. This model together with the top discriminative features has the potential to extend our understanding of olfactory perception mechanisms and provide an alternative for rational odorant design.

  8. Job loss, human capital job feature, and work condition job feature as distinct job insecurity constructs.

    PubMed

    Blau, Gary; Tatum, Donna Surges; McCoy, Keith; Dobria, Lidia; Ward-Cook, Kory

    2004-01-01

    The projected growth of new technologies, increasing use of automation, and continued consolidation of health-related services suggest that continued study of job insecurity is needed for health care professionals. Using a sample of 178 medical technologists over a 5-year period, this study's findings extend earlier work by Blau and Sharp (2000) and suggest that job loss insecurity, human capital job feature insecurity, and work condition job feature insecurity are related but distinct types of job insecurity. A seven-item measure of job loss insecurity, a four-item measure of human capital job feature insecurity, and a four-item measure of work condition job feature insecurity were analyzed. Confirmatory factor analysis using a more heterogeneous sample of 447 working adults supported this three-factor structure. Using correlation and path analysis, different significant relationships of antecedent variables and subsequent organizational withdrawal cognitions to these three types of job insecurity were found.

  9. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study

    PubMed Central

    2012-01-01

    Background There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. Results The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. Conclusions In addition to confirming literature results, ProGolem’s model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners. PMID:22783946

  10. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.

    2015-06-01

    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  11. Four structural risk factors identify most fibril-forming kappa light chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Biosciences Division

    2000-09-01

    Antibody light chains (LCs) comprise the most structurally diverse family of proteins involved in amyloidosis. Many antibody LCs incorporate structural features that impair their stability and solubility, leading to their assembly into fibrils and to their subsequent pathological deposition when produced in excess during multiple myeloma and primary amyloidosis. The particular amino acid variations in antibody LCs that account for fibril formation and amyloidogenesis have not been identified. This study focuses on amyloidogenesis within the Kl family of human LCs. Reanalysis of the current database of primary structures of proteins from more than 100 patients who produced Kl LCS, 37more » of which were amyloidogenic, reveals apparent structural features that may contribute to amyloidosis. These features include loss of conserved residues or the gain of particular residues through mutation at sites involving a repertoire of approximately 20% of the amino acid positions in the light chain variable domain (V{sub L}). Moreover, 80% of all K1 amyloidogenic V{sub L}s are identifiable by the presence of at least one of three single-site substitutions or the acquisition of an N-linked glycosylation site through mutations. These findings suggest that it is feasible to predict fibril propensity by analysis of primary structure.« less

  12. DNAproDB: an interactive tool for structural analysis of DNA–protein complexes

    PubMed Central

    Sagendorf, Jared M.

    2017-01-01

    Abstract Many biological processes are mediated by complex interactions between DNA and proteins. Transcription factors, various polymerases, nucleases and histones recognize and bind DNA with different levels of binding specificity. To understand the physical mechanisms that allow proteins to recognize DNA and achieve their biological functions, it is important to analyze structures of DNA–protein complexes in detail. DNAproDB is a web-based interactive tool designed to help researchers study these complexes. DNAproDB provides an automated structure-processing pipeline that extracts structural features from DNA–protein complexes. The extracted features are organized in structured data files, which are easily parsed with any programming language or viewed in a browser. We processed a large number of DNA–protein complexes retrieved from the Protein Data Bank and created the DNAproDB database to store this data. Users can search the database by combining features of the DNA, protein or DNA–protein interactions at the interface. Additionally, users can upload their own structures for processing privately and securely. DNAproDB provides several interactive and customizable tools for creating visualizations of the DNA–protein interface at different levels of abstraction that can be exported as high quality figures. All functionality is documented and freely accessible at http://dnaprodb.usc.edu. PMID:28431131

  13. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics.

    PubMed

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  14. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-01

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  15. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    PubMed Central

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  16. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.

    PubMed

    Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.

  17. Ocean Classification of Dynamical Structures Detected by SAR and Spectral Methods

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Martinez-Benjamin, J. J.; Tellez, J. D.; Jorge, J.; Diez, M.; Sekula, E.

    2016-08-01

    We discuss a taxonomy of different dynamical features in the ocean surface and provide some eddy and front statistics, as well as describing some events detected by several satellites and even with additional cruise observations and measurements, in the North-west Mediterranean Sea area between 1996 and 2012. The structure of the flows are presented using self-similar traces that may be used to parametrize mixing at both limits of the Rossby Deformation Radius scale, RL. Results show the ability to identify different SAR signatures and at the same time provide calibrations for the different local configurations of vortices, spirals, Langmuir cells, oil spills and tensioactive slicks that eventually allow the study of the self-similar structure of the turbulence. Depending on the surface wind and wave level, and also on the fetch. the bathimetry, the spiral parameters and the resolution of vortical features change. Previous descriptions did not include the new wind and buoyancy features. SAR images also show the turbulence structure of the coastal area and the Regions of Fresh Water Influence (ROFI). It is noteworthy tt such complex coastal field-dependent behavior is strongly influenced by stratification and rotation of the turbulence spectrum is observed only in the range smaller than the local Rossby deformation radius, RL. The measures of diffusivity from buoy or tracer experiments are used to calibrate the behavior of different tracers and pollutants, both natural and man-made in the NW Mediterranean Sea. Thanks to different polarization and intensity levels in ASAR satellite imagery, these can be used to distinguish between natural and man-made sea surface features due to their distinct self-similar and fractal as a function of spill and slick parameters, environmental conditions and history of both oil releases and weather conditions. Eddy diffusivity map derived from SAR measurements of the ocean surface, performing a feature spatial correlation of the available images of the region are presented. Both the multi fractal discrimination of the local features and the diffusivity measurements are important to evaluate the state of the environment. The distribution of meso-scale vortices of size, the Rossby deformation scale and other dominant features can be used to distinguish features in the ocean surface. Multi-fractal analysis is then very usefull. The SAR images exhibited a large variation of natural features produced by winds, internal waves, the bathymetric distribution, by convection, rain, etc as all of these produce variations in the sea surface roughness so that the topological changes may be studied and classified. In a similar way bathimetry may be studied with the methodology described here using the coastline and the thalwegs as generators of local vertical vorticity.

  18. Mineralogy of Cretaceous/Tertiary boundary clays in the Chicxulub structure in northern Yucatan

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Sharpton, Virgil L.; Schuraytz, B. C.

    1991-01-01

    The Cretaceous/Tertiary (K/T) boundary clay layer is thought to be derived from ejecta material from meteorite impact, based on the anomalous concentrations of noble metals in the layer. Because of recent findings of a half-meter thick ejecta deposit at the K/T boundary in Haiti, efforts have focused on locating a large impact feature in the Caribbean and the Gulf of Mexico. One of the leading candidates for the site of a large impact is the Chicxulub structure located on the northern Yucatan Peninsula in Mexico. The Chicxulub structure is a subsurface zone of upper Cretaceous igneous rocks, carbonates, and breccias. The structure has been interpreted to be a 200 km diameter; however, there is some question to the size of the structure or to the fact that it even is an impact feature. Little is known about the mineralogy of this structure; the objective of this study was to determine the clay mineralogy of core samples from within the Chicxulub structure.

  19. Applicability of PM3 to transphosphorylation reaction path: Toward designing a minimal ribozyme

    NASA Technical Reports Server (NTRS)

    Manchester, John I.; Shibata, Masayuki; Setlik, Robert F.; Ornstein, Rick L.; Rein, Robert

    1993-01-01

    A growing body of evidence shows that RNA can catalyze many of the reactions necessary both for replication of genetic material and the possible transition into the modern protein-based world. However, contemporary ribozymes are too large to have self-assembled from a prebiotic oligonucleotide pool. Still, it is likely that the major features of the earliest ribozymes have been preserved as molecular fossils in the catalytic RNA of today. Therefore, the search for a minimal ribozyme has been aimed at finding the necessary structural features of a modern ribozyme (Beaudry and Joyce, 1990). Both a three-dimensional model and quantum chemical calculations are required to quantitatively determine the effects of structural features of the ribozyme on the reaction it catalyzes. Using this model, quantum chemical calculations must be performed to determine quantitatively the effects of structural features on catalysis. Previous studies of the reaction path have been conducted at the ab initio level, but these methods are limited to small models due to enormous computational requirements. Semiempirical methods have been applied to large systems in the past; however, the accuracy of these methods depends largely on a simple model of the ribozyme-catalyzed reaction, or hydrolysis of phosphoric acid. We find that the results are qualitatively similar to ab initio results using large basis sets. Therefore, PM3 is suitable for studying the reaction path of the ribozyme-catalyzed reaction.

  20. The role of ferroelectric domain structure in second harmonic generation in random quadratic media.

    PubMed

    Roppo, Vito; Wang, W; Kalinowski, K; Kong, Y; Cojocaru, C; Trull, J; Vilaseca, R; Scalora, M; Krolikowski, W; Kivshar, Yu

    2010-03-01

    We study theoretically and numerically the second harmonic generation in a nonlinear crystal with random distribution of ferroelectric domains. We show that the specific features of disordered domain structure greatly affect the emission pattern of the generated harmonics. This phenomena can be used to characterize the degree of disorder in nonlinear photonic structures.

  1. Structure and engineering of celluloses.

    PubMed

    Pérez, Serge; Samain, Daniel

    2010-01-01

    This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Kinematic parameters of signed verbs.

    PubMed

    Malaia, Evie; Wilbur, Ronnie B; Milkovic, Marina

    2013-10-01

    Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production ( Malaia & Wilbur, 2012a) and process these distinctions as part of the phonological structure of these verb classes in comprehension ( Malaia, Ranaweera, Wilbur, & Talavage, 2012). These studies are driven by the event visibility hypothesis by Wilbur (2003), who proposed that such use of kinematic features should be universal to sign language (SL) by the grammaticalization of physics and geometry for linguistic purposes. In a prior motion capture study, Malaia and Wilbur (2012a) lent support for the event visibility hypothesis in ASL, but there has not been quantitative data from other SLs to test the generalization to other languages. The authors investigated the kinematic parameters of predicates in Croatian Sign Language ( Hrvatskom Znakovnom Jeziku [HZJ]). Kinematic features of verb signs were affected both by event structure of the predicate (semantics) and phrase position within the sentence (prosody). The data demonstrate that kinematic features of motion in HZJ verb signs are recruited to convey morphological and prosodic information. This is the first crosslinguistic motion capture confirmation that specific kinematic properties of articulator motion are grammaticalized in other SLs to express linguistic features.

  3. Influence of landscape structure on reef fish assemblages

    USGS Publications Warehouse

    Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.

    2008-01-01

    Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.

  4. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification.

    PubMed

    Qin, Jiaolong; Wei, Maobin; Liu, Haiyan; Chen, Jianhuai; Yan, Rui; Hua, Lingling; Zhao, Ke; Yao, Zhijian; Lu, Qing

    2014-12-01

    Previous studies had explored the diagnostic and prognostic value of the structural neuroimaging data of MDD and treated the whole brain voxels, the fractional anisotropy and the structural connectivity as classification features. To our best knowledge, no study examined the potential diagnostic value of the hubs of anatomical brain networks in MDD. The purpose of the current study was to provide an exploratory examination of the potential diagnostic and prognostic values of hubs of white matter brain networks in MDD discrimination and the corresponding impaired hub pattern via a multi-pattern analysis. We constructed white matter brain networks from 29 depressions and 30 healthy controls based on diffusion tensor imaging data, calculated nodal measures and identified hubs. Using these measures as features, two types of feature architectures were established, one only included hubs (HUB) and the other contained both hubs and non hubs. The support vector machine classifiers with Gaussian radial basis kernel were used after the feature selection. Moreover, the relative contribution of the features was estimated by means of the consensus features. Our results presented that the hubs (including the bilateral dorsolateral part of superior frontal gyrus, the left middle frontal gyrus, the bilateral middle temporal gyrus, and the bilateral inferior temporal gyrus) played an important role in distinguishing the depressions from healthy controls with the best accuracy of 83.05%. Moreover, most of the HUB consensus features located in the frontal-parieto circuit. These findings provided evidence that the hubs could be served as valuable potential diagnostic measure for MDD, and the hub-concentrated lesion distribution of MDD was primarily anchored within the frontal-parieto circuit. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Model Analysis of Fine Structures of Student Models: An Example with Newton's Third Law.

    ERIC Educational Resources Information Center

    Bao, Lei; Hogg, Kirsten; Zollman, Dean

    2002-01-01

    Studies the role of context in students' uses of alternative conceptual models by using Newton's third law. Identifies four contextual features that are frequently used by students in their reasoning. Probes the effects of specific contextual features on student reasoning using a multiple-choice survey. (Contains 39 references.) (Author/YDS)

  6. Communication: Anion-specific response of mesoscopic organization in ionic liquids upon pressurization

    NASA Astrophysics Data System (ADS)

    Lo Celso, Fabrizio; Triolo, Alessandro; Gontrani, Lorenzo; Russina, Olga

    2018-06-01

    One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.

  7. Generic features of the primary relaxation in glass-forming materials (Review Article)

    NASA Astrophysics Data System (ADS)

    Kokshenev, Valery B.

    2017-08-01

    We discuss structural relaxation in molecular and polymeric supercooled liquids, metallic alloys and orientational glass crystals. The study stresses especially the relationships between observables raised from underlying constraints imposed on degrees of freedom of vitrification systems. A self-consistent parametrization of the α-timescale on macroscopic level results in the material-and-model independent universal equation, relating three fundamental temperatures, characteristic of the primary relaxation, that is numerically proven in all studied glass formers. During the primary relaxation, the corresponding small and large mesoscopic clusters modify their size and structure in a self-similar way, regardless of underlying microscopic realizations. We show that cluster-shape similarity, instead of cluster-size fictive divergence, gives rise to universal features observed in primary relaxation. In all glass formers with structural disorder, including orientational-glass materials (with the exception of plastic crystals), structural relaxation is shown to be driven by local random fields. Within the dynamic stochastic approach, the universal subdiffusive dynamics corresponds to random walks on small and large fractals.

  8. Study of the electronic structure of electron accepting cyano-films: TCNQversusTCNE.

    PubMed

    Capitán, Maria J; Álvarez, Jesús; Navio, Cristina

    2018-04-18

    In this article, we perform systematic research on the electronic structure of two closely related organic electron acceptor molecules (TCNQ and TCNE), which are of technological interest due to their outstanding electronic properties. These studies have been performed from the experimental point of view by the use electron spectroscopies (XPS and UPS) and supported theoretically by the use of ab-initio DFT calculations. The cross-check between both molecules allows us to identify the characteristic electronic features of each part of the molecules and their contribution to the final electronic structure. We can describe the nature of the band gap of these materials, and we relate this with the appearance of the shake-up features in the core level spectra. A band bending and energy gap reduction of the aforementioned electronic structure in contact with a metal surface are seen in the experimental results as well in the theoretical calculations. This behavior implies that the TCNQ thin film accepts electrons from the metal substrate becoming a Schottky n-junction.

  9. The Response of Simple Polymer Structures Under Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  10. Case study of 3D fingerprints applications

    PubMed Central

    Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui

    2017-01-01

    Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition. PMID:28399141

  11. Case study of 3D fingerprints applications.

    PubMed

    Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui

    2017-01-01

    Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition.

  12. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  13. Guilt by Association: The 13 micron Dust Feature in Circumstellar Shells and Related Spectral Features

    NASA Astrophysics Data System (ADS)

    Sloan, G. C.; Kraemer, K. E.; Goebel, J. H.; Price, S. D.

    A study of spectra from the SWS on ISO of optically thin oxygen-rich dust shells shows that the strength of the 13 micron dust emission feature is correlated with the CO2 bands (13--17 microns) and dust emission features at 19.8 and 28.1 microns. SRb variables tend to show stronger 13 micron features than Mira variables, suggesting that the presence of the 13 micron and related features depends on pulsation mode and mass-loss rate. The absence of any correlation to dust emission features at 16.8 and 32 microns makes spinel an unlikely carrier. The most plausible carrier of the 13 micron feature remains crystalline alumina, and we suggest that the related dust features may be crystalline silicates. When dust forms in regions of low density, it may condense into crystalline grain structures.

  14. Large scale prop-fan structural design study. Volume 1: Initial concepts

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2.

  15. Optimum design for effective water transport through a double-layered porous hydrogel inspired by plant leaves

    NASA Astrophysics Data System (ADS)

    Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon

    2014-11-01

    Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.

  16. Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described.

  17. Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space.

    PubMed

    Fesharaki, Nooshin Jafari; Pourghassem, Hossein

    2013-07-01

    Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.

  18. Consumers' Preferences for Electronic Nicotine Delivery System Product Features: A Structured Content Analysis.

    PubMed

    Kistler, Christine E; Crutchfield, Trisha M; Sutfin, Erin L; Ranney, Leah M; Berman, Micah L; Zarkin, Gary A; Goldstein, Adam O

    2017-06-07

    To inform potential governmental regulations, we aimed to develop a list of electronic nicotine delivery system (ENDS) product features important to U.S. consumers by age and gender. We employed qualitative data methods. Participants were eligible if they had used an ENDS at least once. Groups were selected by age and gender (young adult group aged 18-25, n = 11; middle-age group aged 26-64, n = 9; and women's group aged 26-64, n = 9). We conducted five individual older adult interviews (aged 68-80). Participants discussed important ENDS features. We conducted a structured content analysis of the group and interview responses. Of 34 participants, 68% were white and 56% were female. Participants mentioned 12 important ENDS features, including: (1) user experience; (2) social acceptability; (3) cost; (4) health risks/benefits; (5) ease of use; (6) flavors; (7) smoking cessation aid; (8) nicotine content; (9) modifiability; (10) ENDS regulation; (11) bridge between tobacco cigarettes; (12) collectability. The most frequently mentioned ENDS feature was modifiability for young adults, user experience for middle-age and older adults, and flavor for the women's group. This study identified multiple features important to ENDS consumers. Groups differed in how they viewed various features by age and gender. These results can inform ongoing regulatory efforts.

  19. Consumers’ Preferences for Electronic Nicotine Delivery System Product Features: A Structured Content Analysis

    PubMed Central

    Kistler, Christine E.; Crutchfield, Trisha M.; Sutfin, Erin L.; Ranney, Leah M.; Berman, Micah L.; Zarkin, Gary A.; Goldstein, Adam O.

    2017-01-01

    To inform potential governmental regulations, we aimed to develop a list of electronic nicotine delivery system (ENDS) product features important to U.S. consumers by age and gender. We employed qualitative data methods. Participants were eligible if they had used an ENDS at least once. Groups were selected by age and gender (young adult group aged 18–25, n = 11; middle-age group aged 26–64, n = 9; and women’s group aged 26–64, n = 9). We conducted five individual older adult interviews (aged 68–80). Participants discussed important ENDS features. We conducted a structured content analysis of the group and interview responses. Of 34 participants, 68% were white and 56% were female. Participants mentioned 12 important ENDS features, including: (1) user experience; (2) social acceptability; (3) cost; (4) health risks/benefits; (5) ease of use; (6) flavors; (7) smoking cessation aid; (8) nicotine content; (9) modifiability; (10) ENDS regulation; (11) bridge between tobacco cigarettes; (12) collectability. The most frequently mentioned ENDS feature was modifiability for young adults, user experience for middle-age and older adults, and flavor for the women’s group. This study identified multiple features important to ENDS consumers. Groups differed in how they viewed various features by age and gender. These results can inform ongoing regulatory efforts. PMID:28590444

  20. Contour mapping of relic structures in the Precambrian basement of the Reelfoot rift, North American midcontinent

    USGS Publications Warehouse

    Dart, R.L.; Swolfs, H.S.

    1998-01-01

    A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.

  1. Seismically-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina)

    NASA Astrophysics Data System (ADS)

    Onorato, M. Romina; Perucca, Laura; Coronato, Andrea; Rabassa, Jorge; López, Ramiro

    2016-10-01

    In this paper, evidence of paleoearthquake-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System in the Isla Grande de Tierra del Fuego, southern Argentina, has been identified. Well-preserved soft-sediment deformation structures were found in a Holocene sequence of the Udaeta pond. These structures were analyzed in terms of their geometrical characteristics, deformation mechanism, driving force system and possible trigger agent. They were also grouped in different morphological types: sand dykes, convolute lamination, load structures and faulted soft-sediment deformation features. Udaeta, a small pond in Argentina Tierra del Fuego, is considered a Quaternary pull-apart basin related to the Magallanes-Fagnano Fault System. The recognition of these seismically-induced features is an essential tool for paleoseismic studies. Since the three main urban centers in the Tierra del Fuego province of Argentina (Ushuaia, Río Grande and Tolhuin) have undergone an explosive growth in recent years, the results of this study will hopefully contribute to future analyses of the seismic risk of the region.

  2. Career Ladders and Teacher Incentives: The Utah Experiment. Part II: Case Studies. Final Report: Secretary's Discretionary Program Implementation Grant to Develop Teacher Incentive Structures.

    ERIC Educational Resources Information Center

    Peterson, Ken; Kauchak, Don

    This volume, the second of two reports on development of teacher incentive structures, presents case studies of a career ladder design and teacher evaluation experiment in four Utah school districts. Case studies examined relationships among career ladder features, process variables, and career ladder effectiveness, which is defined in terms of…

  3. Blue gum gaming machine: an evaluation of responsible gambling features.

    PubMed

    Blaszczynski, Alexander; Gainsbury, Sally; Karlov, Lisa

    2014-09-01

    Structural characteristics of gaming machines contribute to persistence in play and excessive losses. The purpose of this study was to evaluate the effectiveness of five proposed responsible gaming features: responsible gaming messages; a bank meter quarantining winnings until termination of play; alarm clock facilitating setting time-reminders; demo mode allowing play without money; and a charity donation feature where residual amounts can be donated rather than played to zero credits. A series of ten modified gaming machines were located in five Australian gambling venues. The sample comprised 300 patrons attending the venue and who played the gaming machines. Participants completed a structured interview eliciting gambling and socio-demographic data and information on their perceptions and experience of play on the index machines. Results showed that one-quarter of participants considered that these features would contribute to preventing recreational gamblers from developing problems. Just under half of the participants rated these effects to be at least moderate or significant. The promising results suggest that further refinements to several of these features could represent a modest but effective approach to minimising excessive gambling on gaming machines.

  4. Discrimination of artificial categories structured by family resemblances: a comparative study in people (Homo sapiens) and pigeons (Columba livia).

    PubMed

    Makino, Hiroshi; Jitsumori, Masako

    2007-02-01

    Adult humans (Homo sapiens) and pigeons (Columba livia) were trained to discriminate artificial categories that the authors created by mimicking 2 properties of natural categories. One was a family resemblance relationship: The highly variable exemplars, including those that did not have features in common, were structured by a similarity network with the features correlating to one another in each category. The other was a polymorphous rule: No single feature was essential for distinguishing the categories, and all the features overlapped between the categories. Pigeons learned the categories with ease and then showed a prototype effect in accord with the degrees of family resemblance for novel stimuli. Some evidence was also observed for interactive effects of learning of individual exemplars and feature frequencies. Humans had difficulty in learning the categories. The participants who learned the categories generally responded to novel stimuli in an all-or-none fashion on the basis of their acquired classification decision rules. The processes that underlie the classification performances of the 2 species are discussed.

  5. Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches

    PubMed Central

    Chen, Xi; Wu, Qi; Ren, He; Chang, Fu-Kuo

    2018-01-01

    In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles. PMID:29710832

  6. A local structure model for network analysis

    DOE PAGES

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    2017-04-01

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  7. A local structure model for network analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  8. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  9. Discovery of microscopic evidence for shock metamorphism at the Serpent Mound structure, south-central Ohio: Confirmation of an origin by impact

    USGS Publications Warehouse

    Carlton, R.W.; Koeberl, C.; Baranoski, M.T.; SchuMacHer, G.A.

    1998-01-01

    The origin of the Serpent Mound structure in south-central Ohio has been disputed for many years. Clearly, more evidence was needed to resolve the confusion concerning the origin of the Serpent Mound feature either by endogenic processes or by hypervelocity impact. A petrographic study of 21 samples taken from a core 903 m long drilled in the central uplift of the structure provides evidence of shock metamorphism in the form of multiple sets of planar deformation features in quartz grains, as well as the presence of clasts of altered impact-melt rock. Crystallographic orientations of the planar deformation features show maxima at the shock-characteristic planes of {101??3} and {101??2} and additional maxima at {101??1}, {213??1}, and {516??1}. Geochemical analyses of impact breccias show minor enrichments in the abundances of the siderophile elements Cr, Co, Ni, and Ir, indicating the presence of a minor meteoritic component.

  10. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    PubMed

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between beta-turns and non-beta-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at http://biomine.ece.ualberta.ca/BTNpred/BTNpred.html.

  11. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments

    PubMed Central

    Zheng, Ce; Kurgan, Lukasz

    2008-01-01

    Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. Results We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between β-turns and non-β-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at . PMID:18847492

  12. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation

    PubMed Central

    Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin

    2016-01-01

    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821

  13. UbSRD: The Ubiquitin Structural Relational Database.

    PubMed

    Harrison, Joseph S; Jacobs, Tim M; Houlihan, Kevin; Van Doorslaer, Koenraad; Kuhlman, Brian

    2016-02-22

    The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Formal Transformations from Graphically-Based Object-Oriented Representations to Theory-Based Specifications

    DTIC Science & Technology

    1996-06-01

    for Software Synthesis." KBSE 󈨡. IEEE, 1993. 51. Kang, Kyo C., et al. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Technical Report...and usefulness in domain analysis and modeling. Rumbaugh uses three distinct views to describe a domain: (1) the object model describes structural...Gibbons describe a methodology where Structured Analysis is used to build a hierarchical system structure chart. This structure chart is then translated

  15. Contrasting effects of landscape features on genetic structure in different geographic regions in the ornate dragon lizard, Ctenophorus ornatus.

    PubMed

    Levy, Esther; Tomkins, Joseph L; Lebas, Natasha R; Kennington, W Jason

    2013-08-01

    Habitat fragmentation can have profound effects on the distribution of genetic variation within and between populations. Previously, we showed that in the ornate dragon lizard, Ctenophorus ornatus, lizards residing on outcrops that are separated by cleared agricultural land are significantly more isolated and hold less genetic variation than lizards residing on neighbouring outcrops connected by undisturbed native vegetation. Here, we extend the fine-scale study to examine the pattern of genetic variation and population structure across the species' range. Using a landscape genetics approach, we test whether land clearing for agricultural purposes has affected the population structure of the ornate dragon lizard. We found significant genetic differentiation between outcrop populations (FST  = 0.12), as well as isolation by distance within each geographic region. In support of our previous study, land clearing was associated with higher genetic divergences between outcrops and lower genetic variation within outcrops, but only in the region that had been exposed to intense agriculture for the longest period of time. No other landscape features influenced population structure in any geographic region. These results show that the effects of landscape features can vary across species' ranges and suggest there may be a temporal lag in response to contemporary changes in land use. These findings therefore highlight the need for caution when assessing the impact of contemporary land use practices on genetic variation and population structure. © 2013 John Wiley & Sons Ltd.

  16. Comparative analyses of structural features and scaffold diversity for purchasable compound libraries.

    PubMed

    Shang, Jun; Sun, Huiyong; Liu, Hui; Chen, Fu; Tian, Sheng; Pan, Peichen; Li, Dan; Kong, Dexin; Hou, Tingjun

    2017-04-21

    Large purchasable screening libraries of small molecules afforded by commercial vendors are indispensable sources for virtual screening (VS). Selecting an optimal screening library for a specific VS campaign is quite important to improve the success rates and avoid wasting resources in later experimental phases. Analysis of the structural features and molecular diversity for different screening libraries can provide valuable information to the decision making process when selecting screening libraries for VS. In this study, the structural features and scaffold diversity of eleven purchasable screening libraries and Traditional Chinese Medicine Compound Database (TCMCD) were analyzed and compared. Their scaffold diversity represented by the Murcko frameworks and Level 1 scaffolds was characterized by the scaffold counts and cumulative scaffold frequency plots, and visualized by Tree Maps and SAR Maps. The analysis demonstrates that, based on the standardized subsets with similar molecular weight distributions, Chembridge, ChemicalBlock, Mucle, TCMCD and VitasM are more structurally diverse than the others. Compared with all purchasable screening libraries, TCMCD has the highest structural complexity indeed but more conservative molecular scaffolds. Moreover, we found that some representative scaffolds were important components of drug candidates against different drug targets, such as kinases and guanosine-binding protein coupled receptors, and therefore the molecules containing pharmacologically important scaffolds found in screening libraries might be potential inhibitors against the relevant targets. This study may provide valuable perspective on which purchasable compound libraries are better for you to screen. Graphical abstract Selecting diverse compound libraries with scaffold analyses.

  17. Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms

    PubMed Central

    Sano, Yuzou; Morris, Hugh; Shimada, Hiroshi; Ronse De Craene, Louis P.; Jansen, Steven

    2011-01-01

    Background and Aims Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the conductive vs. non-conductive nature of ITEs. Methods Visualization of water transport was studied in 15 angiosperm species by dye injection and cryo-scanning electron microscopy. Structural features of ITEs were examined using light and electron microscopy. Key Results ITEs connected to each other by pit pairs with complete pit membranes contributed to water transport, while cells showing pit membranes with perforations up to 2 µm were hydraulically not functional. A close relationship was found between pit diameter and pit density, with both characters significantly higher in conductive than in non-conductive cells. In species with both conductive and non-conductive ITEs, a larger diameter was characteristic of the conductive cells. Water transport showed no apparent relationship with the length of ITEs and vessel grouping. Conclusions The structure and density of pits between ITEs represent the main anatomical characters determining water transport. The pit membrane structure of ITEs provides a reliable, but practically challenging, criterion to determine their conductive status. It is suggested that the term tracheids should strictly be used for conductive ITEs, while fibre-tracheids and libriform fibres are non-conductive. PMID:21385773

  18. [Polymorphism and structure of the population of Proteocephalus longicollis Zeder, 1800 (Cestoda: Proteocephalidae) in the vendace Coregonus albula L].

    PubMed

    Anikieva, L V; Kharin, V N; Spektor, E N

    2004-01-01

    Polymorphism and phenotypic diversity of a hostal ecoform of Proteocephalus longicollis from its typical host, the vendace, Coregonus albula L., were studied. A complex phenotypic structure of the parasite population and presence of morphologically different groupings were revealed. We distinguished four groupings based on the external characters and three groupings based on the feed and reproduction features; among latter groupings one has very specific variations of features. We conclude that P. longicollis has high intraspecific and intrapopulation heterogeneity, and the host plays a stabilising role in the parasite species formation.

  19. Structural features of biomass in a hybrid MBBR reactor.

    PubMed

    Xiao, G Y; Ganczarczyk, J

    2006-03-01

    The structural features of biomass present in the hybrid MBBR (Moving Bed Biofilm Reactor) aeration tank were studied in two subsequent periods, which differed in hydraulic and substrate loads. The physical characteristics of attached-growth biomass, such as, biofilm thickness, density, porosity, inner and surface fractal dimensions, and those of suspended-growth biomass, such as, floc size distribution, density, porosity, inner and surface fractal dimensions, were investigated in each study period and then compared. The results indicated that biofilm always had a higher density, geometric porosity, and a larger boundary fractal dimension than flocs. Both types of biomass were found to exhibit at least two distinct Sierpinski fractal dimensions, indicating two major different pore space populations. With the increasing wastewater flow, both types of biomass were found to shift their structural properties to larger values, except porosity and surface roughness, which decreased. Floc density and biomass Sierpinski fractals were not affected much by the system loadings.

  20. Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)

    PubMed Central

    Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie

    2012-01-01

    Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000

  1. A diagnosis model for early Tourette syndrome children based on brain structural network characteristics

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.

  2. Application of PALSAR-2 Remote Sensing Data for Landslide Hazard Mapping in Kelantan River Basin, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Yearly, several landslides ensued during heavy monsoons rainfall in Kelantan river basin, peninsular Malaysia, which are obviously connected to geological structures and topographical features of the region. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geological structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulated drainage pattern and metamorphic and Quaternary units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping.

  3. Experimental study on pore structure and performance of sintered porous wick

    NASA Astrophysics Data System (ADS)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  4. Resting habitat selection by fishers in California

    Treesearch

    William J. Zielinski; Richard L. Truex; Gregory A. Schmidt; Fredrick V. Schlexer; Kristin N. Schmidt; Reginald H. Barrett

    2004-01-01

    We studied the resting habitat ecology of fishers (Martes pennanti) in 2 disjunct populations in California, USA: the northwestern coastal mountains (hereafter, Coastal) and the southern Sierra Nevada (hereafter, Sierra). We described resting structures and compared features surrounding resting structures (the resting site) with those at randomly...

  5. Against Structural Constraints in Subject-Verb Agreement Production

    ERIC Educational Resources Information Center

    Gillespie, Maureen; Pearlmutter, Neal J.

    2013-01-01

    Syntactic structure has been considered an integral component of agreement computation in language production. In agreement error studies, clause-boundedness (Bock & Cutting, 1992) and hierarchical feature-passing (Franck, Vigliocco, & Nicol, 2002) predict that local nouns within clausal modifiers should produce fewer errors than do those within…

  6. [Analysis of Conformational Features of Watson-Crick Duplex Fragments by Molecular Mechanics and Quantum Mechanics Methods].

    PubMed

    Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A

    2016-01-01

    It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.

  7. Mysticism and schizophrenia: A phenomenological exploration of the structure of consciousness in the schizophrenia spectrum disorders.

    PubMed

    Parnas, Josef; Henriksen, Mads Gram

    2016-07-01

    Mysticism and schizophrenia are different categories of human existence and experience. Nonetheless, they exhibit important phenomenological affinities, which, however, remain largely unaddressed. In this study, we explore structural analogies between key features of mysticism and major clinical-phenomenological aspects of the schizophrenia spectrum disorders-i.e. attitudes, the nature of experience, and the 'other', mystical or psychotic reality. Not only do these features gravitate around the issue of the basic dimensions of consciousness, they crucially seem to implicate and presuppose a specific alteration of the very structure of consciousness. This finding has bearings for the understanding of consciousness and its psychopathological distortions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  9. Broadband locally resonant metamaterials with graded hierarchical architecture

    NASA Astrophysics Data System (ADS)

    Liu, Chenchen; Reina, Celia

    2018-03-01

    We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.

  10. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions.

    PubMed

    Cau, Ylenia; Fiorillo, Annarita; Mori, Mattia; Ilari, Andrea; Botta, Maurizo; Lalle, Marco

    2015-12-28

    Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies.

  11. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.

    PubMed

    Song, Jiangning; Li, Fuyi; Takemoto, Kazuhiro; Haffari, Gholamreza; Akutsu, Tatsuya; Chou, Kuo-Chen; Webb, Geoffrey I

    2018-04-14

    Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary structures determined, experimental methods for enzyme functional characterization lag behind. Because experimental methods used for identifying catalytic residues are resource- and labor-intensive, computational approaches have considerable value and are highly desirable for their ability to complement experimental studies in identifying catalytic residues and helping to bridge the sequence-structure-function gap. In this study, we describe a new computational method called PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a comprehensive set of informative features extracted from multiple levels, including sequence, structure, and residue-contact network, in a random forest machine-learning framework. Extensive benchmarking experiments on eight different datasets based on 10-fold cross-validation and independent tests, as well as side-by-side performance comparisons with seven modern sequence- and structure-based methods, showed that PREvaIL achieved competitive predictive performance, with an area under the receiver operating characteristic curve and area under the precision-recall curve ranging from 0.896 to 0.973 and from 0.294 to 0.523, respectively. We demonstrated that this method was able to capture useful signals arising from different levels, leveraging such differential but useful types of features and allowing us to significantly improve the performance of catalytic residue prediction. We believe that this new method can be utilized as a valuable tool for both understanding the complex sequence-structure-function relationships of proteins and facilitating the characterization of novel enzymes lacking functional annotations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Comparative analysis of feature extraction methods in satellite imagery

    NASA Astrophysics Data System (ADS)

    Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad

    2017-10-01

    Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.

  13. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  14. Structural damage identification using damping: a compendium of uses and features

    NASA Astrophysics Data System (ADS)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.

  15. Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads.

    PubMed

    Vadivelan, S; Deeksha, T N; Arun, S; Machiraju, Pavan Kumar; Gundla, Rambabu; Sinha, Barij Nayan; Jagarlapudi, Sarma A R P

    2011-03-01

    The purpose of this study is to identify novel and potent inhibitors against HIV-1 reverse transcriptase (RT). The crystal structure of the most active ligand was converted into a feature-shaped query. This query was used to align molecules to generate statistically valid 3D-QSAR (r(2) = 0.873) and Pharmacophore models (HypoGen). The best HypoGen model consists of three Pharmacophore features (one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic) and further validated using known RT inhibitors. The designed novel inhibitors are further subjected to docking studies to reduce the number of false positives. We have identified and proposed some novel and potential lead molecules as reverse transcriptase inhibitors using analog and structure based studies. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Nucleic Acid Database (NDB)

    Science.gov Websites

    the NDB archive or in the Non-Redundant list Advanced Search Search for structures based on structural features, chemical features, binding modes, citation and experimental information Featured Tools RNA 3D Motif Atlas, a representative collection of RNA 3D internal and hairpin loop motifs Non-redundant Lists

  17. Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Leblanc, Spencer; Lynch, Brian; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2015-11-01

    The Magnetized Dusty Plasma Experiment (MDPX) device has been in operation for just over one year. In that time, the MDPX device has been operating using a uniform magnetic field configuration up to 3.0 Tesla and has successfully produced plasmas and dusty plasmas at high magnetic fields. In these experimental studies, we have made observations of a new type of imposed, ordered structure in a dusty plasma at magnetic fields above 1 T. These dusty plasma structures are shown to scale inversely with neutral pressure and are shown to reflect the spatial structure of a wire mesh placed in the plasma. Additionally, recent measurements have been made that give insights into the effective potential that establishes the ordered structures in the plasma. In this presentation, we report on details of the imposed, ordered dusty plasma structure as well as filamentary features that also appear in the plasma and modify the confinement of the dusty plasma. This work is supported with funding from the NSF and Department of Energy.

  18. Map showing the association of linear features with metallic mines and prospects in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Rowan, L.C.; Trautwein, C.M.; Purdy, T.L.

    1990-01-01

    This study was undertaken as part of the Conterminous U.S. Mineral Assessment Program (CUSMAP). The purpose of the study was to map linear features on Landsat Multispectral Scanner (MSS) images and a proprietary side-looking airborne radar (SLAR) image mosaic and to determine the spatial relationship between these linear features and the locations of metallic mineral occurrE-nces. The results show a close spatial association of linear features with metallic mineral occurrences in parts of the quadrangle, but in other areas the association is less well defined. Linear features are defined as distinct linear and slightly curvilinear elements mappable on MSS and SLAR images. The features generally represent linear segments of streams, ridges, and terminations of topographic features; however, they may also represent tonal patterns that are related to variations in lithology and vegetation. Most linear features in the Butte quadrangle probably represent underlying structural elements, such as fractures (with and without displacement), dikes, and alignment of fold axes. However, in areas underlain by sedimentary rocks, some of the linear features may reflect bedding traces. This report describes the geologic setting of the Butte quadrangle, the procedures used in mapping and analyzing the linear features, and the results of the study. Relationship of these features to placer and non-metal deposits were not analyzed in this study and are not discussed in this report.

  19. Discriminant Features and Temporal Structure of Nonmanuals in American Sign Language

    PubMed Central

    Benitez-Quiroz, C. Fabian; Gökgöz, Kadir; Wilbur, Ronnie B.; Martinez, Aleix M.

    2014-01-01

    To fully define the grammar of American Sign Language (ASL), a linguistic model of its nonmanuals needs to be constructed. While significant progress has been made to understand the features defining ASL manuals, after years of research, much still needs to be done to uncover the discriminant nonmanual components. The major barrier to achieving this goal is the difficulty in correlating facial features and linguistic features, especially since these correlations may be temporally defined. For example, a facial feature (e.g., head moves down) occurring at the end of the movement of another facial feature (e.g., brows moves up), may specify a Hypothetical conditional, but only if this time relationship is maintained. In other instances, the single occurrence of a movement (e.g., brows move up) can be indicative of the same grammatical construction. In the present paper, we introduce a linguistic–computational approach to efficiently carry out this analysis. First, a linguistic model of the face is used to manually annotate a very large set of 2,347 videos of ASL nonmanuals (including tens of thousands of frames). Second, a computational approach is used to determine which features of the linguistic model are more informative of the grammatical rules under study. We used the proposed approach to study five types of sentences – Hypothetical conditionals, Yes/no questions, Wh-questions, Wh-questions postposed, and Assertions – plus their polarities – positive and negative. Our results verify several components of the standard model of ASL nonmanuals and, most importantly, identify several previously unreported features and their temporal relationship. Notably, our results uncovered a complex interaction between head position and mouth shape. These findings define some temporal structures of ASL nonmanuals not previously detected by other approaches. PMID:24516528

  20. Information Security: A Scientometric Study of the Profile, Structure, and Dynamics of an Emerging Scholarly Specialty

    ERIC Educational Resources Information Center

    Olijnyk, Nicholas Victor

    2014-01-01

    The central aim of the current research is to explore and describe the profile, dynamics, and structure of the information security specialty. This study's objectives are guided by four research questions: 1. What are the salient features of information security as a specialty? 2. How has the information security specialty emerged and evolved from…

  1. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    PubMed

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  2. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities

    NASA Astrophysics Data System (ADS)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  3. EEG resolutions in detecting and decoding finger movements from spectral analysis

    PubMed Central

    Xiao, Ran; Ding, Lei

    2015-01-01

    Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720

  4. Texture analysis of aeromagnetic data for enhancing geologic features using co-occurrence matrices in Elallaqi area, South Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Eldosouky, Ahmed M.; Elkhateeb, Sayed O.

    2018-06-01

    Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.

  5. Mechanical properties of in situ consolidated nanocrystalline multi-phase Al-Pb-W alloy studied by nanoindentation

    NASA Astrophysics Data System (ADS)

    Varam, Sreedevi; Prasad, Muvva D.; Rao, K. Bhanu Sankara; Rajulapati, Koteswararao V.

    2016-12-01

    Formation of chunks of various sizes ranging between 2 and 6 mm was achieved using high-energy ball milling in Al-1at.%Pb-1at.%W alloy system at room temperature during milling itself, aiding in in situ consolidation. X-ray diffraction and transmission electron microscopy (TEM) studies indicate the formation of multi-phase structure with nanocrystalline structural features. From TEM data, an average grain size of 23 nm was obtained for Al matrix and the second-phase particles were around 5 nm. A high strain rate sensitivity (SRS) of 0.071 ± 0.004 and an activation volume of 4.71b3 were measured using nanoindentation. Modulus mapping studies were carried out using Berkovich tip in dynamic mechanical analysis mode coupled with in situ scanning probe microscopy imaging. The salient feature of this investigation is highlighting the role of different phases, their crystal structures and the resultant interfaces on the overall SRS and activation volume of a multi-phase nc material.

  6. The circular Uneged Uul structure (East Gobi Basin, Mongolia) - Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Seyfried, Hartmut; Gerel, Ochir

    2013-03-01

    The Uneged Uul structure is a ˜10 km circular, complex, multi-ridged domal feature in the Unegt subbasin of the East Gobi Basin, southeastern Mongolia. As revealed by remote sensing and recent field reconnaissance, the central part of the Uneged Uul structure comprises a complex central peak of outward-radiating curved ridges, composed of stratigraphically uplifted greenschist-facies basement schists, surrounded by an annular moat. The most prominent feature of the structure is a central annular ridge ˜3 km in diameter composed of pebble-boulder conglomerates and gravels of the Upper Jurassic Sharilyn Formation, surrounded by three outer domal ridges composed of Lower Cretaceous conglomeratic sandstones and gypsum clays. Jurassic conglomerates forming the main part of the central annular ridge show effects of severe internal deformation. The original population of pebbles, cobbles and boulders appears moderately displaced and mostly broken but nowhere aligned along shear planes or foliated. Primary sedimentary features, such as cross-lamination or imbrication, have been obliterated. We explain this penetrative brecciation as a result of dissipative shearing caused by a strong and rapid singular event that in magnitude was beyond the range of the common crustal tectonics recorded elsewhere in this region. Disrupted and chaotically distributed conglomeratic sandstone beds in the central annular ridge dip in highly variable directions on a local scale but show an apparent SE-NW trend of bedding plane alignment. Further outside, the tilted and uplifted Upper Jurassic to Lower Cretaceous strata of the domal area are overlain by the flat-lying Upper Cretaceous, which stratigraphically constrains the timing of deformation at the Uneged Uul structure to most likely the Early Cretaceous. Endogenic formation models, such as magmatism and salt, gypsum, or mud diapirism, fail to explain the nature of the Uneged Uul structure. The Uneged Uul structure bears a set of geomorphic and structural features resembling those at some eroded complex impact structures on Earth. Morphologically similar central peaks are observed at the Spider and Matt Wilson impact structures in Australia; the central annular ridge reminds of that at Gosses Bluff in Australia; the outer domal ridges might correspond to ring-like features as known from Tin Bider in Algeria. We, therefore, cautiously propose that an impact may have produced the Uneged Uul feature causing structural uplift (˜1000 m) of basement rocks at its center. So far, no convincing evidence for shock metamorphism could be proven by field work and petrographic analyses. However, it is likely that at the time of the deformation event the unconsolidated conglomerates were highly porous and possibly immersed in groundwater buffering the propagation of sudden stress-reducing deformation. Further studies will be in order to unravel the nature of the Uneged Uul structure, which should be considered a promising possible impact structure.

  7. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  8. Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan

    NASA Astrophysics Data System (ADS)

    Radaideh, Omar M. A.; Grasemann, Bernhard; Melichar, Rostislav; Mosar, Jon

    2016-12-01

    This study investigates the dominant orientations of morphological features and the relationship between these trends and the spatial orientation of tectonic structures in SW Jordan. Landsat 8 and hill-shaded images, constructed from 30 m-resolution ASTER-GDEM data, were used for automatically extracting and mapping geological lineaments. The ASTER-GDEM was further utilized to automatically identify and extract drainage network. Morphological features were analyzed by means of azimuth frequency and length density distributions. Tectonic controls on the land surface were evaluated using longitudinal profiles of many westerly flowing streams. The profiles were taken directly across the northerly trending faults within a strong topographic transition between the low-gradient uplands and the deeply incised mountain front on the east side of the Dead Sea Fault Zone. Streams of the area are widely divergent, and show numerous anomalies along their profiles when they transect faults and lineaments. Five types of drainage patterns were identified: dendritic, parallel, rectangular, trellis, and modified dendritic/trellis. Interpretation and analysis of the lineaments indicate the presence of four main lineament populations that trend E-W, N-S, NE-SW, and NW-SE. Azimuthal distribution analysis of both the measured structures and drainage channels shows similar trends, except for very few differences in the prevailing directions. The similarity in orientation of lineaments, drainage system, and subsurface structural trends highlights the degree of control exerted by underlying structure on the surface geomorphological features. Faults and lineaments serve as a preferential conduit for surface running waters. The extracted lineaments were divided into five populations based on the main age of host rocks outcropping in the study area to obtain information about the temporal evolution of the lineament trends through geologic time. A general consistency in lineament trends over the different lithological units was observed, most probably because repeated reactivation of tectonism along preexisting deep structural discontinuities which are apparently crustal weakness zones. The reactivation along such inherited discontinuities under the present-day stress field is the most probable explanation of the complicated pattern and style of present-day landscape features in SW Jordan.

  9. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are demonstrated in the aerosol mass spectra shown in Figure 2. The aromatic aerosol also demonstrates strong chemical reactivity when exposed to laboratory air, indicating substantial stored chemical potential. Oxidatoin and solubility studies wil be presented and implicatoins for prebiotic chemistry o nTitan will be discussed.

  10. In silico studies on tryparedoxin peroxidase of Leishmania infantum: structural aspects.

    PubMed

    Singh, Bishal Kumar; Dubey, Vikash Kumar

    2009-09-01

    Tryparedoxin peroxidase (TryP) is a key enzyme of the trypanothione-dependent metabolism for removal of oxidative stress in leishmania. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. Inhibitors of this enzyme are presumed to be antilesihmania drugs and structural studies are prerequisite of rational drug design. We have constructed three dimensional structure of TryP of Leishmania infantum using comparative modeling. Structural analysis reveals several interesting features. Moreover, it shows remarkable structural difference with human host glutathione peroxidase, an enzyme involved in similar function and TryP from Leishmania major.

  11. The association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: The Multicenter Osteoarthritis Study

    PubMed Central

    Stefanik, J.J.; Zhu, Y.; Zumwalt, A.C.; Gross, K.D.; Clancy, M.; Lynch, J. A.; Frey Law, L.A.; Lewis, C.E.; Roemer, F.W.; Powers, C.M.; Guermazi, A.; Felson, D.T.

    2010-01-01

    Objective To examine the relationship between patella alta and the prevalence and worsening at follow-up of structural features of patellofemoral joint (PFJ) osteoarthritis (OA) on MRI. Methods The Multicenter Osteoarthritis (MOST) Study is a cohort study of persons aged 50-79 years with or at risk for knee OA. Patella alta was measured using the Insall-Salvati ratio (ISR) on the baseline lateral radiograph and cartilage damage, bone marrow lesions (BMLs), and subchondral bone attrition (SBA) were graded on MRI at baseline and at 30 months follow-up in the PFJ. We examined the association of the ISR with the prevalence and worsening of cartilage damage, BMLs, and SBA in the PFJ using logistic regression. Results 907 knees were studied (mean age 62, BMI 30, ISR 1.10), 63% from female subjects. Compared with knees in the lowest ISR quartile at baseline, those in the highest had 2.4 (95% CI 1.7, 3.3), 2.9 (2.0, 4.3), and 3.5 (2.3, 5.5) times the odds of having lateral PFJ cartilage damage, BMLs, and SBA respectively, and 1.5 (95% CI 1.1, 2.0), 1.3 (0.9, 1.8), and 2.2 (1.4, 3.4) times the odds of having medial PFJ cartilage damage, BMLs, and SBA respectively. Similarly, those with high ISRs were also at risk for worsening of cartilage damage and BMLs over time than those with low ISRs. Conclusion A high ISR, indicative of patella alta, is associated with structural features of OA in the PFJ. Additionally, the same knees have increased risk of worsening of these same features over time. PMID:20506169

  12. Citation Sentiment Analysis in Clinical Trial Papers

    PubMed Central

    Xu, Jun; Zhang, Yaoyun; Wu, Yonghui; Wang, Jingqi; Dong, Xiao; Xu, Hua

    2015-01-01

    In scientific writing, positive credits and negative criticisms can often be seen in the text mentioning the cited papers, providing useful information about whether a study can be reproduced or not. In this study, we focus on citation sentiment analysis, which aims to determine the sentiment polarity that the citation context carries towards the cited paper. A citation sentiment corpus was annotated first on clinical trial papers. The effectiveness of n-gram and sentiment lexicon features, and problem-specified structure features for citation sentiment analysis were then examined using the annotated corpus. The combined features from the word n-grams, the sentiment lexicons and the structure information achieved the highest Micro F-score of 0.860 and Macro-F score of 0.719, indicating that it is feasible to use machine learning methods for citation sentiment analysis in biomedical publications. A comprehensive comparison between citation sentiment analysis of clinical trial papers and other general domains were conducted, which additionally highlights the unique challenges within this domain. PMID:26958274

  13. Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM.

    PubMed

    Zhong, Jian; Liu, Xunwei; Wei, Daixu; Yan, Juan; Wang, Ping; Sun, Gang; He, Dannong

    2015-05-01

    Understanding effect of temperature on the molecular self-assembly process will be helpful to unravel the structure-function relationship of biomolecule and to provide important information for the bottom-up approach to nanotechnology. In this work, the effect of incubation temperature on the secondary structures and morphological structures of regenerated silk fibroin (RSF) was systematically studied using atomic force microscopy and Fourier Transform infrared spectroscopy. The effect of incubation temperature on RSF self-assembly was dependent on RSF concentration. For the RSF solution with relatively low concentrations (15 μg/mL and 60 μg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet protofibrils and decreased the formation of random coil protofilaments/globule-like molecules. For the RSF solution with relatively high concentrations (300 μg/mL and 1.5mg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet RSF features (protofibrils and globule-like features) and decreased the formation of random coil bead-like features. This work implies that the morphology and conformation of biomacromolecules could be tuned by controlling the incubation temperature. Further, it will be beneficial to basic understanding of the nanoscale structure formation in different silk-based biomaterials. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Three-Dimensional Geologic Framework Model for a Karst Aquifer System, Hasty and Western Grove Quadrangles, Northern Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.

    2007-01-01

    Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.

  15. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broadmore » (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.« less

  16. You Seize What Pops Up: A Qualitative Investigation of the Core Features of School-Based Agricultural Education Professional Development

    ERIC Educational Resources Information Center

    Easterly, R.G., III.; Myers, Brian E.

    2017-01-01

    Desimone's core features of professional development (PD) guides the PD for teachers. The purpose of this study was to examine the PD practice of School-Based Agricultural Education (SBAE) teachers in the enthusiastic and growing career stage. Semi-structured telephone interviews were conducted with five teachers from five different states. The…

  17. Social capital calculations in economic systems: Experimental study

    NASA Astrophysics Data System (ADS)

    Chepurov, E. G.; Berg, D. B.; Zvereva, O. M.; Nazarova, Yu. Yu.; Chekmarev, I. V.

    2017-11-01

    The paper describes the social capital study for a system where actors are engaged in an economic activity. The focus is on the analysis of communications structural parameters (transactions) between the actors. Comparison between transaction network graph structure and the structure of a random Bernoulli graph of the same dimension and density allows revealing specific structural features of the economic system under study. Structural analysis is based on SNA-methodology (SNA - Social Network Analysis). It is shown that structural parameter values of the graph formed by agent relationship links may well characterize different aspects of the social capital structure. The research advocates that it is useful to distinguish the difference between each agent social capital and the whole system social capital.

  18. Automatic Indexing for Content Analysis of Whale Recordings and XML Representation

    NASA Astrophysics Data System (ADS)

    Bénard, Frédéric; Glotin, Hervé

    2010-12-01

    This paper focuses on the robust indexing of sperm whale hydrophone recordings based on a set of features extracted from a real-time passive underwater acoustic tracking algorithm for multiple whales using four hydrophones. Acoustic localization permits the study of whale behavior in deep water without interfering with the environment. Given the position coordinates, we are able to generate different features such as the speed, energy of the clicks, Inter-Click-Interval (ICI), and so on. These features allow to construct different markers which allow us to index and structure the audio files. Thus, the behavior study is facilitated by choosing and accessing the corresponding index in the audio file. The complete indexing algorithm is processed on real data from the NUWC (Naval Undersea Warfare Center of the US Navy) and the AUTEC (Atlantic Undersea Test & Evaluation Center-Bahamas). Our model is validated by similar results from the US Navy (NUWC) and SOEST (School of Ocean and Earth Science and Technology) Hawaii university labs in a single whale case. Finally, as an illustration, we index a single whale sound file using the extracted whale's features provided by the tracking, and we present an example of an XML script structuring it.

  19. Bearing diagnostics: A method based on differential geometry

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng

    2016-12-01

    The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.

  20. Developmental Trajectories of Structural and Pragmatic Language Skills in School-Aged Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Van Den Heuvel, E.; Manders, E.; Swillen, A.; Zink, I.

    2016-01-01

    Background: This study aimed to compare developmental courses of structural and pragmatic language skills in school-aged children with Williams syndrome (WS) and children with idiopathic intellectual disability (IID). Comparison of these language trajectories could highlight syndrome-specific developmental features. Method: Twelve monolingual…

  1. Application of MSS/LANDSAT images to the structural study of recent sedimentary areas: Campos Sedimentary Basin, Rio de Janeiro, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Barbosa, M. P.

    1983-01-01

    Visual and computer aided interpretation of MSS/LANDSAT data identified linear and circular features which represent the ""reflexes'' of the crystalline basement structures in the Cenozoic sediments of the emergent part of the Campos Sedimentary Basin.

  2. Reaching Agreement: The Structure & Pragmatics of Critical Care Nurses' Informal Argument

    ERIC Educational Resources Information Center

    Hagler, Debra A.; Brem, Sarah K.

    2008-01-01

    The hospital critical care unit provides an authentic, high-stakes setting for studying reasoning, argumentation, and discourse. In particular, it allows examination of structural and pragmatic features of informal collaborative argument created while participants are engaged in familiar, meaningful activities central to their work. The nursing…

  3. Three Types of Flower Structures in a Divergent-Wrench Fault Zone

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Liu, Chi-yang

    2017-12-01

    Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.

  4. Attentional Bias in Human Category Learning: The Case of Deep Learning.

    PubMed

    Hanson, Catherine; Caglar, Leyla Roskan; Hanson, Stephen José

    2018-01-01

    Category learning performance is influenced by both the nature of the category's structure and the way category features are processed during learning. Shepard (1964, 1987) showed that stimuli can have structures with features that are statistically uncorrelated (separable) or statistically correlated (integral) within categories. Humans find it much easier to learn categories having separable features, especially when attention to only a subset of relevant features is required, and harder to learn categories having integral features, which require consideration of all of the available features and integration of all the relevant category features satisfying the category rule (Garner, 1974). In contrast to humans, a single hidden layer backpropagation (BP) neural network has been shown to learn both separable and integral categories equally easily, independent of the category rule (Kruschke, 1993). This "failure" to replicate human category performance appeared to be strong evidence that connectionist networks were incapable of modeling human attentional bias. We tested the presumed limitations of attentional bias in networks in two ways: (1) by having networks learn categories with exemplars that have high feature complexity in contrast to the low dimensional stimuli previously used, and (2) by investigating whether a Deep Learning (DL) network, which has demonstrated humanlike performance in many different kinds of tasks (language translation, autonomous driving, etc.), would display human-like attentional bias during category learning. We were able to show a number of interesting results. First, we replicated the failure of BP to differentially process integral and separable category structures when low dimensional stimuli are used (Garner, 1974; Kruschke, 1993). Second, we show that using the same low dimensional stimuli, Deep Learning (DL), unlike BP but similar to humans, learns separable category structures more quickly than integral category structures. Third, we show that even BP can exhibit human like learning differences between integral and separable category structures when high dimensional stimuli (face exemplars) are used. We conclude, after visualizing the hidden unit representations, that DL appears to extend initial learning due to feature development thereby reducing destructive feature competition by incrementally refining feature detectors throughout later layers until a tipping point (in terms of error) is reached resulting in rapid asymptotic learning.

  5. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  6. [Features of neurologic semiotics at chronic obstructive pulmonary disease].

    PubMed

    Litvinenko, I V; Baranov, V L; Kolcheva, Iu A

    2011-01-01

    Chronic obstructive pulmonary disease (COPD) is actual pathology, when it forms the mixed hypoxemia. In the conditions of a chronic hypoxemia structures of organism with high level of metabolic processes, namely brain tissues, suffer. Character of defeat of the central nervous system at that pathology is insufficiently studied. In this article we studied and analysed the presence of such changes as depression, anxiety, cognitive impairment and features of neurologic semiotics at COPD in 50 patients.

  7. Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin.

    PubMed

    Kumar, Raj; Kukreja, Roshan V; Cai, Shuowei; Singh, Bal R

    2014-06-01

    Botulinum neurotoxins (BoNTs) are proteins of great interest not only because of their extreme toxicity but also paradoxically for their therapeutic applications. All the known serotypes (A-G) have varying degrees of longevity and potency inside the neuronal cell. Differential chemical modifications such as phosphorylation and ubiquitination have been suggested as possible mechanisms for their longevity, but the molecular basis of the longevity remains unclear. Since the endopeptidase domain (light chain; LC) of toxin apparently survives inside the neuronal cells for months, it is important to examine the structural features of this domain to understand its resistance to intracellular degradation. Published crystal structures (both botulinum neurotoxins and endopeptidase domain) have not provided adequate explanation for the intracellular longevity of the domain. Structural features obtained from spectroscopic analysis of LCA and LCB were similar, and a PRIME (PReImminent Molten Globule Enzyme) conformation appears to be responsible for their optimal enzymatic activity at 37°C. LCE, on the other hand, was although optimally active at 37°C, but its active conformation differed from the PRIME conformation of LCA and LCB. This study establishes and confirms our earlier finding that an optimally active conformation of these proteins in the form of PRIME exists for the most poisonous poison, botulinum neurotoxin. There are substantial variations in the structural and functional characteristics of these active molten globule related structures among the three BoNT endopeptidases examined. These differential conformations of LCs are important in understanding the fundamental structural features of proteins, and their possible connection to intracellular longevity could provide significant clues for devising new countermeasures and effective therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    PubMed

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  9. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143

  10. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    PubMed

    Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.

  11. A structurally oriented simulation system

    NASA Technical Reports Server (NTRS)

    Aran, Z.

    1973-01-01

    The computer program SOSS (Structurally Oriented Simulation System) is designed to be used as an experimental aid in the study of reliable systems. Basically, SOSS can simulate the structure and behavior of a discrete-time, finite-state, time-invariant system at various levels of structural definition. A general description of the program is given along with its modes of operation, command language of the basic system, future features to be incorporated in SOSS, and an example of usage.

  12. Atomic insights into nanoparticle formation of hydroxyfluorinated anatase featuring titanium vacancies

    DOE PAGES

    Li, Wei; Body, Monique; Legein, Christophe; ...

    2016-06-28

    Anatase TiO 2 with exposed highly reactive (001) surface is commonly prepared using solution-based synthesis in the presence of a fluorinating agent acting as a structure directing agent. Here, the solvothermal reaction of titanium tetraisopropoxide in the presence of aqueous HF has resulted in the stabilization of an oxyhydroxyfluorinated anatase phase featuring cationic vacancies. In the present work, we have studied its formation mechanism, revealing a solid-state transformation of a highly defective anatase phase having a hydroxyfluoride composition that subsequently evolves through an oxolation reaction into an oxyhydroxyfluoride phase. Importantly, this work confirms that titanium alkoxide precursors can react withmore » HF via a fluorolysis process yielding fluorinated molecular precursors, which further condense to produce new composition and structural features deviating from a well ordered anatase network.« less

  13. Liquid-Assisted Femtosecond Laser Precision-Machining of Silica.

    PubMed

    Cao, Xiao-Wen; Chen, Qi-Dai; Fan, Hua; Zhang, Lei; Juodkazis, Saulius; Sun, Hong-Bo

    2018-04-28

    We report a systematical study on the liquid assisted femtosecond laser machining of quartz plate in water and under different etching solutions. The ablation features in liquid showed a better structuring quality and improved resolution with 1/3~1/2 smaller features as compared with those made in air. It has been demonstrated that laser induced periodic structures are present to a lesser extent when laser processed in water solutions. The redistribution of oxygen revealed a strong surface modification, which is related to the etching selectivity of laser irradiated regions. Laser ablation in KOH and HF solution showed very different morphology, which relates to the evolution of laser induced plasma on the formation of micro/nano-features in liquid. This work extends laser precision fabrication of hard materials. The mechanism of strong absorption in the regions with permittivity (epsilon) near zero is discussed.

  14. X-ray diffraction, crystal structure, and spectral features of the optical susceptibilities of single crystals of the ternary borate oxide lead bismuth tetraoxide, PbBiBO4.

    PubMed

    Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean

    2009-05-14

    The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.

  15. Direct visualization of soliton stripes in the Cu O2 plane and oxygen interstitials in B i2(S r2 -xL ax) Cu O6 +δ superconductors

    NASA Astrophysics Data System (ADS)

    Guo, C.; Tian, H. F.; Yang, H. X.; Zhang, B.; Sun, K.; Sun, X.; Peng, Y. Y.; Zhou, X. J.; Li, J. Q.

    2017-11-01

    Microstructure features in correlation with the incommensurate modulation and oxygen interstitials in B i2(S r2 -xL ax) Cu O6 +δ superconducting materials were studied by Cs-corrected scanning transmission electron microscopy. Atomic displacements following the modulation wave were well characterized by a sinusoidal wave for each atomic layer, which highlighted clear changes resulting from increases in the La concentration. Careful investigations of the alterations in the local atomic structure revealed that remarkable microstructural features, i.e., notable soliton lines, which arise from the prominent interplay between incommensurate modulation and the basic lattice, appear at the Cu O2 sheets yielding visible structural anomalies for x ranging from 0.40 to 0.85. The interstitial oxygen atoms between the SrO-BiO layers became clearly visible for X ≥0.73 and showed well-defined ordered states in the x =1.10 sample. These structural features, in particular the strong structural effects of the soliton lines on the Cu O2 sheets, could evidently affect the physical properties of layered La-Bi2201 systems.

  16. Preliminary interpretation of high resolution 3D seismic data from offshore Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Gross, F.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Cukur, D.; Bialas, J.; Papenberg, C. A.; Crutchley, G.; Koch, S.

    2013-12-01

    In order to gain knowledge about subsurface structures and its correlation to seafloor expressions, a hydro-acoustic dataset was collected during RV Meteor Cruise M86/2 (December 2011/January 2012) in Messina Straits and offshore Mt. Etna. Especially offshore Mt. Etna, the data reveals an obvious connection between subsurface structures and previously known morphological features at the sea floor. Therefore a high resolution 3D seismic dataset was acquired between Riposto Ridge and Catania Canyon close to the shore of eastern Sicily. The study area is characterized by a major structural high, which hosts several ridge-like features at the seafloor. These features are connected to a SW-NE trending fault system. The ridges are bended in their NE-SW direction and host major escarpments at the seafloor. Furthermore they are located directly next to a massive amphitheater structure offshore Mt. Etna with slope gradients of up to 35°, which is interpreted as remnants of a massive submarine mass wasting event off Sicily. The new 3D seismic dataset allows an in depth analysis of the ongoing deformation of the east flank of Mt. Etna.

  17. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzi, Luana; Ramondo, Fabio, E-mail: fabio.ramondo@univaq.it; Caminiti, Ruggero

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations andmore » anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.« less

  18. Feature Grouping and Selection Over an Undirected Graph.

    PubMed

    Yang, Sen; Yuan, Lei; Lai, Ying-Cheng; Shen, Xiaotong; Wonka, Peter; Ye, Jieping

    2012-01-01

    High-dimensional regression/classification continues to be an important and challenging problem, especially when features are highly correlated. Feature selection, combined with additional structure information on the features has been considered to be promising in promoting regression/classification performance. Graph-guided fused lasso (GFlasso) has recently been proposed to facilitate feature selection and graph structure exploitation, when features exhibit certain graph structures. However, the formulation in GFlasso relies on pairwise sample correlations to perform feature grouping, which could introduce additional estimation bias. In this paper, we propose three new feature grouping and selection methods to resolve this issue. The first method employs a convex function to penalize the pairwise l ∞ norm of connected regression/classification coefficients, achieving simultaneous feature grouping and selection. The second method improves the first one by utilizing a non-convex function to reduce the estimation bias. The third one is the extension of the second method using a truncated l 1 regularization to further reduce the estimation bias. The proposed methods combine feature grouping and feature selection to enhance estimation accuracy. We employ the alternating direction method of multipliers (ADMM) and difference of convex functions (DC) programming to solve the proposed formulations. Our experimental results on synthetic data and two real datasets demonstrate the effectiveness of the proposed methods.

  19. Anterior lens epithelium in intumescent white cataracts - scanning and transmission electron microscopy study.

    PubMed

    Andjelic, Sofija; Drašlar, Kazimir; Hvala, Anastazija; Hawlina, Marko

    2016-02-01

    Our purpose was to study the structure of the lens epithelial cells (LECs) of intumescent white cataracts (IC) in comparison with nuclear cataracts (NC) in order to investigate possible structural reasons for development of IC. The anterior lens capsule (aLC: basement membrane and associated LECs) were obtained from cataract surgery and prepared for scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We observed by SEM that in IC, LEC swelling was pronounced with the clefts surrounding the groups of LECs. Another structural feature was spherical formations, that were observed on the apical side of LEC's, towards the fibre cell layer, both by SEM and TEM. Development of these structures, bulging out from the apical cell membrane of the LEC's and disrupting it, could be followed in steps towards the sphere formation. The degeneration of the lens epithelium and the structures of the aLC in IC similar to Morgagnian globules were also observed. None of these structural changes were observed in NC. We show by SEM and TEM that, in IC, LECs have pronounced structural features not observed in NC. This supports the hypothesis that the disturbed structure of LECs plays a role in water accumulation in the IC lens. We also suggest that, in IC, LECs produce bulging spheres that represent unique structures of degenerated material, extruded from the LEC.

  20. Structural properties of prokaryotic promoter regions correlate with functional features.

    PubMed

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  1. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT images.

    PubMed

    Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan

    2010-01-01

    Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  3. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors.

    PubMed

    Kaur, Rimaljeet; Kaur, Narinder; Gupta, Anil Kumar

    2014-11-01

    α-Amylase is an important digestive enzyme required for the optimal growth and development of insects. Several insect α-amylases had been purified and their physical and chemical properties were characterized. Insect α-amylases of different orders display variability in structure, properties and substrate specificity. Such diverse properties of amylases could be due to different feeding habits and gut environment of insects. In this review, structural features and properties of several insect α-amylases were compared. This could be helpful in exploring the diversity in characteristics of α-amylase between the members of the same class (insecta). Properties like pH optima are reflected in enzyme structural features. In plants, α-amylase inhibitors (α-AIs) occur as part of natural defense mechanisms against pests by interfering in their digestion process and thus could also provide access to new pest management strategies. AIs are quite specific in their action; therefore, these could be employed according to their effectiveness against target amylases. Potential of transgenics with α-AIs has also been discussed for insect resistance and controlling infestation. The differences in structural features of insect α-amylases provided reasons for their efficient functioning at different pH and the specificity towards various substrates. Various proteinaceous and non-proteinaceous inhibitors discussed could be helpful in controlling pest infestation. In depth detailed studies are required on proteinaceous α-AI-α-amylase interaction at different pH's as well as the insect proteinase action on these inhibitors before selecting the α-AI for making transgenics resistant to particular insect. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effect of hydrogen peroxide pretreatment on the structural features and the enzymatic hydrolysis of rice straw.

    PubMed

    Wei, C J; Cheng, C Y

    1985-10-01

    Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.

  5. Analysis of sequencing data for probing RNA secondary structures and protein-RNA binding in studying posttranscriptional regulations.

    PubMed

    Hu, Xihao; Wu, Yang; Lu, Zhi John; Yip, Kevin Y

    2016-11-01

    High-throughput sequencing has been used to study posttranscriptional regulations, where the identification of protein-RNA binding is a major and fast-developing sub-area, which is in turn benefited by the sequencing methods for whole-transcriptome probing of RNA secondary structures. In the study of RNA secondary structures using high-throughput sequencing, bases are modified or cleaved according to their structural features, which alter the resulting composition of sequencing reads. In the study of protein-RNA binding, methods have been proposed to immuno-precipitate (IP) protein-bound RNA transcripts in vitro or in vivo By sequencing these transcripts, the protein-RNA interactions and the binding locations can be identified. For both types of data, read counts are affected by a combination of confounding factors, including expression levels of transcripts, sequence biases, mapping errors and the probing or IP efficiency of the experimental protocols. Careful processing of the sequencing data and proper extraction of important features are fundamentally important to a successful analysis. Here we review and compare different experimental methods for probing RNA secondary structures and binding sites of RNA-binding proteins (RBPs), and the computational methods proposed for analyzing the corresponding sequencing data. We suggest how these two types of data should be integrated to study the structural properties of RBP binding sites as a systematic way to better understand posttranscriptional regulations. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Learning and Improving in Quality Improvement Collaboratives: Which Collaborative Features Do Participants Value Most?

    PubMed Central

    Nembhard, Ingrid M

    2009-01-01

    Objective To understand participants' views on the relative helpfulness of various features of collaboratives, why each feature was helpful and which features the most successful participants viewed as most central to their success. Data Sources Primary data collected from 53 teams in four 2004–2005 Institute for Healthcare Improvement (IHI) Breakthrough Series collaboratives; secondary data from IHI and demographic sources. Study Design Cross-sectional analyses were conducted to assess participants' views of 12 features, and the relationship between their views and performance improvement. Data Collection Methods Participants' views on features were obtained via self-administered surveys and semi-structured telephone interviews. Performance improvement data were obtained from IHI and demographic data from secondary sources. Principal Findings Participants viewed six features as most helpful for advancing their improvement efforts overall and knowledge acquisition in particular: collaborative faculty, solicitation of their staff's ideas, change package, Plan-Do-Study-Act cycles, Learning Session interactions, and collaborative extranet. These features also provided participants with motivation, social support, and project management skills. Features enabling interorganizational learning were rated higher by teams whose organizations improved significantly than by other teams. Conclusions Findings identify features of collaborative design and implementation that participants view as most helpful and highlight the importance of interorganizational features, at least for those organizations that most improve. PMID:19040423

  7. Structural Coherence and Temporal Stability of Psychopathic Personality Features During Emerging Adulthood

    PubMed Central

    Hawes, Samuel W.; Mulvey, Edward P.; Schubert, Carol A.; Pardini, Dustin A.

    2015-01-01

    Psychopathy is a complex personality disorder characterized by affective, interpersonal, and behavioral dimensions. Although features of psychopathy have been extended downwardly to earlier developmental periods, there is a discerning lack of studies that have focused on critically important issues such as longitudinal invariance and stability/change in these features across time. The current study examines these issues using a large sample of male adolescent offenders (N = 1,170) assessed across 7 annual time points during the transition into emerging adulthood (ages ~ 17 to 24 years). Findings demonstrated that features of psychopathy remained longitudinally invariant across this developmental period, and showed temporally consistent and theoretically coherent associations with other measures of personality, psychopathology, and criminal behaviors. Results also demonstrated that mean levels of psychopathic personality features tended to decrease into emerging adulthood and showed relatively modest rank-order stability across assessments with 7-year lags. These findings suggest that reductions in maladaptive personality features seem to parallel the well-documented decreases in offending that occur during the early 20s. PMID:24978692

  8. The thematic structure of passenger comfort experience and its relationship to the context features in the aircraft cabin.

    PubMed

    Ahmadpour, Naseem; Lindgaard, Gitte; Robert, Jean-Marc; Pownall, Bernard

    2014-01-01

    This paper describes passenger comfort as an experience generated by the cabin interior features. The findings of previous studies are affirmed regarding a set of 22 context features. Passengers experience a certain level of comfort when these features impact their body and elicit subjective perceptions. New findings characterise these perceptions in the form of eight themes and outline their particular eliciting features. Comfort is depicted as a complex construct derived by passengers' perceptions beyond the psychological (i.e. peace of mind) and physical (i.e. physical well-being) aspects, and includes perceptual (e.g. proxemics) and semantic (e.g. association) aspects. The seat was shown to have a focal role in eliciting seven of those themes and impacting comfort through its diverse characteristics. In a subsequent study, a group of aircraft cabin interior designers highlighted the possibility of employing the eight themes and their eliciting features as a framework for design and evaluation of new aircraft interiors.

  9. Some volcanic and structural features of Mare Serenitatis. [as determined by low angle lighting in Apollo 17 photography

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.; Adams, M.

    1973-01-01

    Relationships between volcanic and structural features along the southern edge of Mare Serenitatis as determined from low angle lighting in Apollo 17 photographs are discussed. Observational summaries are given of: (1) contact relations between the dark border material and the central mare fill, (2) a late stage lava flow with associated cinder cones, and (3) certain structural features related to the development of the mare basin and its associated volcanic landforms. A chronologic summary is given of volcanic and structural events believed to be critical to understanding the development of Mare Serenitatis.

  10. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.

    PubMed

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo

    2017-12-01

    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent performance improvement, indicating robustness of our approach. Furthermore, bi-clustering results of the extracted features are compatible with fold hierarchy of proteins, implying that these features are fold-specific. Together, these results suggest that the features extracted from predicted contacts are orthogonal to alignment-related features, and the combination of them could greatly facilitate fold recognition at superfamily/fold levels and template-based prediction of protein structures. Source code of DeepFR is freely available through https://github.com/zhujianwei31415/deepfr, and a web server is available through http://protein.ict.ac.cn/deepfr. zheng@itp.ac.cn or dbu@ict.ac.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Structure learning in action

    PubMed Central

    Braun, Daniel A.; Mehring, Carsten; Wolpert, Daniel M.

    2010-01-01

    ‘Learning to learn’ phenomena have been widely investigated in cognition, perception and more recently also in action. During concept learning tasks, for example, it has been suggested that characteristic features are abstracted from a set of examples with the consequence that learning of similar tasks is facilitated—a process termed ‘learning to learn’. From a computational point of view such an extraction of invariants can be regarded as learning of an underlying structure. Here we review the evidence for structure learning as a ‘learning to learn’ mechanism, especially in sensorimotor control where the motor system has to adapt to variable environments. We review studies demonstrating that common features of variable environments are extracted during sensorimotor learning and exploited for efficient adaptation in novel tasks. We conclude that structure learning plays a fundamental role in skill learning and may underlie the unsurpassed flexibility and adaptability of the motor system. PMID:19720086

  12. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies.

    PubMed

    Siddique, Radwanul Hasan; Diewald, Silvia; Leuthold, Juerg; Hölscher, Hendrik

    2013-06-17

    Morpho butterflies are well-known for their iridescence originating from nanostructures in the scales of their wings. These optical active structures integrate three design principles leading to the wide angle reflection: alternating lamellae layers, "Christmas tree" like shape, and offsets between neighboring ridges. We study their individual effects rigorously by 2D FEM simulations of the nanostructures of the Morpho sulkowskyi butterfly and show how the reflection spectrum can be controlled by the design of the nanostructures. The width of the spectrum is broad (≈ 90 nm) for alternating lamellae layers (or "brunches") of the structure while the "Christmas tree" pattern together with a height offset between neighboring ridges reduces the directionality of the reflectance. Furthermore, we fabricated the simulated structures by e-beam lithography. The resulting samples mimicked all important optical features of the original Morpho butterfly scales and feature the intense blue iridescence with a wide angular range of reflection.

  13. Pulsed Flows Along a Cusp Structure Observed with SOO/AIA

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara; Demoulin, P.; Mandrini, C. H.; Mays, M. L.; Ofman, L.; Driel-Gesztelyi, L. Van; Viall, N. M.

    2011-01-01

    We present observations of a cusp-shaped structure that formed after a flare and coronal mass ejection on 14 February 2011. Throughout the evolution of the cusp structure, blob features up to a few Mm in size were observed flowing along the legs and stalk of the cusp at projected speeds ranging from 50 to 150 km/sec. Around two dozen blob features, on order of 1 - 3 minutes apart, were tracked in multiple AlA EUV wavelengths. The blobs flowed outward (away from the Sun) along the cusp stalk, and most of the observed speeds were either constant or decelerating. We attempt to reconstruct the 3-D magnetic field of the evolving structure, discuss the possible drivers of the flows (including pulsed reconnect ion and tearing mode instability), and compare the observations to studies of pulsed reconnect ion and blob flows in the solar wind and the Earth's magnetosphere.

  14. Regression Levels of Selected Affective Factors on Science Achievement: A Structural Equation Model with TIMSS 2011 Data

    ERIC Educational Resources Information Center

    Akilli, Mustafa

    2015-01-01

    The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…

  15. Westside thinning and underplanting study in 50- to 55-year-old Douglas-fir and Douglas-fir/hemlock stands

    Treesearch

    Elizabeth C. Cole; Michael Newton

    2013-01-01

    Public agencies in the Pacifi c Northwest have engaged in managing for late-successional features or structure on lands which also have the possibility for high timber production. Th is study examined the potential for developing understory structure while maintaining a productive overstory on two sites (Willamette Valley foothills and coastal) in western Oregon....

  16. A Taxometric Investigation of the Latent Structure of Worry: Dimensionality and Associations with Depression, Anxiety, and Stress

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Broman-Fulks, Joshua J.; Bergman, Shawn M.; Green, Bradley A.; Zlomke, Kimberly R.

    2010-01-01

    Worry has been described as a core feature of several disorders, particularly generalized anxiety disorder (GAD). The present study examined the latent structure of worry by applying 3 taxometric procedures (MAXEIG, MAMBAC, and L-Mode) to data collected from 2 large samples. Worry in the first sample (Study 1) of community participants (n = 1,355)…

  17. The relationship between manuscript title structure and success: editorial decisions and citation performance for an ecological journal

    PubMed Central

    Fox, Charles W; Burns, C Sean

    2015-01-01

    A poorly chosen article title may make a paper difficult to discover or discourage readership when discovered, reducing an article's impact. Yet, it is unclear how the structure of a manuscript's title influences readership and impact. We used manuscript tracking data for all manuscripts submitted to the journal Functional Ecology from 2004 to 2013 and citation data for papers published in this journal from 1987 to 2011 to examine how title features changed and whether a manuscript's title structure was predictive of success during the manuscript review process and/or impact (citation) after publication. Titles of manuscripts submitted to Functional Ecology became marginally longer (after controlling for other variables), broader in focus (less frequent inclusion of genus and species names), and included more humor and subtitles over the period of the study. Papers with subtitles were less likely to be rejected by editors both pre- and post-peer review, although both effects were small and the presence of subtitles in published papers was not predictive of citations. Papers with specific names of study organisms in their titles fared poorly during editorial (but not peer) review and, if published, were less well cited than papers whose titles did not include specific names. Papers with intermediate length titles were more successful during editorial review, although the effect was small and title word count was not predictive of citations. No features of titles were predictive of reviewer willingness to review papers or the length of time a paper was in peer review. We conclude that titles have changed in structure over time, but features of title structure have only small or no relationship with success during editorial review and post-publication impact. The title feature that was most predictive of manuscript success: papers whose titles emphasize broader conceptual or comparative issues fare better both pre- and post-publication than do papers with organism-specific titles. PMID:26045949

  18. The relationship between manuscript title structure and success: editorial decisions and citation performance for an ecological journal.

    PubMed

    Fox, Charles W; Burns, C Sean

    2015-05-01

    A poorly chosen article title may make a paper difficult to discover or discourage readership when discovered, reducing an article's impact. Yet, it is unclear how the structure of a manuscript's title influences readership and impact. We used manuscript tracking data for all manuscripts submitted to the journal Functional Ecology from 2004 to 2013 and citation data for papers published in this journal from 1987 to 2011 to examine how title features changed and whether a manuscript's title structure was predictive of success during the manuscript review process and/or impact (citation) after publication. Titles of manuscripts submitted to Functional Ecology became marginally longer (after controlling for other variables), broader in focus (less frequent inclusion of genus and species names), and included more humor and subtitles over the period of the study. Papers with subtitles were less likely to be rejected by editors both pre- and post-peer review, although both effects were small and the presence of subtitles in published papers was not predictive of citations. Papers with specific names of study organisms in their titles fared poorly during editorial (but not peer) review and, if published, were less well cited than papers whose titles did not include specific names. Papers with intermediate length titles were more successful during editorial review, although the effect was small and title word count was not predictive of citations. No features of titles were predictive of reviewer willingness to review papers or the length of time a paper was in peer review. We conclude that titles have changed in structure over time, but features of title structure have only small or no relationship with success during editorial review and post-publication impact. The title feature that was most predictive of manuscript success: papers whose titles emphasize broader conceptual or comparative issues fare better both pre- and post-publication than do papers with organism-specific titles.

  19. Mineralogy, Three Dimensional Structure, and Oxygen Isotope Ratios of Four Crystalline Particles from Comet 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Tsuchiyama, A.; Ushikubo, T.; Kita, N. T.; Valley, J. W.; Zolensky, M. E.; Kakazu, Y.; Sakamoto, K.; Mashio, E.; hide

    2008-01-01

    Preliminary examinations of small dust particles from comet 82P/Wild 2 revealed many expected and unexpected features. Among them the most striking feature is the presence of abundant crystalline material in the comet. Synchrotron radiation X-ray diffraction and microtomography are the most efficient methods to detect and describe bulk mineralogical features of crystalline cometary particles. In the present study, in addition to these two non-destructive techniques, electron microscopy and ion-probe mass spectrometry were carried out on the four crystalline particles.

  20. Analysis

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Maha; El-Sawy, El-Sawy K.; Gobashy, Mohamed M.

    2013-06-01

    Ar Rika fault zone constitutes one of the two major parts of the NW-SE Najd fault system (NFS), which is one of the most prominent structural features located in the east of the center of the Arabian Shield, Saudi Arabia. By using Enhancement Thematic Mapper data (ETM+) and Principle Component Analysis (PCA), surface geological characteristics, distribution of rock types, and the different trends of linear features and faults are determined in the study area. First and second order magnetic gradients of the geomagnetic field at the North East of Wadi Ar Rika have been calculated in the frequency domain to map both surface and subsurface lineaments and faults. Lineaments as deduced from previous studies, suggest an extension of the NFS beneath the cover rocks in the study area. In the present study, integration of magnetic gradients and remote sensing analysis that resulted in different valuable derivative maps confirm the subsurface extension of some of the surface features. The 3D Euler deconvolution, the total gradient, and the tilt angle maps have been utilized to determine accurately the distribution of shear zones, the tectonic implications, and the internal structures of the terranes in the Ar Rika quadrangle in three dimensions.

  1. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors.

    PubMed

    Mahapatra, Manoj Kumar; Bera, Krishnendu; Singh, Durg Vijay; Kumar, Rajnish; Kumar, Manoj

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.

  2. Rejoice in unexpected gifts from parrots and butterflies

    NASA Astrophysics Data System (ADS)

    Lakhtakia, Akhlesh

    2016-04-01

    New biological structures usually evolve from gradual modifications of old structures. Sometimes, biological structures contain hidden features, possibly vestigial. In addition to learning about functionalities, mechanisms, and structures readily apparent in nature, one must be alive to hidden features that could be useful. This aspect of engineered biomimicry is exemplified by two optical structures of psittacine and lepidopteran provenances. In both examples, a schemochrome is hidden by pigments.

  3. Geologic structure in California: Three studies with ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1974-01-01

    Results are presented of three early applications of imagery from the NASA Earth Resources Technology Satellite to geologic studies in California. In the Coast Ranges near Monterey Bay, numerous linear drainage features possibly indicating unmapped fracture zones were mapped within one week after launch of the satellite. A similar study of the Sierra Nevada near Lake Tahoe revealed many drainage features probably formed along unmapped joint or faults in granitic rocks. The third study, in the Peninsular Ranges, confirmed existence of several major faults not shown on published maps. One of these, in the Sawtooth Range, crosses in Elsinore fault without lateral offset; associated Mid-Cretaceous structures have also been traced continuously across the fault without offset. It therefore appears that displacement along the Elsinore fault has been primarily of a dip-slip nature, at least in this area, despite evidence for lateral displacement elsewhere.

  4. The effect of aluminum nanoparticles on the structure, mechanical properties and failure of aluminum processed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Ivanov, K. V.; Fortuna, S. V.; Kalashnikova, T. A.; Rodkevich, N. G.

    2017-12-01

    The microstructure, mechanical properties, and fracture type of aluminum with and without aluminum nanoparticles processed by accumulative roll bonding (ARB) have been studied using transmission and scanning electron microscopy, microhardness measurements, and tensile tests. It is shown that the injection of aluminum nanoparticles increases the structure refinement rate during ARB due to the increasing tendency for dynamic recrystallization. It has a different effect on different mechanical characteristics. The different effect of nanoparticles on different structural features is the reason for the different effect on different mechanical properties related with these features. The fracture mechanism is shown to change from ductile in aluminum to mixed ductile-brittle in the composite with a 1.5-fold decrease in ductility as a result of nanoparticle injection.

  5. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  6. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  7. Does my face FIT?: a face image task reveals structure and distortions of facial feature representation.

    PubMed

    Fuentes, Christina T; Runa, Catarina; Blanco, Xenxo Alvarez; Orvalho, Verónica; Haggard, Patrick

    2013-01-01

    Despite extensive research on face perception, few studies have investigated individuals' knowledge about the physical features of their own face. In this study, 50 participants indicated the location of key features of their own face, relative to an anchor point corresponding to the tip of the nose, and the results were compared to the true location of the same individual's features from a standardised photograph. Horizontal and vertical errors were analysed separately. An overall bias to underestimate vertical distances revealed a distorted face representation, with reduced face height. Factor analyses were used to identify separable subconfigurations of facial features with correlated localisation errors. Independent representations of upper and lower facial features emerged from the data pattern. The major source of variation across individuals was in representation of face shape, with a spectrum from tall/thin to short/wide representation. Visual identification of one's own face is excellent, and facial features are routinely used for establishing personal identity. However, our results show that spatial knowledge of one's own face is remarkably poor, suggesting that face representation may not contribute strongly to self-awareness.

  8. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    PubMed

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  9. National Survey of Sensory Features in Children with ASD: Factor Structure of the Sensory Experience Questionnaire (3.0)

    ERIC Educational Resources Information Center

    Ausderau, Karla; Sideris, John; Furlong, Melissa; Little, Lauren M.; Bulluck, John; Baranek, Grace T.

    2014-01-01

    This national online survey study characterized sensory features in 1,307 children with autism spectrum disorder (ASD) ages 2-12 years using the Sensory Experiences Questionnaire Version 3.0 (SEQ-3.0). Using the SEQ-3.0, a confirmatory factor analytic model with four substantive factors of hypothesized sensory response patterns (i.e.,…

  10. Reinforcement learning algorithms for robotic navigation in dynamic environments.

    PubMed

    Yen, Gary G; Hickey, Travis W

    2004-04-01

    The purpose of this study was to examine improvements to reinforcement learning (RL) algorithms in order to successfully interact within dynamic environments. The scope of the research was that of RL algorithms as applied to robotic navigation. Proposed improvements include: addition of a forgetting mechanism, use of feature based state inputs, and hierarchical structuring of an RL agent. Simulations were performed to evaluate the individual merits and flaws of each proposal, to compare proposed methods to prior established methods, and to compare proposed methods to theoretically optimal solutions. Incorporation of a forgetting mechanism did considerably improve the learning times of RL agents in a dynamic environment. However, direct implementation of a feature-based RL agent did not result in any performance enhancements, as pure feature-based navigation results in a lack of positional awareness, and the inability of the agent to determine the location of the goal state. Inclusion of a hierarchical structure in an RL agent resulted in significantly improved performance, specifically when one layer of the hierarchy included a feature-based agent for obstacle avoidance, and a standard RL agent for global navigation. In summary, the inclusion of a forgetting mechanism, and the use of a hierarchically structured RL agent offer substantially increased performance when compared to traditional RL agents navigating in a dynamic environment.

  11. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures

    NASA Astrophysics Data System (ADS)

    Li, Quanbao; Wei, Fajie; Zhou, Shenghan

    2017-05-01

    The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.

  12. Innovations in individual feature history management - The significance of feature-based temporal model

    USGS Publications Warehouse

    Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.

    2008-01-01

    A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.

  13. Pharmacophore modeling and conformational analysis in the gas phase and in aqueous solution of regioisomeric melatonin analogs. A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Mendoza-Figueroa, Humberto; Martínez-Gudiño, Gelacio; Villanueva-Luna, Jorge E.; Trujillo-Serrato, Joel J.; Morales-Ríos, Martha S.

    2017-04-01

    In this work, 2-(N-acylaminoalkyl)indoles 1a-1d, that incorporate a pMeOBn group at the 3-position of the indole ring were virtual screened as potential melatoninergic ligands by analog-based design study using pharmacophore modeling. Pharmacophore models for melatoninergic agonist and antagonist activity were developed in order to identify the molecular constraints that define the geometric relationship among chemical features in each model. The best hypothesis consisted of six features for agonists and eight features for antagonists. The models suggest that the agonists and antagonists can share the same 3D arrangement for the six common pharmacophoric elements identified: two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), one hydrophobic area (H), and two aromatic rings (AR). The extra hydrofobic interaction might be used as criterion for identified the pharmacological antagonist profile. Based on the pharmacophore fit, it was found that structures 1c and 1d show a good structural overlay that meets the requirements for the antagonistic pharmacophore hypothesis. Molecular modeling studies using the PCM solvation model predicted that the most stable conformers of 1a-1d match the antagonist pharmacophore hypothesis in contrast to those in the gas phase. Structures 1a-1c were synthesized only but the activities were not tested.

  14. Peculiar Features of Microstructure Formation and Microhardness Variations During Torsional Straining of Tantalum Specimens in Bridgman Anvils

    NASA Astrophysics Data System (ADS)

    Ditenberg, I. A.; Tymentsev, A. N.; Korznikov, A. V.

    2015-04-01

    Using the method of transmission electron microscopy, peculiar features of evolution of microstructure and variations in microhardness of Та are investigated under torsional loading in the Bridgman anvil as a function of plastic deformation at room temperature. A quantitative examination of grain and defect's structure of the material under study and the values of local internal stresses is performed in different loading stages. The mechanisms of formation of submicrocrystalline and nanostructured states are analyzed and so is the microstructure variation as a function of the defect-structure characteristics, strain level, and spacing from the axis of torsion.

  15. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Cusatis, C.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Foerster, L. A.; Rosado-Neto, G. H.

    2010-08-01

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures ( Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  16. Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method

    NASA Astrophysics Data System (ADS)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.

    2018-04-01

    The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.

  17. Structural and sequence features of two residue turns in beta-hairpins.

    PubMed

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  18. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  19. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  20. Structural Features of Sibling Dyads and Attitudes toward Sibling Relationships in Young Adulthood

    ERIC Educational Resources Information Center

    Riggio, Heidi R.

    2006-01-01

    This study examined sibling-dyad structural variables (sex composition, age difference, current coresidence, position adjacency, family size, respondent and/or sibling ordinal position) and attitudes toward adult sibling relationships. A sample of 1,053 young adults (M age = 22.1 years) described one sibling using the Lifespan Sibling Relationship…

  1. Structured Constructs Models Based on Change-Point Analysis

    ERIC Educational Resources Information Center

    Shin, Hyo Jeong; Wilson, Mark; Choi, In-Hee

    2017-01-01

    This study proposes a structured constructs model (SCM) to examine measurement in the context of a multidimensional learning progression (LP). The LP is assumed to have features that go beyond a typical multidimentional IRT model, in that there are hypothesized to be certain cross-dimensional linkages that correspond to requirements between the…

  2. Incidental and Context-Responsive Activation of Structure- and Function-Based Action Features during Object Identification

    ERIC Educational Resources Information Center

    Lee, Chia-lin; Middleton, Erica; Mirman, Daniel; Kalenine, Solene; Buxbaum, Laurel J.

    2013-01-01

    Previous studies suggest that action representations are activated during object processing, even when task-irrelevant. In addition, there is evidence that lexical-semantic context may affect such activation during object processing. Finally, prior work from our laboratory and others indicates that function-based ("use") and structure-based…

  3. A Comparative Study of the Grammatical Structures of Crucian Creole and West African Languages

    ERIC Educational Resources Information Center

    Vergne Vargas, Aida M.

    2017-01-01

    This thesis examines the role of the African substrate languages in the emergence of Atlantic Creole grammatical structures. Alleyne (1980) and Faraclas (1990) have convincingly demonstrated that a survey of the grammatical features that typify the Colonial Era English-Lexifier Creoles of the Atlantic reveals remarkable similarities with those…

  4. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    PubMed

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  5. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  6. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    PubMed

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  7. Classification of damage in structural systems using time series analysis and supervised and unsupervised pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; de Lautour, Oliver R.

    2010-04-01

    Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.

  8. Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 1. A new information geodatabase with uncertainty characterizations

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Bisson, M.; Neri, A.; Cioni, R.; Bevilacqua, A.; Aspinall, W. P.

    2017-06-01

    This study presents new and revised data sets about the spatial distribution of past volcanic vents, eruptive fissures, and regional/local structures of the Somma-Vesuvio volcanic system (Italy). The innovative features of the study are the identification and quantification of important sources of uncertainty affecting interpretations of the data sets. In this regard, the spatial uncertainty of each feature is modeled by an uncertainty area, i.e., a geometric element typically represented by a polygon drawn around points or lines. The new data sets have been assembled as an updatable geodatabase that integrates and complements existing databases for Somma-Vesuvio. The data are organized into 4 data sets and stored as 11 feature classes (points and lines for feature locations and polygons for the associated uncertainty areas), totaling more than 1700 elements. More specifically, volcanic vent and eruptive fissure elements are subdivided into feature classes according to their associated eruptive styles: (i) Plinian and sub-Plinian eruptions (i.e., large- or medium-scale explosive activity); (ii) violent Strombolian and continuous ash emission eruptions (i.e., small-scale explosive activity); and (iii) effusive eruptions (including eruptions from both parasitic vents and eruptive fissures). Regional and local structures (i.e., deep faults) are represented as linear feature classes. To support interpretation of the eruption data, additional data sets are provided for Somma-Vesuvio geological units and caldera morphological features. In the companion paper, the data presented here, and the associated uncertainties, are used to develop a first vent opening probability map for the Somma-Vesuvio caldera, with specific attention focused on large or medium explosive events.

  9. Face recognition algorithm using extended vector quantization histogram features.

    PubMed

    Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu

    2018-01-01

    In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.

  10. Coma morphology of comet 67P controlled by insolation over irregular nucleus

    NASA Astrophysics Data System (ADS)

    Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H. U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; Pajola, M.; Tubiana, C.; Bodewits, D.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Toth, I.; Vincent, J.-B.

    2018-05-01

    While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6-8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov-Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov-Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.

  11. Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    PubMed Central

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Hajnal, Joseph V.; Duncan, John S.; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander

    2012-01-01

    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study. PMID:22523539

  12. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study.

    PubMed

    De Rossi, Pietro; Dacquino, Claudia; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-08-30

    A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Scaling Features of High-Latitude Geomagnetic Field Fluctuations at Swarm Altitude: Impact of IMF Orientation

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Consolini, Giuseppe; Tozzi, Roberta; Marcucci, Maria Federica

    2017-10-01

    This paper attempts to explore the statistical scaling features of high-latitude geomagnetic field fluctuations at Swarm altitude. Data for this study are low-resolution (1 Hz) magnetic data recorded by the vector field magnetometer on board Swarm A satellite over 1 year (from 15 April 2014 to 15 April 2015). The first- and second-order structure function scaling exponents and the degree of intermittency of the fluctuations of the intensity of the horizontal component of the magnetic field at high northern latitudes have been evaluated for different interplanetary magnetic field orientations in the GSM Y-Z plane and seasons. In the case of the first-order structure function scaling exponent, a comparison between the average spatial distributions of the obtained values and the statistical convection patterns obtained using a Super Dual Auroral Radar Network dynamic model (CS10 model) has been also considered. The obtained results support the idea that the knowledge of the scaling features of the geomagnetic field fluctuations can help in the characterization of the different ionospheric turbulence regimes of the medium crossed by Swarm A satellite. This study shows that different turbulent regimes of the geomagnetic field fluctuations exist in the regions characterized by a double-cell convection pattern and in those regions near the border of the convective structures.

  14. Effects of moiré lattice structure on electronic properties of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  15. Effects of moiré lattice structure on electronic properties of graphene

    NASA Astrophysics Data System (ADS)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; Mou, Daixiang; Schrunk, Benjamin; Tringides, Michael C.; Hupalo, Myron; Kaminski, Adam

    2017-07-01

    We study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6 √{3 }×6 √{3 } reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that is then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.

  16. Effects of moiré lattice structure on electronic properties of graphene

    DOE PAGES

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; ...

    2017-07-10

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  17. Polysaccharides from the South African medicinal plant Artemisia afra: Structure and activity studies.

    PubMed

    Braünlich, Paula Marie; Inngjerdingen, Kari Tvete; Inngjerdingen, Marit; Johnson, Quinton; Paulsen, Berit Smestad; Mabusela, Wilfred

    2018-01-01

    Artemisia afra (Jacq. Ex. Willd), is an indigenous plant in South Africa and other parts of the African continent, where it is used as traditional medicine mostly for respiratory conditions. The objective of this study was to investigate the structural features of the polysaccharides from the leaves of this plant, as well as the biological activities of the polysaccharide fractions against the complement assay. Leaves of Artemisia afra were extracted sequentially with organic solvents (dichloromethane and methanol), 50% aqueous ethanol, and water at 50 and 100°C respectively. The polysaccharide extracts were fractionated by ion exchange chromatography and the resulting fractions were tested for biological activity against the complement fixation assay. Active fractions were further fractionated using gel filtration. Monosaccharide compositions and linkage analyses were determined for the relevant fractions. Polysaccharides were shown to be of the pectin type, and largely contain arabinogalactan, rhamnogalacturonan and homogalacturonan structural features. The presence of arabinogalactan type II features as suggested by methylation analysis was further confirmed by the ready precipitation of the relevant polysaccharides with the Yariv reagent. An unusual feature of some of these polysaccharides was the presence of relatively high levels of xylose as one of its monosaccharide constituents. Purified polysaccharide fractions were shown to possess higher biological activity than the selected standard in the complement assay. Digestion of these polysaccharides with an endo-polygalacturonase enzyme resulted in polymers with lower molecular weights as expected, but still with biological activity which exceeded that of the standard. Thus on the basis of these studies it may be suggested that immunomodulating properties probably contribute significantly to the health-promoting effects of this medicinal plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Unique Features of Metformin: A Combined Experimental, Theoretical, and Simulation Study of Its Structure, Dynamics, and Interaction Energetics with DNA Grooves.

    PubMed

    Mondal, Sayantan; Samajdar, Rudra N; Mukherjee, Saumyak; Bhattacharyya, Aninda J; Bagchi, Biman

    2018-03-01

    There are certain small molecules that exhibit extraordinarily diverse biological activities. Metformin is one of them. It is widely used as an antidiabetic drug for type-two diabetes. Recent lines of evidence of its role in antitumor activities and increasing the survival rates of cancer patients (namely, colorectal, breast, pancreas, and prostate cancer) are emerging. However, theoretical studies of the structure and dynamics of metformin have not yet been fully explored. In this work, we investigate the characteristic structural and dynamical features of three monoprotonated forms of metformin hydrochloride with the help of experiments, quantum chemical calculations, and atomistic molecular dynamics simulations. We validate our force field by comparing simulation results to those of the experimental findings. Energetics of proton transfer between two planar monoprotonated forms reveals a low energy barrier, which leads us to speculate a possible coexistence of them. Nevertheless, among the protonation states, we find that the nonplanar tautomeric form is the most stable. Our calculated values of the self-diffusion coefficient agree quantitatively with NMR results. Metformin forms strong hydrogen bonds with surrounding water molecules, and its solvation dynamics shows unique features. Because of an extended positive charge distribution, metformin possesses features of being a permanent cationic partner toward several targets. We study its interaction and binding ability with DNA using UV spectroscopy, circular dichroism, fluorimetry, and metadynamics simulation. We find a nonintercalative mode of interaction. Metformin feasibly forms a minor/major groove-bound state within a few tens of nanoseconds, preferably with AT-rich domains. A significant decrease in the free energy of binding is observed when it binds to a minor groove of DNA.

  19. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  20. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  1. Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins.

    PubMed

    Guerrero-Muñoz, Marcos J; Castillo-Carranza, Diana L; Kayed, Rakez

    2014-04-15

    Impaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others. Although the exact protein that aggregates varies between amyloid disorders, they all share common structural features that can be used as therapeutic targets. In this review, we focus on therapeutic approaches against shared features of toxic oligomeric structures and future directions. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Computing and visualizing time-varying merge trees for high-dimensional data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesterling, Patrick; Heine, Christian; Weber, Gunther H.

    2017-06-03

    We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.

  3. American Research on the Family and Socialization

    ERIC Educational Resources Information Center

    Clausen, John A.

    1978-01-01

    Comments on a number of trends in American research on the family as an instrument of socialization, stressing studies of contextual and structural features more than studies seeking to delineate relationships between specific parental practices and child behavior. (BR)

  4. Determination of dosimetric and kinetic features of gamma irradiated solid calcium ascorbate dihydrate using ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuner, H.

    2013-01-01

    Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.

  5. Pediatric dermatohistopathology--histopathology of skin diseases in newborns and infants.

    PubMed

    Wobser, Marion; Ernestus, Karen; Hamm, Henning

    2015-06-01

    While neonatal skin physiology has been thoroughly examined using non-invasive techniques in recent years, only few systematic studies and review articles addressing the histopathology of neonatal skin have been published thus far. In most cases, histopathological findings of dermatoses in neonatal skin do not significantly differ from those seen in adult skin. Nevertheless, a comprehensive knowledge of embryonic and fetal skin development as well as the microanatomical structure of neonatal skin can contribute to a better understanding of various dermatoses of infancy. In the first part of this review article, we present the histopathological features of such skin diseases, which, though generally rare, almost exclusively appear during the first weeks of life due to distinctive structural and functional features of neonatal skin. The second part is dedicated to classic dermatoses of infancy and their histopathological features. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  6. Cascade detection for the extraction of localized sequence features; specificity results for HIV-1 protease and structure-function results for the Schellman loop.

    PubMed

    Newell, Nicholas E

    2011-12-15

    The extraction of the set of features most relevant to function from classified biological sequence sets is still a challenging problem. A central issue is the determination of expected counts for higher order features so that artifact features may be screened. Cascade detection (CD), a new algorithm for the extraction of localized features from sequence sets, is introduced. CD is a natural extension of the proportional modeling techniques used in contingency table analysis into the domain of feature detection. The algorithm is successfully tested on synthetic data and then applied to feature detection problems from two different domains to demonstrate its broad utility. An analysis of HIV-1 protease specificity reveals patterns of strong first-order features that group hydrophobic residues by side chain geometry and exhibit substantial symmetry about the cleavage site. Higher order results suggest that favorable cooperativity is weak by comparison and broadly distributed, but indicate possible synergies between negative charge and hydrophobicity in the substrate. Structure-function results for the Schellman loop, a helix-capping motif in proteins, contain strong first-order features and also show statistically significant cooperativities that provide new insights into the design of the motif. These include a new 'hydrophobic staple' and multiple amphipathic and electrostatic pair features. CD should prove useful not only for sequence analysis, but also for the detection of multifactor synergies in cross-classified data from clinical studies or other sources. Windows XP/7 application and data files available at: https://sites.google.com/site/cascadedetect/home. nacnewell@comcast.net Supplementary information is available at Bioinformatics online.

  7. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability.

    PubMed

    Matos, João T V; Duarte, Regina M B O; Lopes, Sónia P; Silva, Artur M S; Duarte, Armando C

    2017-12-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an "annual background" profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H-C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage.

    PubMed

    Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

  9. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage

    PubMed Central

    Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts. PMID:27069801

  10. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis.

    PubMed

    Martínez-Montiel, Nancy; Morales-Lara, Laura; Hernández-Pérez, Julio M; Martínez-Contreras, Rebeca D

    2016-01-01

    The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD) is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor mainly for Homo sapiens and Saccharomyces cerevisiae. This process is highly conserved in eukaryotes but functional diversity can be observed in various species. Ustilago maydis is a basidiomycete and the best-known smut, which has become a model to study molecular and cellular eukaryotic mechanisms. In this study, we performed in silico analysis to investigate the structural and biochemical properties of the putative UPF1 homolog in Ustilago maydis. The putative homolog for UPF1 was recognized in the annotated genome for the basidiomycete, exhibiting 66% identity with its human counterpart at the protein level. The known structural and functional domains characteristic of UPF1 homologs were also found. Based on the crystal structures available for UPF1, we constructed different three-dimensional models for umUPF1 in order to analyze the secondary and tertiary structural features of this factor. Using these models, we studied the spatial arrangement of umUPF1 and its capability to interact with UPF2. Moreover, we identified the critical amino acids that mediate the interaction of umUPF1 with UPF2, ATP, RNA and with UPF1 itself. Mutating these amino acids in silico showed an important effect over the native structure. Finally, we performed molecular dynamic simulations for UPF1 proteins from H. sapiens and U. maydis and the results obtained show a similar behavior and physicochemical properties for the protein in both organisms. Overall, our results indicate that the putative UPF1 identified in U. maydis shows a very similar sequence, structural organization, mechanical stability, physicochemical properties and spatial organization in comparison to the NMD factor depicted for Homo sapiens. These observations strongly support the notion that human and fungal UPF1 could perform equivalent biological activities.

  11. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data

    PubMed Central

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Abstract Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density (d), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction. PMID:29707064

  12. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.

    PubMed

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density ( d ), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction.

  13. Meteorite Impact Structures as Outcrop-Scale Analogues for Mountain Building Events: Weaubleau and Decaturville, MO

    NASA Astrophysics Data System (ADS)

    Wu, S.; McKay, M.; Evans, K. R.

    2017-12-01

    Understanding the architecture of mountain belts is limited because studies are typically confined to surficial exposures with lesser amounts of subsurface data and active margins are prone to successive tectonism that obscures the rock record. In west-central Missouri, two Paleozoic meteorite impacts are exposed that contain a range of outcrop-scale structures. While the strain rate in a meteorite impact is an order of magnitude greater than that in orogeny-scale structures, the morphology and spatial relationships in these impact structures may provide insight into larger tectonic features. The entire crater could not be compared to an orogenic event because the amount of strain diffuses as distance increases from the impactor during an impacting event. The center of an impact crater could not be compared to an orogenic event because it has become too deformed. However, the crater rim and the immediate surrounding area could be used as a comparison because it has undergone the right amount of deformation to have recognizable structures. High-detail mapping and structural analyses of road cut exposures near Decaturville, MO reveals thrust fault sequences contain 1-2 m thick mixed carbonate and clastic sheets that include rollover anticlines, structural orphans, and lateral ramp features. Thrust faults dip away from the impact structure and represent gravitational collapse of the central uplift seconds after collision. Thrust sheet thickness, thrust fault spacing, ramp/flat morphology, and shortening of within these structures will be presented and assessed as an analogue for map-scale features in the Southern Appalachian fold and thrust belt. Because temperature controls rock mechanic properties, a thermal model based on thermochronology and thermobarometry for the section will also be presented and discussed in the context of orogenic thermomechanics.

  14. Hole Feature on Conical Face Recognition for Turning Part Model

    NASA Astrophysics Data System (ADS)

    Zubair, A. F.; Abu Mansor, M. S.

    2018-03-01

    Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.

  15. Structure and properties of polyethylene films used in heavy lift balloons

    NASA Technical Reports Server (NTRS)

    Khoury, F.; Crissman, J. M.; Fanconi, B. M.; Wagner, H. L.; Botz, L. H.

    1985-01-01

    The following features of five polyethylene films used by NASA in the construction of heavy lift balloons have been examined: molecular weight, molecular weight distribution, branching, melting behavior, density, surface texture, birefringence, orientation of crystalline regions, unlaxial deformation in the machine and transverse directions, and the effect of sample geometry and strain rate on deformation behavior. The goal of this exploratory study was to determine whether there are significant differences in any of the above mentioned features, or combination of features between the films. The acquisition of such information is a first step towards determining whether there are any specific correlations between film characteristics and the incidence of catastrophic failure of balloons during ascent through the troposphere. This exploratory study has resulted in the identification of similarities and differences between various features of the films.

  16. Covariance of dynamic strain responses for structural damage detection

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.

    2017-10-01

    A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.

  17. Seeing Deep Structure from the Interactions of Surface Features

    ERIC Educational Resources Information Center

    Chi, Michelene T. H.; VanLehn, Kurt A.

    2012-01-01

    Transfer is typically thought of as requiring individuals to "see" what is the same in the deep structure between a new target problem and a previously encountered source problem, even though the surface features may be dissimilar. We propose that experts can "see" the deep structure by considering the first-order interactions…

  18. Structures, molecular orbitals and UV-vis spectra investigations on methyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate: a computational study.

    PubMed

    Wang, Tsang-Hsiu; Chu, Hsing-Yu; Wang, I-Teng

    2014-10-15

    The methyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (C11H11N3O2) has been studied by theoretically methods. The structure of this compound is optimized by density functional theory (DFT), the second-order Møller-Plesset perturbation theory (MP2) and G3 theory (G3(MP2)) levels. Our calculation results are in very good agreement with experimental values. Compared to a perfect pentagonal structure, the geometrical structures of C11H11N3O2 show a little distortion of 1,2,3-triazole ring due to the highly electronegativity of substitution groups. In addition, dipole moment and frontier molecular orbitals (FMOs) of the C11H11N3O2 are calculated as well. Because of solvent effect, the HOMO-LUMO energy gap in methanol is predicted to be smaller than in gas phase by 0.367eV. The simulated UV-vis spectra are investigated by time-dependent density functional theory (TD-DFT), and two obviously absorption features have been predicted. These two absorption features are located between 170nm and 210nm, which is in ultraviolet C range. Moreover, the UV absorption features in methanol are predicted to be more intense than in gas phase; besides, the red shift is predicted in methanol as well. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Feature engineering for MEDLINE citation categorization with MeSH.

    PubMed

    Jimeno Yepes, Antonio Jose; Plaza, Laura; Carrillo-de-Albornoz, Jorge; Mork, James G; Aronson, Alan R

    2015-04-08

    Research in biomedical text categorization has mostly used the bag-of-words representation. Other more sophisticated representations of text based on syntactic, semantic and argumentative properties have been less studied. In this paper, we evaluate the impact of different text representations of biomedical texts as features for reproducing the MeSH annotations of some of the most frequent MeSH headings. In addition to unigrams and bigrams, these features include noun phrases, citation meta-data, citation structure, and semantic annotation of the citations. Traditional features like unigrams and bigrams exhibit strong performance compared to other feature sets. Little or no improvement is obtained when using meta-data or citation structure. Noun phrases are too sparse and thus have lower performance compared to more traditional features. Conceptual annotation of the texts by MetaMap shows similar performance compared to unigrams, but adding concepts from the UMLS taxonomy does not improve the performance of using only mapped concepts. The combination of all the features performs largely better than any individual feature set considered. In addition, this combination improves the performance of a state-of-the-art MeSH indexer. Concerning the machine learning algorithms, we find that those that are more resilient to class imbalance largely obtain better performance. We conclude that even though traditional features such as unigrams and bigrams have strong performance compared to other features, it is possible to combine them to effectively improve the performance of the bag-of-words representation. We have also found that the combination of the learning algorithm and feature sets has an influence in the overall performance of the system. Moreover, using learning algorithms resilient to class imbalance largely improves performance. However, when using a large set of features, consideration needs to be taken with algorithms due to the risk of over-fitting. Specific combinations of learning algorithms and features for individual MeSH headings could further increase the performance of an indexing system.

  20. Feature detection in satellite images using neural network technology

    NASA Technical Reports Server (NTRS)

    Augusteijn, Marijke F.; Dimalanta, Arturo S.

    1992-01-01

    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.

  1. Perspectives for Practice: A New JOSPT Feature to Facilitate Translation of Research Into Practice.

    PubMed

    Abbott, J Haxby

    2016-03-01

    In this month's issue, we introduce a new feature, Perspectives for Practice, which aims to interpret new research in the context of established best practice. This 2-page feature is designed to offer clinicians insight into the state of the art: what was known before, what research was done before, what new evidence the present study found, and how we should interpret this new evidence in light of what was known before. The second page of the Perspectives for Practice will provide additional material useful for teaching and discussion. The structure and content of these features will undergo continued development in response to reader feedback, which we welcome.

  2. Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin

    NASA Astrophysics Data System (ADS)

    Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.

    2017-10-01

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.

  3. Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials

    NASA Astrophysics Data System (ADS)

    Zaraska, L.; Sulka, G. D.; Jaskuła, M.

    2009-01-01

    The influence of the process duration, anodizing potential and methanol addition on the structural features of porous anodic alumina formed in a 0.3 M H3PO4 solutions by twostep self-organized anodizing was investigated for potentials ranging from 100 to 170 V. The structural features of porous structures including pore diameter and interpore distance were evaluated from FE-SEM top-view images for samples anodized in the presence and absence of methanol. For the highest studied anodizing time and methanol volume fraction, an excellent agreement between experimental values of the interpore distance and theoretical predictions was observed. The pore arrangement regularity was analyzed for various electrolyte compositions and anodizing potentials. It was found that the regularity ratio of porous alumina increases linearly with increasing anodizing potential and time. The addition of methanol improves the quality of nanostructures and especially better uniformity of pore sizes is observed in the presence of the highest studied methanol content.

  4. How neighborhood structural and institutional features can shape neighborhood social connectedness: a multilevel study of adolescent perceptions.

    PubMed

    Lenzi, Michela; Vieno, Alessio; Santinello, Massimo; Perkins, Douglas D

    2013-06-01

    According to the norms and collective efficacy model, the levels of social connectedness within a local community are a function of neighborhood structural characteristics, such as socioeconomic status and ethnic composition. The current work aims to determine whether neighborhood structural and institutional features (neighborhood wealth, percentage of immigrants, population density, opportunities for activities and meeting places) have an impact on different components of neighborhood social connectedness (intergenerational closure, trust and reciprocity, neighborhood-based friendship and personal relationships with neighbors). The study involved a representative sample of 389 early and middle adolescents aged 11-15 years old, coming from 31 Italian neighborhoods. Using hierarchical linear modeling, our findings showed that high population density, ethnic diversity, and physical and social disorder might represent obstacles for the creation of social ties within the neighborhood. On the contrary, the presence of opportunities for activities and meeting places in the neighborhood was associated with higher levels of social connectedness among residents.

  5. Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt - Case study

    NASA Astrophysics Data System (ADS)

    Helaly, Ahmad Sobhy

    2017-12-01

    Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.

  6. Lake Superior as seen from Skylab

    NASA Image and Video Library

    1974-01-06

    SL4-139-3953 (7 Jan. 1974) --- An oblique view of a portion of the Middle West looking northeastward toward Lake Superior and Ontario, Canada, as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen with a hand-held 70mm Hasselblad camera using a 100mm lens. Most of the land mass in the foreground is Wisconsin. Iowa is in the lower left corner. Minnesota is at left and upper left. Ontario is in the far right background. Michigan is at right center. Note the circular-shaped feature at center left which was first observed by the Skylab 4 crewmen. The feature is 85 kilometers (55 miles) in diameter, and it is centered near 91.5 degrees west longitude and 44.5 degrees north latitude. The Mississippi River Valley forms the southwest side of the circular feature. The City of La Crosse, Wisconsin, is just south of the near side of the circle, and the Black River completes the southern and eastern part. The City of Eau Claire is at the north edge of the circle. The most likely origin of circular features of this magnitude are (1) volcanic, (2) structural, or (3) meteorite impact. The feature is not volcanic -- the rocks are the wrong type. Possibly it is structural, formed by slight warping of layered rocks into a basin or dome, followed by erosion of all but the most subtle trace of the structure. The feature could be a severely eroded meteorite impact crater. If so, a thorough study of the area may yield evidence of the extreme pressure and temperature the rocks were subjected to by the shock of an impacting meteorite. Photo credit: NASA

  7. Unraveling Appalachian tectonics: domain analysis of topographic lineaments in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Schon, K.; Nussbaum, G. W.; Storer, N. D.; McGuire, J. L.; Hardcastle, K.

    2016-12-01

    Litho-tectonic provinces provide different components of a regions' tectonic history, and are identified as spatial entities with common structural elements, or a number of contiguous related elements. The province boundaries are easily identified when geomorphic expressions are distinct, or significant rock exposure allows for little uncertainty. When exposures are limited, locations of boundaries between provinces are uncertain. In such instances, satellite imagery can be quite advantageous, as tectonically sourced features (faults, folds, fractures, and joints) may exert a strong control on topographic patterns by creating pathways for weathering and erosion. Lineament analyses of topography often focus on well-pronounced tectonic features to interpret regional tectonics. We suggest that lineament analyses including all topographic features may include more subtle tectonic features, resulting in the identification of minor heterogeneities within litho-tectonic provinces. Our study focuses on Appalachian tectonics, specifically in Pennsylvania (PA), home to the Appalachian Orocline and 5 distinct tectonic provinces. Using hillshades from a digital elevation model (DEM) of PA, we manually pick all topographic lineaments 1 km or greater, discriminating only against man-made structures. The final lineament coverage of the state is subdivided into smaller areas for which rose diagrams were prepared. The dominant lineament trends were compared and associated with known structural features. Peaks with no known source are marked as possible tectonic features requiring further research. A domain analysis is performed on the lineament data to identify the extent and interplay of swarms, followed by an investigation of their azimuthal compatibility. We present the results of our domain analysis of all topographic lineaments in the context of identifying litho-tectonic provinces associated with Appalachian tectonics in Pennsylvania, and possible heterogeneities within them.

  8. 'I love my work, but ... ': the 'best' and the 'worst' in nurse educators' working life in Finland.

    PubMed

    Harri, M

    1996-06-01

    The aim of this study was to investigate nurse educators' perceptions of the quality of their working life. Questionnaires were sent to 706 Finnish nurse educators and their spouses or other adult living with them. The results concerning the structured part of the questionnaire have been described in detail in an earlier paper (Harri 1995). This paper describes the data collected by means of semi-structured questions from 477 (68%) educators and 409 (58%) spouses) and open-ended questions (309 nurse educators and 167 spouses), analysed using content analysis. The seven categories that were identified as the best features of work were, in descending order of prevalence: students, freedom, challenges, teaching, miscellaneous, colleagues, and physical environment. Among the worst features of work, workload ranked first, followed by inadequacy of personal resources, administrative issues, changes, interpersonal relationships, miscellaneous, and physical environment. In the open-ended comments the nurse educators used 400 expressions to describe positive features of their working life, while they used 597 expressions to describe negative features. The spouses made 90 positive comments about the working life of their teacher spouse, and 425 negative comments. The importance of this kind of study was remarked on quite frequently both by nurse educators (22%) and their spouses (12%). The study provides important clues to understanding the present reality of nurse educators' working life. It is hoped that the findings of the study will help focus attention on ways of developing the quality of nurse educators' working life.

  9. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1975-01-01

    Selected samples of anomalous surface features commonly associated with the various types of uranium deposits are presented and recommendations for sensor applications are given. The features studied include: epigenetic uranium ore roll type; precambrian basal conglomerate type; vein-type uranium deposits; pipe-structure or diatreme deposits; evaporitic uranium deposits. The hydrogeology of the Mosquito Range and the San Luis Valley is also examined.

  10. Microorganisms in small patterned ground features and adjacent vegetated soils along topographic and climatic gradients in the High Arctic, Canada

    Treesearch

    G. Gonzalez; F.J. Rivera-Figueroa; W. Gould; S.A. Cantrell; J.R. Pérez-Jiménez

    2014-01-01

    In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by...

  11. Multiresolution texture models for brain tumor segmentation in MRI.

    PubMed

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  12. The molecular biology of the group VIA Ca2+-independent phospholipase A2.

    PubMed

    Ma, Z; Turk, J

    2001-01-01

    The group VIA PLA2 is a member of the PLA2 superfamily. This enzyme, which is cytosolic and Ca2+-independent, has been designated iPLA2beta to distinguish it from another recently cloned Ca2+-independent PLA2. Features of iPLA2beta molecular structure offer some insight into possible cellular functions of the enzyme. At least two catalytically active iPLA2beta isoforms and additionalsplicing variants are derived from a single gene that consists of at least 17 exons located on human chromosome 22q13.1. Potential tumor suppressor genes also reside at or near this locus. Structural analyses reveal that iPLA2beta contains unique structural features that include a serine lipase consensus motif (GXSXG), a putative ATP-binding domain, an ankyrin-repeat domain, a caspase-3 cleavage motif DVTD138Y/N, a bipartite nuclear localization signal sequence, and a proline-rich region in the human long isoform. iPLA2beta is widely expressed among mammalian tissues, with highest expression in testis and brain. iPLA2beta prefers to hydrolyze fatty acid at the sn-2 fatty acid substituent but also exhibits phospholipase A1, lysophospholipase, PAF acetylhydrolase, and transacylase activities. iPLA2beta may participate in signaling, apoptosis, membrane phospholipid remodeling, membrane homeostasis, arachidonate release, and exocytotic membrane fusion. Structural features and the existence of multiple splicing variants of iPLA2beta suggest that iPLA2beta may be subject to complex regulatory mechanisms that differ among cell types. Further study of its regulation and interaction with other proteins may yield insight into how its structural features are related to its function.

  13. Feature-Based Morphometry: Discovering Group-related Anatomical Patterns

    PubMed Central

    Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal

    2015-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047

  14. A petrographic and geochemical investigation into the Gatun structure, a possible Tertiary impact structure near Gamboa, Republic de Panama

    NASA Astrophysics Data System (ADS)

    Tornabene, L. L.; Ryan, J. G.; Stewart, R. H.

    2001-05-01

    The Gatun Structure, (Latitude N 09 deg 05' 58.1", Longitude W 79 deg 47' 21.8", situated in the triple-canopy rainforest 10 km to the WSW of the Gamboa and about 2 km south of the Isle of Barbacoas, Republic de Panama), is a partially inundated, quasi-concentric surface feature 2.2km in diameter, which appears in aerial photographs and in radar imagery as an arcuate chain of islands with a raised central feature. Although deeply eroded, the structure possesses traits consistent with complex crater morphology: an elevated circular central uplift feature approximately 500-600 m in diameter and 50m high, and arcuate boundary ridges (a possible rim structure) ranging from 50-100 meters high. Within the central peak, highly altered and fractured siltstone of the Gatuncillo formation (Eocene) are uplifted and exposed through surrounding calcareous units of the Caimito formation (Oligocene), the major target rocks in the structure. The structure is crosscut by numerous dikes of unshocked basalt and basaltic andesite related to volcanism along the Panamanian segment of the Central American arc to the south. Analysis of mineral assemblages of units within the structure, and mineral compositions were measured via SEM-EDS and electron microprobe, using the JEOL SEM-Probe facility at the Center for the Study of Materials in Extreme Conditions (CeSMEC) at Florida International University. Bulk chemical and trace element analysis of whole rock samples were conducted via DC Plasma spectrometry at USF. Occurring concentrically within the structure, are limestones with anomalous spherical glass inclusions, both black and white hypocrystalline glasses (melt rocks?), lithic breccias, and melt-bearing breccias, some of which contain flow banding and evidence of selective melting. Three types of spherules (glass, fluid-drop and lithic), a pyroxene-quartz "necklace" disequilibrium structure and possibly shocked amphibole are all petrographic indicators of a possible impact event. In addition, the presence of maskelynite has been based on petrography, SEM-EDS and by RAMAN spectroscopy. RAMAN results indicated that many plagioclase grains in a blue-green clast bering breccia (suevite?) were highly disordered and amorphous. Considering the distance of the Gatun structure from the explosive volcanism of Panamanian arc (approximately 30 km away), and the presence of spherules, maskelynite and other disequilibrium shock features, an impact origin is our preferred interpretation for the Gatun structure.

  15. Distributed cable sensors with memory feature for post-disaster damage assessment

    NASA Astrophysics Data System (ADS)

    Chen, Genda; McDaniel, Ryan D.; Pommerenke, David J.; Sun, Shishuang

    2005-05-01

    A new design of distributed crack sensors is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is mainly focused on the performance of cable sensors under dynamic loading, particularly their ability to memorize the crack history of an RC member. This unique memory feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads and they are visually undetectable. Factors affecting the onset of the memory feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors were discussed. The sensors were proven to be fatigue resistant from the shake table tests of RC columns. They continued to show useful signal after the columns can no longer support additional loads.

  16. Structure–Function Studies of DNA Polymerase λ

    PubMed Central

    2015-01-01

    DNA polymerase λ (pol λ) functions in DNA repair with its main roles considered to be filling short gaps during repair of double-strand breaks by nonhomologous end joining and during base excision repair. As indicated by structural and biochemical studies over the past 10 years, pol λ shares many common properties with other family X siblings (pol β, pol μ, and terminal deoxynucleotidyl transferase) but also has unique structural features that determine its specific functions. In this review, we consider how structural studies over the past decade furthered our understanding of the behavior and biological roles of pol λ. PMID:24716527

  17. Image segmentation using association rule features.

    PubMed

    Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J

    2002-01-01

    A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.

  18. Numerical study on tailoring the shock sensitivity of TATB-based explosives using mesostructural features

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo

    2017-06-01

    Advanced manufacturing techniques offer control of explosive mesostructures necessary to tailor its shock sensitivity. However, structure-property relationships are not well established for explosives so there is little material design guidance for these techniques. The objective of this numerical study is to demonstrate how TATB-based explosives can be sensitized to shocks using mesostructural features. For this study, we use LX-17 (92.5%wt TATB, 7.5%wt Kel-F 800) as the prototypical TATB-based explosive. We employ features with different geometries and materials. HMX-based explosive features, high shock impedance features, and pores are used to sensitive the LX-17. Simulations are performed in the multi-physics hydrocode, ALE3D. A reactive flow model is used to simulate the shock initiation response of the explosives. Our metric for shock sensitivity in this study is run distance to detonation as a function of applied pressure. These numerical studies are important because they guide the design of novel energetic materials. This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-724986.

  19. Identification Of Minangkabau Landscape Characters

    NASA Astrophysics Data System (ADS)

    Asrina, M.; Gunawan, A.; Aris, Munandar

    2017-10-01

    Minangkabau is one of cultures in indonesia which occupies landscape intact. Landscape of Minangkabau have a very close relationship with the culture of the people. Uniqueness of Minangkabau culture and landscape forming an inseparable characterunity. The landscape is necessarily identified to know the inherent landscape characters. The objective of this study was to identify the character of the Minangkabau landscape characterizes its uniqueness. The study was conducted by using descriptive method comprised literature review and field observasion. Observed the landscape characters comprised two main features, they were major and minor features. Indetification of the features was conducted in two original areas (darek) of the Minangkabau traditional society. The research results showed that major features or natural features of the landscape were predominantly landform, landcover, and hidrology. All luhak (districts) of Minangkabau showed similar main features such as hill, canyon, lake, valley, and forest. The existence of natural features such as hills, canyon and valleys characterizes the nature of minangkabau landscape. Minor features formed by Minangkabau cultural society were agricultural land and settlement. Rumah gadang (big house) is one of famous minor features characterizes the Minangkabau culture. In addition, several historical artefacts of building and others structure may strengthen uniqueness of the Minangkabau landscape character, such as The royal palace, inscription, and tunnels.

  20. SU-E-QI-16: Reproducibility of Computed Tomography Quantitative Structural Features Using the FDA Thoracic Phantom Image Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzevich, M; Grove, O; Balagurunathan, Y

    Purpose: To assess the reproducibility of quantitative structural features using images from the computed tomography thoracic FDA phantom database under different scanning conditions. Methods: Development of quantitative image features to describe lesion shape and size, beyond conventional RECIST measures, is an evolving area of research in need of benchmarking standards. Gavrielides et al. (2010) scanned a FDA-developed thoracic phantom with nodules of various Hounsfield units (HU) values, shapes and sizes close to vascular structures using several scanners and varying scanning conditions/parameters; these images are in the public domain. We tested six structural features, namely, Convexity, Perimeter, Major Axis, Minor Axis,more » Extent Mean and Eccentricity, to characterize lung nodules. Convexity measures lesion irregularity referenced to a convex surface. Previously, we showed it to have prognostic value in lung adenocarcinoma. The above metrics and RECIST measures were evaluated on three spiculated (8mm/-300HU, 12mm/+30HU and 15mm/+30HU) and two non-spiculated (8mm/+100HU and 10mm/+100HU) nodules (from layout 2) imaged at three different mAs values: 25, 100 and 200 mAs; on a Phillips scanner (16-slice Mx8000-IDT; 3mm slice thickness). The nodules were segmented semi-automatically using a commercial software tool; the same HU range was used for all nodules. Results: Analysis showed convexity having the lowest maximum coefficient of variation (MCV): 1.1% and 0.6% for spiculated and non-spiculated nodules, respectively, much lower compared to RECIST Major and Minor axes whose MCV were 10.1% and 13.4% for spiculated, and 1.9% and 2.3% for non-spiculated nodules, respectively, across the various mAs. MCVs were consistently larger for speculated nodules. In general, the dependence of structural features on mAs (noise) was low. Conclusion: The FDA phantom CT database may be used for benchmarking of structural features for various scanners and scanning conditions; we used only a small fraction of available data. Our feature convexity outperformed other structural features including RECIST measures.« less

  1. The structure and rainfall features of Tropical Cyclone Rammasun (2002)

    NASA Astrophysics Data System (ADS)

    Ma, Leiming; Duan, Yihong; Zhu, Yongti

    2004-12-01

    Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysis of TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data, some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at several moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5 in which the validations have been made with the data of TRMM and NCEP/AVN analysis.

  2. Computational prediction of kink properties of helices in membrane proteins

    NASA Astrophysics Data System (ADS)

    Mai, T.-L.; Chen, C.-M.

    2014-02-01

    We have combined molecular dynamics simulations and fold identification procedures to investigate the structure of 696 kinked and 120 unkinked transmembrane (TM) helices in the PDBTM database. Our main aim of this study is to understand the formation of helical kinks by simulating their quasi-equilibrium heating processes, which might be relevant to the prediction of their structural features. The simulated structural features of these TM helices, including the position and the angle of helical kinks, were analyzed and compared with statistical data from PDBTM. From quasi-equilibrium heating processes of TM helices with four very different relaxation time constants, we found that these processes gave comparable predictions of the structural features of TM helices. Overall, 95 % of our best kink position predictions have an error of no more than two residues and 75 % of our best angle predictions have an error of less than 15°. Various structure assessments have been carried out to assess our predicted models of TM helices in PDBTM. Our results show that, in 696 predicted kinked helices, 70 % have a RMSD less than 2 Å, 71 % have a TM-score greater than 0.5, 69 % have a MaxSub score greater than 0.8, 60 % have a GDT-TS score greater than 85, and 58 % have a GDT-HA score greater than 70. For unkinked helices, our predicted models are also highly consistent with their crystal structure. These results provide strong supports for our assumption that kink formation of TM helices in quasi-equilibrium heating processes is relevant to predicting the structure of TM helices.

  3. Effects of dynamic text in an AAC app on sight word reading for individuals with autism spectrum disorder.

    PubMed

    Caron, Jessica; Light, Janice; Holyfield, Christine; McNaughton, David

    2018-06-01

    The purpose of this study was to investigate the effects of Transition to Literacy (T2L) software features (i.e., dynamic text and speech output upon selection of a graphic symbol) within a grid display in an augmentative and alternative communication (AAC) app, on the sight word reading skills of individuals with autism spectrum disorders (ASD) and complex communication needs. The study implemented a single-subject multiple probe research design across one set of three participants. The same design was utilized with an additional set of two participants. As part of the intervention, the participants were exposed to an AAC app with the T2L features during a highly structured matching task. With only limited exposure to the features, the five participants all demonstrated increased accuracy of identification of 12 targeted sight words. This study provides preliminary evidence that redesigning AAC apps to include the provision of dynamic text combined with speech output, can positively impact the sight-word reading of participants during a structured task. This adaptation in AAC system design could be used to complement literacy instruction and to potentially infuse components of literacy learning into daily communication.

  4. Recent crustal movements and seismicity in the western coastal region of peninsular India

    NASA Astrophysics Data System (ADS)

    Kailasam, L. N.

    1983-09-01

    Recent crustal movements, tectonics and seismicity of the western coastal region of peninsular India have been studied in detail in the very recent past. Prominent geomorphic features and large-scale manifestation of Holocene deformation and crustal movements have been noticed and studied over this coastal region from the Gulf of Cambay to the southernmost parts of Kerala, evidence for which is afforded in the form of Recent and sub-Recent raised beaches, sandbars, raised old terraces, pebble beds, etc. The sedimentary formations in this narrow coastal belt include Neogene and Quaternary sediments. The Bouguer gravity map of the western coastal tract shows some prominent gravity features extending into the offshore regions, suggestive of some significant tectonic and structural features. The seismic data in the offshore regions bring out some prominent roughly northwest-southeast as well as east-west faults and shears, in addition to prominent structural "highs" off the Bombay and Ratnagiri coast which have proved oil. The seismicity in this coastal tract as well as the faulted western margin of the western continental shelf in the Arabian Sea is generally of magnitude 3-6.

  5. Joint source based analysis of multiple brain structures in studying major depressive disorder

    NASA Astrophysics Data System (ADS)

    Ramezani, Mahdi; Rasoulian, Abtin; Hollenstein, Tom; Harkness, Kate; Johnsrude, Ingrid; Abolmaesumi, Purang

    2014-03-01

    We propose a joint Source-Based Analysis (jSBA) framework to identify brain structural variations in patients with Major Depressive Disorder (MDD). In this framework, features representing position, orientation and size (i.e. pose), shape, and local tissue composition are extracted. Subsequently, simultaneous analysis of these features within a joint analysis method is performed to generate the basis sources that show signi cant di erences between subjects with MDD and those in healthy control. Moreover, in a cross-validation leave- one-out experiment, we use a Fisher Linear Discriminant (FLD) classi er to identify individuals within the MDD group. Results show that we can classify the MDD subjects with an accuracy of 76% solely based on the information gathered from the joint analysis of pose, shape, and tissue composition in multiple brain structures.

  6. Managed forest landscape structure and avian species richness in the southeastern US

    Treesearch

    Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2005-01-01

    Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...

  7. The patch mosaic and ecological decomposition across spatial scales in a managed landscape of northern Wisconsin, USA

    Treesearch

    Sari C. ​Saunders; Jiquan Chen; Thomas D. Drummer; Thomas R. Crow; Kimberley D. Brosofske; Eric J. Gustafson

    2002-01-01

    Understanding landscape organization across scales is vital for determining the impacts of management and retaining structurally and functionally diverse ecosystems. We studied the relationships of a functional variable, decomposition, to microclimatic, vegetative and structural features at multiple scales in two distinct landscapes of northern Wisconsin, USA. We hoped...

  8. Structural Equation Modeling of Group Differences in CES-D Ratings of Native Hawaiian and Non-Hawaiian High School Students.

    ERIC Educational Resources Information Center

    McArdle, John J.; Johnson, Ronald C.; Hishinuma, Earl S.; Miyamoto, Robin H.; Andrade, Naleen N.

    2001-01-01

    Analyzes differences in self-reported Center for Epidemiologic Studies Depression inventory results among ethnic Hawaiian and non-Hawaiian high school students, using different forms of latent variable structural equation models. Finds a high degree of invariance between students on depression. Discusses issues about common features and…

  9. The Effects of Individual Differences on Learner's Navigation in a Courseware

    ERIC Educational Resources Information Center

    Somyürek, Sibel; Güyer, Tolga; Atasoy, Bilal

    2008-01-01

    One of the major features of a computer based instruction (CBI) is its non-linear structure allowing learners the opportunity of flexible navigation to accommodate their own needs. However, this non-linear structure may cause problems such as inefficient navigation, being lost or cognitive overhead for some learners. The aim of this study is to…

  10. Grammar as a Joint Achievement: Co-Constructions in L2 Interactions

    ERIC Educational Resources Information Center

    Family, Neiloufar; Durus, Natalia; Ziegler, Gudrun

    2015-01-01

    In this study, we present and analyze co-constructions from L2 English data collected at the European School in Luxembourg. Co-constructions are morpho-syntactic structures split across two speakers, in which a second speaker completes a grammatical structure initiated by the first speaker in conversation. The corpus features multilingual 13-14…

  11. Fundamental Studies of Strength Physics--Methodology of Longevity Prediction of Materials under Arbitrary Thermally and Forced Effects

    ERIC Educational Resources Information Center

    Petrov, Mark G.

    2016-01-01

    Thermally activated analysis of experimental data allows considering about the structure features of each material. By modelling the structural heterogeneity of materials by means of rheological models, general and local plastic flows in metals and alloys can be described over. Based on physical fundamentals of failure and deformation of materials…

  12. Structural Features of a Picornavirus Polymerase Involved in the Polyadenylation of Viral RNA

    PubMed Central

    Kempf, Brian J.; Kelly, Michelle M.; Springer, Courtney L.; Peersen, Olve B.

    2013-01-01

    Picornaviruses have 3′ polyadenylated RNA genomes, but the mechanisms by which these genomes are polyadenylated during viral replication remain obscure. Based on prior studies, we proposed a model wherein the poliovirus RNA-dependent RNA polymerase (3Dpol) uses a reiterative transcription mechanism while replicating the poly(A) and poly(U) portions of viral RNA templates. To further test this model, we examined whether mutations in 3Dpol influenced the polyadenylation of virion RNA. We identified nine alanine substitution mutations in 3Dpol that resulted in shorter or longer 3′ poly(A) tails in virion RNA. These mutations could disrupt structural features of 3Dpol required for the recruitment of a cellular poly(A) polymerase; however, the structural orientation of these residues suggests a direct role of 3Dpol in the polyadenylation of RNA genomes. Reaction mixtures containing purified 3Dpol and a template RNA with a defined poly(U) sequence provided data consistent with a template-dependent reiterative transcription mechanism for polyadenylation. The phylogenetically conserved structural features of 3Dpol involved in the polyadenylation of virion RNA include a thumb domain alpha helix that is positioned in the minor groove of the double-stranded RNA product and lysine and arginine residues that interact with the phosphates of both the RNA template and product strands. PMID:23468507

  13. Effects of metric hierarchy and rhyme predictability on word duration in The Cat in the Hat.

    PubMed

    Breen, Mara

    2018-05-01

    Word durations convey many types of linguistic information, including intrinsic lexical features like length and frequency and contextual features like syntactic and semantic structure. The current study was designed to investigate whether hierarchical metric structure and rhyme predictability account for durational variation over and above other features in productions of a rhyming, metrically-regular children's book: The Cat in the Hat (Dr. Seuss, 1957). One-syllable word durations and inter-onset intervals were modeled as functions of segment number, lexical frequency, word class, syntactic structure, repetition, and font emphasis. Consistent with prior work, factors predicting longer word durations and inter-onset intervals included more phonemes, lower frequency, first mention, alignment with a syntactic boundary, and capitalization. A model parameter corresponding to metric grid height improved model fit of word durations and inter-onset intervals. Specifically, speakers realized five levels of metric hierarchy with inter-onset intervals such that interval duration increased linearly with increased height in the metric hierarchy. Conversely, speakers realized only three levels of metric hierarchy with word duration, demonstrating that they shortened the highly predictable rhyme resolutions. These results further understanding of the factors that affect spoken word duration, and demonstrate the myriad cues that children receive about linguistic structure from nursery rhymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Functional correlation of bacterial LuxS with their quaternary associations: interface analysis of the structure networks

    PubMed Central

    Bhattacharyya, Moitrayee; Vishveshwara, Saraswathi

    2009-01-01

    Background The genome of a wide variety of prokaryotes contains the luxS gene homologue, which encodes for the protein S-ribosylhomocysteinelyase (LuxS). This protein is responsible for the production of the quorum sensing molecule, AI-2 and has been implicated in a variety of functions such as flagellar motility, metabolic regulation, toxin production and even in pathogenicity. A high structural similarity is present in the LuxS structures determined from a few species. In this study, we have modelled the structures from several other species and have investigated their dimer interfaces. We have attempted to correlate the interface features of LuxS with the phenotypic nature of the organisms. Results The protein structure networks (PSN) are constructed and graph theoretical analysis is performed on the structures obtained from X-ray crystallography and on the modelled ones. The interfaces, which are known to contain the active site, are characterized from the PSNs of these homodimeric proteins. The key features presented by the protein interfaces are investigated for the classification of the proteins in relation to their function. From our analysis, structural interface motifs are identified for each class in our dataset, which showed distinctly different pattern at the interface of LuxS for the probiotics and some extremophiles. Our analysis also reveals potential sites of mutation and geometric patterns at the interface that was not evident from conventional sequence alignment studies. Conclusion The structure network approach employed in this study for the analysis of dimeric interfaces in LuxS has brought out certain structural details at the side-chain interaction level, which were elusive from the conventional structure comparison methods. The results from this study provide a better understanding of the relation between the luxS gene and its functional role in the prokaryotes. This study also makes it possible to explore the potential direction towards the design of inhibitors of LuxS and thus towards a wide range of antimicrobials. PMID:19243584

  15. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model.

    PubMed

    Yin, Zhong; Zhao, Mengyuan; Wang, Yongxiong; Yang, Jingdong; Zhang, Jianhua

    2017-03-01

    Using deep-learning methodologies to analyze multimodal physiological signals becomes increasingly attractive for recognizing human emotions. However, the conventional deep emotion classifiers may suffer from the drawback of the lack of the expertise for determining model structure and the oversimplification of combining multimodal feature abstractions. In this study, a multiple-fusion-layer based ensemble classifier of stacked autoencoder (MESAE) is proposed for recognizing emotions, in which the deep structure is identified based on a physiological-data-driven approach. Each SAE consists of three hidden layers to filter the unwanted noise in the physiological features and derives the stable feature representations. An additional deep model is used to achieve the SAE ensembles. The physiological features are split into several subsets according to different feature extraction approaches with each subset separately encoded by a SAE. The derived SAE abstractions are combined according to the physiological modality to create six sets of encodings, which are then fed to a three-layer, adjacent-graph-based network for feature fusion. The fused features are used to recognize binary arousal or valence states. DEAP multimodal database was employed to validate the performance of the MESAE. By comparing with the best existing emotion classifier, the mean of classification rate and F-score improves by 5.26%. The superiority of the MESAE against the state-of-the-art shallow and deep emotion classifiers has been demonstrated under different sizes of the available physiological instances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Luminescence studies of HgCdTe- and InAsSb-based quantum-well structures

    NASA Astrophysics Data System (ADS)

    Izhnin, I. I.; Izhnin, A. I.; Fitsych, O. I.; Voitsekhovskii, A. V.; Gorn, D. I.; Semakova, A. A.; Bazhenov, N. L.; Mynbaev, K. D.; Zegrya, G. G.

    2018-04-01

    Results of photoluminescence studies of single-quantum-well HgCdTe-based structures and electroluminescence studies of multiple-quantum-well InAsSb-based structures are reported. HgCdTe structures were grown with molecular beam epitaxy on GaAs substrates. InAsSb-based structures were grown with metal-organic chemical vapor deposition on InAs substrates. The common feature of luminescence spectra of all the structures was the presence of peaks with the energy much larger than that of calculated optical transitions between the first quantization levels for electrons and heavy holes. Possibility of observation of optical transitions between the quantization levels of electrons and first and/or second heavy and light hole levels is discussed in the paper in relation to the specifics of the electronic structure of the materials under consideration.

  17. Craters of elevation / forced folds: more examples of shallow magma accumulation and its consequences

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin; Marquez, Alvaro; Craig, Magee; Valdislav, Rapprich; Hetherington, Rachel; Bastow, Ian

    2016-04-01

    Craters of elevation are uplifts with apical depressions that are caused by shallow magma intrusion. Forced folds are dome-like folds caused by magma intrusion that also have apical extensional structures. They are the same feature described from the different viewpoints of the volcanologist and the structural geologist. While working on such features in the Chaîne des Puys (Central France), and Ethiopia we have been searching for other examples in the world. This is our most up to date review of such phenomena taken from a global search in the world of volcanology where some stunning examples are seen in the landscape, and in outcrop. We also show such features from tectonics data and literature, where such features are superbly displayed in seismic data. We take three examples, the Puy de Gouttes, in the Chaîne des Puys, the Montana Encantada in Lanzarote, which we have mapped in the field, and the Diamond Craters National Monument in Oregon to show the different structures and possible evolutionary trends that such features can follow. We use the observations to integrate the possible eruptive, deformational and structural events that can combine in a forced fold to create the surface features observed at such craters of elevation. The hazard implications of the growth and destruction of such features are assessed.

  18. Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos

    PubMed Central

    Freyhult, Eva; Moulton, Vincent; Ardell, David H.

    2006-01-01

    Sequence logos are stacked bar graphs that generalize the notion of consensus sequence. They employ entropy statistics very effectively to display variation in a structural alignment of sequences of a common function, while emphasizing its over-represented features. Yet sequence logos cannot display features that distinguish functional subclasses within a structurally related superfamily nor do they display under-represented features. We introduce two extensions to address these needs: function logos and inverse logos. Function logos display subfunctions that are over-represented among sequences carrying a specific feature. Inverse logos generalize both sequence logos and function logos by displaying under-represented, rather than over-represented, features or functions in structural alignments. To make inverse logos, a compositional inverse is applied to the feature or function frequency distributions before logo construction, where a compositional inverse is a mathematical transform that makes common features or functions rare and vice versa. We applied these methods to a database of structurally aligned bacterial tDNAs to create highly condensed, birds-eye views of potentially all so-called identity determinants and antideterminants that confer specific amino acid charging or initiator function on tRNAs in bacteria. We recovered both known and a few potentially novel identity elements. Function logos and inverse logos are useful tools for exploratory bioinformatic analysis of structure–function relationships in sequence families and superfamilies. PMID:16473848

  19. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions

    PubMed Central

    Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392

  20. An evaluation of the suitability of ERTS data for the purposes of petroleum exploration

    NASA Technical Reports Server (NTRS)

    Collins, R. J., Jr. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery seems to be good to excellent for reconnaissance level investigations of large sedimentary basins such as the Anadarko Basin. Many lithologic boundaries, and geomorphic features, and linear features inferred to be indicative of geologic structure are visible in the imagery. This imagery in conjunction with high altitude photography seems to be useful as a tool for intermediate level geologic exploration. Several types of crudely circular anomalous features, such as geomorphic/structural anomalies, hazy areas and tonal anomalies, are identifiable in the imagery. There seems to be a strong correlation between the geomorphic/structural and hazy anomalies and known structurally controlled oil and gas fields. The features recognizable on ERTS-1 imagery and their ease of recognition vary from area to area even in imagery acquired at the same time under essentially uniform atmospheric conditions. Repeated coverage is exceedingly valuable in geologic applications. One time complete coverage even for the various seasons does not reveal all the features that ERTS-1 can reveal.

  1. New techniques for the quantification and modeling of remotely sensed alteration and linear features in mineral resource assessment studies

    USGS Publications Warehouse

    Trautwein, C.M.; Rowan, L.C.

    1987-01-01

    Linear structural features and hydrothermally altered rocks that were interpreted from Landsat data have been used by the U.S. Geological Survey (USGS) in regional mineral resource appraisals for more than a decade. In the past, linear features and alterations have been incorporated into models for assessing mineral resources potential by manually overlaying these and other data sets. Recently, USGS research into computer-based geographic information systems (GIS) for mineral resources assessment programs has produced several new techniques for data analysis, quantification, and integration to meet assessment objectives.

  2. Proepileptic patterns in EEG of WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Yu.; Nedaivozov, Vladimir O.; Koronovskii, Alexey A.

    2018-04-01

    In this paper we study specific oscillatory patterns on EEG signals of WAG/Rij rats. These patterns are known as proepileptic because they occur in time period during the development of absence-epilepsy before fully-formed epileptic seizures. In the paper we analyze EEG signals of WAG/Rij rats with continuous wavelet transform and empirical mode decomposition in order to find particular features of epileptic spike-wave discharges and nonepileptic sleep spindles. Then we introduce proepileptic activity as patterns that combine features of epileptic and non-epileptic activity. We analyze proepileptic activity in order to specify its features and time-frequency structure.

  3. Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development.

    PubMed

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1984-11-01

    The sequence of events in the development of the brain in staged human embryos was investigated in much greater detail than in previous studies by listing 100 features in 165 embryos of the first 5 weeks. Using a computerized bubble-sort algorithm, individual embryos were ranked in ascending order of the features present. This procedure made feasible an appreciation of the slight variation found in the developmental features. The vast majority of features appeared during either one or two stages (about 2 or 3 days). In general, the soundness of the Carnegie system of embryonic staging was amply confirmed. The rhombencephalon was found to show increasing complexity around stage 13, and the postoptic portion of the diencephalon underwent considerable differentiation by stage 15. The need for similar investigations of other systems of the body is emphasized, and the importance of such studies in assessing the timing of congenital malformations and in clarifying syndromic clusters is suggested.

  4. Detecting molecular features of spectra mainly associated with structural and non-structural carbohydrates in co-products from bioEthanol production using DRIFT with uni- and multivariate molecular spectral analyses.

    PubMed

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates.

  5. Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain.

    PubMed

    Latha, Manohar; Kavitha, Ganesan

    2018-02-03

    Schizophrenia (SZ) is a psychiatric disorder that especially affects individuals during their adolescence. There is a need to study the subanatomical regions of SZ brain on magnetic resonance images (MRI) based on morphometry. In this work, an attempt was made to analyze alterations in structure and texture patterns in images of the SZ brain using the level-set method and Laws texture features. T1-weighted MRI of the brain from Center of Biomedical Research Excellence (COBRE) database were considered for analysis. Segmentation was carried out using the level-set method. Geometrical and Laws texture features were extracted from the segmented brain stem, corpus callosum, cerebellum, and ventricle regions to analyze pattern changes in SZ. The level-set method segmented multiple brain regions, with higher similarity and correlation values compared with an optimized method. The geometric features obtained from regions of the corpus callosum and ventricle showed significant variation (p < 0.00001) between normal and SZ brain. Laws texture feature identified a heterogeneous appearance in the brain stem, corpus callosum and ventricular regions, and features from the brain stem were correlated with Positive and Negative Syndrome Scale (PANSS) score (p < 0.005). A framework of geometric and Laws texture features obtained from brain subregions can be used as a supplement for diagnosis of psychiatric disorders.

  6. A neighboring structure reconstructed matching algorithm based on LARK features

    NASA Astrophysics Data System (ADS)

    Xue, Taobei; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-11-01

    Aimed at the low contrast ratio and high noise of infrared images, and the randomness and ambient occlusion of its objects, this paper presents a neighboring structure reconstructed matching (NSRM) algorithm based on LARK features. The neighboring structure relationships of local window are considered based on a non-negative linear reconstruction method to build a neighboring structure relationship matrix. Then the LARK feature matrix and the NSRM matrix are processed separately to get two different similarity images. By fusing and analyzing the two similarity images, those infrared objects are detected and marked by the non-maximum suppression. The NSRM approach is extended to detect infrared objects with incompact structure. High performance is demonstrated on infrared body set, indicating a lower false detecting rate than conventional methods in complex natural scenes.

  7. MEVTV Workshop on Tectonic Features on Mars

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R. (Editor); Golombek, Matthew P. (Editor)

    1989-01-01

    The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed.

  8. Experimental shock deformation in zircon: a transmission electron microscopic study

    NASA Astrophysics Data System (ADS)

    Leroux, H.; Reimold, W. U.; Koeberl, C.; Hornemann, U.; Doukhan, J.-C.

    1999-06-01

    In recent years, apparently shock-induced and, thus, impact-characteristic microdeformations, in the form of planar microdeformation features and so-called strawberry (granular) texture, have been observed in zircons in rocks from confirmed impact structures and from the K/ T boundary. The nature of the planar microdeformations in this mineral is, however, still unknown, and critical information is needed regarding the shock pressure range in which these deformation effects are produced. We experimentally shock deformed two series of thin zircon (ZrSiO 4) target plates, cut perpendicular to the c-axis, at shock pressures of 20, 40, and 60 GPa. The recovered samples were characterized by optical and scanning electron microscopy. In addition, one sample series was studied by transmission electron microscopy (TEM). Microdeformation effects observed at 20 GPa include pervasive micro-cleavage and dislocation patterns. Plastic deformation is indicated by a high density of straight dislocations in glide configuration. The dominant glide systems are <100>{010}. Micro-cleavages, induced by shear stresses during the compression stage, occur mostly in the {100} planes. The large density of dislocations at crack tips shows that plastic deformation was initiated by the micro-cracking processs. At 40 GPa, the sample was partly transformed from the zircon (z) to a scheelite (CaWO 4)-type (s) structure. Planar deformation features (PDFs) containing an amorphous phase of zircon composition are present in the not yet transformed zircon relics. The phase with scheelite structure, initiated in the {100} planes of zircon, consists of thin (0.1 to several μm) bands that crosscut the zircon matrix. The phase transformation is displacive (martensitic) and can be related by {100} z // {112} s and [001] z // <110> s. The scheelite structure phase is densely twinned, with twins in the (112) plane. The 60-GPa sample consists completely of the scheelite structure phase. Crosscutting and displacing relationships between twins and PDFs demonstrate that PDFs are formed in the zircon structure, i.e., before the phase transformation to the scheelite structure occurred, most likely at the shock front. Crystallographic orientations of optically visible planar features in zircon, in comparison with orientations of planar defects at the TEM scale, suggest that the optically visible features are more likely planar microfractures than PDFs.

  9. Compact, Two-Sided Structural Cold Plate Configuration

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark

    2011-01-01

    In two-sided structural cold plates, typically there is a structural member, such as a honeycomb panel, that provides the structural strength for the cold plates that cool equipment. The cold plates are located on either side of the structural member and thus need to have the cooling fluid supplied to them. One method of accomplishing this is to route the inlet and outlet tubing to both sides of the structural member. Another method might be to supply the inlet to one side and the outlet to the other. With the latter method, an external feature such as a hose, tube, or manifold must be incorporated to pass the fluid from one side of the structural member to the other. Although this is a more compact design than the first option, since it eliminates the need for a dedicated supply and return line to each side of the structural member, it still poses problems, as these external features can be easily damaged and are now new areas for potential fluid leakage. This invention eliminates the need for an external feature and instead incorporates the feature internally to the structural member. This is accomplished by utilizing a threaded insert that not only connects the cold plate to the structural member, but also allows the cooling fluid to flow through it into the structural member, and then to the cold plate on the opposite side. The insert also employs a cap that acts as a cover to seal the open area needed to install the insert. There are multiple options for location of o-ring style seals, as well as the option to use adhesive for redundant sealing. Another option is to weld the cap to the cold plate after its installation, thus making it an integral part of the structural member. This new configuration allows the fluid to pass from one cold plate to the other without any exposed external features.

  10. Molecular engineering of phosphole-based conjugated materials

    NASA Astrophysics Data System (ADS)

    Ren, Yi

    The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well-organized lamellar structure at a wide range of temperatures. Importantly, its dynamic structure endows the phosphole-lipid system with intriguing external stimuli-responsive features allowing for the modification of the emission of the system without further chemical modification. Chapter Five describes how further molecular engineering allowed for access to a series of new highly fluorescent phosphole-lipid organogels. Remarkably, the external-stimuli responsive features of the system can be amplified in a donor-acceptor system accessible through changes in long distance fluorescence resonance energy transfer processes. In addition, the first fluorescent liquid phospholes could also be accessed in the context of the work on the new phosphole-lipid system.

  11. Why Not Start with Quarks? Teachers Investigate a Learning Unit on the Subatomic Structure of Matter with 12-Year-Olds

    ERIC Educational Resources Information Center

    Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin

    2017-01-01

    This paper describes the second in a series of studies exploring the acceptance of the subatomic structure of matter by 12-year-olds. The studies focus on a novel learning unit introducing an atomic model from electrons down to quarks, which is aimed to be used at an early stage in the physics curriculum. Three features are fundamental to the…

  12. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    PubMed

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  13. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei

    2017-07-01

    Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.

  14. DSSR-enhanced visualization of nucleic acid structures in Jmol

    PubMed Central

    Hanson, Robert M.

    2017-01-01

    Abstract Sophisticated and interactive visualizations are essential for making sense of the intricate 3D structures of macromolecules. For proteins, secondary structural components are routinely featured in molecular graphics visualizations. However, the field of RNA structural bioinformatics is still lagging behind; for example, current molecular graphics tools lack built-in support even for base pairs, double helices, or hairpin loops. DSSR (Dissecting the Spatial Structure of RNA) is an integrated and automated command-line tool for the analysis and annotation of RNA tertiary structures. It calculates a comprehensive and unique set of features for characterizing RNA, as well as DNA structures. Jmol is a widely used, open-source Java viewer for 3D structures, with a powerful scripting language. JSmol, its reincarnation based on native JavaScript, has a predominant position in the post Java-applet era for web-based visualization of molecular structures. The DSSR-Jmol integration presented here makes salient features of DSSR readily accessible, either via the Java-based Jmol application itself, or its HTML5-based equivalent, JSmol. The DSSR web service accepts 3D coordinate files (in mmCIF or PDB format) initiated from a Jmol or JSmol session and returns DSSR-derived structural features in JSON format. This seamless combination of DSSR and Jmol/JSmol brings the molecular graphics of 3D RNA structures to a similar level as that for proteins, and enables a much deeper analysis of structural characteristics. It fills a gap in RNA structural bioinformatics, and is freely accessible (via the Jmol application or the JSmol-based website http://jmol.x3dna.org). PMID:28472503

  15. Structural studies of G protein-coupled receptors.

    PubMed

    Lu, Mengjie; Wu, Beili

    2016-11-01

    G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y 1 R and P2Y 12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery. In addition, we discuss the prospect of GPCR structure-based drug discovery. © 2016 IUBMB Life, 68(11):894-903, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Analytical study of sandwich structures using Euler-Bernoulli beam equation

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.

    2017-01-01

    This paper presents an analytical study of sandwich structures. In this study, the Euler-Bernoulli beam equation is solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements and longitudinal stresses for each particular material in the sandwich structure.

  17. Analysis of active volcanoes from the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter; Rowland, Scott; Crisp, Joy; Glaze, Lori; Jones, Kenneth; Kahle, Anne; Pieri, David; Zebker, Howard; Krueger, Arlin; Walter, Lou

    1991-01-01

    The Earth Observing System (EOS) scheduled for launch in 1997 and 1999 is briefly described, and the EOS volcanology investigation objectives are discussed. The volcanology investigation will include long- and short-term monitoring of selected volcanoes, the detection of precursor activity associated with unanticipated eruptions, and a detailed study of on-going eruptions. A variety of instruments on the EOS platforms will enable the study of local- and regional-scale thermal and deformational features of volcanoes, and the chemical and structural features of volcanic eruption plumes and aerosols.

  18. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    NASA Astrophysics Data System (ADS)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  19. Static Stability in the Global Upper Troposphere and Lower Stratosphere: Observations of Long-term Mean Structure and Variability using GPS Radio Occultation Data

    NASA Astrophysics Data System (ADS)

    Grise, K. M.; Thompson, D. W.; Birner, T.

    2009-12-01

    Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.

  20. Static Stability in the Global Upper Troposphere and Lower Stratosphere: Observations of Long-term Mean Structure and Variability using GPS Radio Occultation Data

    NASA Astrophysics Data System (ADS)

    Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas

    2010-05-01

    Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.

Top