NASA Astrophysics Data System (ADS)
Chistov, R.
2016-02-01
B-factories Belle and BaBar during its operation made not only measurements connected with B-meson decays but also numerous observation and measurements in charm physics. In particular, their results on charm baryon decays and spectroscopy have enlarged and enriched the current picture of heavy flavour hadrons. In this talk we overview current status of charm baryons and their excited states.
Spectroscopy of charmed baryons
Solovieva, E. I.
2015-12-15
Apresent-day classification of charmed baryons is presented, a quark model for ground states is briefly described, and the energy levels of excited states are analyzed. In addition, a survey of experimentally observed states of charmed baryons is given.
Baryon Spectroscopy and Resonances
Robert Edwards
2011-12-01
A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of intense
Charmed baryon spectroscopy with Belle
Lesiak, Tadeusz
2007-02-27
Recent studies concerning charmed baryon spectroscopy, performed by the Belle collaboration, are briefly described. We report the first observation of two new baryons {xi}cx(2980) and {xi}cx(3077), a precise determination of the masses of {xi}c(2645) and {xi}c(2815), observation of the {lambda}c(2940)+ and experimental constraints on the possible spin-parity of the {lambda}c(2880)+. Observations of several exclusive decays of B mesons to the final states containing charmed baryons are also briefly presented.
Consistency between SU(3) and SU(2) covariant baryon chiral perturbation theory for the nucleon mass
NASA Astrophysics Data System (ADS)
Ren, Xiu-Lei; Alvarez-Ruso, L.; Geng, Li-Sheng; Ledwig, Tim; Meng, Jie; Vicente Vacas, M. J.
2017-03-01
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the 19 low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order [1] is supported by comparing the effective parameters (the combinations of the 19 couplings) with the corresponding low-energy constants in the SU(2) sector [2]. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref. [2] that the SU(2) baryon chiral perturbation theory can be applied to study nf = 2 + 1 lattice QCD simulations as long as the strange quark mass is close to its physical value.
Baryonic Spectroscopy at BESIII
NASA Astrophysics Data System (ADS)
Liu, Fang
Based on 106 million Ψ(3686) events collected with BESIII detector at BEPCII, some results on excited baryons from the partial wave analysis are presented. In the decay of ψ(3686) to pbar{p}π 0, two new baryonic excited states, Jpc = 1/2 + N(2300) and Jpc = 5/2 - N(2570) are significant, and additional 5 well known N* excited states are observed. In ψ(3686) to pbar{p}η , an excited-nucleon state N(1535) is dominant. In ψ(3686) to K - Λ bar{Ξ} + + c.c., two hyperons Ξ(1690) and Ξ(1820) are observed. In ψ(3686) to Λ bar{Σ }π + c.c., some excited strange baryons bar{Λ }* and Σ* are measured on the Σ+π- and Λπ- mass spectra.
Charmed Bottom Baryon Spectroscopy
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Problems in baryon spectroscopy
Capstick, S.
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
Charmed Bottom Baryon Spectroscopy
Zachary Brown, William Detmold, Stefan Meinel, Konstantinos Orginos
2012-09-01
The arena of doubly and triply heavy baryons remains experimentally unexplored to a large extent. This has led to a great deal of theoretical effort being put forth in the calculation of mass spectra in this sector. Although the detection of such heavy particle states may lie beyond the reach of experiments for some time, it is interesting to compare results between lattice QCD computations and continuum theoretical models. Several recent lattice QCD calculations exist for both doubly and triply charmed as well as doubly and triply bottom baryons. In this work we present preliminary results from the first lattice calculation of the mass spectrum of doubly and triply heavy baryons including both charm and bottom quarks. The wide range of quark masses in these systems require that the various flavors of quarks be treated with different lattice actions. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. The calculation of the ground state spectrum is presented and compared to recent models.
SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2+1 flavor lattice QCD
Ishikawa, K.-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Izubuchi, T.; Kadoh, D.; Namekawa, Y.; Ukita, N.; Kanaya, K.
2009-09-01
We investigate the quark mass dependence of baryon masses in 2+1 flavor lattice QCD using SU(3) heavy baryon chiral perturbation theory up to one-loop order. The baryon mass data used for the analyses are obtained for the degenerate up-down quark mass of 3 to 24 MeV and two choices of the strange quark mass around the physical value. We find that the SU(3) chiral expansion fails to describe both the octet and the decuplet baryon data if phenomenological values are employed for the meson-baryon couplings. The SU(2) case is also examined for the nucleon. We observe that higher order terms are controlled only around the physical point. We also evaluate finite size effects using SU(3) heavy baryon chiral perturbation theory, finding small values of order 1% even at the physical point.
Charmed baryon spectroscopy from CLEO at CESR
Alam, M. Sajjad
1999-02-17
Charmed baryon spectroscopy has been unfolding since the discovery of the first charmed baryon in 1975. The Cornell Electron Storage Ring (CESR) has now established itself as a charmed particle factory. In this report, we present results on charmed baryon production at CESR using the CLEO detector.
Towards precision spectroscopy of baryonic resonances
Doring, Michael; Mai, Maxim; Ronchen, Deborah
2017-01-26
Recent progress in baryon spectroscopy is reviewed. In a common effort, various groups have analyzed a set of new high-precision polarization observables from ELSA. The Julich-Bonn group has finalized the analysis of pion-induced meson-baryon production, the potoproduction of pions and eta mesons, and (almost) the KΛ final state. Lastly, as data become preciser, statistical aspects in the analysis of excited baryons become increasingly relevant and several advances in this direction are proposed.
Results and Frontiers in Lattice Baryon Spectroscopy
Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.
2007-10-26
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Spectroscopy of doubly charmed baryons
Vijande, J.; Valcarce, A.; Fernandez, F.; Garcilazo, H.
2006-02-11
We study the mass spectrum of baryons with two and three charmed quarks. For double charm baryons the spin splitting is found to be smaller than standard quark-model potential predictions. This splitting is not influenced either by the particular form of the confining potential or by the regularization taken for the contact term of the spin-spin potential. We consistently predict the spectra for triply charmed baryons.
Meson and baryon spectroscopy on the lattice
David Richards
2010-12-01
Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
Pentaquark spectroscopy: exotic {theta} baryons
Bijker, R.; Giannini, M.M.; Santopinto, E.
2004-09-13
We propose a collective stringlike model of q4q-bar pentaquarks with the geometry of an equilateral tetrahedron in which the four quarks are located at the four corners and the antiquark in its center. The nonplanar equilibrium configuration is a consequence of the permutation symmetry of the four quarks. In an application to the spectrum of exotic {theta} baryons, we find that the ground state pentaquark has angular momentum and parity Jp 1/2- and a small magnetic moment of 0.382 {mu}N. The decay width is suppressed by the spatial overlap with the decay products.
Baryon Spectroscopy Results at the Tevatron
Van Kooten, R.
2010-08-05
The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state Lb, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and DOe Collaborations will be presented.
Baryon spectroscopy and the omega minus
Samios, N.P.
1994-12-31
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.
Baryon Spectroscopy and the Origin of Mass
Klempt, Eberhard
2010-08-05
The proton mass arises from spontaneous breaking of chiral symmetry and the formation of constituent quarks. Their dynamics cannot be tested by proton tomography but only by studying excited baryons. However, the number of excited baryons is much smaller than expected within quark models; even worse, the existence of many known states has been challenged in a recent analysis which includes - compared to older analyses - high-precision data from meson factories. Hence {pi}N elastic scattering data do not provide a well-founded starting point of any phenomenological analysis of the baryon excitation spectrum. Photoproduction experiments now start to fill in this hole. Often, they confirm the old findings and even suggest a few new states. These results encourage attempts to compare the pattern of observed baryon resonances with predictions from quark models, from models generating baryons dynamically from meson-nucleon scattering amplitudes, from models based on gravitational theories, and with the conjecture that chiral symmetry may be restored at high excitation energies. Best agreement is found with a simple mass formula derived within AdS/QCD. Consequences for our understanding of QCD are discussed as well as experiments which may help to decide on the validity of models.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Baryon spectroscopy with polarization observables from CLAS
Strauch, Steffen
2016-08-01
Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J^{P} = 1/2^{+} and J^{P} = 3/2^{+}. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m_{Q} and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.
Quantum Operator Design for Lattice Baryon Spectroscopy
Lichtl, Adam
2006-09-07
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
Heavy-Baryon Spectroscopy from Lattice QCD
Huey-Wen Lin, Saul D. Cohen, Liuming Liu, Nilmani Mathur, Konstantinos Orginos, Andre Walker-Loud
2011-01-01
We use a four-dimensional lattice calculation of the full-QCD (quantum chromodynamics, the non-abliean gauge theory of the strong interactions of quarks and gluons) path integrals needed to determine the masses of the charmed and bottom baryons. In the charm sector, our results are in good agreement with experiment within our systematics, except for the spin-1/2 $\\Xi_{cc}$, for which we found the isospin-averaged mass to be $\\Xi_{cc}$ to be $3665\\pm17\\pm14^{+0}_{-78}$ MeV. We predict the mass of the (isospin-averaged) spin-1/2 $\\Omega_{cc}$ to be $3763\\pm19\\pm26^{+13}_{-79}$ {MeV}. In the bottom sector, our results are also in agreement with experimental observations and other lattice calculations within our statistical and systematic errors. In particular, we find the mass of the $\\Omega_b$ to be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved $\\Xi^\\prime_b$ to be 5955(27) MeV.
Results on Charm Baryon Spectroscopy from Tevatron
Wick, Felix
2011-05-01
Due to an excellent mass resolution and a large amount of available data, the CDF experiment, located at the Tevatron proton-antiproton accelerator, allows the precise measurement of spectroscopic properties, like mass and decay width, of a variety of states. This was exploited to examine the first orbital excitations of the {Lambda}{sub c} baryon, the resonances {Lambda}{sub c}(2595) and {Lambda}{sub c}(2625), in the decay channel {Lambda}{sub c}{sup +} {pi}{sup +}{pi}{sup -}, as well as the {Lambda}{sub c} spin excitations {Sigma}{sub c}(2455) and {Sigma}{sub c}(2520) in its decays to {Lambda}{sub c}{sup +} {pi}{sup -} and {Lambda}{sub c}{sup +} {pi}{sup -} final states in a data sample corresponding to an integrated luminosity of 5.2 fb{sup -1}. We present measurements of the mass differences with respect to the {Lambda}{sub c} and the decay widths of these states, using significantly higher statistics than previous experiments.
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
Manley, D. Mark
2016-09-08
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.
Spectroscopy of doubly charmed baryons from lattice QCD
NASA Astrophysics Data System (ADS)
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael; Hadron Spectrum Collaboration
2015-05-01
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 1 63×128 , with inverse spacing in temporal direction at-1=5.67 (4 ) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3 ) F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7 /2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU (6 )×O (3 ) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Spectroscopy of doubly charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-05-06
This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction a_{t}⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)_{F} symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory
Volker Crede
2011-12-01
Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nucleon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.
Spectroscopy of triply charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; ...
2014-10-14
The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.
Cascade ({xi}) Physics: a New Approach to Baryon Spectroscopy
Nefkens, B. M. K.
2006-11-17
Cascade hyperons have two special characteristics, which are particularly valuable as experimental and theoretical tools: cascades have strangeness minus two and their widths are quite narrow compared to the N* and {delta}+ resonances. The narrow width allows the detection by the missing mass or invariant mass techniques. The makeup of the cascade states is two ''massive'' strange and one light quark, this makes them much more amendable to Lattice Gauge calculations. Using the well established Flavor Symmetry of QCD we can use a comparison of the Cascades with the N* and {delta}* resonances to make a conclusive search for the 'Unseen Resonances' of the quark model, for Hybrid Baryons, Meson-Baryon Bound States and other Exotica. We can investigate the flavor dependence of confinement: is the string tension between two strange quarks the same as between two down quarks?.
The baryon spectroscopy: strong decays and strange suppression
NASA Astrophysics Data System (ADS)
García-Tecocoatzi, H.
2017-07-01
In this contribution, we present the open-flavor strong decays of light baryons computed within the framework of quark model. The transition amplitudes are computed using a modified {3}0P operator, where a mechanism strange suppression is taken into account. Also we discus the strange suppression within an extension of the quark model. Invited talk presented at Symposium on Nuclear Physics, January 4-7 2017, Cocoyoc(Mexico).
Unconventional baryon and meson spectroscopy at Jefferson Lab
Marco Battaglieri
2007-11-01
Understanding quark and gluon confinement in Quantum Chromodynamics is one of the main issue in hadronic physics. Electromagnetic probes, real and virtual photons, are a powerful tool to investigate how the QCD-partons manifest themselves in strong interaction at the energy scale of the nucleon mass (GeV). The CLAS Collaboration in Hall B at Jefferson Lab (USA) has a broad scientific program ranging from the static and dynamic properties of constituent quarks to the investigation of possible exotic baryon configurations. After a brief description of the CLAS detector, some selected results will be outlined showing the richness of this non-perturbative physics.
Baryon spectroscopy in a hybrid model with quantized pions
Price, C.E.; McNeil, J.A.
1993-04-01
The authors extend their earlier calculations of baryon properties in a hybrid quark model based on the Gell-Mann-Levy linear sigma model. They have avoided the projection problems associated with the standard hedgehog ansatz by solving the model using a Fock-space configuration which explicitly incorporates the correct isospin and angular momentum couplings in every component. This Fock-space configuration has components involving three quarks and various numbers of quantal pions. They minimize the ground-state expectation value of their Hamiltonian to obtain the equations of motion which they solve self-consistently. They calculate the canonical set of nucleon observables and compare with previous work.
Light-Quark Baryon Spectroscopy within ANL-Osaka Dynamical Coupled-Channels Approach
NASA Astrophysics Data System (ADS)
Kamano, Hiroyuki
2016-10-01
Recent results on the study of light-quark baryons with the ANL-Osaka dynamical coupled-channels (DCC) approach are presented, which contain the N^* and Δ ^* spectroscopy via the analysis of π N and γ N reactions and the Λ ^* and Σ ^* spectroscopy via the analysis of K^- p reactions. A recent application of our DCC approach to neutrino-nucleon reactions in the resonance region is also presented.
Baryon Spectroscopy and Operator Construction in Lattice QCD
S. Basak; I. Sato; S. Wallace; R. Edwards; D. Richards; R. Fiebig; G. Fleming; U. Heller; C. Morningstar
2004-07-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances. I will describe how such calculations provide insight into the structure of the hadrons, and enable comparison both with experiment, and with QCD-inspired pictures of hadron structure, such as calculations in the limit of large N{sub c}.
All you need is N: Baryon spectroscopy in two large N limits
Cherman, Aleksey; Cohen, Thomas D.; Lebed, Richard F.
2009-08-01
The generalization of QCD to many colors is not unique; each distinct choice corresponds to a distinct 1/N{sub c} expansion. The familiar 't Hooft N{sub c}{yields}{infinity} limit places quarks in the fundamental representation of SU(N{sub c}), while an alternative approach places quarks in its two-index antisymmetric representation. At N{sub c}=3 these two 1/N{sub c} expansions coincide. We compare their predictions for certain observables in baryon spectroscopy, particularly mass combinations organized according to SU(3) flavor breaking. Each large N{sub c} limit generates an emergent spin-flavor symmetry that leads to the vanishing of particular linear combinations of baryon masses at specific orders in the expansions. Experimental evidence shows that these relations hold at the expected orders regardless of which large N{sub c} limit one uses, suggesting the validity of either limit in the study of baryons. We also consider a hybrid large N{sub c} limit in which one flavor is taken to transform in the two-index antisymmetric representation and the rest of the flavors are in the fundamental representation. While this hybrid large N{sub c} limit is theoretically attractive, we show that for a wide class of observables it faces some phenomenological difficulties.
NASA Astrophysics Data System (ADS)
Shabbir, Saroosh; Björk, Gunnar
2016-05-01
Although progress has been made recently in defining nontrivial uncertainty limits for the SU(2) group, a description of the intermediate states bound by these limits remains lacking. In this paper we enumerate possible uncertainty relations for the SU(2) group that involve all three observables and that are, moreover, invariant under SU(2) transformations. We demonstrate that these relations however, even taken as a group, do not provide sharp, saturable bounds. To find sharp bounds, we systematically calculate the variance of the SU(2) operators for all pure states belonging to the N =2 and N =3 polarization excitation manifold (corresponding to spin 1 and spin 3/2). Lastly, and perhaps counter to expectation, we note that even pure states can reach the maximum uncertainty limit.
Faddeev equation studies of SU{sub f}(3) baryons spectroscopy
Roberts, C.D.; Cahill, R.T.; Tandy, P.C.
1995-08-01
The spectroscopy of baryons composed of u, d and s quarks is being studied using a separable approximation to the quark-quark scattering kernel. As in the studies of mesons, the kernel is obtained by using a separable approximation to invert the DSE for the quark propagator. An initial focus of the study is to analyze the importance of diffuse diquark correlations in baryons and to determine accurately the effective mass and radius of these correlations. This Faddeev equation approach, which employs confined, dressed-quark quasi-particles, is a natural framework within which to calculate the {pi}-N {sigma}-term ({sigma}{sub N}) and preliminary results are in good agreement with the experimentally determined value. This indicates that {sigma}{sub N} is simply and directly related to the shift in the nucleon mass due to the nonzero bare quark masses. The approach also provides a straightforward, microscopic understanding of mass-splittings. The Faddeev amplitudes obtained will form the basis for the calculation of scattering observables such as electromagnetic form factors and Compton scattering.
Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2014-07-01
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.
Spectroscopy of doubly and triply-charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2013-11-01
We present the ground and excited state spectra of doubly and triply-charmed baryons by using lattice QCD with dynamical clover fermions. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) Ⓧ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses. Using those splittings for doubly-charmed baryons, and taking input of experimental Bc meson mass, we predict the mass splittings of B*c-Bc to be about 80 ± 8 MeV and mΩccb=8050±10 MeV.
Light-Quark Baryon Spectroscopy from ANL-Osaka Dynamical Coupled-Channels Analysis
NASA Astrophysics Data System (ADS)
Kamano, Hiroyuki
We review our recent efforts for determining resonance parameters associated with light-quark baryons (N*,Δ *,Λ *,Σ *) through comprehensive analyses of various meson production reactions off the nucleon within the ANL-Osaka dynamical coupled-channels approach.
Baryon spectroscopy: Recent results from the Crystal Barrel/TAPS experiment at ELSA
Thoma, U.
2010-08-05
To understand the spectrum and the properties of baryon resonances, the CBELSA/TAPS experiment at ELSA investigates the photoproduction of single- and multi-meson final states off the nucleon. In the latter final states baryon cascades via Dp and Dh and also via higher mass baryon resonances are clearly observed. A partial wave analysis based on single and double meson photoproduction data as well as data from other reactions allows a first determination of resonance properties including partial decay widths of various N* and {Delta}* states. Those include also the decays into the different p{pi}{sup 0{pi}0} and p{pi}{sup 0{eta}} decay channels resulting partly in unexpected results. Recently not only single but also double polarisation experiments have been performed, which are absolutelly necessary to resolve ambiguities in the partial wave analyses (PWA) used to extract the resonances from the data; without the measurement of polarisation observables a model-independent PWA will not be possible. Polarisation observables have been investigated using linearly, circularly polarized or unpolarized photons impinging on an longitudinally polarized or unpolarized target. Given the angular coverage of the Crystal-Barrel/TAPS experiment this data cover almost the full angular range and phase space. This data will provide key information for the partial wave analyses and brings us one step closer towards the needed complete experiment.
Highlights in light-baryon spectroscopy and searches for gluonic excitations
Crede, Volker
2016-01-22
The spectrum of excited hadrons - mesons and baryons - serves as an excellent probe of quantum chromodynamics (QCD), the fundamental theory of the strong interaction. The strong coupling however makes QCD challenging. It confines quarks and breaks chiral symmetry, thus providing us with the world of light hadrons. Highly-excited hadronic states are sensitive to the details of quark confinement, which is only poorly understood within QCD. This is the regime of non-perturbative QCD and it is one of the key issues in hadronic physics to identify the corresponding internal degrees of freedom and how they relate to strong coupling QCD. The quark model suggests mesons are made of a constituent quark and an antiquark and baryons consist of three such quarks. QCD predicts other forms of matter. What is the role of glue? Resonances with large gluonic components are predicted as bound states by QCD. The lightest hybrid mesons with exotic quantum numbers are estimated to have masses in the range from 1 to 2 GeV/c{sup 2} and are well in reach of current experimental programs. At Jefferson Laboratory (JLab) and other facilities worldwide, the high-energy electron and photon beams present a remarkably clean probe of hadronic matter, providing an excellent microscope for examining atomic nuclei and the strong nuclear force.
Highlights in light-baryon spectroscopy and searches for gluonic excitations
NASA Astrophysics Data System (ADS)
Crede, Volker
2016-01-01
The spectrum of excited hadrons - mesons and baryons - serves as an excellent probe of quantum chromodynamics (QCD), the fundamental theory of the strong interaction. The strong coupling however makes QCD challenging. It confines quarks and breaks chiral symmetry, thus providing us with the world of light hadrons. Highly-excited hadronic states are sensitive to the details of quark confinement, which is only poorly understood within QCD. This is the regime of non-perturbative QCD and it is one of the key issues in hadronic physics to identify the corresponding internal degrees of freedom and how they relate to strong coupling QCD. The quark model suggests mesons are made of a constituent quark and an antiquark and baryons consist of three such quarks. QCD predicts other forms of matter. What is the role of glue? Resonances with large gluonic components are predicted as bound states by QCD. The lightest hybrid mesons with exotic quantum numbers are estimated to have masses in the range from 1 to 2 GeV/c2 and are well in reach of current experimental programs. At Jefferson Laboratory (JLab) and other facilities worldwide, the high-energy electron and photon beams present a remarkably clean probe of hadronic matter, providing an excellent microscope for examining atomic nuclei and the strong nuclear force.
SU(6) superset of SU(3) x SU(2) and SU(8) superset of SU(4) x SU(2) Clebsch-Gordan coefficients
Garcia-Recio, C.; Salcedo, L. L.
2011-04-15
Tables of scalar factors are presented for 63 x 63 and 120 x 63 in SU(8) superset of SU(4) x SU(2), and for 35 x 35 and 56 x 35 in SU(6) superset of SU(3) x SU(2). Related tables for SU(4) superset of SU(3) x U(1) and SU(3) superset of SU(2) x U(1) are also provided so that the Clebsch-Gordan coefficients can be completely reconstructed. These are suitable to study meson-meson and baryon-meson interactions within a spin-flavor symmetric scheme.
Generalized SU(2) Proca theory
NASA Astrophysics Data System (ADS)
Allys, Erwan; Peter, Patrick; Rodríguez, Yeinzon
2016-10-01
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This particular symmetry group permits fruitful applications in cosmology such as inflation driven by gauge fields. Our approach consists in building, in an exhaustive way, all the Lagrangians containing up to six contracted Lorentz indices. For this purpose, and after identifying by group theoretical considerations all the independent Lagrangians which can be written at these orders, we consider the only linear combinations propagating 3 degrees of freedom and having healthy dynamics for their longitudinal mode, i.e., whose pure Stückelberg contribution turns into the SU(2) multi-Galileon dynamics. Finally, and after having considered the curved space-time expansion of these Lagrangians, we discuss the form of the theory at all subsequent orders.
Excited-state spectroscopy of triply bottom baryons from lattice QCD
Meinel, Stefan
2012-06-25
Here, the spectrum of baryons containing three b quarks is calculated in nonperturbative QCD, using the lattice regularization. The energies of ten excited bbb states with JP = 1/2+, 3/2+, 5/2+, 7/2+, 1/2–, and 3/2– are determined with high precision. A domain-wall action is used for the up, down, and strange quarks, and the bottom quarks are implemented with nonrelativistic QCD. The computations are done at lattice spacings of a ≈ 0.11 fm and a ≈ 0.08 fm, and the results demonstrate the improvement of rotational symmetry as a is reduced. A large lattice volume of (2.7 fm)3 is used,more » and extrapolations of the bbb spectrum to realistic values of the light sea-quark masses are performed. All spin-dependent energy splittings are resolved with total uncertainties of order 1 MeV, and the dependence of these splittings on the couplings in the nonrelativistic QCD action is analyzed.« less
Excited-state spectroscopy of triply bottom baryons from lattice QCD
Meinel, Stefan
2012-06-25
Here, the spectrum of baryons containing three b quarks is calculated in nonperturbative QCD, using the lattice regularization. The energies of ten excited bbb states with J^{P} = 1/2^{+}, 3/2^{+}, 5/2^{+}, 7/2^{+}, 1/2^{–}, and 3/2^{–} are determined with high precision. A domain-wall action is used for the up, down, and strange quarks, and the bottom quarks are implemented with nonrelativistic QCD. The computations are done at lattice spacings of a ≈ 0.11 fm and a ≈ 0.08 fm, and the results demonstrate the improvement of rotational symmetry as a is reduced. A large lattice volume of (2.7 fm)^{3} is used, and extrapolations of the bbb spectrum to realistic values of the light sea-quark masses are performed. All spin-dependent energy splittings are resolved with total uncertainties of order 1 MeV, and the dependence of these splittings on the couplings in the nonrelativistic QCD action is analyzed.
Glueballs, Hybrids, Baryons and Pentaquarks: Hadron05 summary on light-quark spectroscopy
Klempt, Eberhard
2006-02-11
Results on light-quark spectroscopy presented at Hadron05 are reviewed. Particular emphasis is given to the status of pentaquarks and of glueballs and exotic mesons. Experiments are proposed to decide on open issues.
Penguin diagram dominance in radiative weak decays of bottom baryons
Kohara, Yoji
2005-05-01
Radiative weak decays of antitriplet bottom baryons are studied under the assumption of penguin diagram dominance and flavor-SU(3) (or SU(2)) symmetry. Relations among decay rates of various decay modes are derived.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
A New Cluster Updating for 2-D SU(2) × SU(2) Chiral Model
NASA Astrophysics Data System (ADS)
Zhang, Jianbo; Ji, Daren
1993-09-01
We propose a variant version of Wolff's cluster algorithm, which may be extended to SU(N) × SU(N) chiral model, and test it in 2-dimensional SU(2) × SU(2) chiral model. The results show that the new method can efficiently reduce the critical slowing down in SU(2) × SU(2) chiral model.
Spectroscopy of baryon resonances
NASA Astrophysics Data System (ADS)
Beck, Reinhard; Thoma, Ulrike
2017-01-01
Within project A.1 of the SFB/TR16 "Subnuclear Structure of Matter", a large amount of data on photoproduction reactions has been accumulated at the Bonn Electron Stretcher Accelerator ELSA with the CBELSA/TAPS detector and was analysed in detail. In particular, data have been taken with unpolarized or with linearly or circularly polarized photons and with unpolarized or with longitudinally or transversely polarized protons. Photoproduction off neutrons was studied to determine the helicity amplitudes for the excitation of resonances off neutrons. In a partial wave analysis of the data, new resonances have been found and the properties of new and of known resonances have been determined, including the measurement of partial widths of so far unmeasured decay modes.
Electromagnetic properties of baryons
Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.
2011-10-21
We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.
Gravitational leptogenesis in axion inflation with SU(2) gauge field
NASA Astrophysics Data System (ADS)
Maleknejad, Azadeh
2016-12-01
We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.
NASA Astrophysics Data System (ADS)
Yi, Piljin
We review baryons in the D4-D8 holographic model of low energy QCD, with the large Nc and the large't Hooft coupling limit. The baryon is identified with a bulk soliton of a unit Pontryagin number, which from the four-dimensional viewpoint translates to a modified Skyrmion dressed by condensates of spin one mesons. We explore classical properties and find that the baryon in the holographic limit is amenable to an effective field theory description. We also present a simple method to capture all leading and subleading interactions in the 1/Nc and the derivative expansions. An infinitely predictive model of baryon-meson interactions is thus derived, although one may trust results only for low energy processes, given various approximations in the bulk. We showcase a few comparisons to experiments, such as the leading axial couplings to pions, the leading vector-like coupling, and a qualitative prediction of the electromagnetic vector dominance that involves the entire tower of vector mesons.
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Composite scalar dark matter from vector-like SU(2) confinement
NASA Astrophysics Data System (ADS)
Pasechnik, Roman; Beylin, Vitaly; Kuksa, Vladimir; Vereshkov, Grigory
2016-03-01
A toy-model with SU(2)TC dynamics confined at high scales ΛTC ≫ 100GeV enables to construct Dirac UV completion from the original chiral multiplets predicting a vector-like nature of their weak interactions consistent with electroweak precision tests. In this work, we investigate a potential of the lightest scalar baryon-like (T-baryon) state B0 = UD with mass mB ≳ 1TeV predicted by the simplest two-flavor vector-like confinement model as a dark matter (DM) candidate. We show that two different scenarios with the T-baryon relic abundance formation before and after the electroweak (EW) phase transition epoch lead to symmetric (or mixed) and asymmetric DM, respectively. Such a DM candidate evades existing direct DM detection constraints since its vector coupling to Z boson absents at tree level, while one-loop gauge boson mediated contribution is shown to be vanishingly small close to the threshold. The dominating spin-independent (SI) T-baryon-nucleon scattering goes via tree-level Higgs boson exchange in the t-channel. The corresponding bound on the effective T-baryon-Higgs coupling has been extracted from the recent LUX data and turns out to be consistent with naive expectations from the light technipion case mπ˜ ≪ ΛTC. The latter provides the most stringent phenomenological constraint on strongly-coupled SU(2)TC dynamics so far. Future prospects for direct and indirect scalar T-baryon DM searches in astrophysics as well as in collider measurements have been discussed.
Progress towards understanding baryon resonances
Crede, Volker; Roberts, Winston
2013-07-01
The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1?2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.
SU(2|2) supersymmetric mechanics
NASA Astrophysics Data System (ADS)
Ivanov, Evgeny; Lechtenfeld, Olaf; Sidorov, Stepan
2016-11-01
We introduce a new kind of non-relativistic N = 8 supersymmetric mechanics, associated with worldline realizations of the supergroup SU(2|2) treated as a deformation of flat N = 8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell SU(2|2) multiplets ( 3 , 8 , 5), ( 4 , 8 , 4) and ( 5 , 8 , 3), we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group OSp(4∗|4) in the conformal cases. For the simplest ( 5 , 8 , 3) model the quantization is performed.
The SU(2) action-angle variables
NASA Technical Reports Server (NTRS)
Ellinas, Demosthenes
1993-01-01
Operator angle-action variables are studied in the frame of the SU(2) algebra, and their eigenstates and coherent states are discussed. The quantum mechanical addition of action-angle variables is shown to lead to a noncommutative Hopf algebra. The group contraction is used to make the connection with the harmonic oscillator.
NASA Astrophysics Data System (ADS)
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-11-01
In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.
Balanced Hermitian metrics from SU(2)-structures
Fernandez, M.; Tomassini, A.
2009-03-15
We study the intrinsic geometrical structure of hypersurfaces in six-manifolds carrying a balanced Hermitian SU(3)-structure, which we call balanced SU(2)-structure. We provide sufficient conditions, in terms of suitable evolution equations, which imply that a five-manifold with such structure can be isometrically embedded as a hypersurface in a balanced Hermitian SU(3)-manifold. Any five-dimensional compact nilmanifold has an invariant balanced SU(2)-structure, and we show how some of them can be evolved to give new explicit examples of balanced Hermitian SU(3)-structures. Moreover, for n=3,4, we present examples of compact solvmanifolds endowed with a balanced SU(n)-structure such that the corresponding Bismut connection has holonomy equal to SU(n)
Excited Baryons in Holographic QCD
de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
SU(2) WZW theory at higher genera
NASA Astrophysics Data System (ADS)
Gawędzki, Krzysztof
1995-05-01
We compute, by free field techniques, the scalar product of the SU(2) Chern-Simons states on genus >1 surfaces. The result is a finite-dimensional integral over positions of “screening charges” and one complex modular parameter. It uses an effective description of the CS states closely related to the one worked out by Bertram [1]. The scalar product formula allows to express the higher genus partition functions of the WZW conformal field theory by finite-dimensional integrals. It should provide the hermitian metric preserved by the Knizhnik-Zamolodchikov-Bernard connection describing the variations of the CS states under the change of the complex structure of the surface.
SU(2)CMB at high redshifts and the value of H0
NASA Astrophysics Data System (ADS)
Hahn, Steffen; Hofmann, Ralf
2017-07-01
We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.
NASA Astrophysics Data System (ADS)
Chistov, R.
2016-02-01
In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.
A modified Nambu-Jona-Lasinio model for mesons and baryons
NASA Astrophysics Data System (ADS)
Masayuki, Katô; Wolfgang, Bentz; Koichi, Yazaki; Kazuhiro, Tanaka
1993-01-01
A baryon-like bound state of three valence quarks in the NJL model is investigated. We find that in the flavor SU(2) case there exists no such state. Using the modified flavor SU(3) model we can obtain a baryon-like state. The essential ingredient which stabilizes the system is the "instanton-induced" six-fermion interaction describing the U A(1) anomaly in a phenomenological way. The properties of mesons are also investigated in this model.
A separate SU(2) for the third family: Topflavor
Muller, D.J.; Nandi, S. |
1996-10-17
The authors consider the extended electroweak gauge group SU(2){sub 1}xSU(2){sub x}xU(1){sub Y} where the first and second families of fermions couple to SU(2){sub 1} while the third family couples to SU(2){sub 2}. Bounds based on precision electroweak observables and heavy gauge boson searches are placed on the new parameters of the theory. The extra gauge bosons can be as light as about a TeV and can be discovered at future colliders such as the NLC and LHC for a wide range of the parameter space. FCNC interactions are also considered.
Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies
NASA Astrophysics Data System (ADS)
Hofmann, Ralf
2014-04-01
confining phases of SU(2) Yang-Mills theories neutrino mass mν solely arises by interactions with an environment. Cosmologically, the CMB represents this environment, and thus one would expect that mν = ξT where ξ = O(1). In this model cosmic neutrinos are a small dark-matter contribution, conserved only together with the CMB fluid, influencing Baryonic Acoustic Oscillations during CMB decoupling.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.
FERMION MASSES AND NEUTRINO OSCILLATIONS IN SO(10) X SU(2)F*
CHEN, M-C.; MAHANTHAPPA, K.T.
2004-06-17
We present in this talk a model based on SO(10) x SU(2){sub F} having symmetric mass textures with 5 zeros constructed by us recently. The symmetric mass textures arising from the left-right symmetry breaking chain of SO(10) give rise to good predictions for the masses, mixing angles and CP violation measures in the quark and lepton sectors (including the neutrinos), all in agreement with the most up-to-date experimental data within 1 {sigma}. Various lepton flavor violating decays in our model are also investigated. Unlike in models with lop-sided textures, our prediction for the decay rate of {mu} + e{gamma} is much suppressed and yet it is large enough to be probed by the next generation of experiments. The observed baryonic asymmetry in the Universe can be accommodated in our model utilizing soft leptogenesis.
Yukawa couplings in SU(3)×SU(2)×U(1) Y orbifold models
NASA Astrophysics Data System (ADS)
Casas, J. A.; Muñoz, C.
1988-09-01
We analyze the Yukawa couplings of the first SU(3)×SU(2)×U(1) Y orbifold models recently obtained. In these models the rank is naturally lowered due to the presence of a Fayet-Iliopoulos term associated with an “anomalous” U(1) in the four-dimensional theory. It is shown that the phenomenological viability of the models selects a favoured class of vacua. In particular, for the specific examples considered, some twisted fields with one moded oscillator acting, must acquire non-vanishing VEVs. However other possibilities may exist. We also find that all the baryon and lepton violating operators can be, in general, avoided in a completely natural way.
Thermodynamics of the QCD[sub 1+1] nonrelativistic baryon gas
Engelhardt, M. )
1994-12-01
The nonrelativistic baryon gas of QCD[sub 1+1] for SU(2) color is studied in the low density regime using two complementary approaches: In the classical limit, the Gibbs free energy can be evaluated analytically, yielding an exact value for the second virial coefficient and a bound for the equation of state at higher densities. Certain thermodynamic observables can already be given for the entire range of densities due to simple scaling properties. On the other hand, a quantum mechanical baryon-baryon scattering calculation yields the behavior of the second virial coefficient away from the classical limit down to low temperatures.
Yi Piljin
2011-10-21
We overview a holographic QCD based on the D4-D8 string theory model, with emphasis on baryons and nucleon-meson interactions thereof. Baryons are realized as holographic images of Skyrmions, but with much qualitative changes. This allows us to derive, without adjustable parameters, couplings of baryons to the entire tower of spin one mesons and also to pseudoscalar mesons. We find some surprisingly good match against empirical values for nucleons, in particular. Tensor couplings to all axial-vectors and iso-singlet vectors all vanish, while, for {rho} mesons, tensor couplings are found to be dominant. We close with various cautionary comments and speculations.
Wick, Felix
2011-10-28
In this thesis two different analyses are presented, namely the measurements of the properties of $\\Lambda_c(2595)^+$, $\\Lambda_c(2625)^+$, $\\Sigma_c(2455)^{++,0}$, and $\\Sigma_c(2520)^{++,0}$ baryons as well as the search for $CP$ violation in the Dalitz plot of the decay $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$. Both studies are performed using data corresponding to 5.2\\,\\invfb respective 6.0\\,\\invfb of integrated luminosity from $p\\bar{p}$ collisions at a center-of-mass energy of 1.96\\,TeV, collected with the CDF~II detector at the Fermilab Tevatron. The masses and decay widths of the mentioned charmed baryon resonances are measured with uncertainties comparable to the world averages for $\\Sigma_c$ states, and significantly smaller uncertainties than the world averages for excited $\\Lambda_c^+$ states. No hints for any $CP$ violating effects in the resonant substructure of $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$ are found.
SU (2|1) mechanics and harmonic superspace
NASA Astrophysics Data System (ADS)
Ivanov, E.; Sidorov, S.
2016-03-01
We define the worldline harmonic {SU}(2| 1) superspace and its analytic subspace as a deformation of the flat { N }=4,d=1 harmonic superspace. The harmonic superfield description of the two mutually mirror off-shell ({4},{4},{0}){SU}(2| 1) supermultiplets is developed and the corresponding invariant actions are presented, as well as the relevant classical and quantum supercharges. Whereas the σ-model actions exist for both types of the ({4},{4},{0}) multiplet, the invariant Wess-Zumino term can be defined only for one of them, thus demonstrating non-equivalence of these multiplets in the {SU}(2| 1) case as opposed to the flat { N }=4,d=1 supersymmetry. A superconformal subclass of general {SU}(2| 1) actions invariant under the trigonometric-type realizations of the supergroup D(2,1;α ) is singled out. The superconformal Wess-Zumino actions are shown to possess an infinite-dimensional supersymmetry forming the centerless { N }=4 super Virasoro algebra. We solve a few simple instructive examples of the {SU}(2| 1) supersymmetric quantum mechanics of the ({4},{4},{0}) multiplets and reveal the {SU}(2| 1) representation contents of the corresponding sets of the quantum states.
Effective SU(2) theory for the pseudogap state
NASA Astrophysics Data System (ADS)
Montiel, X.; Kloss, T.; Pépin, C.
2017-03-01
This paper exposes in a detailed manner the recent findings about the SU(2) scenario for the underdoped phase of the cuprate superconductors. The SU(2) symmetry is formulated as a rotation between the d -wave superconducting (SC) phase and a d -wave charge order. We define the operators responsible for the SU(2) rotations and we derive the nonlinear σ model associated with it. In this framework, we demonstrate that SU(2) fluctuations are massless in finite portions of the Brillouin zone corresponding to the antinodal regions (0 ,π ) and (π ,0 ). We argue that the presence of SU(2) fluctuations in the antinodal region leads to the opening of Fermi arcs around the Fermi surface and to the formation of the pseudogap. Moreover, we show that SU(2) fluctuations lead, in turn, to the emergence of a finite momentum SC order—or pair density wave (PDW)—and more importantly to a new kind of excitonic particle-hole pairs liquid, the resonant excitonic state (RES), which is made of patches of preformed particle-hole pairs with multiple momenta. When the RES liquid becomes critical, we demonstrate that electronic scattering through the critical modes leads to anomalous transport properties. This new finding can account for the strange metal (SM) phase at finite temperature, on the right-hand side of the SC dome, shedding light on another notoriously mysterious part of the phase diagram of the cuprates.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
NASA Astrophysics Data System (ADS)
Stavinskiy, A. V.
2017-09-01
A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.
Mignaco, J.A.; Wulck, S.
1989-03-27
We show that a classical soliton for the nonlinear Su(2) sigma model in the hedgehog configuration admits a stable solution, when quantized through collective coordinates, which may be identified with the nucleon. The whole approach depends on a single, dimensional, and arbitrary constant. Numerical results seem to converge for the mass and for the right value of the weak axial-vector coupling.
Nathan Isgur
1997-03-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.
NASA Astrophysics Data System (ADS)
Baumann, Daniel; Green, Daniel
2011-04-01
We present a field theory solution to the eta problem. By making the inflaton field the phase of a baryon of SU( N c ) supersymmetric Yang-Mills theory we show that all operators that usually spoil the flatness of the inflationary potential are absent. Our solution naturally generalizes to non-supersymmetric theories.
Lifting SU(2) spin networks to projected spin networks
Dupuis, Maiete; Livine, Etera R.
2010-09-15
Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.
Spontaneous baryogenesis without baryon isocurvature
NASA Astrophysics Data System (ADS)
De Simone, Andrea; Kobayashi, Takeshi
2017-02-01
We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.
Condensation of Embedded Monopoles in SU(2) Gauge Theory
NASA Astrophysics Data System (ADS)
Rajput, B. S.; Kumar, Sandeep
2011-08-01
Extending the Restricted Chromo dynamics (RCD) and exploring the role of quark monopoles (i.e. embedded monopoles) in restoration of chiral symmetry in SU(2) gauge theory, it has been shown that these monopoles play very important part in confining properties including color superconductivity.
Butterfly Floquet Spectrum in Driven SU(2) Systems
Wang Jiao; Gong Jiangbin
2009-06-19
The Floquet spectrum of a class of driven SU(2) systems is shown to display a butterfly pattern with multifractal properties. The level crossing between Floquet states of the same parity or different parities is studied. The results are relevant to studies of fractal statistics, quantum chaos, coherent destruction of tunneling, and the validity of mean-field descriptions of Bose-Einstein condensates.
SU(2) gauge symmetry in gravity phase space
NASA Astrophysics Data System (ADS)
Cianfrani, Francesco
2012-05-01
The Hamiltonian formulation of the Holst action in vacuum and in the presence of matter fields is analyzed in a generic local Lorentz frame. It is elucidated how the SU(2) gauge symmetry is inferred by reducing the set of constraints to a first-class one. The consequences of the proposed approach for Loop Quantum Gravity and Spin Foam models are discussed.
Geometrical clusterization of Polyakjov loops in SU(2) lattice gluodynamics
NASA Astrophysics Data System (ADS)
Ivanytskyi, A.; Bugaev, K.; Nikonov, E.; Ilgenfritz, E.-M.; Oliinychenko, D.; Sagun, V.; Mishustin, I.; Petrov, V.; Zinovjev, G.
2017-01-01
The liquid droplet formula is applied to an analysis of the properties of geometrical (anti)clusters formed in SU(2) gluodynamics by the Polyakov loops of the same sign. Using this approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while the droplet of another liquid (the next to the largest cluster of the opposite sign of Polyakov loop) evaporates. The clusters of smaller sizes form two accompanying gases, which behave oppositely to their liquids. The liquid droplet formula is used to analyze the size distributions of the gas (anti)clusters. The fit of these distributions allows us to extract the temperature dependence of surface tension and the value of Fisher topological exponent τ for both kinds of gaseous clusters. It is shown that the surface tension coefficient of gaseous (anti)clusters can serve as an order parameter of the deconfinement phase transition in SU(2) gluodynamics. The Fisher topological exponent τ of (anti)clusters is found to have the same value 1.806 ± 0.008. This value disagrees with the famous Fisher droplet model, but it agrees well with an exactly solvable model of the nuclear liquid-gas phase transition. This finding may evidence for the fact that the SU(2) gluodynamics and this exactly solvable model of nuclear liquid-gas phase transition are in the same universality class.
Beyond the Schwinger boson representation of the su(2)-algebra
NASA Astrophysics Data System (ADS)
Tsue, Yasuhiko; Providência, Constança; da Providência, João; Yamamura, Masatoshi
2015-04-01
With the use of two kinds of boson operators, a new boson representation of the su(2)-algebra is proposed. The basic idea comes from the pseudo su(1,1)-algebra recently given by the present authors [Y. Tsue et al., Prog. Theor. Exp. Phys. 2013, 103D04 (2013)]. It forms a striking contrast to the Schwinger boson representation of the su(2)-algebra, which is also based on two kinds of bosons. It is proved that this new boson representation obeys the su(2)-algebra in a certain subspace in the whole boson space constructed by the Schwinger boson representation of the su(1,1)-algebra. This representation may be suitable for describing the time dependence of the system interacting with the external environment in the framework of the thermo field dynamics formalism, i.e., phase space doubling. Further, several deformations related to the su(2)-algebra in this boson representation are discussed. On the basis of these deformed algebras, various types of time evolution of a simple boson system are investigated.
Studying time-like baryonic transitions with HADES
NASA Astrophysics Data System (ADS)
Ramstein, B.
2016-05-01
Recent results of the HADES collaboration are presented with emphasis on the e+e- production in elementary reactions. Via the Dalitz decay of baryonic resonances (R →Ne+e-), access is given to the time-like electromagnetic structure of baryonic transitions. This process could be measured for the first time for Δ(1232) in pp reactions at 1.25 GeV. At higher energies, the sensitivity of e+e- emission to transition form factors of the Vector Dominance type has been demonstrated. Very recently, experiments with the GSI pion beam started, allowing for more direct studies of baryonic resonances Dalitz decays. In addition, the measurement of hadronic channels provides a new data base for baryon spectroscopy issues, in particular in the 2πN channel.
Dirac's Covariant Constraint Dynamics Applied to the Baryon Spectrum
NASA Astrophysics Data System (ADS)
Whitney, Joshua; Crater, Horace
2010-02-01
A baryon is a hadron containing three quarks in a combination of up, down, strange, charm, or bottom. For prediction of the baryon energy spectrum, a baryon is modeled as a three-body system with the interacting forces coming from a set of two-body potentials that depend on the distance between the quarks, the spin-spin and spin-orbit angular momentum coupling terms, and a tensor term. Techniques and equations are derived from Todorov's work on constraint dynamics and the quasi-potential equation together with Two Body Dirac equations developed by Crater and Van Alstine, and adapted to this specific problem by further use of Sazdjian's N-body constraints dynamics for general confined systems. Baryon spectroscopy results are presented and compared with experiment. Typically, a best fit method is used in the analyses that employ several different algorithms, including a gradient approach, Monte Carlo modeling, and simulated annealing methods. )
David Richards
2004-10-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.
Baryons with functional methods
NASA Astrophysics Data System (ADS)
Fischer, Christian S.
2017-01-01
We summarise recent results on the spectrum of ground-state and excited baryons and their form factors in the framework of functional methods. As an improvement upon similar approaches we explicitly take into account the underlying momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. For light octet and decuplet baryons we find a spectrum in very good agreement with experiment, including the level ordering between the positive- and negative-parity nucleon states. Comparing the three-body framework with the quark-diquark approximation, we do not find significant differences in the spectrum for those states that have been calculated in both frameworks. This situation is different in the electromagnetic form factor of the Δ, which may serve to distinguish both pictures by comparison with experiment and lattice QCD.
NASA Astrophysics Data System (ADS)
Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru
2007-04-01
We study baryons in holographic QCD with D4/D8/D8¯ multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8¯ holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and ρ mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large Nc, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and ρ-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the ρ-meson profile G˜(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without ρ mesons. We analyze interaction terms of pions and ρ mesons in brane-induced Skyrmion, and find a significant ρ-meson component appearing in the core region of a baryon.
Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru
2007-04-15
We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
Haidenbauer, Johann
2011-10-24
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
NASA Astrophysics Data System (ADS)
Haidenbauer, Johann
2011-10-01
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.
Loops in SU(2), Riemann Surfaces, and Factorization, I
NASA Astrophysics Data System (ADS)
Basor, Estelle; Pickrell, Doug
2016-03-01
In previous work we showed that a loop g\\colon S^1 to SU(2) has a triangular factorization if and only if the loop g has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and its double. One ingredient is the theory of generalized Fourier-Laurent expansions developed by Krichever and Novikov. We show that a SU(2) valued multiloop having an analogue of a root subgroup factorization satisfies the condition that the multiloop, viewed as a transition function, defines a semistable holomorphic SL(2,C) bundle. Additionally, for such a multiloop, there is a corresponding factorization for determinants associated to the spin Toeplitz operators defined by the multiloop.
Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics
NASA Astrophysics Data System (ADS)
Ivanytskyi, A.; Bugaev, K.; Nikonov, E.; Ilgenfritz, E.-M.; Oliinychenko, D.; Sagun, V.; Mishustin, I.; Zinovjev, G.; Petrov, V.
2017-03-01
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign and to study their properties in the lattice SU(2) gluodynamics is developed. The (anti)cluster size distributions are analyzed for the lattice coupling constant β ∈ 2 [2:3115; 3]. The found distributions are similar to the ones existing in 2- and 3-dimensional Ising systems. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics at β = 2.52 as a transition between two liquids during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, which behave oppositely to their liquids. The liquid drop formula is used to analyze the distributions of the gas (anti)clusters and to determine their bulk, surface and topological parts of free energy. Surprisingly, even the monomer multiplicities are reproduced with high quality within such an approach. The behavior of surface tension of gaseous (anti)clusters is studied. It is shown that this quantity can serve as an order parameter of the deconfinement phase transition in SU(2) gluodynamics. Moreover, the critical exponent β of surface tension coefficient of gaseous clusters is found in the upper vicinity of critical temperature. Its value coincides with the one found for 3-dimensional Ising model within error bars. The Fisher topological exponent τ of (anti)clusters is found to have the same value 1:806±0:008, which agrees with an exactly solvable model of the nuclear liquid-gas phase transition and disagrees with the Fisher droplet model, which may evidence for the fact that the SU(2) gluodynamics and the model are in the same universality class.
SU(2/1) gauge-Higgs unification
NASA Astrophysics Data System (ADS)
Loginov, E. K.
2016-06-01
We discuss a question whether the observed Weinberg angle and Higgs mass are calculable in the formalism based on a construction in which the electroweak gauge group SU(2) × U(1)Y is embedded in the graded Lie group SU(2/1). Here, we follow original works of Ne’eman and Fairlie believing that bosonic fields take their values in the Lie superalgebra and fermionic fields take their values in its representation space. At the same time, our approach differs significantly. The main one is that while for them the gauge symmetry group is SU(2/1), here we consider only symmetries generated by its even subgroup, i.e. symmetries of the standard electroweak model. The reason is that such formalism fixes the quartic Higgs coupling and at the same time removes the sign and statistics problems. The main result is that the presented model predicts values of the Weinberg angle and the Higgs mass correctly up to the two-loop level. Moreover, the model sets the unification scale coinciding with the electroweak scale and automatically describes the fermions correctly with the correct quark and lepton charges.
Quantum indistinguishability from general representations of SU(2n)
NASA Astrophysics Data System (ADS)
Harrison, J. M.; Robbins, J. M.
2004-04-01
A treatment of the spin-statistics relation in nonrelativistic quantum mechanics due to Berry and Robbins [Proc. R. Soc. London Ser. A 453, 1771-1790 (1997)] is generalized within a group-theoretical framework. The construction of Berry and Robbins is reformulated in terms of certain locally flat vector bundles over n-particle configuration space. It is shown how families of such bundles can be constructed from irreducible representations of the group SU(2n). The construction of Berry and Robbins, which leads to a definite connection between spin and statistics (the physically correct connection), is shown to correspond to the completely symmetric representations. The spin-statistics connection is typically broken for general SU(2n) representations, which may admit, for a given value of spin, both Bose and Fermi statistics, as well as parastatistics. The determination of the allowed values of the spin and statistics reduces to the decomposition of certain zero-weight representations of a (generalized) Weyl group of SU(2n). A formula for this decomposition is obtained using the Littlewood-Richardson theorem for the decomposition of representations of U(m+n) into representations of U(m)×U(n).
Solitonic solutions of the SU(2) Nambu-Jona-Lasinio model with σ, π, ρ, A1 and ω mesons
NASA Astrophysics Data System (ADS)
Döring, F.; Schüren, C.; Arriola, E. Ruiz; Goeke, K.
1993-01-01
We present the first solitonic solutions of the SU(2) Nambu-Jona-Lasinio model including σ, π, ρ, A1 and ω mesons for hedgehog configurations on the chiral circle. The lagrangian incorporates Sakurai's universality and vector meson dominance by means of current-field identities. In order to fix the parameters of the lagrangian we make use of the full momentum dependent mesonic two point functions in the one quark loop approximation. For reasonable values of the consistuent quark mass we find that solitons exist provided that mω>870 MeV. In addition, whether the baryon number is carried by valence quarks or by the Dirac sea, depends strongly on the particular values of the constituent quark mass and the ω meson mass.
Baryon and chiral symmetry breaking
Gorsky, A.; Krikun, A.
2014-07-23
We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.
Baryon stopping probes deconfinement
NASA Astrophysics Data System (ADS)
Wolschin, Georg
2016-08-01
Stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions are reconsidered with the aim to find indications for the transition from hadronic to partonic processes. At energies reached at the CERN Super Proton Synchrotron ( √{s_{NN}} = 6.3-17.3 GeV) and at RHIC (62.4 GeV) the fragmentation-peak positions as obtained from the data depend linearly on the beam rapidity and are in agreement with earlier results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10GeV. In contrast, the mean rapidity loss is predicted to depend linearly on the beam rapidity only at high energies beyond the RHIC scale. The combination of both results offers a clue for the transition from hard partonic to soft hadronic processes in baryon stopping. NICA results could corroborate these findings.
Holographic Baryons and Instanton Crystal
NASA Astrophysics Data System (ADS)
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated ADHM construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review we summarize the known results on the construction and phases of crystals of the holographic baryons.
Holographic baryons and instanton crystals
NASA Astrophysics Data System (ADS)
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2015-06-01
In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-Abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review, we summarize the known results on the construction and phases of crystals of the holographic baryons.
Pair production in strong SU(2) background fields
NASA Astrophysics Data System (ADS)
Jia, Mo-Ran; Li, Zi-Liang; Lv, Chong; Wan, Feng; Xie, Bai-Song
2017-10-01
Fermion particle pair production in strong SU(2)-gauge chromoelectric fields is studied using the Boltzmann-Vlasov equation in a classical way. The existence of a preproduction process in a classical description is shown using the distribution evolution of non-Abelian particle production. It is interesting to find that the distribution of the particle number density is centered on two islands and shows a split on the color charge sphere as it evolves, ultimately reaching a steady state that is related to the amplitude and variation of the field.
Baryon magnetic moments and baryon masses in QCD
NASA Astrophysics Data System (ADS)
Ha, Phuoc Dai
1999-11-01
This thesis is concerned with baryon structure in QCD, mainly the theory of the baryon magnetic moments and baryon masses. I derived the usual quark model for the moments with corrections for the binding of the quarks analytically in a quenched Wilson-loop approach to QCD, and have successfully built a loop expansion approach to get beyond the quenched approximation. This theory of the baryon magnetic moments (octet, decuplet and transition) uses only three parameters, the effective quark moments μu, μ s, and a wave function parameter λ which is constrained by theory and experiment. It fits the moments much better than other models. I extend the loop expansion approach to the study of the baryon masses from the quark model, and find that the masses in the baryon octet and decuplet are very well described. The reliability of the form factors used to describe to compositeness of the hadrons is discussed. A detailed study of the structure of the loop corrections show that they contain terms with the tree level structure of the baryon masses, and a left over component coming from the quark spin-spin exchange interaction that is responsible for the violations of the Gell-Mann - Okubo mass relations.
Instanton-mediated baryon number violation in non-universal gauge extended models
NASA Astrophysics Data System (ADS)
Fuentes-Martín, J.; Portolés, J.; Ruiz-Femenía, P.
2015-01-01
Instanton solutions of non-abelian Yang-Mills theories generate an effective action that may induce lepton and baryon number violations, namely Δ B = Δ L = n f , being n f the number of families coupled to the gauge group. In this article we study instanton mediated processes in a SU(2) ℓ ⊗SU(2) h ⊗U(1) extension of the Standard Model that breaks universality by singularizing the third family. In the construction of the instanton Green functions we account systematically for the inter-family mixing. This allows us to use the experimental bounds on proton decay in order to constrain the gauge coupling of SU(2) h . Tau lepton non-leptonic and radiative decays with Δ B = Δ L = 1 are also analysed.
Random SU(2)-symmetric spin-S chains
NASA Astrophysics Data System (ADS)
Quito, V. L.; Hoyos, José A.; Miranda, E.
2016-08-01
We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.
Jung, C.; Ziemniak, E.; Carvajal, M.; Frank, A.; Lemus, R.
2001-09-01
While Hamiltonians written in terms of position and momentum provide a transparent picture of the motion of a system, Hamiltonians written in terms of Lie algebras are easier to handle quantum mechanically. Therefore we are interested to know how to transform one into the other. Since the exact transformation often leads to complicated expressions, we look for approximations which preserve the essential features. As basic criterion we look for the degree of equality of the classical phase space structures. We illustrate our ideas for the case of two coupled Morse systems and its approximation in terms of the Lie algebra su(2), which is relevant to anharmonic models of molecular spectroscopy. (c) 2001 American Institute of Physics.
Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality
NASA Astrophysics Data System (ADS)
Boucenna, Sofiane M.; Celis, Alejandro; Fuentes-Martín, Javier; Vicente, Avelino; Virto, Javier
2016-12-01
We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b → cℓν and b → sℓ + ℓ - decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2)1 × SU(2)2 × U(1) Y which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector-like fermions give rise to potentially large new physics contributions in flavour transitions mediated by W' and Z' bosons. This model can ease tensions in B-physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios R M = Γ( B → M μ + μ -) /Γ( B → Me + e -), with M = K * , ϕ, are found to be reduced with respect to the Standard Model expectation R M ≃ 1.
Baryon spectroscopy with polarization observables from CLAS
Strauch, Steffen
2016-11-01
The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results will be given.
Baryon Spectroscopy and the Constituent Quark Model
A.W. Thomas; R.D. Young
2005-07-26
We explore further the idea that the lattice QCD data for hadron properties in the region m[^2][_pi] > 0.2GeV^2 can be described by the constituent quark model. This leads to a natural explanation of the fact that nucleon excited states are generally stable for pion masses greater than their physical excitation energies. Finally, we apply these same ideas to the problem of how pentaquarks might behave in lattice QCD, with interesting conclusions.
Baryon Spectroscopy with Polarization Observables from CLAS
NASA Astrophysics Data System (ADS)
Strauch, Steffen
2016-10-01
The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer. These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results will be given.
Stochastic isocurvature baryon fluctuations, baryon diffusion, and primordial nucleosynthesis
Kurki-Suonio, H.; Jedamzik, K.; Mathews, G.J.
1997-04-01
We examine effects on primordial nucleosynthesis from a truly random, one-dimensional spatial distribution in the baryon-to-photon ratio ({eta}). We generate stochastic fluctuation spectra characterized by different spectral indices and rms fluctuation amplitudes. For the first time we explicitly calculate the effects of baryon diffusion on the nucleosynthesis yields of such stochastic fluctuations. We also consider the collapse instability of large mass scale inhomogeneities. Our results are generally applicable to any primordial mechanism producing fluctuations in {eta} which can be characterized by a spectral index. In particular, these results apply to primordial isocurvature baryon fluctuation (PIB) models. The amplitudes of fluctuations that are scale-invariant in baryon fluctuation (PIB) models. The amplitudes of fluctuations that are scale-invariant in baryon density are found to be severely constrained by primordial nucleosynthesis. However, when the {eta} distribution is characterized by decreasing fluctuation amplitudes with increasing length scale, surprisingly large fluctuation amplitudes on the baryon diffusion scale are allowed. {copyright} {ital 1997} {ital The American Astronomical Society}
Dynamic SU(2) structure from seven-branes
Heidenreich, Ben; McAllister, Liam; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2010-12-16
We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.
Implementing the SU(2) Symmetry for the DMRG
NASA Astrophysics Data System (ADS)
Alvarez, Gonzalo
2010-03-01
In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992), Hamiltonian symmetries play an important role. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This talk will explain how the DMRG++ codefootnotetextarXiv:0902.3185 or Computer Physics Communications 180 (2009) 1572-1578. has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries will be discussed for typical tight-binding models of strongly correlated electronic systems. The computational bottleneck of the algorithm, and the use of shared memory parallelization will also be addressed. Finally, a roadmap for future work on DMRG++ will be presented.
Exact correlation functions in SU(2) N=2 superconformal QCD.
Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos
2014-12-19
We report an exact solution of 2- and 3-point functions of chiral primary fields in SU(2) N=2 super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions are nontrivial functions of the gauge coupling, obeying differential equations which take the form of the semi-infinite Toda chain. We solve these equations recursively in terms of the Zamolodchikov metric that can be determined exactly from supersymmetric localization on the four-sphere. Our results are verified independently in perturbation theory with a Feynman diagram computation up to 2 loops. This is a short version of a companion paper that contains detailed technical remarks, additional material, and aspects of an extension to the SU(N) gauge group.
Bases for qudits from a nonstandard approach to SU(2)
NASA Astrophysics Data System (ADS)
Kibler, M. R.
2011-06-01
Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1 + p) p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1 + p mutually unbiased bases in C p . Repeated application of the formula can be used for generating mutually unbiased bases in C d with d = p e ( e ≥ 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU( d) is briefly discussed in the case d = p e .
Fast quantum state engineering via universal SU(2) transformation
NASA Astrophysics Data System (ADS)
Huang, Bi-Hua; Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan
2017-08-01
We introduce a simple yet versatile protocol to inverse engineer the time-dependent Hamiltonian in two- and three-level systems. In the protocol, by utilizing a universal SU(2) transformation, a given speedup goal can be obtained with large freedom to select the control parameters. As an illustration example, the protocol is applied to perform population transfer between nitrogen-vacancy (NV) centers in diamond. Numerical simulation shows that the speed of the present protocol is fast compared with that of the adiabatic process. Moreover, the protocol is also tolerant to decoherence and experimental parameter fluctuations. Therefore, the protocol may be useful for designing an experimental feasible Hamiltonian to engineer a quantum system.
Bases for qudits from a nonstandard approach to SU(2)
Kibler, M. R.
2011-06-15
Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1 + p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1 + p mutually unbiased bases in C{sup p}. Repeated application of the formula can be used for generating mutually unbiased bases in C{sup d} with d = p{sup e} (e {>=} 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p{sup e}.
SU(2) x U(1) vacuum and the Centauro events
NASA Technical Reports Server (NTRS)
Kazanas, D.; Balasubrahmanyan, V. K.; Streitmatter, R. E.
1985-01-01
It is proposed that the fireballs invoked to explain the Centauro events are bubbles of a metastable superdense state of nuclear matter, created in high energy (E approximately 10 to the 15th power eV) cosmic ray collisions at the top of the atmosphere. If these bubbles are created with a Lorentz factor gamma approximately equals 10 at their CM frame, the objections against the origin of these events in cosmic ray interactions are overcome. A relationship then between their lifetime, tau, and the threshold energy for bubble formation, E sub th, appears to be insensitive to the value of tau and always close to E sub th approximately 10 to 15th power eV. Finally it is speculated that these bubbles might be manifestations of the SU(2) x U(1) false vacuum excited in these collisions. The absence of in the Centauro events is then explained by the decay modes of these excitations.
Spectrum and Structure of Excited Baryons with CLAS
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2017-01-01
In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator. Talk presented at the CRC-16 Symposium, Bonn University, June 6-9, 2016.
Baryonic Operators for Lattice Simulations
R. Edwards; R. Fiebig; G. Fleming; U.M. Heller; C. Morningstar; D. Richards; I. Sato; S. Wallace
2004-03-01
The construction of baryonic operators for determining the N* excitation spectrum is discussed. The operators are designed with one eye towards maximizing overlaps with the low-lying states of interest, and the other eye towards minimizing the number of sources needed in computing the required quark propagators. Issues related to spin identification are outlined. Although we focus on tri-quark baryon operators, the construction method is applicable to both mesons and penta-quark operators.
Excitations of strange bottom baryons
NASA Astrophysics Data System (ADS)
Woloshyn, R. M.
2016-09-01
The ground-state and first-excited-state masses of Ωb and Ω_{bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.
Galaxy Cluster Baryon Fractions Revisited
NASA Astrophysics Data System (ADS)
Gonzalez, Anthony H.; Sivanandam, Suresh; Zabludoff, Ann I.; Zaritsky, Dennis
2013-11-01
We measure the baryons contained in both the stellar and hot-gas components for 12 galaxy clusters and groups at z ~ 0.1 with M = 1-5 × 1014 M ⊙. This paper improves upon our previous work through the addition of XMM-Newton X-ray data, enabling measurements of the total mass and masses of each major baryonic component—intracluster medium, intracluster stars, and stars in galaxies—for each system. We recover a mean relation for the stellar mass versus halo mass, M_{\\star }\\propto M_{500}^{-0.52+/- 0.04}, that is 1σ shallower than in our previous result. We confirm that the partitioning of baryons between the stellar and hot-gas components is a strong function of M 500; the fractions of total mass in stars and X-ray gas within a sphere of radius r 500 scale as f_{\\star }\\propto M_{500}^{-0.45+/- 0.04} and f_{gas}\\propto M_{500}^{0.26+/- 0.03}, respectively. We also confirm that the combination of the brightest cluster galaxy and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. Studies that fail to fully account for intracluster stars typically underestimate the normalization of the stellar baryon fraction versus M 500 relation by ~25%. Our derived stellar baryon fractions are also higher, and the trend with halo mass weaker, than those derived from recent halo occupation distribution and abundance matching analyses. One difference from our previous work is the weak, but statistically significant, dependence here of the total baryon fraction upon halo mass: f_{bary}\\propto M_{500}^{0.16+/- 0.04}. For M 500 >~ 2 × 1014, the total baryon fractions within r 500 are on average 18% below the universal value from the seven year Wilkinson Microwave Anisotropy Probe (WMAP) analysis, or 7% below for the cosmological parameters from the Planck analysis. In the latter case, the difference between the universal value and cluster baryon fractions is less than the systematic uncertainties associated with
The baryonic susceptibility near critical temperature
Lin Shu
2010-08-05
We discuss the role of quarks and baryons near the QCD phase transition. The former is modelled in the spirit of PNJL model, while the latter is splitted into two classes: 'stringy' and 'non-stringy' baryons. We represent the non-stringy baryons by a sum over the resonance on equal footing, and obtain the density of states of stringy baryons from string inspired model at finite-T. Our model produce a rise and fall of baryonic contribution to the susceptibility, which is in qualitative agreement with lattice results. We also discuss the chiral effect on the baryonic mass and susceptibility.
Quantum spin Hamiltonians for the SU(2)k WZW model
NASA Astrophysics Data System (ADS)
Nielsen, Anne E. B.; Cirac, J. Ignacio; Sierra, Germán
2011-11-01
We propose to use null vectors in conformal field theories to derive model Hamiltonians of quantum spin chains and the corresponding ground state wavefunction(s). The approach is quite general, and we illustrate it by constructing a family of Hamiltonians whose ground states are the chiral correlators of the SU(2)k WZW model for integer values of the level k. The simplest example corresponds to k = 1 and is essentially a nonuniform generalization of the Haldane-Shastry model with long-range exchange couplings. At level k = 2, we analyse the model for N spin 1 fields. We find that the Renyi entropy and the two-point spin correlator show, respectively, logarithmic growth and algebraic decay. Furthermore, we use the null vectors to derive a set of algebraic, linear equations relating spin correlators within each model. At level k = 1, these equations allow us to compute the two-point spin correlators analytically for the finite chain uniform Haldane-Shastry model and to obtain numerical results for the nonuniform case and for higher-point spin correlators in a very simple way and without resorting to Monte Carlo techniques.
Topological limit of gravity admitting an SU(2) connection formulation
NASA Astrophysics Data System (ADS)
Liu, Lihui; Montesinos, Merced; Perez, Alejandro
2010-03-01
We study the Hamiltonian formulation of the generally covariant theory defined by the Lagrangian 4-form L=eI∧eJ∧FIJ(ω), where eI is a tetrad field and FIJ is the curvature of a Lorentz connection ωIJ. This theory can be thought of as the limit of the Holst action for gravity for the Newton constant G→∞ and Immirzi parameter γ→0, while keeping the product Gγ fixed. This theory has for a long time been conjectured to be topological. We prove this statement both in the covariant phase space formulation as well as in the standard Dirac formulation. In the time gauge, the unconstrained phase space of theory admits an SU(2) connection formulation which makes it isomorphic to the unconstrained phase space of gravity in terms of Ashtekar-Barbero variables. Among possible physical applications, we argue that the quantization of this topological theory might shed new light on the nature of the degrees of freedom that are responsible for black entropy in loop quantum gravity.
SU(2) x U(1) vacuum and the Centauro events
NASA Technical Reports Server (NTRS)
Kazanas, D.; Balasubrahmanyan, V. K.; Streitmatter, R. E.
1984-01-01
It is proposed that the fireballs invoked to explain the Centauro events are bubbles of a metastable superdense state of nuclear matter, created in high energy (E is approximately 10 to the 15th power eV) cosmic ray collisions at the top of the atmosphere. If these bubbles are created with a Lorentz factor gamma approximately = 10 at their CM frame, the objections against the origin of these events in cosmic ray interactions are overcome. Assuming further, that the Centauro events are to the explosive decay of these metastable bubbles, a relationship between their lifetime, tau, and the threshold energy for bubble formation, E sub th, is derived. The minimum lifetime consistent with such an interpretation in tau is approximately 10 to the -8th power sec, while the E sub th appears to be insensitive to the value of tau and always close to E sub th is approximately 10 to the 15th power eV. Finally it is speculated that if the available CM energy is thermalized in such collisions, these bubbles might be manifestations of excitations of the SU(2) x U(1) false vacuum. The absence of neutral pions in the Centauro events is then explained by the decay of these excitations.
Strange Baryon Physics in Full Lattice QCD
Huey-Wen Lin
2007-11-01
Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles.
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
NASA Astrophysics Data System (ADS)
Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram
2017-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
On the Parity Degeneracy of Baryons
NASA Astrophysics Data System (ADS)
Kirchbach, M.
The gross features of the observed baryon excitation spectrum below 2 GeV are well explained if the spectrum generating algebra of its intrinsic orbital angular momentum states is o(4) ⊗ su(2)I. The spins of the resonances are obtained through the coupling of a Lorentz bi-spinor {1/2,0} ⊕ {0,1/2} to a multiplet of the type {j,j} in its O(4)/O(3) reduction. The parities of the resonances follow from those of the O(3) members of the {j,j} multiplets. In this way relativistic SL(2,C) representations are constructed. For example, the first S11, P11, and D13 states with masses around 1500 MeV fit into the {1/2,1/2} ⊗ [{1/2,0} ⊕ {0,1/2}] representation. The observed parities of the resonances correspond to natural parities of the {1/2,1/2} states. The second P11, S11, D13 — together with the first P13, F15, D15, and (a predicted) F17-resonances, centered around 1700 MeV, are organized into the {3/2,3/2} ⊗ [{1/2,0} ⊕ {0,1/2}] representation. We argue that the members of the {3/2,3/2} multiplet carry unnatural parities and that in this region chiral symmetry is restored. In the N(939)→ N(1650) transition the chiral symmetry mode is changed, and therefore, a chiral phase transition is predicted to take place.
Some Advantages of SUSY SU(4)×SU(2)L×SU(2)R Model in String Inspired SO(10) Gut's
NASA Astrophysics Data System (ADS)
Murayama, Akihiro
A D-parity violated SUSY SU(4)×SU(2)L×SU(2)R gauge model with the Higgs sector 2\\{(4, 1, 2) +({bar 4}, 1, 2)\\} +(1, 2, 2) + some (1, 1, 1)'s is shown to have the following advantages: (i) It is a very simple solution that satisfies MX=Mstring≈0.5 × 1018 GeV and MINT≈ 5 × 1011 GeV in superstring inspired SO(10) GUT's. (ii) The proton is stable by the automatic "doublet-triplet splitting" closely connected with the D-parity violation. (iii) The minimization of SUSY one-loop effective potential in a toy model suggests that the SO(10) gauge theory tends to break dynamically down to the SU(4)×SU(2)L×SU(2)R model.
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Mizrahi, Salomon S.; Bernardini, Alex E.
2015-04-01
The entanglement between SU(2) ⊗ SU(2) internal degrees of freedom of parity and helicity for reflected and transmitted waves of Dirac-like particles scattered by a potential step along an arbitrary direction on the x- y plane is quantified. Diffusion (E ≥ V) and Klein zone (V ≥ E) energy regimes are considered. It has been shown that, for SU(2) ⊗ SU(2) polarized structures of helicity eigenstates impinging the barrier, the local interaction with a step potential destroys the parity-spin separability. The framework presented here can be straightforwardly translated into a useful theoretical tool for obtaining the spin-spin entanglement in the context of enlarged scenarios of nonrelativistic 2 D systems, as for instance those for describing single layer graphene, or even single trapped ions with Dirac bi-spinor mathematical structure.
First observation of doubly charmed baryons
M. A. Moinester et al.
2003-09-25
The SELEX experiment (E781) at Fermilab has observed two statistically compelling high mass states near 3.6 GeV/c{sup 2}, decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +} and {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}. These final states are Cabibbo-allowed decay modes of doubly charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}, respectively. The masses are in the range expected from theoretical considerations, but the spectroscopy is surprising. SELEX also has weaker preliminary evidence for a state near 3.8 GeV/c{sup 2}, a high mass state decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}, possibly an excited {Xi}{sub cc}{sup ++} (ccu*). Data are presented and discussed.
Constraints on general SU(2)/sub L/ x SU(2)/sub R/ x U(1) electroweak models from nuclear beta decay
Herczeg, P.
1986-01-01
The implications of beta-decay experiments for more general versions of SU(2)/sub L/ x SU(2)/sub R/ x U(1) models are analyzed, including the most general one which allows for CP-violation, unequal left- and right-handed quark mixing angles, and mixing in the leptonic sector. For each scenario, the constraints on the pertinent parameters from beta-decay measurements are compared with the constraints provided on them by other data.
Predictions for Excited Strange Baryons
Fernando, Ishara P.; Goity, Jose L.
2016-04-01
An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.
Glueball-baryon interactions in holographic QCD
NASA Astrophysics Data System (ADS)
Li, Si-Wen
2017-10-01
Studying the Witten-Sakai-Sugimoto model with type IIA string theory, we find the glueball-baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball-baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball-baryon interaction as ;graviton-instanton; interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball-baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are ;scalar and tensor glueball interacting with baryons;. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.
Anomaly-free version of SU(2)U(1)U(1)/sup '/
Ponce, W.A.
1987-08-01
The most general anomaly-free version of the SU(2) x U(1) x U(1)' local gauge-invariant model is presented here, for two different Higgs structures (the minimal ones), as an extension of the SU(2) x U(1) Glashow-Weinberg-Salam model.
Extremal vectors for Verma-type representations of su(2, 2)
Burdik, C.; Navratil, O.
2013-08-15
Starting from the Verma modules of the algebra sl(4, Double-Struck-Capital-C ) we explicitly construct factor representations of the algebra su(2, 2) which are connected with unitary representation of group SU(2, 2). We find a full set of extremal vectors for this kind of representations, so we can solve explicitly the problem of irreducibility of these representations.
Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses
Alan Dunn; Thomas Mehen
2006-10-16
We consider SU(2){sub L} x U(1) gauge invariant generalizations of a nonlocal, Lorentz violating mass term for neutrinos that preserves a SIM(2) subgroup. This induces Lorentz violating effects in QED as well as tree-level lepton family number violating interactions. Measurements of g{sub e} - 2 with trapped electrons severely constrain possible SIM(2) mass terms for electrons which violate C invariance. We study Lorentz violating effects in a C invariant and SIM(2) invariant extension of QED. We examine the Lorentz violating interactions of nonrelativistic electrons with electromagnetic fields to determine their impact on the spectroscopy of hydrogen-like atoms and g{sub e} - 2 measurements with trapped electrons. Generically, Lorentz violating corrections are suppressed by m{sub v}{sup 2}/m{sub e}{sup 2} and are within experimental limits. We study one-loop corrections to electron and photon self-energies and point out the need for a prescription to handle IR divergences induced by the nonlocality of the theory. We also calculate the tree level contribution to {mu} {yields} e + {gamma} from SIM(2) invariant mass terms.
Vector meson-baryon interaction to study dynamical generation of resonances
Khemchandani, K. P.; Hosaka, A.; Kaneko, H.; Nagahiro, H.
2011-10-21
With the motivation to find dynamical generation of resonances, we study vector-meson baryon interaction by taking s-,t-,u-channel diagrams and a contact interaction into account. A comparison of the different contributions obtained from these diagrams is done in the SU(2) limit, which shows that these diagrams could be equally important. We find it worthwhile to pay attention to the structure of the total interaction between the two non-zero spin particles which possess similar masses and find spin dependent interaction similar to the nucleon-nucleon case.
Searching for the missing baryons in clusters.
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-03-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This "missing baryon" puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above ∼5 x 10(13)h(-1)(72)M. This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons.
The status of pentaquark baryons
V.D. Burkert
2006-06-01
The status of the search for peritaquark baryon states is reviewed in light of new results from the first two dedicated experiments from CLAS at Jefferson Lab and of new analyses from several labs on the Theta^+(1540). Evidence for and against the heavier pentaquark states, the Xi(1862) and the Theta^0_c(3100) observed at CERN and at HERA, respectively, are also discussed. I conclude that the evidence against the latter two heavier pentaquark baryons is rapidly increasing making their existence highly questionable. I also conclude that the evidence for the Theta^+ state has significantly eroded with the recent CLAS results, and just leaves room for a possible state with an intrinsic width of Gamma < 0.5 MeV. Preliminary new evidence from various experiments will be discussed as well.
NASA Astrophysics Data System (ADS)
Cuautle, Eleazar; Ayala, Alejandro
2014-05-01
We present a model to compute baryon and meson transverse momentum distributions, and their ratios, in relativistic heavy-ion collisions. The model allows to compute the probability to form colorless bound states of either two or three quarks as functions of the evolving density during the collision. The qualitative differences of the baryon to meson ratio for different collision energies and for different particle species can be associated to the different density dependent probabilities and to the combinatorial factors which in turn depend on whether the quarks forming the bound states are heavy or light. We compare to experimental data and show that we obtain a good description up to intermediate values of pt.
Superqualitons: Baryons in Dense QCD
NASA Astrophysics Data System (ADS)
Hong, Deog Ki
QCD predicts matter at high density should exhibit color superconductivity. We review briefly several pertinent properties of color superconductivity and then discuss how baryons are realized in color superconductors. Especially, we explain an attempt to describe the color-flavor locked quark matter in terms of bosonic degrees of freedom, where the gapped quarks and Fermi sea are realized as Skyrmions, called superqualitons, and Q-matter, respectively.
Decay properties of double heavy baryons
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery; Ivanov, Mikhail A.; Koerner, Juergen G.
2010-08-05
We study the semileptonic decays of double heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.
Hadronic molecules in the heavy baryon spectrum
Entem, D. R.; Fernández, F.; Ortega, P. G.
2016-01-22
We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λ{sub c}(2940) as a D*N molecule with J{sup P} = 3/2{sup −} quantum numbers. We also find D{sup (*)}Δ candidates for the recently discovered X{sub c}(3250) resonance.
Relativistic mean field approximation to baryons
Dmitri Diakonov
2005-02-01
We stress the importance of the spontaneous chiral symmetry breaking for understanding the low-energy structure of baryons. The Mean Field Approximation to baryons is formulated, which solves several outstanding paradoxes of the naive quark models, and which allows to compute parton distributions at low virtuality in a consistent way. We explain why this approach to baryons leads to the prediction of relatively light exotic pentaquark baryons, in contrast to the constituent models which do not take seriously the importance of chiral symmetry breaking. We briefly discuss why, to our mind, it is easier to produce exotic pentaquarks at low than at high energies.
Searching for the missing baryons in clusters
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-01-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229
Baryon semileptonic decays: the Mexican contribution
Flores-Mendieta, Ruben; Martinez, Alfonso
2006-09-25
We give a detailed account of the techniques to compute radiative corrections in baryon semileptonic decays developed over the years by Mexican collaborations. We explain how the method works by obtaining an expression for the Dalitz plot of semileptonic decays of polarized baryons including radiative corrections to order O({alpha}q/{pi}M1), where q is the four-momentum transfer and M1 is the mass of the decaying baryon. From here we compute the totally integrated spin angular asymmetry coefficient of the emitted baryon and compare its value with other results.
BRYNTRN: A baryon transport model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.
1989-01-01
The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.
Baryon-Baryon {8} \\otimes {8}-Channels Interactions
NASA Astrophysics Data System (ADS)
Rijken, Th. A.; Nagels, M. M.; Yamamoto, Y.
The extended-soft-core model ESC08 is presented. The ESC-models are at present the most complete meson-exchange models for the baryon-baryon interactions. The ESC-model describes the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in terms of meson-exchanges using (broken) SU(3)f-symmetry. In this approach to baryon-baryon (BB) the dynamics is derived from (i) one-boson-exchanges (OBE), (ii) two-meson-exchanges (TME), and (iii) meson-pair-exchanges (MPE), (iv) gluon-exchanges in the form of the pomeron and odderon potentials, and (v) quark-core effects. In the OBE-sector, special features are: (a) the inclusion of a zero in the scalar- and axial- meson form-factors, (b) the odderon-exchage representing the exchange of the odd-number gluons-exchange, whereas the pomeron represents the even-number gluon-exchange, and (c) special pronounced effects of the appearance of forbidden six-quark configurations. With these ingredients a rather flexible dynamical framework is constructed. Namely, it appeared feasible to keep the parameters of the model in reasonable accordance with the predictions of the 3P0 quark-pair-creation model (QPC), although in ESC08a,b,c an admixture of 3S1 quark-pair creation is present. This is the case for the meson- and meson-pair-baryon coupling constants and the F/(F+D)-ratio's as well. The NN, YN, and YY results for this model are excellent. This is marked in particularly by the NN-results, namely χ p.d.p.2 = 1.08 for ESC08a,b,c. Also, we improved the ΛN spin-orbit interaction greatly by the inclusion of (a) the Brown, Downs, and Iddings anti-symmetric spin-orbit potentials, and (b) new corrections to the MPE-potentials. Also, the special quark-core effects provide extra repulsion in the Σ+p(3S1, T = 3/2)- and ΣN(1S0, T = 1/2)-channels, although the strength is constrained by SU(3) symmetry and the Σ+p experimental X-sections. In the S = -2 sector the ΛΛ-interaction is weak, which is in accordance with the NAGARA
Isospin Splittings of Doubly Heavy Baryons
Brodsky, Stanley J.; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.
2011-08-18
The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.
Baryon and lepton violation in astrophysics.
NASA Astrophysics Data System (ADS)
Kolb, E. W.
The cosmological and astrophysical significance of baryon and lepton number violating process is the subject of this paper. The possibility of baryon-number violating processes in the electroweak transition in the early universe is reviewed. The implications of lepton-number violation via Nambu-Goldstone bosons are discussed in detail.
Baryon symmetric big bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Salk, S.H.S.; Lee, S.S.
1999-11-01
Based on the U(1) and SU(2) slave-boson approaches to the t-J Hamiltonian, the authors evaluate the one electron spectral functions for the hole doped high {Tc} cuprates for comparison with the angle resolved photoemission spectroscopy (ARPES) data. They find that the observed quasiparticle peak in the superconducting state is correlated with the hump which exists in the normal state. They find that the spectral weight of the quasiparticle peak increases as doping rate increases, which is consistent with observation. As a consequence of the phase fluctuation effects of the spinon and holon pairing order parameters the spectral weight of the predicted peak obtained from the SU(2) theory is found to be smaller than the one predicted from U(1) mean field theory.
Baryon properties in the relativistic quark model
NASA Astrophysics Data System (ADS)
Ebert, D.; Faustov, R. N.; Galkin, V. O.
2017-09-01
Properties of heavy and strange baryons are investigated in the framework of the relativistic quark-diquark picture. It is based on the relativistic quark model of hadrons, which was previously successfully applied for the calculation of meson properties. It is assumed that two quarks in a baryon form a diquark and baryon is considered as the bound quark-diquark system. The relativistic effects and diquark internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of heavy and strange baryons. On this basis the Regge trajectories are constructed. The rates of semileptonic decays of heavy baryons are calculated. The obtained results agree well with available experimental data.
Excited baryons in the 1/Nc expansion
NASA Astrophysics Data System (ADS)
Matagne, N.; Stancu, Fl.
2012-04-01
We briefly describe the 1/Nc expansion method for studying baryon masses. Two approaches of the large Nc excited baryons have been proposed so far. The first one, based on the Hartree picture, treats the baryon as a ground state core and an excited quark and the second one, suggested recently, considers the baryon globally, without decoupling the system. The masses of excited states of mixed orbital symmetry of nonstrange and strange baryons belonging to the lowest [70, -] multiplet are calculated in the 1/Nc expansion to order 1/Nc with the new method which allows to considerably reduce the number of linearly independent operators entering the mass formula. The status of the resonance Λ(1405) is discussed.
Masses of doubly and triply charmed baryons
NASA Astrophysics Data System (ADS)
Wei, Ke-Wei; Chen, Bing; Guo, Xin-Heng
2015-10-01
Until now, the first reported doubly charmed baryon Ξcc +(3520 ) is still a puzzle. It was discovered and confirmed by SELEX collaboration, but not confirmed by LHCb, BABAR, BELLE, FOCUS, or any other collaboration. In the present paper, by employing Regge phenomenology, we first express the mass of the ground state (L =0 ) doubly charmed baryon Ωcc *+ as a function of masses of the well established light baryons and singly charmed baryons. Inserting the recent experimental data, the mass of Ωcc *+ is given to be 3809 ±36 MeV , which is independent of any unobservable parameters. Then, with the quadratic mass relations, we calculate the masses of the ground state triply charmed baryon Ωcc c ++ and doubly charmed baryons Ξcc (*)++, Ξcc (*)+ , and Ωcc + [the mass of Ξcc + is determined as 3520-40+41 MeV , which agrees with the mass of Ξcc +(3520 ) ]. The isospin splitting MΞcc ++-MΞcc +=0.4 ±0.3 MeV . After that, masses of the orbitally excited (L =1 , 2, 3) doubly and triply charmed baryons are estimated. The results are reasonable comparing with those extracted in many other approaches. We suggest more efforts to study doubly and triply charmed baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for numerically examining whether the linear mass relations or the quadratic mass relations are realized in nature. Our predictions are useful for the discovery of unobserved doubly and triply charmed baryon states and the JP assignment of these states.
Semiclassical description of quantum rotator in terms of SU(2) coherent states
NASA Astrophysics Data System (ADS)
Gitman, D. M.; Petrusevich, D. A.; Shelepin, A. L.
2013-10-01
We introduce coordinates of the rigid body (rotator) using mutual positions between body-fixed and space-fixed reference frames. Wave functions that depend on such coordinates can be treated as scalar functions of the group SU(2). Irreducible representations of the group SU(2) × SU(2) in the space of such functions describe their possible transformations under independent rotations of the both reference frames. We construct sets of the corresponding group SU(2) × SU(2) Perelomov coherent states (CS) with a fixed angular momentum j of the rotator as special orbits of the latter group. Minimization of different uncertainty relations is discussed. The classical limit corresponds to the limit j → ∞. Considering Hamiltonians of rotators with different characteristics, we study the time evolution of the constructed CS. In some cases, the CS time evolution is completely or partially reduced to their parameter time evolution. If these parameters are chosen as Euler angles, then they obey the Euler equations in the classical limit. Quantum corrections to the motion of the quantum rotator can be found from exact equations on the CS parameters.
A Review of Baryon Resonance Analysis and Comparisons with Meson Resonance Analyses
NASA Astrophysics Data System (ADS)
Dytman, Steven A.
2002-06-01
It is interesting that the fields of meson and baryon spectroscopy have taken divergent paths in the last decade. It is time the fields were more aware of the similarities and this author hopes the fields will benefit from each other's accomplishments. This note will point out the similarities and the differences. Sometimes, the differences are in nomenclature. However, there are also practical reasons for the divergences. The typical meson experiment has a more complicated final state than baryon experiments and the most complete theoretical treatments limit the number of final state particles to three. There are also important differences in sociology.
Light baryons and their excitations
NASA Astrophysics Data System (ADS)
Eichmann, Gernot; Fischer, Christian S.; Sanchis-Alepuz, Hèlios
2016-11-01
We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Δ with varying pion mass and analyze the internal structure in terms of their partial wave decompositions.
Nussinov, S.
1983-12-05
It is suggested that the inequality m/sub B/>(3/2)m/sub M/ is a rigorous result in quantum chromodynamics. The analog for a (q/sub 1/. . .q/sub N/) baryon in SU(N) is m/sub B/>((1/2)N)m/sub M/. The inequality is proved for weak coupling and a version of the strong-coupling expansion where a separation H/sub q//sub 1/q/sub 2/q/sub 3/ = H/sub 12/+H/sub 23/+H/sub 31/ of the problem can be achieved. Implications for quantum chromodynamics and composite models are briefly discussed.
Chiral baryon with quantized pions
McNeil, J.A.; Price, J.A.
1993-04-01
The authors consider a hybrid chiral baryon model starting from the Gell-Mann-Levy linear sigma model with the sigma and pion fields coupled to quarks. Instead of employing the standard hedgehog ansatz, the authors solve the model using a Fock-space configuration consisting of a component with three quarks plus a component with three quarks and an explicit pion. In each component, the quarks (and pion) are directly coupled to the spin and isospin appropriate to a nucleon and the coupling is preserved throughout the calculation. The authors minimizes the groundstate expectation value of the Gell-Mann-Levy Hamiltonian to obtain the equations of motion which are solved self-consistently. They calculatess the canonical set of nucleon observables and compare them with previous work.
Baryon- and lepton-number violation by electroweak instantons
NASA Astrophysics Data System (ADS)
Noble, Robert J.
1982-02-01
We make a quantitative study of instanton-induced baryon- and lepton-number-violating processes in an SU(2)×U(1) electroweak gauge theory at zero and finite temperatures (in the "dilute-instanton-gas" approximation). As an example we consider a simplified model involving only the proton, neutron, electron, and electron neutrino. At zero temperature the total cross sections for p+n-->e¯+ν¯ and eleven other similar reactions are of order s×10-195 cm2, where s is the total center-of-momentum energy squared in GeV2. The neutron decays via n-->p¯+e¯+ν¯ with a lifetime of the order 10146 years. The cross sections and neutron decay width decrease with temperature because color-electric-charge screening reduces the self-dual-instanton density at finite temperature. At high temperature the cross sections (for a given s) and neutron decay width fall off as T-473 in this simplified model. It is suggested that correctly treating the instanton gas as very dense (as discussed by Berg, Luscher, and Stehr) and including finite-energy tunneling solutions could increase the predicted reaction rates.
Two-leg SU(2n) spin ladder: A low-energy effective field theory approach
Lecheminant, P.; Tsvelik, A. M.
2015-05-07
We present a field-theory analysis of a model of two SU(2n)-invariant magnetic chains coupled by a generic interaction preserving time reversal and inversion symmetry. Contrary to the SU(2)-invariant case the zero-temperature phase diagram of such two-leg spin ladder does not contain topological phases. Thus, only generalized Valence Bond Solid phases are stabilized when n > 1 with different wave vectors and ground-state degeneracies. In particular, we find a phase which is made of a cluster of 2n spins put in an SU(2n) singlet state. For n = 3, this cluster phase is relevant to ¹⁷³Yb ultracold atoms, with an emergentmore » SU(6) symmetry, loaded in a double-well optical lattice.« less
Time-reversal invariant SU(2 ) Hofstadter problem in three-dimensional lattices
NASA Astrophysics Data System (ADS)
Li, Yi
2015-05-01
We formulate the three-dimensional SU(2 ) Landau level problem in cubic lattices with time-reversal invariance. By taking a Landau-type SU(2 ) gauge, the system can be reduced into one dimension, as characterized by the SU(2 ) generalization of the usual Harper equations with a periodic spin-dependent gauge potential. The surface spectra indicate the spatial separation of helical states with opposite eigenvalues of a lattice helicity operator. The band topology is investigated from both the analysis of the boundary helical Fermi surfaces and the calculation of the Z2 index based on the bulk wave functions. The transition between a three-dimensional weak topological insulator to a strong one is studied as varying the anisotropy of hopping parameters.
Universal SU(2/1) and the Higgs and fermion masses
Ne`eman, Y.
1992-12-31
We review the SU(2/1) internal supersymmetry suggested by D. Fairlie and the author in 1979. The initial apparent difficulties were resolved when, with J. Thierry-Mieg, we understood that the gauging of a supergroup implies taking the usual Yang-Mills-like Principal (Double) Fibre Bundle as a ``scaffold`` and using its Grassmann algebra as parameter manifold for the supergauge. SU(2/1) Universality fixes the masses of the Higgs scalar field and the ``top`` quark around 100--200 GeV, in the same region as the W and Z masses. A ``unified``` supergauge, enclosing SU(3)colour x SU(2) x U(l), predicts a fourth lepton generation in which the neutrino mass is of the same order.
Holographic heavy ion collisions with baryon charge
Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; Triana, Miquel
2016-09-19
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
More About the Light Baryon Spectrum
NASA Astrophysics Data System (ADS)
Eichmann, Gernot
2017-03-01
We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with `anomalous' states, and we propose a method to eliminate them from the spectrum.
Heavy baryons - Recent and very new results
Peter S Cooper
2003-01-15
Recent results on observations, properties and decay modes of the charmed and beauty baryons will be reviewed. Candidates for several new high mass states which include a cleanly-identified daughter {Lambda}{sub c}{sup +} baryon are seen in data from the SELEX experiment at Fermilab. These states are candidates for doubly-charmed baryons: a {Xi}{sub cc}{sup ++} state and a {Xi}{sub cc}{sup +} state. These candidates are more than 5{sigma} signals in each case at masses of 3520 and 3460 MeV respectively.
Holographic heavy ion collisions with baryon charge
NASA Astrophysics Data System (ADS)
Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; Triana, Miquel
2016-09-01
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
SU(2s+1) symmetry and nonlinear dynamics of high spin magnets
Kovalevsky, M.Y. Glushchenko, A.V.
2014-10-15
The article is devoted to the description of dynamics of magnets with arbitrary spin on the basis of the Hamiltonian formalism. The relationship of quantum states and magnetic degrees of freedom has been considered. Subalgebras of Poisson bracket of magnetic values for spin s=1/2; 1; 3/2 have been established. We have obtained non-linear dynamic equations for the normal and degenerate non-equilibrium states of high-spin magnets with the SO(3), SU(4), SU(2)×SU(2), SU(3), SO(4), SO(5) symmetries of exchange interaction. The connection between models of magnetic exchange energy and the Casimir invariants has been discussed.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Parity partners in the baryon resonance spectrum
NASA Astrophysics Data System (ADS)
Lu, Ya; Chen, Chen; Roberts, Craig D.; Segovia, Jorge; Xu, Shu-Sheng; Zong, Hong-Shi
2017-07-01
We describe a calculation of the spectrum of flavor-SU(3 ) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector × vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of their internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.
Large Halos of Missing Baryons Around Galaxies
NASA Astrophysics Data System (ADS)
Bregman, Joel
2009-10-01
If galaxies had the cosmological baryon-to-dark matter ratio, they would have 3-30 times their observed baryon mass. These missing baryons are undetected, but some fraction may surround a galaxy with a hot diffuse halo extending to R_virial (250 kpc). A loosely bound gaseous halo could be stripped in a cluster or group environment, but should be relatively undisturbed around isolated late-type spirals. Existing observations of spirals are mainly of nearby systems, where only the inner parts fit in a field of view so a halo on the scale of R_virial would pass unnoticed. To detect or place limits on a large halo of missing baryons, we propose to observe isolated L* spirals sufficiently distant that we can detect emission to at least R_virial.
Generalized SU(2) covariant Wigner functions and some of their applications
NASA Astrophysics Data System (ADS)
Klimov, Andrei B.; Romero, José Luis; de Guise, Hubert
2017-08-01
We survey some applications of SU(2) covariant maps to the phase space quantum mechanics of systems with fixed or variable spin. A generalization to SU(3) symmetry is also briefly discussed in framework of the axiomatic Stratonovich-Weyl formulation.
NASA Astrophysics Data System (ADS)
Chinea, F. J.; Navarro-Lérida, F.
2002-03-01
In this paper we prove that in a stationary axisymmetric SU(2) Einstein-Yang-Mills theory the most reasonable circularity conditions that can be considered for the Yang-Mills fields imply in fact that the field is of embedded Abelian type, or else that the metric is not asymptotically flat.
Supersymmetric solutions of SU(2)-Fayet-Iliopoulos-gauged N = 2, d = 4 supergravity
NASA Astrophysics Data System (ADS)
Ortín, Tomás; Santoli, Camilla
2017-03-01
We explore the construction of supersymmetric solutions of theories of N = 2 , d = 4 supergravity with a SU (2) gauging and SU (2) Fayet-Iliopoulos terms. In these theories an SU (2) isometry subgroup of the Special-Kähler manifold is gauged together with a SU (2) R-symmetry subgroup. We construct several solutions of the CP‾3 quadratic model directly in four dimensions and of the ST [ 2 , 6 ] model by dimensional reduction of the solutions found by Cariglia and Mac Conamhna in N = (1 , 0) , d = 6 supergravity with the same kind of gauging. In the CP‾3 model, we construct an AdS2 ×S2 solution which is only 1/8 BPS and an R ×H3 solutions that also preserves 1 of the 8 possible supersymmetries. We show how to use dimensional reduction as in the ungauged case to obtain Rn ×Sm and also AdSn ×Sm-type solutions (with different radii) in 5- and 4-dimensions from the 6-dimensional AdS3 ×S3 solution.
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
The baryonic mass function of galaxies.
Read, J I; Trentham, Neil
2005-12-15
In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Spin-flavor composition of excited baryons
NASA Astrophysics Data System (ADS)
Fernando, Ishara; Goity, Jose
2015-10-01
The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).
Baryonic matter perturbations in decaying vacuum cosmology
Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br
2014-08-01
We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.
Strangeness in the baryon ground states
NASA Astrophysics Data System (ADS)
Semke, A.; Lutz, M. F. M.
2012-10-01
We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Spectrum of the excited N* and Δ* baryons in a relativistic chiral quark model
NASA Astrophysics Data System (ADS)
Tursunov, E. M.; Krewald, S.
2014-10-01
The spectrum of the SU(2) flavor baryons is studied in the frame of a relativistic chiral quark potential model based on the one-pion and one-gluon exchange mechanisms. It is argued that the N* and Δ* resonances strongly coupled to the πN channel are identified with the orbital configurations (1S1/2)2(nlj) with a single valence quark in the excited state (nlj). With the obtained selection rules based on the "chiral constraint," we show that it is possible to construct a schematic periodic table of baryon resonances, consistent with the experimental data and yielding no "missing resonances." A new original method for the treatment of the center of mass problem is suggested which is based on the separation of the three-quark Dirac Hamiltonian into the parts, corresponding to the Jacobi coordinates. The numerical estimations for the energy positions of the nucleon and delta baryons (up to and including F-wave N* and Δ* resonances), obtained within the field-theoretical framework by using time ordered perturbation theory, yield an overall good description of the experimental data at the level of the relativized constituent quark model of S. Capstick and W. Roberts without any fitting parameters. The only free parameter of the linear confinement potential was fitted previously by Th. Gutsche to reproduce the axial charge of the nucleon. The ground state Δ(1232) is well reproduced. However, nucleon ground state and most of the radially excited baryon resonances (including Roper) are overestimated. On the contrary, the first band of the orbitally excited baryon resonances with a negative parity are underestimated. At the same time, the second band of the orbitally excited Δ* states with the negative parity are mostly overestimated, while the N* states are close to the experimental boxes. The theoretical estimations of the energy levels for the positive parity baryon resonances with J =5/2, 7/2 are close to the experimental data. At higher energies, where the
Enríquez, Marco; Rosas-Ortiz, Oscar
2013-12-15
We review the properties of the Kronecker (direct, or tensor) product of square matrices A⊗B⊗C⋯ in terms of Hubbard operators. In its simplest form, a Hubbard operator X{sub n}{sup i,j} can be expressed as the n-square matrix which has entry 1 in position (i,j) and zero in all other entries. The algebra and group properties of the observables that define a multipartite quantum system are notably straightforward in such a framework. In particular, we use the Kronecker product in Hubbard notation to get the Clebsch–Gordan decomposition of the product group SU(2)×SU(2). Finally, the n-dimensional irreducible representations so obtained are used to derive closed forms of the Clebsch–Gordan coefficients that rule the addition of angular momenta. Our results can be further developed in many different directions. -- Highlights: •The Kronecker product is studied in terms of Hubbard operators. •Complicated calculations involving large matrices are reduced to simple relations of subscripts. •The algebraic properties of the quantum observables of multipartite systems are studied. •The Clebsch–Gordan coefficients are given in terms of hypergeometric {sub 3}F{sub 2} functions. •The results can be further developed in many different directions.
Disentanglement of Electromagnetic Baryon Properties
NASA Astrophysics Data System (ADS)
Sadasivan, Daniel; Doring, Michael
2017-01-01
Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.
2014-03-17
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider.
Radiative corrections in baryon semileptonic decays with the emission of a polarized baryon
Juarez-Leon, C.; Martinez, A.; Neri, M.; Torres, J. J.; Flores-Mendieta, R.
2010-07-29
We present an overview of the calculation of radiative corrections to the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons. We discuss both charged and neutral decaying baryons, restricted to the three-body region of the Dalitz plot. Our analysis is specialized to cover two possible scenarios: The center-of-mass frames of the emitted and the decaying baryons. We have accounted for terms up to order ({alpha}/{pi})(q/M{sub 1}){sup 0}, where q is the momentum-transfer and M{sup 1} is the mass of the decaying baryon, and neglected terms of order ({alpha}/{pi})(q/M{sub 1}){sup n} for n{>=}1. The expressions displayed are ready to obtain numerical results, suitable for model-independent experimental analyses.
Baryonic distributions in galaxy dark matter halos
NASA Astrophysics Data System (ADS)
Richards, Emily E.
In our best current understanding of the growth of structure in the Universe, visibly complex distributions of gas and stars form and evolve into a wide range of galaxies inside overdensities of dark matter. Re-creating the observed diversity in the organization of baryonic mass within dark matter halos represents a key challenge for galaxy formation models. In this dissertation, I constrain the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) survey to address the growth of galaxy disks in dark matter halos. I trace the gravitational potentials of each galaxy using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (HI). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 mum images for the stellar content, the HI observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The HI kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component, and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history. This result encapsulates the challenge facing simulations to create galaxies which evolve with different star formation histories but similar
Q-balls of clusterized baryonic matter
NASA Astrophysics Data System (ADS)
Mişicu, Ş.; Mishustin, I. N.; Greiner, W.
2017-01-01
Properties of baryonic matter made of nucleons and α-particles are studied within a relativistic mean-field (RMF) model. The Lagrangian describing the relativistic field ϕ of α-particles is allowed to contain also self-interaction terms. Various types of RMF parametrizations are employed to calculate the energy of α-particles embedded in the baryonic matter. We first consider baryonic systems with small admixtures of α-particles and calculate the energy spectrum as a function of baryon density. Then we turn to the case of pure α-matter and derive once again the energy spectrum, this time as a function of α-particle density, with and without quartic self-interaction. In the second part of the paper, we focus on the ground-state properties (energy per particle, radii of the spherical lumps made of α-particles) of charge neutralized Q-balls formed of baryonic α-particles for the case of linear σ and ω fields and nonlinear (quartic+sextic) self-interactions of the ϕ field.
Baryon content and dynamic state of galaxy clusters
NASA Astrophysics Data System (ADS)
Wang, D.
2016-06-01
We are carrying out a panchromatic observing program to study the baryon content and dynamic state of galaxy clusters. In this talk, I will present results primarily from XMM-Newton observations of optically-selected clusters in the redshift range of 0.1-0.4. These clusters are selected because of their fortuitous alignment with background far-UV-bright QSOs, which thus allows for Ly-alpha and O VI absorption line spectroscopy with HST/COS, probing physical processes of the evolving intracluster medium, freshly accreted from the intergalactic medium and/or stripped out of individual galaxies, as well as the gaseous halos of individual cluster galaxies. Interestingly, such clusters tend to be dynamically young and often consist of merging subcluster pairs at similar redshifts. These subclusters themselves typically show substantial substructures, including strongly distorted radio lobes, as well as large position offsets between the diffuse X-ray centroids and the brightest galaxies. A comparison of the hot gas and stellar masses of each cluster with the expected cosmological baryonic mass fraction indicates a significant room for other gas components. I will also briefly examine the limitations of both optically and X-ray selected clusters, as well as how they may be used in a complementary fashion.
Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study
Zohar, Erez; Wahl, Thorsten B.; Burrello, Michele; Cirac, J. Ignacio
2016-11-15
Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.
Defining relations for the orbit type strata of SU(2) -lattice gauge models
NASA Astrophysics Data System (ADS)
Fürstenberg, F.; Rudolph, G.; Schmidt, M.
2017-09-01
We consider an SU(2) -lattice gauge model in the tree gauge. Classically, this is a system with symmetries whose configuration space is a direct product of copies of SU(2) , acted upon by diagonal inner automorphisms. We derive defining relations for the orbit type strata in the reduced classical phase space. The latter is realized as a certain quotient of a direct product of copies of the complexified group SL(2 , C) (sometimes named the GIT-quotient because it provides a categorical quotient in the sense of geometric invariant theory). The relations derived can be used for the construction of the orbit type costratification of the Hilbert space of the quantum system in the sense of Huebschmann.
Gravity in the presence of fermions as an SU(2) gauge theory
NASA Astrophysics Data System (ADS)
Cianfrani, Francesco; Montani, Giovanni
2010-02-01
The Hamiltonian formulation of the Holst action in the presence of a massless fermion field with a nonminimal Lagrangian is performed without any restriction on the local Lorentz frame. It is outlined that the phase-space structure does not resemble that of a background-independent Lorentz gauge theory, as some additional constraints are present. Proper phase-space coordinates are introduced, such that SU(2) connections can be defined, and the vanishing of conjugate momenta to boost variables is predicted. Finally, it is demonstrated that for a particular value of the nonminimal parameter, the kinematics coincides with that of a background-independent SU(2) gauge theory, and the Immirzi parameter becomes the coupling constant of such an interaction between fermions and the gravitational field.
Monte-Carlo simulations of su(2) symmetric deconfined criticality action
NASA Astrophysics Data System (ADS)
Kuklov, A. B.; Matsumoto, M.; Prokof'ev, N. V.; Svistunov, B. V.; Troyer, M.
2008-03-01
We discuss results of Monte Carlo simulations of su(2) symmetric deconfined criticality action in CP^1 formulation proposed by T. Senthil,et. al, Science 303, 1490 (2004). Using high-temperature expansion we reformulate the partition function in terms of J-currents. The resulting configuration space is explicitly su(2) symmetric. Critical behavior in the region of possible deconfined critical point (DCP) is addressed by the flow method [A.B.Kuklov, et.al., Annals of Physics 321,1602(2006)] mapping critical properties of a system with small values of the gauge interaction g at large sizes to a system with large g and small sizes. We observe data collapse on a single master curve with the flow toward fluctuation induced I order transition. The unlikely possibility of existence of the lower tricritical point separating I order transitions from the DCP line is assessed in terms of disruption of the flow collapse.
Solutions of the sDiff(2)Toda equation with SU(2) symmetry
NASA Astrophysics Data System (ADS)
Finley, Daniel; McIver, John K.
2010-07-01
We present the general solution to the Plebański equation for an \\bm{\\mathfrak{h}} space that admits Killing vectors for an entire SU(2) of symmetries, which is therefore also the general solution of the sDiff(2)Toda equation that allows these symmetries. Desiring these solutions as a bridge toward the future for yet more general solutions of the sDiff(2)Toda equation, we generalize the earlier work of Olivier, on the Atiyah-Hitchin metric, and re-formulate work of Babich and Korotkin, and Tod, on the Bianchi IX approach to a metric with an SU(2) of symmetries. We also give careful delineations of the conformal transformations required to ensure that a metric of Bianchi IX type has a zero Ricci tensor, so that it is a self-dual, vacuum solution of the complex-valued version of Einstein's equations, as appropriate for the original Plebański equation.
NASA Astrophysics Data System (ADS)
Murayama, Akihiro
We present a simple superstring-derived no-scale SUGRA GUT with the D-parity violated SU(4) × SU(2)L × SU(2)R as the gauge symmetry which breaks down to that of MSSM at an intermediate scale Mint and further boils down to that of MSM at MS. The massless spectrum at the GUT scale MX consists of three generations of quarks and leptons, Higgs multiplets of 2\\{({4,1,2}) + (bar {{4}}, {1,2})\\} + ({1,2,2}) and some gauge singlet fields (1,1,1)'s. The characteristic features of the model are as follows: (1) The only explicit SUSY breaking parameter is the super-soft (i.e. F-type) scalar mass m of one of \\{({4,1,2}) + (bar {{4}},{1,2})\\} multiplets, which is generated by the moduli-dominant SUSY breaking source. (2) Both the intermediate and electroweak symmetry breakings respectively at Mint ≈ 1011-12 GeV and at
NASA Astrophysics Data System (ADS)
Hue, L. T.; Arbuzov, A. B.; Ngan, N. T. K.; Long, H. N.
2017-05-01
The neutrino and Higgs sectors in the { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ . The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c_h, which must satisfy the recent global fit of experimental data, namely 0.995<|c_h|<1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W' and Z-Z' mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.
Effect of SU(2) symmetry on many-body localization and thermalization
NASA Astrophysics Data System (ADS)
Protopopov, Ivan V.; Ho, Wen Wei; Abanin, Dmitry A.
2017-07-01
The many-body localized (MBL) phase is characterized by a complete set of quasilocal integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of SU(2 ) symmetric disordered spin chains. The SU(2 ) symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a nonergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasilocal integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multispin resonances. We conclude that the nonergodic phase is generally unstable and that SU(2 ) symmetry implies thermalization. The approach introduced in this Rapid Communication can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching nonergodic phases beyond conventional MBL.
Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2)
Carena, Marcela; Ponton, Eduardo; Santiago, Jose; Wagner, Carlos E.M.; /Argonne /Chicago U., EFI /KICP, Chicago
2006-07-01
We consider Randall-Sundrum scenarios based on SU(2){sub L} x SU(2){sub R} and a discrete parity exchanging L with R. The custodial and parity symmetries can be used to make the tree level contribution to the T parameter and the anomalous couplings of the bottom quark to the Z very small. We show that the resulting quantum numbers typically induce a negative T parameter at one loop that, together with the positive value of the S parameter, restrict considerably these models. There are nevertheless regions of parameter space that successfully reproduce the fit to electroweak precision observables with light Kaluza-Klein excitations accessible at colliders. We consider models of gauge-Higgs unification that implement the custodial and parity symmetries and find that the electroweak data singles out a very well defined region in parameter space. In this region one typically finds light gauge boson Kaluza-Klein excitations as well as light SU(2){sub L} singlet, and sometimes also doublet, fermionic states, that mix with the top quark, and that may yield interesting signatures at future colliders.
Primordial nucleosynthesis and primoridal isocurvature baryon fluctuations
Mathews, G.T.; Kurki-Suonio, Hannu; Jedamzik, K.
1995-10-01
Recently, there has been interest in inflation-generated cosmological primordial isocurvature baryon fluctuation (PIB) models as a means to account for the large scale clustering of galaxies. However, the extension of the isocurvature fluctuations contained in such models to the mass scales of nucleosynthesis would imply large stochastic fluctuations in baryon-to-photon ratio during the epoch of primordial nucleosynthesis. We discuss constraints on the spectral index and rms amplitude of such fluctuations based upon the computed light element abundances. Our calculations include nuclear reaction networks in up to 40,000 zones in which stockastic fluctuations are spatially resolved. The effects of baryon diffusion among the fluctuations are also explicitly coupled and followed during nucleosynthesis. We confirm that the fluctuations must be significantly damped compared to a straight-forward extension of the cosmological PIB models.
Heavy flavor baryon states at the Tevatron
Seidel, Sally; /New Mexico U.
2011-08-01
Precision measurements of the masses and widths of the bottom baryon resonances {Sigma}{sub b} and {Sigma}*{sub b} and charm baryons {Lambda}{sub c}(2595), {Lambda}{sub c}(2625), {Sigma}{sub c}(2455), and {Sigma}{sub c}(2520) are reported. A new measurement of {Lambda}{sub b} production is described. The studies include the first measurement of the widths and isospin mass splittings of the members of the {Sigma}{sub b} family. The charm baryons are examined through their strong decays to the {Lambda}{sub c} ground state, and measurements of their mass differences relative to the ground state, and corresponding decay widths, are reported. The data were collected by the CDF and D0 detectors for 1.96 TeV proton-antiproton collisions during Run II at the Fermilab Tevatron.
Production and decay of charmed baryons
NASA Astrophysics Data System (ADS)
Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro
2016-10-01
In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.
Heavy Baryons in a Quark Model
Winston Roberts; Muslema Pervin
2007-11-14
A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.
The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing
NASA Astrophysics Data System (ADS)
Shull, J. Michael; Smith, Britton D.; Danforth, Charles W.
2012-11-01
Although galaxies, groups, and clusters contain ~10% of the baryons, many more reside in the photoionized and shocked-heated intergalactic medium (IGM) and in the circumgalactic medium (CGM). We update the baryon census in the (H I) Lyα forest and warm-hot IGM (WHIM) at 105-6 K traced by O VI λ1032, 1038 absorption. From Enzo cosmological simulations of heating, cooling, and metal transport, we improve the H I and O VI baryon surveys using spatially averaged corrections for metallicity (Z/Z ⊙) and ionization fractions (f H I , f O VI ). Statistically, the O VI correction product correlates with column density, (Z/Z ⊙)f O VI ≈ (0.015)(N O VI /1014 cm-2)0.70, with an N O VI -weighted mean of 0.01, which doubles previous estimates of WHIM baryon content. We also update the Lyα forest contribution to baryon density out to z = 0.4, correcting for the (1 + z)3 increase in absorber density, the (1 + z)4.4 rise in photoionizing background, and cosmological proper length dl/dz. We find substantial baryon fractions in the photoionized Lyα forest (28% ± 11%) and WHIM traced by O VI and broad-Lyα absorbers (25% ± 8%). The collapsed phase (galaxies, groups, clusters, CGM) contains 18% ± 4%, leaving an apparent baryon shortfall of 29% ± 13%. Our simulations suggest that ~15% reside in hotter WHIM (T >= 106 K). Additional baryons could be detected in weaker Lyα and O VI absorbers. Further progress requires higher-precision baryon surveys of weak absorbers, down to minimum column densities N H I >= 1012.0 cm-2, N O VI >= 1012.5 cm-2, N O VII >= 1014.5 cm-2, using high signal-to-noise data from high-resolution UV and X-ray spectrographs.
Strong decays of excited baryons in Large Nc QCD
Goity, J. L.; Scoccola, N. N.
2007-02-12
We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Strong decays of excited baryons in Large Nc QCD
Goity, Jose; Scoccola, Norberto
2007-02-01
We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
An effective theory of baryons and mesons
NASA Astrophysics Data System (ADS)
Jaczko, Gregory Bela
I develop an effective theory to describe the low energy behavior of baryons. The theory is motivated by several issues facing nonperturbative quantum chromodynamic (QCD) calculations: the use of the quenched approximation for exact QCD calculations, the apparent success of nonrelativistic quark flavor models and the difficulties of standard, chiral perturbation theories. These problems are addressed by considering the baryon as a composite object, preserving the spin and flavor identity of the constituent quarks. This approach differs from standard chiral perturbation theory techniques that treat baryons as elementary particles. The method also allows us to construct effective quark-meson interactions that approximate the loop effects omitted in exact QCD calculations using the quenched approximation. These quark-meson interactions enable reparametrizations of the tree level interactions for many of the calculated loop results, reducing the size and improving the convergence of the loop diagrams. Furthermore, we relate tree-level couplings in the effective theory to equivalent matrix elements of nonrelativistic and semirelativistic quark models. This effective theory introduces several new elements. We construct a new octet baryon operator and octet baryon propagator. We also develop new effective mass and magnetic moment couplings that significantly reduce the number of free parameters in the theory, providing physical interpretation for the parameters appearing in standard chiral perturbation theory and improving its predictability. The theory is successfully used to determine baryon masses and magnetic moments using a small number of free parameters. We duplicate previous numerical results from chiral perturbation theory and provide improved results in many cases. In all cases, we determine excellent fits to the masses and moments using a small number of free parameters.
Heavy flavor baryons in hypercentral mode
NASA Astrophysics Data System (ADS)
Patel, Bhavin; Rai, Ajay Kumar; Vinodkumar, P. C.
2008-05-01
Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index ν. The ground state masses of the heavy flavor, J^P={1/2}^+ and {3/2}^+ baryons are computed for different power indices, ν starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index ν=1.0.
Baryon onset in a magnetic field
Haber, Alexander; Preis, Florian; Schmitt, Andreas
2016-01-22
The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models – including magnetic catalysis, but omitting the anomalous magnetic moment – that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.
Probing the Baryon Cycle in Galaxy Outskirts
NASA Astrophysics Data System (ADS)
Davé, Romeel
2017-03-01
Galaxies are born and grow within a cosmic ecosystem, in which they receive material from surrounding intergalactic gas via gravitationally-driven inflows and expel material via powerful galactic outflows. These processes, collectively referred to as the baryon cycle, are increasingly believed to govern galaxy growth over cosmic time. I discuss new insights on the baryon cycle using analytic models and hydrodynamical simulations of galaxy evolution, particularly emphasizing how galaxy outskirts are the prime locale within which to observe these processes in action by examining observational tracers such as rest-ultraviolet absorption lines and the neutral and molecular gas content of galaxies.
Roper resonance and the baryon spectrum
NASA Astrophysics Data System (ADS)
Elsey, J. A.; Afnan, I. R.
1989-10-01
We present a method for calculating the baryon spectrum in the cloudy-bag model in which the masses of the baryons are identical to the poles of the S matrix in the complex energy plane. In particular, we demonstrate that the width for the decay of these resonances by pion emission is dependent on whether the calculations are carried out on the real energy axis or at the resonance poles, the latter being consistent with the scattering experiments that determine these widths. Results for N*(1440) are presented.
Exciting baryons: Now and in the future
NASA Astrophysics Data System (ADS)
Pennington, M. R.
2012-04-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Observational tests of Baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.
Measurement of inclusive baryon production in B meson decays
NASA Astrophysics Data System (ADS)
Albrecht, H.; Cronström, H. I.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Reidenbach, M.; Reiner, R.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hölscher, A.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Seidel, S. C.; Tsamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Śchmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Zivko, T.; Jönsson, L.; Balagura, V.; Belyaev, I.; Danilov, M.; Droutskoy, A.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Murat, P.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.
1992-03-01
Using the ARGUS detector at the e + e - storage ring DORIS II at DESY, we have studied B meson decays into baryons p and Λ. From the simultaneous analysis of p and Λ yields, p bar p and Λbar p correlations, and various lepton-baryon and lepton-baryon-antibaryon correlations the inclusive branching ratio is found to be BR ( B→baryons)=(6.8±0.5±0.3)%.
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
Baryon Regge Trajectories and the 1/Nc Expansion
Goity, Jose; Matagne, Nicolas
2008-12-01
Baryon Regge trajectories are discussed in the light of the 1/Nc expansion. The approximate dynamical symmetry SU(6)x O(3) is used to identify the spin-flavor singlet component of baryon masses. By fitting to the known baryon spectrum, this component is shown to produce distinct Regge trajectories for SU(6) 56- and 70-plets which are remarkably linear.
NASA Astrophysics Data System (ADS)
Tsan, Ung Chan
Charges that are sources of fields must be universally conserved. Any quantity which is proved to be violated in certain circumstance cannot be a source of field. To account for the asymmetry of our Universe baryon number A has to be violated; thus A cannot be a charge. We postulate a new interaction, matter creation, with (A-L) as charge and Z* as messenger. Conservation of (A-L) instead of (3A-L) suggested by Sakharov is deduced on the one hand from observational facts (our Universe is both material and neutral) and on the other hand from the generalized Gell-Mann and Nishijima formula. Conservation of (A-L) forbids neutrinoless double beta decay and neutron antineutron oscillations. The union of four interactions — electromagnetism, the MC interaction, the weak interaction and the strong interaction — considered as the product U(1) × U(1) × SU(2) × SU(3) would account for available experimental and observational data. Observation of processes violating baryon number conservation would be of great interest in falsifying this suggestion.
Fuentes-Martín, J.
2016-01-22
It is well known that non-abelian Yang-Mills theories present non-trivial minima of the action, the so-called instantons. In the context of electroweak theories these instanton solutions may induce violations of baryon and lepton number of the form ΔB = ΔL = n{sub f}, with n{sub f} being the number of families coupled to the gauge group. An interesting feature of these violations is that the flavor structure of the gauge couplings is inherited by the instanton transitions. This effect is generally neglected in the literature. We will show that the inclusion of flavor interactions in the instanton solutions may be interesting in certain theoretical frameworks and will provide an approach to include these effects. In particular we will perform this implementation in the non-universal SU (2){sub l} ⊗SU (2){sub h} ⊗U (1){sub Y} model that singularizes the third family. Within this framework, we will use the instanton transitions to set a bound on the SU (2){sub h} gauge coupling.
Strong decays of charmed baryons in heavy hadron chiral perturbation theory: An update
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang
2015-10-01
We first give a brief overview of the charmed baryon spectroscopy and discuss their possible structure and spin-parity assignments in the quark model. With the new Belle measurement of the widths of Σc(2455 ) and Σc(2520 ) and the recent CDF measurement of the strong decays of Λc(2595 ) and Λc(2625 ), we give updated coupling constants in heavy hadron chiral perturbation theory. We find g2=0.56 5-0.024+0.011 for P -wave transitions between s -wave and s -wave baryons, and h2, one of the couplings responsible for S -wave transitions between s -wave and p -wave baryons, is extracted from Λc(2595 )+→Λc+π π to be 0.63 ±0.07 . It is substantially enhanced compared to the old value of order 0.437. With the help from the quark model, two of the couplings h10 and h11 responsible for D -wave transitions between s -wave and p -wave baryons are determined from Σc(2880 ) decays. There is a tension for the coupling h2 as its value extracted from Λc(2595 )+→Λc+ππ will imply Ξc(2790 )0→Ξc'π and Ξc(2815 )+→Ξc*π rates slightly above the current limits. It is conceivable that SU(3) flavor symmetry breaking can help account for the discrepancy.
Counting of oscillatory modes of valence quarks forming qqq baryons for three quark flavors u, d, s
NASA Astrophysics Data System (ADS)
Kabana, Sonia; Minkowski, Peter
2017-02-01
We present the unique properties of oscillatory modes of Nfl = 3 light quarks — u, d, s — using the SU(2Nfl = 6) × SO3(L→) broken symmetry classification. L→ =∑n=1NflL→n stands for the space rotation group generated by the sum of the three individual angular momenta of quarks in their c.m. system. The baryonic multiplets are shown to emerge from the picture of oscillating quarks in three space dimensions in the center-of-mass system of the baryons. All oscillatory modes are fully relativistic with a finite number of oscillators and this is forming the unique harmonic oscillator with these properties. The density of states as a function of mass-square is calculated. This estimate is of relevance for the accounting of the missing states of unobserved hadrons, as the here estimated baryonic multiplets include both the observed and the unobserved (or “missing”) hadrons. The estimate is conceptually different from Hagedorn’s model and is based on field theory of QCD.
The CMU Baryon Amplitude Analysis Program
Matt Bellis
2007-10-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Weak radiative baryonic decays of B mesons
Kohara, Yoji
2004-11-01
Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.
Baryonic Distributions in Galaxy Dark Matter Halos
NASA Astrophysics Data System (ADS)
Richards, Emily E.
2016-01-01
Understanding the role and significance of dark matter in the evolution of baryonic components (i.e., conversion of the gaseous disk into stars) is a critical aspect for realistic models of galaxy evolution. In an effort to address fundamental questions regarding the growth and distribution of stellar disks in dark matter halos in a statistical manner, we have undertaken a project correlating structural properties and star formation activity with the dark matter properties of the host galaxy. The project uses a statistical sample of 45 nearby galaxies which are optimally suited for rotation curve decomposition analysis. The dataset includes deep Spitzer 3.6μm images to trace the stellar distribution, neutral and ionized gas rotation curves to trace the total mass distribution, and optical images to examine the dominant stellar populations. Using a sub-set of galaxies from the full sample, we find that the distribution of the baryonic mass relative to the total mass is roughly self-similar in more massive galaxies when normalized by the average stellar disk scale length measured at 3.6μm. We additionally observe an emerging trend between total baryonic mass and the radius at which the total mass distribution transitions from baryon-dominated to dark matter-dominated. However, we find no significant correlation between the distribution of dark matter and structural properties of the stellar disk, such as changes in color or star formation activity.
The CMU Baryon Amplitude Analysis Program
NASA Astrophysics Data System (ADS)
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Recent Results on Charmed Baryons with Belle
Tsuboyama, T.
2006-11-17
The Belle detector has accumulated e+e- collision data corresponding to 600 fb-1 at the {upsilon}(4S) energy. The paper presents the improved measurement of known charmed baryons; {xi}c and {xi}c(2645), as well as observation of new states; {sigma}c(2800), {xi}cx(2980) and {xi}cx(3077)
The baryonic self similarity of dark matter
Alard, C.
2014-06-20
The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.
Beauty baryon decays: a theoretical overview
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming
2014-11-01
I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.
Baryons in the unquenched quark model
Bijker, R.; Díaz-Gómez, S.; Lopez-Ruiz, M. A.; Santopinto, E.
2016-07-07
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.
Parity partners in the baryon resonance spectrum
Lu, Ya; Chen, Chen; Roberts, Craig D.; ...
2017-07-28
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Missing baryonic resonances in the Hagedorn spectrum
NASA Astrophysics Data System (ADS)
Man Lo, Pok; Marczenko, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2016-08-01
The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the | S| = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state.
On the nature of the baryon asymmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1984-01-01
Whether the baryon asymmetry in the universe is a locally varying or universally fixed number is examined with focus on the existence of a possible matter antimatter domain structure in the universe arising from a GUT with spontaneous CP symmetry breaking. Theoretical considerations and observational data and astrophysical tests relating to this fundamental question are reviewed.
Holographic black hole engineering at finite baryon chemical potential
NASA Astrophysics Data System (ADS)
Rougemont, Romulo
2017-04-01
This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with 2 + 1 flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.
Unified origin for baryonic visible matter and antibaryonic dark matter.
Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean
2010-11-19
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
Magnetic moments of negative parity baryons in QCD
NASA Astrophysics Data System (ADS)
Aliev, T. M.; Savcı, M.
2014-03-01
Using the most general form of the interpolating current for the octet baryons, the magnetic moments of the negative-parity baryons are calculated within the light-cone sum rules. The contributions coming from diagonal transitions of the positive-parity baryons and also from a nondiagonal transition between positive- and negative-parity baryons are eliminated by considering the combinations of different sum rules corresponding to the different Lorentz structures. A comparison of our results on magnetic moments of the negative-parity baryons with the other approaches existing in the literature is presented.
Magnetic moments of JP=3/2- baryons in QCD
NASA Astrophysics Data System (ADS)
Aliev, T. M.; Savcı, M.
2014-12-01
The magnetic moments of the low lying, negative parity, spin-3 /2 baryons, including the Λ* baryon, are calculated within the light cone QCD sum rules method. The contributions coming from the positive parity, spin-3 /2 baryons, as well as from the positive and negative parity spin-1 /2 baryons are eliminated by constructing combinations of various invariant amplitudes corresponding to the coefficients of the different Lorentz structures. We also present the results for the magnetic moments of the positive parity, spin-3 /2 baryons.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
On finite subgroups of SU(2), simple Lie algebras, and the McKay correspondence
Kostant, Bertram
1984-01-01
The question is considered of how the restriction πnǀΓ, where πn is irreducible for all n and Γ is a finite subgroup of SU(2), decomposes into Γ-irreducibles for any arbitrary n ∈ [unk]+. It is announced that, using the McKay correspondence, the problem has an elegant solution in terms of the Coxeter element for the associated Lie algebra and that the numbers involved come in a beautiful way from the root structure. PMID:16593505
Aspects of finite field-dependent symmetry in SU(2) Cho-Faddeev-Niemi decomposition
NASA Astrophysics Data System (ADS)
Upadhyay, Sudhaker
2013-11-01
In this Letter we consider SU(2) Yang-Mills theory analyzed in Cho-Faddeev-Niemi variables which remains invariant under local gauge transformations. The BRST symmetries of this theory are generalized by making the infinitesimal parameter finite and field-dependent. Further, we show that under appropriate choices of finite and field-dependent parameter, the gauge-fixing and ghost terms corresponding to Landau as well as maximal Abelian gauge for such Cho-Faddeev-Niemi decomposed theory appear naturally within functional integral through Jacobian calculation.
Renormalization of SU(2) Yang-Mills theory with flow equations
NASA Astrophysics Data System (ADS)
Efremov, Alexander N.; Guida, Riccardo; Kopper, Christoph
2017-09-01
We give a proof of perturbative renormalizability of SU(2) Yang-Mills theory in four-dimensional Euclidean space which is based on the flow equations of the renormalization group. The main motivation is to present a proof which does not make appear mathematically undefined objects (as, for example, dimensionally regularized generating functionals), which permits to parametrize the theory in terms of physical renormalization conditions, and which allows to control the singularities of the correlation functions of the theory in the infrared domain. Thus a large part of the proof is dedicated to bounds on massless correlation functions.
Surveying the scope of the SU(2) L scalar septet sector
NASA Astrophysics Data System (ADS)
Alvarado, C.; Lehman, L.; Ostdiek, B.
2014-05-01
Extending the Standard Model by adding a scalar field transforming as a septet under SU(2) L preserves the ρ parameter at tree level and can satisfy experimental constraints on the electroweak parameters S and T. This work presents the first fully general phenomenological study of such an extension. We examine constraints on the septet model couplings based on electroweak and Higgs observables, and use LHC searches for new physics to bound the mass of the septet to be above ~ 400 GeV at a 95% CL.
An Exact SU(2) Symmetry and Persistent Spin Helix ina Spin-orbit Coupled System
Bernevig, B.A.; Orenstein, J.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2007-01-22
Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.
An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System
Bernevig, Andrei
2010-02-10
Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.
Matrix reduction and the su(2|2) superalgebra in AdS/CFT correspondence
Aniceto, Ines V.
2009-04-15
We study the supersymmetry generators Q, S on the 1-loop vectorless sector of N=4 super Yang-Mills theory, by reduction to the plane-wave matrix model. Using a coherent basis in the su(2|2) sector, a comparison with the algebra given by Beisert is presented, and some parameters (up to one loop) are determined. We make a final comparison of these supercharges with the results that can be obtained from the string action by working in the light-cone gauge and discretizing the string.
New boson realization of the Lipkin model obeying the su(2)-algebra
NASA Astrophysics Data System (ADS)
Tsue, Yasuhiko; Providência, Constança; da Providência, João; Yamamura, Masatoshi
2015-06-01
A new boson representation of the su(2)-algebra proposed by the present authors for describing the damped and amplified oscillator is examined in the Lipkin model as one of the simple many-fermion models. This boson representation is expressed in terms of two kinds of bosons with a certain positive parameter. In order to describe the case of any fermion number, a third boson is introduced. Through this examination, it is concluded that this representation is very workable for the boson realization of the Lipkin model in any fermion number.
Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.
Zohar, Erez; Cirac, J Ignacio; Reznik, Benni
2013-03-22
Non-Abelian gauge theories play an important role in the standard model of particle physics, and unfold a partially unexplored world of exciting physical phenomena. In this Letter, we suggest a realization of a non-Abelian lattice gauge theory-SU(2) Yang-Mills in (1 + 1) dimensions, using ultracold atoms. Remarkably, and in contrast to previous proposals, in our model gauge invariance is a direct consequence of angular momentum conservation and thus is fundamental and robust. Our proposal may serve as well as a starting point for higher-dimensional realizations.
Gaussian effective potential for the standard model SU(2)xU(1) electroweak theory
Siringo, Fabio; Marotta, Luca
2008-07-01
The Gaussian effective potential is derived for the non-Abelian SU(2)xU(1) gauge theory of electroweak interactions. At variance with naive derivations, the Gaussian effective potential is proven to be a genuine variational tool in any gauge. The role of ghosts is discussed and the unitarity gauge is shown to be the only choice which allows calculability without insertion of further approximations. The full non-Abelian calculation confirms the existence of a light Higgs boson in the nonperturbative strong coupling regime of the Higgs sector.
Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
Mezzacapo, A; Rico, E; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E
2015-12-11
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.
Pentaquark baryons in the SU(3) quark model
Oh, Yongseok; Kim, Hungchong
2004-11-01
We study the SU(3) group structure of pentaquark baryons which are made of four quarks and one antiquark. The pentaquark baryons form 1, 8, 10, 10-bar, 27, and 35 multiplets in the SU(3) quark model. First, the flavor wave functions of all the pentaquark baryons are constructed in the SU(3) quark model and then the flavor SU(3) symmetry relations for the interactions of the pentaquarks with three-quark baryons and pentaquark baryons are obtained. Constructing the general interactions in SU(3) could be important for understanding the pentaquark baryon properties from reaction mechanisms. We also discuss possible pentaquarks in 27-plet and 35-plet and their decay channels that can be used to identify them in future experiments. The mass sum rules for the pentaquark baryons are also presented.
SU2: the Open-Source Software for Non-ideal Compressible Flows
NASA Astrophysics Data System (ADS)
Pini, M.; Vitale, S.; Colonna, P.; Gori, G.; Guardone, A.; Economon, T.; Alonso, J. J.; Palacios, F.
2017-03-01
The capabilities of the open-source SU2 software suite for the numerical simulation of viscous flows over unstructured grid are extended to non-ideal compressible-fluid dynamics (NICFD). A built-in thermodynamic library is incorporated to account for the non-ideal thermodynamic characteristics of fluid flows evolving in the close proximity of the liquid-vapour saturation curve and critical point. The numerical methods, namely the Approximate Riemann Solvers (ARS), viscous fluxes and boundary conditions are generalised to non-ideal fluid properties. Quantities of interest for turbomachinery cascades, as loss coefficients and flow angles, can be automatically determined and used for design optimization. A variety of test cases are carried out to assess the performance of the solver. At first, numerical methods are verified against analytical solution of reference NICFD test cases, including steady shock reflection and unsteady shock tube. Then, non-ideal gas effects in planar nozzles and past turbine cascades, typically encountered in Organic Rankine Cycle applications, are investigated and debated. The obtained results demonstrate that SU2 is highly suited for the analysis and the automatic design of internal flow devices operating in the non-ideal compressible-fluid regime.
Fundamental fermion interactions via vector bosons of unified SU(2) x SU(4) gauge fields
NASA Astrophysics Data System (ADS)
Marsch, Eckart; Narita, Yasuhito
2016-02-01
Employing the fermion unification model based on the intrinsic SU(8) symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8)=SU(2)⊗SU(4) symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino), and the coloured up and down quarks of the first generation in the standard model (SM) by a complex SU(8) octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4) and SU(2) vector gauge boson fields, which include the photon, the gluons, and the bosons Z and W as well known from the SM, but also comprise new ones, namely three coloured X bosons carrying a fractional hypercharge of ±4/3 and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the Z and W bosons, but also permits one to derive the mass of the coloured X boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.
SU(2|2) for theories with sixteen supercharges at weak and strong coupling
Agarwal, Abhishek; Young, Donovan
2010-08-15
We consider the dimensional reductions of N=4 supersymmetric Yang-Mills theory on RxS{sup 3} to the three-dimensional theory on RxS{sup 2}, the orbifolded theory on RxS{sup 3}/Z{sub k}, and the plane-wave matrix model. With explicit emphasis on the three-dimensional theory, we demonstrate the realization of the SU(2|3) algebra in a radial Hamiltonian framework. Using this structure we constrain the form of the spin chains, their S matrices, and the corresponding one- and two-loop Hamiltonians of the three-dimensional theory, and find putative signs of integrability up to the two-loop order. The string duals of these theories admit the IIA plane-wave geometry as their Penrose limit. Using known results for strings quantized on this background, we explicitly construct the strong-coupling dual extended SU(2|2) algebra and discuss its implications for the gauge theories.
Axion inflation with an SU(2) gauge field: detectable chiral gravity waves
NASA Astrophysics Data System (ADS)
Maleknejad, Azadeh
2016-07-01
We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction λ /f{F}_{μ ν}^a{tilde{F}}_a^{μ ν } where λ /f˜ {O}(10)/M_{pl} . It has a negligible effect on the background evolution, ρ YM/M_{pl^2{H}^2}≲ {ɛ}^2 . However, its quantum fluctuations make a significant contribution to the cosmic perturbation. In particular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between the left- and right-handed polarization states. The chiral tensor modes are linearly coupled to the gravitational waves and lead to a circularly polarized tensor power spectrum comparable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a detectable chiral gravitational wave signal and have a negligible contribution to the scalar fluctuations, in agreement with the current CMB observations.
Experimentally verifiable Yang-Mills spin 2 gauge theory of gravity with group U(1) x SU(2)
NASA Astrophysics Data System (ADS)
Peng, Huei
1988-06-01
A Yang-Mills spin 2 gauge theory of gravity is proposed. Based on both the verification of the helicity 2 property of the SU(2) gauge bosons of the theory and the agreement of the theory with most observational and experimental evidence, it is argued that the theory is truly a gravitational theory. Generation by the 4-momentum P sup mu of a fermion of U(1) x SU(2) internal symmetry group for gravity, but not the transformation group T sup 4 is demonstrated. It is shown that the U(1) x SU(2) group represents the time displacement and rotation in ordinary space. Thereby internal space associated with gravity is identical with Minkowski spacetime, so a gauge potential of gravity carries two spacetime indices. Then it is verified that the SU(2) gravitational boson has helicity 2. This theory predicts experimentally verifiable gravitomagnetic fields 4 times smaller than that of general relativity.
Study of Excited Ξ Baryons in p̅p-Collisions with the P¯ANDA Detector
NASA Astrophysics Data System (ADS)
Pütz, Jennifer; Gillitzer, Albrecht; Ritman, James; Stockmanns, Tobias
2016-08-01
Understanding the excitation pattern of baryons is indispensable for the understanding of non-perturbative QCD. Up to now only the nucleon excitation spectrum has been subject to systematic experimental studies, while very little is known on excited states of double or triple strange baryons. In studies of antiproton-proton collisions, the P̅ANDA experiment is well-suited for a comprehensive baryon spectroscopy program in the multi-strange and charm sector. In the present study we focus on excited Ξ- states. For final states containing a Ξ- Ξ̅+ pair, cross sections of the order of μb are expected, corresponding to production rates of ~ 106/d at a luminosity L = 1031 cm-2 s-1. Here we present the reconstruction of the reaction p̅p → Ξ (1820)- Ξ̅+ with Ξ (1820)- → Λ K- and its charged conjugate channel with the P̅ANDA detector.
THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING
Shull, J. Michael; Danforth, Charles W.; Smith, Britton D. E-mail: smit1685@msu.edu
2012-11-01
Although galaxies, groups, and clusters contain {approx}10% of the baryons, many more reside in the photoionized and shocked-heated intergalactic medium (IGM) and in the circumgalactic medium (CGM). We update the baryon census in the (H I) Ly{alpha} forest and warm-hot IGM (WHIM) at 10{sup 5-6} K traced by O VI {lambda}1032, 1038 absorption. From Enzo cosmological simulations of heating, cooling, and metal transport, we improve the H I and O VI baryon surveys using spatially averaged corrections for metallicity (Z/Z {sub Sun }) and ionization fractions (f {sub HI}, f {sub OVI}). Statistically, the O VI correction product correlates with column density, (Z/Z {sub Sun })f {sub OVI} Almost-Equal-To (0.015)(N {sub OVI}/10{sup 14} cm{sup -2}){sup 0.70}, with an N {sub OVI}-weighted mean of 0.01, which doubles previous estimates of WHIM baryon content. We also update the Ly{alpha} forest contribution to baryon density out to z = 0.4, correcting for the (1 + z){sup 3} increase in absorber density, the (1 + z){sup 4.4} rise in photoionizing background, and cosmological proper length dl/dz. We find substantial baryon fractions in the photoionized Ly{alpha} forest (28% {+-} 11%) and WHIM traced by O VI and broad-Ly{alpha} absorbers (25% {+-} 8%). The collapsed phase (galaxies, groups, clusters, CGM) contains 18% {+-} 4%, leaving an apparent baryon shortfall of 29% {+-} 13%. Our simulations suggest that {approx}15% reside in hotter WHIM (T {>=} 10{sup 6} K). Additional baryons could be detected in weaker Ly{alpha} and O VI absorbers. Further progress requires higher-precision baryon surveys of weak absorbers, down to minimum column densities N {sub HI} {>=} 10{sup 12.0} cm{sup -2}, N {sub OVI} {>=} 10{sup 12.5} cm{sup -2}, N {sub OVII} {>=} 10{sup 14.5} cm{sup -2}, using high signal-to-noise data from high-resolution UV and X-ray spectrographs.
Two Baryons with Twisted Boundary Conditions
Briceno, Raul; Davoudi, Zohreh; Luu, Thomas; Savage, Martin
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
Exotic Baryon Resonances in the Skyrme Model
NASA Astrophysics Data System (ADS)
Diakonov, Dmitri; Petrov, Victor
We outline how one can understand the Skyrme model from the modern perspective. We review the quantization of the SU(3) rotations of the Skyrmion, leading to the exotic baryons that cannot be made of three quarks. It is shown that in the limit of large number of colors the lowest-mass exotic baryons can be studied from the kaon-Skyrmion scattering amplitudes, an approach known after Callan and Klebanov. We follow this approach and find, both analytically and numerically, a strong Θ+ resonance in the scattering amplitude that is traced to the rotational mode. The Skyrme model does predict an exotic resonance Θ+ but grossly overestimates the width. To understand better the factors affecting the width, it is computed by several methods giving, however, identical results. In particular, we show that insofar as the width is small, it can be found from the transition axial constant. The physics leading to a narrow Θ+ resonance is briefly reviewed and affirmed.
Heavy baryons in the large Nc limit
Albertus, C.; Ruiz Arriola, Enrique; Fernando, Ishara P.; ...
2015-09-16
It is shown that in the large Nc limit heavy baryon masses can be estimated quantitatively in a 1/Nc expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass tension independent of Nc. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. Lastly, the results provide goodmore » estimates for the first sub-leading in 1/Nc corrections.« less
Baryon Spectrum Analysis using Covariant Constraint Dynamics
NASA Astrophysics Data System (ADS)
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
Baryon number current in holographic noncommutative QCD
NASA Astrophysics Data System (ADS)
Nakajima, Tadahito; Ohtake, Yukiko; Suzuki, Kenji
2017-08-01
We consider the noncommutative deformation of the finite-temperature holographic QCD (Sakai-Sugimoto) model in external electric and magnetic field and evaluate the effect of the noncommutativity on the properties of the conductor-insulator phase transition associated with a baryon number current. Although the noncommutative deformation of the gauge theory does not change the phase structure with respect to the baryon number current, the transition temperature Tc, the transition electric field ec, and magnetic field bc in the conductor-insulator phase transition depend on the noncommutativity parameter θ . Namely, the noncommutativity of space coordinates have an influence on the shape of the phase diagram for the conductor-insulator phase transition. On the other hand, the allowed range of the noncommutativity parameter can be restricted by the reality condition of the constants of motion.
An Unquenched Quark Model of Baryons
Bijker, Roelof; Santopinto, Elena
2007-10-26
We present the formalism for a new generation of unquenched quark models for baryons in which the effects of quark-antiquark pairs are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. The present approach is an extension of the fiux-tube breaking model of Geiger and Isgur in which now the contribution of quark-antiquark pairs can be studied for any inital baryon, for any fiavor of the qq-bar pair (not only ss-bar but also uu-bar and dd-bar) and for arbitrary hadron wave functions. The method is illustrated with an application to the spin of the proton and the flavor asymmetry of the nucleon sea.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l^{P}=0⁺] ground state and excited baryons, and the [56,2^{+}] and [70}},1^{-}] excited states are analyzed. The analyses are carried out to order O(1/N_{c}) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0⁺] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations,more » as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less
SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem
NASA Astrophysics Data System (ADS)
Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.
2017-06-01
The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by
Understanding the baryon and meson spectra
Pennington, Michael R.
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Gradient flow running coupling in SU(2) gauge theory with Nf=8 fundamental flavors
NASA Astrophysics Data System (ADS)
Leino, Viljami; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo
2017-06-01
We study the evolution of the coupling in SU(2) gauge field theory with Nf=8 fundamental fermion flavors on the lattice. This model is expected to have an infrared fixed point at high coupling. We use HEX-smeared Wilson-clover action, and measure the gradient flow running coupling with Dirichlet boundary conditions. Extrapolating our results to continuum, we find an infrared fixed point at g*2=8.24 (59 )-1.64+0.97 , with statistical and systematic error estimates. We also measure the anomalous dimension of the quark mass operator, and find its value at the fixed point γ*≃0.15 ±0.02 , although for this quantity a reliable continuum limit is still lacking.
Hedgehogs in Wilson loops and phase transition in SU(2) Yang Mills theory
NASA Astrophysics Data System (ADS)
Belavin, V. A.; Chernodub, M. N.; Kozlov, I. E.
2006-08-01
We suggest that the gauge-invariant hedgehog-like structures in the Wilson loops are physically interesting degrees of freedom in the Yang-Mills theory. The trajectories of these "hedgehog loops" are closed curves corresponding to center-valued (untraced) Wilson loops and are characterized by the center charge and winding number. We show numerically in the SU(2) Yang-Mills theory that the density of hedgehog structures in the thermal Wilson-Polyakov line is very sensitive to the finite-temperature phase transition. The (additively normalized) hedgehog line density behaves like an order parameter: The density is almost independent of the temperature in the confinement phase and changes substantially as the system enters the deconfinement phase. In particular, our results suggest that the (static) hedgehog lines may be relevant degrees of freedom around the deconfinement transition and thus affect evolution of the quark-gluon plasma in high-energy heavy-ion collisions.
SU(2) particle sigma model: the role of contact symmetries in global quantization
NASA Astrophysics Data System (ADS)
Aldaya, V.; Guerrero, J.; López-Ruiz, F. F.; Cossío, F.
2016-12-01
In this paper we achieve the quantization of a particle moving on the SU(2) group manifold, that is, the three-dimensional sphere S 3, by using group-theoretical methods. For this purpose, a fundamental role is played by contact symmetries, i.e., symmetries that leave the Poincaré-Cartan form semi-invariant at the classical level, although not necessarily the Lagrangian. Special attention is paid to the role played by the basic quantum commutators, which depart from the canonical, Heisenberg-Weyl ones, as well as the relationship between the integration measure in the Hilbert space of the system and the non-trivial topology of the configuration space. Also, the quantization on momentum space is briefly outlined.
Center-symmetric effective theory for high-temperature SU(2) Yang-Mills theory
Forcrand, Ph. de; Kurkela, A.; Vuorinen, A.
2008-06-15
We construct and study a dimensionally reduced effective theory for high-temperature SU(2) Yang-Mills theory that respects all the symmetries of the underlying theory. Our main motivation is to study whether the correct treatment of the center symmetry can help extend the applicability of the dimensional reduction procedure towards the confinement transition. After performing perturbative matching to the full theory at asymptotically high temperatures, we map the phase diagram of the effective theory using nonperturbative lattice simulations. We find that at lower temperature the theory undergoes a second-order confining phase transition, in complete analogy with the full theory, which is a direct consequence of having incorporated the center symmetry.
Superconductivity in Restricted Chromo-Dynamics (RCD) in SU(2) and SU(3) Gauge Theories
NASA Astrophysics Data System (ADS)
Kumar, Sandeep
2010-03-01
Characterizing the dyonically condensed vacuum by the presence of two massive modes (one determining how fast the perturbative vacuum around a colour source reaches the condensation and the other giving the penetration length of colored flux) in SU(2) theory, it has been shown that due to the dynamical breaking of magnetic symmetry the vacuum of RCD acquires the properties similar to those of relativistic superconductor. Analysing the behaviour of dyons around RCD string, the solutions of classical field equations have been obtained and it has been shown that magnetic constituent of dyonic current is zero at centre of the string and also at the points far away from the string. Extending RCD in the realistic color gauge group SU(3), it has been shown that the resulting Lagrangian leads to dyonic condensation, color confinement and the superconductivity with the presence of two scalar modes and two vector modes.
SU(2) solutions to self-duality equations in eight dimensions
NASA Astrophysics Data System (ADS)
Dunajski, Maciej; Hoegner, Moritz
2012-08-01
We consider the octonionic self-duality equations on eight-dimensional manifolds of the form M8=M4×R4, where M4 is a hyper-Kähler four-manifold. We construct explicit solutions to these equations and their symmetry reductions to the non-abelian Seiberg-Witten equations on M4 in the case when the gauge group is SU(2). These solutions are singular for flat and Eguchi-Hanson backgrounds. For M4=R×G with a cohomogeneity one hyper-Kähler metric, where G is a nilpotent (Bianchi II) Lie group, we find a solution which is singular only on a single-sided domain wall. This gives rise to a regular solution of the non-abelian Seiberg-Witten equations on a four-dimensional nilpotent Lie group which carries a regular conformally hyper-Kähler metric.
Magnetic-Field-Induced Insulator-Conductor Transition in SU(2) Quenched Lattice Gauge Theory
Buividovich, P.V.; Kharzeev, D.; Chernodub, M.N., Kalaydzhyan, T., Luschevskaya, E.V., and M.I. Polikarpov
2010-09-24
We study the correlator of two vector currents in quenched SU(2) lattice gauge theory with a chirally invariant lattice Dirac operator with a constant external magnetic field. It is found that in the confinement phase the correlator of the components of the current parallel to the magnetic field decays much slower than in the absence of a magnetic field, while for other components the correlation length slightly decreases. We apply the maximal entropy method to extract the corresponding spectral function. In the limit of zero frequency this spectral function yields the electric conductivity of quenched theory. We find that in the confinement phase the external magnetic field induces nonzero electric conductivity along the direction of the field, transforming the system from an insulator into an anisotropic conductor. In the deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic field.
Super-quantum states in SU(2) invariant 3 × N level systems
NASA Astrophysics Data System (ADS)
Adhikary, Soumik; Panda, Ipsit Kumar; Ravishankar, V.
2017-02-01
Nonclassicality of quantum states is expressed in many shades, one of the most stringent of them being a new standard introduced recently in Bharath and Ravishankar (2014), by expanding the notion of local hidden variables (LHV) to generalised local hidden variables (GLHV). Considering the family of SU(2) invariant 3 × N level systems, we identify those states that do not admit a GLHV description, which we designate as super-quantum (called exceptional in Bharath and Ravishankar (2014). We show that all super-quantum states admit a universal geometrical description, and that they are most likely to lie on a line segment in the manifold, irrespective of the value of N. We also show that though a super-quantum state can be highly mixed, its relative rank with respect to the uniform state is always less than that of a state which admits a GLHV description.
Spectrum and mass anomalous dimension of SU(2) adjoint QCD with two Dirac flavors
NASA Astrophysics Data System (ADS)
Bergner, Georg; Giudice, Pietro; Münster, Gernot; Montvay, Istvan; Piemonte, Stefano
2017-08-01
In this work we present the results of our investigation of SU(2) gauge theory with two Dirac fermions in the adjoint representation (aQCD2), which belongs to the class of strongly interacting gauge theories that are of basic interest for extensions of the Standard Model. We have done numerical lattice simulations of this theory at two different values of the gauge coupling and several fermion masses. Our results include the particle spectrum and the mass anomalous dimension. The spectrum contains new exotic fermion-gluon states and flavor-singlet mesons. The mass anomalous dimension is determined from the scaling of the masses and the mode number. The remnant dependence of the universal mass ratios and mass anomalous dimension on the gauge coupling indicates the relevance of scaling corrections, such that earlier estimations for the universal fixed point value of the mass anomalous dimension are incomplete without their inclusion.
Magnetic expansion of Nekrasov theory: The SU(2) pure gauge theory
He Wei; Miao Yangang
2010-07-15
It is recently claimed by Nekrasov and Shatashvili that the N=2 gauge theories in the {Omega} background with {epsilon}{sub 1}=({h_bar}/2{pi}), {epsilon}{sub 2}=0 are related to the quantization of certain algebraic integrable systems. We study the special case of SU(2) pure gauge theory; the corresponding integrable model is the A{sub 1} Toda model, which reduces to the sine-Gordon quantum mechanics problem. The quantum effects can be expressed as the WKB series written analytically in terms of hypergeometric functions. We obtain the magnetic and dyonic expansions of the Nekrasov theory by studying the property of hypergeometric functions in the magnetic and dyonic regions on the moduli space. We also discuss the relation between the electric-magnetic duality of gauge theory and the action-action duality of the integrable system.
Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems
Wang Jiao; Gong Jiangbin
2010-02-15
A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.
Dark left-right gauge model: SU(2){sub R} phenomenology
Aranda, Alfredo; Lorenzo Diaz-Cruz, J.; Hernandez-Sanchez, Jaime; Ma, Ernest
2010-04-01
In the recently proposed dark left-right gauge model of particle interactions, the left-handed fermion doublet ({nu},e){sub L} is connected to its right-handed counterpart (n,e){sub R} through a scalar bidoublet, but {nu}{sub L} couples to n{sub R} only through {phi}{sub 1}{sup 0} which has no vacuum expectation value. The usual R parity, i.e. R=(-){sup 3B+L+2j}, can be defined for this nonsupersymmetric model so that both n and {Phi}{sub 1} are odd together with W{sub R}{sup {+-}.} The lightest n is thus a viable dark-matter candidate (scotino). Here we explore the phenomenology associated with the SU(2){sub R} gauge group of this model, which allows it to appear at the TeV energy scale. The exciting possibility of Z{sup '{yields}}8 charged leptons is discussed.
Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse
NASA Astrophysics Data System (ADS)
Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.
2015-10-01
Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.
The quenched SU(2) fundamental scalar propagator in minimal Landau gauge
NASA Astrophysics Data System (ADS)
Maas, Axel
2016-07-01
It is a long-standing question whether the confinement of matter fields in QCD has an imprint in the (gauge-dependent) correlation functions, especially the propagators. As the analytic structure plays an important role in this question, high-precision data is necessary for lattice investigations. Also, it is interesting how this depends on the dimensionality of the theory. To make a study over a wide range of parameters possible this suggests to use scalar particles. This is done here: The propagator of a fundamental scalar is studied in two, three, and four dimensions in quenched SU(2) Yang-Mills theory in minimal Landau gauge, both in momentum space and position space. Particular emphasis is put on the effects of renormalization. The results suggest a quite intricate volume dependence and the presence of an intrinsic mass scale, but no obvious connection to confinement.
The quenched SU(2) fundamental scalar propagator in minimal Landau gauge.
Maas, Axel
2016-01-01
It is a long-standing question whether the confinement of matter fields in QCD has an imprint in the (gauge-dependent) correlation functions, especially the propagators. As the analytic structure plays an important role in this question, high-precision data is necessary for lattice investigations. Also, it is interesting how this depends on the dimensionality of the theory. To make a study over a wide range of parameters possible this suggests to use scalar particles. This is done here: The propagator of a fundamental scalar is studied in two, three, and four dimensions in quenched SU(2) Yang-Mills theory in minimal Landau gauge, both in momentum space and position space. Particular emphasis is put on the effects of renormalization. The results suggest a quite intricate volume dependence and the presence of an intrinsic mass scale, but no obvious connection to confinement.
A search for missing baryon states
NASA Astrophysics Data System (ADS)
Bellis, Matthew
We perform a partial wave analysis on the reaction gammap → ppi+pi- for photon energies of 0.5--2.4 GeV (W = s = 1.35--2.35 GeV/c2). The data was collected using the CLAS detector located at Jefferson Laboratory in Newport News, VA. We are searching for baryon states produced in gammap → B and decaying by B → ppi+pi - through quasi-two body intermediate states such as Deltapi and prho. Our partial wave decomposition allows us to accurately calculate the total and differential cross section. We also calculate the cross section for gammap → Delta++pi -, gammap → Delta 0pi+, and gammap → prho. We identify the D13(1520), P33(1600) and F15(1680) states in the decomposition. We do not see evidence for the baryon state decaying to Deltapi at 1700 MeV/c2 proposed by Ripani, et al. [R+03]. We see no strong evidence for the positive parity missing baryons, although there are signals in the data which warrant further investigation. The constituent quark model does an excellent job of predicting the hadron spectrum. Capstick, Cutkosky, Forsythe, Isgur and Koniuk [KI80a, CR93, CR94, CI86] have augmented the quark model for baryons, including decays, with QCD inspired corrections and get very good agreement with experiment. It has been known however, since the 1960's that there are many predicted baryons which are not observed experimentally [FH68, FH69]. Many of the models use a harmonic oscillator basis, and it is found that these missing states all fall in the N = 2, positive parity band. This prompted Lichtenberg [Lic69] to propose the diquark model, where two of the three quarks become tightly bound. This constraint leads to a spectrum devoid of the missing resonances of the full model. There is nothing in QCD however, which would imply any sort of diquark coupling. Later calculations [KI80a, FC83, CR93] suggest that these missing states may couple more strongly to Npipi final states than Npi final states. Previous analysis, such as those performed by Manley and
Chiral Lagrangian for baryons in the 1/Nc expansion
NASA Astrophysics Data System (ADS)
Jenkins, Elizabeth
1996-03-01
A 1/Nc expansion of the chiral Lagrangian for baryons is formulated and used to study the low-energy dynamics of baryons interacting with the pion nonet π, K, η, and η' in a combined expansion in chiral symmetry breaking and 1/Nc. Strong CP violation is included. The chiral Lagrangian correctly implements nonet symmetry and contracted spin-flavor symmetry for baryons in the large Nc limit. The implications of nonet symmetry for low-energy baryon-pion interactions are described in detail. The procedure for calculating nonanalytic pion-loop corrections to baryon amplitudes in the 1/Nc expansion for finite Nc is explained. Flavor-27 baryon mass splittings are calculated at leading order in chiral perturbation theory as an example.
Baryon superfluids in AdS/CFT with flavor
NASA Astrophysics Data System (ADS)
Hoyos, Carlos; Itsios, Georgios; Vasilakis, Orestis
2017-01-01
Baryonic matter is notoriously difficult to deal with in the large-N limit, as baryons become operators of very large dimension with N fields in the fundamental representation. This issue is also present in gauge/gravity duals as baryons are described by very heavy localized objects. There are however alternative large-N extrapolations of QCD where small baryonic operators exist and can be treated on an equal footing to mesons. We explore the possibility of turning on a finite density of "light" baryons in a theory with a hadronic mass gap using a gauge/gravity construction based on the D3/D7 intersection. We find a novel phase with spontaneous breaking of baryon symmetry at zero temperature.
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
Baryons as Fock states of 3,5,... Quarks
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
Precision cosmology and the density of baryons in the universe.
Kaplinghat, M; Turner, M S
2001-01-15
Big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the long-standing conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.
STOPPING AND BARYON TRANSPORT IN HEAVY ION REACTIONS.
VIDEBAEK, F.
2005-02-05
In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.
NASA Astrophysics Data System (ADS)
Tsue, Y.; Providência, C.; Providência, J. D.; Yamamura, M.
2012-01-01
The su(2)-algebraic many-fermion model is formulated so as to be able to get the unified understanding of the structures of three simple models: the single-level pairing, the isoscalar proton-neutron pairing and the two-level Lipkin model. The basic idea is to introduce an auxiliary su(2)-algebra, any generator of which commutes with any generator of the starting su(2)-algebra. With the aid of this algebra, the minimum weight states are completely determined in simple form. Further, concerning the two algebras, boson realization is presented. Through this formulation, the behavior of the total fermion in the Lipkin model is notably different from that in the other two models. As the supplementary problem, the boson-fermion realization and the Lipkin model in the isovector pairing model are investigated.
Poireau, Vincent; /Annecy, LAPP
2007-12-21
We present a mini-review on charm spectroscopy at the BABAR experiment. We first report on the c{bar s} meson spectrum, and present precise measurements of the D{sub s1}(2536) meson as well as the properties of the many new states discovered since 2003 (D*{sub s0}(2317), D{sub s1}(2460), D*{sub sJ}(2860), and D{sub sJ}(2700) mesons). We then discuss about charmed baryons observed recently in the BABAR experiment: {Omega}{sub c}{sup 0} and {Omega}*{sub c}{sup 0} css baryons, {Lambda}{sub c}(2940){sup +} udc baryon and the {Xi}{sub c} usc/dsc baryons.
Baryon-baryon spin-orbit interaction in a quark model
NASA Astrophysics Data System (ADS)
Morimatsu, O.; Ohta, S.; Shimizu, K.; Yazaki, K.
1984-06-01
The baryon-baryon spin-orbit interactions are studied within the framework of a nonrelativistic quark-cluster model. The origin of the spin-orbit interactions is taken to be the Galilei-invariant part of the spin-orbit term in the one-gluon-exchange potential between quarks. It gives, for example, the NN spin-orbit interaction which is qualitatively similar to the empirical ones. The baryon-nucleus spin-orbit interactions are also considered along this line. The N- and Σ-nucleus spin-orbit interactions are of comparable strength, while the Λ-nucleus spin-orbit interaction is weak. The main origin of the difference between the Λ -nucleus and Σ-nucleus spin-orbit interactions is the presence of the comparatively strong antisymmetric LS (ALS) terms for both NΛ and NΣ interactions but with opposite signs. Other sources of the spin-orbit interactions are briefly discussed in connection with the problem of the spin-orbit effect in the excited baryon spectra.
Meson-baryon-baryon vertex function and the Ward-Takahashi identity
NASA Astrophysics Data System (ADS)
Wang, Siwen; Banerjee, Manoj K.
1996-12-01
Ohta proposed a solution for the well-known difficulty of satisfying the Ward-Takahashi identity for a photo-meson-baryon-baryon amplitude (γMBB) when a dressed meson-baryon-baryon (MBB) vertex function is present. He obtained a form for the γMBB amplitude which contained, in addition to the usual pole terms, longitudinal seagull terms which were determined entirely by the MBB vertex function. He arrived at his result by using a Lagrangian which yields the MBB vertex function at tree level. We show that such a Lagrangian can be neither Hermitian nor charge conjugation invariant. We have been able to reproduce Ohta's result for the γMBB amplitude using the Ward-Takahashi identity and no other assumption, dynamical or otherwise, and the most general form for the MBB and γMBB vertices. However, contrary to Ohta's finding, we find that the seagull terms are not robust. The seagull terms extracted from the γMBB vertex occur unchanged in tree graphs, such as in an exchange current amplitude. But the seagull terms which appear in a loop graph, as in the calculation of an electromagnetic form factor, are, in general, different. The whole procedure says nothing about the transverse part of the (γMBB) vertex and its contributions to the amplitudes in question.
Meson-baryon-baryon vertex function and the Ward-Takahashi identity
Wang, S.; Banerjee, M.K.
1996-12-01
Ohta proposed a solution for the well-known difficulty of satisfying the Ward-Takahashi identity for a photo-meson-baryon-baryon amplitude ({gamma}MBB) when a dressed meson-baryon-baryon (MBB) vertex function is present. He obtained a form for the {gamma}MBB amplitude which contained, in addition to the usual pole terms, longitudinal seagull terms which were determined entirely by the MBB vertex function. He arrived at his result by using a Lagrangian which yields the MBB vertex function at tree level. We show that such a Lagrangian can be neither Hermitian nor charge conjugation invariant. We have been able to reproduce Ohta{close_quote}s result for the {gamma}MBB amplitude using the Ward-Takahashi identity and no other assumption, dynamical or otherwise, and the most general form for the MBB and {gamma}MBB vertices. However, contrary to Ohta{close_quote}s finding, we find that the seagull terms are not robust. The seagull terms extracted from the {gamma}MBB vertex occur unchanged in tree graphs, such as in an exchange current amplitude. But the seagull terms which appear in a loop graph, as in the calculation of an electromagnetic form factor, are, in general, different. The whole procedure says nothing about the transverse part of the ({gamma}MBB) vertex and its contributions to the amplitudes in question. {copyright} {ital 1996 The American Physical Society.}
Baryon Loaded Relativistic Blast Waves in Supernovae
NASA Astrophysics Data System (ADS)
Chakraborti, Sayan; Ray, Alak
2011-03-01
We provide a new analytic blast wave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long-duration gamma-ray bursts (GRBs). The blast waves of such explosions are well described by the Blandford-McKee (in the ultra-relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept-up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded, mildly relativistic outflows which remains in nearly free-expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We compute the synchrotron emission from relativistic electrons in the shock amplified magnetic field. This models the radio emission from the circumstellar interaction of a CEDEX. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow. We discuss the effect of baryon loading on the dynamics and observational manifestations of a CEDEX. In particular, our predicted angular size of SN 2009bb is consistent with very long baseline interferometric (VLBI) upper limits on day 85, but is presently resolvable on VLBI angular scales, since the relativistic ejecta is still in the nearly free-expansion phase.
Flavour Oscillations in Dense Baryonic Matter
NASA Astrophysics Data System (ADS)
Filip, Peter
2017-01-01
We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.
Baryon number distribution in lattice QCD
NASA Astrophysics Data System (ADS)
Nagata, Keitaro
2014-09-01
Recently, Beam Energy Scan experiments have been performed at RHIC to find a first order phase transition line and expected critical endpoint on the QCD phase diagram. Higher moments of hadron multiplicity, such as skewness, kurtosis have been measured. Multiplicity of hadrons are basic quantities to obtain the moments. In this talk, we will study the canonical partition function, which are directly related to the baryon number distribution, in lattice QCD simulations with a canonical formalism. We will calculate the canonical partition function for various temperatures, and apply the Lee-Yang zero analysis to the canonical partition function.
Baryon Resonances in the Strangeness Production
NASA Astrophysics Data System (ADS)
Xie, Ju-Jun; Wang, En; Wu, Jia-Jun
We have studied the N*(2120), Δ*(1940), and the possible Σ*(1380) resonances in the γp → K+Λ(1520), pp → nK+Σ(1385), and Λp → Λpπ0 reactions within the resonance model and the effective Lagrangian approach. It is shown that when the contributions from these baryonic states were considered, the current experimental measurement could be well reproduced. In addition, we also demonstrate that the angular distributions provide direct information of these reactions, which could be useful for the investigation of those states and may be tested by future experiments.
Baryon number violation via Majorana neutrinos
Zhang, Yue
2016-06-21
We propose and investigate a novel, minimal, and experimentally testable framework for baryo- genesis, dubbed dexiogenesis, using baryon number violating effective interactions of right-handed Majorana neutrinos responsible for the seesaw mechanism. The distinct LHC signature of our framework is same-sign top quark final states, possibly originating from displaced vertices. The region of parameters relevant for LHC phenomenology can also yield concomitant signals in nucleon decay experiments. We provide a simple ultraviolet origin for our effective operators, by adding a color-triplet scalar, which could ultimately arise from a grand unified theory.
SU(2) flat connection on a Riemann surface and 3D twisted geometry with a cosmological constant
NASA Astrophysics Data System (ADS)
Han, Muxin; Huang, Zichang
2017-02-01
Twisted geometries are understood to be the discrete classical limit of loop quantum gravity. In this paper, SU(2) flat connections on a (decorated) 2D Riemann surface are shown to be equivalent to the generalized twisted geometries in 3D space with cosmological constant. Various flat connection quantities on a Riemann surface are mapped to the geometrical quantities in discrete 3D space. We propose that the moduli space of SU(2) flat connections on a Riemann surface generalizes the phase space of twisted geometry or loop quantum gravity to include a cosmological constant.
High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Silas Beane; Detmold, William; Lin, Huey-Wen; Luu, Thomas C.; Orginos, Kostas; Savage, Martin; Torok, Aaron M.; Walker-Loud, Andre
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
Embedded monopoles in quark eigenmodes in SU(2) Yang-Mills theory
Chernodub, M. N.; Morozov, S. M.
2006-09-01
We study the embedded QCD monopoles ('quark monopoles') using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature SU(2) Yang-Mills theory on the lattice. These monopoles correspond to the gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial, and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anticorrelated with the density of the Dirac eigenmodes. We observe that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low-temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the stringlike objects while the chirally invariant monopoles scale as membranes. The excess of gluon energy at monopole positions reveals that the embedded QCD monopole possesses a gluonic core which is, however, empty at the very center of the monopole.
Embedded monopoles in quark eigenmodes in SU(2) Yang-Mills theory
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Morozov, S. M.
2006-09-01
We study the embedded QCD monopoles (“quark monopoles”) using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature SU(2) Yang-Mills theory on the lattice. These monopoles correspond to the gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial, and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anticorrelated with the density of the Dirac eigenmodes. We observe that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low-temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the stringlike objects while the chirally invariant monopoles scale as membranes. The excess of gluon energy at monopole positions reveals that the embedded QCD monopole possesses a gluonic core which is, however, empty at the very center of the monopole.
Physical properties of Polyakov loop geometrical clusters in SU(2) gluodynamics
NASA Astrophysics Data System (ADS)
Ivanytskyi, A. I.; Bugaev, K. A.; Nikonov, E. G.; Ilgenfritz, E.-M.; Oliinychenko, D. R.; Sagun, V. V.; Mishustin, I. N.; Petrov, V. K.; Zinovjev, G. M.
2017-04-01
We apply the liquid droplet model to describe the clustering phenomenon in SU(2) gluodynamics, especially, in the vicinity of the deconfinement phase transition. In particular, we analyze the size distributions of clusters formed by the Polyakov loops of the same sign. Within such an approach this phase transition can be considered as the transition between two types of liquids where one of the liquids (the largest droplet of a certain Polyakov loop sign) experiences a condensation, while the other one (the next to largest droplet of opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, and their size distributions are described by the liquid droplet parameterization. By fitting the lattice data we have extracted the value of Fisher exponent τ = 1.806 ± 0.008. Also we found that the temperature dependences of the surface tension of both gaseous clusters are entirely different below and above the phase transition and, hence, they can serve as an order parameter. The critical exponents of the surface tension coefficient in the vicinity of the phase transition are found. Our analysis shows that the temperature dependence of the surface tension coefficient above the critical temperature has a T2 behavior in one gas of clusters and T4 in the other one.
Nonlinear SU(2,1) Model of Multiple Giant Dipole Resonance Coulomb Excitation
NASA Astrophysics Data System (ADS)
Hussein, Mahir; de Toledo Piza, Antonio; Vorov, Oleg
2000-10-01
We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra^1. Analytical expressions for the multi-phonon transition probabilities are derived. For reasonably small magnitude of nonlinearity x~= 0.15-0.3, the enhancement factor for the Double Giant Resonance excitation probabilities and the cross sections reaches values 1.3-2 compatible^1,2 with experimental data from relativistic ion collision experiments^3. The full 3-dimensional model predicts enhancement of the multiple GDR cross sections at low and high bombarding energies (with the minimum at ~= 1.3 GeV for the Pb+Pb colliding system). Enhancement factors for Double GDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of ^136Xe which requires a larger value. The work has been supported by the FAPESP and by the CNPq. References ^1 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Ann. Phys. (N.Y.), 2000, to appear. ^2 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Phys. Rev. C59,R1242 (1999). ^3 T. Aumann, P.F. Bortignon, and H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).
Fermionic Representation of a Spin S chain Using subalgebra of SU(2S+1)
NASA Astrophysics Data System (ADS)
Duki, Solomon F.; Yu, Yi-Kuo
2014-03-01
Quantum mechanical spins behave neither as pure bosonic nor as pure fermionic operators. Over the years many different kinds of important mappings have been introduced that transform spins systems in to either multi-bosonic or multi-fermionic systems. These mappings have often successfully transformed some of the most difficult many body problems into simpler ones. Moreover, because symmetries that are hidden in one representation can be manifested in other representations, such mappings are also helpful in uncovering hidden symmetries in physical problems. Examples of such transformations include the Holstein-Primakoff, the Schwinger bosons, the Matsubara-Matsuda, and the Jordan-Wigner transformations. Despite their success for low dimensional systems and at smaller values of spins, these transformations become ineffective in reducing the degree of difficulty of correlated systems when the system dimension increase or when the underlying system has a higher spin values. In the context of a spin chain, we introduce a new spin fermion transformation for arbitrary spin S using the subalgebra of the bigger su(2S+1) algebra and discuss its potential applications in physical problems. This research was supported by the Intramural Research Program of the NIH, National Library of Medicine.
Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Macorini, Guido
2016-07-01
We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.
U(1 )×SU (2 ) gauge invariance made simple for density functional approximations
NASA Astrophysics Data System (ADS)
Pittalis, S.; Vignale, G.; Eich, F. G.
2017-07-01
A semirelativistic density-functional theory that includes spin-orbit couplings and Zeeman fields on equal footing with the electromagnetic potentials, is an appealing framework to develop a unified first-principles computational approach for noncollinear magnetism, spintronics, orbitronics, and topological states. The basic variables of this theory include the paramagnetic current and the spin-current density, besides the particle and the spin density, and the corresponding exchange-correlation (xc) energy functional is invariant under local U (1 )×SU (2 ) gauge transformations. The xc-energy functional must be approximated to enable practical applications, but, contrary to the case of the standard density functional theory, finding simple approximations suited to deal with realistic atomistic inhomogeneities has been a long-standing challenge. Here we propose a way out of this impasse by showing that approximate gauge-invariant functionals can be easily generated from existing approximate functionals of ordinary density-functional theory by applying a simple minimal substitution on the kinetic energy density, which controls the short-range behavior of the exchange hole. Our proposal opens the way to the construction of approximate, yet nonempirical functionals, which do not assume weak inhomogeneity and therefore may have a wide range of applicability in atomic, molecular, and condensed matter physics.
Calorons and monopoles from smeared SU(2) lattice fields at nonzero temperature
NASA Astrophysics Data System (ADS)
Ilgenfritz, E.-M.; Martemyanov, B. V.; Müller-Preussker, M.; Veselov, A. I.
2006-05-01
In equilibrium, at finite temperature below and above the deconfining phase transition, we have generated lattice SU(2) gauge fields and have exposed them to smearing in order to investigate the emerging clusters of topological charge. Analyzing in addition the monopole clusters according to the maximally Abelian gauge, we have been able to characterize part of the topological clusters to correspond either to nonstatic calorons or static dyons in the context of Kraan-van Baal caloron solutions with nontrivial holonomy. We show that the relative abundance of these calorons and dyons is changing with temperature and offer an interpretation as dissociation of calorons into dyons with increasing temperature. The profile of the Polyakov loop inside the topological clusters and the (model-dependent) accumulated topological cluster charges support this interpretation. Above the deconfining phase transition light dyons (according to Kraan-van Baal caloron solutions with almost trivial holonomy) become the most abundant topological objects. They are presumably responsible for the magnetic confinement in the deconfined phase.
SU(2) Coherent State Path Integrals Labeled by a Full Set of Euler Angles: Basic Formulation
NASA Astrophysics Data System (ADS)
Matsumoto, Masao
2012-11-01
We develop a basic formulation of the spin (SU(2)) coherent state path integrals based not on the conventional highest or lowest weight vectors but on arbitrary fiducial vectors. The coherent states, being defined on a 3-sphere, are specified by a full set of Euler angles. They are generally considered as states without classical analogues. The overcompleteness relation holds for the states, by which we obtain the time evolution of general systems in terms of the path integral representation; the resultant Lagrangian in the action has a monopole-type term à la Balachandran et al. as well as some additional terms, both of which depend on fiducial vectors in a simple way. The process of the discrete path integrals to the continuous ones is clarified. Complex variable forms of the states and path integrals are also obtained. During the course of all steps, we emphasize the analogies and correspondences to the general canonical coherent states and path integrals that we proposed some time ago. In this paper we concentrate on the basic formulation. The physical applications as well as criteria in choosing fiducial vectors for real Lagrangians, in relation to fictitious monopoles and geometric phases, will be treated in subsequent papers separately.
Deconfinement, gradient, and cooling scales for pure SU(2) lattice gauge theory
NASA Astrophysics Data System (ADS)
Berg, Bernd A.; Clarke, David A.
2017-05-01
We investigate the approach of pure SU(2) lattice gauge theory with the Wilson action to its continuum limit using the deconfining phase transition, the gradient flow and the cooling flow to set the scale. For the gradient and cooling scales we explore three different energy observables and two distinct reference values for the flow time. When the aim is to follow scaling towards the continuum limit, one gains at least a factor of 100 in computational efficiency by relying on the gradient instead of the deconfinement scale. Using cooling instead of the gradient flow one gains another factor of at least 34 in computational efficiency on the gradient flow part without any significant loss in the accuracy of scale setting. Concerning our observables, the message is to keep it simple. The Wilson action itself performs as well as or even better than the other two observables explored. Two distinct fitting forms for scaling are compared, of which one connects to asymptotic scaling. Differences of the obtained estimates show that systematic errors of length ratios, though only about 1%, can be considerably larger than statistical errors of the same observables.
The Baryonic Tully-Fisher Relation
NASA Astrophysics Data System (ADS)
Gurovich, Sebastián; McGaugh, Stacy S.; Freeman, Ken C.; Jerjen, Helmut; Staveley-Smith, Lister; De Blok, W. J. G.
We validate the baryonic Tully-Fisher (TF) relation by exploring the Tully-Fisher (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from Sakai et al. (2000) calibrator sample, McGaugh et al. (2000: M2000) I-band sample, and 18 newly acquired HI-selected field dwarf galaxies observed with the ANU 2.3-m telescope and the ATNF Parkes telescope (Gurovich 2005a). As in M2000, we re-cast the TF and BTF relations as relationships between baryon mass and W20. First we report some numerical errors in M2000. Then, we calculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the TF relation and that the slopes of the BTF relations are statistically flatter than the equivalent TF relations. Further, for the fainter galaxies which include the I-band M2000 and HI-selected galaxies of Gurovich's sample, we calculate a break from a simple power law model because of what appears to be real cosmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller χred2 values.
Baryon resonance yields after QGP hadronization
NASA Astrophysics Data System (ADS)
Kuznetsova, Inga; Rafelski, Johann
2008-10-01
Yields of baryon resonances which have been studied at RHIC, considering their decay (e.g. δ(1232) ->N+π , σ(1385) ->λ+π), are studied in the framework of a kinetic master equations. The detailed balance requirement implied that they can be also produced by back-reaction. Particularly interesting is the case of entropy rich QGP fast hadronization leading to initial above chemical equilibrium yields of hadrons. In this case the resonance yield in a rapidly expanding system does not always develop towards global chemical equilibrium. We find that a significant additional hadron resonance yields can be produced by the back-reaction of the over-abundance of the decay products of resonances. A more complex situation arises for a relatively narrow resonance such as λ(1520), which can be in part seen as a stable state, which is depopulated to increase the heavier resonance yield. We find that a suppression of yield of such resonances, as compared to statistical hadronization model is possible. The pattern of deviation of hadron resonance yields from expectations based on statistical hadronization model are another characteristic signature for a fast hadronization of entropy rich QGP. The total yields of the ground state baryons used in analysis of data (such as N, λ) are not affected.
The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates
NASA Astrophysics Data System (ADS)
Henson, Monique A.; Barnes, David J.; Kay, Scott T.; McCarthy, Ian G.; Schaye, Joop
2017-03-01
We use the BAHAMAS (BAryons and HAloes of MAssive Systems) and MACSIS (MAssive ClusterS and Intercluster Structures) hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the subgrid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3500 clusters with masses greater than 1014 M⊙ at z = 0. We start by characterizing the clusters in terms of their spin, shape and density profile, before considering the bias in both weak lensing and hydrostatic mass estimates. Whilst including baryonic effects leads to more spherical, centrally concentrated clusters, the median weak lensing mass bias is unaffected by the presence of baryons. In both the dark matter only and hydrodynamic simulations, the weak lensing measurements underestimate cluster masses by ≈10 per cent for clusters with M200 ≤ 1015 M⊙ and this bias tends to zero at higher masses. We also consider the hydrostatic bias when using both the true density and temperature profiles, and those derived from X-ray spectroscopy. When using spectroscopic temperatures and densities, the hydrostatic bias decreases as a function of mass, leading to a bias of ≈40 per cent for clusters with M500 ≥ 1015 M⊙. This is due to the presence of cooler gas in the cluster outskirts. Using mass weighted temperatures and the true density profile reduces this bias to 5-15 per cent.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Baryogenesis from baryon-number-violating scalar interactions
NASA Astrophysics Data System (ADS)
Bowes, J. P.; Volkas, R. R.
1997-03-01
In the following work we consider the possibility of explaining the observed baryon-number asymmetry in the universe from simple baryon-number-violating modifications, involving massive scalar bosons, to the standard model. In these cases baryon-number violation is mediated through a combination of Yukawa and scalar self-coupling interactions. Starting with a previously compiled catalogue of baryon-number-violating extensions of the standard model, we identify the minimal subsets which can induce a B-L asymmetry and thus be immune to sphaleron washout. For each of these models, we identify the region of parameter space that leads to the production of a baryon number asymmetry of the correct order of magnitude.
ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES
Dai Xinyu; Bregman, Joel N.; Kochanek, Christopher S.; Rasia, Elena
2010-08-10
We present the baryon fractions of 2MASS groups and clusters as a function of cluster richness using total and gas masses measured from stacked ROSAT X-ray data and stellar masses estimated from the infrared galaxy catalogs. We detect X-ray emission even in the outskirts of clusters, beyond r {sub 200} for richness classes with X-ray temperatures above 1 keV. This enables us to more accurately determine the total gas mass in these groups and clusters. We find that the optically selected groups and clusters have flatter temperature profiles and higher stellar-to-gas mass ratios than the individually studied, X-ray bright clusters. We also find that the stellar mass in poor groups with temperatures below 1 keV is comparable to the gas mass in these systems. Combining these results with individual measurements for clusters, groups, and galaxies from the literature, we find a break in the baryon fraction at {approx}1 keV. Above this temperature, the baryon fraction scales with temperature as f{sub b} {proportional_to} T {sup 0.20{+-}0.03}. We see significantly smaller baryon fractions below this temperature and the baryon fraction of poor groups joins smoothly onto that of systems with still shallower potential wells such as normal and dwarf galaxies where the baryon fraction scales with the inferred velocity dispersion as f{sub b} {proportional_to} {sigma}{sup 1.6}. The small scatter in the baryon fraction at any given potential well depth favors a universal baryon loss mechanism and a preheating model for the baryon loss. The scatter is, however, larger for less massive systems. Finally, we note that although the broken power-law relation can be inferred from data points in the literature alone, the consistency between the baryon fractions for poor groups and massive galaxies inspires us to fit the two categories of objects (galaxies and clusters) with one relation.
Generalized Kähler Geometry and current algebras in SU(2) × U(1) N = 2 superconformal WZW model
NASA Astrophysics Data System (ADS)
Parkhomenko, S. E.
2017-04-01
We examine the Generalized Kähler Geometry (GKG) of quantum N = 2 superconformal WZW model on SU(2) × U(1) and relate the right-moving and left-moving Kac-Moody superalgebra currents to the GKG data of the group manifold using Hamiltonian formalism.
SU(2) gauge theory with two fundamental flavors: A minimal template for model building
NASA Astrophysics Data System (ADS)
Arthur, Rudy; Drach, Vincent; Hansen, Martin; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2016-11-01
We investigate the continuum spectrum of the SU(2) gauge theory with Nf=2 flavors of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the strongly interacting massive particles (SIMPs). We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the w0 parameter, and by measuring the relevant renormalization constants nonperturbatively in the regularization-invariant momentum (RI'-MOM) scheme. Our result for the lightest isovector state in the vector channel, in units of the pseudoscalar decay constant, is mV/FPS˜13.1 (2.2 ) (combining statistical and systematic errors). For the axial channel our result is mA/FPS˜14.5 (3.6 ) , which however does include a similarly sized additional systematic error due to residual excited-states contamination. In the context of the composite (Goldstone) Higgs models, our result for the spin-one resonances are mV>3.2 (5 ) TeV and mA>3.6 (9 ) TeV , which are above the current LHC constraints. In the context of dark matter models, for the SIMP case our results indicate the occurrence of a compressed spectrum at the required large dark pion mass, which implies the need to include the effects of spin-one resonances in phenomenological estimates.
SU (2) Dirac-Yang-Mills quantum mechanics of spatially constant quark and gluon fields
NASA Astrophysics Data System (ADS)
Pavel, H.-P.
2011-06-01
The quantum mechanics of spatially constant SU (2) Yang-Mills- and Dirac-fields minimally coupled to each other is investigated as the strong coupling limit of 2-color-QCD. Using a canonical transformation of the quark and gluon fields, which Abelianises the Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. In the same way as this reduces the colored spin-1 gluons to unconstrained colorless spin-0 and spin-2 gluons, it reduces the colored spin-1/2 quarks to unconstrained colorless spin-0 and spin-1 quarks. These however continue to satisfy anti-commutation relations and hence the Pauli-exclusion principle. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. In this form the low-energy spectrum can be obtained with high accuracy. As an illustrative example, the spin-0 energy-spectrum of the quark-gluon system is calculated for massless quarks of one flavor. It is found, that only for the case of 4 reduced quarks (half-filling) satisfying the boundary condition of particle-antiparticle C-symmetry, states with energy lower than for the pure-gluon case are obtained. These are the ground state, with an energy about 20% lower than for the pure-gluon case and the formation of a quark condensate, and the sigma-antisigma excitation with an energy about a fifth of that of the first glueball excitation.
Direct evidence for a Coulombic phase in monopole-suppressed SU(2) lattice gauge theory
NASA Astrophysics Data System (ADS)
Grady, Michael
2013-11-01
Further evidence is presented for the existence of a non-confining phase at weak coupling in SU(2) lattice gauge theory. Using Monte Carlo simulations with the standard Wilson action, gauge-invariant SO(3)-Z2 monopoles, which are strong-coupling lattice artifacts, have been seen to undergo a percolation transition exactly at the phase transition previously seen using Coulomb gauge methods, with an infinite lattice critical point near β=3.2. The theory with both Z2 vortices and monopoles and SO(3)-Z2 monopoles eliminated is simulated in the strong-coupling (β=0) limit on lattices up to 604. Here, as in the high-β phase of the Wilson-action theory, finite size scaling shows it spontaneously breaks the remnant symmetry left over after Coulomb gauge fixing. Such a symmetry breaking precludes the potential from having a linear term. The monopole restriction appears to prevent the transition to a confining phase at any β. Direct measurement of the instantaneous Coulomb potential shows a Coulombic form with moderately running coupling possibly approaching an infrared fixed point of α˜1.4. The Coulomb potential is measured to 50 lattice spacings and 2 fm. A short-distance fit to the 2-loop perturbative potential is used to set the scale. High precision at such long distances is made possible through the use of open boundary conditions, which was previously found to cut random and systematic errors of the Coulomb gauge fixing procedure dramatically. The Coulomb potential agrees with the gauge-invariant interquark potential measured with smeared Wilson loops on periodic lattices as far as the latter can be practically measured with similar statistics data.
Effective theory and emergent SU(2 ) symmetry in the flat bands of attractive Hubbard models
NASA Astrophysics Data System (ADS)
Tovmasyan, Murad; Peotta, Sebastiano; Törmä, Päivi; Huber, Sebastian D.
2016-12-01
In a partially filled flat Bloch band electrons do not have a well defined Fermi surface and hence the low-energy theory is not a Fermi liquid. Nevertheless, under the influence of an attractive interaction, a superconductor well described by the Bardeen-Cooper-Schrieffer (BCS) wave function can arise. Here we study the low-energy effective Hamiltonian of a generic Hubbard model with a flat band. We obtain an effective Hamiltonian for the flat band physics by eliminating higher-lying bands via the perturbative Schrieffer-Wolff transformation. At first order in the interaction energy we recover the usual procedure of projecting the interaction term onto the flat band Wannier functions. We show that the BCS wave function is the exact ground state of the projected interaction Hamiltonian, if a simple uniform pairing condition on the single-particle states is satisfied, and that the compressibility is diverging as a consequence of an emergent SU(2 ) symmetry. This symmetry is broken by second-order interband transitions resulting in a finite compressibility, which we illustrate for a one-dimensional ladder with two perfectly flat bands. These results motivate a further approximation leading to an effective ferromagnetic Heisenberg model. The gauge-invariant result for the superfluid weight of a flat band can be obtained from the ferromagnetic Heisenberg model only if the maximally localized Wannier functions in the Marzari-Vanderbilt sense are used. Finally, we prove an important inequality D ≥W2 between the Drude weight D and the winding number W , which guarantees ballistic transport for topologically nontrivial flat bands in one dimension.
nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction
Fujiwara, Y.; Fukukawa, K.
2010-05-12
We solve the nd scattering in the Faddeev formalism, employing the NN sector of the quark-model baryon-baryon interaction fss2. The energy-dependence of the NN interaction, inherent to the (3q)-(3q) resonating-group formulation, is eliminated by the standard off-shell transformation utilizing the 1/sq root(N) factor, where N is the normalization kernel for the (3q)-(3q) system. This procedure yields an extra nonlocality, whose effect is very important to reproduce all the scattering observables below E{sub n}<=65 MeV. The different off-shell properties from the standard meson-exchange potentials, related to the non-locality of the quark-exchange kernel, yields appreciable effects to the differential cross sections and polarization observables of the nd elastic scattering, which are usually attributed to the specific properties of three-body forces.
B hadrons spectroscopy at the D0 experiment
De La Cruz Burelo, Eduard
2011-10-24
The latest results on B hadron spectroscopy from the DOe experiment at the Tevatron are presented. The mass measuremen of the B{sub c}{sup -} meson in the B{sub c}{sup -}{yields}J/{psi}{pi}{sup -} decay channel, the observation of excited B{sub s} mesons, the first direct observation of the {Xi}{sub b}{sup -} baryon, and the first observation of the {Omega}{sub b}{sup -} baryon.
Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD
NASA Astrophysics Data System (ADS)
Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.
2016-10-01
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and N N ), and three and four baryons (3He and 4He) as well, employing (2+1)-flavor lattice QCD at m π = 0 .51GeV on four lattice volumes with L = 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound N N , 3 N and 4 N systems based only on the standard plateau fitting of the temporal correlation functions. [Figure not available: see fulltext.
Ziegler, V.; /Iowa U.
2006-04-21
The authors present a precision measurement of the mass of the {Lambda}{sub c}{sup +} and studies of the production and decay of the {Omega}{sub c}{sup 0} and {Xi}{sub c}{sup 0} charm baryons using data collected by the BABAR experiment. To keep the systematic uncertainty as low as possible, the {Lambda}{sub c}{sup +} mass measurement is performed using the low Q-value decays, {Lambda}{sub c}{sup +} {yields} {Lambda}{sup 0} K{sub S}{sup 0}K{sup +} and {Lambda}{sub c}{sup +} {yields} {Sigma}{sup 0} K{sub S}{sup 0}K{sup +}. Several hadronic final states involving an {Omega}{sup -} and a {Xi}{sup -} hyperon are analyzed to reconstruct the {Xi}{sub c}{sup 0} and the {Omega}{sub c}{sup 0}.
Halo Density Reduction by Baryonic Settling?
NASA Astrophysics Data System (ADS)
Jardel, J. R.; Sellwood, J. A.
2009-02-01
We test the proposal by El-Zant et al. that the dark matter density of halos could be reduced through dynamical friction acting on heavy baryonic clumps in the early stages of galaxy formation. Using N-body simulations, we confirm that the inner halo density cusp is flattened to 0.2 of the halo break radius by the settling of a single clump of mass gsim0.5% of the halo mass. We also find that an ensemble of 50 clumps, each having masses gsim0.2%, can flatten the cusp to almost the halo break radius on a timescale of ~9 Gyr, for a Navarro-Frenk-White profile halo of concentration 15. We summarize some of the difficulties that need to be overcome if this mechanism is to resolve the apparent conflict between the observed inner densities of galaxy halos and the predictions of ΛCDM.
Measurements of baryon form factors at BESIII
NASA Astrophysics Data System (ADS)
Li, Cui
2016-08-01
The momentum transfer dependence of the electromagnetic form factors is an important probe of the structure of hadrons at different scales. Using data samples collected with the BESIII detector at the BEPCII collider, we study the process of e+e- → pp¯ at 12 c.m. energies from 2232.4 to 3671.0 MeV. The Born cross section at these energy points are measured as well as the corresponding effective electromagnetic form factors. Furthermore, the ratio of electric to magnetic form factors, |GE/GM | and |GM | are measured at the c.m. energies where the data samples are the largest. We also report preliminary results of e+e- → ˄˄̅, which is analysed with the same method. Moreover, future prospects of the measurement of baryon electromagnetic form factors from a unique high luminosity data scan by BESIII, are given.
Towards an optimal reconstruction of baryon oscillations
Tassev, Svetlin; Zaldarriaga, Matias E-mail: matiasz@ias.edu
2012-10-01
The Baryon Acoustic Oscillations (BAO) in the large-scale structure of the universe leave a distinct peak in the two-point correlation function of the matter distribution. That acoustic peak is smeared and shifted by bulk flows and non-linear evolution. However, it has been shown that it is still possible to sharpen the peak and remove its shift by undoing the effects of the bulk flows. We propose an improvement to the standard acoustic peak reconstruction. Contrary to the standard approach, the new scheme has no free parameters, treats the large-scale modes consistently, and uses optimal filters to extract the BAO information. At redshift of zero, the reconstructed linear matter power spectrum leads to a markedly improved sharpening of the reconstructed acoustic peak compared to standard reconstruction.
Cluster outskirts and the missing baryons
NASA Astrophysics Data System (ADS)
Eckert, D.
2016-06-01
Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.
Baryon transition form factors at the pole
Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.
2016-12-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Observation of a new charmed baryon
NASA Astrophysics Data System (ADS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M.; Reim, K.; Wegener, H.; Eckmann, R.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Seeger, M.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reβing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration
1993-11-01
Using the ARGUS detector at the e+e- storage ring DORIS II at DESY, we have observed a new charmed baryon state in the channel Λc+π+π-. (All references to a specific charged state also imply the charge conjugate state.) The mass of this state was measured to be (2626.6 ± 0.5 ± 1.5) MeV/ c2. The product of the production cross section and branching ratio for this channel was determined to be (11.5 ± 2.5 ± 3.0) pb, and the natural width estimated to be smaller than 3.2 MeV/ c2 at 90% CL.
Baryon transition form factors at the pole
NASA Astrophysics Data System (ADS)
Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.
2016-12-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Leptogenesis and gravity: Baryon asymmetry without decays
NASA Astrophysics Data System (ADS)
McDonald, J. I.; Shore, G. M.
2017-03-01
A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.
Shedding light on baryonic dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.
Reconstructing baryon oscillations: A Lagrangian theory perspective
Padmanabhan, Nikhil; White, Martin; Cohn, J. D.
2009-03-15
Recently Eisenstein and collaborators introduced a method to 'reconstruct' the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum.
The Compressed Baryonic Matter Experiment at FAIR
NASA Astrophysics Data System (ADS)
Heuser, J. M.
2011-04-01
The Compressed Baryonic Matter (CBM) experiment is being planned at the international research centre FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifications of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/m, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45A GeV. Hadronic, leptonic and photonic observables have to be measured with large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. Two versions of the experiment are being studied, optimized for either electron-hadron or muon identification, combined with silicon detector based charged-particle tracking and micro-vertex detection. The research programme will start at SIS-100 with ion beams between 2 and 11A GeV, and protons up to energies of 29 GeV using the HADES detector and an initial configuration of the CBM experiment. The CBM physics requires the development of novel detector systems, trigger and data acquisition concepts as well as innovative real-time reconstruction techniques. Progress with feasibility studies of the experiment and the development of its detector systems are discussed.
Introducing the working group on excited baryons at the CEBAF 1986 workshop
Mukhopadhyay, N.C.
1986-01-01
Several important issues related to excited baryons are outlined. These include the questions of why to study electromagnetic excitation of baryons, which excited baryons to study, and what new physics to expect. Also considered are amplitude ambiguities for ..gamma..BB* and theoretical problems of extracting the resonant amplitude. Excited baryons in nuclei and future experiments are considered. (LEW)
Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism
Bamba, Kazuharu
2006-12-15
The generation of the baryon asymmetry of the Universe from the hypermagnetic helicity, the physical interpretation of which is given in terms of hypermagnetic knots, is studied in inflationary cosmology, taking into account the breaking of the conformal invariance of hypercharge electromagnetic fields through both a coupling with the dilaton and with a pseudoscalar field. It is shown that, if the electroweak phase transition is strongly first order and the present amplitude of the generated magnetic fields on the horizon scale is sufficiently large, a baryon asymmetry with a sufficient magnitude to account for the observed baryon-to-entropy ratio can be generated.
Medium modifications of baryon properties in nuclear matter and hypernuclei
NASA Astrophysics Data System (ADS)
Liang, J. S.; Shen, H.
2013-09-01
We study the medium modifications of baryon properties in nuclear many-body systems, especially in Λ hypernuclei. The nucleon and the Λ hyperon are described in the Friedberg-Lee model as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and Λ hypernuclei. The present model predicts a significant increase of the baryon radius in nuclear medium.
Dark matter and the baryon asymmetry of the universe.
Farrar, Glennys R; Zaharijas, Gabrijela
2006-02-03
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih
Quark-model identification of baryon ground and resonant states
Melde, T.; Plessas, W.; Sengl, B.
2008-06-01
We present a new classification scheme of baryon ground states and resonances into SU(3) flavor multiplets. The scheme is worked out along a covariant formalism with relativistic constituent quark models and it relies on detailed investigations of the baryon spectra, the spin-flavor structure of the baryon eigenstates, the behavior of their probability density distributions as well as covariant predictions for mesonic decay widths. The results are found to be quite independent of the specific types of relativistic constituent quark models employed. It turns out that a consistent classification requires one to include also resonances that are presently reported from experiments with only two-star status.
Negative Parity Baryon Decays in the 1/Nc Expansion
Chandana Jayalath, Jose L. Goity, Norberto N. Scoccola
2010-08-01
The $1/N_c$ expansion of QCD provides a useful framework for phenomenological studies of both ground state and excited baryons. Here, we focus on its application to the excited baryon strong decays via emission of single pseudoscalar meson. The S- and D-wave decay amplitudes of the negative parity baryons in the $[70,1^-]$ of $SU(6)$ are analyzed to subleading order in $1/N_c$ and to first order in SU(3) symmetry breaking. In particular, the SU(3) symmetry breaking is studied in detail through SU(3) breaking decay operators and state mixing.
Spectroscopy and decays of charm and bottom
Butler, J.N.
1997-10-01
After a brief review of the quark model, we discuss our present knowledge of the spectroscopy of charm and bottom mesons and baryons. We go on to review the lifetimes, semileptonic, and purely leptonic decays of these particles. We conclude with a brief discussion B and D mixing and rare decays.
Overview of LHCb results on beauty and charm spectroscopy
NASA Astrophysics Data System (ADS)
Palano, Antimo
2016-11-01
We present a summary of new experimental results from LHCb experiment on the status of the charm spectroscopy using inclusive approaches and Dalitz plot analyses of B and Bs decays. We also summarize latest results on the spectroscopy of heavy baryons.
Ziegler, W.; Dieterich, P.; Muramatsu, A.; Hanke, W.
1996-01-01
Using the spin-rotation-invariant form of the slave-boson formalism we emphasize formal aspects of this method concerning the SU(2) transformation properties and the physical content of the constraints which are necessary to project onto the physical subspace. As a result, a consistent scheme of coherent states within the functional integral of the SU(2)-invariant slave-boson theory is provided. As an application, a system of two Hubbard layers coupled by an interlayer hopping {ital t}{sub {perpendicular}} is investigated. Numerical results from a saddle-point approximation of the partition function are used to consider the magnetic order in and between the layers as a fact of {ital t}{sub {perpendicular}}. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Rosas-Ortiz, Oscar; Cruz y Cruz, Sara; Enríquez, Marco
2016-10-01
It is shown that each one of the Lie algebras su(1 , 1) and su(2) determine the spectrum of the radial oscillator. States that share the same orbital angular momentum are used to construct the representation spaces of the non-compact Lie group SU(1 , 1) . In addition, three different forms of obtaining the representation spaces of the compact Lie group SU(2) are introduced, they are based on the accidental degeneracies associated with the spherical symmetry of the system as well as on the selection rules that govern the transitions between different energy levels. In all cases the corresponding generalized coherent states are constructed and the conditions to squeeze the involved quadratures are analyzed.
Excited state mass spectra of doubly heavy Ξ baryons
NASA Astrophysics Data System (ADS)
Shah, Zalak; Rai, Ajay Kumar
2017-02-01
In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ _{cc}+, Ξ _{cc}^{++}, Ξ _{bb}-, Ξ _{bb}0, Ξ _{bc}0 and Ξ _{bc}+. These baryons consist of two heavy quarks ( cc, bb, and bc) with a light ( d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in ( n, M2) and ( J, M2) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated.
The electroweak axion, dark energy, inflation and baryonic matter
McLerran, L.
2015-03-15
In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B − L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.
Masses and axial currents of the doubly charmed baryons
NASA Astrophysics Data System (ADS)
Sun, Zhi-Feng; Liu, Zhan-Wei; Liu, Xiang; Zhu, Shi-Lin
2015-05-01
The chiral dynamics of the doubly heavy baryons is solely governed by the light quark. In this paper, we have derived the chiral corrections to the mass of the doubly heavy baryons up to N3LO . The mass splitting of Ξc c and Ωc c at the N2LO depends on one unknown low energy constant c7. By fitting the lattice masses of Ξc c(3520 ), we estimate the mass of Ωc c to be around 3.726 GeV. Moreover, we have also performed a systematical analysis of the chiral corrections to the axial currents and axial charges of the doubly heavy baryons. The chiral structure and analytical expressions will be very useful to the chiral extrapolations of the future lattice QCD simulations of the doubly heavy baryons.
Differentiating CDM and baryon isocurvature models with 21 cm fluctuations
Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp
2011-10-01
We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.
Mass spectra and Regge trajectories of , , and baryons
NASA Astrophysics Data System (ADS)
Shah, Zalak; Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P. C.
2016-12-01
We calculate the mass spectra of the singly charmed baryons (, , and ) using the hypercentral constituent quark model (hCQM). The hyper color Coulomb plus linear potential is used to calculate the masses of positive (up to ) and negative (up to ) parity excited states. The spin-spin, spin-orbital and tensor interaction terms are also incorporated for mass spectra. We have compared our results with other theoretical and lattice QCD predictions for each baryon. Moreover, the known experimental results are also reasonably close to our predicted masses. By using the radial and orbital excitation, we construct Regge trajectories for the baryons in the (n, M2) plane and find their slopes and intercepts. Other properties of these baryons, like magnetic moments, radiative transitions and radiative decay widths, are also calculated successfully. Supported in part (A. K. Rai) by DST, India (SERB Fast Track Scheme SR/FTP/PS-152/2012)
Shnirman, A.; Saha, A.; Burmistrov, I. S.; Kiselev, M. N.; Altland, A.; Gefen, Y.
2016-03-15
There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the Caldeira–Leggett and Ambegaokar–Eckern–Schön approaches. Here, we recall the differences between them and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).
NASA Astrophysics Data System (ADS)
Zhou, Zhichao; Wang, Da; Wu, Congjun; Wang, Yu
2017-02-01
We investigate the SU (2 N ) symmetry effects with 2 N >2 on the two-dimensional interacting Dirac fermions at finite temperatures, including the valence-bond-solid transition, the Pomeranchuk effect, the compressibility, and the uniform spin susceptibility, by performing the determinant quantum Monte Carlo simulations of the half-filled SU (2 N ) Hubbard model on a honeycomb lattice. The columnar valence-bond-solid (cVBS) phase only breaks the threefold discrete symmetry and thus can survive at finite temperatures. The disordered phase in the weak coupling regime is the thermal Dirac semi-metal state, while in the strong coupling regime it is largely a Mott state in which the cVBS order is thermally melted. The calculated entropy-temperature relations for various values of the Hubbard interaction U show that the Pomeranchuk effect occurs when the specific entropy is below a characteristic value of S*—the maximal entropy per particle from the spin channel of local moments. The SU (2 N ) symmetry enhances the Pomeranchuk effect, which facilitates the interaction-induced adiabatic cooling. Our work sheds light on future explorations of novel states of matter with ultracold large-spin alkaline fermions.
Strange form factors of octet and decuplet baryons
Hong, Soon-Tae
1999-11-22
The strange form factors of baryon octet are evaluated, in the chiral models with the general chiral SU(3) group structure, to yield the theoretical predictions comparable to the recent experimental data of SAMPLE Collaboration and to study the spin symmetries. Other model predictions are also briefly reviewed to compare with our results and then the strange form factors of baryon octet and decuplet are predicted.
Implementation of the SU(2) Hamiltonian symmetry for the DMRG algorithm
NASA Astrophysics Data System (ADS)
Alvarez, Gonzalo
2012-10-01
In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992, 1993) [1,2], Hamiltonian symmetries play an important rôle. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This paper explains how the the DMRG++ code (Alvarez, 2009) [3] has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries are discussed for the one-orbital Hubbard model, and for a two-orbital Hubbard model for iron-based superconductors. The computational bottleneck of the algorithm and the use of shared memory parallelization are also addressed. Program summary Program title: DMRG++ Catalog identifier: AEDJ_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special license. See http://cpc.cs.qub.ac.uk/licence/AEDJ_v2_0.html No. of lines in distributed program, including test data, etc.: 211560 No. of bytes in distributed program, including test data, etc.: 10572185 Distribution format: tar.gz Programming language: C++. Computer: PC. Operating system: Multiplatform, tested on Linux. Has the code been vectorized or parallelized?: Yes. 1 to 8 processors with MPI, 2 to 4 cores with pthreads. RAM: 1GB (256MB is enough to run the included test) Classification: 23. Catalog identifier of previous version: AEDJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)1572 External routines: BLAS and LAPACK Nature of problem: Strongly correlated electrons systems, display a broad range of important phenomena, and their study is a major area of research in condensed matter physics. In this context, model Hamiltonians are used to simulate the relevant interactions of a given compound, and the relevant degrees of freedom. These studies
Cosmological implications of baryon acoustic oscillation measurements
NASA Astrophysics Data System (ADS)
Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brewington, Howard; Brinkmann, J.; Brownstein, Joel R.; Burden, Angela; Busca, Nicolás G.; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Croft, Rupert A. C.; Cuesta, Antonio J.; Dawson, Kyle S.; Delubac, Timothée; Eisenstein, Daniel J.; Font-Ribera, Andreu; Ge, Jian; Le Goff, J.-M.; Gontcho, Satya Gontcho A.; Gott, J. Richard; Gunn, James E.; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S.; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H.; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K.; Miralda-Escudé, Jordi; Myers, Adam D.; Nichol, Robert C.; Noterdaeme, Pasquier; Nuza, Sebastián E.; Olmstead, Matthew D.; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Pieri, Matthew M.; Prada, Francisco; Reid, Beth; Rich, James; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G.; Samushia, Lado; Génova-Santos, Ricardo Tanausú; Scóccola, Claudia G.; Schlegel, David J.; Schneider, Donald P.; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A.; Slosar, Anže; Strauss, Michael A.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A.; Weaver, Benjamin A.; Weinberg, David H.; Wood-Vasey, W. M.; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo; BOSS Collaboration
2015-12-01
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H0=67.3 ±1.1 km s-1 Mpc-1 , with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Λ CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ ), our BAO +SN +CMB combination yields matter density Ωm=0.301 ±0.008 and curvature Ωk=-0.003 ±0.003 . When we allow more general forms of evolving dark energy, the BAO +SN +CMB parameter constraints are always consistent with flat Λ CDM values at ≈1 σ . While the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2 - 2.5 σ ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, ∑mν<0.56 eV (95% confidence), improving to ∑mν<0.25 eV if we include the
Study of ψ(3770) decaying to baryon anti-baryon pairs
NASA Astrophysics Data System (ADS)
Xia, Li-Gang
2016-05-01
To study the decays of ψ (3770) going to baryon anti-baryon pairs (B B bar), all available experiments of measuring the cross sections of e+e- → B B bar at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3) flavor symmetry is used and the SU(3) breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE | = |GM |), a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ (3770) → B B bar is determined to be (2.4 ± 0.8 ± 0.3) ×10-5, (1.7 ± 0.6 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (2.0 ± 0.7 ± 0.1) ×10-5, and (2.0 ± 0.7 ± 0.1) ×10-5 for B = p , Λ ,Σ+ ,Σ0 ,Ξ- and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE | = |GM |. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J / ψ / ψ (3686) → B B bar .
Observing the Dark Baryons with Planck
NASA Astrophysics Data System (ADS)
Lavaux, Guilhem
2015-08-01
Planck has offered us an unprecedented view on the early cosmology. However the secondary anisotropy analysis is still not complete though they would give us insights on a totally different part of the history of the Universe. This is the case of the Sunyaev Zel'dovich effects and, in particular, the kinetic component (kSZ) produced by electrons in the halos of galaxies. This effect is sensitive to the electron momentum along the line of sight. Provided the peculiar velocity field is known, it becomes possible to linearly relate the temperature anisotropy to the distribution of baryons around galaxies. I will discuss the detectability prospects, the challenges and the current state of the kSZ analysis based on optimal template fitting on Planck data and futuristic surveys.The kSZ template that I propose are generated based on detailed, statistical, dynamical modeling of the Large Scale structures. The most advanced model involves full Baysian formulation of the formation of Large Scale structure and statistical reconstruction of initial conditions (BORG, Jasche & Wandelt 2013) I will describe these models and how they are related to the kSZ template maps.
Baryon Acoustic Oscillations reconstruction with pixels
NASA Astrophysics Data System (ADS)
Obuljen, Andrej; Villaescusa-Navarro, Francisco; Castorina, Emanuele; Viel, Matteo
2017-09-01
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.
Is the cygnet the quintessential baryon?
Segal, I E
1991-01-01
The apparently new hadron-like particle ("cygnet") indicated by cosmic ray observations on certain neutron stars is predicted to be a spin 1/2 fermion of magnetic moment and charge 0 and lifetime infinity. This derives from the natural identification of the cygnet with the one hitherto unobserved fundamental fermion of chronometric particle theory, the x or "exon", which plays the role of a quintessential baryon. The "partons" are represented by the other fundamental fermions, consisting of e, nue, and numu; e.g., n = x + e+ + e-, p = x + e+ + nue. With further empirical assignments, chronometric theory has a potential for explaining diverse phenomena, such as mixing in the neutral kaon complex and the nature of the higher electrons. Its fundamental fermion and boson fields transform indecomposably under its symmetry group, the conformal group G. Theoretical elementary particles transforming irreducibly under G derive as successive quotients in a maximal chain of invariant subspaces. Mass fixing by Mach's principle breaks the symmetry down to microscopically observed covariance with respect to the Poincare group P0. The resulting representation is normally irreducible, but splits in the case of the K0 into two P0-irreducible components that are mixed by the excess of the chronometric over the relativistic energy ("gravity"), which provides a "superweak" force that may be explanatory of CP violation. PMID:11607152
A NEW WAY OF DETECTING INTERGALACTIC BARYONS
Lieu, Richard; Duan Lingze
2013-02-01
For each photon wave packet of extragalactic light, the dispersion by line-of-sight intergalactic plasma causes an increase in the envelope width and a chirp (drift) in the carrier frequency. It is shown that for continuous emission of many temporally overlapping wave packets with random epoch phases such as quasars in the radio band, this in turn leads to quasi-periodic variations in the intensity of the arriving light on timescales between the coherence time (defined as the reciprocal of the bandwidth of frequency selection, taken here as of order 0.01 GHz for radio observations) and the stretched envelope, with most of the fluctuation power on the latter scale which is typically in the millisecond range for intergalactic dispersion. Thus, by monitoring quasar light curves on such short scales, it should be possible to determine the line-of-sight plasma column along the many directions and distances to the various quasars, affording one a three-dimensional picture of the ionized baryons in the near universe.
The CLAS Excited Baryon Program at JLab
Crede, Volker
2007-10-26
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.
The CLAS Excited Baryon Program at Jlab
Volker Crede
2007-10-01
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.
Equivalence principle and the baryon acoustic peak
NASA Astrophysics Data System (ADS)
Baldauf, Tobias; Mirbabayi, Mehrdad; Simonović, Marko; Zaldarriaga, Matias
2015-08-01
We study the dominant effect of a long wavelength density perturbation δ (λL) on short distance physics. In the nonrelativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at ℓBAO, this naive expectation breaks down for λL<ℓBAO. We calculate a universal piece of the three-point correlation function in this regime. The same effect is shown to underlie the spread of the acoustic peak, and is calculable to all orders in the long modes. This can be used to improve the result of perturbative calculations—a technique known as "infra-red resummation"—and is explicitly applied to the one-loop calculation of the power spectrum. Finally, the success of baryon acoustic oscillation reconstruction schemes is argued to be another empirical evidence for the validity of the results.
Heavy to light baryon transition form factors
Guo, X. |; Huang, T. |; Li, Z.
1996-05-01
Recently, Stech found form factor relations for heavy to light transitions based on two simple dynamical assumptions for a spectator particle. In this paper we generalize his approach to the case of baryons and find that for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} ({ital Q}={ital b} or {ital c}) only one independent form factor remains in the limit {ital m}{sub {ital Q}}{r_arrow}{infinity}. Furthermore, combining with the model of Guo and Kroll we determine both of the two form factors for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} in the heavy quark limit. The results are applied to {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} which is not clarified both theoretically and experimentally. It is found that the branching ratio of {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} is of order 10{sup {minus}5}. {copyright} {ital 1996 The American Physical Society.}
Quark interchange model of baryon interactions
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
Observing baryonic dark matter with ALMA
NASA Astrophysics Data System (ADS)
Kamaya, Hideyuki; Silk, Joseph
2002-09-01
It has recently been argued that the unidentified SCUBA objects (USOs) are a thick disc population of free-floating dense, compact galactic gas clumps at a temperature of about 7 K. The characteristic mass-scale is constrained to be on the order of a Jupiter mass, and the size is about 10 au. A typical Galactic USO is located at a distance from the Sun of about 300 pc. We have calculated the molecular emission lines from these low-temperature clouds. We consider three molecules: HD, LiH, and CO. HD is optically thin in the cloud, LiH is a molecule with a large electric dipole moment, and CO is an abundant molecule that is observed in dusty clouds. Our estimate for the typical object shows that LiH may be detectable by the future submillimetre (submm) array project, ALMA; its expected flux is at the mJy level and the linewidth is about 105 Hz. Although typical galactic USOs are chemically and dynamically transient, the younger USOs will be recognizable via LiH emission if about a hundred USOs are observed. If USOs are confirmed to be of galactic origin, the total baryonic budget will need to be reevaluated.
BASE - The Baryon Antibaryon Symmetry Experiment
NASA Astrophysics Data System (ADS)
Smorra, C.; Blaum, K.; Bojtar, L.; Borchert, M.; Franke, K. A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.
2015-11-01
The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10-9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.
Heavy baryons as polarimeters at colliders
NASA Astrophysics Data System (ADS)
Galanti, Mario; Giammanco, Andrea; Grossman, Yuval; Kats, Yevgeny; Stamou, Emmanuel; Zupan, Jure
2015-11-01
In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of the new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Λ b and Λ c , respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Λ b decays, and the c-quark polarization using Λ c + → pK - π + decays. For calibrating both measurements we suggest to use toverline{t} samples in which these polarizations can be measured with precision of order 10% using 100 fb-1 of data in Run 2 of the LHC. Measurements of the transverse polarization in QCD events at ATLAS, CMS and LHCb are motivated as well. The proposed measurements give access to nonperturbative QCD parameters relevant to the dynamics of the hadronization process.
Cosmological implications of baryon acoustic oscillation measurements
Aubourg, Eric
2015-12-01
Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σmν<0.56 eV (95% confidence), improving to Σmν<0.25 eV if we include
Cosmological implications of baryon acoustic oscillation measurements
Aubourg, Eric
2015-12-01
Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H_{0}=67.3±1.1 km s^{-1} Mpc^{-1}, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ω_{m}=0.301±0.008 and curvature Ω_{k}=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ^{2} of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H_{0} and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species,
Cosmological implications of baryon acoustic oscillation measurements
Aubourg, Eric
2015-12-01
Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σmν<0.56 eV (95% confidence), improving to Σmν<0.25 eV if we include
Cosmological implications of baryon acoustic oscillation measurements
Aubourg, Eric
2015-12-01
Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H_{0}=67.3±1.1 km s^{-1} Mpc^{-1}, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ω_{m}=0.301±0.008 and curvature Ω_{k}=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ^{2} of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H_{0} and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species,
Baryons, universe and everything in between
NASA Astrophysics Data System (ADS)
Ho, Shirley
2008-06-01
This thesis is a tour of topics in cosmology, unified by their diversity and pursuits in better understanding of our Universe. The first chapter measures the Integrated Sachs-Wolfe effect as a function of redshift utilizing a large range of large scale structure observations and the cosmic microwave background. We combine the ISW likelihood function with weak lensing of CMB (which is described in Chapter 2) and CMB powerspectrum to constrain the equation of state of dark energy and the curvature of the Universe. The second chapter investigates the correlation of gravitational lensing of the cosmic microwave background (CMB) with several tracers of large-scale structure, and we find evidence for a positive cross-correlation at the 2.5s level. The third chapter explores the statistical properties of Luminous Red Galaxies in a sample of X-ray selected galaxy clusters, including the halo occupation distribution, how Poisson is the satellite distribution of LRGs and the radial profile of LRGs within clusters. The forth chapter explores the idea of using multiplicity of galaxies to understand their merging timescales. We find that (by using the multiplicity function of LRGs in Chapter 3) Massive halos (~ 10 14 M [Special characters omitted.] ) at low redshift have, for example, been bombarded by several ~ 10 13 M [Special characters omitted.] halos throughout their history and these accreted LRGs merge on relatively short timescales (~ 2 Gyr). The fifth chapter presents a new method for generating a template for the kinematic Sunyaev-Zel'dovich effect that can be used to detect the missing baryons. We assessed the feasibility of the method by investigating combinations of differeng galaxy surveys and CMB observations and find that we can detect the gas-momentum kSZ correlation, and thus the ionized gas, at significant signal-to-noise level.
Self Interacting Dark Matter and Baryons
NASA Astrophysics Data System (ADS)
Fry, Alexander B.; Governato, Fabio; Pontzen, Andrew; Quinn, Thomas R.
2015-01-01
Self Interacting Dark Matter (SIDM) is a cosmologically consistent alternative theory to Cold Dark Matter (CDM). SIDM is motivated as a solution to solve problems of the CDM model on small scales including the core/cusp problem, the missing satellites, and halo triaxiality. Each of these problems has secular astrophysical solutions, however taken together and along with suggestions from dark matter (DM) particle physics it is interesting to place constraints on how strong a self interaction would have to be for us to observe it and conversely the null hypothesis of whether we can rule out SIDM. We use high resolution cosmological simulations to compare evolution of stellar populations and (DM) components of dwarf galaxies. Our advanced smooth particle hydrodynamics N-body simulations combine SIDM with baryon physics including star formation, feedback recipes, metal line cooling, UV background, and thermal diffusion that eliminates artificial surface gas tension. We find for a constant SIDM cross section of 2 cm2 g-1 that DM interactions alone are not significant enough to create cores in dwarf galaxies and for low mass (Vpeak= 25 km s-1) galaxies the introduction of SIDM fails to decrease the DM central density. Our simulations with star formation feedback are in good agreement with observational estimates of Local Group dwarfs. The lower mass (below 108 M⊙) halos have inefficient SF, late formation time, and less DM interactions thus small field halos in CDM and SIDM remain cuspy. We conclude that constant cross section SIDM of 2 cm2 g-1 would be close to unobservable in dwarf galaxies and yet at the same time this cross section is already larger than some observational constraints found in larger (higher velocity) systems. We conclude that to differentiate between SIDM and CDM in an observationally detectable and astrophysically consistent manner a velocity dependent cross section that peaks for halos with small peak velocities will be necessary.
SU(2) WZW D-Branes and Quantized World-Volume U(1) Flux on S2
NASA Astrophysics Data System (ADS)
Kling, Alexander; Kreuzer, Maximilian; Zhou, Jian-Ge
We discuss possible D-brane configurations on SU(2) group manifolds in the sigma model approach. When we turn the boundary conditions of the space-time fields into the boundary gluing conditions of chiral currents, we find that for all D-branes except the spherical D2-branes, the gluing matrices Rab depend on the fields, so the chiral Kac-Moody symmetry is broken, but conformal symmetry is maintained. Matching the spherical D2-branes derived from the sigma model with those from the boundary state approach we obtain a U(1) field strength that is consistent with flux quantization.
Spontaneous compactification and coupling constants in a geometric model for SU(2)×U(1) with gravity
NASA Astrophysics Data System (ADS)
Nahmad-Achar, E.; Rosenbaum, M.; Bautista, R.; Mucio, J.
1990-07-01
A fiber-bundle treatment for Kaluza-Klein-type geometric unification of gravitation with the bosonic sector of the standard electroweak theory was presented by Rosenbaum et al. Here we show that it admits spontaneously compactified solutions where the dimensions of the internal space are of the order of the Planck length. Furthermore, the model is able to predict a numerical value for the ratio of the SU(2) and U(1) coupling constants at the energy where both compactification and the unification of gravitational with electroweak interactions would occur, and this value is in agreement with that obtained from applying the renormalization group to the standard model.
Two-point functions of SU(2)-subsector and length-two operators in dCFT
NASA Astrophysics Data System (ADS)
Widén, Erik
2017-10-01
We consider a particular set of two-point functions in the setting of N = 4 SYM with a defect, dual to the fuzzy-funnel solution for the probe D5-D3-brane system. The two-point functions in focus involve a single trace operator in the SU(2)-subsector of arbitrary length and a length-two operator built out of any scalars. By interpreting the contractions as a spin-chain operator, simple expressions were found for the leading contribution to the two-point functions, mapping them to earlier known formulas for the one-point functions in this setting.
Hilbert-Schmidt Inner Product for an Adjoint Representation of the Quantum Algebra U⌣Q(SU2)
NASA Astrophysics Data System (ADS)
Fakhri, Hossein; Nouraddini, Mojtaba
2015-10-01
The Jordan-Schwinger realization of quantum algebra U⌣q(su2) is used to construct the irreducible submodule Tl of the adjoint representation in two different bases. The two bases are known as types of irreducible tensor operators of rank l which are related to each other by the involution map. The bases of the submodules are equipped with q-analogues of the Hilbert-Schmidt inner product and it is also shown that the adjoint representation corresponding to one of those submodules is a *-representation.
NASA Astrophysics Data System (ADS)
Bornyakov, V. G.; Luschevskaya, E. V.; Morozov, S. M.; Polikarpov, M. I.; Ilgenfritz, E.-M.; Müller-Preussker, M.
2009-03-01
We study SU(2) gluodynamics at finite temperature on both sides of the deconfining phase transition. We create the lattice ensembles using the tree-level tadpole-improved Symanzik action. The Neuberger overlap Dirac operator is used to determine the following three aspects of vacuum structure: (i) The topological susceptibility is evaluated at various temperatures across the phase transition, (ii) the overlap fermion spectral density is determined and found to depend on the Polyakov loop above the phase transition and (iii) the corresponding localization properties of low-lying eigenmodes are investigated. Finally, we compare with zero temperature results.
Nha, Hyunchul
2007-07-15
The Schroedinger-Robertson inequality generally provides a stronger bound on the product of uncertainties for two noncommuting observables than the Heisenberg uncertainty relation, and as such it can yield a stricter separability condition in conjunction with partial transposition. In this paper, using the Schroedinger-Robertson uncertainty relation, the separability condition previously derived from the su(2) and su(1,1) algebra is made stricter and refined to a form invariant with respect to local phase shifts. Furthermore, a linear optical scheme is proposed to test this invariant separability condition.
Decays of J/psi (3100) to baryon final states
Eaton, M.W.
1982-05-01
We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.
Propagation of heavy baryons in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo
2016-12-01
The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.
Spectra of charmed and bottom baryons with hyperfine interaction
NASA Astrophysics Data System (ADS)
Wang, Zhen-Yang; Qi, Jing-Juan; Guo, Xin-Heng; Wei, Ke-Wei
2017-09-01
Up to now, the excited charmed and bottom baryon states have still not been well studied experimentally or theoretically. In this paper, we predict the mass of , the only L = 0 baryon state which has not been observed, to be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum L = 1 are studied in two popular constituent quark models, the Goldstone boson exchange (GBE) model and the one gluon exchange (OGE) hyperfine interaction model. Inserting the latest experimental data from the “Review of Particle Physics", we find that in the GBE model, there exist some multiplets (Σc(b), and Ωc(b)) in which the total spin of the three quarks in their lowest energy states is 3/2, but in the OGE model there is no such phenomenon. This is the most important difference between the GBE and OGE models. These results can be tested in the near future. We suggest more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for determining which hyperfine interaction model best describes nature. Supported by National Natural Science Foundation of China (11175020, 11575023, U1204115)
Finite volume effects in the chiral extrapolation of baryon masses
NASA Astrophysics Data System (ADS)
Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.
2014-09-01
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.
Chern-Simons five-form and holographic baryons
NASA Astrophysics Data System (ADS)
Lau, Pak Hang Chris; Sugimoto, Shigeki
2017-06-01
In the top-down holographic model of QCD based on D4/D8-branes in type IIA string theory and some of the bottom-up models, the low energy effective theory of mesons is described by a five-dimensional Yang-Mills-Chern-Simons theory in a certain curved background with two boundaries. The five-dimensional Chern-Simons term plays a crucial role in reproducing the correct chiral anomaly in four-dimensional massless QCD. However, there are some subtle ambiguities in the definition of the Chern-Simons term for the cases with topologically nontrivial gauge bundles, which include the configurations with baryons. In particular, for the cases with three flavors, it was pointed out by Hata and Murata that the naive Chern-Simons term does not lead to an important constraint on the baryon spectrum, which is needed to pick out the correct baryon spectrum observed in nature. In this paper, we propose a formulation of a well-defined Chern-Simons term which can be used for the cases with baryons, and show that it recovers the correct baryon constraint as well as the chiral anomaly in QCD.
Structure of charmed baryons studied by pionic decays
NASA Astrophysics Data System (ADS)
Nagahiro, Hideko; Yasui, Shigehiro; Hosaka, Atsushi; Oka, Makoto; Noumi, Hiroyuki
2017-01-01
We investigate the decays of the charmed baryons aiming at the systematic understanding of hadron internal structures based on the quark model by paying attention to heavy quark symmetry. We evaluate the decay widths from the one-pion emission for the known excited states, Λc*(2595 ), Λc*(2625 ), Λc*(2765 ), Λc*(2880 ), and Λc*(2940 ), as well as for the ground states Σc(2455 ) and Σc*(2520 ). The decay properties of the lower excited charmed baryons are well explained, and several important predictions for higher excited baryons are given. We find that the axial-vector-type coupling of the pion to the light quarks is essential, which is expected from chiral symmetry, to reproduce the decay widths especially of the low-lying Λc* baryons. We emphasize the importance of the branching ratios of Γ (Σc*π )/Γ (Σcπ ) for the study of the nature of higher excited Λc* baryons.
Excited state mass spectra of singly charmed baryons
NASA Astrophysics Data System (ADS)
Shah, Zalak; Thakkar, Kaushal; Kumar Rai, Ajay; Vinodkumar, P. C.
2016-10-01
Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks ( u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σc^{++}, Σc+, Σc0, Ξc+, Ξc0, Λc+, Ωc0 baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ωc and Ξc are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (nr, M2) and (J, M2) planes for these baryons.
The segregation of baryons and dark matter during halo assembly
NASA Astrophysics Data System (ADS)
Liao, Shihong; Gao, Liang; Frenk, Carlos S.; Guo, Qi; Wang, Jie
2017-09-01
The standard galaxy formation theory assumes that baryons and dark matter are initially well mixed before becoming segregated due to radiative cooling. We use non-radiative hydrodynamical simulations to explicitly examine this assumption and find that baryons and dark matter can also be segregated due to different characteristics of gas and dark matter during the buildup of the halo. As a result, baryons in many haloes do not originate from the same Lagrangian region as the dark matter. When using the fraction of corresponding dark matter and gas particles in the initial conditions (the 'paired fraction') as a proxy of the dark matter and gas segregation strength of a halo, on average about 25 per cent of the baryonic and dark matter of the final halo are segregated in the initial conditions. This is at odds with the assumption of the standard galaxy formation model. A consequence of this effect is that the baryons and dark matter of the same halo initially experience different tidal torques and thus their angular momentum vectors are often misaligned. The degree of the misalignment is largely preserved during later halo assembly and can be understood with the tidal torque theory. The result challenges the precision of some semi-analytical approaches that utilize dark matter halo merger trees to infer properties of gas associated with dark matter haloes.
Magnetic moments of octet baryons and sea antiquark polarizations
Bartelski, Jan; Tatur, Stanislaw
2005-01-01
Using generalized Sehgal equations for magnetic moments of baryon octet and taking into account {sigma}{sup 0}-{lambda} mixing and two particle corrections to independent quark contributions we obtain very good fit using experimental values for errors of such moments. We present sum rules for quark magnetic moments ratios and for integrated spin densities ratios. Because of the SU(3) structure of our equations the results for magnetic moments of quarks and their densities depend on two additional parameters. Using information from deep inelastic scattering and baryon {beta}-decays we discuss the dependence of antiquark polarizations on introduced parameters. For some plausible values of these parameters we show that these polarizations are small if we neglect angular momenta of quarks. Our very good fit to magnetic moments of baryon octet can still be improved by using specific model for angular momentum of quarks.
Excited baryons from Bayesian priors and overlap fermions
F.X. Lee; S.J. Dong; T. Draper; I. Horvath; K.F. Liu; N. Mathur; J.B. Zhang
2003-05-01
Using the constrained-fitting method based on Bayesian priors, we extract the masses of the two lowest states of octet and decouplet baryons with both parities. The calculation is done on quenched 163 x 28 lattices of a = 0.2 fm using an improved gauge action and overlap fermions, with the pion mass as low as 180 MeV. The Roper state N(1440)+ is clearly observed for the first time as the 1st-excited state of the nucleon from the standard interpolating field. Together with other baryons, our preliminary results indicate that the level-ordering of the low-lying baryon states on the lattice is largely consistent with experiment. The realization is helped by cross-overs between the excited + and - states in the region of mp 300 to 400 MeV.
Properties of Doubly Heavy Baryons in the Relativistic Quark Model
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.
2005-05-01
Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit.
Estimates of isospin breaking contributions to baryon masses
Ha, Phuoc
2007-10-01
We estimate the isospin breaking contributions to the baryon masses which we analyzed recently using a loop expansion in the heavy-baryon chiral effective field theory. To one loop, the isospin breaking corrections come from the effects of the d, u quark mass difference, the Coulomb and magnetic moment interactions, and effective point interactions attributable to color-magnetic effects. The addition of the first meson loop corrections introduces new structure. We estimate the resulting low-energy, long-range contributions to the mass splittings by regularizing the loop integrals using connections to dynamical models for finite-size baryons. We find that the resulting contributions to the isospin breaking corrections are of the right general size, have the correct sign pattern, and agree with the experimental values within the margin of error.
Quark-Pauli effects in three octet-baryons
NASA Astrophysics Data System (ADS)
Nakamoto, C.; Suzuki, Y.
2016-09-01
To sustain a neutron star with about two times the solar mass, multibaryons including hyperons are expected to produce repulsive effects in the interior of its high-baryon-density region. To examine possible quark-Pauli repulsion among the baryons, we solve the eigenvalue problem of the quark antisymmetrizer for three octet-baryons that are described by most compact spatial configurations. We find that the Pauli blocking effect is weak in the Λ n n system, while it is strong in the Σ-n n system. The appearance of the Σ- hyperon is suppressed in the neutron star interior but no quark-Pauli repulsion effectively works for the Λ hyperon.
Measurement of b-Baryons with the CDF II detector
Heuser, Joachim; /Karlsruhe U., EKP
2007-10-01
We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.
Chiral dynamics of the polarizing fracture functions for baryon production
NASA Astrophysics Data System (ADS)
Sivers, Dennis
2009-04-01
The concept of spin-directed momentum provides a useful and restrictive framework for describing dynamical mechanisms that can lead to single-spin observables. The value of this framework can be demonstrated by consideration of the polarizing fracture functions, ΔNMB↑/pq(x,z,kTN;Q2), that characterize the production of polarized baryons in the target fragmentation region of semi-inclusive deep-inelastic scattering from an unpolarized target. When Bjorken x is chosen large enough to indicate a hard scattering from a valence quark, the fracture function formalism dynamically selects a quark-diquark basis for baryon structure. Attention to constituent orbital angular momentum in the formation process and its role in contributing to the transverse momentum of the produced baryon illustrates important aspects of the generation of polarization observables.
Excited state mass spectra and Regge trajectories of bottom baryons
NASA Astrophysics Data System (ADS)
Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.
2017-09-01
We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.
On Possible Variation in the Cosmological Baryon Fraction
NASA Astrophysics Data System (ADS)
Holder, Gilbert P.; Nollett, Kenneth M.; van Engelen, Alexander
2010-06-01
The fraction of matter that is in the form of baryons or dark matter could have spatial fluctuations in the form of baryon-dark matter isocurvature fluctuations. We use big bang nucleosynthesis calculations compared with observed light-element abundances as well as galaxy cluster gas fractions to constrain cosmological variations in the baryon fraction. Light-element abundances constrain spatial variations to be less than 26%-27%, while a sample of "relaxed" galaxy clusters shows spatial variations in gas fractions less than 8%. Larger spatial variations could cause differential screening of the primary cosmic microwave background (CMB) anisotropies, leading to asymmetries in the fluctuations, and ease some tension with the halo-star 7Li abundance. We also show that fluctuations within our allowed bounds can lead to "B-mode" CMB polarization anisotropies at a non-negligible level.
Impact of finite density on spectroscopic parameters of decuplet baryons
NASA Astrophysics Data System (ADS)
Azizi, K.; Er, N.; Sundu, H.
2016-12-01
The decuplet baryons, Δ , Σ*, Ξ*, and Ω-, are studied in nuclear matter by using the in-medium QCD sum rules. By fixing the three-momentum of the particles under consideration at the rest frame of the medium, the negative energy contributions are removed. It is obtained that the parameters of the Δ baryon are more affected by the medium against the Ω- state, containing three strange quarks, whose mass and residue are not considerably affected by the medium. We also find the vector and scalar self-energies of these baryons in nuclear matter. By the recent progresses at the P ¯ ANDA experiment at the FAIR and NICA facility, it may be possible to study the in-medium properties of such states, even the multistrange Ξ* and Ω- systems, in the near future.
Observation of the sigma_b baryons at CDF
Pursley, Jennifer M.; /Johns Hopkins U.
2007-03-01
We present a measurement of four new bottom baryons in proton-antiproton collisions with a center of mass energy of 1.96 TeV. Using 1.1 fb{sup -1} of data collected by the CDF II detector, we observe four {Lambda}{sup 0}{sub b}{pi}{+-} resonances in the fully reconstructed decay mode {Lambda}{sup 0}{sub b} {yields} {Lambda}{sup +}{sub c}{pi}{sup -}, where {Lambda}{sup +}{sub c} {yields} pK{sup -}{pi}{sup +}. The probability for the background to produce a similar or larger signal is less than 8.3 x 10{sup -8}, corresponding to a significance of greater than 5.2 {sigma}. We interpret these baryons as the {Sigma}{sub b}{sup (*){+-}} baryons.
Boyle, P. A.; Christ, N. H.; Garron, N.; ...
2016-03-09
Here, we have performed fits of the pseudoscalar masses and decay constants, from a variety of the RBC-UKQCD Collaboration’s domain wall fermion ensembles, to SU(2) partially quenched chiral perturbation theory at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low-energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low-energy constants to make predictions for mass splittings due to QCD isospin-breaking effects and the S-wave ππ scattering lengths.more » Lastly, we conclude that, for the range of pseudoscalar masses explored in this work, 115 MeV≲mPS≲430 MeV, the NNLO SU(2) expansion is quite robust and can fit lattice data with percent-scale accuracy.« less
NASA Astrophysics Data System (ADS)
Hod, Shahar
2017-03-01
The magnetically charged SU(2) Reissner-Nordström black-hole solutions of the coupled nonlinear Einstein-Yang-Mills field equations are known to be characterized by infinite spectra of unstable (imaginary) resonances { ω n ( r +, r -)} n = 0 n = ∞ (here r ± are the black-hole horizon radii). Based on direct numerical computations of the black-hole instability spectra, it has recently been observed that the excited instability eigenvalues of the magnetically charged black holes exhibit a simple universal behavior. In particular, it was shown that the numerically computed instability eigenvalues of the magnetically charged black holes are characterized by the small frequency universal relation ω n ( r + - r -) = λ n , where { λ n } are dimensionless constants which are independent of the black-hole parameters. In the present paper we study analytically the instability spectra of the magnetically charged SU(2) Reissner-Nordström black holes. In particular, we provide a rigorous analytical proof for the numerically-suggested universal behavior ω n ( r + - r -) = λ n in the small frequency ω n r + ≪ ( r + - r -) /r + regime. Interestingly, it is shown that the excited black-√hole resonances are characterized by the simple universal relation ω n + 1/ ω n = e - 2 π/3. Finally, we confirm our analytical results for the black-hole instability spectra with numerical computations.
Decays of excited baryons in the large Nc expansion of QCD
Jose Goity; Norberto Scoccola
2006-05-06
We present the analysis of the decay widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Conformal symmetry and light flavor baryon spectra
NASA Astrophysics Data System (ADS)
Kirchbach, M.; Compean, C. B.
2010-08-01
The degeneracy among parity pairs systematically observed in the N and Δ spectra is interpreted to hint on a possible conformal symmetry realization in the light flavor baryon sector in line with AdS5/CFT4. The case is made by showing that all the observed N and Δ resonances with masses below 2500 MeV distribute fairly well each over the first levels of a unitary representation of the conformal group, a representation that covers the spectrum of a quark-diquark system, placed directly on a conformally compactified Minkowski spacetime, R1⊗S3, as approached from the AdS5 cone. The free geodesic motion on the S3 manifold is described by means of the scalar conformal equation there, which is of the Klein-Gordon-type. The equation is then gauged by the curved Coulomb potential that has the form of a cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between P11-S11 pairs from same level is relaxed, while the remaining states belonging to same level remain practically degenerate. The model describes the correct mass ordering in the P11-S11 pairs through the spectra as a combined effect of the above conformal symmetry breaking, on the one side, and a parity change of the diquark from a scalar at low masses, to a pseudoscalar at higher masses, on the other. The quality of the wave functions is illustrated by calculations of realistic mean square charge radii and electric charge form factors on the examples of the proton, and the protonic P11(1440), and S11(1535) resonances. The scheme also allows for a prediction of the dressing function of an effective instantaneous gluon propagator from the Fourier transform of the gauge potential. We find a dressing function that is finite in the infrared and tends to zero at infinity.
Multicharmed Baryon Production in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Zhao, Jiaxing; Zhuang, Pengfei
2017-03-01
We study nuclear medium effect on multicharmed baryon production in relativistic heavy ion collisions. By solving the three-quark Schroedinger equation at finite temperature, we calculate the wave functions and Wigner functions for doubly and triply charmed baryons Ξ_{cc} and Ω_{ccc}. Their production in nuclear collisions is largely enhanced due to the combination of uncorrelated charm quarks in the quark-gluon plasma. It is most probable to discover these new particles in heavy ion collisions at the RHIC and LHC energies.
Baryon symmetric big-bang cosmology. [matter-antimatter symmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Baryon as impurity for phase transition in string landscape
NASA Astrophysics Data System (ADS)
Kasai, Aya; Nakai, Yuichiro; Ookouchi, Yutaka
2016-06-01
We consider a decay of a false vacuum in flux compactifications of type IIB string theory and study a catalytic effect for a phase transition induced by a new type of impurities. We concentrate on the large N dual of a D5-brane/anti-D5-brane system which has a rich vacuum structure. We show that D3-branes wrapping the 3-cycles can form a baryon bound state with a monopole. We find that these baryon-like objects can make the lifetime of the metastable vacuum shorter.
Chiral Lagrangians for Baryons Coupled to Massive SPIN-1 Fields
NASA Astrophysics Data System (ADS)
Borasoy, B.; Meißner, Ulf-G.
We analyze the effective low energy field theory of Goldstone bosons and baryons chirally coupled to massive spin-1 fields. We use the electromagnetic baryon form factors to demonstrate the formal equivalence between the vector and the tensor field formulation for the spin-1 fields. We also discuss the origin of the so-called Weinberg term in pion-nucleon scattering and the role of ρ meson exchange. Chirally coupled vector mesons do not give rise to this two-pion nucleon seagull interaction but rather to higher order corrections. Some problems of the formal equivalence arising in higher orders and related to loops are touched upon.
The Evolution of Baryons in Cosmic Large Scale Structure
NASA Astrophysics Data System (ADS)
Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna
2015-01-01
The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.
Indication of divergent baryon-number susceptibility in QCD matter
Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.
2010-01-15
The baryon-number density formed in relativistic nuclear collisions versus the chemical potential of the freeze-out states is systematically studied on the basis of existing measurements. A remarkable power-law behavior of the baryon-number susceptibility is found at the CERN Super Proton Synchrotron, consistent with the existence of a QCD critical point at mu{sub B,c}approx =222 MeV, T{sub c}approx =155 MeV. The equation of state in different asymptotic regimes of the critical region is also examined and confronted with freeze-out states in these experiments.
Baryon number and strangeness: signals of a deconfinedantecedent
Majumder, A.; Koch, V.; Randrup, J.
2005-06-29
The correlation between baryon number and strangeness is used to discern the nature of the deconfined matter produced at vanishing chemical potential in high-energy nuclear collisions at the BNL RHIC. Comparisons of results of various phenomenological models with correlations extracted from lattice QCD calculations suggest that a quasi-particle picture applies. At finite baryon densities, such as those encountered at the CERN SPS, it is demonstrated that the presence of a first-order phase transition and the accompanying development of spinodal decomposition would significantly enhance the number of strangeness carriers and the associated fluctuations.
Baryon number violation and a new electroweak interaction
Chernodub, M. N.; Niemi, Antti J.
2009-04-01
We introduce a new supercurrent in the electroweak sector of the standard model. Its interaction with the hypergauge field influences the mass of the Z boson but has no effect on the W{sup {+-}} boson masses. In the leptonic sector it affects the numerical value of the vector and axial coupling constants between neutral currents and the Z boson, and a comparison with experimental values yields an upper bound to the strength of the coupling between the supercurrent and the hypergauge field. In the baryonic sector the supercurrent gives a new contribution to the anomaly equation for baryon number current. As a consequence it may have an effect on baryogenesis.
RESOLVE: Constructing a Baryonic Tully-Fisher Relation Reference Sample across Environments
NASA Astrophysics Data System (ADS)
Rosenberg, Daniel; Kannappan, S.; Miller, S.; Hoversten, E. A.; Hall, K.; Stark, D.; Moffett, A. J.; RESOLVE Team
2014-01-01
The RESOLVE (REsolved Spectroscopy Of a Local VolumE) survey is assembling a uniquely powerful data set for studies of the baryonic Tully-Fisher relation (BTFR) as a function of environment at z = 0. We review the current inventory of HI 21cm data from GBT, Arecibo, and ALFALFA in addition to SOAR and SALT rotation curves. From the available data, we construct the BTFR down to Mbary ~ 109 MSun. We search for preliminary indications of environment dependence using criteria such as group halo mass, smoothed environmental density, and nearest neighbor distance. We also compare our results to high-z BTFR data. We acknowledge funding for the RESOLVE survey (NSF AST-0955368)
Baryons:the Promise, the Problems, and the Prospects
Isgur, Nathan
1995-10-01
An idiosyncratic view of Baryons '95 that calls for a marriage between quark-based and hadronic models of QCD is presented.A treatment based on valence quark plus glue dominance of hadron structure, with the sea of qq{bar} pairs (in the form of virtual hadron pairs) as important corrections is advocated.
Baryon Asymmetry of the Universe (1/2)
None
2016-07-12
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
Layers of deformed instantons in holographic baryonic matter
NASA Astrophysics Data System (ADS)
Preis, Florian; Schmitt, Andreas
2016-07-01
We discuss homogeneous baryonic matter in the decompactified limit of the Sakai-Sugimoto model, improving existing approximations based on flat-space instantons. We allow for an anisotropic deformation of the instantons in the holographic and spatial directions and for a density-dependent distribution of arbitrarily many instanton layers in the bulk. Within our approximation, the baryon onset turns out to be a second-order phase transition, at odds with nature, and there is no transition to quark matter at high densities, at odds with expectations from QCD. This changes when we impose certain constraints on the shape of single instantons, motivated by known features of holographic baryons in the vacuum. Then, a first-order baryon onset and chiral restoration at high density are possible, and at sufficiently large densities two instanton layers are formed dynamically. Our results are a further step towards describing realistic, strongly interacting matter over a large density regime within a single model, desirable for studies of compact stars.
Pion photo- and electroproduction in relativistic baryon ChPT
NASA Astrophysics Data System (ADS)
Tiator, Lothar; Scherer, Stefan; Hilt, Marius
2014-06-01
We present a calculation of pion photo- and electroproduction in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order q4. We fix the low-energy constants by fitting experimental data in all available reaction channels. Our results can be accessed via a web interface, the so-called chiral MAID.
Production of doubly charmed baryons nearly at rest
NASA Astrophysics Data System (ADS)
Groote, Stefan; Koshkarev, Sergey
2017-08-01
We investigate the production cross sections, momentum distributions and rapidity distributions for doubly charmed baryons which according to the intrinsic heavy quark mechanism are produced nearly at rest. These events should be measurable at fixed-target experiments like STAR@RHIC and AFTER@LHC.
A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS
Zhang, Congyao; Yu, Qingjuan; Lu, Youjun
2016-04-01
Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared with the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.
Why baryons matter: The kinematics of dwarf spheroidal satellites
Brooks, Alyson M.; Zolotov, Adi E-mail: zolotov@physics.huji.ac.il
2014-05-10
We use high-resolution cosmological simulations of Milky Way (MW) mass galaxies that include both baryons and dark matter (DM) to show that baryonic physics (energetic feedback from supernovae and subsequent tidal stripping) significantly reduces the DM mass in the central regions of luminous satellite galaxies. The reduced central masses of the simulated satellites reproduce the observed internal dynamics of MW and M31 satellites as a function of luminosity. We use these realistic satellites to update predictions for the observed velocity and luminosity functions of satellites around MW-mass galaxies when baryonic effects are accounted for. We also predict that field dwarf galaxies in the same luminosity range as the MW classical satellites should not exhibit velocities as low as the satellites because the field dwarfs do not experience tidal stripping. Additionally, the early formation times of the satellites compared to field galaxies at the same luminosity may be apparent in the star formation histories of the two populations. Including baryonic physics in cold dark matter (CDM) models naturally explains the observed low DM densities in the MWs dwarf spheroidal population. Our simulations therefore resolve the tension between kinematics predicted in CDM theory and observations of satellites, without invoking alternative forms of DM.
The status of the Excited Baryon Analysis Center
B. Julia-Diaz
2010-08-01
The Excited Baryon Analysis Center (EBAC), which is associated with the Theory Group at Jefferson Laboratory, was initiated in 2006. Its main goal is to extract and interpret properties of nucleon resonances (N*) from the world data of meson production reactions induced by pions, photons and electrons. We review the main accomplishments of the center since then and sketch its near future perspectives.
Meson-baryon effective chiral Lagrangians at order p4
NASA Astrophysics Data System (ADS)
Jiang, Shao-Zhou; Chen, Qing-Sen; Liu, Yan-Rui
2017-01-01
We construct the three-flavor Lorentz-invariant meson-baryon chiral Lagrangians at the order p4, with which a full one-loop investigation may be performed. One obtains 540 independent terms. The processes with the minimal number of mesons and photons to which this order of Lagrangians may contribute are also presented.
Baryon Asymmetry of the Universe (2/2)
None
2016-07-12
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
Staggered baryon operators with flavor SU(3) quantum numbers
Bailey, Jon A.
2007-06-01
The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to emulate physical quark flavor; contemporary 2+1 flavor simulations explicitly include three physical quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly under SU(3){sub F}xGTS, the direct product of flavor SU(3){sub F} and the geometrical time-slice group of the 1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators transforming irreducibly under SU(3){sub F}xGTS and enumerate this set. In principle, the operators listed here could be used to extract the masses of all the lightest spin-(1/2) and spin-(3/2) baryon resonances of staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow for particularly clean 2+1 flavor calculations of the masses of the nucleon, {delta}, {sigma}*, {xi}*, and {omega}{sup -}.
Moduli induced cogenesis of baryon asymmetry and dark matter
NASA Astrophysics Data System (ADS)
Dhuria, Mansi; Hati, Chandan; Sarkar, Utpal
2016-05-01
We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental interactions. In particular, we consider a model which can be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM) superfields. Assuming that the mass of the additional singlet fermions is O (GeV) and of the color triplet fermions is O (TeV), we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY) breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Imposing discrete Z2 symmetry, it follows that the singlet fermion will not further decay into the SM particles and therefore it can be considered as a stable asymmetric dark matter (ADM) component. We find that the decay of the lightest eigenstate of scalar component of color triplet superfield gives the observed baryon asymmetry in the visible sector, an asymmetric dark matter component with the right abundance and naturally explains cosmic coincidence.
Accurate initial conditions in mixed dark matter-baryon simulations
NASA Astrophysics Data System (ADS)
Valkenburg, Wessel; Villaescusa-Navarro, Francisco
2017-06-01
We quantify the error in the results of mixed baryon-dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations is of the order of few to 10 per cent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using a mix of general-relativistic gauges so as to approximate Newtonian gravity, namely longitudinal-gauge velocities with synchronous-gauge densities and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that dark matter and baryons experience a scale-dependent growth after photon decoupling, which results in directions of velocity that are not the same as their direction of displacement. We compare the outcome of hydrodynamic simulations with these four approximations to our reference simulation, all setup with the same random seed and simulated using gadget-III.
Three-baryon interaction generated by determinant interaction of quarks
NASA Astrophysics Data System (ADS)
Ohnishi, Akira; Kashiwa, Kouji; Morita, Kenji
2017-07-01
We discuss the 3-baryon interaction generated by the determinant interaction of quarks, known as the Kobayashi-Maskawa-'t Hooft (KMT) interaction. The expectation value of the KMT interaction operator is calculated in fully antisymmetrized quark-cluster model wave functions for 1-, 2-, and 3-octet-baryon states. The 3-baryon potential from the KMT interaction is found to be repulsive for NNΛ and NΛΛ systems, while it is zero for the NNN system. The strength and range of the 3-baryon potential are found to be comparable to those for the NNN 3-body potential obtained in lattice QCD simulations. The contribution to the Λ single particle potential in nuclear matter is found to be 0.28{ MeV} and 0.73{ MeV} in neutron matter and symmetric nuclear matter at normal nuclear density, respectively. These repulsive forces are not enough to solve the hyperon puzzle, but may be measured in high-precision hyperisotope experiments.
THE SLOPE OF THE BARYONIC TULLY-FISHER RELATION
Gurovich, Sebastian; Freeman, Kenneth; Jerjen, Helmut; Staveley-Smith, Lister; Puerari, Ivanio
2010-09-15
We present the results of a baryonic Tully-Fisher relation (BTFR) study for a local sample of relatively isolated disk galaxies. We derive a BTFR with a slope near 3 measured over about 4 dex in baryon mass for our combined H I and bright spiral disk samples. This BTFR is significantly flatter and has less scatter than the TFR (stellar mass only) with its slope near 4 reported for other samples and studies. A BTFR slope near 3 is in better agreement with the expected slope from simple {Lambda}CDM cosmological simulations that include both stellar and gas baryons. The scatter in the TFR/BTFR appears to depend on W{sub 20}: galaxies that rotate slower have more scatter. The atomic gas-to-stars ratio shows a break near W{sub 20} = 250 km s{sup -1} probably associated with a change in star formation efficiency. In contrast, the absence of such a break in the BTFR suggests that this relation was probably set at the main epoch of baryon dissipation rather than as a product of later galactic evolution.
Group-theoretical construction of extended baryon operators
S. Basak; R. Edwards; R. Fiebig; G. T. Fleming; U. M. Heller; C. Morningstar; D. Richards; I. Sato; S. Wallace
2004-06-01
The design and implementation of large sets of spatially extended baryon operators for use in lattice simulations are described. The operators are constructed to maximize overlaps with the low-lying states of interest, while minimizing the number of sources needed in computing the required quark propagators.
Heavy baryons and their exotics from instantons in holographic QCD
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Zahed, Ismail
2017-06-01
We use a variant of the D 4 -D 8 construction that includes two chiral and one heavy meson, to describe heavy-light baryons and their exotics as heavy mesons bound to a flavor instanton in bulk. At strong coupling, the heavy meson is shown to always bind in the form of a flavor instanton zero mode in the fundamental representation. The ensuing instanton moduli for the heavy baryons exhibits both chiral and heavy quark symmetry. We detail how to quantize it, and derive model independent mass relations for heavy baryons with a single-heavy quark in leading order, in overall agreement with the reported baryonic spectra with one charm or bottom. We also discuss the low-lying masses and quantum assignments for the even and odd parity states, some of which are yet to be observed. We extend our analysis to double-heavy pentaquarks with hidden charm and bottom. In leading order, we find a pair of double-heavy iso-doublets with I Jπ=1/2 1/2-,1/2 3/2- assignments for all heavy flavor combinations. We also predict five new Delta-like pentaquark states with I Jπ=3/2 1/2-,3/2 3/2-,3/2 5/2- assignments for both charm and bottom.
Quantum effects due to the interaction between Su(1,1) and Su(2) quantum systems with damping
NASA Astrophysics Data System (ADS)
Mohamed, Abdel-Baset A.; Abdalla, Mohamed Sebawe; Obada, Abdel-Shafy F.
2017-09-01
An analytical description is given for a model which represents the interaction between Su(1,1) and Su(2) quantum systems with Su(1,1) -cavity damping. The analytic solution for the master equation of the density matrix is obtained Then examinations of the effects of the damping parameter as well as the change in the initial state of the field on some physical phenomena are performed. Examination of the correlation function shows that the system displays anti-bunching for all periods of time except for a large value of the excitation number when k = 1 / 4. Our discussion for the variance squeezing also shows that the phenomenon of squeezing is pronounced in the quadrature variances for the even parity case.
A family of spin-S chain representations of SU(2) level k Wess-Zumino-Witten models
NASA Astrophysics Data System (ADS)
Greiter, Martin; Thomale, Ronny; Rachel, Stephan; Schmitteckert, Peter
2012-02-01
We investigate a family of spin-S chain Hamiltonians recently introduced by one of us [M. Greiter, Mapping of Parent Hamiltonians, Springer Tracts in Modern Phyiscs, Vol 244 (Springer, Berlin, 2011)]. For S=1/2, it corresponds to the Haldane--Shastry model. For general spin S, we numerically show that the low--energy theory of these spin chains is described by the SU(2)k Wess--Zumino--Witten model with coupling k=2S. In particular, we investigate the S=1 model whose ground state is given by a Pfaffian for even number of sites N. We reconcile aspects of the spectrum of the Hamiltonian for arbitrary N with trial states obtained by Schwinger projection of two Haldane--Shastry chains.
NASA Astrophysics Data System (ADS)
Llanes-Estrada, Felipe J.; García, Guillermo; Guerrero Rojas, Jesús
2017-01-01
The gauge symmetry of the Standard Model is U(1) xSU(2)L xSU(3) for unknown reasons. One aspect that can be addressed is the low dimensionality of all its subgroups. Why not much larger groups like SU(7) or for that matter, SP(38) or E7? We observe that fermions charged under large groups acquire much bigger dynamical masses, all things being equal at a high e.g. GUT scale, than ordinary quarks. Should such multicharged fermions exist, they are too heavy to be observed today and have either decayed early on (if they couple to the rest of the Standard Model) or become reliquial dark matter (if they don't). The result follows easily from strong antiscreening of the running coupling for the larger group together with scaling properties of the Dyson-Schwinger equation for the fermion mass.
NASA Astrophysics Data System (ADS)
García Fernández, Guillermo; Guerrero Rojas, Jesús; Llanes-Estrada, Felipe J.
2017-02-01
The gauge symmetry of the Standard Model is SU(3)c × SU(2)L × U(1)Y for unknown reasons. One aspect that can be addressed is the low dimensionality of all its subgroups. Why not much larger groups like SU (7), or for that matter, SP (38) or E7? We observe that fermions charged under large groups acquire much bigger dynamical masses, all things being equal at a high e.g. GUT scale, than ordinary quarks. Should such multicharged fermions exist, they are too heavy to be observed today and have either decayed early on (if they couple to the rest of the Standard Model) or become reliquial dark matter (if they don't). The result follows from strong antiscreening of the running coupling for those larger groups (with an appropriately small number of flavors) together with scaling properties of the Dyson-Schwinger equation for the fermion mass.
NASA Astrophysics Data System (ADS)
Kleeorin, Yaakov; Meir, Yigal
2017-07-01
The interplay of almost degenerate levels in quantum dots and molecular junctions with possibly different couplings to the reservoirs has lead to many observable phenomena, such as the Fano effect, transmission phase slips, and the SU (4 ) Kondo effect. Here we predict a dramatic repeated disappearance and re-emergence of the SU (4 ) and anomalous SU(2) Kondo effects with increasing gate voltage. This phenomenon is attributed to the level occupation switching which has been previously invoked to explain the universal transmission phase slips in the conductance through a quantum dot. We use analytical arguments and numerical renormalization group calculations to explain the observations and discuss their experimental relevance and dependence on the physical parameters.
Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities
NASA Astrophysics Data System (ADS)
Albright, Michael Glenn
In this thesis we investigate equilibrium and nonequilibrium thermodynamic properties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities. We carefully design the switching function to avoid introducing first-, second-, or higher-order phase transitions which lattice QCD indicates are not present at small baryon chemical potentials. We employ three kinds of hadronic models in the crossover constructions, two of which include repulsive interactions via an excluded volume approximation while one model does not. We find that the three crossover models are in excellent agreement with accurate lattice QCD calculations of the equation of state over a wide range of temperatures and baryon chemical potentials. Hence, the crossover models should be very useful for parameterizing the equation of state at finite baryon densities, which is needed to build next-generation hydrodynamic simulations of heavy-ion collisions. We next calculate the speed of sound and baryon number fluctuations predicted by the crossover models. We find that crossover models with hadronic repulsion are most successful at reproducing the lattice results, while the model without repulsion is less successful, and hadron (only) models show poor agreement. We then compare the crossover models to net-proton fluctuation measurements from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The comparisons suggest baryon number fluctuations freeze-out well below the chemical freeze-out temperature. We also search for signs of critical fluctuations in the STAR data, but we find no evidence for them at this time. Finally, we derive kinetic theory formulas for the shear and bulk viscosity and thermal conductivity of hot hadronic
Programs for generating Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases
NASA Astrophysics Data System (ADS)
Bahri, C.; Rowe, D. J.; Draayer, J. P.
2004-05-01
Computer codes are developed to calculate Clebsch-Gordan coefficients of SU(3) in both SU(2)- and SO(3)-coupled bases. The efficiency of this code derives from the use of vector coherent state theory to evaluate the required coefficients directly without recursion relations. The approach extends to other compact semi-simple Lie groups. The codes are given in subroutine form so that users can incorporate the codes into other programs. Program summaryTitle of program: SU3CGVCS Catalogue identifier: ADTN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC non-profit use license Computers for which the program is designed and others on which it is operable: SGI Origin 2000, HP Apollo 9000, Sun, IBM SP, Pentium Operating systems under which the program has been tested: IRIX 6.5, HP UX 10.01, SunOS, AIX, Linux Programming language used: FORTRAN 77 Memory required to execute with typical data: On the HP system, it requires about 732 KBytes. Disk space used for output: 2100+2460 bytes No. of bits in a word: 32 bit integer and 64 bit floating point numbers. No. of processors used: 1 Has the code been vectorized: No No. of bytes in distributed program, including test data, etc.: 26 309 No. of lines in distributed program, including test data, etc.: 3969 Distribution format: tar gzip file Nature of physical problem: The group SU(3) and its Lie algebra su(3) have important applications, for example, in elementary particle physics, nuclear physics, and quantum optics [1-3]. The code presented is particularly relevant for the last two fields. Clebsch-Gordan (CG) coefficients are required whenever the symmetries of many-body systems are used for the evaluation of matrix elements of tensor operators. Moreover, the construction of CG coefficients for SU(3) serves as a nontrivial prototype for larger compact
Strangeness as a probe to baryon-rich QCD matter at NICA
NASA Astrophysics Data System (ADS)
Fukushima, Kenji
2016-08-01
We elucidate a prospect of strangeness fluctuation measurements in the heavy-ion collision at NICA energies. The strangeness fluctuation is sensitive to quark deconfinement. At the same time strangeness has a strong correlation with the baryon number under the condition of vanishing net strangeness, which leads to an enhancement of Λ0, Ξ0, Ξ-, and K+ at high baryon density. The baryon density is maximized around the NICA energies, and strangeness should be an ideal probe to investigate quark deconfinement phenomena of baryon-rich QCD matter created at NICA. We also utilize the hadron resonance gas model to estimate a mixed fluctuation of strangeness and baryon number.
CEBAF at higher energies: Working group report on hadron spectroscopy and production
Barnes, T. |; Napolitano, J.
1994-04-01
This report summarizes topics in hadron spectroscopy and production which could be addressed at CEBAF with an energy upgrade to E{sub {gamma}} = 8 GeV and beyond. The topics discussed include conventional meson and baryon spectrocopy, spectroscopy of exotica (especially molecules and hybrids), CP and CPT tests using {phi} mesons, and new detector and accelerator options.
DIOS: the dark baryon exploring mission
NASA Astrophysics Data System (ADS)
Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Kuromaru, G.; Suzuki, S.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Yamamoto, R.; Hayashi, T.; Ota, N.; Kelley, R. L.; Sakai, K.
2016-07-01
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30' diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earth's magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.
Dios: The Dark Baryon Exploring Mission
NASA Technical Reports Server (NTRS)
T.Ohashi; Ishisaki, Y.; Yamada, S.; Kuromaru, G.; Suzuki, S.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Mitsuda, K.; Yamasaki, N. Y.;
2016-01-01
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30 diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earths magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.
DIOS: the dark baryon exploring mission
NASA Astrophysics Data System (ADS)
Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Yamaguchi, S.; Miyazaki, N.; Tawara, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Sakai, K.; Nagayoshi, K.; Yamamoto, R.; Chiba, A.; Hayashi, T.
2014-07-01
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2020 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a very wide field of view (30-50 arcmin diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earth's magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. We also consider revising the payload design to optimize the scientific capability allowed by the boundary conditions of the small mission.
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-01-01
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881
a Study of the Decay Properties of the Charmed Baryon Charmed Positive Lambda Baryon
NASA Astrophysics Data System (ADS)
Charlesworth, Catriona Elizabeth Kaye
The charmed baryon Lambda_sp {c}{+} has been observed using the ARGUS detector in the DORIS II e^{+ }e^- storage ring at DESY. The ARGUS experiment is a 4pi magnetic solenoidal detector used to observe e^{+}e ^- annihilations at center-of-mass energies around 10.4 GeV. We have studied 5 decays modes of the Lambda_sp{c}{+}. The decay mode Lambda_sp{c} {+}to pK^-pi^+ was used to measure the Lambda_sp {c}{+} fragmentation properties. A value of 0.24 +/- 0.04 was found for the Peterson et al. parameter epsilon, and the sigma(Lambda_sp{c }{+}) cdot BR( Lambda_sp{c}{+}to pK^-pi^+) was measured to be 12.0 +/- 1.1 +/- 1.3) pb. The decay modes Lambda_sp {c}{+}toLambdapi^+ and Lambda_sp{c} {+}toSigma^0pi^+ were also studied. In the former the asymmetry parameter alpha_{Lambda _{c}} was measured to be -1.0 +/- 0.5, indicating that parity is maximally violated in this decay. The two production cross section times branching ratios were measured to be (2.2 +/- 0.3 +/- 0.3) pb and (2.0 +/- 0.7 +/- 0.3) pb respectively. Finally, a search was made for evidence of W-exchange in the decay Lambda_sp{c}{+} toXi^-K^+pi^+. This final state can arise through a simple spectator decay or via the more exotic W-exchange decay into Xi ^{*0}K^+, where the Xi^{*0} subsequently decays into Xi^-pi^+. The two body rate was measured to be (35 +/- 17)% of the three body rate, indicating that a significant portion of the Xi^-K^+pi ^+ final state may occur via W-exchange.
CP violation in multibody decays of beauty baryons
NASA Astrophysics Data System (ADS)
Durieux, Gauthier
2016-10-01
Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-1/2 baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the Λ b → Λ φ → p π K + K - decay are expected to vanish identically.
Determination of the quark coupling strength |Vub| using baryonic decays
NASA Astrophysics Data System (ADS)
LHCb Collaboration; Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Mohr, R. Casanova; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; de Bruyn, K.; de Capua, S.; de Cian, M.; de Miranda, J. M.; de Paula, L.; de Silva, W.; de Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; di Canto, A.; di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Albor, V. Fernandez; Ferrari, F.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Pardiñas, J. García; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Rodrigues, B. Osorio; Goicochea, J. M. Otalora; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; Dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Lopez, J. A. Rodriguez; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Vidal, A. Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Valls, P. Ruiz; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza de Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Sierra, C. Vázquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Barbosa, J. V. Viana; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.
2015-09-01
In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, |Vub| and |Vcb|, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the Λb0 baryon to decay into the p final state relative to the final state is measured. Combined with theoretical calculations of the strong interaction and a previously measured value of |Vcb|, the first |Vub| measurement to use a baryonic decay is performed. This measurement is consistent with previous determinations of |Vub| using B meson decays to specific final states and confirms the existing incompatibility with those using an inclusive sample of final states.
Net baryon fluctuations from a crossover equation of state
NASA Astrophysics Data System (ADS)
Kapusta, J.; Albright, M.; Young, C.
2016-08-01
We have constructed an equation of state which smoothly interpolates between an excluded-volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy-Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out.
Flavor violation in Higgs-boson couplings to baryons
Bagchi, B. ); Niyogi, S. )
1992-06-01
The 1/2{sup +} baryon mass spectrum is studied to determine the {ital {bar u}u}, {ital {bar d}d}, and {ital {bar s}s} contents in the nucleon. We find that higher-order symmetry-breaking terms in the mass operator are necessary to estimate {l angle}{ital p}{vert bar}{ital {bar u}u}{vert bar}{ital p}{r angle}, {l angle}{ital p}{vert bar}{ital {bar d}d}{vert bar}{ital p}{r angle}, and {l angle}{ital p}{vert bar}{ital {bar s}s}{vert bar}{ital p}{r angle} in a self-consistent way. We also assess the scalar (pseudoscalar) Higgs-boson couplings to baryons.
Exodus: Hidden origin of dark matter and baryons
NASA Astrophysics Data System (ADS)
Unwin, James
2013-06-01
We propose a new framework for explaining the proximity of the baryon and dark matter relic densities ΩDM ≈ 5Ω B . The scenario assumes that the number density of the observed dark matter states is generated due to decays from a second hidden sector which simultaneously generates the baryon asymmetry. In contrast to asymmetric dark matter models, the dark matter can be a real scalar or Majorana fermion and thus presents distinct phenomenology. We discuss aspects of model building and general constraints in this framework. Moreover, we argue that this scenario circumvents several of the experimental bounds which significantly constrain typical models of asymmetric dark matter. We present a simple supersymmetric implementation of this mechanism and show that it can be used to obtain the correct dark matter relic density for a bino LSP.
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
Baryons in QCDAS at large Nc: A roundabout approach
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Shafer, Daniel L.; Lebed, Richard F.
2010-02-01
QCDAS, a variant of large Nc QCD in which quarks transform under the color two-index antisymmetric representation, reduces to standard QCD at Nc=3 and provides an alternative to the usual large Nc extrapolation that uses fundamental representation quarks. Previous strong plausibility arguments assert that the QCDAS baryon mass scales as Nc2; however, the complicated combinatoric problem associated with quarks carrying two color indices impeded a complete demonstration. We develop a diagrammatic technique to solve this problem. The key ingredient is the introduction of an effective multigluon vertex: a “traffic circle” or roundabout diagram. We show that arbitrarily complicated diagrams can be reduced to simple ones with the same leading Nc scaling using this device, and that the leading contribution to baryon mass does, in fact, scale as Nc2.
DIOS (Diffuse Intergalactic Oxygen Surveyor): the Dark Baryon Exploring Mission
NASA Astrophysics Data System (ADS)
Tawara, Yuzuru; Ohashi, Takaya; Yamasaki, Noriko; Mitsuda, Kazuhisa
2015-08-01
More than half of the baryons are unidentified in the local Universe, and majority of them are thought to reside along the large-scale structure in the form of Warm-Hot Intergalactic Medium (WHIM). The 3-dimensional structure of WHIM will be probed by observing redshifted oxygen emission lines with high resolution X-ray spectrometers. DIOS (Diffuse Intergalactic Oxygen Surveyor) has been developed aiming for a launch by JAXA’s Epsilon Launch Vehicle around 2020. The payload consists of a 4-reflection X-ray telescope and a TES calorimeter array cooled by mechanical coolers. With a large grasp (area times f.o.v.) over 100 cm2 deg2, DIOS will identify 30-40% of dark baryons and will show us gas dynamics of cosmic plasmas from Earth’s megnetosphere to cluster outskirts. We describe the design and outstanding issues of DIOS.
Spinodal instabilities in baryon-rich quark matter
NASA Astrophysics Data System (ADS)
Ko, Che Ming; Li, Feng
For quark matter at finite baryon chemical potential, its density develops large fluctuations when it undergoes a first-order phase transition. Based on the Nambu-Jona-Lasinio (NJL) model, we have used the linear response theory to study the growth rate of density fluctuations and its dependence on the wavelength of unstable modes. Using the transport equation derived from the NJL model, we have also studied the time evolution of the unstable modes and the density fluctuations in a baryon-rich quark matter that is confined in a finite volume. Allowing the expansion of the quark matter, we have further studied the survivability of the density fluctuations as the density and temperature of the quark matter decrease. Possible experimental signatures of the density fluctuations have been suggested.
Zeldovich and the Missing Baryons, Results from Gravitational Lensing
NASA Astrophysics Data System (ADS)
Schild, Rudolph E.
2016-10-01
Central to Zeldovich's attempts to understand the origin of cosmological structure was his exploration of the fluid dynamical effects in the primordial gas, and how the baryonic dark matter formed. Unfortunately microlensing searches for condensed objects in the foreground of the Magellanic Clouds were flawed by the assumption that the objects would be uniformly (Gaussian) distributed, and because the cadence of daily observations strongly disfavored detection of planet mass microlenses. But quasar microlensing showed them to exist at planetary mass at the same time that a hydro-gravitational theory predicted the planet-mass population as fossils of turbulence at the time of recombination (z = 1100; Gibson 1996, 2001). Where the population has now been detected from MACHO searches to the LMC (Sumi et al. 2011) we compare the quasar microlensing results to the recent determination of the mass distribution function measured for the planetary mass function, and show that the population can account for the baryonic dark matter.
Observation of the Heavy Baryons Sigma b and Sigma b*.
Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-11-16
We report an observation of new bottom baryons produced in pp collisions at the Tevatron. Using 1.1 fb(-1) of data collected by the CDF II detector, we observe four Lambda b 0 pi+/- resonances in the fully reconstructed decay mode Lambda b 0-->Lambda c + pi-, where Lambda c+-->pK* pi+. We interpret these states as the Sigma b(*)+/- baryons and measure the following masses: m Sigma b+=5807.8 -2.2 +2.0(stat.)+/-1.7(syst.) MeV/c2, m Sigma b- =5815.2+/-1.0(stat.)+/-1.7(syst.) MeV/c2, and m(Sigma b*)-m(Sigma b)=21.2-1.9 +2.0(stat.)-0.3+0.4(syst.) MeV/c2.
Baryon number dissipation at finite temperature in the standard model
Mottola, E. ); Raby, S. . Dept. of Physics); Starkman, G. . Dept. of Astronomy)
1990-01-01
We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, {gamma} is given in terms of real time correlation functions of the operator E{center dot}B, and is directly proportional to the sphaleron transition rate, {Gamma}: {gamma} {preceq} n{sub f}{Gamma}/T{sup 3}. Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs.
Two potential quark models for double heavy baryons
Puchkov, A. M.; Kozhedub, A. V.
2016-01-22
Baryons containing two heavy quarks (QQ{sup ′} q) are treated in the Born-Oppenheimer approximation. Two non-relativistic potential models are proposed, in which the Schrödinger equation admits a separation of variables in prolate and oblate spheroidal coordinates, respectively. In the first model, the potential is equal to the sum of Coulomb potentials of the two heavy quarks, separated from each other by a distance - R and linear potential of confinement. In the second model the center distance parameter R is assumed to be purely imaginary. In this case, the potential is defined by the two-sheeted mapping with singularities being concentrated on a circle rather than at separate points. Thus, in the first model diquark appears as a segment, and in the second - as a circle. In this paper we calculate the mass spectrum of double heavy baryons in both models, and compare it with previous results.
Dark Galaxies and Lost Baryons (IAU S244)
NASA Astrophysics Data System (ADS)
Davies, Jonathan I.; Disney, Michael J.
2008-05-01
Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks
The role of quark distances in baryon multiplet mass differences
Barakat, T.
1996-10-01
On the basis of solutions of the three-body Schroedinger equation with harmonic oscillators potential, the quark distances in baryons are expressed as mass dependent terms. The isomultiplet mass differences of octet and decuplet baryons are explained well when a dynamical isospin-breaking effect (m{sub u} {ne} m{sub d}) in the quark distances is introduced. In particular the author obtains R{sub dd} < R{sub uu}, a result which is in the right direction at least to reproduce {Sigma}{sub c}{sup ++} {minus} {Sigma}{sub c}{sup 0}= 2.5 MeV, in good agreement with the experimental findings 2.5 {+-} 1.0 MeV.
Zaritsky, Dennis; Courtois, Helene; Sorce, Jenny; Gadotti, D. A.; Gil de Paz, A.; Hinz, J. L.; Menéndez-Delmestre, K.; Regan, M. W.; Seibert, M.; Athanassoula, E.; Bosma, A.; and others
2014-06-01
We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of H I spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 ± 0.2 (Δlog M {sub baryon}/Δlog v{sub c} ), implies that on average a nearly constant fraction (∼0.4) of all baryons expected to be in a halo are 'condensed' onto the central region of rotationally supported galaxies. The condensed baryon fraction, M {sub baryon}/M {sub total}, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, v {sub c} , between 60 and 250 km s{sup –1}, but is extended to v{sub c} ∼ 10 km s{sup –1} using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally ≤ a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v{sub c} < 250 km s{sup –1} and typically introduce no more than a factor of two range in the resulting M {sub baryon}/M {sub total}. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the
The riddle of high-energy baryon number violation
Mattis, M.P.
1991-09-01
The exciting possibility that anomalous baryon and lepton number violation might be observable at the next generation of supercolliders is suggested by an instanton calculation due to Ringwald and Espinosa. In these Lectures, the current controversial status of these claims is discussed, and several new technologies designed to analyze this question are reviewed. These technologies should contribute more generally to our understanding of weakly- coupled field theories in the nonperturbative regime where both energies and multiplicities are very large. 61 refs., 35 figs.
Bosonic and Baryonic String Theory in Quantum Chromodynamics
Kuti, Julius
2007-02-27
Bosonic string formation in gauge theories is reviewed with particular attention to the confining flux in lattice QCD and its effective string theory description. Recent results on the Casimir energy of the ground state and the string excitation spectrum are analyzed in the Dirichlet string limit of large separation between static sources. The closed string-soliton (torelon) with electric flux winding around a compact dimension is discussed and a new bound state tower spectrum at baryon string junctions is presented.
BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES
Zolotov, Adi; Dekel, Avishai; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Quinn, Tom; Pontzen, Andrew; Christensen, Charlotte; Wadsley, James
2012-12-10
Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M{sub V} < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H{sub 2} formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M{sub vir} {>=} 10{sup 9} M{sub Sun }, M{sub *} {>=} 10{sup 7} M{sub Sun }) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations
Search for Popcorn Mesons in Events with Two Charmed Baryons
Hartfiel, Brandon; /SLAC
2006-07-07
The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
Baryon effects on void statistics in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Paillas, Enrique; Lagos, Claudia D. P.; Padilla, Nelson; Tissera, Patricia; Helly, John; Schaller, Matthieu
2017-10-01
Cosmic voids are promising tools for cosmological tests due to their sensitivity to dark energy, modified gravity and alternative cosmological scenarios. Most previous studies in the literature of void properties use cosmological N-body simulations of dark matter (DM) particles that ignore the potential effect of baryonic physics. Using a spherical underdensity finder, we analyse voids using the mass field and subhalo tracers in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations, which follow the evolution of galaxies in a Λ cold dark matter universe with state-of-the-art subgrid models for baryonic processes in a (100 cMpc)3 volume. We study the effect of baryons on void statistics by comparing results with DM-only simulations that use the same initial conditions as EAGLE. When identifying voids in the mass field, we find that a DM-only simulation produces 24 per cent more voids than a hydrodynamical one due to the action of galaxy feedback polluting void regions with hot gas, specially for small voids with rvoid ≤ 10 Mpc. We find that the way in which galaxy tracers are selected has a strong impact on the inferred void properties. Voids identified using galaxies selected by their stellar mass are larger and have cuspier density profiles than those identified by galaxies selected by their total mass. Overall, baryons have minimal effects on void statistics, as void properties are well captured by DM-only simulations, but it is important to account for how galaxies populate DM haloes to estimate the observational effect of different cosmological models on the statistics of voids.
Multiquark study of exotic open bottom baryonic states
NASA Astrophysics Data System (ADS)
Caramés, T. F.; Valcarce, A.
2017-05-01
We present a simultaneous study of baryon-meson systems containing a bottom degree of freedom, either as a quark or as an antiquark. This produces two different types of structures: the N B system, subject to quark antisymmetry effects and whose existence would generate explicit exotic states; and the N B ¯ system, subject to the coupling to heavy baryon-light meson systems and whose existence would represent a higher Fock space component of the bottom baryon spectrum. Both systems have been studied within the framework of a full-fledged chiral constituent quark model tuned in the description of the baryon and meson spectra and the N N interaction. Although the masses of the constituents are larger than its partners in the charm sector, we do not observe a proliferation of bound states. This is due to the coupled-channel mechanism that governs the dynamics for most spin-isospin channels, and requires, in order to have a bound state, several conditions that are difficult to be met at the same time. Our results point to the existence of a deep N B bound state in the (T )JP=(2 )3 /2- channel, as a consequence of the reduction of the mass difference between pseudoscalar and vector mesons when the mass of the heavy quark increases. The same effect gives rise to a resonance at threshold in the (T )JP=(0 )1 /2- channel, the best candidate for an exotic state among the channels that do not contain a Δ isobar. In the N B ¯ system, a few channels may lodge molecular or compact hadrons with a five-quark structure, being specially suited the (T )JP=(0 )1 /2- and (T )JP=(1 )5 /2- channels.
Baryons with Ginsparg-Wilson quarks in a staggered sea
Tiburzi, Brian C.
2005-11-01
We determine the masses and magnetic moments of the octet baryons in chiral perturbation theory formulated for a mixed lattice action of Ginsparg-Wilson valence quarks and staggered sea quarks. Taste-symmetry breaking does not occur at next-to-leading order in the combined lattice spacing and chiral expansion. Expressions derived for masses and magnetic moments are required for addressing lattice artifacts in mixed-action simulations of these observables.
The Baryon Number Two System in the Chiral Soliton Model
NASA Astrophysics Data System (ADS)
Mantovani-Sarti, Valentina; Drago, Alessandro; Vento, Vicente; Park, Byung-Yoon
2013-03-01
We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
High baryon density from relativistic heavy ion collisions
Pang, Y.; Kahana, S.H.; Schlagel, T.J. |
1993-10-01
A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).
Prospects for baryon instability search with long-lived isotopes
Efremenko, Yu.; Bugg, W.; Cohn, H.; Kamyshkov, Yu.; Parker, G.; Plasil, F.
1996-12-31
In this paper we consider the possibility of observation of baryon instability processes occurring inside nuclei by searching for the remnants of such processes that could have been accumulated in nature as mm long-lived isotopes. As an example, we discuss here the possible detection of traces of {sup 97}Tc, {sup 98}Tc, and {sup 99}Tc in deep-mined nonradioactive tin ores.
Nuclear matter at high temperature and low net baryonic density
Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.
2010-11-12
We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.
Properties of Baryons from Bonn-Gatchina Partial Wave Analysis
NASA Astrophysics Data System (ADS)
Sarantsev, Andrey
The recent results from the Bonn-Gatchinal partial wave analysis are reported. The analysis includes a large number of new pseudoscalar meson photoproduction data taken with polarized beam and target. The analysis also includes the information about photoproduction of vector mesons, which reveals resonant signals at masses above 2 GeV. The impact of the new data on spectrum of baryons and their properties is discussed.
Excited State Mass Spectra of Ω0 c Baryon
NASA Astrophysics Data System (ADS)
Shah, Z.; Thakkar, K.; Rai, A. K.; Vinodkumar, P. C.
2016-10-01
We have calculated the radial and orbital excited states of singly charmed baryon Oc using the Hypercentral Constituent Quark Model (hCQM). The confinement potential is assumed as coulomb plus power potential (CPP V ). The ground state and excited state masses are determined with and with out first order correction to the potential. Furthermore, we plot graph between Mass(M) → Potential Index(v). Our calculated results are in good agreement with experimental and other theoretical predictions.
Recent Progress in Understanding the Baryon Resonance Spectrum
NASA Astrophysics Data System (ADS)
Crede, Volker
2017-01-01
Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. These states are sensitive to the details of quark confinement, which is only poorly understood with quantum chromodynamics (QCD), the fundamental theory of the strong interaction. To gain insight into this complex dynamics, the baryonic excitation spectrum has been studied for many years. The key question remains what are the relevant degrees of freedom for the resonance physics of QCD. Are the so-called constituent quarks the most efficient way to describe reaction amplitudes and the excitation spectrum of QCD with light quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics? In recent years, lattice-QCD has made significant progress toward understanding the spectra of hadrons, reducing statistical uncertainties and employing robust techniques for spin identication. However, a calculation of the physical excited baryon spectrum is still a tough challenge with present computing power. On the experimental side, high-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining atomic nuclei and the strong nuclear force. Significant progress has been achieved with the recent availability of new polarization data, utilizing polarized beams and/or polarized targets at various laboratories worldwide, e.g. Jefferson Lab in the United States. These are important steps toward so-called complete experiments that will allow us to unambiguously determine the scattering amplitudes in the underlying reactions and to identify resonance contributions. In this presentation, I will give an overview of the excited baryon program and I will discuss the current (experimental) status of the nucleon excitation spectrum. Support is acknowledged from the Department of Energy grant #DE-FG02-92ER40735.
Baryon to meson transition distribution amplitudes and their spectral representation
Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.
2011-07-15
We consider the problem of construction of a spectral representation for nucleon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of nonlocal three quark operators between a nucleon and a meson states. We introduce the notion of quadruple distributions and generalize Radyshkin's factorized Ansatz for this issue. Modelling of baryon to meson TDAs in the complete domain of their definition opens the way to quantitative estimates of cross-sections for various hard exclusive reactions.
Manriquez, J. J. Torres; Martinez, A.; Neri, M.; Garcia, A.
2008-07-02
Because of the near future work of the NA48 experimental group, we have calculated the radiative corrections (RC) to the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons. This work covers the two cases, charged and neutral decaying baryons, and it is restricted to the so called three body region of the Dalitz plot. Also it is specialized at the c.m. frame of the emitted baryon. We consider terms up to ({alpha}/ product )(q/M{sub 1}){sup 0}, where q is the momentum transfer and M{sub 1} is the mass of the decaying baryon, and neglect terms of the order ({alpha}/ product )(q/M{sub 1}){sup n}, n = 1,2,.... The analytical expressions displayed are ready to obtain numerical results, suitable for a model-independent experimental analysis.
The one and a half monopoles solution of the SU(2) Yang–Mills–Higgs field theory
Teh, Rosy Ng, Ban-Loong; Wong, Khai-Ming
2014-04-15
Recently we have reported on the existence of finite energy SU(2) Yang–Mills–Higgs particle of one-half topological charge. In this paper, we show that this one-half monopole can co-exist with a ’t Hooft–Polyakov monopole. The magnetic charge of the one-half monopole is of opposite sign to the magnetic charge of the ’t Hooft–Polyakov monopole. However the net magnetic charge of the configuration is zero due to the presence of a semi-infinite Dirac string along the positive z-axis that carries the other half of the magnetic monopole charge. The solution possesses gauge potentials that are singular along the z-axis, elsewhere they are regular. The total energy is found to increase with the strength of the Higgs field self-coupling constant λ. However the dipole separation and the magnetic dipole moment decrease with λ. This solution is non-BPS even in the BPS limit when the Higgs self-coupling constant vanishes. -- Highlights: •This one-half monopole can co-exist with a ’t Hooft–Polyakov monopole. •The magnetic charge of the one-half monopole and one monopole is of opposite sign. •This solution is non-BPS. •The net magnetic charge of the configuration is zero. •This solution upon Cho decomposition is only singular along the negative z-axis.
NASA Astrophysics Data System (ADS)
Bischer, Ingolf; Grandou, Thierry; Hofmann, Ralf
2017-07-01
We address the loop expansion of the pressure in the deconfining phase of SU(2) Yang-Mills thermodynamics. We devise an efficient book-keeping of excluded energy-sign and scattering-channel combinations for the loop four-momenta associated with massive quasiparticles, circulating in (connected) bubble diagrams subject to vertex constraints inherited from the thermal ground state. These radiative corrections modify the one-loop pressure exerted by free thermal quasiparticles. Increasing the loop order in two-particle irreducible (2PI) bubble diagrams, we exemplarily demonstrate a suppressing effect of the vertex constraints on the number of valid combinations. This increasingly strong suppression gave rise to the conjecture in arXiv:hep-th/0609033 that the loop expansion would terminate at a finite order. Albeit the low-temperature dependence of the 2PI 3-loop diagram complies with this behavior, a thorough analysis of the high-temperature situation reveals that the leading power in temperature is thirteen such that this diagram dominates all lower loop orders for sufficiently high temperatures. An all-loop-order resummation of 2PI diagrams with dihedral symmetry is thus required, defining an extremely well-bounded analytical continuation of the low-temperature result.
Konik, R. M.; Palmai, T.; Takacs, G.; ...
2015-08-24
We study the SU(2)k Wess-Zumino-Novikov-Witten (WZNW) theory perturbed by the trace of the primary field in the adjoint representation, a theory governing the low-energy behaviour of a class of strongly correlated electronic systems. While the model is non-integrable, its dynamics can be investigated using the numerical technique of the truncated conformal spectrum approach combined with numerical and analytical renormalization groups (TCSA+RG). The numerical results so obtained provide support for a semiclassical analysis valid at k » 1. Namely, we find that the low energy behavior is sensitive to the sign of the coupling constant, λ. Moreover for λ > 0more » this behavior depends on whether k is even or odd. With k even, we find definitive evidence that the model at low energies is equivalent to the massive O(3) sigma model. For k odd, the numerical evidence is more equivocal, but we find indications that the low energy effective theory is critical.« less
Gribov-Zwanziger action in SU(2) maximally Abelian gauge with U(1)3 Landau gauge
NASA Astrophysics Data System (ADS)
Gongyo, Shinya; Iida, Hideaki
2014-01-01
We construct the local Gribov-Zwanziger action for SU(2) Euclidean Yang-Mills theories in the maximally Abelian (MA) gauge with U(1)3 Landau gauge fixing based on Zwanziger's work in the Landau gauge. By restricting the functional integral region to the Gribov region in the MA gauge, we give the nonlocal action. We localize the action with new fields and obtain the action with the shift of the new scalar fields, which has the terms corresponding to the localized action of the horizon function in the MA gauge. The diagonal gluon propagator in the MA gauge at tree level behaves like the propagator from the Gribov-Zwanziger action in the Landau gauge, and shows the violation of the Kallen-Lehmann representation. From our result, the validity of the Gribov-Zwanziger scenario in the MA gauge can be studied by comparing with the lattice result in two dimensions, which is qualitatively consistent with the result of the original Gribov-Zwanziger action in the Landau gauge.
A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM
Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan E-mail: mqk@astro.berkeley.edu E-mail: dhooper@fnal.gov
2013-03-01
It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem.
Bottom baryon decays to pseudoscalar meson and pentaquark
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang
2015-11-01
Based on SU(3) flavor symmetry, we decompose the decay amplitudes of bottom baryon decays to a pseudoscalar meson and an octet (a decuplet) pentaquark in terms of three (two) invariant amplitudes T1 and T2 ,3 (T˜ 1 and T˜ 2 ) corresponding to external W -emission and internal W -emission diagrams, respectively. For antitriplet bottom baryons Λb0 , Ξb0 , and Ξb- , their decays to a decuplet pentaquark proceed only through the internal W -emission diagram. Assuming the dominance from the external W -emission amplitudes, we present an estimate of the decay rates relative to Λb0→Pp+K- , where Pp+ is the hidden-charm pentaquark with the same light-quark content as the proton. Hence, our numerical results will provide a very useful guideline to the experimental search for pentaquarks in bottom baryon decays. For example, Ξb0→PΣ+K- , Ξb-→PΣ-K¯ 0 , Ωb-→PΞ-K¯ 0 , and Ωb-→PΞ0K- may have rates comparable to that of Λb0→Pp+K- and these modes should be given the higher priority in the experimental searches for pentaquarks.
Transverse Densities of Octet Baryons from Chiral Effective Field Theory
Alarcón, Jose Manuel; Hiller Blin, Astrid N.; Weiss, Christian
2017-03-24
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. In this paper, we calculate the transverse densities of the octet baryons at peripheral distances b=O(Mπ-1) in an approach that combines chiral effective field theory (χχEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t>4Mmore » $$2\\atop{π}$$ are computed using relativistic χEFT with octet and decuplet baryons in the extended on-mass-shell renormalization scheme. The calculations are extended into the ρ-meson mass region using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b>1 fm with controlled uncertainties. Finally, our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.« less
Measurement of matter-antimatter differences in beauty baryon decays
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; , A. A. Alves, Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; D'Argent, P.; Romeu, J. Arnau; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; Beuzekom, M. Van; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Camboni, A.; Campana, P.; Perez, D. Campora; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Sobral, C. M. Costa; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Marinho, F. Da Cunha; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; Francisco, O. De Aguiar; Bruyn, K. De; Capua, S. De; Cian, M. De; Miranda, J. M. De; Paula, L. De; Serio, M. De; Simone, P. De; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Buono, L. Del; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Canto, A. Di; Dijkstra, H.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Albor, V. Fernandez; Prieto, A. Fernandez; Ferrari, F.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Lima, V. Franco; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Martin, L. M. Garcia; Pardiñas, J. Garcıa; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Cazon, B. R. Gruberg; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; Herwijnen, E. Van; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Gac, R. Le; Leerdam, J. Van; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Cid, E. Lemos; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Martinez, M. Lucio; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Rodriguez, J. Molina; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Goicochea, J. M. Otalora; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Olloqui, E. Picatoste; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Pernas, M. Ramos; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; Reis, A. C. Dos; Alepuz, C. Remon; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Lopez, J. A. Rodriguez; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Vidal, A. Romero; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Valls, P. Ruiz; Silva, J. J. Saborido; Sadykhov, E.; Sagidova, N.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; de Oliveira, L. Silva; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; de Paula, B. Souza; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; Tilburg, J. Van; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Vecchi, S.; Veghel, M. Van; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Vries, J. A. De; Sierra, C. Vázquez; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.
2017-04-01
Differences in the behaviour of matter and antimatter have been observed in K and B meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as CP violation. Here, using data from the LHCb experiment at the Large Hadron Collider, we search for CP-violating asymmetries in the decay angle distributions of Λb0 baryons decaying to pπ-π+π- and pπ-K+K- final states. These four-body hadronic decays are a promising place to search for sources of CP violation both within and beyond the standard model of particle physics. We find evidence for CP violation in Λb0 to pπ-π+π- decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for CP violation in the baryon sector.
Baryon Masses and Hadronic Decay Widths with Explicit Pionic Contributions
NASA Astrophysics Data System (ADS)
Schmidt, R. A.; Canton, L.; Plessas, W.; Schweiger, W.
2017-03-01
We report results from studies of baryon ground and resonant states by taking explicit mesonic degrees of freedom into account. We are following a relativistic coupled-channels approach relying on a Poincaré-invariant mass operator in matrix form. Generally, it corresponds to a bare particle that is coupled to a number of further mesonic channels. Here we present results, where the bare particle is either a bare nucleon or a bare Delta coupled to pion-nucleon and pion-Delta channels, respectively. For the pion-baryon vertices we employ coupling constants and form factors from different models in the literature. From the mass-operator eigenvalue equation we obtain the pion-dressing effects on the nucleon mass as well as the mass and pion-decay width of the Delta. The dressed masses become smaller than the bare ones, and a finite width of the Delta is naturally generated. The results are relevant for the construction of constituent-quark models for baryons, which have so far not included explicit mesonic degrees of freedom, but have rather relied on three-quark configurations only.
Baryons as relativistic three-quark bound states
NASA Astrophysics Data System (ADS)
Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.
2016-11-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.
A scenario of heavy but visible baryonic dark matter
NASA Astrophysics Data System (ADS)
Huo, Ran; Matsumoto, Shigeki; Tsai, Yue-Lin Sming; Yanagida, Tsutomu T.
2016-09-01
We consider a model in which dark matter is a composite baryon of a dark sector governed by SU(3) gauge theory, with vector-like quarks also charged under U(1) Y . The model provides simple answer to the dark matter stability problem: it is a result of the accidental dark baryon number conservation. And with an analogy to QCD, all physical quantities of the dark matter can be calculated by rescaling the QCD experimental results. According to the thermal freeze-out mechanism the mass of the dark matter is predicted to be O(100) TeV in order to achieve a correct relic abundance. Such heavy dark matter is in general hard for detection due to small dark matter number density in the universe. However, dark baryon number in our model is not necessarily strictly preserved thanks to operators suppressed by the Planck scale, and such decay operator results in a decay lifetime marginal to the current detection bound. We show our model with O({10}^{27}) s dark matter decay life time can explain the AMS-02 anti-proton data, if it is experimentally interpreted as an access, although some theoretical uncertainty may weaken its significance. We also investigate other phenomena of this model such as the extragalactic gamma ray and neutrino signatures.