Linking genes to ecosystem trace gas fluxes in a large-scale model system
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.
2017-12-01
Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to microorganisms pioneering fresh mineral matrix. Additionally, the measurement and modeling techniques that will be developed at LEO will be relevant for other investigators linking microbial genomics to ecosystem function in more well-developed soils with greater complexity.
Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing
2014-11-01
Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C 1 -C 4 ) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C 5 -C 14 ) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ 13 C signatures determined by SPME-GC/IRMS were in good agreement with the known δ 13 C values of C 5 -C 14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ 13 C values for C 5 -C 14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas. Published by Elsevier B.V.
Suzuki, Taku T; Sakaguchi, Isao
2016-01-01
Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.
NASA Astrophysics Data System (ADS)
Bernhardt, E. S.; Helton, A. M.; Morse, J. L.; Poole, G. C.
2013-12-01
Wetlands are the dominant natural source of methane to the global atmosphere and can be important sites of either N2O emission or consumption. Changes in the spatial extent or inundation frequency and duration may lead to substantial shifts in the contribution of wetland ecosystems to global CH4 and N2O emissions. Trace gases are produced at the scale of individual microbes, each of which respond dynamically to the local availability of electron donors and acceptors. Within landscape patches, substrate supply and redox conditions are strongly controlled by variation in water table elevation and vertical hydrologic exchange. At the landscape scale, lateral exchange between patches and the extent and duration of inundation. Accurate estimates of trace gas emissions from wetlands are hard to estimate given the dynamic patterns of redox potential within the soil column and across the landscape that redistribute electron donors and acceptors both vertically and laterally. In five years of trace gas flux measurement and modeling at TOWER, a 440 ha restored wetland in coastal NC, we have developed both simulation and statistical models to estimate landscape level trace gas fluxes. Yet, because trace gas emissions are highly variable in both time and space, our qualitative and quantitative attempts at upscaling trace gas emissions typically generate estimates with extremely high uncertainty. In this talk we will explore the challenges inherent to the estimation of landscape scale trace gas fluxes at the scale of our individual ecosystem as well as the difficulties in extrapolating across multiple ecosystem studies.
BOREAS TGB-5 CO2, CH4 and CO Chamber Flux Data Over the NSA
NASA Technical Reports Server (NTRS)
Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and flux measurements at several NSA sites. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber flux measurements conducted in 1994 at upland forest sites that experienced stand-replacement fires. These measurements were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control sites, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.
Sevimoğlu, Orhan; Tansel, Berrin
2013-01-01
Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.
2000-04-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
BOREAS TGB-1/TGB-3 NEE Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bellisario, Lianne; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-1) and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains Net Ecosystem Exchange of CO2 (NEE) measurements collected with chambers at the NSA fen in 1994 and 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Mobile Platforms for Continuous Spatial Measurements of Urban Trace Gases and Criteria Pollutants
NASA Astrophysics Data System (ADS)
Fasoli, B.; Mitchell, L.; Bares, R.; Crosman, E.; Bush, S. E.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.
2015-12-01
Surface-based observations of atmospheric trace gases and criteria pollutants provide critical data on how emissions and pollutant concentrations vary over time. However, traditional stationary measurement sites only quantify concentrations at a single point in space, limiting our ability to understand spatial patterns. Using trace gas instrumentation capable of making continuous high-frequency (~1s) measurements, we have developed mobile platforms to complement stationary observation sites in order to better constrain the heterogeneity and complexities of urban emissions. These compact trace gas and criteria pollutant measurement systems are capable of precisely measuring CO2, CH4 PM2.5, O3, NOx, and several meteorological parameters on TRAX, Salt Lake City's light-rail system, and in a van-based mobile laboratory. Using case study observations, we discuss mobile measurement methodologies and the practical applications of mobile trace gas sampling platforms.
Using numerical simulations to study the ICM metallicity fields in clusters and groups
NASA Astrophysics Data System (ADS)
Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.
2018-01-01
Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.
NASA Astrophysics Data System (ADS)
Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.
2010-01-01
Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.
NASA Astrophysics Data System (ADS)
Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.
2009-07-01
Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.
Trace gas fluxes from a northern mixed-grass prairie interseeded with alfalfa
USDA-ARS?s Scientific Manuscript database
The role of legumes in improving soil fertility, forage quantity and quality is well established, however what is less clear is the extent that the nitrogen fixed by legumes may drive increased trace gas emissions. A chronosequence study in native prairie that had been interseed with the legume alfa...
Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.
2000-01-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
Trubyanov, Maxim M; Mochalov, Georgy M; Suvorov, Sergey S; Puzanov, Egor S; Petukhov, Anton N; Vorotyntsev, Ilya V; Vorotyntsev, Vladimir M
2018-07-27
The current study focuses on the processes involved during the flow conversion of water into acetylene in a calcium carbide reaction cell for the trace moisture analysis of ammonia by reaction gas chromatography. The factors negatively affecting the reproducibility and the accuracy of the measurements are suggested and discussed. The intramolecular reaction of the HOCaCCH intermediate was found to be a side reaction producing background acetylene during the contact of wet ammonia gas with calcium carbide. The presence of the HOCaCCH intermediate among the reaction products is confirmed by an FTIR spectral study of calcium carbide powder exposed to wet gas. The side reaction kinetics is evaluated experimentally and its influence on the results of the gas chromatographic measurements is discussed in relation to the determination of the optimal operating parameters for ammonia analysis. The reaction gas chromatography method for the trace moisture measurements in an ammonia matrix was experimentally compared to an FTIR long-path length gas cell technique to evaluate the accuracy limitations and the resource intensity. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.
1994-01-01
The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.
NASA Technical Reports Server (NTRS)
Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.
2001-01-01
A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.
NASA Astrophysics Data System (ADS)
Sparks, A.
2012-12-01
The importance of wildland fire as a source of trace gas emissions to the atmosphere has been demonstrated in the scientific literature and through numerous NASA funded campaigns to further understand the drivers and impacts of these emissions (e.g., SAFARI 1992, SAFARI 2000, TRACE A, etc). Most studies quantify the emissions using remotely sensed data through multiplying the area burned, the quantity of fuel combusted, and the emission factors of a given gas species (EFX, grams of gas, X, emitted per kilogram of fuel consumed). The latter is known to exhibit considerable uncertainty and indeed a prior study as part of NASA's SAFARI 2000 campaign highlighted a seasonal dependence of carbonaceous gas species emissions. Building off these past studies, the focus of the proposed research is to assess the influence of both seasonality and shifting vegetation composition (via replacement of native with invasive species), on the emissions of trace gases in semi-arid ecosystems. Emissions data will help lower emission factor uncertainties in sagebrush-steppe ecosystems as well as inform management decisions about the best burning times in a season (in terms of air quality and greenhouse gas production).
Trace gas emissions from nursery crop production using different fertilizer methods
USDA-ARS?s Scientific Manuscript database
Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...
Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.
2017-01-01
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065
Photoacoustic Effect of Ethene: Sound Generation due to Plant Hormone Gases.
NASA Astrophysics Data System (ADS)
Park, Han Jung; Ide, David; University of Tennessee at Chattanooga Team
2017-01-01
Ethene, which is produced in plants as they mature, was used to study its photoacoustic properties using photoacoustic spectroscopy. Detection of trace amounts, with N2 gas, of the ethylene gas were also applied. The gas was tested in various conditions: temperature, concentration of the gas, gas cell length, and power of the laser, were varied to determine their effect on the photoacoustic signal, the ideal conditions to detect trace gas amounts, and concentration of ethylene produced by an avocado and banana. A detection limit of 10 ppm was determined for pure C2H4. A detection of 5% and 13% (by volume) concentration of ethylene were produced for a ripening avocado and banana, respectively, in closed space.
Effects of fertilizer placement on trace gas emissions from container-grown plant production
USDA-ARS?s Scientific Manuscript database
Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...
Effects of fertilizer placement on trace gas emissions from nursery container production
USDA-ARS?s Scientific Manuscript database
Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...
S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise
2013-01-01
In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas- 5 chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...
Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection
Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano
2006-01-01
Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.
The Atmosphere of Crystal Cave: Understanding Sources and Sinks of Trace Gases
NASA Astrophysics Data System (ADS)
Jarnot, A. W.; Hughes, S.; Blake, D. R.
2016-12-01
The atmospheric chemistry of cave systems has not been previously studied in depth; however, cave systems are prime locations to study potential sources and sinks for trace gas pollutants. Relatively constant temperatures, humidity, minimal air flow, and lack of sunlight create a stable environment that allows for biogeochemical processes to go on uninterrupted for extended periods of time. Carbonyl sulfide (OCS) is one of the main contributors to air pollution globally, but many OCS sinks are not fully understood. A preliminary analysis of cave air from Crystal Cave in Sequoia National Park yielded OCS concentrations of 35.2 ± 0.7 pptv, approximately 16 times lower than the average concentration of 568 ± 8 pptv measured outside of the cave. In addition, the concentrations of several other trace gases such as alpha-pinene and methyl bromide were found to be abnormally low (10.5 ± 0.3 pptv inside and 387 ± 8 pptv for alpha-pinene, and 387 ± 8 pptv inside and 11.1 ± 0.4 pptv outside for methyl bromide). The cave air was found to be well-mixed as the concentrations of long lived halocarbons such as CFC-12 were similar inside and outside of the cave (545 ± 5 pptv and 538 ± 4 pptv, respectively). This indicates that there may be one or more factors causing the cave to act a sink for several trace gas species. Further sampling and analysis of the atmosphere in the cave is required to draw any concrete conclusions about the unique environment presented here. The information gathered will help elucidate mechanisms for trace gas degradation, which could yield information about global trace gas budgets and their effect on global air quality.
S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise
2012-01-01
In OctoberâNovember 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...
The Reanalysis for Stratospheric Trace-gas Studies
NASA Technical Reports Server (NTRS)
Pawson, Steven; Li, Shuhua
2002-01-01
In order to re-examine trace gas transport in the middle atmosphere for the period May 1991 until April 1995, a "reanalysis" is being performed using an up-to-date version of the DAO's "GEOS" assimilation system. The Reanalysis for Stratospheric Trace-gas Studies (ReSTS) is intended to provide state-of-the-art estimates of the atmosphere during a period when the Upper Atmospheric Research Satellite provided a high density of trace-gas observations, and when the aerosol loading from the eruption of Mount Pinatubo contaminated the lower stratosphere, at the same time performing a natural tracer transport experiment. This study will present the first results from ReSTS, focussing on the improvements over the meteorological analyses produced by the then-operational GEOS-1 data assimilation system; emphasis will be placed on the improved representations of physical processes between GEOS-1 and the current GEOS-4 systems, highlighting the transport properties of the datasets. Alongside the production of a comprehensive atmospheric dataset, important components of ReSTS include performing sensitivity studies to the formulation of the assimilation system (including the representation of physical processes in the GCM, such as feedbacks between ozone/aerosols and meteorology) and to the inclusion of additional data types (including limb-sounding temperature data alongside the TOVS observations). Impacts of some of these factors on the analyzed meteorology and transport will be discussed. Of particular interest are attempts to determine the relative importance of various steps in the assimilation process to the quality of the final analyses.
R.C. Oliveira Junior; Michael Keller; P. Crill; T. Beldini; J. Van Haren; P. Camargo
2015-01-01
The emission of gases that may potentially intensify the greenhouse effect has received special attention due to their ability to raise global temperatures and possibly modify conditions for life on earth. The objectives of this study were the quantification of trace gas flux (N2O, CO2 and CH4) in soils of the lower Amazon basin that are planted with rice and soybean,...
Ethylene Trace-gas Techniques for High-speed Flows
NASA Technical Reports Server (NTRS)
Davis, David O.; Reichert, Bruce A.
1994-01-01
Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.
1991-01-01
An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.
Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.
Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter; Rella, Chris W; Scheutz, Charlotte
2014-08-01
Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR system can measure multiple trace gasses but with a lower time resolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils
NASA Astrophysics Data System (ADS)
Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.
2009-12-01
Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.
Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang
2006-12-15
Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.
Stratospheric Trace Gas Composition Studies Utilizing in situ Cryogenic, Whole-Air Sampling Methods.
1981-03-10
C A FORSBERG, R V PIERI UNCLASSIFIED AFGL-TR-81-0071 NLEEEE..EEEEEEllllllu *Inaggol/numln ElhElhEEEEEEEI lllllllhhl , O \\ Stratospheric Trace Gas...GRANT NUJMBERr4; Charles A. Forsberg Robert V. Pieri , Capt., USAF Gerard A. Faucher B PERFORMING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELEMENT...launch site. 1 (Received for publication 10 March 1981) 1. Gallagher, C.(C., and Pieri , R. V. (1976) Cryogenic, Whole-Air Sampl1r and Program for
Ohira, Shin-Ichi; Miki, Yusuke; Matsuzaki, Toru; Nakamura, Nao; Sato, Yu-ki; Hirose, Yasuo; Toda, Kei
2015-07-30
Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (<1 parts per million by volume (ppmv) of H2O, dew point < -76 °C) in the industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Soil microbes dominate processes that regulate soil trace gas emissions and soil C and N dynamics. Intensive management in agroecosystems provides unique opportunities to assess the effectiveness of microbial manipulations to enhance soil C retention and reduce trace gas emissions. While reduced til...
Irrigation and fertilizer placement effects on trace gas emissions from an ornamental crop
USDA-ARS?s Scientific Manuscript database
Agriculture is a large contributor of trace gas emissions and much of the work on reducing greenhouse gas (GHG) emissions has focused on row crops, pastures, forestry, and animal production systems; however, little emphasis has been placed on specialty crop industries such as horticulture. A horticu...
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Walden, V. P.; Turner, D. D.
2017-12-01
Measurements of trace gases at high temporal resolution are important for understanding variations and trends at high latitudes. Trace gases over Greenland can be influenced by both long-range transport from pollution sources as well as local chemical processes. Satellite retrievals are an important data source in the polar regions, but accurate ground-based measurements are needed for proper validation, especially in data sparse regions. A moderate-resolution (0.5 cm-1) Fourier transform infrared spectrometer (FTIR), the Polar Atmospheric Emitted Radiance Interferometer (P-AERI), has been operated at Summit Station, Greenland as part of the ICECAPS project since 2010. In this study, trace gas concentrations, including ozone, nitrous oxide, and methane are retrieved using different optimal estimation retrieval codes. We first present results of retrieved gases using synthetic spectra (from a radiative transfer model) that mimic P-AERI measurements to evaluate systematic errors in the inverse models. We also retrieve time series of trace gas concentrations during periods of clear skies over Summit. We investigate the amount of vertical information that can be obtained with moderate resolution spectra for each of the trace gases, and also the impact of the seasonal variation of atmospheric water vapor on the retrievals. Data from surface observations and ozonesondes obtained by the NOAA Global Monitoring Division are used to improve the retrievals and as validation.
DISCOVER-AQ Aircraft insitu TraceGas Data (ICT)
Atmospheric Science Data Center
2018-03-28
DISCOVER-AQ Aircraft insitu TraceGas Data (ICT) Project Title: N/A Platform: NASA ... Relevant Documents: DISCOVER-AQ - Airborne Science Data for Atmospheric Composition DISCOVER-AQ - NASA Earth ...
BOREAS TGB-3 Plant Species Composition Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.
BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds
NASA Technical Reports Server (NTRS)
Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.
Chang, Lin; Bi, Pengyu; Li, Xiaochen; Wei, Yun
2015-06-15
A novel trace analytical method based on solvent sublation (SS) and gas chromatography-mass spectrometry (GC-MS) was developed for the trace determination of twenty-two phthalate esters (PAEs) from plastic beverage packaging. In the solvent sublation section, the effects of solution pH, NaCl concentration, nitrogen flow rate, and sublation time on the sublation efficiency were investigated in detail, and the optimal conditions were obtained. The trace PAEs migrated from plastic beverage packaging to food simulants were separated and concentrated by solvent sublation, and then the trace target compounds in the concentrated solution were analyzed by GC-MS. According to the European Union Regulation, the food simulants including distilled water for the normal beverages and acetic acid solution (3%) for the acetic beverage of yogurt were prepared for migration tests. The trace analysis method showed good linearity, low limits of detection (LODs) of 1.6-183.5 ng/L, and satisfied recoveries (67.3-113.7%). Copyright © 2015 Elsevier Ltd. All rights reserved.
Tana Wood; W. L. Silver
2012-01-01
[1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and...
Remote Sensing of Tropospheric Pollution from Space
NASA Technical Reports Server (NTRS)
Fishman, Jack; Bowman, Kevin W.; Burrows, John P.; Chance, Kelly V.; Edwards, David P.; Martin, Randall V.; Morris, Gary A.; Pierce, R. Bradley; Ziemke, Jerald R.; Al-Saadi, Jassim A.;
2008-01-01
We review the progress of tropospheric trace gas observations and address the need for additional measurement capabilities as recommended by the National Academy of Science (NAS, 2007). Tropospheric measurements from current and earlier instruments show pollution in the Northern Hemisphere as a result of fossil fuel burning and a strong seasonal dependence with the largest amounts of photochemically-generated ozone in summer. At low latitudes, where photon flux is stronger throughout the year, trace gas concentrations are driven by the abundance of the emissions, where the largest source, biomass burning, is readily seen in carbon monoxide measurements, but lightning and biogenic trace gases may also contribute to trace gas variability. Although substantive progress has been achieved in seasonal and global mapping of a few tropospheric trace gases, satellite trace-gas observations with considerably better temporal and spatial resolution are essential to forecasting air quality at scales required by policy-makers. The concurrent use of atmospheric composition measurements for both scientific and operational purposes is a new paradigm for the atmospheric chemistry community. The examples presented illustrate both the promise and challenge of merging satellite information with in situ observations in state-of-the-art data assimilation models.
Understanding Biogenic and Anthropogenic Trace Gas Variations Measured Near Cool, CA in June 2010
NASA Astrophysics Data System (ADS)
Klein, B. Z.; Flowers, B. A.; Gorkowski, K.; Dubey, M. K.; Knighton, W. B.; Floerchinger, C.; Herndon, S. C.; Fast, J. D.; Zaveri, R. A.
2011-12-01
Trace gas signatures produced by forested and urban areas differ greatly. Forested areas are dominated by gases produced during photosynthesis and respiration: CO2 and volatile organic compounds (VOCs) including terpenes and isoprene. Urban areas are heavily influenced by vehicle exhaust emissions and have elevated levels of CO, NOx and aromatic hydrocarbons such as benzene. Ozone is produced as a byproduct of both of these sources; it is produced when NOx from urban areas reacts with either anthropogenic or biogenic hydrocarbons. The Carbonaceous Aerosol and Radiative Effects Study (CARES) campaign was conducted during June 2010, in part to observe the evolution of urban air masses as they mix into rural locations and to better understand anthropogenic-biogenic photochemical interactions. The campaign included two ground-based sampling sites, one in Sacramento, CA (T0) and one downwind, approximately 70km NE, rurally located near Cool, CA (T1). In situ measurements of CO2, CO, O3, NO and multiple different VOCs were performed at the T1 site during the study, and are analyzed here to gain insights into the chemistry and transport of these trace gases. Comparisons between these trace gases coupled with transport modeling is used to delineate biogenic and anthropogenic sources. Additionally, comparisons between trace gases produced predominately by biogenic sources provide valuable information on how meteorology affects their production. Two atmospheric models (HYSPLIT back-trajectories and WRF forecasts) are used to predict transport episodes, where polluted air masses from the Sacramento or more distant San Francisco areas are transported to Cool. The two models display significant overlap for eleven different transport episodes during the study period. Both models also agree on two transport-free multiple-day periods. By examining the periods during which the models are in agreement, we are able to characterize with high certainty the trace gas signatures of local biogenic sources and also the significance of short-range transported anthropogenic trace gases.
Sarkissian, Garry
2007-09-01
Automobile tire marks can routinely be found at the scenes of crime, particularly hit-and-run accidents and are left on road surfaces because of sudden braking or the wheels spinning. The tire marks are left due to the friction between the tire rubber and the solid road surface, and do not always demonstrate the tire tread pattern. However, the tire mark will contain traces of the tire. In this study, Pyrolysis Gas Chromatography/Mass Spectrometry was used to analyze 12 tires from different manufacturer's and their traces collected after braking incidents. Tire marks were left on a conglomerate road surface with sudden braking. The samples were pyrolysed without removal of contaminant in a micro-furnace type pyrolyser. Quantitative and qualitative analysis were performed on all the samples. All 12 samples were distinguished from each other. Each of the tire traces were identified as coming from there original source.
Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.
2014-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.
The Independence of Neutral and Ionized Gas Outflows in Low-z Galaxies
NASA Astrophysics Data System (ADS)
Bae, Hyun-Jin; Woo, Jong-Hak
2018-02-01
Using a large sample of emission line galaxies selected from the Sloan Digital Sky Survey, we investigate the kinematics of the neutral gas in the interstellar medium (ISM) based on the Na I λλ5890,5896 (Na D) doublet absorption line. By removing the Na D contribution from stellar atmospheres, we isolate the line profile of the Na D excess, which represents the neutral gas in the ISM. The kinematics traced by the Na D excess show high velocity and velocity dispersion for a fraction of galaxies, indicating the presence of neutral gas outflows. We find that the kinematics measured from the Na D excess are similar between AGNs and star-forming galaxies. Moreover, by comparing the kinematics traced by the Na D excess and those by the [O III] λ5007 line taken from Woo et al., which traces ionized outflows driven by AGNs, we find no correlation between them. These results demonstrate that the neutral gas in the ISM traced by the Na D excess and the ionized gas traced by [O III] are kinematically independent, and AGNs have no impact on the neutral gas outflows. In contrast to [O III], we find that the measured line-of-sight velocity shift and velocity dispersion of the Na D excess increase for more face-on galaxies due to the projection effect, supporting that Na D outflows are radially driven (i.e., perpendicular to the major axis of galaxies), presumably due to star formation.
Trace Gas Analyzer (TGA) program
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.
Studying Intermolecular Forces with a Dual Gas Chromatography and Boiling Point Investigation
ERIC Educational Resources Information Center
Cunningham, William Patrick; Xia, Ian; Wickline, Kaitlyn; Huitron, Eric Ivan Garcia; Heo, Jun
2018-01-01
A procedure for the study of structural differences and intermolecular attraction between ethanol and 1-butanol based in laboratory work is described. This study provides comparisons of data retrieved from both a determination of boiling point and gas chromatography traces for the mixture. The methodology reported here should provide instructors…
Kinney, C.A.; Mosier, A.R.; Ferrer, I.; Furlong, E.T.; Mandernack, K.W.
2004-01-01
The effect that pesticides have on trace gas production and consumption in agricultural soils is often overlooked. Independent field and laboratory experiments were used to measure the effects that the commonly used herbicides prosulfuron and metolachlor have on trace gas fluxes (CO2, N2O, and CH4) from fertilized soil of the Colorado shortgrass steppe. Separate sample plots (1 m2) on tilled and no-till soil at the sites included the following treatments: 1) a control without fertilizer or herbicide, 2) a fertilized (NH4NO3 equivalent to 244 kg ha-1) control without herbicide, 3) and fertilized plots amended with an herbicide (prosulfuron equivalent to 0.46 kg ha-1 57% by weight active ingredient or metolachlor equivalent to 5.7 L ha-1, 82.4% by weight active ingredient). During an initial study of one year duration, measurement of gas exchange revealed that prosulfuron-amendment stimulated N2O emissions and CH4 consumption by as much as 1600% and 1300% during a single measurement, respectively. During a second set of flux measurements beginning in August 2001, more frequent weekly measurements were made during a twelve week period. From this second study an increased N2O efflux and CH4 uptake occurred after a 7-week lag period that persisted for about 5 weeks. These changes in gas flux amounted to an overall increase of 41% and 30% for N2O emission and CH4 consumption, respectively. The co-occurrence of stimulated N2O and CH4 fluxes suggests a similar cause that is related to prosulfuron degradation. Evidence suggested that prosulfuron degradation stimulated microbial activity responsible for trace gas flux. Ultimately, prosulfuron-amendment led to an ???50% reduction in the global warming potential from N2O and CH4 fluxes at this field site, which is equivalent to a reduction of the global warming potential of 0.18 mols CO2 m-2 d-1 from these gases. Metolachlor application did not significantly affect the trace gas fluxes measured. These results demonstrate the potential impact that pesticides have on trace gas fluxes from agricultural soils, which could mean that the effects of other agricultural practices have been over or under estimated. Copyright 2004 by the American Geophysical Union.
Stratospheric H2O and HNO3 profiles derived from solar occultation measurements
NASA Technical Reports Server (NTRS)
Fischer, H.; Fergg, F.; Rabus, D.; Burkert, P.
1985-01-01
Compact two-channel radiometers for solar occultation experiments have been constructed in order to measure stratospheric trace gases. The instruments can be used as filter- or correlation-type radiometers, depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the filter-type measurements, profiles of the trace gases H2O and HNO3 are inferred for the height region between the tropopause and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the trace gas profiles. The derived H2O and HNO3 profiles are assessed against the observations of other authors and are discussed in the light of the trace gas distributions calcualted from photochemical models.
Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.
2013-12-01
Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net ecosystem fluxes of many climate-relevant trace gases, insight into the use of certain trace gases to estimate rates of more general biogeochemical processes is useful.
NASA Astrophysics Data System (ADS)
Horn, Sabrina; Herrmann, Hartmut
2013-04-01
Mineral dust constitutes one of the largest mass fractions of natural aerosol. Its emission is estimated between 800 - 2000 Tg/a]. The dust is emitted through sand and dust storms in the arid regions of our planet, in particular by the great desserts such as the Sahara. The complex chemical composition of mineral dust is similar to crust material, because the dust is produced by soil erosion. The main components of mineral dust are SiO2 and Al2O3, whereas the active oxides (Fe2O3, TiO2) show some variety in content due to the dust source region. Mineral dust particles can be transported over several 1000 km and during its transport the surface can be changed by the uptake of water vapor and trace gases. On such modified surfaces homo- and heterogeneous reactions can occur. Trace gas uptakes play an important role in atmospheric chemistry as sinks or sources for several gaseous species. Hence, it is necessary to study these reactions. Among several experimental setups, the Knudsen cell is one of the promising tools to study reactive uptakes from the gas phase and the release of products formed by dust surface-mediated reactions. The Knudsen cell, implemented by Golden et al. in 1975, is a high vacuum flow reactor operating under molecular flow conditions, i.e., gas-wall collisions are highly preferred over gas-gas collisions. Despite several Knudsen cell studies examining the reaction between different traces gases and model dust surfaces constituted of not more than a few components, no measurements utilizing collected ambient mineral dust are done so far. For a better understanding of the chemistry on mineral dust surfaces gas uptake measurements will be done with a Knudsen cell. The first measurements are done with isopropanol on TiO2. Afterwards there are studies with different substrates like, Al2O3 (α- and γ-phase), FeO2, Arizona test dust, air collected mineral dust from the Cap Verde islands. In the beginning SO2, NO2 and HNO3 will be used.
Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Li, Yan; Xu, Xuchang
2007-04-15
Sulfur dioxide (SO2) and trace elements are pollutants derived from coal combustion. This study focuses on the simultaneous removal of S02 and trace arsenic oxide (As2O3) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range. Experiments have been performed on a thermogravimetric analyzer (TGA). The interaction mechanism between As2O3 and CaO is studied via XRD detection. Calcium arsenate [Ca3(AsO4)2] is found to be the reaction product in the range of 600-1000 degrees C. The ability of CaO to absorb As2O3 increases with the increasing temperature over the range of 400-1000 degrees C. Through kinetics analysis, it has been found that the rate constant of arsenate reaction is much higher than that of sulfate reaction. SO2 presence does not affect the trace arsenic capture either in the initial reaction stage when CaO conversion is relatively low or in the later stage when CaO conversion is very high. The product of sulfate reaction, CaS04, is proven to be able to absorb As2O3. The coexisting CO2 does not weaken the trace arsenic capture either.
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
NASA Astrophysics Data System (ADS)
Smith, David; Španěl, Patrik
Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level. These results and those for banana and onion vapours and butane/air flame forcibly demonstrate the value and the scope of our Sift ion chemistry approach to the analysis of very complex gas mixtures, and that this method is accurately quantitative if the appropriate ion chemistry is properly understood.
Sampling and analysis of natural gas trace constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attari, A.; Chao, S.
1993-09-01
Major and minor components of natural gas are routinely analyzed by gas chromatography (GC), using a thermal conductivity (TC). The best results obtained by these methods can report no better than 0.01 mole percent of each measured component. Even the extended method of analysis by flame ionization detector (FID) can only improve on the detection limit of hydrocarbons. The gas industry needs better information on all trace constituents of natural gas, whether native or inadvertently added during gas processing that may adversely influence the operation of equipment or the safety of the consumer. The presence of arsenic and mercury inmore » some gas deposits have now been documented in international literature as causing not only human toxicity but also damaging to the field equipment. Yet, no standard methods of sampling and analysis exist to provide this much needed information. In this paper the authors report the results of a three-year program to develop an extensive array of sampling and analysis methods for speciation and measurement of trace constituents of natural gas. A cryogenic sampler operating at near 200 K ({minus}99 F) and at pipeline pressures up to 12.4 {times} 10{sup 6}Pa (1800 psig) has been developed to preconcentrate and recover all trace constituents with boiling points above butanes. Specific analytical methods have been developed for speciating and measurement of many trace components (corresponding to US EPA air toxics) by GC-AED and GC-MS, and for determining various target compounds by other techniques. Moisture, oxygen and sulfur contents are measured on site using dedicated field instruments. Arsenic, mercury and radon are sampled by specific solid sorbents for subsequent laboratory analysis.« less
Computation and analysis of backward ray-tracing in aero-optics flow fields.
Xu, Liang; Xue, Deting; Lv, Xiaoyi
2018-01-08
A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.
Operational trace gas column observations from GOME-2 on MetOp
NASA Astrophysics Data System (ADS)
Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris
2017-04-01
This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Craig, Ian M.
2013-11-03
We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.
Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption
NASA Astrophysics Data System (ADS)
Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.
2018-02-01
Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.
NASA Astrophysics Data System (ADS)
Arp, Hans Peter H.; Goss, Kai-Uwe
Due to the apparent environmental omnipresence of perfluorocarboxylic acids (PFAs), an increasing number of researchers are investigating their ambient particle- and gas-phase concentrations. Typically this is done using a high-volume air sampler equipped with Quartz Fiber Filters (QFFs) or Glass Fiber Filters (GFFs) to sample the particle-bound PFAs and downstream sorbents to sample the gas-phase PFAs. This study reports that at trace, ambient concentrations gas-phase PFAs sorb to QFFs and GFFs irreversibly and hardly pass through these filters to the downstream sorbents. As a consequence, it is not possible to distinguish between particle- and gas-phase concentrations, or to distinguish concentrations on different particle size fractions, unless precautions are taken. Failure to take such precautions could have already caused reported data to be misinterpreted. Here it is also reported that deactivating QFFs and GFFs with a silylating agent renders them suitable for sampling PFAs. Based on the presented study, a series of recommendations for air-sampling PFAs are provided.
NASA Astrophysics Data System (ADS)
Cai, W.; Lu, H.; Huang, X.
2016-12-01
In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.
2000-01-01
A joint project between the Data Assimilation Office at NASA GSFC and NCAR involves linking the physical packages from the Community Climate Model (CCM) with the flux-form semi-Lagrangian dynamical core developed by Lin and Rood in the DAO. A further development of this model includes the implementation of a chemical package developed by Douglass and colleagues in the Atmospheric Chemistry and Dynamics Branch at NASA GSFC. Results from this coupled dynamics-radiation-chemistry model will be presented, focussing on trace gas transport in the tropopause region.
Analysis of trace halocarbon contaminants in ultra high purity helium
NASA Technical Reports Server (NTRS)
Fewell, Larry L.
1994-01-01
This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.
The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...
Trace gas detection in hyperspectral imagery using the wavelet packet subspace
NASA Astrophysics Data System (ADS)
Salvador, Mark A. Z.
This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.
Measuring Trace Hydrocarbons in Silanes
NASA Technical Reports Server (NTRS)
Lesser, L. A.
1984-01-01
Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.
Enabling chip-scale trace gas sensing systems with silicon photonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William
Tunable laser trace-gas spectroscopy has been effectively used in both environmental and medical applications, for its sensitivity and specificity. We’ll describe how contemporary silicon photonics manufacturing and assembly are leveraged for a cost-effective miniaturized spectroscopic sensor platform, and outline uses in fugitive methane emissions monitoring.
Determining trace gas flux from container-grown woody ornamentals
USDA-ARS?s Scientific Manuscript database
In recent years, anthropogenic climate change and its effects on the global environment has garnered significant attention from the scientific community. Increased trace gas emissions (CO2, CH4, and N2O) are widely believed to be the driving force behind global warming. Agriculture is a large contri...
Ohira, Shin-Ichi; Nakamura, Nao; Endo, Masaaki; Miki, Yusuke; Hirose, Yasuo; Toda, Kei
2018-01-01
Monitoring of trace water in industrial gases is strongly recommended because contaminants cause serious problems during use, especially in the semiconductor industry. An ultra-sensitive trace-water sensor was developed with an in situ-synthesized metal-organic framework as the sensing material. The sample gas is passed through the sensing membrane and efficiently and rapidly collected by the sensing material in the newly designed gas collection/detection cell. The sensing membrane, glass paper impregnated with copper 1,3,5-benzenetricarboxylate (Cu-BTC), is also newly developed. The amount and density of the sensing material in the sensing membrane must be well balanced to achieve rapid and sensitive responses. In the present study, Cu-BTC was synthesized in situ in glass paper. The developed system gave high sensing performances with a limit of detection (signal/noise ratio = 3) of 9 parts per billion by volume (ppbv) H 2 O and a 90% response time of 86 s for 200 ppbv H 2 O. The reproducibility of the responses within and between lots had relative standard deviations for 500 ppbv H 2 O of 0.8% (n = 10) and 1.5% (n = 3), respectively. The long-term (2 weeks) stability was 7.3% for 400 ppbv H 2 O and one-year continuous monitoring test showed the sensitivity change of <∼3% before and after the study. Furthermore, the system response was in good agreement with the response achieved in cavity ring-down spectroscopy. These performances are sufficient for monitoring trace water in industrial gases. The integrated system with light and gas transparent structure for gas collection/absorbance detection can also be used for other target gases, using specific metal-organic frameworks.
The interest in using Flue Gas Desulfurization Gypsum(FGDG) has increased recently. This study evaluates the leaching characteristics of trace elements in "modern" FGDG (produced after fly ash removal) and FGDG-mixed soil (SF) under different environmental conditions using rece...
A photoacoustic spectrometer for trace gas detection
NASA Astrophysics Data System (ADS)
Telles, E. M.; Bezerra, E.; Scalabrin, A.
2005-06-01
A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.
Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian
2018-05-01
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.
NASA Astrophysics Data System (ADS)
Kollonige, D. E.; Thompson, A. M.; Nichols, M.; Fasnacht, Z.; Martins, D. K.; Dickerson, R. R.
2014-12-01
The increase in the natural gas component of the energy sector has led many state and local municipalities to begin regulation of emissions from the oil and natural gas operators with air quality (AQ) as a concern. "Top-down" measurements of trace gases in the air above wells complement "bottom-up" inventories, used by EPA and AQ stakeholders, through a more accurate depiction of regional variability of methane and other species near and downwind of oil and gas operations. Satellite observations of methane, nitrogen dioxide, formaldehyde, ozone, and other carbon gases enhance the spatial and temporal coverage of the data needed to demonstrate any long-term impacts from shale gas development. As part of a NASA AQAST (Air Quality Applied Sciences Team) project, we are evaluating satellite measurements of trace gases in regions with oil and gas operations for their application as a "top-down" constraint. For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed with ground and aircraft measurements, including, Maryland (2011), California and Texas (2013), and Colorado (2014). We compare vertical distributions of methane and volatile organic compounds (VOCs) nearby and downwind of oil and gas wells to locate any regional differences during the campaign time periods. This allows for better characterization of the satellite observations and their limitations for application in air quality studies in similar environments. Taking advantage of current EOS-era satellites' data records, we also analyze methane anomalies and gas correlations in the free troposphere from 2005 to present to identify trends for basins with oil and gas extraction sites and their influence on background concentrations downwind of wells. In most regions with oil and gas activity, we see continually increasing methane concentrations and about a 5-10 percent enhancement above background tropospheric concentrations. With this ongoing effort, we aim to demonstrate the benefits of satellite-derived "top-down" constraints for emissions estimates associated with oil and natural gas operations.
NASA Astrophysics Data System (ADS)
Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus
2017-04-01
Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3] Langenfelds, R. L., van der Schoot, M. V., Francey, R. J., Steele, L. P., Schmidt, M., and Mukai, H.: Modification of air standard composition by diffusive and surface processes, Journal of Geophysical Research: Atmospheres, 110, n/a-n/a, 10.1029/2004JD005482, 2005. [4] Leuenberger, M. C., Schibig, M. F., and Nyfeler, P.: Gas adsorption and desorption effects on cylinders and their importance for long-term gas records, Atmos. Meas. Tech., 8, 5289-5299, 10.5194/amt-8-5289-2015, 2015 [5] Miller, W. R., Rhoderick, G. C., and Guenther, F. R.: Investigating Adsorption/Desorption of Carbon Dioxide in Aluminum Compressed Gas Cylinders, Analytical Chemistry, 87, 1957-1962, 10.1021/ac504351b, 2015.
Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing
Nikodem, Michal; Wysocki, Gerard
2012-01-01
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389
Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.
Nikodem, Michal; Wysocki, Gerard
2012-11-28
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.
Gaseous trace impurity analyzer and method
Edwards, Jr., David; Schneider, William
1980-01-01
Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.
Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S
2014-08-28
An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.
Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.
2014-01-01
An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252
Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia
John T. Walker; Christopher D. Geron; James M. Vose; Wayne T. Swank
2002-01-01
In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N
Determining trace gas efflux from container production of woody nursery crops
USDA-ARS?s Scientific Manuscript database
In recent years, climate change and its effects on the global environment has garnered significant attention from the scientific community. Increased trace gas emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are widely believed to be the driving force behind global warming. ...
Hayes, M A
1988-04-01
Gas chromatography (GC) is the most widely used analytical technique in the food and beverage industry. This paper addresses the problems of sample preparation and system maintenance to ensure the most sensitive, durable, and efficient results for trace analysis by GC in this industry.
Film Cooling Flow Effects on Post-Combustor Trace Chemistry
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2003-01-01
Film cooling injection is widely applied in the thermal design of turbomachinery, as it contributes to achieve higher operating temperature conditions of modern gas turbines, and to meet the requirements for reliability and life cycles. It is a significant part of the high-pressure turbine system. The film cooling injection, however, interacts with the main flow and is susceptible to have an influence on the aerodynamic performance of the cooled components, and through that may cause a penalty on the overall efficiency of the gas turbine. The main reasons are the loss of total pressure resulting from mixing the cooling air with mainstream and the reduction of the gas stagnation temperature at the exit of the combustion chamber to a lower value at the exit of nozzle guide vane. In addition, the impact of the injected air on the evolution of the trace species of the hot gas is not yet quite clear. This work computationally investigates the film cooling influence on post-combustor trace chemistry, as trace species in aircraft exhaust affect climate and ozone.
Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.
Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang
2005-01-01
Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweigkofler, M.; Niessner, R.
1999-10-15
Biogases such as landfill gas and sewage gas undergo a combustion process which is generating electric energy. Since several trace compounds such as siloxanes (also halogenated and sulfur compounds) are known to cause severe problems to these gas combustion engines, they are of particular interest. In this work, a new technique for sampling, identification, and quantification of siloxanes and volatile organic carbon (VOC) in landfill gas and sewage gas is presented. After sample collection using evacuated stainless steel canisters biogas was analyzed by gas chromatography-mass spectrometry/atomic emission spectroscopy (GC-MS/AES). Using gas canisters, the sampling process was simplified (no vacuum pumpmore » needed), and multiple analysis was possible. The simultaneous application of MSD and AED allowed a rapid screening of silicon compounds in the complex biogases. Individual substances were identified independently both by MSD analysis and by determination of their elemental constitution. Quantification of trace compounds was achieved using a 30 component external standard containing siloxanes, organochlorine and organosulfur compounds, alkanes, terpenes, and aromatic compounds. Precision, linearity, and detection limits have been studied. In real samples, concentrations of silicon containing compounds (trimethylsilanol, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasilioxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane) in the mg/m{sub 3} range have been observed.« less
A study of high speed flows in an aircraft transition duct. Ph.D. Thesis - Iowa State Univ.
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.
1991-01-01
The study of circular-to-rectangular transition duct flows with and without inlet swirl is presented. A method was devised to create a swirling, solid body rotational flow with minimal associated disturbances. Details of the swirl generator design and construction are discussed. Coefficients based on velocities and total and static pressures measured in cross stream planes at four axial locations within the transition duct along with surface static pressures and surface oil film visualization are presented for both nonswirling and swirling incoming flows. A method was developed to acquire trace gas measurements within the transition duct at high flow velocities. Statistical methods are used to help interpret the trace gas results.
The Satellite View of Extra-Tropical Stratosphere-Troposphere Exchange and the UT/LS
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.
2004-01-01
This talk will review satellite studies which have helped define the UT/LS and stratosphere-troposphere exchange. Satellites have provided a global perspective but have had limited temporal and spatial measurements for stratosphere-troposphere exchange (STE) studies. Nonetheless, long lived tracer measurements from satellites can be used as proxies for age-of-air can thus provide estimates of mixing and transport processes in the UT/LS. These measurements can be compared to model estimates of the mean age-of-air and trace gas fluxes providing an important model diagnostic. With the launch of EOS Aura, the potential for satellite trace gas measurements of the lower-most stratosphere and STE is significantly improved, and Aura s mission will be briefly described.
Trace gas emissions from a sun and shade grown ornamental crop
USDA-ARS?s Scientific Manuscript database
Previous work has begun to establish baseline approximations for greenhouse gas (GHG) (CO2, CH4, and N2O) emissions of several horticultural crops, though much work is still needed to expand contingencies for multiple best management practices. In this study, GHG emissions from one shade-grown speci...
Imaging trace gases in volcanic plumes with Fabry Perot Interferometers
NASA Astrophysics Data System (ADS)
Kuhn, Jonas; Platt, Ulrich; Bobrowski, Nicole; Lübcke, Peter; Wagner, Thomas
2017-04-01
Within the last decades, progress in remote sensing of atmospheric trace gases revealed many important insights into physical and chemical processes in volcanic plumes. In particular, their evolution could be studied in more detail than by traditional in-situ techniques. A major limitation of standard techniques for volcanic trace gas remote sensing (e.g. Differential Optical Absorption Spectroscopy, DOAS) is the constraint of the measurement to a single viewing direction since they use dispersive spectroscopy with a high spectral resolution. Imaging DOAS-type approaches can overcome this limitation, but become very time consuming (of the order of minutes to record a single image) and often cannot match the timescales of the processes of interest for volcanic gas measurements (occurring at the order of seconds). Spatially resolved imaging observations with high time resolution for volcanic sulfur dioxide (SO2) emissions became possible with the introduction of the SO2-Camera. Reducing the spectral resolution to two spectral channels (using interference filters) that are matched to the SO2 absorption spectrum, the SO2-Camera is able to record full frame SO2 slant column density distributions at a temporal resolution on the order of < 1s. This for instance allows for studying variations in SO2 fluxes on very short time scales and applying them in magma dynamics models. However, the currently employed SO2-Camera technique is limited to SO2 detection and, due to its coarse spectral resolution, has a limited spectral selectivity. This limits its application to very specific, infrequently found measurement conditions. Here we present a new approach, based on matching the transmission profile of Fabry Perot Interferometers (FPIs) to periodic spectral absorption features of trace gases. The FPI's transmission spectrum is chosen to achieve a high correlation with the spectral absorption of the trace gas, allowing a high selectivity and sensitivity with still using only a few spectral channels. This would not only improve SO2 imaging, but also allow for the application of the technique to further gases of interest in volcanology (and other areas of atmospheric research). Imaging halogen species would be particularly interesting for volcanic trace gas studies. Bromine monoxide (BrO) and chlorine dioxide (OClO) both yield absorption features that allow their detection with the FPI correlation technique. From BrO and OClO data, ClO levels in the plume could be calculated. We present an outline of applications of the FPI technique to imaging a series of trace gases in volcanic plumes. Sample calculations on the sensitivity and selectivity of the technique, first proof of concept studies and proposals for technical implementations are presented.
NASA Astrophysics Data System (ADS)
Gauthier, Pierre-Jean; Sigmarsson, Olgeir; Gouhier, Mathieu; Haddadi, Baptiste; Moune, Séverine
2016-03-01
The 2014 Bárðarbunga rifting event in Iceland resulted in a 6-month long eruption at Holuhraun. This eruption was characterized by high lava discharge rate and significant gas emission. The SO2 flux for the first 3 months was measured with satellite sensors and the petrologic method. High-resolution time series of the satellite data give 1200 kg/s that concurs with 1050 kg/s obtained from melt inclusion minus degassed lava sulfur contents scaled to the mass of magma produced. A high-purity gas sample, with elevated S/Cl due to limited chlorine degassing, reveals a similar degassing pattern of trace metals as observed at Kīlauea (Hawai'i) and Erta Ale (Ethiopia). This suggests a common degassing mechanism at mantle plume-related volcanoes. The trace metal fluxes, calculated from trace element to sulfur ratios in the gas sample and scaled to the sulfur dioxide flux, are 1-2 orders of magnitude stronger at Holuhraun than Kīlauea and Erta Ale. In contrast, volcanoes at convergent margins (Etna and Stromboli, Italy) have 1-2 orders of magnitude higher trace element fluxes, most likely caused by abundant chlorine degassing. This emphasizes the importance of metal degassing as chlorine species. Short-lived disequilibria between radon daughters, 210Pb-210Bi-210Po measured in the gas, suggest degassing of a continuously replenished magma batch beneath the eruption site. Earlier and deep degassing phase of carbon dioxide and polonium is inferred from low (210Po/210Pb) in the gas, consistent with magma transfer rate of 0.75 m/s.
Measurements of trace contaminants in closed-type plant cultivation chambers
NASA Astrophysics Data System (ADS)
Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.
Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.
Changsheng Li; Jianbo Cui
2004-01-01
A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...
Patrick H. Freeborn; Martin J. Wooster; Wei Min Hao; Cecily A. Nordgren Ryan; Stephen P. Baker; Charles Ichoku
2008-01-01
Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent...
USDA-ARS?s Scientific Manuscript database
Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.
2015-02-08
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.
Galactic Observations of Terahertz C+ (GOT C+): First Results: Inner Galaxy Survey
NASA Astrophysics Data System (ADS)
Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-05-01
To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM called "dark gas” in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace this gas. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Roiger, Anke; Thomas, Jennie L.; Schlager, Hans; Law, Kathy; Kim, Jin; Reiter, Anja; Schäfler, Andreas; Weinzierl, Bernadett; Rose, Maximilian; Raut, Jean-Christophe; Marelle, Louis
2014-05-01
Arctic change has opened the region to new industrial activities, most notably transit shipping and resource extraction. The impacts that Arctic industrialization will have on pollutants and Arctic climate are not well understood. In order to understand how shipping and offshore oil/gas extraction impact on Arctic tropospheric chemistry and composition, we conducted the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign. The campaign was conducted in July 2012 using the DLR Falcon research aircraft, based in Andenes, Norway. The Falcon was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species) to characterize these emissions and their atmospheric chemistry. The Falcon performed nine scientific flights to study emissions from different ships (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) off the Norwegian Coast. Distinct differences in chemical and aerosol composition were found in emissions from these increasing pollution sources. We also studied the composition of biomass burning plumes imported from Siberian wildfires to put the emerging local pollution within a broader context. In addition to our measurements, we used a regional chemical transport model to study the influence of emerging pollution sources on gas and aerosol concentrations in the region. We will present an overview on the measured trace gas and aerosol properties of the different emission sources and discuss the impact of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.
Improvement and validation of trace gas retrieval from ACAM aircraft observation
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.
2014-12-01
The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3
NASA Astrophysics Data System (ADS)
Kim, S.; Guenther, A. B.; Seco, R.; Gu, D.; Jeong, D.; Sanchez, D.; Brune, W. H.; Blake, D. R.; Armin, W.; Ahn, J. Y.; Lee, Y.; Kim, D.; Shin, H.; Jung, J.; Kim, D. S.; Lee, M.; Lee, G.
2017-12-01
During the KORUS-AQ field campaign in 2016, various platforms were utilized to characterize emission, chemical transformation, and removal of trace gases and fine particles. One may consider that the Seoul Metropolitan Area, where was the main study area, is a relatively small metropolitan in physical size wise but it is an extremely dense metropolitan area with various anthropogenic and natural emission sources. Therefore, the comprehensive understanding of various emission sources and complicated photochemistry within the boundary layer of the megacity should be preceded to precisely evaluate the impacts of megacity to global air quality and climate. In this context, we will present a detailed analysis of trace gas distributions over the Seoul Metropolitan Area. The focus will be a dataset collected at the Taehwa Research Forest, a downwind forest for fresh and aged pollution plumes. The trace gas reactivity also known as OH reactivity will be presented by comparing with a city center research site-the Olympic Park supersite. The DC-8 aircraft dataset will be presented to examine the evolution of anthropogenic pollution and the amplification of photochemistry from biogenic volatile organic compound emissions. Eventually, we expect that the three dimensional analysis of the distributions of atmospheric reactivity will provide an important snapshot on a complex nature of trace gas distribution in the Megacity planetary boundary layer.
Study on the decomposition of trace benzene over V2O5–WO3/TiO2-based catalysts in simulated flue gas
Trace levels (1 and 10 ppm) of gaseous benzene were catalytically decomposed in a fixed-bed catalytic reactor with monolithic oxides of vanadium and tungsten supported on titanium oxide (V2O5–WO3/TiO2) catalysts under conditions simulating the cooling of waste incineration flue g...
Low-Power Architecture for an Optical Life Gas Analyzer
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey; Vakhtin, Andrei
2012-01-01
Analog and digital electronic control architecture has been combined with an operating methodology for an optical trace gas sensor platform that allows very low power consumption while providing four independent gas measurements in essentially real time, as well as a user interface and digital data storage and output. The implemented design eliminates the cross-talk between the measurement channels while maximizing the sensitivity, selectivity, and dynamic range for each measured gas. The combination provides for battery operation on a simple camcorder battery for as long as eight hours. The custom, compact, rugged, self-contained design specifically targets applications of optical major constituent and trace gas detection for multiple gases using multiple lasers and photodetectors in an integrated package.
Adsorptive removal of catalyst poisons from coal gas for methanol synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, B.L.; Golden, T.C.; Hsiung, T.H.
1991-12-01
As an integral part of the liquid-phase methanol (LPMEOH) process development program, the present study evaluated adsorptive schemes to remove traces of catalyst poisons such as iron carbonyl, carbonyl sulfide, and hydrogen sulfide from coal gas on a pilot scale. Tests were conducted with coal gas from the Cool Water gasification plant at Daggett, California. Iron carbonyl, carbonyl sulfide, and hydrogen sulfide were effectively removed from the coal gas. The adsorption capacities of Linde H-Y zeolite and Calgon BPL carbon for Fe(CO){sub 5} compared well with previous bench-scale results at similar CO{sub 2} partial pressure. Adsorption of COS by Calgonmore » FCA carbon appeared to be chemical and nonregenerable by thermal treatment in nitrogen. A Cu/Zn catalyst removed H{sub 2}S very effectively. With the adsorption system on-line, a methanol catalyst showed stable activity during 120 h operation, demonstrating the feasibility of adsorptive removal of trace catalyst poisons from the synthesis gas. Mass transfer coefficients were estimated for Fe(CO){sub 5} and COS removal which can be directly used for design and scale up.« less
Products of random matrices from fixed trace and induced Ginibre ensembles
NASA Astrophysics Data System (ADS)
Akemann, Gernot; Cikovic, Milan
2018-05-01
We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M ‑ m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.
The star-formation law at GMC scales in M33, the Triangulum Galaxy
NASA Astrophysics Data System (ADS)
Williams, Thomas G.; Gear, Walter K.; Smith, Matthew W. L.
2018-06-01
We present a high spatial resolution study, on scales of ˜100pc, of the relationship between star-formation rate (SFR) and gas content within Local Group galaxy M33. Combining deep SCUBA-2 observations with archival GALEX, SDSS, WISE, Spitzer and submillimetre Herschel data, we are able to model the entire SED from UV to sub-mm wavelengths. We calculate the SFR on a pixel-by-pixel basis using the total infrared luminosity, and find a total SFR of 0.17 ± 0.06 {M}_⊙/yr, somewhat lower than our other two measures of SFR - combined FUV and 24μ SFR (0.25^{+0.10}_{-0.07} {M}_⊙/yr) and SED-fitting tool MAGPHYS (0.33^{+0.05}_{-0.06} {M}_⊙/yr). We trace the total gas using a combination of the 21cm HI line for atomic hydrogen, and CO(J=2-1) data for molecular hydrogen. We have also traced the total gas using dust masses. We study the star-formation law in terms of molecular gas, total gas, and gas from dust. We perform an analysis of the star-formation law on a variety of pixel scales, from 25" to 500" (100pc to 2kpc). At kpc scales, we find that a linear Schmidt-type power law index is suitable for molecular gas, but the index appears to be much higher with total gas, and gas from dust. Whilst we find a strong scale dependence on the Schmidt index, the gas depletion timescale is invariant with pixel scale.
Origins Space Telescope: Tracing Dark Molecular Gas in the Milky Way
NASA Astrophysics Data System (ADS)
Narayanan, Desika; Li, Qi; Krumholz, Mark; Dave, Romeel; Origins Space Telescope Science and Technology Definition Team
2018-01-01
We present theoretical models for quantifying the fraction of CO-dark molecular gas in galaxies. To do this, we combine novel thermal, chemical, and radiative equilibrium calculations with high-resolution cosmological zoom galaxy formation models. We discuss how this dark molecular gas will be uncovered by the Origins Space Telescope, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.
As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...
LBA-ECO TG-07 Trace Gas Fluxes, Undisturbed and Logged Sites, Para, Brazil: 2000-2002
M.M. Keller; R.K. Varner; J.D. Dias; H.S. Silva; P.M. Crill; Jr. de Oliveira; G.P. Asner
2009-01-01
Trace gas fluxes of carbon dioxide, methane, nitrous oxide, and nitric oxide were measured manually at undisturbed and logged forest sites in the Tapajos National Forest, near Santarem, Para, Brazil. Manual measurements were made approximately weekly at both the undisturbed and logged sites. Fluxes from clay and sand soils were completed at the undisturbed sites....
Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport
NASA Technical Reports Server (NTRS)
Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.
2004-01-01
The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.
NASA Astrophysics Data System (ADS)
Drewnick, Frank; Hings, Silke S.; Curtius, Joachim; Eerdekens, Gunter; Williams, Jonathan
The chemical composition and chemically resolved size distributions of fine aerosol particles were measured at high time resolution (5 min) with a time-of-flight aerosol mass spectrometer (TOF-AMS) during the New Year's 2005 fireworks in Mainz, central Germany. In addition, particle number concentrations and trace gas concentrations were measured using a condensation particle counter (CPC) and a proton transfer reaction mass spectrometer (PTR-MS). The main non-refractory components of the firework aerosol were potassium, sulfate, total organics and chloride. Increased trace gas mixing ratios of methanol, acetonitrile, acetone and acetaldehyde were observed. Aerosol nitrate and ammonium concentrations were not significantly affected by the fireworks as well as the measured aromatic trace gases. The sub-micron aerosol concentrations peaked about 20 min after midnight with total mass concentrations larger than 600 μg m -3. The trace gas concentrations peaked about 30 min later. Using the sulfur-to-potassium concentration ratio measured in another fireworks aerosol, it was for the first time possible to estimate the relative ionization efficiency of aerosol potassium, measured with the TOF-AMS. Here we found a value of RIE K=2.9.
USDA-ARS?s Scientific Manuscript database
A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...
NASA Technical Reports Server (NTRS)
Courchaine, Brian; Venable, Jessica C.
1995-01-01
Methane is an important trace gas because it is a greenhouse gas that affects the oxidative capacity of the atmosphere. It is produced from biological and anthropogenic sources, and is increasing globally at a rate of approximately 0.6% per year [Climate Change 1992, IPCC]. By using National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) ground station data, a global climatology of methane values was produced. Unfortunately, because the NOAA/CMDL ground stations are so sparse, the global climatology is low resolution. In order to compensate for this low resolution data, it was compared to in-situ flight data obtained from the NASA Global Tropospheric Experiment (GTE). The smoothed ground station data correlated well with the flight data. Thus, for the first time it is shown that the smoothing process used to make global contours of methane using the ground stations is a plausible way to approximate global atmospheric concentrations of the gas. These verified climatologies can be used for testing large-scale models of chemical production, destruction, and transport. This project develops the groundwork for further research in building global climatologies from sparse ground station data and studying the transport and distribution of trace gases.
Analysis of trace impurities in neon by a customized gas chromatography.
Yin, Min Kyo; Lim, Jeong Sik; Moon, Dong Min; Lee, Gae Ho; Lee, Jeongsoon
2016-09-09
Excimer lasers, widely used in the semiconductor industry, are crucial for analyzing the purity of premix laser gases for the purpose of controlling stable laser output power. In this study, we designed a system for analyzing impurities in pure neon (Ne) base gas by customized GC. Impurities in pure neon (H2 and He), which cannot be analyzed at the sub-μmol/mol level using commercial GC detectors, were analyzed by a customized pulsed-discharge Ne ionization detector (PDNeD) and a pressurized injection thermal conductivity detector using Ne as the carrier gas (Pres. Inj. Ne-TCD). From the results, trace species in Ne were identified with the following detection limits: H2, 0.378μmol/mol; O2, 0.119μmol/mol; CH4, 0.880μmol/mol; CO, 0.263μmol/mol; CO2, 0.162μmol/mol (PDNeD); and He, 0.190μmol/mol (Pres. Inj. Ne-TCD). This PDNeD and pressurized injection Ne-TCD technique thus developed permit the quantification of trace impurities present in high-purity Ne. Copyright © 2016. Published by Elsevier B.V.
Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples
NASA Technical Reports Server (NTRS)
Zlatkis, A. (Inventor)
1977-01-01
An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.
[Remote sensing of atmospheric trace gas by airborne passive FTIR].
Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun
2006-12-01
The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.
NASA Technical Reports Server (NTRS)
Martens, Christopher S.; Green, C. D.; Blair, Neal; Chanton, J. P.
1985-01-01
Transport of reduced biogenic gases from anoxic sediments and soils to the atmosphere can be quantitatively studied through measurement of radon-222/radium-226 disequilibrium. In previous work, seasonal variations in biogenic gas transport mechanisms, net fluxes and overall composition were documented. Now presented are direct field measurements of radon-222 activity in gases exiting organic rich sediments which show their usefulness for tracing of the stripping of dissolved biogenic gases from within the sediment column and transport via bubble ebullition. Methane is depleted in deuterium during the summer as compared with winter months and is in general lighter than in most marine sediments signaling the probable importance of acetate as an important precursor molecule. The significant seasonal isotopic variations observed illustrate the importance of understanding mechanisms and rates of biogenic gas production in order to interpret observed tropospheric isotopic data.
Recent advances in quartz enhanced photoacoustic sensing
NASA Astrophysics Data System (ADS)
Patimisco, Pietro; Sampaolo, Angelo; Dong, Lei; Tittel, Frank K.; Spagnolo, Vincenzo
2018-03-01
This review aims to discuss the latest advancements in quartz-enhanced photoacoustic spectroscopy (QEPAS) based trace-gas sensing. Starting from the QEPAS basic physical principles, the most used QEPAS configurations will be described. This is followed by a detailed theoretical analysis and experimental study regarding the influence of quartz tuning forks (QTFs) geometry on their optoacoustic transducer performance. Furthermore, an overview of the latest developments in QEPAS trace-gas sensor technology employing custom QTFs will be reported. Results obtained by exploiting novel micro-resonator configurations, capable of increasing the QEPAS signal-to-noise ratio by more than two orders of magnitude and the utilization of QTF overtone flexural modes for QEPAS based sensing will be presented. A comparison of the QEPAS performance of different spectrophone configurations is reported based upon signal-to-noise ratio. Finally, a novel QEPAS approach allowing simultaneous dual-gas detection will be described.
Dual-wavelength quantum cascade laser for trace gas spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jágerská, J.; Tuzson, B.; Mangold, M.
2014-10-20
We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.
Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Young, C; Chan, J
2007-07-12
A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{submore » 4}.« less
Development of and fabrication of high resolution gas chromatographic capillary columns
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1982-01-01
Gas chromatographic columns which are used in the trace gas analyzer (TGA) for the space shuttle are coated with a polyoxyethylene lauryl ether. This stationary phase is of medium polarity and has a temperature limit of 160 C. A polymer for this application which has an improved thermal stability is investigated. The use of fused silica capillary columns with specially bonded phases as well as an introduction system (on column) was also studied.
LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest
R.K. Varner; M.M. Keller
2009-01-01
This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....
Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef
2015-09-03
An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.
Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Dollhopf, Niklaus M.; Donovan Meyer, Jennifer
2016-01-01
Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our preliminary results here.Niklaus M. Dollhopf gratefully acknowledges the support of the National Radio Astronomy Observatory Summer Student REU Program sponsored by the National Science Foundation.
Development of a primary diffusion source of organic vapors for gas analyzer calibration
NASA Astrophysics Data System (ADS)
Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.
2018-03-01
The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.
Further developments in oxidation of methane traces with radiofrequency discharge
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. J.
1977-01-01
The radiofrequency discharge, previously shown to oxidize trace levels of methane in oxygen, was studied with contaminated air at 50, 600, and 760 torr. As with oxygen, the concentration of methane traces could be reduced by several orders of magnitude, and no organic reaction products were detected in the effluent; however, substantial concentrations of NOx (0.1-6%) were formed during treatment. The concentration of NOx was decreased by using a large diameter electrode. There is evidence that the process will oxidize N2 and NO as well as organic impurities in oxygen or oxygen/inert gas atmospheres.
Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey
NASA Astrophysics Data System (ADS)
Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.
To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.
Polar Vortex Dynamics During Spring and Fall Diagnosed Using ATMOS Trace Gas Observation
NASA Technical Reports Server (NTRS)
Manney, G.; Michelsen, H.; Santee, M.; Gunson, M.; Irion, F.; Roche, A.; Livesey, N.
1999-01-01
Trace gases measured by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Mar/Apr 1992(AT-1), Apr 1993(AT-2), and Nov 1994(AT-3) space-shuttle missions have been mapped into equivalent latitude/potential temperature (EqL/0) coordinates.
Depletion of chlorine into HCl ice in a protostellar core. The CHESS spectral survey of OMC-2 FIR 4
NASA Astrophysics Data System (ADS)
Kama, M.; Caux, E.; López-Sepulcre, A.; Wakelam, V.; Dominik, C.; Ceccarelli, C.; Lanza, M.; Lique, F.; Ochsendorf, B. B.; Lis, D. C.; Caballero, R. N.; Tielens, A. G. G. M.
2015-02-01
Context. The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <10-5 has not yet been well studied. Aims: Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. Methods: We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H2 hyperfine collisional excitation rate coefficients. Results: A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9 × 10-11, a factor of only 10-3 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Conclusions: Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of ≲10-10 in most of the protostellar core. We find the [35Cl]/[37Cl] ratio in OMC-2 FIR 4 to be 3.2 ± 0.1, consistent with the solar system value. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Pineda, Jorge; Velusamy, Thangasamy; Langer, William D.; Goldsmith, Paul; Li, Di; Yorke, Harold
The GOT C+ a HIFI Herschel Key Project, studies the diffuse ISM throughout the Galactic Plane, using C+ as cloud tracer. The C+ line at 1.9 THz traces a so-far poorly studied stage in ISM cloud evolution -the transitional clouds going from atomic HI to molecular H2. This transition cloud phase, which is difficult to observe in HI and CO alone, may be best characterized via CII emission or absorption. The C+ line is also an excellent tracer of the warm diffuse gas and the warm, dense gas in the Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. We present our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO) along a few representative lines of sight in the inner Galaxy from longitude 325 degrees to 25 degrees, taken during the HIFI Priority Science Phase. Comparisons of the high spectral resolution ( 1 km/s) HIFI data on C+ with HI, 12CO, and 13CO spectra allow us to separate out the different ISM components along each line of sight. Our results provide detailed information about the transition of diffuse atomic to molecular gas clouds needed to understand star formation and the lifecycle of the interstellar gas. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoctoral associate.
Study on the decomposition of trace benzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas
Commercial and laboratory-prepared V2O5–WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) was employe...
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.
2016-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.
Reactivity and Air Composition at Taehwa Research Forest During KORUS-AQ 2016
NASA Astrophysics Data System (ADS)
Sanchez, D.; Seco, R.; Gu, D.; Jeong, D.; Blake, D. R.; Herndon, S. C.; Lee, Y.; Mak, J. E.; McGee, T. J.; Guenther, A. B.; Kim, S.
2017-12-01
The existence of unmeasured volatile organic compounds (VOCs) has been strongly suggested by past studies. Combining OH reactivity (inverse OH lifetime) observations, or total reactivity of ambient air, with VOC and other trace gas observations allows us to examine reactive gas budgets. Previous studies at various field sites have shown that significant amounts of OH reactivity cannot be accounted for, especially in areas influenced by biogenic VOCs and their oxidation products. Thus, we will present the improvements in completing the OH reactivity budget at the Taehwa research forest using the OH reactivity, VOC, and other trace gas observations conducted from May to June during the KORUS-AQ 2016 campaign in South Korea. OH reactivity was measured using the comparative reactivity method with chemical ionization mass spectrometry (CRM-CIMS). The VOCs were measured using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). A preliminary assessment of the OH reactivity budget at the Taehwa research using only conventionally measured trace gases and VOCs demonstrated that 54% of OH reactivity remained unaccounted. However, the improved mass resolution and sensitivity towards higher mass compounds (m/z > 100) of the PTR-ToF-MS allowed us to observe typically unmeasured VOCs. Identification of these VOCs may help account for the remaining missing OH reactivity observed at the Taehwa research forest.
Harley, William M; Kozar, Michael P; Fox, Alvin
2002-09-01
An automated derivatization instrument has been developed for the preparation of alditol acetates from bacterial hydrolysates for analysis by gas chromatography-mass spectrometry (GC-MS). The current report demonstrates the utility of the automated instrument for the more demanding task of trace analysis of muramic acid (Mur) in airborne dust using gas chromatography-tandem mass spectrometry (GC-MS(2)). Conditions for efficient derivatization of Mur, vital for trace analysis, are rigorous including lactam and imido group formation under anhydrous conditions. Furthermore, as the detection limit is lowered, possible contamination or carry-over of samples becomes an increasingly greater consideration and must not occur. The instrument meets these criteria and was successfully used for assaying the levels of Mur in laboratory air, which were found to be much lower than in the previous studies of heavily occupied schools and agricultural environments. The potential for GC-MS(3) in further lowering the detection limit was also demonstrated.
Resonant photoacoustic detection of NO2 traces with a Q-switched green laser
NASA Astrophysics Data System (ADS)
Slezak, Verónica; Codnia, Jorge; Peuriot, Alejandro L.; Santiago, Guillermo
2003-01-01
Resonant photoacoustic detection of NO2 traces by means of a high repetition pulsed green laser is presented. The resonator is a cylindrical Pyrex glass cell with a measured Q factor 380 for the first radial mode in air at atmospheric pressure. The system is calibrated with known mixtures in dry air and a minimum detectable volume concentration of 50 parts in 109 is obtained (S/N=1). Its sensitivity allows one to detect and quantify NO2 traces in the exhaust gases of cars. Previously, the analysis of gas adsorption and desorption on the walls and of changes in the sample composition is carried out in order to minimize errors in the determination of NO2 content upon application of the extractive method. The efficiency of catalytic converters of several models of automobiles is studied and the NO2 concentration in samples from exhausts of different types of engine (gasoline, diesel, and methane gas) at idling operation are measured.
NASA Technical Reports Server (NTRS)
Smith, A. C.
1982-01-01
Trace gases evolved from a polyimide film during its thermal curing stages have been studied using ion-induced nucleation mass spectrometry. The technique involved exposing the test gas sample to a low energy beta source and recording the masses of the ion-induced molecular clusters formed in the reaction chamber. On the basis of the experimentally observed molecular cluster spectra, it has been concluded that the dominant trace component had a molecular weight of 87 atomic mass units. This component has been identified as a molecule of dimethylacetamide (DMAC) which had been used as a solvent in the preparation of the test polyimide specimen. This identification has been further confirmed by comparing the spectra of the test gas sample and the DMAC calibration sample obtained with a conventional mass spectrometer. The advantages of the ion-induced nucleation mass spectrometer versus the conventional mass spectrometer are discussed.
Estimation of Dynamical Parameters in Atmospheric Data Sets
NASA Technical Reports Server (NTRS)
Wenig, Mark O.
2004-01-01
In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.
David R. Weise; Timothy J. Johnson; James Reardon
2015-01-01
Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using...
Trace desulfurization. [DOE patent application
Chen, H.L.; Stevens, C.G.
A method for reducing a trace concentration of sulfur-containing compounds in a gas stream from about one part in 10/sup 4/ to about one part in 10/sup 7/. The method includes the steps of irradiating the gas stream with an energy source which has a central emission frequency chosen to substantially match a wavelength of energy absorption of the sulfur-containing compounds and of subsequently contacting the gas stream with a reactive surface which includes a reactant selected from elemental metals and metal oxides so that metallic sulfur-containing compounds are formed. The reduction in concentration allows the gas stream to be processed in certain reactions having catalysts which would otherwise be poisoned by the sulfur-containing compounds.
W. J. Massman
2004-01-01
Atmospheric trace gas fluxes measured with an eddy covariance sensor that detects a constituent's density fluctuations within the in situ air need to include terms resulting from concurrent heat and moisture fluxes, the so called 'density' or 'WPL corrections' (Webb et al. 1980). The theory behind these additional terms is well established. But...
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.
2013-07-01
Release of trace gases from surface snow on earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analysed by means of X-ray-computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures, surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature-dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. For this, a snow sample with an artificially high amount of ice grains was produced and the grain boundary surface measured using thin sections. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.
2013-03-01
Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analyzed by means of X-ray computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
Trace gas emissions from chaparral and boreal forest fires
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.
1989-01-01
Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.
Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.
Zhuang, Ye; Pavlish, John H
2012-04-17
Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.
NASA Astrophysics Data System (ADS)
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.
2015-01-01
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.
Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.
Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan
2018-06-19
The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toward Gas Chemistry in Low Metallicity Starburst Galaxies
NASA Astrophysics Data System (ADS)
Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.
2017-01-01
Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.
Design and research of built-in sample cell with multiple optical reflections
NASA Astrophysics Data System (ADS)
Liu, Jianhui; Wang, Shuyao; Lv, Jinwei; Liu, Shuyang; Zhou, Tao; Jia, Xiaodong
2017-10-01
In the field of trace gas measurement, with the characteristics of high sensitivity, high selectivity and rapid detection, tunable diode laser absorption spectroscopy (TDLAS) is widely used in industrial process and trace gas pollution monitoring. Herriott cell is a common form of multiple reflections of the sample cell, the structure of the Herriott cell is relatively simple, which be used to application of trace gas absorption spectroscopy. In the pragmatic situation, the gas components are complicated, and the continuous testing process for a long time can lead to different degree of pollution and corrosion for the reflector in the sample cell. If the mirror is not cleaned up in time, it will have a great influence on the detection accuracy. In order to solve this problem in the process of harsh environment detection, this paper presents a design of the built-in sample cell to avoid the contact of gas and the mirror, thereby effectively reducing corrosion pollution. If there is optical pollution, direct replacement of the built-in optical sample cell can easily to be disassembled, and cleaned. The advantage of this design is long optical path, high precision, cost savings and so on.
Technical and Scientific Aspects of the JET Trace-Tritium Experimental Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.T.C.; Brennan, D; Pearce, R.J.H.
The JET Trace Tritium (TTE) programme marked the first use of tritium in experiments under the managerial control of UKAEA, which operates the JET Facility on behalf of EFDA. The introduction of tritium into the plasma by gas fuelling and neutral beam injection, even in trace quantities, required the mobilisation of gram-quantities of tritium gas from the Active Gas Handling System (AGHS) product storage units into the supply lines connected to the torus gas valve and the neutral beam injectors. All systems for DT gas handling, recovery and reprocessing were therefore recommissioned and operating procedures re-established, involving extensive operations staffmore » training. The validation of Key Safety Related Equipment (KSRE) is described with reference to specific examples. The differences between requirements for TTE and full DT operations are shown to be relatively small. The scientific motivation for TTE, such as the possibility to obtain high-quality measurements in key areas such as fuel-ion transport and fast ion dynamics, is described, and the re-establishment and development of JET's 14MeV neutron diagnostic capability for TTE and future DT campaigns are outlined. Some scientific highlights from the TTE campaign are presented.« less
Neutral gas and diffuse interstellar bands in the LMC
NASA Technical Reports Server (NTRS)
Danks, Anthony C.; Penprase, Brian
1994-01-01
Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.
NASA Astrophysics Data System (ADS)
Abu-Taha, M. I.; Abu-Teir, M. M.; Al-Jamal, A. J.; Eideh, H.
The aim of this work was to establish the feasibility of the combined photoacoustic (PA) and photopyroelectric (PPE) detection of the vapours emitted from essential oils and their corresponding uncrushed leaves or flowers. Gas traces of jasmine (Jessamine (Jasminum)), mint (Mentha arvensis L.) and Damask rose (Rosa damascena Miller) and their essential oils were tested using a combined cell fitted with both a photopyroelectric film (PVDF) and a microphone in conjunction with a pulsed wideband infrared source (PWBS) source. Infrared PA and PPE absorbances were obtained simultaneously at room temperatures with excellent reproducibility and high signal-to-noise ratios. Significant similarities found between the PA and PPE spectra of the trace gas emissions of plant parts, i.e., flowers or leaves and their related essential oils show the good correlation of their emissions and that both effects are initiated by the same absorbing molecules.
Miniature Tunable Laser Spectrometer for Detection of a Trace Gas
NASA Technical Reports Server (NTRS)
Christensen, Lance E. (Inventor)
2017-01-01
An open-path laser spectrometer (OPLS) for measuring a concentration of a trace gas, the OPLS including an open-path multi-pass analysis region including a first mirror, a second mirror at a distance and orientation from the first mirror, and a support structure for locating the mirrors, a laser coupled to the analysis region and configured to emit light of a wavelength range and to enable a plurality of reflections of the emitted light between the mirrors, a detector coupled to the analysis region and configured to detect a portion of the emitted light impinging on the detector and to generate a corresponding signal, and an electronic system coupled to the laser and the detector, and configured to adjust the wavelength range of the emitted light from the laser based on the generated signal, and to measure the concentration of the trace gas based on the generated signal.
Are non-linearity effects of absorption important for MAX-DOAS observations?
NASA Astrophysics Data System (ADS)
Pukite, Janis; Wang, Yang; Wagner, Thomas
2017-04-01
For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).
21 CFR 868.5430 - Gas-scavenging apparatus.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas-scavenging apparatus. 868.5430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5430 Gas-scavenging apparatus. (a) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace...
21 CFR 868.5430 - Gas-scavenging apparatus.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas-scavenging apparatus. 868.5430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5430 Gas-scavenging apparatus. (a) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace...
Climate-chemical interactions and effects of changing atmospheric trace gases
NASA Technical Reports Server (NTRS)
Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.
1987-01-01
The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.
NASA Technical Reports Server (NTRS)
Alonso, Jesus Delgado; Phillips, Straun; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench-top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under conditions of water condensation. This paper presents the most recent progress in the development of this sensor technology. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the space suit, and this complexity may interfere with gas sensor readings. This paper presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in space suits. A study of the calibration stability of the sensors is also presented. For that purpose, a profile of temperature, pressure, humidity, and gas composition for the duration of an EVA has been defined, and the performance of sensors operated repeatedly under those conditions has been studied. Finally, this paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a PLSS.
NASA Astrophysics Data System (ADS)
Allen, Grant; Pitt, Joseph; Le Breton, Michael; Percival, Carl; Bannan, Thomas; O'Doherty, Simon; Manning, Alistair; Rigby, Matt; Gannesan, Anita; Mead, Mohammed; Bauguitte, Stephane; Lee, James; Wenger, Angelina; Palmer, Paul
2016-04-01
This work highlights data measured during flights by the UK Facility for Airborne Atmospheric Measurement (FAAM) as part of the Greenhouse gAs UK and Global Emissions (GAUGE) campaign. A total of 17 flights (85 flight-hours) have been conducted so far around the UK mainland and Ireland to sample precision in situ CH4, CO2, N2O (and other trace gas) concentrations and meteorological parameters at altitudes up to 9500m throughout the period April 2014 to May 2015. Airborne remote sensing retrievals of greenhouse gas total columns have also been calculated using the Manchester Airborne Retrieval Scheme for the UK Met Office ARIES high resolution FTIR instrument. This airborne dataset represents a mapped climatology and a series of case studies from which to assess top-down bulk-net-flux snapshots for regions of the UK, and provides for evaluation of inverse modelling approaches that challenge bottom-up inventories, satellite remote sensing measurements, and assessment of model transport uncertainty. In this paper, we shall describe the instrumentation on the FAAM aircraft and provide a diary of GAUGE FAAM flights (and data highlights) to date; and discuss selected flights of interest to studies such as those above with a focus of net mass flux evaluation.
Optical design and optimization of parabolic dish solar concentrator with a cavity hybrid receiver
NASA Astrophysics Data System (ADS)
Blázquez, R.; Carballo, J.; Silva, M.
2016-05-01
One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.
Trace gas emissions from biomass burning in tropical Australian savannas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, D.F.; Griffith, D.W.T.; Cook, G.D.
1994-08-20
The trace gas emissions of biomass burning was measured during the 1991 and 1992 dry seasons (April through October) at the Kapalga Research Station in Kakadu National Park, Northern Territory, Australia. Over 100 smoke samples from savannah fires were collected, from the ground and from aircraft flying at 50 to 700 meters above the fires. The samples were analyzed for carbon dioxide, carbon monoxide, nitrous oxides, and other carbon and nitrogen compounds using gas phase Fourier transform infrared (FTIR) spectroscopy, matrix isolation FTIR spectroscopy, and chemiluminescence techniques. This paper describes the results of the gas analyses and discusses the potentialmore » impacts of these gases on regional atmospheric chemistry.49 refs., 4 figs., 7 tabs.« less
Epiphytic cryptogams as a source of bioaerosols and trace gases
NASA Astrophysics Data System (ADS)
Ruckteschler, Nina; Hrabe de Angelis, Isabella; Zartman, Charles E.; Araùjo, Alessandro; Pöschl, Ulrich; Manzi, Antonio O.; Andreae, Meinrat O.; Pöhlker, Christopher; Weber, Bettina
2016-04-01
Cryptogamic covers comprise (cyano-)bacteria, algae, lichens, bryophytes, fungi, and archaea in varying proportions. These organisms do not form flowers, but reproduce by spores or cell cleavage with these reproductive units being dispersed via the atmosphere. As so-called poikilohydric organisms they are unable to regulate their water content, and their physiological activity pattern mainly follows the external water conditions. We hypothesize, that both spore dispersal and the release of trace gases are governed by the moisture patterns of these organisms and thus they could have a greater impact on the atmosphere than previously thought. In order to test this hypothesis, we initiated experiments at the study site Amazonian Tall Tower Observatory (ATTO) in September 2014. We installed microclimate sensors in epiphytic cryptogams at four different heights of a tree to monitor the activity patterns of these organisms. Self-developed moisture probes are used to analyze the water status of the organisms accompanied by light and temperature sensors. The continuously logged data are linked to ongoing measurements of trace gases and particulate bioaerosols to analyze these for the relevance of cryptogams. Here, we are particularly interested in diurnal cycles of coarse mode particles and the atmospheric abundance of fine potassium-rich particles from a currently unknown biogenic source. Based upon the results of this field study we also investigate the bioaerosol and trace gas release patterns of cryptogamic covers under controlled conditions. With this combined approach of field and laboratory experiments we aim to disclose the role of cryptogamic covers in bioaerosol and trace gas release patterns in the Amazonian rainforest.
NASA Astrophysics Data System (ADS)
Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.
2017-12-01
Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.
Online, real-time detection of volatile emissions from plant tissue.
Harren, Frans J M; Cristescu, Simona M
2013-01-01
Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.
Online, real-time detection of volatile emissions from plant tissue
Harren, Frans J. M.; Cristescu, Simona M.
2013-01-01
Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants. PMID:23429357
NASA Astrophysics Data System (ADS)
Sparks, A. M.; Yokelson, R. J.; Smith, A. M.; Marshall, J. D.; Tinkham, W.
2013-12-01
The importance of wildland fire as a source of trace gas emissions to the atmosphere has been demonstrated in the scientific literature and through numerous NASA funded campaigns to further understand the drivers and impacts of these emissions (e.g., SAFARI 1992, SAFARI 2000, TRACE A, etc). Most studies quantify emissions using remotely sensed data through multiplying the area burned, the quantity of fuel combusted, and the emission factors of a given gas species (EFX, grams of gas, X, emitted per kilogram of fuel consumed). The latter is known to exhibit considerable uncertainty and indeed a prior study as part of NASA's SAFARI 2000 campaign highlighted a seasonal dependence of carbonaceous gas species emissions. In this study, rangeland grass and shrub species were collected periodically from northern Great Basin shrub-steppe ecosystems during the typical burn season and burned in a small-scale laboratory setup where major carbonaceous and nitrogenous emission species were monitored and measured. Preliminary results indicate that emission factors of several major gas species, including carbon monoxide and nitrogen oxides, vary considerably over the course of a season. Large differences in emission apportionment between the rangeland species also suggests that shifting vegetation composition (via replacement of native with invasive species) can have a significant influence on emissions from semi-arid ecosystems. Further development of this data could lead to an enhanced understanding of how emission factors vary seasonally and how total emissions change with major vegetation shifts in other ecosystems.
NASA Astrophysics Data System (ADS)
Jurkat, T.; Kaufmann, S.; Voigt, C.; Schäuble, D.; Jeßberger, P.; Ziereis, H.
2015-12-01
Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulphur components. The Airborne chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using chemical ionization with SF5- reagent ions for the simultaneous measurement of trace gas concentrations in the pptv to ppmv (10-12 to 10-6 mol mol-1) range of HCl, HNO3 and SO2 with in-flight and online calibration called AIMS-TG. Part 1 of this paper (Kaufmann et al., 2015) reports on the UTLS water vapour measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed generating a characteristic ionization scheme. HNO3 and HCl are routinely calibrated in-flight using permeation devices, SO2 is permanently calibrated during flight adding an isotopically labelled 34SO2 standard. In addition, we report on trace gas measurements of HONO which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low ten pptv range at a 1 s time resolution with an overall uncertainty of the measurement in the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO. Exemplarily, measurements conducted during the TACTS/ESMVal mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. Comparison of AIMS measurements with other measurement techniques allow to draw a comprehensive picture of the sulphur, chlorine and reactive nitrogen oxide budget in the UTLS. The combination of the trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.
Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajyaguru, Bhargav; Gadani, Keval; Kansara, S. B.
2016-05-06
In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96 nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are moremore » capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.« less
NASA Astrophysics Data System (ADS)
Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Schäuble, Dominik; Jeßberger, Philipp; Ziereis, Helmut
2016-04-01
Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5- reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the pptv to ppmv (10-12 to 10-6 mol mol-1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. The combination of AIMS measurements with other measurement techniques yields a comprehensive picture of the sulfur, chlorine and reactive nitrogen oxide budget in the UTLS. The different trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.
Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming
2012-08-21
The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.
NASA Astrophysics Data System (ADS)
Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi
2012-12-01
Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.
Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model
NASA Technical Reports Server (NTRS)
Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.
1988-01-01
The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.
NASA Astrophysics Data System (ADS)
Zheng, Huadan; Dong, Lei; Wu, Hongpeng; Yin, Xukun; Xiao, Liantuan; Jia, Suotang; Curl, Robert F.; Tittel, Frank K.
2018-01-01
During the past 15 years since the first report of quartz enhanced photoacoustic spectroscopy (QEPAS), QEPAS has become one of the leading optical techniques for trace chemical gas sensing. This paper is a review of the current state-of-the art of QEPAS. QEPAS based spectrophones with different acoustic micro-resonators (AmR) configurations employing both standard quartz tuning forks (QTFs) and custom-made QTFs are summarized and discussed in detail.
Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.
Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming
2014-11-10
A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11 cm-1 Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12 cm-1 has been obtained by averaging about 100 spectra recorded in 2 h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.
Long-term soil gas flux and root mortality, Tapajos National Forest
W. L. Silver; A. W. Thompson; M. E. McGroddy; R. K. Varner; J. R. Robertson; J. D. Dias; H. Silva; P. Crill; M. Keller
2012-01-01
This data set reports measurements of trace gas fluxes of methane (CH4), nitric oxide (N2O), nitrous oxide (NO), carbon dioxide (CO2) from soils at a study site in the Tapajos National Forest (TNF), near the km 83 on the Santarem-Cuiaba Highway south of Santarem, Para, Brazil. Data for root mass and carbon content, soil nitrogen (N), nitrification, and moisture content...
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; ...
2015-08-26
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less
NASA Astrophysics Data System (ADS)
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.
2015-08-01
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.
Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment
NASA Technical Reports Server (NTRS)
Allario, F.; Katzberg, S. J.; Larsen, J. C.
1980-01-01
Several experiments involving spectral scanning interferometers and gas filter correlation radiometers (ref. 2) using limb scanning solar occultation techniques under development for measurements of stratospheric trace gases from Spacelab and satellite platforms are described. An experiment to measure stratospheric trace constituents by Laser Heterodyne Spectroscopy, a summary of sensitivity analyses, and supporting laboratory measurements are presented for O3, ClO, and H2O2 in which the instrument transfer function is modeled using a detailed optical receiver design.
Trace Gas Retrievals from the GeoTASO Aircraft Instrument
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.
2015-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.
CO2 lidar for measurements of trace gases and wind velocities
NASA Technical Reports Server (NTRS)
Hess, R. V.
1982-01-01
CO2 lidar systems technology and signal processing requirements relevant to measurement needs and sensitivity are discussed. Doppler processing is similar to microwave radar, with signal reception controlled by a computer capable of both direct and heterodyne operations. Trace gas concentrations have been obtained with the NASA DIAL system, and trace gas transport has been determined with Doppler lidar measurements for wind velocity and turbulence. High vertical resolution measurement of trace gases, wind velocity, and turbulence are most important in the planetary boundary layer and in regions between the PBL and the lower stratosphere. Shear measurements are critical for airport operational safety. A sensitivity analysis for heterodyne detection with the DIAL system and for short pulses using a Doppler lidar system is presented. The development of transient injection locking techniques, as well as frequency stability by reducing chirp and catalytic control of closed cycle CO2 laser chemistry, is described.
Computational thermo-fluid dynamics contributions to advanced gas turbine engine design
NASA Technical Reports Server (NTRS)
Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.
1984-01-01
The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.
NASA Astrophysics Data System (ADS)
Agnan, Yannick; Douglas, Thomas A.; Helmig, Detlev; Hueber, Jacques; Obrist, Daniel
2018-06-01
In the Arctic, the snowpack forms the major interface between atmospheric and terrestrial cycling of mercury (Hg), a global pollutant. We investigated Hg dynamics in an interior Arctic tundra snowpack in northern Alaska during two winter seasons. Using a snow tower system to monitor Hg trace gas exchange, we observed consistent concentration declines of gaseous elemental Hg (Hg0gas) from the atmosphere to the snowpack to soils. The snowpack itself was unlikely a direct sink for atmospheric Hg0gas. In addition, there was no evidence of photochemical reduction of HgII to Hg0gas in the tundra snowpack, with the exception of short periods during late winter in the uppermost snow layer. The patterns in this interior Arctic snowpack thus differ substantially from observations in Arctic coastal and temperate snowpacks. We consistently measured low concentrations of both total and dissolved Hg in snowpack throughout the two seasons. Chemical tracers showed that Hg was mainly associated with local mineral dust and regional marine sea spray inputs. Mass balance calculations show that the snowpack represents a small reservoir of Hg, resulting in low inputs during snowmelt. Taken together, the results from this study suggest that interior Arctic snowpacks are negligible sources of Hg to the Arctic.
Design and Testing of Trace Contaminant Injection and Monitoring Systems
NASA Technical Reports Server (NTRS)
Broerman, Craig D.; Sweterlitsch, Jeff
2009-01-01
In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.
Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.
Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip
2017-09-01
We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000 cm -1 ) single-shot CARS with an unprecedented resolution of ∼100 MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.
Gas chromatographic analysis of trace impurities in chlorine trifluoride.
Laurens, J B; Swinley, J M; de Coning, J P
2000-03-24
The gas chromatographic determination of trace gaseous impurities in highly reactive fluorinated gaseous matrices presents unique requirements to both equipment and techniques. Especially problematic are the gases normally present in ambient air namely oxygen and nitrogen. Analysing these gases at the low microl/l (ppm) level requires special equipment and this publication describes a custom-designed system utilising backflush column switching to protect the columns and detectors. A thermal conductivity detector with nickel filaments was used to determine ppm levels of impurities in ClF3.
Atmospheric trace gas analysis using matrix isolation-Fourier Transform Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Griffith, David W. T.; Schuster, Gerhard
1987-03-01
A novel cryogenic sampling method combining the matrix isolation technique with FTIR spectroscopy has been developed for atmospheric trace gas analysis. It is applicable to a wide range of molecules with detection limits typically in the 10-50 ppt range. The method is described along with some measurements of N2O, CFCl3, CF2Cl2, OCS, CS2, SO2 and PAN from samples collected at ground level and from an aircraft between 9 and 14 km.
Trace gas and particulate emissions from biomass burning in temperate ecosystems
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.
1991-01-01
Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.
Nebulization Reflux Concentrator
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Collins, V. G.
1986-01-01
Nebulization reflux concentrator extracts and concentrates trace quantities of water-soluble gases for subsequent chemical analysis. Hydrophobic membrane and nebulizing nozzles form scrubber for removing trace quantities of soluble gases or other contaminants from atmosphere. Although hydrophobic membrane virtually blocks all transport of droplets, it offers little resistance to gas flow; hence, device permits relatively large volumes of gas scrubbed efficiently with very small volumes of liquid. This means analyzable quantities of contaminants concentrate in extracting solutions in much shorter times than with conventional techniques.
Pirbalouti, Abdollah Ghasemi; Mohammadi, Maryam
2013-01-01
Objective To examine the chemical variability in inflorescences of wild populations of Stachys lavandulifolia Vahl (S. lavandulifolia) collected throughout two provinces (Isfahan and Chaharmahal va Bakhtiary), Southwest Iran. Methods The essential oils of S. lavandulifolia Vahl from seven locations were obtained by hydro-distillation and analysed by gas chromatography and gas chromatography-mass spectrometry. Results The results revealed that distinct differences in the content of compounds depending on region of sample collection. The main constituents of the essential oils were α-thujone (0.3%-32.3%), α-pinene (trace to 37.3%), myrcene (0.5%-15.9%), β-phellandrene (1.1%-37.9%), germacrene D (0.4%-11.3%), Δ-cadinene (trace to 11.6%) and 1, 4-methano-1 H-indene (trace to 10.1%). Conclusions The results of the present study indicated that essential oil components of S. lavandulifolia Vahl can be varied with genetic (ecotype), environmental conditions and geographic origin. In general, the essential oils of various populations of S. lavandulifolia Vahl were rich in monoterpenoids and sesquiterpenoids. PMID:23593591
NASA Astrophysics Data System (ADS)
Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.
2015-10-01
We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift. Appendices are available in electronic form at http://www.aanda.org
Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China
Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.
2008-01-01
The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.
Crespo, Elena; Devasena, Samudrala; Sikkens, Cor; Centeno, Raymund; Cristescu, Simona M; Harren, Frans J M
2012-04-30
When performing trace gas analysis, it is not always possible to bring the source of volatiles and the gas analyzer together. In these cases, volatile storage containers, such as thermal desorption (TD) tubes, can be used for off-line measurement. TD is routinely combined with gas chromatography/mass spectrometry (GC/MS), but so far not with proton-transfer reaction mass spectrometry (PTRMS), which has a faster response. A PTR-quadrupole-MS instrument and a PTR-ion-trap-MS instrument were separately coupled to a TD unit for off-line analysis of trace volatiles in air. Carbograph 1TD/Carbopack X sorbent tubes were filled with different concentrations of a trace gas mixture containing low molecular weight volatiles (32 g/mol up to 136 g/mol) and measured with the above-mentioned combinations. The carrier gas in the TD unit was changed from helium to nitrogen to be able to combine this instrument with the mass spectrometer. Good linearity and reproducibility with the amount of gas stored were obtained. The storage capacity over time (up to 14 days) showed larger variability (<11% for all compounds, except for acetone 27%). Several tubes were filled with breath of different persons, and the breath of a smoker showed increased levels of acetonitrile and benzene. The combination of the PTR ion-trap instrument with the TD unit was also investigated. Due to its higher sampling rate, the ion-trap system showed higher throughput capabilities than the quadrupole system. The combination of TD with PTRMS using both a quadrupole and an ion trap for off-line volatile analysis has been validated. TD tubes can be a robust and compact volatile storage method when the mass spectrometry and the sampling cannot be performed in the same place, for example in large screening studies. In addition, a higher measurement throughput than with GC/MS could be obtained. Copyright © 2012 John Wiley & Sons, Ltd.
Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range
NASA Astrophysics Data System (ADS)
Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.
2018-04-01
The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.
NASA Astrophysics Data System (ADS)
Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.
2018-02-01
A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.
Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy.
Diba, Abdou S; Xie, Feng; Gross, Barry; Hughes, Lawrence C; Zah, Chung-en; Moshary, Fred
2015-10-19
Feasibility of using a mid-Infrared tunable sampled-grating distributed Bragg reflectors quantum cascade laser for high resolution multicomponent trace gas spectroscopy is demonstrated. By controlling the driving currents to the front and back sections of the laser, we were able to tune a pulsed 4.55 µm laser over a frequency range a of 30 cm(-1) with high resolution, accuracy and repeatability. The laser was applied to absorption spectroscopy of ambient and reduced pressure (150 Torr) air in a 205 meters multi-pass Herriott cell, and by using standard LSQ fitting to a spectral database of these trace gases (HITRAN), the concentrations of nitrous oxide, carbon monoxide, and water vapor were retrieved.
Low, I A; Liu, R H; Legendre, M G; Piotrowski, E G; Furner, R L
1986-10-01
A gas chromatograph/quadrupole mass spectrometer system, operated in electron impact/selected ion monitoring mode, is used to determine the intensity ratio of the m/z 59 and the m/z 58 ions of the [C3H8N]+ fragment derived from methamphetamine samples synthesized with varying amounts of 13C-labeled methylamine. Crude products are introduced into the gas chromatograph without prior cleanup. The ratios measured were in excellent agreement with those calculated. A change in 0.25% use of 13C-methylamine is sufficient for product differentiation. The feasibility of using isotope labeling and subsequent mass spectrometric isotope ratio measurement as the basis of a compound tracing mechanism is discussed. Specifically, if methamphetamine samples manufactured from legal sources are asked to incorporate distinct 13C compositions, their sources can be traced when samples are diverted into illegal channels. Samples derived from illicit preparations can also be traced if the manufacturers of a precursor (methylamine in this case) incorporate distinct 13C compositions in their products.
Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign
NASA Astrophysics Data System (ADS)
Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.
Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection
NASA Astrophysics Data System (ADS)
Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu
2018-01-01
We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.
NASA Astrophysics Data System (ADS)
Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Nance, J. D.; Hall, B. D.
2016-12-01
NOAA scientists started in situ airborne measurements of two strong ozone-depleting gases or chlorofluorocarbons, CFC-11 and CFC-113 in 1991 on the NASA ER-2 aircraft with a two-channel gas chromatograph, Airborne Chromatograph for Atmospheric Trace Species (ACATS). We broaden our list of gases to include more ozone-depleting and other climate-related gases. An improved 4-channel gas chromatograph that included N2O, SF6, CFC-11, -12, -113, halon-1211, CCl4, CH3CCl3, CH4, CO, and H2 was added to the ER-2 aircraft in 1994. As CFC replacements took hold, we add a gas chromatograph-mass spectrometer system, PAN and other Trace Hydro-halocarbon Experiment (PANTHER), to examine shorter-lived gases mainly in the upper troposphere. These airborne measurements were to complement of ground-based flask and in situ measurements from the NOAA Halocarbon and other Trace Species Network. This talk will show results from a tropical study, Airborne Tropical Tropopause Experiment (ATTREX) on the NASA Global Hawk aircraft and preliminary results from the Atmospheric Tomography Mission (ATom) conducted in August 2016 on the NASA DC-8 aircraft. A detrended, gridded, latitudinal distribution of SF6 is shown in the figure below for the years of 1994 through 2014. Such a plot may be useful to atmospheric modelers trying to capture transport or calculate emissions.
Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations
NASA Astrophysics Data System (ADS)
Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.
2018-02-01
The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.
Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources
Elia, Angela; Lugarà, Pietro Mario; Di Franco, Cinzia; Spagnolo, Vincenzo
2009-01-01
The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques. PMID:22303143
Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan
Symonds, R.B.; Mizutani, Y.; Briggs, P.H.
1996-01-01
This study investigates 31 years of fumarole gas and condensate (trace elements) data from Showa-Shinzan, a dacitic dome-cryptodome complex that formed during the 1943-1945 eruption of Usu volcano. Forty-two gas samples were collected from the highest-temperature fumarole, named A-1, from 1954 (800??C) to 1985 (336??C), and from lower-temperature vents. Condensates were collected contemporaneously with the gas samples, and we reanalyzed ten of these samples, mostly from the A-1 vent, for 32 cations and three anions. Modeling using the thermochemical equilibrium program, SOLVGAS, shows that the gas samples are mild disequilibrium mixtures because they: (a) contain unequilibrated sedimentary CH4 and NH3; (b) have unequilibrated meteoric water; or (c) lost CO, either by air oxidation or by absorption by the sodium hydroxide sampling solution. SOLVGAS also enabled us to restore the samples by removing these disequilibrium effects, and to estimate their equilibrium oxygen fugacities and amounts of S2 and CH4. The restored compositions contain > 98% H2O with minor to trace amounts of CO2, H2, HCl, SO2, HF, H2S, CO, S2 and CH4. We used the restored gas and condensate data to test the hypotheses that these time-series compositional data from the dome's fumaroles provide: (1) sufficient major-gas data to analyze long-term degassing trends of the dome's magma-hydrothermal system without the influence of sampling or contamination effects; (2) independent oxygen fugacity-versus-temperature estimates of the Showa-Shinzan dacite; (3) the order of release of trace elements, especially metals, from magma; and (4) useful information for assessing volcanic hazards. The 1954-1985 restored A-1 gas compositions confirm the first hypothesis because they are sufficient to reveal three long-term degassing trends: (1) they became increasingly H2O-rich with time due to the progressive influx of meteoric water into the dome; (2) their C/S and S/Cl ratios decreased dramatically while their Cl/F ratios stayed roughly constant, indicating the progressive outgassing of less soluble components (F ??? Cl > S > C) from the magma reservoir; and (3) their H2O/H2, CO2/CO and H2S/SO2 ratios increased significantly in concert with equilibrium changes expected for the ??? 500??C temperature drop. When plotted against reciprocal temperature, the restored-gas log oxygen fugacities follow a tight linear trend from 800??C to NNO + 2.5 at ??? 400??C. This trend largely disproves the second hypothesis because the oxygen fugacities for the < 800??C restored gases can only be explained by mixing of hot magmatic gases with ??? 350??C steam from superheated meteoric water. But above 800??C this trend intersects the opposing linear trend for other Usu eruptive products, implying a log oxygen fugacity of -11.45 at 902??C for the Showa-Shinzan magma. The time-series trace-element data also disprove the third hypothesis because rock- and incrustation-particle contaminants in the condensates account for most of the trace-element variation. Nonetheless, highly volatile elements like B and As are relatively unaffected by this particle contamination, and they show similar time-series trends as Cl and F. Finally, except for infrequent sampling around the 1977 Usu eruption, the results generally confirm the fourth hypothesis, since the time-series trends for the major gases and selected trace elements indicate that, with time, the system cooled, degassed and was infiltrated by meteoric water, all of which are positive signs that volcanic activity declined over the 31-year history. This study also suggests that second boiling of shallow magma within and possibly beneath the cryptodome sustained magmatic degassing for at least 20 years after emplacement.
Compact Laser Multi-gas Spectral Sensors for Spacecraft Systems
NASA Technical Reports Server (NTRS)
Tittel, Frank K.
1997-01-01
The objective of this research effort has been the development of a new gas sensor technology to meet NASA requirements for spacecraft and space station human life support systems for sensitive selective and real time detection of trace gas species in the mid-infrared spectral region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, R. A.; Aghamir, F. M.
The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less
NASA Astrophysics Data System (ADS)
Delon, C.; Druilhet, A.; Delmas, R.; Greenberg, J.
2000-08-01
The Relaxed Eddy Accumulation (REA) technique, implemented aboard aircraft, may be used to measure a wide variety of trace gas fluxes at a regional scale. Its principle is rather simple: air is sampled at a constant rate and the flux is calculated by multiplying a constant β (0.58 in field experiment and 0.62 in simulations) by the standard deviation of the vertical velocity and by the difference between the average concentrations of the scalar (trace gas) for updrafts and downdrafts. The storage of the chemical compound in reservoirs allows for trace gas analysis in laboratory, when in situ measurement with fast response and high sensitivity sensors are not available. The REA method was implemented on the Avion de Recherche Atmosphérique et de Télédétection aircraft during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) campaign. The main requirement for accurate flux determination is the measurement of the vertical component of wind velocity in real time. A simulation technique was developed to evaluate the performance of an aircraft REA. The influence of the time lag between the vertical velocity (W) measurement and REA control was tested, as well as the offset of W, the threshold, and the filtering imposed on W. Correction factors, used in a deployment of aircraft REA, were deduced from this study. An additional simulation was performed to evaluate the influence of spatial or temporal drifts on the scalar. The simulation showed that the REA method is not more disturbed than the Eddy Correlation method by low frequencies of physical origin, such as topography. The REA method was used during EXPRESSO for the measurement of isoprene fluxes over the wet savanna and the evergreen rain forest.
NASA Astrophysics Data System (ADS)
Hueneke, Tilman; Grossmann, Katja; Knecht, Matthias; Raecke, Rasmus; Stutz, Jochen; Werner, Bodo; Pfeilsticker, Klaus
2016-04-01
Changing atmospheric conditions during DOAS measurements from fast moving aircraft platforms pose a challenge for trace gas retrievals. Traditional inversion techniques to retrieve trace gas concentrations from limb scattered UV/vis spectroscopy, like optimal estimation, require a-priori information on Mie extinction (e.g., aerosol concentration and cloud cover) and albedo, which determine the atmospheric radiative transfer. In contrast to satellite applications, cloud filters can not be applied because they would strongly reduce the usable amount of expensively gathered measurement data. In contrast to ground-based MAX-DOAS applications, an aerosol retrieval based on O4 is not able to constrain the radiative transfer in air-borne applications due to the rapidly decreasing amount of O4 with altitude. Furthermore, the assumption of a constant cloud cover is not valid for fast moving aircrafts, thus requiring 2D or even 3D treatment of the radiative transfer. Therefore, traditional techniques are not applicable for most of the data gathered by fast moving aircraft platforms. In order to circumvent these limitations, we have been developing the so-called X-gas scaling method. By utilising a proxy gas X (e.g. O3, O4, …), whose concentration is either a priori known or simultaneously in-situ measured as well as remotely measured, an effective absorption length for the target gas is inferred. In this presentation, we discuss the strengths and weaknesses of the novel approach along with some sample cases. A particular strength of the X-gas scaling method is its insensitivity towards the aerosol abundance and cloud cover as well as wavelength dependent effects, whereas its sensitivity towards the profiles of both gases requires a priori information on their shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less
On-Orbit Measurements of the ISS Atmosphere by the Vehicle Cabin Atmosphere Monitor
NASA Technical Reports Server (NTRS)
Darrach, M. R.; Chutjian, A.; Bornstein, B. J.; Croonquist, A. P.; Garkanian, V.; Haemmerle, V. R.; Hofman, J.; Heinrichs, W. M.; Karmon, D.; Kenny, J.;
2011-01-01
We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environmental monitor based on a miniature gas chromatograph/mass spectrometer. It was flown to the ISS on shuttle mission STS-131 and commenced operations on 6/10/10. VCAM provides measurements of ppb-to-ppm levels of volatile trace-gas constituents, and of the atmospheric major constituents (nitrogen, oxygen, argon, and carbon dioxide) in a space vehicle or station. It is designed to operate autonomously and maintenance-free, approximately once per day, with a self-contained gas supply sufficient for a one-year lifetime. VCAM is designed to detect and identify 90% of the target compounds at their 180-day Spacecraft Maximum Allowable Concentration levels.
NASA Astrophysics Data System (ADS)
Nowak-Lovato, K.
2014-12-01
Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.
A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components
NASA Astrophysics Data System (ADS)
Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F.
2013-06-01
Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions. Aims: Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM. Methods: The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane. Results: [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4-11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4-8 kpc). The fraction of CO-dark H2 to total H2 increases with Galactocentric distance, ranging from ~20% at 4 kpc to ~80% at 10 kpc. On average, CO-dark H2 accounts for ~30% of the molecular mass of the Milky Way. When the CO-dark H2 component is included, the radial distribution of the CO-to-H2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C ii] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range χ0 ≃ 1 - 30. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun
2017-07-01
Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.
2015-07-01
We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.
Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues
Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...
NASA Astrophysics Data System (ADS)
Jameson, Katherine E.; Bolatto, Alberto D.; Wolfire, Mark; Warren, Steven R.; Herrera-Camus, Rodrigo; Croxall, Kevin; Pellegrini, Eric; Smith, John-David; Rubio, Monica; Indebetouw, Remy; Israel, Frank P.; Meixner, Margaret; Roman-Duval, Julia; van Loon, Jacco Th.; Muller, Erik; Verdugo, Celia; Zinnecker, Hans; Okada, Yoko
2018-02-01
The Small Magellanic Cloud (SMC) provides the only laboratory to study the structure of molecular gas at high resolution and low metallicity. We present results from the Herschel Spectroscopic Survey of the SMC (HS3), which mapped the key far-IR cooling lines [C II], [O I], [N II], and [O III] in five star-forming regions, and new ALMA 7 m array maps of {}12{CO} and {}13{CO} (2-1) with coverage overlapping four of the five HS3 regions. We detect [C II] and [O I] throughout all of the regions mapped. The data allow us to compare the structure of the molecular clouds and surrounding photodissociation regions using {}13{CO}, {}12{CO}, [C II], and [O I] emission at ≲ 10\\prime\\prime (< 3 pc) scales. We estimate {A}V using far-IR thermal continuum emission from dust and find that the CO/[C II] ratios reach the Milky Way value at high {A}V in the centers of the clouds and fall to ∼ 1/5{--}1/10× the Milky Way value in the outskirts, indicating the presence of translucent molecular gas not traced by bright {}12{CO} emission. We estimate the amount of molecular gas traced by bright [C II] emission at low {A}V and bright {}12{CO} emission at high {A}V. We find that most of the molecular gas is at low {A}V and traced by bright [C II] emission, but that faint {}12{CO} emission appears to extend to where we estimate that the {{{H}}}2-to-H I transition occurs. By converting our {{{H}}}2 gas estimates to a CO-to-{{{H}}}2 conversion factor (X CO), we show that X CO is primarily a function of {A}V, consistent with simulations and models of low-metallicity molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Technical Reports Server (NTRS)
Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard
2006-01-01
We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.
Tracking Oxidation During Transport of Trace Gases in Air from the Northern to Southern Hemisphere
NASA Astrophysics Data System (ADS)
Montzka, S. A.; Moore, F. L.; Atlas, E. L.; Parrish, D. D.; Miller, B. R.; Sweeney, C.; McKain, K.; Hall, B. D.; Siso, C.; Crotwell, M.; Hintsa, E. J.; Elkins, J. W.; Blake, D. R.; Barletta, B.; Meinardi, S.; Claxton, T.; Hossaini, R.
2017-12-01
Trace gas mole fractions contain the imprint of recent influences on an air mass such as sources, transport, and oxidation. Covariations among the many gases measured from flasks during ATom and HIPPO, and from the ongoing NOAA cooperative air sampling program enable recent influences to be identified from a wide range of sources including industrial activity, biomass burning, emissions from wetlands, and uptake by terrestrial ecosystems. In this work we explore the evolution of trace gas concentrations owing to atmospheric oxidation as air masses pass through the tropics, the atmospheric region with the highest concentrations of the hydroxyl radical. Variations in C2-C5 hydrocarbon concentrations downwind of source regions provide a measure of photochemical ageing in an air mass since emission, but they become less useful when tracking photochemical ageing as air is transported from the NH into the SH owing to their low mixing ratios, lifetimes that are very short relative to transport times, non-industrial sources in the tropics (e.g., biomass burning), and southern hemispheric sources. Instead, we consider a range of trace gases and trace gas pairs that provide a measure of photochemical processing as air transits the tropics. To be useful in this analysis, these trace gases would have lifetimes comparable to interhemispheric transport times, emissions arising from only the NH at constant relative magnitudes, and concentrations sufficient to allow precise and accurate measurements in both hemispheres. Some anthropogenically-emitted chlorinated hydrocarbons meet these requirements and have been measured during ATom, HIPPO, and from NOAA's ongoing surface sampling efforts. Consideration of these results and their implications for tracking photochemical processing in air as it is transported across the tropics will be presented.
Trace anesthetic vapors in hospital operating-room environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi-Lao, A.T.
1981-05-01
This study investigated concentrations of halothane anesthetic vapors in the operating rooms of two hospitals in the Ottawa, Ontario, Canada, area. Air samples, taken by active charcoal tubes and dosimeter badges, were analyzed by a gas chromatographic technique. Readings of 71 samples taken from hospital A and 65 samples from hospital B ranged from 1.0 to 29.4 parts per billion (ppb) for the active period and 0.1 to 3.8 ppb for the inactive period. All samples showed trace concentrations of halothane, but were well below the recommended maximal level.
Measurement techniques for trace metals in coal-plant effluents: A brief review
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.
BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites
NASA Technical Reports Server (NTRS)
Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.
1988-12-01
made using a gas sampling valve. All instruments were calibrated using gravimetric standards certified to t 1-2% relative of stated value ( Air Products and Chemicals , Inc ., Allentown...cannister - 985410 7. High Purity Gas Cylinder Regulators - several sources Air Products and Chemicals , Inc . P.O. Box 1536 Washington, DC 20013 (301
Lupus Disks with Faint CO Isotopologues: Low Gas/Dust or High Carbon Depletion?
NASA Astrophysics Data System (ADS)
Miotello, Anna
2017-11-01
With the advent of ALMA, complete surveys of gas and dust in protoplanetary disks are being carried out in different star forming regions. In particular, continuum emission is used to trace the large (mm-sized) dust grains and CO isotopologues are observed in order to trace the bulk of the gas. The attempt is to simultaneously constrain the gas and dust disk mass as well as the gas/dust mass ratio. In this presentation I will present the Lupus disk survey observations, analyzed with thermo-chemical disk models, including radiative transfer, CO isotope-selective processes and freeze-out. The main result is that CO-based gas masses are very low, often smaller than Jupiter Mass. Moreover, gas/dust mass ratios are much lower than value of 100 found in the ISM, being mainly between 1 and 10. This result can be interpreted either as rapid loss of gas, or as a chemical effect removing carbon from CO and locking it into more complex molecules or in larger bodies. Previous data cannot distinguish between the two scenarios (except for sources with detected HD lines), but new Cycle 4 observations of hydrocarbon lines will be presented and they can help to calibrate CO-based gas masses and to constrain disk gas masses.
Transport of Gas-Phase Anthropogenic VOCs to the Remote Troposphere During the NASA ATom Mission
NASA Astrophysics Data System (ADS)
Hornbrook, R. S.; Apel, E. C.; Hills, A. J.; Asher, E. C. C.; Emmons, L. K.; Blake, D. R.; Blake, N. J.; Simpson, I. J.; Barletta, B.; Meinardi, S.; Montzka, S. A.; Moore, F. L.; Miller, B. R.; Sweeney, C.; McKain, K.; Wofsy, S. C.; Daube, B. C.; Commane, R.; Bui, T. V.; Hanisco, T. F.; Wolfe, G. M.; St Clair, J. M.; Ryerson, T. B.; Thompson, C. R.; Peischl, J.; Ray, E. A.
2017-12-01
The NASA Atmospheric Tomography (ATom) project aims to study the impact of human-produced air pollution on greenhouse gases and on chemically reactive gases in the atmosphere. During the first two deployments, ATom-1 and ATom-2, which took place August 2016 and February 2017, respectively, a suite of trace gas measurement instruments were deployed on the NASA DC-8 which profiled the atmosphere between 0.2 and 13 km from near-pole to near-pole around the globe, sampling in the most remote regions of the atmosphere over the Arctic, Pacific, Southern, and Atlantic Oceans. Volatile organic compounds (VOCs) with a range of lifetimes from days to decades quantified using the Trace Organic Gas Analyzer (TOGA), Whole Air Sampler (WAS) and Programmable Flask Packages (PFPs) demonstrate a significant impact on the remote atmosphere from urban and industrial sources. Comparisons between the transport and fate of pollutants during Northern Hemisphere summer and winter will be presented. Observations of the distributions of anthropogenic VOCs will be compared with simulations using the Community Atmosphere Model with chemistry (CAM-chem).
NASA Astrophysics Data System (ADS)
Köllner, Franziska; Schneider, Johannes; Bozem, Heiko; Hoor, Peter; Willis, Megan; Burkart, Julia; Leaitch, Richard; Abbatt, Jon; Herber, Andreas; Borrmann, Stephan
2015-04-01
The clean and sensitive Arctic atmosphere is influenced by transport of air masses from lower latitudes that bring pollution in the form of aerosol particles and trace gases into the Arctic regions. However, the transport processes causing such pollution events are yet not sufficiently well understood. Here we report on results from the aircraft campaign NETCARE 2014 that took place in July 2014 in Resolute Bay, Nunavut (Canada) as part of the "Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environment" (NETCARE). These airborne measurements add to only a very few of such measurements conducted in the Arctic during the summertime. The instrumentation on board the research aircraft Polar 6 (operated by the Alfred Wegener Institute for Polar and Marine Research) included a large set of physico-chemical aerosol analysis instruments, several trace gas measurements and basic meteorological parameters. Here we focus on observed pollution events that caused elevated trace gas and aerosol concentrations in the summertime Canadian High Arctic between 50 and 3500 m. In order to better understand the chemical composition and the origin of those polluted air masses, we use single particle aerosol composition obtained using the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA), combined with aerosol size distributions and number concentrations from an Optical Particle Counter as well as trace gas measurements of CO and CO2. CO and CO2 are important tracers to study pollution events, which are connected to anthropogenic and non-anthropogenic combustion processes, respectively biomass burning and fossil fuel combustion. The ALABAMA provides a detailed single particle aerosol composition analysis from which we identify different particle types like soot-, biomass burning-, organics-, diesel exhaust- and metallic particles. The measurements were compared to Lagrangian models like FLEXPART and LAGRANTO to find the pollution sources and transport pathways of the respective plumes into the Arctic. First results indicate a strong influence of biomass burning originating in the Northwest Territories several days before the measurements above Resolute Bay. This long range transport was associated with cyclonic activities of a prevailing low pressure system. Trace gas measurements as well as particle concentrations and sizes show an enhancement in the plume region around 2 km. The particles in this pollution plume were composed of soot, nitrate, cyanide and levoglucosan, confirming biomass burning as particle source.
Universal trace pollutant detector for aircraft monitoring of the ozone layer and industrial areas
NASA Technical Reports Server (NTRS)
Filiouguine, I. V.; Kostiouchenko, S. V.; Koudriavtsev, N. N.
1994-01-01
A method of monitoring the trace impurities of nitrogen oxides based on controlling of luminescence of NO molecules excited by nanosecond gas discharge have been developed having pptv-ppbv sensitivity and temporal resolution less than 0.01 s.
Sources and sinks of trace gases in Amazonia and the Cerrado
M.M.C. Bustamante; Michael Keller; D.A. Silva
2009-01-01
Data for trace gas fluxes (NOx, N2O, and CH4) from the Amazon and cerrado region are presented with focus on the processes of production and consumption of these trace gases in soils and how they may be changed because of land use changes in both regions. Fluxes are controlled by seaonality, soil moisture, soil texture, topography, and fine-root dynamics. Compared to...
Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.
2014-01-01
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416
Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L
2014-07-25
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
Hydrodeoxygenation by deuterium gas--a powerful way to provide insight into the reaction mechanisms.
Ben, Haoxi; Ferguson, Glen A; Mu, Wei; Pu, Yunqiao; Huang, Fang; Jarvis, Mark; Biddy, Mary; Deng, Yulin; Ragauskas, Arthur J
2013-11-28
This study demonstrates the use of isotopic labelling and NMR to study the HDO process. As far as we know, this is the first reported effort to trace the incorporation of hydrogen in the HDO process of lignin pyrolysis oil thereby providing key fundamental insight into its reaction mechanism.
Studies of methane fluxes reveal that desert soils can mitigate global climate change
Jean E. T. McLain; Dean A. Martens
2005-01-01
Moisture limitations have led researchers to believe that semiarid soils are not significant consumers or producers of trace gases, and these regions are often overlooked in greenhouse gas inventories. We are studying environmental influences on soil fluxes of methane (CH4) in southeastern Arizona. We found negligible CH4...
Preparation and analysis of zero gases for the measurement of trace VOCs in air monitoring
NASA Astrophysics Data System (ADS)
Englert, Jennifer; Claude, Anja; Demichelis, Alessia; Persijn, Stefan; Baldan, Annarita; Li, Jianrong; Plass-Duelmer, Christian; Michl, Katja; Tensing, Erasmus; Wortman, Rina; Ghorafi, Yousra; Lecuna, Maricarmen; Sassi, Guido; Sassi, Maria Paola; Kubistin, Dagmar
2018-06-01
Air quality observations are performed globally to monitor the status of the atmosphere and its level of pollution and to assess mitigation strategies. Regulations of air quality monitoring programmes in various countries demand high-precision measurements for harmful substances often at low trace concentrations. These requirements can only be achieved by using high-quality calibration gases including high-purity zero gas. For volatile organic compound (VOC) observations, zero gas is defined as being hydrocarbon-free and can be, for example, purified air, nitrogen or helium. It is essential for the characterisation of the measurement devices and procedures, for instrument operation as well as for calibrations. Two commercial and one self-built gas purifiers were tested for their VOC removal efficiency following a standardised procedure. The tested gas purifiers included one adsorption cartridge with an inorganic media and two types of metal catalysts. A large range of VOCs were investigated, including the most abundant species typically measured at air monitoring stations. Both catalysts were able to remove a large range of VOCs whilst the tested adsorption cartridge was not suitable to remove light compounds up to C4. Memory effects occurred for the adsorption cartridge when exposed to higher concentration. This study emphasises the importance of explicitly examining a gas purifier for its intended application before applying it in the field.
NASA Astrophysics Data System (ADS)
Patadia, Falguni; Levy, Robert C.; Mattoo, Shana
2018-06-01
Retrieving aerosol optical depth (AOD) from top-of-atmosphere (TOA) satellite-measured radiance requires separating the aerosol signal from the total observed signal. Total TOA radiance includes signal from the underlying surface and from atmospheric constituents such as aerosols, clouds and gases. Multispectral retrieval algorithms, such as the dark-target (DT) algorithm that operates upon the Moderate Resolution Imaging Spectroradiometer (MODIS, on board Terra and Aqua satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP) sensors, use wavelength bands in window
regions. However, while small, the gas absorptions in these bands are non-negligible and require correction. In this paper, we use the High-resolution TRANsmission (HITRAN) database and Line-By-Line Radiative Transfer Model (LBLRTM) to derive consistent gas corrections for both MODIS and VIIRS wavelength bands. Absorptions from H2O, CO2 and O3 are considered, as well as other trace gases. Even though MODIS and VIIRS bands are similar
, they are different enough that applying MODIS-specific gas corrections to VIIRS observations results in an underestimate of global mean AOD (by 0.01), but with much larger regional AOD biases of up to 0.07. As recent studies have been attempting to create a long-term data record by joining multiple satellite data sets, including MODIS and VIIRS, the consistency of gas correction has become even more crucial.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.
1987-01-01
The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.
The many routes to AGN feedback
NASA Astrophysics Data System (ADS)
Morganti, Raffaella
2017-11-01
The energy released by Active Galactic Nuclei (AGN) in the form of radiation, winds or radio plasma jets, is known to impact on the surrounding interstellar medium. The result of these processes, known as AGN (negative) feedback, is suggested to prevent gas, in and around galaxies, from cooling, and to remove, or at least redistribute, gas by driving massive and fast outflows, hence playing a key role in galaxy evolution. Given its importance, a large effort is devoted by the astronomical community to trace the effects of AGN on the surrounding gaseous medium and to quantify their impact for different types of AGN. This review briefly summarizes some of the recent observational results obtained in different wavebands, tracing different phases of the gas. I also summarise new insights they have brought, and the constraints they provide to numerical simulations of galaxy formation and evolution. The recent addition of deep observations of cold gas and, in particular, of cold molecular gas, has brought some interesting surprises and has expanded our understanding of AGN and AGN feedback.
Methane emissions and uptake in temperate and tropical forest trees on free-draining soils.
NASA Astrophysics Data System (ADS)
Welch, Bertie; Sayer, Emma; Siegenthaler, Andy; Gauci, Vincent
2016-04-01
Forests play an important role in the exchange of radiatively important gases with the atmosphere. Previous studies have shown that in both temperate and tropical wetland forests tree stems are significant sources of methane (CH4), yet little is known about trace greenhouse gas dynamics in free-draining soils that dominate global forested areas. We examined trace gas (CH4 and N2O) fluxes from both soils and tree stems in a lowland tropical forest on free-draining soils in Panama, Central America and from a deciduous woodland in the United Kingdom. The tropical field site was a long-term experimental litter manipulation experiment in the Barro Colorado Nature Monument within the Panama Canal Zone, fluxes were sampled over the dry to wet season transition (March-August) in 2014 and November 2015. Temperate fluxes were sampled at Wytham Woods, Oxfordshire, over 12 months from February 2015 to January 2016. Tree stem samples were collected via syringe from temporary chambers strapped to the trees (as per Siegenthaler et al. (2015)) and the soil fluxes were sampled from permanently installed collars inserted to a 3cm depth. We found that seasonality (precipitation) is a significant driver of changing soil exchange from methane uptake to emission at the Panama sites. Experimental changes to litter quantity only become significant when coupled with seasonal change. Seasonal variability is an important control of the fluxes at out temperate forest site with changes in temperature and soil water content leading to changes in soil and tree stem trace gas fluxes from Wytham Woods. Siegenthaler, A., Welch, B., Pangala, S. R., Peacock, M., and Gauci, V.: Technical Note: Semi-rigid chambers for methane gas flux measurements on tree-stems, Biogeosciences Discuss., 12, 16019-16048, doi:10.5194/bgd-12-16019-2015, 2015.
Cho, Yirang; Lee, H.W.; Fountain, S.T.; Lubman, D.M.
1994-01-01
Trace quantities of laser ablated organic polymers were analyzed by using commercial capillary column gas chromatography/mass spectrometry; the instrument was modified so that the laser ablation products could be introduced into the capillary column directly and the constituents of each peak in the chromatogram were identified by using a mass spectrometer. The present study takes advantage of the selective ion monitoring mode for significantly improving the sensitivity of the mass spectrometer as a detector, which is critical in analyzing the trace quantities and confirming the presence or absence of the species of interest in laser ablated polymers. The initial composition of the laser ablated polymers was obtained by using an electron impact reflectron time-of-flight mass spectrometer and the possible structure of the fragments observed in the spectra was proposed based on the structure of the polymers.
Global biomass burning - Atmospheric, climatic, and biospheric implications
NASA Technical Reports Server (NTRS)
Levine, Joel S. (Editor)
1991-01-01
The present volume discusses the biomass burning (BMB) studies of the International Global Atmospheric Chemistry project, GEO satellite estimation of Amazonian BMB, remote sensing of BMB in West Africa with NOAA-AVHRR, an orbital view of the great Chinese fire of 1987, BMB's role in tropical rainforest reduction, CO and O3 measurements of BMB in the Amazon, effects of vegetation burning on the atmospheric chemistry of the Venezuelan savanna, an assessment of annually-burned biomass in Africa, and light hydrocarbon emissions from African savanna burnings. Also discussed are BMB in India, trace gas and particulate emissions from BMB in temperate ecosystems, ammonia and nitric acid emissions from wetlands and boreal forest fires, combustion emissions and satellite imagery of BMB, BMB in the perspective of the global carbon cycle, modeling trace-gas emissions from BMB, NO(x) emissions from BMB, and cloud-condensation nuclei from BMB.
Luo, Weifang [Livermore, CA; Stewart, Kenneth D [Valley Springs, CA
2009-11-17
Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace-element-content determinations. Emission levels of five polycyclic organicmore » matter species and phenol were quantitated: except for naphthalene, all were emitted at less than 0.4 microgram/dscm.« less
USDA-ARS?s Scientific Manuscript database
Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate GHG regional fluxes and evaluate the GHG fluxes de...
TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT
Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...
Bringel, Françoise; Couée, Ivan
2015-01-01
The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent –omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses. PMID:26052316
[Recent advances in the analysis of gibberellins plant hormones].
Zhang, Xiaona; Lu, Minghua; Xu, Linfang; Xiao, Rui; Cai, Zongwei
2015-08-01
Gibberellins (GAs) are a class of phytohormones that exert profound and diverse effects on plant growth and development, such as seed germination and leaf expansion. Up to now, 136 members of GAs have been identified and recognized. All known GAs are diterpenoid acids with similar chemical structures, only double bonds, hydroxyl numbers and locations on gibberellin alkane skeleton are different. However, the content of GAs in plants is of ultra trace levels (usually at ng/g and even pg/g levels) with little ultraviolet (UV) absorption, no fluorescence and no distinguishing chemical characteristics. Moreover, the matrix of plant samples is complicated. Thus, quantification of GAs is always extremely difficult. Nowadays, the bottle necks for the study of GAs in plants are due to the lack of efficient sample preparation and sensitive detection techniques. This article reviews the analytical methods for determination of GAs in recent years, hoping to provide some references to develop new methods and techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiquan Tao
2006-12-31
The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less
Seasonal Trace Gas Dynamics on Minerotrophic Fen Peatlands in NE-Germany
NASA Astrophysics Data System (ADS)
Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz
2010-05-01
In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual trace gas balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest balances in both years. For implementing a further trace gas flux model observations will proceed at least until the end of year 2011. Regarding restoration sites we present newly installed locations of observing especially methane fluxes. To assure our results (presented at last years EGU conference, GIEBELS et al. 2009) from our in 2005 rewetted site we started observations at sites with advanced states of rewetting and alternative management respectively. I.e. one alternative aim to mitigate the heavy methane efflux after rewetting is observed at a site with removed canopy. Other experiments are conducted by freshly reforested alders and reed grass. References: Augustin, J., Merbach, W., Käding, H., Schnidt, W. & Schalitz, G. 1996. Lachgas- und Methanemissionen aus degradierten Niedermoorstandorten Nordostdeutschlands unter dem Einfluß unterschiedlicher Bewirtschaftung. Alfed-Wegener-Stiftung (ed.): Von den Ressourcen zum Recycling: Geoanalytik-Geomanagement-Geoinformatik. Ernst & Sohn Verlag. Berlin Charman, D. 2002: Peatland and environmental change. John Wiley & Sons, LTD, Chichester Droesler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Giebels, M., Augustin, J., Minke, M., Halle, E., Beyer, M., Ehrig, B., Leitholdt, E., Chojnicki, B., Juszczak, R., Serba, T. 2009. Anthropogenic impact on the carbon cycle of fen peatlands in NE-Germany, EGU General Assembly 2009 Joosten, H. & Clarke, D. 2002: Wise use of mires and peatlands-background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society (eds.), Finland Kuntze 1993: Moore als Senken und Quellen für C und N, Mitt. Deutsche Bodenkundliche Gesellschaft 69, 277-280 Succow, M. & Joosten, H. 2001: Landschaftsökologische Moorkunde, 2nd edition, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart
Precision closed bomb calorimeter for testing flame and gas producing initiators
NASA Technical Reports Server (NTRS)
Carpenter, D. R., Jr.; Taylor, A. C., Jr.
1972-01-01
A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.
NASA Astrophysics Data System (ADS)
Woiwode, Wolfgang; Oelhaf, Hermann; Dörnbrack, Andreas; Bramberger, Martina; Diekmann, Christopher; Friedl-Vallon, Felix; Höpfner, Michael; Hoor, Peter; Johansson, Sören; Krause, Jens; Kunkel, Daniel; Orphal, Johannes; Preusse, Peter; Ruhnke, Roland; Schlage, Romy; Schröter, Jennifer; Sinnhuber, Björn-Martin; Ungermann, Jörn; Zahn, Andreas
2017-04-01
Tropopause folds are known of enabling efficient exchange of trace constituents between the stratosphere and troposphere. In particular, the modification of the vertical distributions of radiatively important H2O and other reactive trace gases associated with tropopause folds is relevant for accurate model simulations of the upper troposphere and lower stratosphere composition. During the POLSTRACC/GW-LCYCLE/SALSA flight on 12 January 2016, the HALO (High Altitude LOng range) aircraft crossed twice an extended tropopause fold in the vicinity of the Arctic polar vortex. At the same time, the ECMWF operational analysis shows that the meteorological scenario probed above Italy was accompanied by wide-spread gravity wave activity induced by north-westerly winds. Using high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard HALO and associated observations, we investigate the vertical distributions of H2O, O3, temperature, and associated parameters across the tropopause fold. In combination with a high-resolution simulation by the ICON-ART (ICOsahedral Nonhydrostatic- Aerosol and Reactive Trace gases) model, we search for indications for irreversible trace gas exchange between the stratosphere and troposphere and the potential influence of gravity waves.
Chen, Fangjiao; Su, Yue; Zhang, Fang; Guo, Yinlong
2015-02-01
The total saccharides content of Lycium barbarum L. is very high, and a high temperature would result in saccharide decomposition and the emergence of a large amount of water. Moreover, the volatile compounds from the fruit of L. barbarum L. are rather low in concentration. Hence, it is difficult for a conventional headspace method to study the volatile compounds from the fruit of L. barbarum L. Since headspace-trap gas chromatography with mass spectrometry is an excellent method for trace analysis, a headspace-trap gas chromatography with mass spectrometry method based on low-temperature (30°C) enrichment and multiple headspace extraction was developed to explore the volatile compounds from the fruit of L. barbarum L. The headspace of the sample was extracted in 17 cycles at 30°C. Each time, the compounds extracted were concentrated in the trap (Tenax TA and Tenax GR, 1:1). Finally, all the volatile compounds were delivered into the gas chromatograph after thermal desorption. With the method described above, a total of 57 compounds were identified. The identification was completed by mass spectral search, retention index, and accurate mass measurement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time trace ambient ammonia monitor for haze prevention
NASA Astrophysics Data System (ADS)
Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris
2007-05-01
In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.
Fox, A
1999-05-28
Bacterial cellular polysaccharides are composed of a variety of sugar monomers. These sugars serve as chemical markers to identify specific species or genera or to determine their physiological status. Some of these markers can also be used for trace detection of bacteria or their constituents in complex clinical or environmental matrices. Analyses are performed, in our hands, employing hydrolysis followed by the alditol acetate derivatization procedure. Substantial improvements have been made to sample preparation including simplification and computer-controlled automation. For characterization of whole cell bacterial hydrolysates, sugars are analyzed by gas chromatography-mass spectrometry (GC-MS). Simple chromatograms are generated using selected ion monitoring (SIM). Using total ion GC-MS, sugars can be readily identified. In more complex clinical and environmental samples, markers for bacteria are present at sufficiently low concentrations that more advanced instrumentation, gas chromatography-tandem mass spectrometry (GC-MS-MS), is preferred for optimal analysis. Using multiple reaction monitoring, MS-MS is used (replacing more conventional SIM) to ignore extraneous chromatographic peaks. Triple quadrupole and ion trap GC-MS-MS instruments have both been used successfully. Absolute chemical identification of sugar markers at trace levels is achieved, using MS-MS, by the product spectrum.
Flow immune photoacoustic sensor for real-time and fast sampling of trace gases
NASA Astrophysics Data System (ADS)
Petersen, Jan C.; Balslev-Harder, David; Pelevic, Nikola; Brusch, Anders; Persijn, Stefan; Lassen, Mikael
2018-02-01
A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 +/-0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.
NASA Technical Reports Server (NTRS)
Freund, Friedemann
1991-01-01
Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.
Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas
NASA Astrophysics Data System (ADS)
Wang, Xianfeng; Wang, Jialin; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang; Luo, Wenjing; Zheng, Gang
2012-11-01
This work describes the detection of trace hydrogen chloride (HCl) gas through analyses of the resonance frequency signal from quartz crystal microbalance (QCM) sensors coated with polyaniline (PANI) functionalized polyamide 6 (PA 6) (PANI-PA 6) nanofiber-net-binary (NNB) structured membranes. The PA 6 NNB substrate comprising nanofibers and spider-web-like nano-nets fabricated by a versatile electro-spinning/netting (ESN) process offered an ideal interface for the uniform PANI functionalization and enhanced sensing performance. Benefiting from the large specific surface area, high porosity, and strong adhesive force to the QCM electrode of the PANI-PA 6 NNB membranes, the developed HCl-selective sensors exhibited a rapid response, good reproducibility and stability, and low detection limit (7 ppb) at room temperature. Additionally, the PANI-PA 6 NNB sensing membranes presented visible color changes upon cycled exposure to HCl and ammonia, suggesting their potential application in the development of colorimetric sensors. The PANI-PA 6 NNB coated QCM sensors are considered to be a promising candidate for trace HCl gas detection in practical applications.
The WHAM Hα Magellanic Stream Survey: Progress and Early Results
NASA Astrophysics Data System (ADS)
Smart, Brianna; Haffner, L. Matthew; Barger, Kat; Krishnarao, Dhanesh
2017-01-01
We present early analysis of the Hα survey of the Magellanic Stream using the Wisconsin H-Alpha Mapper (WHAM). The neutral component of the Stream extends some 200° across the sky (Nidever et al. 2010). However, the full extent of the ionized gas has not been mapped in detail. Previous studies (e.g., Putman et al. 2003; Weiner & Williams 1996) suggest that ionized gas is likely to be found all along the length of the Stream, and may extend beyond the current neutral boundaries as traced by 21 cm. Barger et al. (2013) used WHAM to map ionized gas throughout the Magellanic Bridge between the Magellanic Clouds. Although ionized emission tracks the neutral emission for the most part, it often spans a few degrees away from the H I at slightly offset velocities. Additionally, Fox et al. (2014) find evidence in an absorption line study that the tidal debris in the Magellanic System contains twice as much ionized gas as neutral material and may extend 30° away from 21-cm sensitivity boundaries. We are now compiling the first comprehensive picture of the ionized component of the Magellanic Stream using WHAM's unprecedented sensitivity to trace diffuse emission (~tens of mR), its velocity resolution (12 km/s) to separate the Stream from the Milky Way, and its multiwavelength capabilities (e.g., [S II] and [N II]) to examine the physical conditions of the gas. Much of the data along the primary axis of the Stream has been collected for the first phase of this extensive study, a complete kinematic Hα survey of the Stream. We present survey progress, challenges in extracting Stream emission, and first-look kinematic maps at select positions along the Stream.
NASA Astrophysics Data System (ADS)
Langer, W. D.; Velusamy, T.; Pineda, J.; Willacy, K.; Goldsmith, P. F.
2011-05-01
In understanding the lifecycle and chemistry of the interstellar gas, the transition from diffuse atomic to molecular gas clouds is a very important stage. The evolution of carbon from C+ to C0 and CO is a fundamental part of this transition, and C+ along with its carbon chemistry is a key diagnostic. Until now our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the dense molecular H2 phase traced by CO. However, we have generally been missing an important layer in diffuse and transition clouds, which is denoted by the warm "dark gas'', that is mostly H2 and little HI and CO, and is best traced with C+. Here, we discuss the chemistry in the transition from C+ to C0 and CO in these clouds as understood by a survey of the CII 1.9 THz (158 micron) line from a sparse survey of the inner galaxy over about 40 degrees in longitude as part of the Galactic Observations of Terahertz C+ (GOT C+) program, a Herschel Space Observatory Open Time Key Program to study interstellar clouds by sampling ionized carbon. Using the first results from GOT C+ along 11 LOSs, in a sample of 53 transition clouds, Velusamy, Langer et al. (A&A 521, L18, 2010) detected an excess of CII intensities indicative of a thick H2 layer (a significant warm H2, "dark gas'' component) around the 12CO core. Here we present a much larger, statistically significant sample of a few hundred diffuse and transition clouds traced by CII, along with auxiliary HI and CO data in the inner Galaxy between l=-30° and +30°. Our new and more extensive sample of transition clouds is used to elucidate the time dependent physical and carbon chemical evolution of diffuse to transition clouds, and transition layers. We consider the C+ to CO conversion pathways such as H++ O and C+ + H2 chemistry for CO production to constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse transition clouds.
The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...
Large and small UAS for trace gas measurements in climate change studies
NASA Astrophysics Data System (ADS)
Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; D'Amore, P.; Dutton, G. S.; Nance, J. D.; Hall, B. D.; Gao, R. S.
2014-12-01
NOAA and CIRES scientists have used Unmanned Aircraft Systems (UAS) for the measurement of trace gases involved in climate change since 2005, including both high altitude-long endurance (HALE UAS: NASA Altair & Global Hawk) and 1-m wingspan, small UAS (sUAS: SkyWisp, Aero). These gases include nitrous oxide (N2O), sulfur hexafluoride (SF6), methane (CH4), ozone (O3), carbon monoxide (CO), hydrogen (H2), and water vapor (H2O). In particular, atmospheric N2O is the third strongest greenhouse gas (326 parts-per-billion, ppb) and is the largest increasing stratospheric ozone depleting gas in terms of future emissions (~4 Tg N2O-N yr-1), primarily from fertilizer use. Atmospheric SF6, another potent greenhouse gas, is present globally at 8.2 parts-per-trillion (ppt) and growing at a rate of 0.25 ppt yr-1, and is used primarily in electrical power distribution. It is an excellent indicator of transport timescales (e.g., mean age) in the troposphere and stratosphere, because of its source distribution (~95% emitted in NH), long atmospheric lifetime (~600-3200 yr), and large relative atmospheric growth rate (~3%). We have developed atmospheric instrumentation for HALE platforms using a two-channel gas chromatograph with an ozone photometer and a water vapor tunable diode laser spectrometer. We are currently investigating a sUAS glider (SkyWisp) for balloon-assisted high altitude flights (30 km) and propeller driven sUAS (Aero) as a test bed for a new autopilot (Pixhawk, 3DRobotics). Our motivation for utilizing this autopilot is a low cost, open source autopilot alternative that can be used to return AirCore samples from high altitude balloons for quick laboratory analysis. The goal is a monitoring program to understand transport changes as a result of climate change during different seasons at many locations from a balloon-borne package (Moore et al., BAMS, pp. 147-155, Jan. 2014). The glider version of our open source autopilot system is also being considered for a future aerosol and trace gas study, called GOAHEAD (Gao et al., Fall Meeting 2014). Figure-1 Collage of UAS platforms used left to right, including NASA Altair during NOAA 2005 Demo, NASA Global Hawk during ATTREX in 2014, SkyWisp (SwRI), and Aero (3DRobotics).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, A.J.; Gillow, J.B.
1993-09-01
Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term (< 6 months) and long-term (> 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and undergroundmore » workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.« less
NASA Astrophysics Data System (ADS)
Vasconcelos, Steel S.; Zarin, Daniel J.; Capanu, Marinela; Littell, Ramon; Davidson, Eric A.; Ishida, Francoise Y.; Santos, Elisana B.; Araújo, Maristela M.; AragãO, DéBora V.; Rangel-Vasconcelos, LíVia G. T.; de Assis Oliveira, Francisco; McDowell, William H.; de Carvalho, Claudio José R.
2004-06-01
Changes in land-use and climate are likely to alter moisture and substrate availability in tropical forest soils, but quantitative assessment of the role of resource constraints as regulators of soil trace gas fluxes is rather limited. The primary objective of this study was to quantify the effects of moisture and substrate availability on soil trace gas fluxes in an Amazonian regrowth forest. We measured the efflux of carbon dioxide (CO2), nitric oxide (NO), nitrous oxide (N2O), and methane (CH4) from soil in response to two experimental manipulations. In the first, we increased soil moisture availability during the dry season by irrigation; in the second, we decreased substrate availability by continuous removal of aboveground litter. In the absence of irrigation, soil CO2 efflux decreased during the dry season while irrigation maintained soil CO2 efflux levels similar to the wet season. Large variations in soil CO2 efflux consistent with a significant moisture constraint on respiration were observed in response to soil wet-up and dry-down events. Annual soil C efflux for irrigated plots was 27 and 13% higher than for control plots in 2001 and 2002, respectively. Litter removal significantly reduced soil CO2 efflux; annual soil C efflux in 2002 was 28% lower for litter removal plots compared to control plots. The annual soil C efflux:litterfall C ratio for the control treatment (4.0-5.2) was consistent with previously reported values for regrowth forests that indicate a relatively large belowground C allocation. In general, fluxes of N2O and CH4 were higher during the wet season and both fluxes increased during dry-season irrigation. There was no seasonal effect on NO fluxes. Litter removal had no significant impact on N oxide or CH4 emissions. Net soil nitrification did not respond to dry-season irrigation, but was somewhat reduced by litter removal. Overall, these results demonstrate significant soil moisture and substrate constraints on soil trace gas emissions, particularly for CO2, and suggest that climate and land-use changes that alter moisture and substrate availability are therefore likely to have an impact on atmosphere chemistry.
Koo, Jackson C.; Yu, Conrad M.
2002-01-01
A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.
Method for detecting trace impurities in gases
Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.
1981-01-01
A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.
Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere
NASA Technical Reports Server (NTRS)
Podolske, James; Loewenstein, Max
1993-01-01
This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.
ExoMars 2016 Trace Gas Orbiter and Mars Express Coordinated Science Operations Planning
NASA Astrophysics Data System (ADS)
Cardesin Moinelo, Alejandro; Geiger, Bernhard; Costa, Marc; Breitfellner, Michel; Castillo, Manuel; Marin Yaseli de la Parra, Julia; Martin, Patrick; Merritt, Donald R.; Grotheer, Emmanuel; Aberasturi Vega, Miriam; Ashman, Mike; Frew, David; Garcia Beteta, Juan Jose; Metcalfe, Leo; Muñoz, Claudio; Muñoz, Michela; Titov, Dimitri; Svedhem, Hakan
2018-05-01
In this contribution we focus on the science opportunity analysis between the Mars Express and the ExoMars 2016 Trace Gas Orbiter missions and the observations that can be combined to improve the scientific outcome of both missions. In particular we will describe the long term analysis of geometrical conditions that allow for coordinated science observations for solar occultation and nadir pointing. We will provide details on the calculations and results for simultaneous and quasi-simultaneous opportunities, taking into account the observation requirements of the instruments and the operational requirements for feasibility checks.
Latest developments for low-power infrared laser-based trace gas sensors for sensor networks
NASA Astrophysics Data System (ADS)
So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard
2011-09-01
Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.
Method for detecting trace impurities in gases
Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.
A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.
Method and apparatus for detecting and measuring trace impurities in flowing gases
Taylor, Gene W.; Dowdy, Edward J.
1979-01-01
Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.
Biosphere 2 test module experimentation program
NASA Technical Reports Server (NTRS)
Alling, Abigail; Leigh, Linda S.; Maccallum, Taber; Alvarez-Romo, Norberto
1990-01-01
The Biosphere 2 Test Module is a facility which has the capability to do either short or long term closures: five month closures with plants were conducted. Also conducted were investigations of specific problems, such as trace gas purification by bioregenerative systems by in-putting a fixed concentration of a gas and observing its uptake over time. In other Test Module experiments, the concentration of one gas was changed to observe what effects this has on other gases present or on the system. The science of biospherics which encompasses the study of closed biological systems provides an opening into the future in space as well as in the Earth's biosphere.
Nebulization reflux concentrator
NASA Technical Reports Server (NTRS)
Collins, V. G.; Cofer, W. R., III
1986-01-01
A nebulization reflux concentrator for removing trace gas contaminants from a sample gas is described. Sample gas from a gas supply is drawn by a suction source into a vessel. The gas enters the vessel through an atomizing nozzle, thereby atomizing and entraining a scrubbing liquid solvent drawn through a siphon tube from a scrubbing liquid reservoir. The gas and entrained liquid rise through a concentrator and impinge upon a solvent phobic filter, whereby purified gas exits through the filter housing and contaminated liquid coalesces on the solvent phobic filter and falls into the reservoir.
Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...
Neutral Mass Spectrometry for Venus Atmosphere and Surface
NASA Technical Reports Server (NTRS)
Mahaffy, Paul
2005-01-01
The assignment is to make precise (better than 1 %) measurements of isotope ratios and accurate (5-10%) measurements of abundances of noble gas and to obtain vertical profiles of trace chemically active gases from above the clouds all the way down to the surface. Science measurement objectives are as follows: 1) Determine the composition of Venus atmosphere, including trace gas species and light stable isotopes; 2) Accurately measure noble-gas isotopic abundance in the atmosphere; 3) Provide descent, surface, and ascent meteorological data; 4) Measure zonal cloud-level winds over several Earth days; 5) Obtain near-IR descent images of the surface from 10-km altitude to the surface; 6) Accurately measure elemental abundances & mineralogy of a core from the surface; and 7) Evaluate the texture of surface materials to constrain weathering environment.
Reversal electron attachment ionizer for detection of trace species
NASA Technical Reports Server (NTRS)
Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)
1990-01-01
An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of said electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.
Reversal electron attachment ionizer for detection of trace species
NASA Technical Reports Server (NTRS)
Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)
1989-01-01
An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of the electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.
Spark discharge trace element detection system
Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz
1988-01-01
A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.
Spark discharge trace element detection system
Adler-Golden, S.; Bernstein, L.S.; Bien, F.
1988-08-23
A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.
NASA Astrophysics Data System (ADS)
Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu
2016-11-01
Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.
NASA Astrophysics Data System (ADS)
Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut
2017-05-01
We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the anticyclone at its eastern flank. Back-trajectories and increased HCl mixing ratios indicate that the entrained air originates in the stratospherically influenced TL. Photochemical ageing of air masses in the ASMA additionally increases O3 in originally O3-poor, but CO-rich air. Simulated monthly mean trace gas distributions show decreased O3 in the ASMA centre only at the 100 hPa level in July and August, but at lower altitudes and in September the ASMA is dominated by increased O3. The combination of entrainment from the tropopause region, photochemistry and dynamical instabilities can explain the in situ observations, and might have a larger impact on the highly variable trace gas composition of the anticyclone than previously thought.
Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests
NASA Technical Reports Server (NTRS)
Potter, C. S.; Peterson, David L. (Technical Monitor)
1997-01-01
Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.
Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy
Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune
2014-01-01
Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311
An RF-only ion-funnel for extraction from high-pressure gases
Brunner, T.; Fudenberg, D.; Varentsov, V.; ...
2015-01-27
An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into a vacuum (10 -6 mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting 136Ba ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to simulations. This demonstration of extraction of ions, with mass comparable to that of the gas generating the high-pressure, has applications to Ba tagging from a Xe-gasmore » time-projection chamber for double-beta decay, as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m > 40 u) carrier gas.« less
NASA Astrophysics Data System (ADS)
Yokochi, Reika
2016-09-01
Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.
NASA Technical Reports Server (NTRS)
Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.;
2014-01-01
The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new 4STAR capabilities for airborne field campaigns, with an emphasis on comparisons between 4STAR and AERONET sky radiances, and retrievals of aerosol microphysical properties based on sky radiance measurements, column trace gas amounts from spectral direct beam measurements and cloud property retrievals from zenith mode observations for a few select case studies in the SEAC4RS and TCAP experiments. We summarize the aerosol, trace gas, cloud and airmass characterization studies made possible by the combined 4STAR direct beam, and sky/zenith radiance observations.
Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia
NASA Astrophysics Data System (ADS)
Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel
2008-06-01
Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those areas where climatic and edaphic conditions allow for intensive agriculture. This scenario is probably preferable over the alternative of agriculture extensification, which would imply a dramatic increase in deforestation rates with accompanying CO2 emissions.
CO 2 uptake is offset by CH 4 and N 2O emissions in a poplar short-rotation coppice
Zenone, Terenzio; Zona, Donatella; Gelfand, Ilya; ...
2015-04-18
The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. These are commonly cultivated as short-rotation coppice (SRC), and currently poplar ( Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO 2), methane (CH 4) and nitrous oxide (N 2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4more » years of the study was an emission of 1.90 (±1.37) Mg CO 2eq ha -1; this indicated that soil trace gas emissions offset the CO 2 uptake by the plantation. CH 4 and N 2O contributed almost equally to offset the CO 2 uptake of -5.28 (±0.67) Mg CO2eq ha -1 with an overall emission of 3.56 (±0.35) Mg CO 2eq ha -1 of N 2O and of 3.53 (±0.85) Mg CO 2eq ha-1 of CH 4. N 2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N 2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N 2O and CH 4, respectively. Here, this study underlines the importance of the ‘non-CO 2 GHGs’ on the overall balance. Further long-term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.« less
The possible presence of ultra-trace levels (sub- parts per trillion) of pesticides in pristine aquatic environments (e.g., alpine lakes) would raise questions regarding potential effects on biota. One hypothesis is that agricultural pesticides that are heavily applied in the San...
CARBON TRACE GASES IN LAKE AND BEAVER POND ICE NEAR THOMPSON, MANITOBA, CANADA
Concentrations of CO2, CO, and CH4 were measured in beaver pond and lake ice in April 1996 near Thompson, Manitoba to derive information on possible impacts of ice melting on corresponding atmospheric trace gas concentrations. CH4 concentrations in beaver pond and lake ice ranged...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id; Pardede, Marincan
An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities inducedmore » by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.« less
NASA Astrophysics Data System (ADS)
Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas
2006-08-01
A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO2, HCHO, SO2, H2O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg.
Martí Gamboa, Sabina; Giménez, Olga Redrado; Mancho, Jara Pascual; Moros, María Lapresta; Sada, Julia Ruiz; Mateo, Sergio Castan
2017-04-01
Objective The objective of this study was to determine ability to detect neonatal acidemia and interobserver agreement with the FIGO 3-tier and 5-tier fetal heart rate (FHR) classification systems. Design This was a case-control study. Setting This study was set at the University Medical Center. Population A total of 202 FHR tracings of 102 women who delivered an acidemic fetus (umbilical arterial cord gas pH ≤ 7.10 and BE < - 8) and 100 who delivered a nonacidemic fetus (umbilical arterial cord gas pH > 7.10) were assessed. A subanalysis was performed for those fetuses who suffered severe metabolic acidemia (pH ≤ 7.0 and BE < - 12). Methods Two reviewers blind to clinical and outcome data classified tracings according to the new 3-tier system proposed by the FIGO and the 5-tier system proposed by Parer and Ikeda. Main Outcome Measures Sensitivity and specificity for detecting neonatal acidemia and interobserver agreement in classifying FHR tracings into categories of both systems were studied. Results The 3-tier system showed a greater sensitivity and lower specificity to detect neonatal acidemia (43.6% sensitivity, 82.5% specificity) and severe metabolic acidemia (71.4% sensitivity, 74.0% specificity) compared with the 5-tier system (36.3% sensitivity, 88% specificity and 61.9% sensitivity, 80.1% specificity, respectively). Both systems were compared by area under the receiver-operating characteristic curve, with comparable predictive ability for detecting neonatal acidemia (FIGO-area under the curve [AUC]: 0.63 [95% confidence interval [CI]: 0.57-0.68] and Parer-AUC: 0.62 [95% CI: 0.56-0.67]). Interobserver agreement was moderate for both systems, but performance at each specific category showed a better agreement for the 5-tier system identifying a pathological tracing (orange or red, κ: 0.625 vs. pathological category, κ: 0.538). Conclusion Both systems presented a comparable ability to predict neonatal acidemia, although the 5-tier system showed a better interobserver agreement identifying pathological tracings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level
NASA Astrophysics Data System (ADS)
Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.
1995-11-01
A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.
Sensitive ion detection device and method for analysis of compounds as vapors in gases
Denton, M. Bonner; Sperline, Roger P.
2015-09-15
An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.
Sensitive ion detection device and method for analysis of compounds as vapors in gases
Denton, M. Bonner; Sperline, Roger P
2014-02-18
An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.
Improved aqueous scrubber for collection of soluble atmospheric trace gases
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Talbot, R. W.; Collins, V. G.
1985-01-01
A new concentration technique for the extraction and enrichment of water-soluble atmospheric trace gases has been developed. The gas scrubbing technique efficiently extracts soluble gases from a large volume flow rate of air sample into a small volume of refluxed trapping solution. The gas scrubber utilizes a small nebulizing nozzle that mixes the incoming air with an aqueous extracting solution to form an air/droplet mist. The mist provides excellent interfacial surface areas for mass transfer. The resulting mist sprays upward through the reaction chamber until it impinges upon a hydrophobic membrane that virtually blocks the passage of droplets but offers little resistance to the existing gas flow. Droplets containing the scrubbed gases coalesce on the membrane and drip back into the reservoir for further refluxing. After a suitable concentration period, the extracting solution containing the analyte can be withdrawn for analysis. The nebulization-reflex concentration technique is more efficient (maximum flow of gas through the minimum volume of extractant) than conventional bubbler/impinger gas extraction techniques and is offered as an alternative method.
Thelen, Sven; Miekisch, Wolfram; Halmer, Daniel; Schubert, Jochen; Hering, Peter; Mürtz, Manfred
2008-04-15
Comparison of two different methods for the measurement of ethane at the parts-per-billion (ppb) level is reported. We used cavity leak-out spectroscopy (CALOS) in the 3 microm wavelength region and gas chromatography-flame ionization detection (GC-FID) for the analysis of various gas samples containing ethane fractions in synthetic air. Intraday and interday reproducibilities were studied. Intercomparing the results of two series involving seven samples with ethane mixing ratios ranging from 0.5 to 100 ppb, we found a reasonable agreement between both methods. The scatter plot of GC-FID data versus CALOS data yields a linear regression slope of 1.07 +/- 0.03. Furthermore, some of the ethane mixtures were checked over the course of 1 year, which proved the long-term stability of the ethane mixing ratio. We conclude that CALOS shows equivalent ethane analysis precision compared to GC-FID, with the significant advantage of a much higher time resolution (<1 s) since there is no requirement for sample preconcentration. This opens new analytical possibilities, e.g., for real-time monitoring of ethane traces in exhaled human breath.
NASA Technical Reports Server (NTRS)
Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.
1993-01-01
Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.
Herschel Observations of C+ in the Vicinity of Star Forming Complexes in the Galactic Plane
NASA Astrophysics Data System (ADS)
Pineda, Jorge; Velusamy, T.; Langer, W.; Goldsmith, P.; Li, D.; Yorke, H.
2010-05-01
The CII fine-structure line at 158 um, is an excellent tracer of the warm diffuse gas and the hot, dense Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. Here we present the first results from the Galactic Observations of Terahertz C+ (GOT C+), a Herschel Key Project study of CII fine structure emission in the vicinity of star forming complexes. In the Priority Science Phase of HIFI observations, the GOT C+ project collects data along a dozen lines of sight passing near star forming regions in the inner Galaxy from longitude 310 degrees to 25 degrees. We discuss our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO). This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoc.
NASA Astrophysics Data System (ADS)
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-01
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-05
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.
Trace gas emissions from a mid-latitude prescribed chaparral fire
Wesley R. Cofer; Joel S. Levine; Philip J. Riggan; Daniel I. Sebacher; Edward L. Winstead; Shaw Edwin F.; James A. Brass; Vincent. G. Ambrosia
1988-01-01
Gas samples were collected in smoke plumes over the San Dimas Experimental Forest during a 400-acre prescribed chaparral fire on December 12, 1986. A helicopter was used to collect gas samples over areas of vigorous flaming combustion and over areas of mixed stages (vigorous/transitional/smoldering) of combustion. Sampling was conducted at altitudes as low as 35 m and...
Gas monitoring onboard ISS using FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre
2017-06-01
In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.
NASA Astrophysics Data System (ADS)
Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.
2011-12-01
The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.
NASA Astrophysics Data System (ADS)
Zeb, Naila; Fahim Khokhar, Muhammad; Khan, Saud Ahmed; Noreen, Asma; Murtaza, Rabbia
2017-04-01
Air pollution is the expected key environmental issue of Pakistan as it is ranked among top polluted countries in the region. Ongoing rapid economic growth without any adequate measures is leading to worst air quality over time. The study aims to monitor long term atmospheric composition and association of trace gases over Pakistan. Tropospheric concentrations of CO, TOC, NO2 and HCHO derived from multiple satellite instruments are used for study from year 2005 to 2014. The study will provide first database for tropospheric trace gases over Pakistan. Spatio-temporal assessment identified hotspots and possible sources of trace gases over the Pakistan. High concentrations of trace gases are mainly observed over Punjab region, which may be attributed to its metropolitan importance. It is the major agricultural, industrialized and urbanized (nearly 60 % of the Pakistan's population) sector of the country. The expected sources are the agricultural fires, biomass/fossil fuel burning for heating purposes, urbanization, industrialization and meteorological variations. Seasonal variability is observed to explore seasonal patterns over the decade. Well defined seasonal cycles of trace gases are observed over the whole study period. The observed seasonal patterns also showed some noteworthy association among trace gases, which is further explored by different statistical tests. Seasonal Mann Kendall test is applied to test the significance of trend in series whereas correlation is carried out to measure the strength of association among trace gases. Strong correlation is observed for trace gases especially between CO and TOC. Partial Mann Kendall test is used to ideally identify the impact of each covariate on long term trend of CO and TOC by partialling out each correlating trace gas (covariate). It is observed that TOC, NO2 and HCHO has significant impact on long term trend of CO whereas, TOC critically depends on NO2 concentrations for long term increase over the region. Furthermore to explore causal relation, regression analysis is employed to estimate model for CO and TOC. This model numerically estimated the long term association of trace gases over the region.
Oxidation of contaminative methane traces with radio-frequency discharge
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. L.
1976-01-01
An 11.8 MHz glow discharge was used to oxidize trace levels of methane in oxygen. The concentration of methane can be reduced by three orders of magnitude. The effects of power (0-400 W), flow rate (10-1000 cc-STP/min) and concentration (70-8000 ppm) were investigated at pressures ranging from 50 torr to almost 1 atm. No organic reaction products were detected in the treated gas stream. The process may prove useful for the removal of atmospheric trace contaminants at ambient pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.
This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less
I. R. Burling; R. J. Yokelson; S. K. Akagi; T. J. Johnson; D. W. Griffith; Shawn Urbanski; J. W. Taylor; J. S. Craven; G. R. McMeeking; J. M. Roberts; C. Warneke; P. R. Veres; J. A. de Gouw; J. B. Gilman; W. C. Kuster; WeiMin Hao; D. Weise; H. Coe; J. Seinfeld
2010-01-01
We report preliminary results from a large, multi-component study focused on North American biomass burning that measured both initial emissions and post-emission processing. Vegetation types burned were from the relatively less-studied temperate region of the US and included chaparral, oak savanna, and mixed conifer forest from the southwestern US, and pine understory...
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; ...
2017-01-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
NASA Astrophysics Data System (ADS)
Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.
2015-12-01
The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
NASA Astrophysics Data System (ADS)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.
2017-10-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.
Deep ALMA imaging of the merger NGC 1614. Is CO tracing a massive inflow of non-starforming gas?
NASA Astrophysics Data System (ADS)
König, S.; Aalto, S.; Muller, S.; Gallagher, J. S.; Beswick, R. J.; Xu, C. K.; Evans, A.
2016-10-01
Aims: Observations of the molecular gas over scales of ~0.5 to several kpc provide crucial information on how molecular gas moves through galaxies, especially in mergers and interacting systems, where it ultimately reaches the galaxy center, accumulates, and feeds nuclear activity. Studying the processes involved in the gas transport is one of the important steps forward to understand galaxy evolution. Methods: 12CO, 13CO, and C18O 1-0 high-sensitivity ALMA observations (~4'' × 2'') were used to assess the properties of the large-scale molecular gas reservoir and its connection to the circumnuclear molecular ring in the merger NGC 1614. Specifically, the role of excitation and abundances were studied in this context. We also observed the molecular gas high-density tracers CN and CS. Results: The spatial distributions of the detected 12CO 1-0 and 13CO 1-0 emission show significant differences. 12CO traces the large-scale molecular gas reservoir, which is associated with a dust lane that harbors infalling gas, and extends into the southern tidal tails. 13CO emission is for the first time detected in the large-scale dust lane. In contrast to 12CO, its line emission peaks between the dust lane and the circumnuclear molecular ring. A 12CO-to-13CO 1-0 intensity ratio map shows high values in the ring region (~30) that are typical for the centers of luminous galaxy mergers and even more extreme values in the dust lane (>45). Surprisingly, we do not detect C18O emission in NGC 1614, but we do observe gas emitting the high-density tracers CN and CS. Conclusions: We find that the 12CO-to-13CO 1-0 line ratio in NGC 1614 changes from >45 in the 2 kpc dust lane to ~30 in the starburst nucleus. This drop in ratio with decreasing radius is consistent with the molecular gas in the dust lane being kept in a diffuse, unbound state while it is being funneled toward the nucleus. This also explains why there are no (or very faint) signs of star formation in the dust lane, despite its high 12CO luminosity. In the inner 1.5 kpc, the gas is compressed into denser and most likely self-gravitating clouds (traced by CN and CS emission), allowing it to power the intense central starburst. We find a high 16O-to-18O abundance ratio in the starburst region (≥900), typical of quiescent disk gas. This is surprising because by now, the starburst is expected to have enriched the nuclear interstellar medium in 18O relative to 16O. We suggest that the massive inflow of gas may be partially responsible for the low 18O/16O abundance since it will dilute the starburst enrichment with unprocessed gas from greater radial distances. The 12CO-to-13CO abundance of >90 we infer from the line ratio is consistent with this scenario. It suggests that the nucleus of NGC 1614 is in a transient phase of its evolution where the starburst and the nuclear growth is still being fuelled by returning gas from the minor merger event.
THE ADVANTAGE OF ILLINOIS COAL FOR FGD REMOVAL OF MERCURY
The paper gives results of an investigation conducted to characterize and modify mercury (Hg) speciation in Illinois coal combustion flue gas so that a Hg control strategy can be implemented in conventional flue gas desulfurization (FGD) units. Hg, in trace concentration in coal,...
Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.
Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei
2017-06-01
We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68 kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.
NASA Astrophysics Data System (ADS)
Renggli, C. J.; King, P. L.; Henley, R. W.; Norman, M. D.
2017-06-01
The transport of metals in volcanic gases on the Moon differs greatly from their transport on the Earth because metal speciation depends largely on gas composition, temperature, pressure and oxidation state. We present a new thermochemical model for the major and trace element composition of lunar volcanic gas during pyroclastic eruptions of picritic magmas calculated at 200-1500 °C and over 10-9-103 bar. Using published volatile component concentrations in picritic lunar glasses, we have calculated the speciation of major elements (H, O, C, Cl, S and F) in the coexisting volcanic gas as the eruption proceeds. The most abundant gases are CO, H2, H2S, COS and S2, with a transition from predominantly triatomic gases to diatomic gases with increasing temperatures and decreasing pressures. Hydrogen occurs as H2, H2S, H2S2, HCl, and HF, with H2 making up 0.5-0.8 mol fractions of the total H. Water (H2O) concentrations are at trace levels, which implies that H-species other than H2O need to be considered in lunar melts and estimates of the bulk lunar composition. The Cl and S contents of the gas control metal chloride gas species, and sulfide gas and precipitated solid species. We calculate the speciation of trace metals (Zn, Ga, Cu, Pb, Ni, Fe) in the gas phase, and also the pressure and temperature conditions at which solids form from the gas. During initial stages of the eruption, elemental gases are the dominant metal species. As the gas loses heat, chloride and sulfide species become more abundant. Our chemical speciation model is applied to a lunar pyroclastic eruption model with isentropic gas decompression. The relative abundances of the deposited metal-bearing solids with distance from the vent are predicted for slow cooling rates (<5 °C/s). Close to a volcanic vent we predict native metals are deposited, whereas metal sulfides dominate with increasing distance from the vent. Finally, the lunar gas speciation model is compared with the speciation of a H2O-, CO2- and Cl-rich volcanic gas from Erta Ale volcano (Ethiopia) as an analogy for more oxidized planetary eruptions. In the terrestrial Cl-rich gas the metals are predominantly transported as chlorides, as opposed to metallic vapors and sulfides in the lunar gas. Due to the presence of Cl-species, metal transport is more efficient in the volcanic gas from Erta Ale compared to the Moon.
NASA Astrophysics Data System (ADS)
Knížek, Antonín; Dryahina, Ksenyia; Španěl, Patrik; Kubelík, Petr; Kavan, Ladislav; Zukalová, Markéta; Ferus, Martin; Civiš, Svatopluk
2018-06-01
The era of fossil fuels is slowly nearing its inevitable end and the urgency of alternative energy sources basic research, exploration and testing becomes ever more important. Storage and alternative production of energy from fuels, such as methane, represents one of the many alternative approaches. Natural gas containing methane represents a powerful source of energy producing large volume of greenhouse gases. However, methane can be also produced in closed, CO2-neutral cycles. In our study, we compare detailed chemical composition of CH4 fuel produced in two different processes: Classical production of biogas in a rendering station, industrial wastewater treatment station and landfill gas station together with novel approach of artificial photosynthesis from CO2 over acidic anatase TiO2 in experimental apparatus developed in our laboratory. The analysis of CH4 fuel produced in these processes is important. Trace gaseous traces can be for example corrosive or toxic, low quality of the mixture suppresses effectivity of energy production, etc. In this analysis, we present a combination of two methods: High resolution Fourier transform infrared spectroscopy (HR-FTIR) suitable for the main component analysis; and the complementary extremely sensitive method of Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) and gas chromatography (GC-MS), which are in turn best suited for trace analysis. The combination of these methods provides more information than any single of them would be able to and promises a new possible analytical approach to fuel and gaseous mixture analysis.
Plant Ethylene Detection Using Laser-Based Photo-Acoustic Spectroscopy.
Van de Poel, Bram; Van Der Straeten, Dominique
2017-01-01
Analytical detection of the plant hormone ethylene is an important prerequisite in physiological studies. Real-time and super sensitive detection of trace amounts of ethylene gas is possible using laser-based photo-acoustic spectroscopy. This Chapter will provide some background on the technique, compare it with conventional gas chromatography, and provide a detailed user-friendly hand-out on how to operate the machine and the software. In addition, this Chapter provides some tips and tricks for designing and performing physiological experiments suited for ethylene detection with laser-based photo-acoustic spectroscopy.
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
2001-01-01
For interpreting observational data, and in particular for use in inverse methods, accurate and realistic chemical transport models are essential. Toward this end we have, in recent years, helped develop and utilize a number of three-dimensional models including the Model for Atmospheric Transport and Chemistry (MATCH).
Thermal particle image velocity estimation of fire plume flow
Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise
2003-01-01
For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...
Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media
NASA Astrophysics Data System (ADS)
Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.
2015-06-01
Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.
He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J
2010-09-13
The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.
The Impact of ENSO on Trace Gas Composition in the Upper Troposphere to Lower Stratosphere
NASA Technical Reports Server (NTRS)
Oman, Luke; Douglass, Anne; Ziemke, Jerry; Waugh, Darryn Warwick
2016-01-01
The El Nino-Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical troposphere and its effects extend well into the stratosphere. Its impact on atmospheric dynamics and chemistry cause important changes to trace gas constituent distributions. A comprehensive suite of satellite observations, reanalyses, and chemistry climate model simulations are illuminating our understanding of processes like ENSO. Analyses of more than a decade of observations from NASAs Aura and Aqua satellites, combined with simulations from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) and other Chemistry Climate Modeling Initiative (CCMI) models, and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis have provided key insights into the response of atmospheric composition to ENSO. While we will primarily focus on ozone and water vapor responses in the upper troposphere to lower stratosphere, the effects of ENSO ripple through many important trace gas species throughout the atmosphere. The very large 2015-2016 El Nino event provides an opportunity to closely examine these impacts with unprecedented observational breadth. An improved quantification of natural climate variations, like those from ENSO, is needed to detect and quantify anthropogenic climate changes.
Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H
2016-02-02
High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.
The Influence of Trace Gases Absorption on Differential Ring Cross Sections
NASA Astrophysics Data System (ADS)
Han, Dong; Zhao, Keyi
2017-04-01
The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.
NASA Technical Reports Server (NTRS)
Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.
2002-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.
The ATTA-Hefei Instrument for Radioactive Noble-gas Dating
NASA Astrophysics Data System (ADS)
Hu, S.; Cheng, C.; Cheng, G.; Sun, Y. R.; Tu, L.; Yang, G.
2013-12-01
Long-lived noble-gas isotopes 85Kr (10.8 y), 39Ar (269 y) and 81Kr (229 ky) are ideal tracers for dating environmental samples such as groundwater and ice. Together with 14C, these nuclides can be used to cover the whole range of 100-106 y. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of these isotopes at an isotopic abundance level as low as 10^-16 [1,2]. The ATTA instrument built in Hefei, China, can determine the isotopic abundances of 85Kr and 81Kr with typically 5-10% accuracy using krypton gas samples of a few micro-liters (STP) krypton gas [3]. The krypton gas sample can be extracted from several liters of air using a distillation-chromatograph setup with a typical efficiency of 85%, while the air sample can be extracted from groundwater or ices. The typical sample size for ATTA measurement is 100L groundwater or 40Kg ices. One such ATTA beamline can handle about 100 samples per year. [1] Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139-1141 (1999). [2] Jiang, W. et al. 39Ar detection at the 10-16 isotopic abundance level with atom trap trace analysis. Phys. Rev. Lett. 106, 103001 (2011). [3] Yang, G. -M. et al. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples, Sci. Rep. 3, 1596 (2013). Relative uncertainty of the determined 85Kr abundance by the ATTA-Hefei instrument.
A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...
A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...
NOAA Mobile Laboratory Measures Oil and Gas Emissions
NASA Astrophysics Data System (ADS)
Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.
2012-12-01
A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.
NASA Astrophysics Data System (ADS)
Nützel, Matthias; Dameris, Martin; Fierli, Federico; Stiller, Gabriele; Garny, Hella; Jöckel, Patrick
2016-04-01
The Asian monsoon and the associated monsoon anticyclone have the potential of substantially influencing the composition of the UTLS (upper troposphere/lower stratosphere) and hence global climate. Here we study the variability of the Asian summer monsoon anticyclone in the UTLS on intraseasonal and interannual timescales using results from long term simulations performed with the CCM EMAC (ECHAM5/MESSy Atmospheric Chemistry). In particular, we focus on specified dynamics simulations (Newtonian relaxation to ERA-Interim data) covering the period 1980-2013, which have been performed within the ESCiMo (Earth System Chemistry integrated Modelling) project (Jöckel et al., GMDD, 2015). Our main focus lies on variability of the anticyclone's strength (in terms of potential vorticity, geopotential and circulation) and variability in trace gas signatures (O3, H2O) within the anticyclone. To support our findings, we also include observations from satellites (MIPAS, MLS). Our work is linked to the EU StratoClim campaign in 2016.
BOREAS TGB-5 Biogenic Soil Emissions of NO and N2O
NASA Technical Reports Server (NTRS)
Levine, J. S.; Winstead, E. L.; Parsons, D. A. B.; Scholes, M. C.; Cofer, W. R.; Cahoon, D. R.; Sebacher, D. I.; Scholes, R. J.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-5 team made several measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains biogenic soil emissions of nitric oxide and nitrous oxide that were measured over a wide range of spatial and temporal site parameters. Since very little is known about biogenic soil emissions of nitric oxide and nitrous oxide from the boreal forest, the goal of the measurements was to characterize the biogenic soil fluxes of nitric oxide and nitrous oxide from black spruce and jack pine areas in the boreal forest. The diurnal variation and monthly variation of the emissions was examined as well as the impact of wetting through natural or artificial means. Temporally, the data cover mid-August 1993, June to August 1994, and mid-July 1995. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).
BOREAS TGB-5 Fire History of Manitoba 1980 to 1991 in Vector Format
NASA Technical Reports Server (NTRS)
Stocks, Brian J.; Zepp, Richard; Knapp, David; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to the effects of fire on the exchange of trace gases between the surface and the atmosphere. This vector format data set covers the province of Manitoba between 1980 and 1991 and was produced by Forestry Canada from hand-drawn boundaries of fires on photocopies of 1:250,000 scale maps. The locational accuracy of the data is considered fair to poor. When the locations of some fire boundaries were compared to Landsat TM images, they were found to be off by as much as a few kilometers.
NASA Astrophysics Data System (ADS)
Siebicke, Lukas
2017-04-01
The eddy covariance (EC) method is state-of-the-art in directly measuring vegetation-atmosphere exchange of CO2 and H2O at ecosystem scale. However, the EC method is currently limited to a small number of atmospheric tracers by the lack of suitable fast-response analyzers or poor signal-to-noise ratios. High resource and power demands may further restrict the number of spatial sampling points. True eddy accumulation (TEA) is an alternative method for direct and continuous flux observations. Key advantages are the applicability to a wider range of air constituents such as greenhouse gases, isotopes, volatile organic compounds and aerosols using slow-response analyzers. In contrast to relaxed eddy accumulation (REA), true eddy accumulation (Desjardins, 1977) has the advantage of being a direct method which does not require proxies. True Eddy Accumulation has the potential to overcome above mentioned limitations of eddy covariance but has hardly ever been successfully demonstrated in practice in the past. This study presents flux measurements using an innovative approach to true eddy accumulation by directly, continuously and automatically measuring trace gas fluxes using a flow-through system. We merge high-frequency flux contributions from TEA with low-frequency covariances from the same sensors. We show flux measurements of CO2, CH4 and H2O by TEA and EC above an old-growth forest at the ICOS flux tower site "Hainich" (DE-Hai). We compare and evaluate the performance of the two direct turbulent flux measurement methods eddy covariance and true eddy accumulation using side-by-side trace gas flux observations. We further compare performance of seven instrument complexes, i.e. combinations of sonic anemometers and trace gas analyzers. We compare gas analyzers types of open-path, enclosed-path and closed-path design. We further differentiate data from two gas analysis technologies: infrared gas analysis (IRGA) and laser spectrometry (open path and CRDS closed-path laser spectrometers). We present results of CO2 and H2O fluxes from the following six instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), METEK-uSonic3/LI-7500 (EC), Gill-R3/LI-6262 (EC), Gill-R3/LI-7200 (EC), Gill-HS/LI-7200 (EC), Gill-R3/LGR-FGGA (EC). Further, we present results of much more difficult to measure CH4 fluxes from the following three instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), Gill-R3/LI-7700 (EC), Gill-R3/LGR-FGGA (EC). We observed that CO2, CH4 and H2O fluxes from the side-by-side measurements by true eddy accumulation and eddy covariance methods correlated well. Secondly, the difference between the TEA and EC methods using the same sonic anemometer but different gas analyzer was often smaller than the mismatch of the various side-by-side eddy covariance measurements using different sonic anemometers and gas analyzers. Signal-to-noise ratios of CH4 fluxes from the true eddy accumulation system system were superior to both eddy covariance sensors (open-path LI-7700 and closed-path CRDS LGR-FGGA sensors). We conclude that our novel implementation of the true eddy accumulation method demonstrated high signal-to-noise ratios, applicability to slow-response gas analyzers, small power consumption and direct proxy-free ecosystem-scale trace gas flux measurements of CO2, CH4 and H2O. The current results suggest that true eddy accumulation would be suitable and should be applied as the method-of-choice for direct flux measurements of a large number of atmospheric constituents beyond CO2 and H2O, including isotopes, aerosols, volatile organic compounds and other trace gases for which eddy covariance might not be a viable alternative. We will further develop true eddy accumulation as a novel approach using multiplexed systems for spatially distributed flux measurements.
Analysis of transferred fragrance and its forensic implications.
Gherghel, Simona; Morgan, Ruth M; Blackman, Christopher S; Karu, Kersti; Parkin, Ivan P
2016-12-01
Perfumes are widely used by many people in developed countries, and a large number of both men and women wear perfumes on a daily basis. Analysis of perfume trace materials from clothing is not commonly employed within forensic casework, yet as a form of trace evidence it has the potential to provide valuable intelligence. In order to appreciate the value of trace evidence there is a fundamental need for an evidence base that can both offer insight into how a trace material behaves under different scenarios and activities, and from which inferences can be made. With this purpose a gas chromatography-mass spectrometry method for trace analysis of perfumes was developed. This paper presents two different series of experiments that investigate the dynamics of perfume transfer as a factor of perfume ageing time, and as a factor of perfume contact time. Empirical data showed that both perfume ageing time, and perfume contact time play a key role in the number of perfume components transferred. These studies have implication for forensic protocols, specifically for perfume trace evidence collection, analysis, interpretation, and presentation, and there is potentially great value in analysing perfumes from clothing exhibits in forensic enquiries that involve close contact between individuals, such as sexual assaults. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, Steven S.; Thornton, Joel A.; Keene, William C.; Pszenny, Alexander A. P.; Sive, Barkley C.; Dubé, William P.; Wagner, Nicholas L.; Young, Cora J.; Riedel, Theran P.; Roberts, James M.; VandenBoer, Trevor C.; Bahreini, Roya; Öztürk, Fatma; Middlebrook, Ann M.; Kim, Saewung; Hübler, Gerhard; Wolfe, Daniel E.
2013-07-01
The Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) field experiment took place during late winter, 2011, at a site 33 km north of Denver, Colorado. The study included fixed-height measurements of aerosols, soluble trace gases, and volatile organic compounds near surface level, as well as vertically resolved measurements of nitrogen oxides, aerosol composition, soluble gas-phase acids, and halogen species from 3 to 270 m above ground level. There were 1928 individual profiles during the three-week campaign to characterize trace gas and aerosol distributions in the lower levels of the boundary layer. Nitrate and ammonium dominated the ionic composition of aerosols and originated primarily from local or regional sources. Sulfate and organic matter were also significant and were associated primarily with longer-range transport to the region. Aerosol chloride was associated primarily with supermicron size fractions and was always present in excess of gas-phase chlorine compounds. The nighttime radical reservoirs, nitryl chloride, ClNO2, and nitrous acid, HONO, were both consistently present in nighttime urban air. Nitryl chloride was especially pronounced in plumes from large point sources sampled aloft at night. Nitrous acid was typically most concentrated near the ground surface and was the dominant contributor (80%) to diurnally averaged primary OH radical production in near-surface air. Large observed mixing ratios of light alkanes, both in near-surface air and aloft, were attributable to local emissions from oil and gas activities.
Trace level detection of analytes using artificial olfactometry
NASA Technical Reports Server (NTRS)
Wong, Bernard (Inventor); Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor)
2001-01-01
The present invention provides a device for detecting the presence of an analyte, wherein said analyte is a microorganism marker gas. The device comprises a sample chamber having a fluid inlet port for the influx of the microorganism marker gas; a fluid concentrator in flow communication with the sample chamber, wherein the fluid concentrator has an absorbent material capable of absorbing the microorganism marker gas and thereafter releasing a concentrated microorganism marker gas; and an array of sensors in fluid communication with the concentrated microorganism marker gas. The sensor array detects and identifies the marker gas upon its release from fluid concentrate.
Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...
Trace gas flux from container production of woody landscape plants
USDA-ARS?s Scientific Manuscript database
The agriculture industry is a large source of greenhouse gas (GHG) emissions which are widely believed to be causing increased global temperatures. Reduction of these emissions has been heavily researched, with most of the work focusing on row crop and animal production sectors. Little attention has...
ORD initiated automated speciated mercury measurements at the NOAA Mauna Loa Observatory (MLO), a high altitude research station (~11,500 feet) in 2001. Mercury monitoring at MLO was supplemented with trace element aerosol, criteria gas, and gas and particulate halide measurement...
New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids
The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.
An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...
BOREAS TGB-4 NSA-BVP Tower Flux and Meteorological Data
NASA Technical Reports Server (NTRS)
Roulet, Nigel T.; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-4) team measured the exchange of heat, water, and CO2 between a boreal forest beaver pond and the atmosphere in the Northern Study Area (NSA) for the ice-free period of BOREAS. The data cover the period of 28-May to 18-Sep-1994. The data are available in tabular ASCII files.
NASA Astrophysics Data System (ADS)
Tang, X. D.; Henkel, C.; Wyrowski, F.; Giannetti, A.; Menten, K. M.; Csengeri, T.; Leurini, S.; Urquhart, J. S.; König, C.; Güsten, R.; Lin, Y. X.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.
2018-03-01
Context. Formaldehyde (H2CO) is a reliable tracer to accurately measure the physical parameters of dense gas in star-forming regions. Aim. We aim to determine directly the kinetic temperature and spatial density with formaldehyde for the 100 brightest ATLASGAL-selected clumps (the TOP100 sample) at 870 μm representing various evolutionary stages of high-mass star formation. Methods: Ten transitions (J = 3-2 and 4-3) of ortho- and para-H2CO near 211, 218, 225, and 291 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope. Results: Using non-LTE models with RADEX, we derived the gas kinetic temperature and spatial density with the measured para-H2CO 321-220/303-202, 422-321/404-303, and 404-303/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO 321-220/303-202 and 422-321/404-303 line ratios are high, ranging from 43 to >300 K with an unweighted average of 91 ± 4 K. Deduced Tkin values from the J = 3-2 and 4-3 transitions are similar. Spatial densities of the gas derived from the para-H2CO 404-303/303-202 line ratios yield 0.6-8.3 × 106 cm-3 with an unweighted average of 1.5 (±0.1) × 106 cm-3. A comparison of kinetic temperatures derived from para-H2CO, NH3, and dust emission indicates that para-H2CO traces a distinctly higher temperature than the NH3 (2, 2)/(1, 1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2CO line widths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2CO increase with time through the evolution of the clumps. The high temperature of the gas traced by H2CO may be mainly caused by radiation from embedded young massive stars and the interaction of outflows with the ambient medium. For Lbol/Mclump ≳ 10 L⊙/M⊙, we find a rough correlation between gas kinetic temperature and this ratio, which is indicative of the evolutionary stage of the individual clumps. The strong relationship between H2CO line luminosities and clump masses is apparently linear during the late evolutionary stages of the clumps, indicating that LH_2CO does reliably trace the mass of warm dense molecular gas. In our massive clumps H2CO line luminosities are approximately linearly correlated with bolometric luminosities over about four orders of magnitude in Lbol, which suggests that the mass of dense molecular gas traced by the H2CO line luminosity is well correlated with star formation. Source and H2CO parameters (Tables A.1-A.7) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A6
Conley, Stephen; Faloona, Ian; Mehrotra, Shobhit; ...
2017-09-13
Airborne estimates of greenhouse gas emissions are becoming more prevalent with the advent of rapid commercial development of trace gas instrumentation featuring increased measurement accuracy, precision, and frequency, and the swelling interest in the verification of current emission inventories. Multiple airborne studies have indicated that emission inventories may underestimate some hydrocarbon emission sources in US oil- and gas-producing basins. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of any trace gas for which fast and precise measurements can be mademore » and apply it to methane, ethane, and carbon dioxide on spatial scales of ~1000 m, where consecutive loops are flown around a targeted source region at multiple altitudes. Using Reynolds decomposition for the scalar concentrations, along with Gauss's theorem, we show that the method accurately accounts for the smaller-scale turbulent dispersion of the local plume, which is often ignored in other average mass balance methods. With the help of large eddy simulations (LES) we further show how the circling radius can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we can ascertain that the accuracy of the method, in appropriate meteorological conditions, is often better than 10 %, with limits of detection below 5 kg h -1 for both methane and ethane. Because of the FAA-mandated minimum flight safe altitude of 150 m, placement of the aircraft is critical to preventing a large portion of the emission plume from flowing underneath the lowest aircraft sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, we show how the accuracy of the method is strongly dependent on the number of sampling loops and/or time spent sampling the source plume.« less
NASA Astrophysics Data System (ADS)
Conley, Stephen; Faloona, Ian; Mehrotra, Shobhit; Suard, Maxime; Lenschow, Donald H.; Sweeney, Colm; Herndon, Scott; Schwietzke, Stefan; Pétron, Gabrielle; Pifer, Justin; Kort, Eric A.; Schnell, Russell
2017-09-01
Airborne estimates of greenhouse gas emissions are becoming more prevalent with the advent of rapid commercial development of trace gas instrumentation featuring increased measurement accuracy, precision, and frequency, and the swelling interest in the verification of current emission inventories. Multiple airborne studies have indicated that emission inventories may underestimate some hydrocarbon emission sources in US oil- and gas-producing basins. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of any trace gas for which fast and precise measurements can be made and apply it to methane, ethane, and carbon dioxide on spatial scales of ˜ 1000 m, where consecutive loops are flown around a targeted source region at multiple altitudes. Using Reynolds decomposition for the scalar concentrations, along with Gauss's theorem, we show that the method accurately accounts for the smaller-scale turbulent dispersion of the local plume, which is often ignored in other average mass balance
methods. With the help of large eddy simulations (LES) we further show how the circling radius can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we can ascertain that the accuracy of the method, in appropriate meteorological conditions, is often better than 10 %, with limits of detection below 5 kg h-1 for both methane and ethane. Because of the FAA-mandated minimum flight safe altitude of 150 m, placement of the aircraft is critical to preventing a large portion of the emission plume from flowing underneath the lowest aircraft sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, we show how the accuracy of the method is strongly dependent on the number of sampling loops and/or time spent sampling the source plume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conley, Stephen; Faloona, Ian; Mehrotra, Shobhit
Airborne estimates of greenhouse gas emissions are becoming more prevalent with the advent of rapid commercial development of trace gas instrumentation featuring increased measurement accuracy, precision, and frequency, and the swelling interest in the verification of current emission inventories. Multiple airborne studies have indicated that emission inventories may underestimate some hydrocarbon emission sources in US oil- and gas-producing basins. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of any trace gas for which fast and precise measurements can be mademore » and apply it to methane, ethane, and carbon dioxide on spatial scales of ~1000 m, where consecutive loops are flown around a targeted source region at multiple altitudes. Using Reynolds decomposition for the scalar concentrations, along with Gauss's theorem, we show that the method accurately accounts for the smaller-scale turbulent dispersion of the local plume, which is often ignored in other average mass balance methods. With the help of large eddy simulations (LES) we further show how the circling radius can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we can ascertain that the accuracy of the method, in appropriate meteorological conditions, is often better than 10 %, with limits of detection below 5 kg h -1 for both methane and ethane. Because of the FAA-mandated minimum flight safe altitude of 150 m, placement of the aircraft is critical to preventing a large portion of the emission plume from flowing underneath the lowest aircraft sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, we show how the accuracy of the method is strongly dependent on the number of sampling loops and/or time spent sampling the source plume.« less
Prussian blue analogues for CO(2) and SO(2) capture and separation applications.
Thallapally, Praveen K; Motkuri, Radha Kishan; Fernandez, Carlos A; McGrail, B Peter; Behrooz, Ghorishi S
2010-06-07
Adsorption isotherms of pure gases present in flue gas including CO(2), N(2), SO(2), NO, H(2)S, and water were studied using prussian blues of chemical formula M(3)[Co(CN)(6)](2).nH(2)O (M = Co, Zn) using an HPVA-100 volumetric gas analyzer and other spectroscopic methods. All the samples were characterized, and the microporous nature of the samples was studied using the BET isotherm. These materials adsorbed 8-10 wt % of CO(2) at room temperature and 1 bar of pressure with heats of adsorption ranging from 200 to 300 Btu/lb of CO(2), which is lower than monoethanolamine (750 Btu/lb of CO(2)) at the same mass loading. At high pressures (30 bar and 298 K), these materials adsorbed approximately 20-30 wt % of CO(2), which corresponds to 3 to 5 molecules of CO(2) per formula unit. Similar gas adsorption isotherms for SO(2), H(2)S, and NO were collected using a specially constructed volumetric gas analyzer. At close to 1 bar of equilibrium pressure, these materials sorb around 2.5, 2.7, and 1.2 mmol/g of SO(2), H(2)S, and NO. In particular, the uptake of SO(2) and H(2)S in Co(3)[Co(CN)(6)](2) is quite significant since it sorbs around 10 and 4.5 wt % at 0.1 bar of pressure. The stability of prussian blues before and after trace gases was studied using a powder X-ray diffraction instrument, which confirms these materials do not decompose after exposure to trace gases.
NASA Technical Reports Server (NTRS)
Boogert, A. C. A.; Hogerheijde, M. R.; Blake, G. A.
2001-01-01
We explore the infrared M band (4.7 micron) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R =25,000; (Delta)v =12 km s(exp -1). A large number of narrow absorption lines of gas phase (12)CO, (13)CO, and C(sup 18)O are detected, as well as a prominent band of solid (12)CO. The gas phase (12)CO lines have red shifted absorption wings (up to 100 km s(exp -1)), which likely originate from warm disk material falling toward the central object. Both the isotopes and the extent of the (12)CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object. This shows that the inward motions seen in millimeter wave emission lines continue to within approx. 0.1 AU from the star. The amount of high velocity infalling gas is however overestimated by this model, suggesting that only part of the disk is infalling, e.g. a hot surface layer or hot gas in magnetic field tubes. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated, the depletion factor of CO onto grains is remarkably low (approx. 7%), and the CO2 traced in the CO band profile was possibly formed energetically. This study shows that high spectral resolution 4.7 micron observations provide important and unique information on the dynamics and structure of protostellar disks and the origin and evolution of ices in these disks.
Methane Trace-Gas Sensing Enabled by Silicon Photonic Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William
Fugitive methane leaks occurring during extraction at typical natural gas wells have an adverse environmental impact due to the methane’s large radiative forcing, in addition to reducing the producer’s overall efficiency and cost. Mitigation of these concerns can benefit from cost-effective sensor nodes, performing reliable, rapid and continuous tracking of methane emissions. The efficacy of laser spectroscopy has been widely demonstrated in both environmental and medical applications due to its sensitivity and specificity to the target analyte. However, the present cost and lack of manufacturing scalability of traditional free-space optical systems can limit their viability for deployment in economical wide-areamore » sensor networks. This presentation will review the development and performance of a cost-effective silicon photonic trace gas sensing platform that leverages silicon photonic waveguide and packaging technologies to perform on-chip evanescent field spectroscopy of methane.« less
NASA Astrophysics Data System (ADS)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason
2015-01-01
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 μm) at a 10 Hz repetition rate. The sensor was designed for operation in multiple modes, including gas sensing within a multi-pass Heriott cell and intracavity absorption sensing using the ECQCL compliance voltage. In addition, the ECQCL compliance voltage was used to reduce effects of long-term drifts in the ECQCL output power. The sensor was characterized for noise, drift, and detection of chemicals including ammonia, methanol, ethanol, isopropanol, Freon- 134a, Freon-152a, and diisopropyl methylphosphonate (DIMP). We also present use of the sensor for mobile detection of ammonia downwind of cattle facilities, in which concentrations were recorded at 1-s intervals.
Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery
Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL
2011-10-18
A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.
Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M
2015-07-01
Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
GHG emissions from corn-soybean rotations and perennial grasses on a Mollisol
USDA-ARS?s Scientific Manuscript database
Changes in management can convert agriculture from a net source to a net sink of greenhouse gases. A field study was established in 2003 in Indiana on a Typic Haplaquoll to determine the impact of nitrogen management on trace gas emissions. In the second phase of the experiment (2008-11), there were...
Measurements of gas-, particle- and precipitation-phases of atmospheric mercury
(Hg) were made in the South and equatorial Atlantic Ocean as part of the 1996
IOC Trace Metal Baseline Study (Montevideo, Uruguay to Barbados). Total gaseous
mercury (TGM) ranged from ...
Chemistry on the mesoscale: Modeling and measurement issues
NASA Technical Reports Server (NTRS)
Thompson, Anne; Pleim, John; Walcek, Christopher; Ching, Jason; Binkowski, Frank; Tao, Wei-Kuo; Dickerson, Russell; Pickering, Kenneth
1993-01-01
The topics covered include the following: Regional Acid Deposition Model (RADM) -- a coupled chemistry/mesoscale model; convection in RADM; unresolved issues for mesoscale modeling with chemistry -- nonprecipitating clouds; unresolved issues for mesoscale modeling with chemistry -- aerosols; tracer studies with Goddard Cumulus Ensemble Model (GCEM); field observations of trace gas transport in convection; and photochemical consequences of convection.
Planted pastures ( mainly Brachiaria spp) are the most extensive land use in the cerrado (savannas of central Brazil) with an area of approximately 50 x 10(6) ha. The objective of the study was to assess the effects of pasture restoration on the N dynamics ( net N mineralization/...
NASA Astrophysics Data System (ADS)
Boamfa, E. I.; Steeghs, M. M. L.; Cristescu, S. M.; Harren, F. J. M.
2004-12-01
A custom-built proton-transfer-reaction mass spectrometry (PTR-MS) instrument was used to monitor the emission of various compounds (aldehydes, alcohols, acids, acetates and C-6 compounds) related to fermentation, aroma and flavour, released by four apple cultivars (Elstar, Jonaglod, Granny Smith and Pink Lady) under short anaerobic (24 h) and post-anaerobic conditions. The novel feature of our instrument is the new design of the collisional dissociation chamber, which separates the high pressure in the drift tube (2 mbar) from the high vacuum pressure in the detection region (10-6 mbar). The geometry of this chamber was changed and a second turbo pump was added to reduce the influence of collisional loss of ions, background signals and cluster ions, which facilitates the interpretation of the mass spectra and increases the signal intensity at the mass of the original protonated compound. With this system, detection limits of similar magnitude to the ones reported in literature are reached. An intercomparison study between PTR-MS and a CO laser-based photoacoustic trace gas detector is presented. The alcoholic fermentation products (acetaldehyde and ethanol) from young rice plants were simultaneously monitored by both methods. A very good agreement was observed for acetaldehyde production. The photoacoustic detector showed about two times lower ethanol concentration as compared to PTR-MS, caused by memory effects due to sticking of compounds to the walls of the nylon tube used to transport the trace gases to the detector.
NASA Astrophysics Data System (ADS)
Luke, Winston T.; Dickerson, Russell R.; Ryan, William F.; Pickering, Kenneth E.; Nunnermacker, Linda J.
1992-12-01
Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O3, carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statistical distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. Concentrations of CO and total odd nitrogen (NOy) are relatively high in the shallow planetary boundary layer (PBL) but decrease rapidly with altitude. Ozone, on the other hand, is uniformly distributed, suggesting limited photochemical production; in fact, nitric oxide, NO, mixing ratios fell below 10 ppt (parts per 1012 by volume) in the midtroposphere. The maritime regime is characterized by southerly surface winds, convective instability, and a deep PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. Severe storms occur in maritime flow, especially when capped by a dry layer, and they transport large amounts of CO, O3, and NOy into the upper troposphere. Median NO levels at high altitude exceeded 300 ppt. Lightning produces spikes of NO (but not CO) with mixing ratios sometimes exceeding 1000 ppt. This flow pattern tends to leave the midtroposphere relatively clean with concentrations of trace gases similar to those observed in the polar category. During frontal passage both stratiform and convective clouds mix pollutants more uniformly into the middle and upper levels; high mixing ratios of CO are found at all altitudes, and O3 levels are highest of any category, implicating photochemical production. These results illustrate the importance of convection in tropospheric chemistry. Use of average trace gas profiles or eddy diffusion parameterized vertical mixing can lead to errors of 30 to 50% in O3 and CO concentrations and an order of magnitude for odd nitrogen.
NASA Technical Reports Server (NTRS)
Atlas, E.; Ridley, B.; Walega, J.; Greenberg, J.; Kok, G.; Staffelbach, T.; Schauffler, S.; Lind, J.; Huebler, G.; Norton, R.
1996-01-01
During October 19-20, 1991, one flight of the NASA Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM-West A) mission was conducted near Hawaii as an intercomparison with ground-based measurements of the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2) and the NOAA Climate Modeling and Diagnostics Laboratory (CMDL). Ozone, reactive nitrogen species, peroxides, hydrocarbons, and halogenated hydrocarbons were measured by investigators aboard the DC-8 aircraft and at the ground site. Lidar cross sections of ozone revealed a complex air mass structure near the island of Hawaii which was evidenced by large variation in some trace gas mixing ratios. This variation limited the time and spatial scales for direct measurement intercomparisons. Where differences occurred between measurements in the same air masses, the intercomparison suggested that biases for some trace gases was due to different calibration scales or, in some cases, instrumental or sampling biases. Relatively large uncertainties were associated with those trace gases present in the low parts per trillion by volume range. Trace gas correlations were used to expand the scope of the intercomparison to identify consistent trends between the different data sets.
NASA Technical Reports Server (NTRS)
Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.
2015-01-01
Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).
Magliulo, Vincenzo; Alterio, Giovanni; Peressotti, Alessandro
2004-05-01
Micrometeorological methods for measuring fluxes of gases between the land surface and the atmosphere are non-invasive: in fact, they do not interfere with natural processes of gas exchange. The Micrometeorological Mass Difference (MMD) approach can be used for many environmental monitoring purposes, such as to measure methane and carbon dioxide emission from landfills, methane production by grazing animals, trace gas emission from waste products and from agricultural soils, photosynthesis, and transpiration of plant canopies. The purpose of this study is to adapt the MMD technique, originally developed in Australia, to monitor CO2 and trace gases exchange rate at the plot level. Comparison of different treatments in replicated experiments requires plots of few rather than tens of meters. The tests reported here were performed on a square area (4 m x 4 m) in the meteorological field of the experimental farm of CNR-ISAFOM located in Vitulazio, province of Caserta, Italy (40 degrees 07' N, 14 degrees 50' E, 25 m above sea level) and consisted of the release of pure CO2 at different rates (1.7, 1.3, 0.6 L min(-1)) from a single source on the ground in the center of the experimental area and the consequent measurement of the environmental variables (wind speed and direction, CO2 concentration) at different times at four heights (up to 1.2 m) in order to compute the mass balance according to MMD technique. Measured flow rates well accounted for the mass of CO2 released. A flow underestimation occurred when wind speed dropped below 1.5 m s(-1), in accord with the previous findings obtained in Australia: this happened because anemometers can stall at low speeds, and their measurements are unreliable and because of significant loss of mass from the top of the apparatus. The experimental results were compared with outputs of Computational Fluid Dynamic (CFD) simulations. The commercial CFD package Fluent was used to evaluate performances and sources of errors. According to the experimental and numerical results, the MMD apparatus in our present configuration is suitable to be used for the monitoring of trace gas emissions of experimental plots. Advantages and limits of the present approach are discussed.
NASA Astrophysics Data System (ADS)
Andrews, H.; Eberwein, J. R.; Jenerette, D.
2016-12-01
As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions (unconverted soils with CSS litter). Additionally, soils with no litter peaked in N2O emissions earlier than those with litter (12 hours after wetting compared to 24 hours after wetting). Following preliminary results, we suggest that differences in plant traits, such as litter, play a significant role in the magnitude and timing of trace gas nitrogen emissions.
NASA Technical Reports Server (NTRS)
Chiou, E. W.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.
1993-01-01
A comparison is made of the stratospheric water vapor measurements made by the satellite sensors of the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus-7 LIMS, and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. It was found that, despite differences in the measurement techniques, sampling bias, and observational periods, the three experiments have disclosed a generally consistent pattern of stratospheric water vapor distribution. The only significant difference occurs at high southern altitudes in May below 18 km, where LIMS measurements were 2-3 ppmv greater than those of SAGE II and ATMOS.
Stable glow discharge detector
Koo, Jackson C.; Yu, Conrad M.
2004-05-18
A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.
A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module.
Yang, Xiaotao; Xiao, Youhong; Ma, Yufei; He, Ying; Tittel, Frank K
2017-07-31
A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor and is reported for the first time. The acoustic detection module (ADM) was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C₂H₂) was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.
Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K
2017-03-04
The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm -1 ) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure.
Geometric calibration of Colour and Stereo Surface Imaging System of ESA's Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
Tulyakov, Stepan; Ivanov, Anton; Thomas, Nicolas; Roloff, Victoria; Pommerol, Antoine; Cremonese, Gabriele; Weigel, Thomas; Fleuret, Francois
2018-01-01
There are many geometric calibration methods for "standard" cameras. These methods, however, cannot be used for the calibration of telescopes with large focal lengths and complex off-axis optics. Moreover, specialized calibration methods for the telescopes are scarce in literature. We describe the calibration method that we developed for the Colour and Stereo Surface Imaging System (CaSSIS) telescope, on board of the ExoMars Trace Gas Orbiter (TGO). Although our method is described in the context of CaSSIS, with camera-specific experiments, it is general and can be applied to other telescopes. We further encourage re-use of the proposed method by making our calibration code and data available on-line.
NASA Technical Reports Server (NTRS)
Burrows, W. H.; Burrows, W. H.
1971-01-01
A leak detection system has been developed, consisting of a tape that can be wrapped around possible leak sites on a system pressurized with air or gaseous nitrogen. Carbon monoxide, at a level of 100 to 1000 parts per million is used as a trace gas in the pressurized system. The sensitive element of the tape is palladium chloride supported on specially prepared silica gel and specially dried. At a CO level of 100 ppm and a leak rate of 10-20 ml/hr, discoloration of the sensitive element is observed in 1.5 to 3 min. The tape and trace gas are compatible with aerospace hardware, safe to handle, and economically reasonable to produce and handle.
Aomura, Yoko; Kobayashi, Yoshihiko; Miyazawa, Yuzuru; Shimizu, Hideharu
2010-03-12
Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO(4).5H(2)O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1-8.2% relative standard deviation; and detection limits were 6.9 ppb for H(2), 1.8 ppb for O(2), 1.6 ppb for N(2), 6.4 ppb for CH(4), 13 ppb for CO, and 5.4 ppb for CO(2). Copyright (c) 2010 Elsevier B.V. All rights reserved.
Understanding Fire Through Improved Technology
NASA Technical Reports Server (NTRS)
2004-01-01
Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; Neveu, Marc; Riris, Haris; Georgieva, Elena M.; Heaps, William S.
2011-01-01
We present preliminary results in the development of a miniaturized gas correlation radiometer that implements a hollow-core optical fiber (hollow waveguide) gas correlation cell. The substantial reduction in mass and volume of the gas correlation cell makes this technology appropriate for an orbital mission -- capable of pinpointing sources of trace gases in the Martian atmosphere. Here we demonstrate a formaldehyde (H2CO) sensor and report a detection limit equivalent to approximately 30 ppb in the Martian atmosphere. The relative simplicity of the technique allows it to be expanded to measure a range of atmospheric trace gases of interest on Mars such as methane (CH4), water vapour (H2O), deuterated water vapour (HDO), and methanol (CH3OH). Performance of a formaldehyde instrument in a Mars orbit has been simulated assuming a 3 meter long, 1000 micron inner diameter hollow-core fiber gas correlation cell, a 92.8 degree sun-synchronous orbit from 400 km with a horizontal sampling scale of 10 km x 10 km. Initial results indicate that for one second of averaging, a detection limit of 1 ppb is possible.
Critical issues in trace gas biogeochemistry and global change.
Beerling, David J; Nicholas Hewitt, C; Pyle, John A; Raven, John A
2007-07-15
The atmospheric composition of trace gases and aerosols is determined by the emission of compounds from the marine and terrestrial biospheres, anthropogenic sources and their chemistry and deposition processes. Biogenic emissions depend upon physiological processes and climate, and the atmospheric chemistry is governed by climate and feedbacks involving greenhouse gases themselves. Understanding and predicting the biogeochemistry of trace gases in past, present and future climates therefore demands an interdisciplinary approach integrating across physiology, atmospheric chemistry, physics and meteorology. Here, we highlight critical issues raised by recent findings in all of these key areas to provide a framework for better understanding the past and possible future evolution of the atmosphere. Incorporating recent experimental and observational findings, especially the influence of CO2 on trace gas emissions from marine algae and terrestrial plants, into earth system models remains a major research priority. As we move towards this goal, archives of the concentration and isotopes of N2O and CH4 from polar ice cores extending back over 650,000 years will provide a valuable benchmark for evaluating such models. In the Pre-Quaternary, synthesis of theoretical modelling with geochemical and palaeontological evidence is also uncovering the roles played by trace gases in episodes of abrupt climatic warming and ozone depletion. Finally, observations and palaeorecords across a range of timescales allow assessment of the Earth's climate sensitivity, a metric influencing our ability to decide what constitutes 'dangerous' climate change.
NASA Astrophysics Data System (ADS)
Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.
2017-09-01
Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.
Chemical studies of H chondrites. I - Mobile trace elements and gas retention ages
NASA Technical Reports Server (NTRS)
Lingner, David W.; Huston, Ted J.; Hutson, Melinda; Lipschutz, Michael E.
1987-01-01
Trends for 16 trace elements (Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, K, Rb, Sb, Se, Te, Tl, and Zn), chosen to span a broad geochemical and thermal response range, in 44 H4-6 chondrites, differ widely from those in L4-6 chondrites. In particular, H chondrites classified as heavily shocked petrologically do not necessarily exhibit Ar-40 loss and vice versa. The clear-cut causal relationship between siderophile and mobile element loss with increasing late shock seen in L chondrites is not generally evident in the H group. H chondrite parent material experienced an early high temperature genetic episode that mobilized a substantial proportion of these trace elements so that later thermal episodes resulted in more subtle, collateral fractionations. Mildly shocked L chondrites escaped this early high temperature event, indicating that the two most numerous meteorite groups differ fundamentally in genetic history.
NASA Astrophysics Data System (ADS)
Aiken, A. C.; Springston, S. R.; Watson, T. B.; Sedlacek, A. J., III; Zuidema, P.; Adebiyi, A. A.; Uin, J.; Kuang, C.; Flynn, C. J.
2017-12-01
Ascension Island is located 8 degrees South of the Equator and 15 degrees West Longitude in the middle of the South Atlantic Ocean, at least 1000 miles from any major shoreline and closest to the continent of Africa. While low Southern Hemisphere background aerosol and trace gas measurements are observed most of the year, that picture changes during the South African Biomass Burning (BB) season. BB emissions are a large source of carbon to the atmosphere via particles and gas phase species and with a potential rise in drought and extreme events in the future, these numbers are expected to increase. From approximately June-October every year, the plume of South African BB emissions, the largest BB source in the world, are advected West and are known to impact both the boundary layer and free troposphere at Ascension Island (Zuidema et al., 2016). During the U.S. DOE ARM field campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC), aerosol and trace gas measurements were collected continuously from June 2016 through October 2017 over a 1.5 year period. Two BB seasons are contrasted with the near pristine background conditions during the campaign from the ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS). Numerous direct in situ aerosol and trace gas measurements are presented, e.g. black carbon (BC), carbon monoxide (CO), PM1 and PM10 aerosol absorption and scattering, submicron non-refractory chemical composition (Organics, Sulfate, Nitrate, Ammonium, Chloride), etc. Aerosol and trace gas signatures are investigated along with backtrajectories to identify sources. Carbonaceous aerosols emitted with gas-phase CO are used to determine particulate emission ratios along with intrinsic and extrinsic aerosol properties. BC mass concentrations reach 1 µg m-3 during multiday plumes and exceed 25% of the total aerosol submicron mass concentration. Organic Aerosol (OA) to BC Ratios of 2.4 in the plume are much higher than previously observed BB emissions in the Northern Hemisphere from forest fires in the US and also BB sources in Brazil. The differences observed between BB emissions in the Northern versus Southern Hemispheres highlights the need to understand the different atmospheric chemistries within the context of the differing background conditions of the two hemispheres.
The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh
2016-08-01
In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.
Higs-instrument: design and demonstration of a high performance gas concentration imager
NASA Astrophysics Data System (ADS)
Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.
2017-09-01
Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.
Cosmic Star–Forming Gas as seen from the Milky Way
NASA Astrophysics Data System (ADS)
Kauffmann, Jens
2018-01-01
We still struggle to understand the star formation properties of galaxies throughout the cosmos. Is star formation driven by the structure of galaxies? Or is it plainly controlled by the mass of dense gas that can be found in a galaxy?This poster presents results from several recent projects that deliver important insights on the global star formation activity of galaxies, based on detailed studies of star-forming regions in the Milky Way. First, the proberties of dense clouds in the Galactic Center are discussed, using data from interferometers likw ALMA. Second, the kinematics of Milky Way molecular clouds are discussed based on a variety of data sets. Third, the LEGO survey (Line Emission in Galaxy Observations) is discussed. This latter study challenges concepts of how dense gas in galaxies can be traced. In combination these studies deliver a fresh look at the various factors controlling how galaxies form stars.
Anthropogenic, Biogenic and Biomass Burning VOCs in the Southeast of the United States during SENEX
NASA Astrophysics Data System (ADS)
Graus, M.; Warneke, C.; De Gouw, J. A.; Trainer, M.; Aikin, K.; Brown, S. S.; Gilman, J.; Hanisco, T. F.; Holloway, J.; Kaiser, J.; Keutsch, F. N.; Lee, B.; Lerner, B. M.; Lopez-Hilfiker, F.; Min, K.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Wolfe, G. M.
2013-12-01
The NOAA field study SENEX was designed to investigate the source strengths and spatial distribution of man-made air pollutants and natural emissions, their interaction to form secondary pollutants, and the atmospheric fate of aerosol and trace gases at the nexus of air quality and climate change. To this end the NOAA research aircraft WP-3D was equipped with instrumentation for the analysis of aerosol and trace gases and this flying atmospheric science laboratory performed 18 research flights over the Southeast of the United States in June and July 2013. VOCs such as isoprene and monoterpenes are released into the atmosphere by vegetation. Aromatics come from incomplete combustion of transportation fuels as well as from oil and natural gas production, and they are found in biomass burning plumes along with the distinct tracer acetonitrile. Oxygenated species such as alcohols, aldehydes and ketones are directly emitted from natural and anthropogenic sources and can be formed by photo oxidation of organic trace gases. At sufficiently high levels of nitrogen oxides, VOCs fuel the production of tropospheric ozone and they contribute to the formation and growth of secondary organic aerosol. Hence one key instrument onboard WP-3D was a PTR-MS for the time-resolved quantification of VOCs. The WP-3D performed plume study patterns downwind of coal- and gas-fired power plants. Isoprene concentrations were modulated in the high NOx regime as the plume evolved and the SENEX dataset will be used to constrain the chemistry in such plumes. City plumes of Atlanta (GA), Birmingham (AL), Indianapolis (IN), and St Louis (MO) showed modest concentrations of aromatics due to the decrease in hydrocarbon emissions from cars in comparison with previous studies. One flight leg targeted the plume of a large biofuel refinery, which will allow for an independent estimate of the primary emissions from this industry. A number of plumes of small fires in the study region were sampled as well as biomass burning plumes, several days old, likely from fires in the Western US. Besides plume studies, several flights were dedicated to the quantification of advection fluxes of hydrocarbons from oil and natural gas production in the Haynesville shale (LA, TX), Fayetteville shale (AR), and Marcellus shale (PA) for a top-down quantification of the emissions from these oil and gas fields. In this presentation PTR-MS data from the SENEX study will be shown and discussed in the context of the science goals of the study.
Dynamics and Composition of the Asian Summer Monsoon Anticyclone
NASA Astrophysics Data System (ADS)
Gottschaldt, K. D.; Schlager, H.; Baumann, R.; Bozem, H.; Cai, D. S.; Eyring, V.; Hoor, P. M.; Graf, P.; Joeckel, P.; Jurkat, T.; Voigt, C.; Grewe, V.; Zahn, A.; Ziereis, H.
2017-12-01
This study places trace gas observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) obtained with the HALO research aircraft during the ESMVal campaign into the context of regional, intra-annual variability by hindcasts with the EMAC model. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from the rest of the year. Air uplifted from the lower troposphere to the tropopause layer dominates the eastern part of the ASMA's interior, while the western part is characterized by subsidence down to the mid-troposphere. Soluble compounds are being washed out when uplifted by convection in the eastern part, where lightning simultaneously replenishes reactive nitrogen in the upper troposphere. Net photochemical ozone production is significantly enhanced in the ASMA, contrasted by an ozone depleting regime in the mid-troposphere and more neutral conditions in autumn and winter. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank, and then transported in the southern fringe around the interior region. Observed and simulated tracer-tracer relations reflect photochemical O3 production, as well as in-mixing from the lower troposphere and the tropopause layer. The simulation additionally shows entrainment of clean air from the equatorial region by northerly winds at the western ASMA flank. Although the in situ measurements were performed towards the end of summer, the main ingredients needed for their interpretation are present throughout the monsoon season.Subseasonal dynamical instabilities of the ASMA effectively overcome horizontal transport barriers, occur quite frequently, and are of paramount importance for the trace gas composition of the ASMA and its outflow into regions around the world.
NASA Astrophysics Data System (ADS)
Sheu, R.; Marcotte, A.; Khare, P.; Ditto, J.; Charan, S.; Gentner, D. R.
2017-12-01
Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are major precursors to secondary organic aerosol, and contribute to tropospheric ozone formation. Their wide volatility range, chemical complexity, behavior in analytical systems, and trace concentrations present numerous hurdles to characterization. We present an integrated sampling-to-analysis system for the collection and offline analysis of trace gas-phase organic compounds with the goal of preserving and recovering analytes throughout sample collection, transport, storage, and thermal desorption for accurate analysis. Custom multi-bed adsorbent tubes are used to collect samples for offline analysis by advanced analytical detectors. The analytical instrumentation comprises an automated thermal desorption system that introduces analytes from the adsorbent tubes into a gas chromatograph, which is coupled with an electron ionization mass spectrometer (GC-EIMS) and other detectors. In order to optimize the collection and recovery for a wide range of analyte volatility and functionalization, we evaluated a variety of commercially-available materials, including Res-Sil beads, quartz wool, glass beads, Tenax TA, and silica gel. Key properties for optimization include inertness, versatile chemical capture, minimal affinity for water, and minimal artifacts or degradation byproducts; these properties were assessed with a diverse mix of traditionally-measured and functionalized analytes. Along with a focus on material selection, we provide recommendations spanning the entire sampling-and-analysis process to improve the accuracy of future comprehensive I/SVOC measurements, including oxygenated and other functionalized I/SVOCs. We demonstrate the performance of our system by providing results on speciated VOCs-SVOCs from indoor, outdoor, and chamber studies that establish the utility of our protocols and pave the way for precise laboratory characterization via a mix of detection methods.
Martian atmospheric O3 retrieval development for the NOMAD-UVIS spectrometer
NASA Astrophysics Data System (ADS)
Hewson, W.; Mason, J. P.; Leese, M.; Hathi, B.; Holmes, J.; Lewis, S. R.; Iriwin, P. G. J.; Patel, M. R.
2017-09-01
The composition of atmospheric trace gases and aerosols is a highly variable and poorly constrained component of the martian atmosphere, and by affecting martian climate and UV surface dose, represents a key parameter in the assessment of suitability for martian habitability. The ExoMars Trace Gas Orbiter (TGO) carries the Open University (OU) designed Ultraviolet and VIsible Spectrometer (UVIS) instrument as part of the Belgian-led Nadir and Occultation for MArs Discovery (NOMAD) spectrometer suite. NOMAD will begin transmitting science observations of martian surface and atmosphere back-scattered UltraViolet (UV) and visible radiation in Spring 2018, which will be processed to derive spatially and temporally averaged atmospheric trace gas and aerosol concentrations, intended to provide a better understanding of martian atmospheric photo-chemistry and dynamics, and will also improve models of martian atmospheric chemistry, climate and habitability. Work presented here illustrates initial development and testing of the OU's new retrieval algorithm for determining O3 and aerosol concentrations from the UVIS instrument.
NASA Technical Reports Server (NTRS)
Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert
2017-01-01
Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.
Quantitative imaging of volcanic plumes — Results, needs, and future trends
Platt, Ulrich; Lübcke, Peter; Kuhn, Jonas; Bobrowski, Nicole; Prata, Fred; Burton, Mike; Kern, Christoph
2015-01-01
Recent technology allows two-dimensional “imaging” of trace gas distributions in plumes. In contrast to older, one-dimensional remote sensing techniques, that are only capable of measuring total column densities, the new imaging methods give insight into details of transport and mixing processes as well as chemical transformation within plumes. We give an overview of gas imaging techniques already being applied at volcanoes (SO2cameras, imaging DOAS, FT-IR imaging), present techniques where first field experiments were conducted (LED-LIDAR, tomographic mapping), and describe some techniques where only theoretical studies with application to volcanology exist (e.g. Fabry–Pérot Imaging, Gas Correlation Spectroscopy, bi-static LIDAR). Finally, we discuss current needs and future trends in imaging technology.
Miniature Trace Gas Detector Based on Microfabricated Optical Resonators
NASA Technical Reports Server (NTRS)
Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.
2013-01-01
While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an extremely compact and robust package. With this type of modified WGMR, one can inject a gas sample into the open gap, allowing highly sensitive trace molecule detection within a roughly 1-cm volume. Other critical components of the instrument, such as the detector and a semiconductor laser, could be directly packaged with the resonator so as to not significantly increase the size of the device. Besides its low mass, volume, and power consumption, the monolithic design makes these resonators intrinsically robust devices, capable of handling significant temperature excursions, without moving parts to wear out or delicate coatings that can be easily damaged. A sensor could integrate with microfluidics technology for a chip-scale device. It could be mounted to the end of a deployable arm, or inserted into a borehole. Also, a network of individual sensors could be dispersed to monitor conditions over a wide region
Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo
2011-04-01
In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.
NASA Astrophysics Data System (ADS)
Montzka, S. A.
2016-12-01
Measurements from global surface-based air sampling networks provide a fundamental understanding of how and why concentrations of long-lived trace gases are changing over time. Results from these networks are used to quantify trace-gas concentrations and their time-dependent changes on global and smaller scales, and thus provide a means to quantify emission rates, loss frequencies, and mixing processes. Substantial advances in measurement and sampling technologies and the ability of these programs to create and maintain reliable gas standards mean that spatial concentration gradients and time-dependent changes are often very reliably measured. The presence of multiple independent networks allows an assessment of this reliability. Furthermore, recent global `snap-shot' surveys (e.g., HIPPO and ATom) and ongoing atmospheric profiling programs help us assess the ability of surface-based data to describe concentration distributions throughout most of the atmosphere ( 80% of its mass). In this overview talk, I'll explore the usefulness and limitations of existing long-term, ongoing sampling network programs and their advantages and disadvantages for characterizing concentrations on global and regional scales, and how recent advances (and short-term sampling programs) help us assess the accuracy of the surface networks to provide estimates of source and sink magnitudes, and inter-annual variability in both.
Interpreting the sub-linear Kennicutt-Schmidt relationship: the case for diffuse molecular gas
NASA Astrophysics Data System (ADS)
Shetty, Rahul; Clark, Paul C.; Klessen, Ralf S.
2014-08-01
Recent statistical analysis of two extragalactic observational surveys strongly indicate a sub-linear Kennicutt-Schmidt (KS) relationship between the star formation rate (ΣSFR) and molecular gas surface density (Σmol). Here, we consider the consequences of these results in the context of common assumptions, as well as observational support for a linear relationship between ΣSFR and the surface density of dense gas. If the CO traced gas depletion time (τ_dep^CO) is constant, and if CO only traces star-forming giant molecular clouds (GMCs), then the physical properties of each GMC must vary, such as the volume densities or star formation rates. Another possibility is that the conversion between CO luminosity and Σmol, the XCO factor, differs from cloud-to-cloud. A more straightforward explanation is that CO permeates the hierarchical interstellar medium, including the filaments and lower density regions within which GMCs are embedded. A number of independent observational results support this description, with the diffuse gas comprising at least 30 per cent of the total molecular content. The CO bright diffuse gas can explain the sub-linear KS relationship, and consequently leads to an increasing τ_dep^CO with Σmol. If ΣSFR linearly correlates with the dense gas surface density, a sub-linear KS relationship indicates that the fraction of diffuse gas fdiff grows with Σmol. In galaxies where Σmol falls towards the outer disc, this description suggests that fdiff also decreases radially.
The paper describes a new way to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for six sectors: agricultural, indus...
Effects of gypsum on trace metals in soils and earthworms
USDA-ARS?s Scientific Manuscript database
Mined gypsum has been beneficially used for many years as an agricultural amendment. Currently a large amount of flue gas desulfurization (FGD) gypsum is produced by removal of SO2 from flue gas streams when fuels with high S content are burned. The FGD gypsum, similar to mined gypsum, can enhance c...
Dynamic technique for measuring adsorption in a gas chromatograph
NASA Technical Reports Server (NTRS)
Deuel, C. L.; Hultgren, N. W.; Mobert, M. L.
1973-01-01
Gas-chromatographic procedure, together with mathematical analysis of adsorption isotherm, allows relative surface areas and adsorptive powers for trace concentrations to be determined in a few minutes. Technique may be used to evaluate relative surface areas of different adsorbates, expressed as volume of adsorbent/gram of adsorbate, and to evaluate their relative adsorptive power.
This paper presents a technique for determining the trace gas emission rate from a point source. The technique was tested using data from controlled methane release experiments and from measurement downwind of a natural gas production facility in Wyoming. Concentration measuremen...
OBSERVATIONAL EVIDENCE AGAINST LONG-LIVED SPIRAL ARMS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foyle, K.; Rix, H.-W.; Walter, F.
2011-07-10
We test whether the spiral patterns apparent in many large disk galaxies should be thought of as dynamical features that are stationary in a corotating frame for {approx}> t{sub dyn}, as implied by the density wave approach for explaining spiral arms. If such spiral arms have enhanced star formation (SF), observational tracers for different stages of the SF sequence should show a spatial ordering, from upstream to downstream in the corotating frame: dense H I, CO, tracing molecular hydrogen gas, 24 {mu}m emission tracing enshrouded SF, and UV emission tracing unobscured young stars. We argue that such a spatial orderingmore » should be reflected in the angular cross-correlation (CC, in polar coordinates) using all azimuthal positions among pairs of these tracers; the peak of the CC should be offset from zero, in different directions inside and outside the corotation radius. Recent spiral SF simulations by Dobbs and Pringle show explicitly that for the case of a stationary spiral arm potential such angular offsets between gas and young stars of differing ages should be observable as cross-correlation offsets. We calculate the angular cross-correlations for different observational SF sequence tracers in 12 nearby spiral galaxies, drawing on a data set with high-quality maps of the neutral gas (H I, THINGS) and molecular gas (CO, HERACLES), along with 24 {mu}m emission (Spitzer, SINGS); we include FUV images (GALEX) and 3.6 {mu}m emission (Spitzer, IRAC) for some galaxies, tracing aging stars and longer timescales. In none of the resulting tracer cross-correlations for this sample do we find systematic angular offsets, which would be expected for a stationary dynamical spiral pattern of well-defined pattern speed. This result indicates that spiral density waves in their simplest form are not an important aspect of explaining spirals in large disk galaxies.« less
NASA Astrophysics Data System (ADS)
Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus
2018-02-01
We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true
rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.
Seasonal dependence of aerosol processing in urban Philadelphia
NASA Astrophysics Data System (ADS)
Avery, A. M.; Waring, M. S.; DeCarlo, P. F.
2017-12-01
Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower temperatures. Aerosol compositional differences in winter and summer indicate Philadelphia resident's aerosol exposures vary significantly with season.
NASA Astrophysics Data System (ADS)
LaBrecque, J. J.
2002-05-01
Soil-gases (radon, thoron, carbon dioxide and hydrogen) were measured at 63-cm depths along a transect perpendicular to the rupture (fault trace) from the 1997 Caricao earthquake (Mw=6.9) at Guarapiche, state of Sucre (Venezuela). The transect was about 40 meters long with ten sampling points with the spacings was smaller near the rupture. The shapes of the horizontal spatial patterns for radon (Rn-222), thoron (Rn-220) and total radon (Rn-222+Rn-220) were similar; the gas concentrations increased from both ends of the transect toward the rupture where a dip (valley) occurred. Both carbon dioxide and hydrogen gases showed anomalous values at the same sampling points. Twin peaks (anomalies) had been previously reported and suggested that they were due to blockage in the rupture. We have also determined soil-gases from 25-cm to 155-cm depths near the rupture and at the ends of the transect. The results showed that the soil-gas concentrations were not only higher in the upper levels (less than 65-cm) near the fault trace but were similar or greater than the lower levels. Thus, producing the twin peaks when soil-gas sampling was performed at the 65-cm depth. When the sampling was performed at only 45-cm depth the dip over the rupture was much less and the patterns looked more like a broad doublet peak. In conclusion, one can clearly see that not only positive soil-gas anomalies can occur over a fault trace but also negative ones too. 1) This work was partially funded by a research contract from the Venezuelan National Science Foundation (CONICIT Proyecto S1-95000448). 2) Mailing Address: Centro de Quimica, 8424 NW 56th Street, Suite 00204,Miami, Fl 33166 (USA). E-mail jjlabrec@ivic.ve FAX: +58-212-504-1214
Ozone Lidar Observations for Air Quality Studies
NASA Technical Reports Server (NTRS)
Wang, Lihua; Newchurch, Mike; Kuang, Shi; Burris, John F.; Huang, Guanyu; Pour-Biazar, Arastoo; Koshak, William; Follette-Cook, Melanie B.; Pickering, Kenneth E.; McGee, Thomas J.;
2015-01-01
Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Environmental studies were conducted to provide data that could be used by the Commissioner of Health for the State of New York in determining whether the Emergency Declaration Area (EDA) surrounding the Love Canal hazardous-waste site is habitable. An air assessment was conducted for Love Canal Indicator Chemicals. Homes throughout the EDA were sampled using the Trace Atmospheric Gas Analyzer Model 6000E.
Gas chromatographic analysis of volatiles in fluid and gas inclusions
Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K.; Oro, John
1984-01-01
Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping.These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels.We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography—mass spectrometry (GC—MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature.Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC—MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed.
Gas chromatographic analysis of volatiles in fluid and gas inclusions.
Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J
1984-01-01
Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed.
Mobile Gas and Particulate Emission Studies of the New York City Transit Bus Fleet
NASA Astrophysics Data System (ADS)
Jayne, J. T.; Canagaratna, M.; Herndon, S.; Shorter, J.; Zahniser, M.; Shi, Q.; Kolb, C.; Worsnop, D.; Jimenez, J.; Drewnick, F.; Demerjian, K.; Lanni, T.
2001-12-01
Emissions from both diesel and gasoline powered motor vehicles are a significant source of particulate (PM2.5) and trace gas pollution, especially in urban environments. Emission characterizations of motor vehicles can be performed using a dynamometer but these studies make fleet characterization impractical. Few studies have been performed which characterize emissions from in-use vehicles using a mobile sampling platform. This work describes application of new technology instrumentation for rapid (1-5 second) and real-time characterization of both gas and particulate emissions from in-use vehicles and is part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY). An aerosol mass spectrometer (AMS) and a tunable infrared laser differential absorption spectrometer (TILDAS) system were deployed on the Aerodyne Research mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides particle size and composition information for volatile and semi-volatile matter while the TILDAS system was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde. In addition to a GPS, an ELPI and a condensation particle counter, the mobile laboratory was also equipped with a CO2 monitor to allow emission ratios to be computed for the targeted vehicles. Emission ratios for both particulate and trace gases are reported for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet in an effort to characterize new emission control technologies currently implemented by the NYC MTA.
NASA Technical Reports Server (NTRS)
Pantina, Peter; Tsay, Si-Chee; Hsiao, Ta-Chih; Loftus, Adrian M.; Kuo, Ferret; Ou-Yang, Chang-Feng; Sayer, Andrew M.; Wang, Shen-Hsiang; Lin, Neng-Huei; Hsu, N. Christina;
2016-01-01
Trace gases and aerosols (particularly biomass-burning aerosols) have important implications for air quality and climate studies in Southeast Asia (SEA). This paper describes the purpose, operation, and datasets collected from NASA Goddard Space Flight Center's (NASA/GSFC) Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) laboratory, a mobile platform designed to measure trace gases and optical/microphysical properties of naturally occurring and anthropogenic aerosols. More importantly, the laboratory houses a specialized humidification system to characterize hygroscopic growth/enhancement, a behavior that affects aerosol properties and cloud-aerosol interactions and is generally underrepresented in the current literature. A summary of the trace gas and optical/microphysical measurements is provided, along with additional detail and analysis of data collected from the hygroscopic system during the 2015 Seven South-East Asian Studies (7-SEAS) field campaign. The results suggest that data from the platform are reliable and will complement future studies of aerosols and air quality in SEA and other regions of interest.
NASA Astrophysics Data System (ADS)
Yavitt, J. B.; Bartella, T. M.; Williams, C. J.
2006-12-01
Throughout the early Tertiary (ca. 65-38 Ma) Taxodiaceae-dominated (redwood) wetland forests occupied the high latitudes and were circumpolar in their distribution. Many of these forests had high standing biomass with moderate primary productivity. The geographic extent and amount of Tertiary coals and fossil forests throughout Arctic Canada suggests large areas of wetland forests that may have cycled substantial quantities of carbon, particularly methane until they were replaced by cold tolerant Pinus, Picea, and Larix following climatic cooling associated with the Terminal Eocene Event. To test this hypothesis we compared physiochemical properties, decomposition, and trace gas production of litter from extant Metasequoia, Pinus, Picea, and Larix. Initial results from plantation-grown trees indicate Metasequoia litter is a better source of labile organic substrate than pinaceous litter. Metasequoia litter contained the least lignin and highest amounts of water-soluble compounds of the four litter types studied. Analysis of the lignin structure using cupric oxide oxidation indicates that Metasequoia lignin is enriched in 4'-hydroxyacetophenone and 4'- Hydroxy-3'-methoxyacetophenone relative to the pinaceous litter. In a 12-month decomposition study using litterbags, average litter mass loss was greater for Metasequoia litter (62%) compared to the pinaceous species (50%). Moreover, Metasequoia litter incubated under anoxic conditions produced nearly twice as much CO2 (ca. 4.2 umol/g.day) and CH4 (2.1 umol/g.day) as the pinaceous litter (2.4 umol/g.day for CO2; 1.2 umol/g.day for CH4). Our results support the idea of greater decomposability and palatability of Metasequoia litter as compared to Larix, Picea, or Pinus. Provided that the biochemical properties of Metasequoia have remained relatively stable through geologic time, it appears that early Tertiary Metasequoia-dominated wetland forests may have had higher microbial driven trace gas production than the Pinaceae-dominated forests that replaced them in the late Tertiary.
NASA Astrophysics Data System (ADS)
Blake, N. J.; Blake, D. R.; Meinardi, S.; Simpson, I. J.; Hughes, S.; Barletta, B.; Fleming, L.; Vizenor, N.; Schroeder, J.; Emmons, L. K.; Knote, C. J.
2017-12-01
The UC-Irvine Whole Air Sampler (WAS) collected a total of 2650 samples aboard the NASA DC-8 aircraft in support of the May-June 2016 field deployment phase of the KORUS-AQ mission: An International Cooperative Air Quality Field Study in Korea. Here we employ our trace gas measurements, along with CAM-chem tracers and back-trajectories to identify source regions during KORUS-AQ, with a focus on air masses which indicate Chinese and/or Korean origin. During KORUS-AQ we flew mostly over and around the Korean Peninsula with the intent of characterising Korean sources, but Chinese influence was observed offshore near the surface of the West Sea during several KORUS-AQ flights - in accord with forecast predictions from CAM-chem model runs. Unlike previous missions in the Asian region such as TRACE-P (2001), we found that halon-1211 (H-1211) is no longer a useful indicator of air masses from China because of production decline. By contrast, mixing ratios of the long-lived halocarbons carbon tetrachloride (CCl4) and chlorofluorocarbon-113 (CFC-113) were more strongly enhanced in air masses intercepted from China compared to Korea. We will use these tracers, the shorter-lived halocarbons, dichloromethane (CH2Cl2) and methyl chloride (CH3Cl), as well as the sulfur gas carbonyl sulfide (COS) and others, to characterize different regional air mass origins and their sources.
NASA Astrophysics Data System (ADS)
Fossati, M.; Mendel, J. T.; Boselli, A.; Cuillandre, J. C.; Vollmer, B.; Boissier, S.; Consolandi, G.; Ferrarese, L.; Gwyn, S.; Amram, P.; Boquien, M.; Buat, V.; Burgarella, D.; Cortese, L.; Côté, P.; Côté, S.; Durrell, P.; Fumagalli, M.; Gavazzi, G.; Gomez-Lopez, J.; Hensler, G.; Koribalski, B.; Longobardi, A.; Peng, E. W.; Roediger, J.; Sun, M.; Toloba, E.
2018-06-01
The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band Hα + [NII] imaging survey carried out with MegaCam at the Canada-France-Hawaii Telescope. During pilot observations taken in the spring of 2016 we observed NGC 4330, an intermediate mass (M* ≃ 109.8 M⊙) edge-on star forming spiral currently falling into the core of the Virgo cluster. While previous Hα observations showed a clumpy complex of ionised gas knots outside the galaxy disc, new deep observations revealed a low surface brightness 10 kpc tail exhibiting a peculiar filamentary structure. The filaments are remarkably parallel to one another and clearly indicate the direction of motion of the galaxy in the Virgo potential. Motivated by the detection of these features which indicate ongoing gas stripping, we collected literature photometry in 15 bands from the far-UV to the far-IR and deep optical long-slit spectroscopy using the FORS2 instrument at the ESO Very Large Telescope. Using a newly developed Monte Carlo code that jointly fits spectroscopy and photometry, we reconstructed the star formation histories in apertures along the major axis of the galaxy. Our results have been validated against the output of CIGALE, a fitting code which has been previously used for similar studies. We found a clear outside-in gradient with radius of the time when the quenching event started: the outermost radii were stripped 500 Myr ago, while the stripping reached the inner 5 kpc from the centre in the last 100 Myr. Regions at even smaller radii are currently still forming stars fueled by the presence of HI and H2 gas. When compared to statistical studies of the quenching timescales in the local Universe we find that ram pressure stripping of the cold gas is an effective mechanism to reduce the transformation times for galaxies falling into massive clusters. Future systematic studies of all the active galaxies observed by VESTIGE in the Virgo cluster will extend these results to a robust statistical framework.
Effects of Bubble-Mediated Processes on Nitrous Oxide Dynamics in Denitrifying Bioreactors
NASA Astrophysics Data System (ADS)
McGuire, P. M.; Falk, L. M.; Reid, M. C.
2017-12-01
To mitigate groundwater and surface water impacts of reactive nitrogen (N), agricultural and stormwater management practices can employ denitrifying bioreactors (DNBs) as low-cost solutions for enhancing N removal. Due to the variable nature of hydrologic events, DNBs experience dynamic flows which can impact physical and biological processes within the reactors and affect performance. A particular concern is incomplete denitrification, which can release the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. This study aims to provide insight into the effects of varying hydrologic conditions upon the operation of DNBs by disentangling abiotic and biotic controls on denitrification and N2O dynamics within a laboratory-scale bioreactor. We hypothesize that under transient hydrologic flows, rising water levels lead to air entrapment and bubble formation within the DNB porous media. Mass transfer of oxygen (O2) between trapped gas and liquid phases creates aerobic microenvironments that can inhibit N2O reductase (NosZ) enzymes and lead to N2O accumulation. These bubbles also retard N2O transport and make N2O unavailable for biological reduction, further enhancing atmospheric fluxes when water levels fall. The laboratory-scale DNB permits measurements of longitudinal and vertical profiles of dissolved constituents as well as trace gas concentrations in the reactor headspace. We describe a set of experiments quantifying denitrification pathway biokinetics under steady-state and transient hydrologic conditions and evaluate the role of bubble-mediated processes in enhancing N2O accumulation and fluxes. We use sulfur hexafluoride and helium as dissolved gas tracers to examine the impact of bubble entrapment upon retarded gas transport and enhanced trace gas fluxes. A planar optode sensor within the bioreactor provides near-continuous 2-D profiles of dissolved O2 within the bioreactor and allows for identification of aerobic microenvironments. We use qPCR to examine the relative abundance of the denitrifying genes nitrate reductase and NosZ within the bioreactor and explore gradients in denitrification biomarkers coinciding with denitrification intermediate profiles. Insights gained from this study will advance understanding of gas dynamics within environmental porous media.
ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE–ATMOSPHERE EXPERIMENT IN AMAZONIA: EARLY RESULTS.
M. Keller; A. Alencar; G. P. Asner; B. Braswell; M. Bustamente; E. Davidson; T. Feldpausch; E. Fern ndes; M. Goulden; P. Kabat; B. Kruijt; F. Luizao; S. Miller; D. Markewitz; A. D. Nobre; C. A. Nobre; N. Priante Filho; H. Rocha; P. Silva Dias; C von Randow; G. L. Vourlitis
2004-01-01
The Large-scale BiosphereâAtmosphere Experiment in Amazonia (LBA) is a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA focus on how tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in the Amazon region. Early...
The Brazilian cerrado is experiencing rapid land use changes that are often accompanied by fire. Here we report initial studies of the effects of fire and land use change on the composition and persistence of litter and soil organic carbon and nitrogen and related changes in the ...
Photochemical reactions involving colored dissolved organic matter (CDOM) in natural waters are important determinants of nutrient cycling, trace gas production and control of light penetration into the water column. In this study the role of the hydroxyl radical ((OH)-O-.) in CD...
Flow visualization of discrete hole film cooling for gas turbine applications
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.
1975-01-01
Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing neutrally buoyant helium filled soap bubbles which follow the flow field. The bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.
On factors influencing air-water gas exchange in emergent wetlands
Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.
2018-01-01
Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.
NASA Technical Reports Server (NTRS)
Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Rodriguez, Jose M.; Heisey, Curtis
1991-01-01
The AER two-dimensional chemistry-transport model is used to study the effect on stratospheric ozone (O3) from operations of supersonic and subsonic aircraft. The study is based on six emission scenarios provided to AER. The study showed that: (1) the O3 response is dominated by the portion of the emitted nitrogen compounds that is entrained in the stratosphere; (2) the entrainment is a sensitive function of the altitude at which the material is injected; (3) the O3 removal efficiency of the emitted material depends on the concentrations of trace gases in the background atmosphere; and (4) evaluation of the impact of fleet operations in the future atmosphere must take into account the expected changes in trace gas concentrations from other activities. Areas for model improvements in future studies are also discussed.
Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture.
Fisher, James C; Gray, McMahan
2015-02-01
The National Energy Technology Laboratory (NETL) is examining the use of solid sorbents for CO2 removal from coal-fired power plant flue gas streams. An aminated sorbent (previously reported by the NETL) is tested for stability by cyclic exposure to simulated flue gas and subsequent regeneration for 100 cycles. Each cycle was quantified using a traced gas in the simulated flue gas monitored by a mass spectrometer, which allowed for rapid determination of the capacity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wind tunnel simulation of air pollution dispersion in a street canyon.
Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek
2002-01-01
Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.
Batch methods for enriching trace impurities in hydrogen gas for their further analysis
Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.
2014-07-15
Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.
Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus
2012-01-01
Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465
NASA Technical Reports Server (NTRS)
Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank
2016-01-01
NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.
Trace gas measurements during aircraft flights in the tropopause region over Europe and North Africa
NASA Astrophysics Data System (ADS)
Schmidt, M.; Borchers, R.; Fabian, P.; Flentje, G.; Matthews, W. A.; Szabo, A.; Lal, S.
During aircraft flights in May 1981 from Munich (40 deg N) to north of the Spitsbergen Islands (82 deg N) and to Monrovia, Liberia (6 deg N), air samples were obtained in the altitude range of 8 to 11 km and during the ascents and descents near the airports. These samples have been analyzed for the trace gas mixing ratios of CH4, CO and N2O. The results of these analyses are presented and discussed. The results provide new evidence of tropospheric-stratospheric exchange events in the vicinity of the subpolar and subtropical tropopause foldings and possibly show a case of transport of CO-enriched air in the upper troposphere above the North Atlantic Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, R.; Marchenko, D.; Mandon, J.
We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.
Laser multipass system with interior cell configuration.
Borysow, Jacek; Kostinski, Alexander; Fink, Manfred
2011-10-20
We ask whether it is possible to restore a multipass system alignment after a gas cell is inserted in the central region. Indeed, it is possible, and we report on a remarkably simple rearrangement of a laser multipass system, composed of two spherical mirrors and a gas cell with flat windows in the middle. For example, for a window of thickness d and refractive index of n, adjusting the mirror separation by ≈2d(1-1/n) is sufficient to preserve the laser beam alignment and tracing. This expression is in agreement with ray-tracing computations and our laboratory experiment. Insofar as our solution corrects for spherical aberrations, it may also find applications in microscopy. © 2011 Optical Society of America
Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K.
2017-01-01
The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm−1) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure. PMID:28273836
NASA Astrophysics Data System (ADS)
Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.
The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies
NASA Astrophysics Data System (ADS)
Pety, Jérôme; Guzmán, Viviana V.; Orkisz, Jan H.; Liszt, Harvey S.; Gerin, Maryvonne; Bron, Emeric; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Öberg, Karin I.; Roueff, Evelyne; Sievers, Albrecht
2017-01-01
Context. Molecular lines and line ratios are commonly used to infer properties of extra-galactic star forming regions. The new generation of millimeter receivers almost turns every observation into a line survey. Full exploitation of this technical advancement in extra-galactic study requires detailed bench-marking of available line diagnostics. Aims: We aim to develop the Orion B giant molecular cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. Methods: We use the wide-band receiver at the IRAM-30 m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26'' resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the , , C18O, C17O, HCN, HNC, , C2H, HCO+, N2H+(1-0), and , , SiO, c - C3H2, CH3OH (2-1) transitions. Results: We introduce the molecular anatomy of the Orion B GMC, including relationships between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than approximately one third the CO-traced mass, using the standard XCO conversion factor. The presence of over-luminous CO can be traced back to the dependence of the CO intensity on UV illumination. As a matter of fact, while most lines show some dependence on the UV radiation field, CN and C2H are the most sensitive. Moreover, dense cloud cores are almost exclusively traced by N2H+. Other traditional high-density tracers, such as HCN(1-0), are also easily detected in extended translucent regions at a typical density of 500 H2 cm-3. In general, we find no straightforward relationship between line critical density and the fraction of the line luminosity coming from dense gas regions. Conclusions: Our initial findings demonstrate that the relationships between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (I.e., the molecular column density), excitation, and, above all, chemistry contribute to the observed line intensity distributions, and they must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature, and radiation field.
Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2
NASA Astrophysics Data System (ADS)
Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff
2018-06-01
We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.
The Circumnuclear Molecular Gas in Seyfert 1 versus Seyfert 2 Galaxies
NASA Astrophysics Data System (ADS)
Kade, Kiana
2018-06-01
The distribution and kinematics of the circumnuclear molecular gas in local Seyfert galaxies is investigated as part of the Keck OSIRIS Nearby AGN (KONA) survey. The two-dimensional distribution and kinematics of the molecular hydrogen, traced by 1-0 S(1) H2 2.12 micron emission, is probed down to scales of 5-30 parsecs in 20 type 1 and 20 type 2 Seyferts. Verifying previous studies with smaller samples, these Seyferts show evidence of a circumnuclear disk of molecular gas that is both geometrically and optically thick. A comparison of the molecular hydrogen characteristics in type 1 and type 2 Seyferts indicates there is no significant difference in the flux distribution, the velocity dispersion, or the velocity/velocity dispersion ratio with in the central 200 pc. We will also present upper limits on the central black hole mass based on the observed molecular gas kinematics.
Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...
Continuous monitoring of trace gas species in incineration processes can serve two purposes: (i) monitoring precursors of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) or other indicator species in the raw gas will enable use of their on-line signals for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borthakur, Sanchayeeta; Heckman, Timothy; Tumlinson, Jason
We present a study exploring the nature and properties of the circumgalactic medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the H i 21 cm line. Our sample includes 45 low-z (0.026–0.049) galaxies from the GALEX Arecibo SDSS Survey (Galaxy Evolution Explorer/Arecibo/Sloan Digital Sky Survey). Their CGM was probed via absorption in the spectra of background quasi-stellar objects at impact parameters of 63–231 kpc. The spectra were obtained with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. We detected neutral hydrogen (Lyα absorption lines) in the CGMmore » of 92% of the galaxies. We find that the radial profile of the CGM as traced by the Lyα equivalent width can be fit as an exponential with a scale length of roughly the virial radius of the dark matter halo. We found no correlation between the orientation of the sightline relative to the galaxy’s major axis and the Lyα equivalent width. The velocity spread of the circumgalactic gas is consistent with that seen in the atomic gas in the ISM. We find a strong correlation (99.8% confidence) between the gas fraction (M(H i)/M{sub ⋆}) and the impact-parameter-corrected Lyα equivalent width. This is stronger than the analogous correlation between corrected Lyα equivalent width and specific star formation rate (SFR)/M{sub ⋆} (97.5% confidence). These results imply a physical connection between the H i disk and the CGM, which is on scales an order of magnitude larger. This is consistent with the picture in which the H i disk is nourished by accretion of gas from the CGM.« less
A survey of the molecular ISM properties of nearby galaxies using the Herschel FTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamenetzky, J.; Rangwala, N.; Glenn, J.
2014-11-10
The {sup 12}CO J = 4 → 3 to J = 13 → 12 lines of the interstellar medium from nearby galaxies, newly observable with the Herschel SPIRE Fourier transform spectrometer, offer an opportunity to study warmer, more luminous molecular gas than that traced by {sup 12}CO J = 1 → 0. Here we present a survey of 17 nearby infrared-luminous galaxy systems (21 pointings). In addition to photometric modeling of dust, we modeled full {sup 12}CO spectral line energy distributions from J = 1 → 0 to J = 13 → 12 with two components of warm and coolmore » CO gas, and included LTE analysis of [C I], [C II], [N II], and H{sub 2} lines. CO is emitted from a low-pressure/high-mass component traced by the low-J lines and a high-pressure/low-mass component that dominates the luminosity. We found that, on average, the ratios of the warm/cool pressure, mass, and {sup 12}CO luminosity are 60 ± 30, 0.11 ± 0.02, and 15.6 ± 2.7. The gas-to-dust-mass ratios are <120 throughout the sample. The {sup 12}CO luminosity is dominated by the high-J lines and is 4 × 10{sup –4} L {sub FIR} on average. We discuss systematic effects of single-component and multi-component CO modeling (e.g., single-component J ≤ 3 models overestimate gas pressure by ∼0.5 dex), as well as compare to Galactic star-forming regions. With this comparison, we show the molecular interstellar medium of starburst galaxies is not simply an ensemble of Galactic-type giant molecular clouds. The warm gas emission is likely dominated by regions resembling the warm extended cloud of Sgr B2.« less
NASA Astrophysics Data System (ADS)
Amorín, R.; Muñoz-Tuñón, C.; Aguerri, J. A. L.; Planesas, P.
2016-04-01
Context. Tracing the molecular gas-phase in low-mass star-forming galaxies becomes extremely challenging due to significant UV photo-dissociation of CO molecules in their low-dust, low-metallicity ISM environments. Aims: We aim to study the molecular content and the star-formation efficiency of a representative sample of 21 blue compact dwarf galaxies (BCDs), previously characterized on the basis of their spectrophotometric properties. Methods: We present CO (1-0) and (2-1) observations conducted at the IRAM-30m telescope. These data are further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We explore correlations between the derived CO luminosities and several galaxy-averaged properties. Results: We detect CO emission in seven out of ten BCDs observed. For two galaxies these are the first CO detections reported so far. We find the molecular content traced by CO to be correlated with the stellar and Hi masses, star formation rate (SFR) tracers, the projected size of the starburst, and its gas-phase metallicity. BCDs appear to be systematically offset from the Schmidt-Kennicutt (SK) law, showing lower average gas surface densities for a given ΣSFR, and therefore showing extremely low (≲0.1 Gyr) H2 and H2 +Hi depletion timescales. The departure from the SK law is smaller when considering H2 +Hi rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction (ΣH2/ ΣHI) and CO depletion timescale (ΣH2/ ΣSFR) of BCDs is found to be strongly correlated with metallicity. Using this, and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z ∝ (Z/Z⊙)- y, with y = 1.5(±0.3)in qualitative agreement with previous determinations, dust-based measurements, and recent model predictions. Consequently, our results suggest that in vigorously star-forming dwarfs the fraction of H2 traced by CO decreases by a factor of about 40 from Z ~ Z⊙ to Z ~ 0.1 Z⊙, leading to a strong underestimation of the H2 mass in metal-poor systems when a Galactic αCO,MW is considered. Adopting our metallicity-dependent conversion factor αCO,Z we find that departures from the SK law are partially resolved. Conclusions: Our results suggest that starbursting dwarfs have shorter depletion gas timescales and lower molecular fractions compared to normal late-type disc galaxies, even accounting for the molecular gas not traced by CO emission in metal-poor environments, raising additional constraints to model predictions. Based on observations carried out with the IRAM 30m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
Tracing gas and magnetic field with dust : lessons from Planck & Herschel
NASA Astrophysics Data System (ADS)
Guillet, Vincent
2015-08-01
Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.
Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma
NASA Astrophysics Data System (ADS)
Carroll, Brandon; Crockett, Nathan; Wilkins, Olivia H.; Bergin, Edwin; Blake, Geoffrey
2017-06-01
A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging ^{13}CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present updated results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.
Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma
NASA Astrophysics Data System (ADS)
Carroll, Brandon; Crockett, Nathan; Bergin, Edwin; Blake, Geoffrey
2016-06-01
A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) from the Herschel Space Telescope has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging 13CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present the initial results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.
Treble, Ronald G; Johnson, Keith E; Xiao, Li; Thompson, Thomas S
2002-07-01
An existing gas chromatograph/mass spectrometer (GC/MS) can be used to analyze gas and liquid fractions from the same system within a few minutes. The technique was applied to (a) separate and identify the gaseous components of the products of cracking an alkane, (b) measure trace levels of acetone in ethyl acetate, (c) determine the relative partial pressures over a binary mixture, and (d) identify nine unknown compounds for the purpose of disposal.
2009-09-21
35(5):38-41. 27. Smith, P. A., Sng , M.T., et al. (2005). "Towards Smaller and Faster Gas Chromatography Mass Spectrometry Systems for Field...Analytical Methods. Chapter 10. West Sussex, Wiley & Sons Ltd. 9. Smith, P. A., Sng , M.T., et al. (2005). "Towards Smaller and Faster Gas
Sheryl K. Akagi; Ian R. Burling; A. Mendoza; Timothy J. Johnson; M. Cameron; David W. T. Griffith; C. Paton-Walsh; David R. Weise; James Reardon; Robert J. Yokelson
2014-01-01
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. Emission factors were measured with a fixed...
S. K. Akagi; I. R. Burling; A. Mendoza; T. J. Johnson; M. Cameron; D. W. T. Griffith; C. Paton-Walsh; D. R. Weise; J. Reardon; R. J. Yokelson
2013-01-01
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. The emission factors were measured...
I. R. Burling; R. J. Yokelson; S. K. Akagi; Shawn Urbanski; Cyle Wold; D. W. T. Griffith; T. J. Johnson; J. Reardon; D. R. Weise
2011-01-01
We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada 5 mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass...
Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.
2003-01-01
An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.
Engelhard, Carsten; Scheffer, Andy; Nowak, Sascha; Vielhaber, Torsten; Buscher, Wolfgang
2007-02-05
A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min(-1) in contrast to 15 L min(-1) using conventional ICP sources. The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source. Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44+/-0.04 and 3.19+/-0.21 microg g(-1) for Co and Mn in the CRM 075c and 2.32+/-0.09, 81.8+/-0.4, 32.2+/-3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.
Zhang, Zhuomin; Tan, Wei; Hu, Yuling; Li, Gongke; Zan, Song
2012-02-21
In this study, novel GA3 magnetic molecularly imprinted polymer (mag-MIP) beads were synthesized by a microwave irradiation method, and the beads were applied for the trace analysis of gibberellin acids (GAs) in plant samples including rice and cucumber coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS). The microwave synthetic procedure was optimized in detail. In particular, the interaction between GA3 and functional monomers was further studied for the selection of the optimal functional monomers during synthesis. It can be seen that the interaction between GA3 and acrylamide (AM) finally selected was stronger than that between GA3 and other functional monomers. GA3 mag-MIP beads were characterized by a series of physical tests. GA3 mag-MIP beads had a porous and homogeneous surface morphology with stable chemical, thermal and magnetic properties. Moreover, GA3 mag-MIP beads demonstrated selective and specific absorption behavior for the target compounds during unsaturated extraction, which resulted in a higher extraction capacity (∼708.4 pmol for GA3) and selectivity than GA3 mag-non-imprinted polymer beads. Finally, an analytical method of GA3 mag-AM-MIP bead extraction coupled with HPLC-MS detection was established and applied for the determination of trace GA1, GA3, GA4 and GA7 in rice and cucumber samples. It was satisfactory that GA4 could be actually found to be 121.5 ± 1.4 μg kg(-1) in real rice samples by this novel analytical method. The recoveries of spiked rice and cucumber samples were found to be 76.0-109.1% and 79.9-93.6% with RSDs of 2.8-8.8% and 3.1-7.7% (n = 3), respectively. The proposed method is efficient and applicable for the trace analysis of GAs in complicated plant samples.
Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-10-01
Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.
Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong
2017-10-01
Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.
Keiner, Robert; Herrmann, Martina; Küsel, Kirsten; Popp, Jürgen; Frosch, Torsten
2015-03-15
The comprehensive investigation of changes in N cycling has been challenging so far due to difficulties with measuring gases such as N2 and N2O simultaneously. In this study we introduce cavity enhanced Raman gas spectroscopy as a new analytical methodology for tracing the stepwise reduction of (15)N-labelled nitrate by the denitrifying bacteria Pseudomonas stutzeri. The unique capabilities of Raman multi-gas analysis enabled real-time, continuous, and non-consumptive quantification of the relevant gases ((14)N2, (14)N2O, O2, and CO2) and to trace the fate of (15)N-labeled nitrate substrate ((15)N2, (15)N2O) added to a P. stutzeri culture with one single measurement. Using this new methodology, we could quantify the kinetics of the formation and degradation for all gaseous compounds (educts and products) and thus study the reaction orders. The gas quantification was complemented with the analysis of nitrate and nitrite concentrations for the online monitoring of the total nitrogen element budget. The simultaneous quantification of all gases also enabled the contactless and sterile online acquisition of the pH changes in the P. stutzeri culture by the stoichiometry of the redox reactions during denitrification and the CO2-bicarbonate equilibrium. Continuous pH monitoring - without the need to insert an electrode into solution - elucidated e.g. an increase in the slope of the pH value coinciding with an accumulation of nitrite, which in turn led to a temporary accumulation of N2O, due to an inhibition of nitrous oxide reductase. Cavity enhanced Raman gas spectroscopy has a high potential for the assessment of denitrification processes and can contribute substantially to our understanding of nitrogen cycling in both natural and agricultural systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Interannual variability of trace gases in the subtropical winter stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.J.; Russell, J.M. III
1999-04-01
Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular attention is paid to the mechanisms influencing trace gas distributions in the subtropics. The study highlights the quasi-biennial oscillation (QBO) dependence of subtropical tracer distributions more clearly than in previous studies. There is a strong correlation between the equatorial wind QBO and the slope of the tracer isolines in the Northern Hemisphere subtropics, with steeper subtropical isoline slopes in the easterly phase compared with the westerlymore » phase. This is particularly so in the lower stratosphere. Two possible mechanisms for the QBO signal in subtropical isoline slopes are identified: advection by the mean circulation and isentropic mixing. A comparison between the QBO signal in the slope of the tracer isolines and the isentropic tracer gradients is proposed as a method of determining which process is dominant. The authors suggest that the behavior of these two data diagnostics provides a stringent constraint on computer models of the atmosphere. On the basis of these diagnostics three height regions of the subtropical atmosphere are identified. (1) Below 450--500 K isentropic mixing associated with tropospheric disturbances penetrating the lower stratosphere is dominant. (2) In the region 500--750 K the data suggest that advection by the mean meridional circulation is important and that the role of isentropic mixing by eddies is relatively small. (3) Above 750 K isentropic mixing becomes increasingly important with height, and both advection and mixing are influential in determining the subtropical tracer distributions.« less
FAST Mapping of Diffuse HI Gas in the Local Universe
NASA Astrophysics Data System (ADS)
Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.
2016-02-01
We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.
Formation and Assembly of Massive Star Clusters
NASA Astrophysics Data System (ADS)
McMillan, Stephen
The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.
Isothermal absorption of soluble gases by atmospheric nanoaerosols
NASA Astrophysics Data System (ADS)
Elperin, T.; Fominykh, A.; Krasovitov, B.; Lushnikov, A.
2013-01-01
We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3), and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.
Applications of Kalman filtering to real-time trace gas concentration measurements
NASA Technical Reports Server (NTRS)
Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.
2002-01-01
A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.
Isothermal absorption of soluble gases by atmospheric nanoaerosols.
Elperin, T; Fominykh, A; Krasovitov, B; Lushnikov, A
2013-01-01
We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO(2)), dinitrogen trioxide (N(2)O(3)), and chlorine (Cl(2)) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.
Variations in soil N cycling and trace gas emissions in wet tropical forests.
Holtgrieve, Gordon W; Jewett, Peter K; Matson, Pamela A
2006-01-01
We used a previously described precipitation gradient in a tropical montane ecosystem of Hawai'i to evaluate how changes in mean annual precipitation (MAP) affect the processes resulting in the loss of N via trace gases. We evaluated three Hawaiian forests ranging from 2200 to 4050 mm year-1 MAP with constant temperature, parent material, ecosystem age, and vegetation. In situ fluxes of N2O and NO, soil inorganic nitrogen pools (NH4+ and NO3-), net nitrification, and net mineralization were quantified four times over 2 years. In addition, we performed 15N-labeling experiments to partition sources of N2O between nitrification and denitrification, along with assays of nitrification potential and denitrification enzyme activity (DEA). Mean NO and N2O emissions were highest at the mesic end of the gradient (8.7+/-4.6 and 1.1+/-0.3 ng N cm-2 h-1, respectively) and total oxidized N emitted decreased with increased MAP. At the wettest site, mean trace gas fluxes were at or below detection limit (
Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.
Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver
2017-04-04
The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.
Trace gas emissions from the marine biosphere.
Liss, Peter S
2007-07-15
A wide variety of trace gases (e.g. dimethyl sulphide, organohalogens, ammonia, non-methane and oxygenated hydrocarbons, volatile oxygenated organics and nitrous oxide) are formed in marine waters by biological and photochemical processes. This leads in many, but not all, cases to supersaturation of the water relative to marine air concentrations and a net flux of trace gas to the atmosphere. Since the gases are often in their reduced forms in the water, once in the atmosphere they are subject to oxidation by photolysis or radical attack to form chemically reactive species that can affect the oxidizing capacity of the air. They can also lead to the formation of new particles or the growth of existing ones that can then contribute to both direct and indirect (via the formation of cloud condensation nuclei) aerosol effects on climate. These cycles are discussed with respect to their impacts on the chemistry of the atmosphere, climate and human health. This whole topic was the subject of an extensive review (Nightingale & Liss 2003 In Treatise in geochemistry (eds H. D. Holland & K. K. Turekian), pp. 49-81) and what will be attempted here is a brief update of the earlier paper. There is no attempt to be comprehensive either in terms of gases covered or to give a complete review of all the recent literature. It is a personal view of recent advances both from my own research group as well as significant work from others. Questions raised at the meeting 'Trace gas biogeochemistry and global change' are dealt with at appropriate places in the text (rather than at the end of the piece). Discussion of each of the gases or group of gases is given in the following separate sections.
Particulate and trace gas emissions from large biomass fire in North America
Lawrence F. Radke; Dean A. Hegg; Peter V. Hobbs; J.David Nance; Jamie H. Lyons; Krista K. Laursen; Raymond E. Weiss; Phillip J. Riggan; Darold E. Ward
1991-01-01
In this chapter we describe the results of airborne studies of smokes from 17 biomass fuel fires, including 14 prescribed fires and 3 wildfires, burned primarily in the temperate zone of North America between 34° and 49°N latitude. The prescribed fires were in forested lands and logging debris and varied in areas burned from 10 to 700 hectares...
Magnetic Resonance Imaging with laser polarized 129Xe
NASA Astrophysics Data System (ADS)
Swanson, Scott D.; Rosen, Matthew S.; Agranoff, Bernard W.; Coulter, Kevin P.; Welsh, Robert C.; Chupp, Timothy E.
1998-01-01
Magnetic Resonance Imaging with laser-polarized 129Xe can be utilized to trace blood flow and perfusion in tissue for a variety of biomedical applications. Polarized xenon gas introduced in to the lungs dissolves in the blood and is transported to organs such as the brain where it accumulates in the tissue. Spectroscopic studies combined with imaging have been used to produce brain images of 129Xe in the rat head. This work establishes that nuclear polarization produced in the gas phases survives transport to the brain where it may be imaged. Increases in polarization and delivered volume of 129Xe will allow clinical measurements of regional blood flow.
Global Estimates of Trace Gas Fluxes Affected by Land Use Change and Irrigation of Major Crops
NASA Astrophysics Data System (ADS)
Ojima, D. S.; del Grosso, S.; Parton, W. J.; Keough, C.
2005-12-01
Cropland conversions have altered many fertile regions of the earth and have modified the biogeochemical and hydrological cycling in these regions. These croplands are significant sources of N trace gas emissions however, the extent of changing trace gas emission due to land management changes and irrigation need further analysis. We use the DAYCENT biogeochemical model which is a daily time step version of the CENTURY model. DAYCENT simulates fluxes of N2O between croplands and the atmosphere for major crop types, and allows for a dynamic representation of GHG fluxes that accounts for environmental conditions, soil characteristics, climate, specific crop qualities, and fertilizer and irrigation management practices. DAYCENT is applied to all world cropland regions. Global datasets of weather, soils, native vegetation and cropping fractions were mapped to an approximate 2° x 2° resolution. Non-spatial data (such as planting date and fertilizer application rates) were assigned as point values for each region (i.e. country), and were assumed to be similar within crop types across the region. Three major crops were simulated (corn, wheat and soybeans) under both irrigated and non-irrigated conditions. Results indicate that N2O emission for maize and soy bean increase between 3 to 10%, where as wheat emission decline by about 1% when irrigated systems are compared to non-irrigated systems.
Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.
2018-01-01
Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.
Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS
NASA Astrophysics Data System (ADS)
Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason
2018-01-01
Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when modeling the low-J lines alone or using a CO-to-mass conversion factor, the mass should be considered to be uncertain to a factor of at least 0.4 dex, and the vast majority of the CO luminosity will be missed (median, 65 per cent).
Coal derived fuel gases for molten carbonate fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-11-01
Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less
NASA Technical Reports Server (NTRS)
Fishman, Jack; Al-Saadi, Jassim A.; Neil, Doreen O.; Creilson, John K.; Severance, Kurt; Thomason, Larry W.; Edwards, David R.
2008-01-01
When the first observations of a tropospheric trace gas were obtained in the 1980s, carbon monoxide enhancements from tropical biomass burning dominated the observed features. In 2005, an active remote-sensing system to provide detailed information on the vertical distribution of aerosols and clouds was launched, and again, one of the most imposing features observed was the presence of emissions from tropical biomass burning. This paper presents a brief overview of space-borne observations of the distribution of trace gases and aerosols and how tropical biomass burning, primarily in the Southern Hemisphere, has provided an initially surprising picture of the distribution of these species and how they have evolved from prevailing transport patterns in that hemisphere. We also show how interpretation of these observations has improved significantly as a result of the improved capability of trajectory modeling in recent years and how information from this capability has provided additional insight into previous measurements form satellites. Key words: pollution; biomass burning; aerosols; tropical trace gas emissions; Southern Hemisphere; carbon monoxide.
Multipass optical device and process for gas and analyte determination
Bernacki, Bruce E [Kennewick, WA
2011-01-25
A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.
Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...
Trace gas and particle emissions from open biomass burning in Mexico
R. J. Yokelson; I. R. Burling; Shawn Urbanski; E. L. Atlas; K. Adachi; P. R. Buseck; C. Wiedinmyer; S. K. Akagi; D. W. Toohey; C. E. Wold
2011-01-01
We report airborne measurements of emission factors (EF) for trace gases and PM2.5 made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry...
Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)
NASA Astrophysics Data System (ADS)
Woskov, P. P.
1995-01-01
Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.
NASA Astrophysics Data System (ADS)
Wawrzyniak-Guz, Kamila
2018-03-01
Seismic attributes calculated from full waveform sonic log were proposed as a method that may enhance the interpretation the data acquired at log and seismic scales. Though attributes calculated in the study were the mathematical transformations of amplitude, frequency, phase or time of the acoustic full waveforms and seismic traces, they could be related to the geological factors and/or petrophysical properties of rock formations. Attributes calculated from acoustic full waveforms were combined with selected attributes obtained for seismic traces recorded in the vicinity of the borehole and with petrophysical parameters. Such relations may be helpful in elastic and reservoir properties estimation over the area covered by the seismic survey.
Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars
NASA Technical Reports Server (NTRS)
Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James
2011-01-01
Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.
Mapping Rice Production in China with AVHRR Imagery
NASA Technical Reports Server (NTRS)
Paliouras, Eleni J.; Emery, William
2001-01-01
The study of rice agriculture is necessary for both the importance of rice as a vital food source and because of the fact that cultivating it has an unfortunate byproduct, namely methane gas. As a food source, rice is a staple for a large majority of the world's population, especially in Asia. Because the populations of many Asian nations are increasing at rapid rates, the production of rice will need to similarly increase. In 1989, it was estimated that the demand for rice would increase by 65% by the year 2019. Rice crops are considered to be one of the primary anthropogenic sources of methane gas. A reason for concern is that this gas is a so-called "greenhouse" trace gas and given its increasing levels in the atmosphere, is thought to contribute to the suspected global warming phenomenon. Some estimate that methane may contribute up to 20% to the global warming effect. Trace gas emissions from anthropogenic sources is an issue that generates great worldwide interest because of the fact that mankind is very likely affecting the current and future climate in potentially negative ways. In an effort to better understand these effects, scientists and engineers are conducting research on all of the varied fronts which relate to climate change and biosphere/atmosphere interactions. The study of global warming through increasing concentrations of greenhouse gases is one area which has received much media and scientific attention. Research fueled by debates on this topic is being conducted on numerous, interrelated fronts in an effort to better understand the complex relationship between human activities and the earth's climate. The research ranges from attempting to verify if the observed data even supports the existence of an anthropogenically generated global-warming phenomenon, to identification of sources and sinks of the trace gases, to measuring the source strengths, to studies which focus on modeling the processes which generate the gases, and finally, to trying to project their impact on the global climatic system. Some of the more commonly known sources of greenhouse gases are related to industry and transportation. Carbon dioxide, CO2, from automobile emissions is one such example. Lesser known are sources from natural and cultivated vegetation, such as the methane, CH4, resulting from rice cropping. While the concentration of atmospheric methane is significantly less than that of carbon dioxide, CH4 has been estimated to have up to 32 times the insulating capability of carbon dioxide, making it an important gas to monitor. The remainder of this chapter will provide some additional background information on the effects of atmospheric methane, and the role that rice agriculture plays as a source in the methane budget. This will be followed by a brief description of efforts to model this source of atmospheric methane. Finally, this chapter will end with a statement of the hypotheses of this thesis, at which time a description of the information contained in the rest of this document will be provided.
BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites
NASA Technical Reports Server (NTRS)
Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landrum, K.E.
1995-10-01
Prior to government regulation, little monitoring of metal discharges into the canals, bayous, and rivers that drain estuarine systems occured. Discharges of trace-metals by industries and municipalities into surface water bodies are presently regulated through the use of Federal and State mandated permit programs. Resource management of economically important estuarine systems has fostered increasing concern over the accumulation of trace-metal pollutants in water, sediments, and biota from these dynamic areas. The acid-leachable concentrations of fourteen trace-metals were determined for 125 bottom sediment samples and 50 core interval samples by plasma emission analysis. Bottom sediments of the St. Bernard estuarom complexmore » consist predominantly of silty clays and clayey silts derived from the erosion of the St. Bernard lobe of the Mississippi River delta and sediments associated with historic crevasses along the Mississippi River. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Trace-metal concentrations from sediments for the study area tend to have greater mean concentrations than Florida estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology. Rates varied from 0.12 to 0.21 cm/yr. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Natural trace-metal variability was examined through the use of an aluminum normalization model based on Florida and Louisiana estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology, and grain-size corrected data. Elevated concentrations of As, Ba, Cd, Pb, V and Zn were noted from sediments associated with oil and gas drilling and production, sandblasting and shipbuilding, dredging, and stormwater, municipal, and industrial discharges.« less
New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations
NASA Technical Reports Server (NTRS)
Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.
2012-01-01
In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.
Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
López-Valverde, Miguel A.; Gerard, Jean-Claude; González-Galindo, Francisco; Vandaele, Ann-Carine; Thomas, Ian; Korablev, Oleg; Ignatiev, Nikolai; Fedorova, Anna; Montmessin, Franck; Määttänen, Anni; Guilbon, Sabrina; Lefevre, Franck; Patel, Manish R.; Jiménez-Monferrer, Sergio; García-Comas, Maya; Cardesin, Alejandro; Wilson, Colin F.; Clancy, R. T.; Kleinböhl, Armin; McCleese, Daniel J.; Kass, David M.; Schneider, Nick M.; Chaffin, Michael S.; López-Moreno, José Juan; Rodríguez, Julio
2018-02-01
The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere.
Faustorilla, Maria Vilma; Chen, Zuliang; Dharmarajan, Rajarathnam; Naidu, Ravendra
2017-09-01
Assessment of total petroleum hydrocarbons (TPHs) from contaminated sites demands routine and reliable measurement at trace levels. However, the detection limits of these methods need to be improved. This study developed the programmable temperature vaporization-large volume injection (PTV-LVI) method to quantify TPHs through gas chromatography-flame ionization detection. This configuration enhances the method sensitivity for trace level detections through large volume injections and pre-concentration of analytes along the injection liner. The method was evaluated for the three commonly observed hydrocarbon fractions: C10-C14, C15-C28 and C29-C36. In comparison with conventional injection methods (splitless and pulsed splitless), PTV-LVI showed R2 values > 0.999 with enhanced limits of detection and limits of quantification values. The method was applied to real samples for routine environmental monitoring of TPHs in an Australian contaminated site characterized by refueling station. Analysis of groundwater samples in the area showed a wide range of TPH concentrations as follows: 66-1,546,000 (C10-C14), 216-22,762 (C15-C28) and 105-2,103 (C29-C36) μg/L. This method has detected trace levels, thereby measuring a wider concentration range of TPHs. These more accurate measurements can lead to the appropriate application of risk assessments and remediation techniques. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akagi, S. K.; Yokelson, R. J.; Burling, I. R.
2013-02-01
In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of firemore » emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ΔHCN/ΔCO emission ratio, however, is fairly consistent at 0.9 ± 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C 3-C 4 alkynes may be of use as biomass burning indicators on the time-scale of hours to a day. It was possible to measure the chemical evolution of the plume on four of the fires and significant ozone (O 3) formation (ΔO 3/ΔCO from 10-90%) occurred in all of these plumes. Slower O 3 production was observed on a cloudy day with low co-emissions of NO x and the fastest O 3 production was observed on a sunny day when the plume almost certainly incorporated significant additional NO x by passing over the Columbia, SC metropolitian area. Due to rapid plume dilution, it was only possible to acquire high quality downwind data for two other species (formaldehyde and methanol) on two of the fires. In all four cases significant increases were observed. Finally, this is likely the first direct observation of post-emission methanol production in biomass burning plumes and the precursors likely included terpenes.« less
Tracing time scales of fluid residence and migration in the crust (Invited)
NASA Astrophysics Data System (ADS)
Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.
2013-12-01
Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in Lower Geyser Basin, with the key assumption that the fluid acquires its crustal component of Ar in Quaternary volcanic rock of the Yellowstone caldera. Krypton-81 isotopic abundances in the gas samples yield upper limits on residence time that are consistent with those obtained from 39Ar/40Ar* ratios. Young fluid components can also be determined by krypton-85 concentrations in the extracted gases. Better understanding of the production mechanisms of noble-gas radionuclides in reservoir rocks would significantly decrease the uncertainties in modeling fluid residence times.
Carbon and Aerosol Emissions from Biomass Fires in Mexico
NASA Astrophysics Data System (ADS)
Hao, W. M.; Flores Garnica, G.; Baker, S. P.; Urbanski, S. P.
2009-12-01
Biomass burning is an important source of many atmospheric greenhouse gases and photochemically reactive trace gases. There are limited data available on the spatial and temporal extent of biomass fires and associated trace gas and aerosol emissions in Mexico. Biomass burning is a unique source of these gases and aerosols, in comparison to industrial and biogenic sources, because the locations of fires vary considerably both daily and seasonally and depend on human activities and meteorological conditions. In Mexico, the fire season starts in January and about two-thirds of the fires occur in April and May. The amount of trace gases and aerosols emitted by fires spatially and temporally is a major uncertainty in quantifying the impact of fire emissions on regional atmospheric chemical composition. To quantify emissions, it is necessary to know the type of vegetation, the burned area, the amount of biomass burned, and the emission factor of each compound for each ecosystem. In this study biomass burning experiments were conducted in Mexico to measure trace gas emissions from 24 experimental fires and wildfires in semiarid, temperate, and tropical ecosystems from 2005 to 2007. A range of representative vegetation types were selected for ground-based experimental burns to characterize fire emissions from representative Mexico fuels. A third of the country was surveyed each year, beginning in the north. The fire experiments in the first year were conducted in Chihuahua, Nuevo Leon, and Tamaulipas states in pine forest, oak forest, grass, and chaparral. The second-year fire experiments were conducted on pine forest, oak forest, shrub, agricultural, grass, and herbaceous fuels in Jalisco, Puebla, and Oaxaca states in central Mexico. The third-year experiments were conducted in pine-oak forests of Chiapas, coastal grass, and low subtropical forest on the Yucatan peninsula. FASS (Fire Atmosphere Sampling System) towers were deployed for the experimental fires. Each FASS system contains 4 electro-polished stainless steel canisters to sample trace gas emissions, with a corresponding set of Teflon filters in the sampling ports to collect PM2.5 particulates. In addition, biomass burning was sampled by aircraft with canisters and real-time instruments as part of the MILAGRO field campaign. We present the emission factors of CO2, CO, CH4, C2-C4 compounds, and PM2.5 for prescribed fires of the major vegetation types in Mexico, as well as for regional wildfires in southern and central Mexico. We will also present a high-resolution vegetation map in Mexico based on the Landsat satellites and the fuel consumption models for various components and sizes of fuels.
NASA Technical Reports Server (NTRS)
Asner, Gregory P. (Principal Investigator)
2003-01-01
Woody encroachment has contributed to documented changes world-wide and locally in the southwestern U.S. Specifically, in North Texas rangelands encroaching mesquite (Prosopis glandulosa var. glandulosa) a known N-fixing species has caused changes in aboveground biomass. While measurements of aboveground plant production are relatively common, measures of soil N availability are scarce and vary widely. N trace gas emissions (nitric and nitrous oxide) flom soils reflect patterns in current N cycling rates and availability as they are stimulated by inputs of organic and inorganic N. Quantification of N oxide emissions from savanna soils may depend upon the spatial distribution of woody plant canopies, and specifically upon the changes in N availability and cycling and subsequent N trace gas production as influenced by the shift from herbaceous to woody vegetation type. The main goal of this research was to determine whether remotely sensible parameters of vegetation structure and soil type could be used to quantify biogeochemical changes in N at local, landscape and regional scales. To accomplish this goal, field-based measurements of N trace gases were carried out between 2000-2001, encompassing the acquisition of imaging spectrometer data from the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) on September 29, 2001. Both biotic (vegetation type and soil organic N) and abiotic (soil type, soil pH, temperature, soil moisture, and soil inorganic N) controls were analyzed for their contributions to observed spatial and temporal variation in soil N gas fluxes. These plot level studies were used to develop relationships between spatially extensive, field-based measurements of N oxide fluxes and remotely sensible aboveground vegetation and soil properties, and to evaluate the short-term controls over N oxide emissions through intensive field wetting experiments. The relationship between N oxide emissions, remotely-sensed parameters (vegetation cover, and soil type), and physical controls (soil moisture, and temperature) permitted the regional scale quantification of soil N oxides emissions. Landscape scale analysis linking N oxide emissions with cover change revealed an alleviation from N limitation following mesquite invasion. This study demonstrated the advantage of using N trace gases as a measure of ecosystem N availability combined with remote sensing to characterize the spatial heterogeneity in ecosystem parameters at a scale commensurate with field-based measurements of these properties. Woody vegetation encroachment provided an opportunity to capitalize on detection of the remotely-sensible parameter of woody cover as it relates to belowground biogeochemical processes that determine N trace gas production. The first spatially-explicit estimates of NO flux were calculated based on Prosopis fractional cover derived from high resolution remote sensing estimates of fractional woody cover (< 4 m) for a 120 sq km region of North Texas. An assessment of both N stocks and fluxes from the study revealed an alleviation of N limitation at this site experiencing recent woody encroachment. Many arid and semi-arid regions of the world are experiencing woody invasions, often of N-fixing species. The issue of woody encroachment is in the center of an ecological and political debate. Improving the links between biogeochemical processes and remote sensing of ecosystem properties will improve our understanding of biogeochemical processes at the regional scale, thus providing a means to address issues of land-use and land-cover change.
NASA Astrophysics Data System (ADS)
Fagre, M.; Elias, A. G.; Chum, J.; Cabrera, M. A.
2017-12-01
In the present work, ray tracing of high frequency (HF) signals in ionospheric disturbed conditions is analyzed, particularly in the presence of electron density perturbations generated by gravity waves (GWs). The three-dimensional numerical ray tracing code by Jones and Stephenson, based on Hamilton's equations, which is commonly used to study radio propagation through the ionosphere, is used. An electron density perturbation model is implemented to this code based upon the consideration of atmospheric GWs generated at a height of 150 km in the thermosphere and propagating up into the ionosphere. The motion of the neutral gas at these altitudes induces disturbances in the background plasma which affects HF signals propagation. To obtain a realistic model of GWs in order to analyze the propagation and dispersion characteristics, a GW ray tracing method with kinematic viscosity and thermal diffusivity was applied. The IRI-2012, HWM14 and NRLMSISE-00 models were incorporated to assess electron density, wind velocities, neutral temperature and total mass density needed for the ray tracing codes. Preliminary results of gravity wave effects on ground range and reflection height are presented for low-mid latitude ionosphere.
Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry
NASA Technical Reports Server (NTRS)
Mahaffy, P.; Niemann, Hasso (Technical Monitor)
2001-01-01
Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.
2013-01-01
Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.
NASA Astrophysics Data System (ADS)
Baker, A. K.; Brenninkmeijer, C. A.; Oram, D. E.; O'Sullivan, D. A.; Slemr, F.; Schuck, T. J.
2009-12-01
The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) involves the monthly deployment of an instrument container equipped to make atmospheric measurements from aboard a commercial airliner, and has operated since 2005 from aboard a Lufthansa Airbus 340-600 . Measurements from the container include in-situ trace gas and aerosol analyses and the collection of aerosol and whole air samples for post-flight laboratory analysis. Measurements made from the sampling flasks include greenhouse gas (GHG), halocarbon and nonmethane hydrocarbon (NMHC) analysis. CARIBIC flights originate in Frankfurt, Germany with routes to India, East Asia, South America, North America and Africa, and typical aircraft cruising altitudes of 10-12km allow for the monitoring of the upper troposphere/lower stratosphere (UT/LS) along these routes. Data collected during the aircraft’s departure from and return to Frankfurt provide a 4 year time series of near-monthly measurements of the composition of the UT/LS above Europe. Here we present a discussion of the composition of short-lived trace gases in the whole air samples collected above Europe during CARIBIC flights. Over 150 air samples were collected between May 2005 and July 2009, or about 4 samples per month. Of the whole air samples collected, about 45% showed influence by stratospheric air (i.e. very low values of GHG, NMHC and halocarbons, elevated O3, high potential vorticity). The remaining samples were representative of the upper troposphere; back trajectories for these samples indicate that a little over half were collected in air masses that had been in the boundary layer within the previous 8 days. The predominant source regions for these samples were the Gulf of Mexico and continental North America. Owing to their wide range of chemical lifetimes and the varying composition of emissions, short-lived trace gases transported to the UT/LS can be useful indicators of source region, photochemical processing and transport timescales of an air mass. Seasonal and longer-term trends in trace gases and trace gas composition are discussed, as well as composition of air masses having different origins. Additionally, we apply relationships between the different species, particularly the NMHC, to gain a qualitative understanding of photochemical processes occurring during transport from the boundary layer to the upper troposphere over Europe.
NASA Astrophysics Data System (ADS)
Wang, Ying; Gao, Peng; Sha, Linna; Chi, Qianqian; Yang, Lei; Zhang, Jianjiao; Chen, Yujin; Zhang, Milin
2018-04-01
The construction of semiconductor composites is known as a powerful method used to realize the spatial separation of electrons and the holes in them, which can result in more electrons or holes and increase the dispersion of oxygen ions ({{{{O}}}2}- and O - ) (one of the most critical factors for their gas-sensing properties) on the surface of the semiconductor gas sensor. In this work, using 1D ZnO/ZnSnO3 nanoarrays as an example, which are prepared through a hetero-epitaxial growing process to construct a chemically bonded interface, the above strategy to attain a better semiconductor gas-sensing property has been realized. Compared with single ZnSnO3 nanotubes and no-matching ZnO/ZnSnO3 nanoarrays gas sensors, it has been proven by x-ray photoelectron spectroscopy and photoluminescence spectrum examination that the as-obtained ZnO/ZnSnO3 sensor showed a greatly increased quantity of active surface electrons with exceptional responses to trace target gases and much lower optimum working temperatures (less than about 170 °C). For example, the as-obtained ZnO/ZnSnO3 sensor exhibited an obvious response and short response/recovery time (less than 10 s) towards trace H2S gas (a detection limit down to 700 ppb). The high responses and dynamic repeatability observed in these sensors reveal that the strategy based on the as-presented electron and hole separation is reliable for improving the gas-sensing properties of semiconductors.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxing; Li, Yi; Xiao, Song; Tian, Shuangshuang; Deng, Zaitao; Tang, Ju
2017-08-01
C3F7CN has been the focus of the alternative gas research field over the past two years because of its excellent insulation properties and environmental characteristics. Experimental studies on its insulation performance have made many achievements. However, few studies on the formation mechanism of the decomposition components exist. A discussion of the decomposition characteristics of insulating media will provide guidance for scientific experimental research and the work that must be completed before further engineering application. In this study, the decomposition mechanism of C3F7CN in the presence of trace H2O under discharge was calculated based on the density functional theory and transition state theory. The reaction heat, Gibbs free energy, and activation energy of different decomposition pathways were investigated. The ionization parameters and toxicity of C3F7CN and various decomposition products were analyzed from the molecular structure perspective. The formation mechanism of the C3F7CN discharge decomposition components and the influence of trace water were evaluated. This paper confirms that C3F7CN has excellent decomposition characteristics, which provide theoretical support for later experiments and related engineering applications. However, the existence of trace water has a negative impact on C3F7CN’s insulation performance. Thus, strict trace water content standards should be developed to ensure dielectric insulation and the safety of maintenance personnel.
Thick discs, and an outflow, of dense gas in the nuclei of nearby Seyfert galaxies
NASA Astrophysics Data System (ADS)
Lin, Ming-Yi; Davies, R. I.; Burtscher, L.; Contursi, A.; Genzel, R.; González-Alfonso, E.; Graciá-Carpio, J.; Janssen, A.; Lutz, D.; Orban de Xivry, G.; Rosario, D.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L.
2016-05-01
We discuss the dense molecular gas in central regions of nearby Seyfert galaxies, and report new arcsec resolution observations of HCN (1-0) and HCO+ (1-0) for three objects. In NGC 3079, the lines show complex profiles as a result of self-absorption and saturated continuum absorption. H13CN reveals the continuum absorption profile, with a peak close to the galaxy's systemic velocity that traces disc rotation, and a second feature with a blue wing extending to -350 km s-1 that most likely traces a nuclear outflow. The morphological and spectral properties of the emission lines allow us to constrain the dense gas dynamics. We combine our kinematic analysis for these three objects, as well as another with archival data, with a previous comparable analysis of four other objects, to create a sample of eight Seyferts. In seven of these, the emission line kinematics imply thick disc structures on radial scales of ˜100 pc, suggesting such structures are a common occurrence. We find a relation between the circum-nuclear LHCN and Mdyn that can be explained by a gas fraction of 10 per cent and a conversion factor αHCN ˜ 10 between gas mass and HCN luminosity. Finally, adopting a different perspective to probe the physical properties of the gas around active galactic nuclei, we report on an analysis of molecular line ratios which indicates that the clouds in this region are not self-gravitating.
Testing the universality of the star-formation efficiency in dense molecular gas
NASA Astrophysics Data System (ADS)
Shimajiri, Y.; André, Ph.; Braine, J.; Könyves, V.; Schneider, N.; Bontemps, S.; Ladjelate, B.; Roy, A.; Gao, Y.; Chen, H.
2017-08-01
Context. Recent studies with, for example, Spitzer and Herschel have suggested that star formation in dense molecular gas may be governed by essentially the same "law" in Galactic clouds and external galaxies. This conclusion remains controversial, however, in large part because different tracers have been used to probe the mass of dense molecular gas in Galactic and extragalactic studies. Aims: We aimed to calibrate the HCN and HCO+ lines commonly used as dense gas tracers in extragalactic studies and to test the possible universality of the star-formation efficiency in dense gas (≳104 cm-3), SFEdense. Methods: We conducted wide-field mapping of the Aquila, Ophiuchus, and Orion B clouds at 0.04 pc resolution in the J = 1 - 0 transition of HCN, HCO+, and their isotopomers. For each cloud, we derived a reference estimate of the dense gas mass MHerschelAV > 8, as well as the strength of the local far-ultraviolet (FUV) radiation field, using Herschel Gould Belt survey data products, and estimated the star-formation rate from direct counting of the number of Spitzer young stellar objects. Results: The H13CO+(1-0) and H13CN(1-0) lines were observed to be good tracers of the dense star-forming filaments detected with Herschel. Comparing the luminosities LHCN and LHCO+ measured in the HCN and HCO+ lines with the reference masses MHerschelAV > 8, the empirical conversion factors αHerschel - HCN (=MHerschelAV > 8/LHCN) and αHerschel - HCO+ (=MHerschelAV > 8/LHCO+) were found to be significantly anti-correlated with the local FUV strength. In agreement with a recent independent study of Orion B by Pety et al., the HCN and HCO+ lines were found to trace gas down to AV ≳ 2. As a result, published extragalactic HCN studies must be tracing all of the moderate density gas down to nH2 ≲ 103 cm-3. Estimating the contribution of this moderate density gas from the typical column density probability distribution functions in nearby clouds, we obtained the following G0-dependent HCN conversion factor for external galaxies: αHerschel - HCNfit' = 64 × G0-0.34. Re-estimating the dense gas masses in external galaxies with αHerschel - HCNfit'(G0), we found that SFEdense is remarkably constant, with a scatter of less than 1.5 orders of magnitude around 4.5 × 10-8 yr-1, over eight orders of magnitude in dense gas mass. Conclusions: Our results confirm that SFEdense of galaxies is quasi-universal on a wide range of scales from 1-10 pc to > 10 kpc. Based on the tight link between star formation and filamentary structure found in Herschel studies of nearby clouds, we argue that SFEdense is primarily set by the "microphysics" of core and star formation along filaments. Partly based on observations carried out with the IRAM 30 m Telescope under project numbers 150-14 and 032-15. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascucci, I.; Simon, M. N.; Edwards, S.
2015-11-20
We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within themore » circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.« less
Middle Atmospheric Transport Properties of Assimilated Datasets
NASA Technical Reports Server (NTRS)
Pawson, Steven; Rood, Richard
1999-01-01
One of the most compelling reasons for performing data assimilation in the middle atmosphere is to obtain global, balanced datasets for studies of trace gas transport and chemistry. This is a major motivation behind the Goddard Earth observation System-Data Assimilation System (GEOS-DAS). Previous studies have shown that while this and other data assimilation systems can generally obtain good estimates of the extratropical rotational velocity field, the divergent part of the dynamical field is deficient; this impacts the "residual circulation" and leads to spurious trace gas transport on seasonal and interannual timescales. These problems are impacted by the quality and the method of use of the observational data and by deficiencies in the atmospheric general circulation model. Whichever the cause at any place and time, the "solution" is to introduce non-physical forcing terms into the system (the so-called incremental analysis updates); these can directly (thermal) or indirectly (mechanical) affect the residual circulation. This paper will illustrate how the divergent circulation is affected by deficiencies in both observations and models. Theoretical considerations will be illustrated with examples from the GEOS-DAS and from simplified numerical experiments. These are designed to isolate known problems, such as the inability of models to sustain a quasi-biennial oscillation and sparse observational constraints on tropical dynamics, or radiative inconsistencies in the presence of volcanic aerosols.
Middle Atmosphere Transport Properties of Assimilated Datasets
NASA Technical Reports Server (NTRS)
Pawson, Steven; Rood, Richard
1999-01-01
One of the most compelling reasons for performing data assimilation in the middle atmosphere is to obtain global, balanced datasets for studies of trace gas transport and chemistry. This is a major motivation behind the Goddard Earth observation System-Data Assimilation System (GEOS-DAS). Previous studies have shown that while this and other data assimilation systems can generally obtain good estimates of the extratropical rotational velocity field, the divergent part of the dynamical field is deficient; this impacts the "residual circulation" and leads to spurious trace gas transport on seasonal and interannual timescales. These problems are impacted by the quality and the method of use of the observational data and by deficiencies in the atmospheric general circulation model. Whichever the cause at any place and time, the "solution" is to introduce non-physical forcing terms into the system (the so-called incremental analysis updates); these can directly (thermal) or indirectly (mechanical) affect the residual circulation. This paper will illustrate how the divergent circulation is affected by deficiencies in both observations and models. Theoretical considerations will be illustrated with examples from the GEOS-DAS and from simplified numerical experiments. These are designed to isolate known problems, such as the inability of models to sustain a quasi-biennial oscillation and sparse observational constraints on tropical dynamics, or radiative inconsistencies in the presence of volcanic aerosols.
In vitro analysis of the properties of Beiqishen tea.
Blázovics, A; Szentmihályi, K; Lugasi, A; Balázs, A; Hagymási, K; Bányai, E; Then, M; Rapavi, E; Héthelyi, E
2003-10-01
Chinese Beiqishen tea was studied in an in vitro test system. Phytochemical screening, trace element analysis, and the analysis of antioxidant properties were carried out. Characteristic constituents were determined by chromatographic (capillary gas chromatography and GCQ Ion Trap mass spectrometry) and spectrometric (ultraviolet and UV-VIS) methods. Element concentrations were determined by inductively coupled plasma optical emission spectrometry. Antioxidant capacity was studied by spectrophotometric and luminometric techniques using a Berthold Lumat 9501 luminometer. Hydrogen-donating activity, reducing power, and total scavenger capacity were measured. Total polyphenol content was 20.77 +/- 0.52 g/100 g of drug; total flavonoid content was 0.485 +/- 0.036 g/100 g of drug; and tannin content was 9.063 +/- 0.782 g/100 g of drug. Caffeine content was 1.08 mg/100 g of drug. Essential oils were identified by gas chromatography: (+)-limonene (21%), p-cymene (1.7%), estragol (3.2%), beta-ocimene (1.4%), and thymol (2.6%). Metallic ion analysis showed significantly high concentrations of Al, As, Ba, Cr, Cu, Fe, Mn, Ni, and Ti in the drug. Antioxidant and scavenger properties were identified as a function of concentration. The tea infusion contained some non-desirable trace elements and caffeine in addition to polyphenols and tannins in high concentrations. Therefore, the consumption of this tea may involve risks.
McBain, M C; Warland, J S; McBride, R A; Wagner-Riddle, C
2004-12-01
The purpose of this study was to determine whether or not young hybrid poplar (Populus deltoides x Populus nigra) could transport landfill biogas internally from the root zone to the atmosphere, thereby acting as conduits for landfill gas release. Fluxes of methane (CH4) and nitrous oxide (N2O) from the seedlings to the atmosphere were measured under controlled conditions using dynamic flux chambers and a tunable diode laser trace gas analyser (TDLTGA). Nitrous oxide was emitted from the seedlings, but only when extremely high soil N2O concentrations were applied to the root zone. In contrast, no detectable emissions of CH4 were measured in a similar experimental trial. Visible plant morphological responses, characteristic of flood-tolerant trees attempting to cope with the negative effects of soil hypoxia, were observed during the CH4 experiments. Leaf chlorosis, leaf abscission and adventitious roots were all visible plant responses. In addition, seedling survival was observed to be highest in the biogas 'hot spot' areas of a local municipal solid waste landfill involved in this study. Based on the available literature, these observations suggest that CH4 can be transported internally by Populus deltoides x Populus nigra seedlings in trace amounts, although future research is required to fully test this hypothesis.
Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin
2016-01-01
In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012
HI Absorption in Merger Remnants
NASA Technical Reports Server (NTRS)
Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.
2012-01-01
It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.
Massive Warm/Hot Galaxy Coronae as Probed by UV/X-Ray Oxygen Absorption and Emission. I. Basic Model
NASA Astrophysics Data System (ADS)
Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.
2017-01-01
We construct an analytic phenomenological model for extended warm/hot gaseous coronae of L* galaxies. We consider UV O VI Cosmic Origins Spectrograph (COS)-Halos absorption line data in combination with Milky Way (MW) X-ray O vii and O viii absorption and emission. We fit these data with a single model representing the COS-Halos galaxies and a Galactic corona. Our model is multi-phased, with hot and warm gas components, each with a (turbulent) log-normal distribution of temperatures and densities. The hot gas, traced by the X-ray absorption and emission, is in hydrostatic equilibrium in an MW gravitational potential. The median temperature of the hot gas is 1.5× {10}6 K and the mean hydrogen density is ˜ 5× {10}-5 {{cm}}-3. The warm component as traced by the O VI, is gas that has cooled out of the high density tail of the hot component. The total warm/hot gas mass is high and is 1.2× {10}11 {M}⊙ . The gas metallicity we require to reproduce the oxygen ion column densities is 0.5 solar. The warm O VI component has a short cooling time (˜ 2× {10}8 years), as hinted by observations. The hot component, however, is ˜ 80 % of the total gas mass and is relatively long-lived, with {t}{cool}˜ 7× {10}9 years. Our model supports suggestions that hot galactic coronae can contain significant amounts of gas. These reservoirs may enable galaxies to continue forming stars steadily for long periods of time and account for “missing baryons” in galaxies in the local universe.
ERIC Educational Resources Information Center
Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.
2016-01-01
Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…
ERIC Educational Resources Information Center
Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha
2012-01-01
The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…
Breath analysis based on micropreconcentrator for early cancer diagnosis
NASA Astrophysics Data System (ADS)
Lee, Sang-Seok
2018-02-01
We are developing micropreconcentrators based on micro/nanotechnology to detect trace levels of volatile organic compound (VOC) gases contained in human and canine exhaled breath. The possibility of using exhaled VOC gases as biomarkers for various cancer diagnoses has been previously discussed. For early cancer diagnosis, detection of trace levels of VOC gas is indispensable. Using micropreconcentrators based on MEMS technology or nanotechnology is very promising for detection of VOC gas. A micropreconcentrator based breath analysis technique also has advantages from the viewpoints of cost performance and availability for various cancers diagnosis. In this paper, we introduce design, fabrication and evaluation results of our MEMS and nanotechnology based micropreconcentrators. In the MEMS based device, we propose a flower leaf type Si microstructure, and its shape and configuration are optimized quantitatively by finite element method simulation. The nanotechnology based micropreconcentrator consists of carbon nanotube (CNT) structures. As a result, we achieve ppb level VOC gas detection with our micropreconcentrators and usual gas chromatography system that can detect on the order of ppm VOC in gas samples. In performance evaluation, we also confirm that the CNT based micropreconcentrator shows 115 times better concentration ratio than that of the Si based micropreconcentrator. Moreover, we discuss a commercialization idea for new cancer diagnosis using breath analysis. Future work and preliminary clinical testing in dogs is also discussed.
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Fedorova, A. A.; Shakun, A. V.; Grigoriev, A. V.; Moshkin, B. E.; Ignatiev, N. I.; Forget, F.; Lefèvre, F.; Anufreychik, K.; Dzuban, I.; Ivanov, Y. S.; Kalinnikov, Y. K.; Kozlova, T. O.; Kungurov, A.; Makarov, V.; Martynovich, F.; Maslov, I.; Merzlyakov, D.; Moiseev, P. P.; Nikolskiy, Y.; Patrakeev, A.; Patsaev, D.; Santos-Skripko, A.; Sazonov, O.; Semena, N.; Semenov, A.; Shashkin, V.; Sidorov, A.; Stepanov, A. V.; Stupin, I.; Timonin, D.; Titov, A. Y.; Viktorov, A.; Zharkov, A.; Altieri, F.; Arnold, G.; Belyaev, D. A.; Bertaux, J. L.; Betsis, D. S.; Duxbury, N.; Encrenaz, T.; Fouchet, T.; Gérard, J.-C.; Grassi, D.; Guerlet, S.; Hartogh, P.; Kasaba, Y.; Khatuntsev, I.; Krasnopolsky, V. A.; Kuzmin, R. O.; Lellouch, E.; Lopez-Valverde, M. A.; Luginin, M.; Määttänen, A.; Marcq, E.; Martin Torres, J.; Medvedev, A. S.; Millour, E.; Olsen, K. S.; Patel, M. R.; Quantin-Nataf, C.; Rodin, A. V.; Shematovich, V. I.; Thomas, I.; Thomas, N.; Vazquez, L.; Vincendon, M.; Wilquet, V.; Wilson, C. F.; Zasova, L. V.; Zelenyi, L. M.; Zorzano, M. P.
2018-02-01
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 μm spectral range with a resolving power of ˜20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.3 cm-1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ˜60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.
A new DOAS instrument on long-distance IAGOS-CARIBIC flights and airborne DOAS applications
NASA Astrophysics Data System (ADS)
Penth, Lara; Frieß, Udo; Pöhler, Denis; Platt, Ulrich; Zahn, Andreas
2017-04-01
Within the IAGOS-CARIBIC project airborne DOAS (Differential Optical Absorption Spectroscopy) measurements of atmospheric trace gases are performed aboard a commercial long range passenger aircraft from Lufthansa since 2005. They provide a unique dataset for episodic, long-term and seasonal observations. The DOAS instrument is the only remote sensing technique aboard. DOAS is a well-established remote sensing technique to retrieve trace gas columns in the atmosphere from scattered light spectra of the sun. A series of trace gas species can be observed simultaneously, including nitrogen dioxide (NO2), sulphur dioxide (SO2), bromine oxide (BrO), nitrous acid (HONO), formaldehyde (HCHO) and ozone (O3). Since DOAS is a contact-free measurement technique, it is specially well suited for measuring highly reactive trace gases. It is widely used on different platforms and the airborne DOAS measurements are filling the gap between ground-based measurements and satellite data. The CARIBIC DOAS instrument is divided into an instrument unit within the CARIBIC container in the cargo hold of the aircraft, a telescope unit, which is specially designed for the permanently mounted pylon underneath the aircraft, and fiber optics in between. The instrument unit consists of three temperature stabilized spectrometers and the readout and control electronics. The telescope unit contains three telescopes, which observe scattered sunlight to the right under the elevation angles of +10˚ , -10˚ and -82˚ (nadir) relative to the horizon. This measurement geometry allows the separation of boundary layer, free tropospheric and stratospheric trace gas columns along the flight track. A new DOAS instrument was designed and installed in 2016 (first flights expected from March 2017) to improve the detection limits of NO2, SO2, BrO, HCHO, HONO, O3 and O4. Furthermore, an extended wavelength range allows to measure in addition iodine monoxide (a potentially important oxidant in the free troposphere) and glyoxal (a tracer for VOCs). The IAGOS-CARIBIC project and the significant technical improvements of the new DOAS system will be presented. Also, selected examples for possible airborne measurement applications of the CARIBIC DOAS will be shown.
NASA Astrophysics Data System (ADS)
Leifer, I.; Melton, C.; Tratt, D. M.; Hall, J. L.; Buckland, K. N.; Frash, J.; Leen, J. B.; Lundquist, T.; Vigil, S. A.
2017-12-01
Husbandry methane (CH4) and ammonia (NH3) are strong climate and air pollution drivers. Husbandry emission factors have significant uncertainty and can differ from lab estimates as real-world practices affect emissions including where and how husbandry activities occur, their spatial and temporal relationship to micro-climate (winds, temperature, insolation, rain, and lagoon levels, which vary diurnally and seasonally), and animal care. Research dairies provide a unique opportunity to combine insights on sub-facility scale emissions to identify best practices. Two approaches with significant promise for quantifying husbandry emissions are airborne remote sensing and mobile in situ trace gas with meteorological measurements. Both capture snapshot data to allow deconvolution of temporal and spatial variability, which challenges stationary measurements, while also capturing micro-scale processes, allowing connection of real-world practices to emissions. Mobile in situ concentration data on trace gases and meteorology were collected by AMOG (AutoMObile trace Gas) Surveyor on 10 days spanning 31 months at the California Polytechnic State University Research Dairy, San Luis Obispo, CA. AMOG Surveyor is a commuter vehicle modified for atmospheric science. CH4, NH3, H2O, COS, CO, CO2, H2S, O3, NO, NO2, SO2, NOX, solar spectra, temperature, and winds were measured. The airborne hyperspectral thermal infrared sensor, Mako, collected data on 28 Sept. 2015. Research dairies allow combining insights on sub-facility scale emissions to identify best practices holistically - i.e., considering multiple trace gases. In situ data were collected while transecting plumes, approximately orthogonal to winds. Emission strength and source location were estimated by Gaussian plume inversion, validated by airborne data. Good agreement was found on source strength and location at meter length-scales. Data revealed different activities produced unique emissions with distinct trace gas fingerprints - for example, a mostly empty holding lagoon (LE, Fig. 1) was a stronger H2S source than a full holding lagoon (LW, Fig. 1), and an area in a corral (S1, Fig. 1) where cows congregated was a strong, focused NH3 source. Mako data mapped out micro-scale variability in transport that agreed with AMOG winds and plume inversions.